1 /*- 2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/disklabel.h> 32 #include <sys/mount.h> 33 #include <sys/stat.h> 34 35 #include <ufs/ufs/ufsmount.h> 36 #include <ufs/ufs/dinode.h> 37 #include <ufs/ufs/dir.h> 38 #include <ufs/ffs/fs.h> 39 40 #include <stdio.h> 41 #include <stdlib.h> 42 #include <stdint.h> 43 #include <libufs.h> 44 #include <string.h> 45 #include <strings.h> 46 #include <err.h> 47 #include <assert.h> 48 49 #include "fsck.h" 50 51 #define DOTDOT_OFFSET DIRECTSIZ(1) 52 #define SUJ_HASHSIZE 2048 53 #define SUJ_HASHMASK (SUJ_HASHSIZE - 1) 54 #define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK) 55 56 struct suj_seg { 57 TAILQ_ENTRY(suj_seg) ss_next; 58 struct jsegrec ss_rec; 59 uint8_t *ss_blk; 60 }; 61 62 struct suj_rec { 63 TAILQ_ENTRY(suj_rec) sr_next; 64 union jrec *sr_rec; 65 }; 66 TAILQ_HEAD(srechd, suj_rec); 67 68 struct suj_ino { 69 LIST_ENTRY(suj_ino) si_next; 70 struct srechd si_recs; 71 struct srechd si_newrecs; 72 struct srechd si_movs; 73 struct jtrncrec *si_trunc; 74 ino_t si_ino; 75 char si_skipparent; 76 char si_hasrecs; 77 char si_blkadj; 78 char si_linkadj; 79 int si_mode; 80 nlink_t si_nlinkadj; 81 nlink_t si_nlink; 82 nlink_t si_dotlinks; 83 }; 84 LIST_HEAD(inohd, suj_ino); 85 86 struct suj_blk { 87 LIST_ENTRY(suj_blk) sb_next; 88 struct srechd sb_recs; 89 ufs2_daddr_t sb_blk; 90 }; 91 LIST_HEAD(blkhd, suj_blk); 92 93 struct data_blk { 94 LIST_ENTRY(data_blk) db_next; 95 uint8_t *db_buf; 96 ufs2_daddr_t db_blk; 97 int db_size; 98 int db_dirty; 99 }; 100 101 struct ino_blk { 102 LIST_ENTRY(ino_blk) ib_next; 103 uint8_t *ib_buf; 104 int ib_dirty; 105 ufs2_daddr_t ib_blk; 106 }; 107 LIST_HEAD(iblkhd, ino_blk); 108 109 struct suj_cg { 110 LIST_ENTRY(suj_cg) sc_next; 111 struct blkhd sc_blkhash[SUJ_HASHSIZE]; 112 struct inohd sc_inohash[SUJ_HASHSIZE]; 113 struct iblkhd sc_iblkhash[SUJ_HASHSIZE]; 114 struct ino_blk *sc_lastiblk; 115 struct suj_ino *sc_lastino; 116 struct suj_blk *sc_lastblk; 117 uint8_t *sc_cgbuf; 118 struct cg *sc_cgp; 119 int sc_dirty; 120 int sc_cgx; 121 }; 122 123 LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE]; 124 LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE]; 125 struct suj_cg *lastcg; 126 struct data_blk *lastblk; 127 128 TAILQ_HEAD(seghd, suj_seg) allsegs; 129 uint64_t oldseq; 130 static struct uufsd *disk = NULL; 131 static struct fs *fs = NULL; 132 ino_t sujino; 133 134 /* 135 * Summary statistics. 136 */ 137 uint64_t freefrags; 138 uint64_t freeblocks; 139 uint64_t freeinos; 140 uint64_t freedir; 141 uint64_t jbytes; 142 uint64_t jrecs; 143 144 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 145 static void ino_trunc(ino_t, off_t); 146 static void ino_decr(ino_t); 147 static void ino_adjust(struct suj_ino *); 148 static void ino_build(struct suj_ino *); 149 static int blk_isfree(ufs2_daddr_t); 150 151 static void * 152 errmalloc(size_t n) 153 { 154 void *a; 155 156 a = malloc(n); 157 if (a == NULL) 158 errx(1, "malloc(%zu)", n); 159 return (a); 160 } 161 162 /* 163 * Open the given provider, load superblock. 164 */ 165 static void 166 opendisk(const char *devnam) 167 { 168 if (disk != NULL) 169 return; 170 disk = malloc(sizeof(*disk)); 171 if (disk == NULL) 172 errx(1, "malloc(%zu)", sizeof(*disk)); 173 if (ufs_disk_fillout(disk, devnam) == -1) { 174 err(1, "ufs_disk_fillout(%s) failed: %s", devnam, 175 disk->d_error); 176 } 177 fs = &disk->d_fs; 178 } 179 180 /* 181 * Mark file system as clean, write the super-block back, close the disk. 182 */ 183 static void 184 closedisk(const char *devnam) 185 { 186 struct csum *cgsum; 187 int i; 188 189 /* 190 * Recompute the fs summary info from correct cs summaries. 191 */ 192 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 193 for (i = 0; i < fs->fs_ncg; i++) { 194 cgsum = &fs->fs_cs(fs, i); 195 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 196 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 197 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 198 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 199 } 200 fs->fs_pendinginodes = 0; 201 fs->fs_pendingblocks = 0; 202 fs->fs_clean = 1; 203 fs->fs_time = time(NULL); 204 fs->fs_mtime = time(NULL); 205 if (sbwrite(disk, 0) == -1) 206 err(1, "sbwrite(%s)", devnam); 207 if (ufs_disk_close(disk) == -1) 208 err(1, "ufs_disk_close(%s)", devnam); 209 free(disk); 210 disk = NULL; 211 fs = NULL; 212 } 213 214 /* 215 * Lookup a cg by number in the hash so we can keep track of which cgs 216 * need stats rebuilt. 217 */ 218 static struct suj_cg * 219 cg_lookup(int cgx) 220 { 221 struct cghd *hd; 222 struct suj_cg *sc; 223 224 if (cgx < 0 || cgx >= fs->fs_ncg) { 225 abort(); 226 errx(1, "Bad cg number %d", cgx); 227 } 228 if (lastcg && lastcg->sc_cgx == cgx) 229 return (lastcg); 230 hd = &cghash[SUJ_HASH(cgx)]; 231 LIST_FOREACH(sc, hd, sc_next) 232 if (sc->sc_cgx == cgx) { 233 lastcg = sc; 234 return (sc); 235 } 236 sc = errmalloc(sizeof(*sc)); 237 bzero(sc, sizeof(*sc)); 238 sc->sc_cgbuf = errmalloc(fs->fs_bsize); 239 sc->sc_cgp = (struct cg *)sc->sc_cgbuf; 240 sc->sc_cgx = cgx; 241 LIST_INSERT_HEAD(hd, sc, sc_next); 242 if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 243 fs->fs_bsize) == -1) 244 err(1, "Unable to read cylinder group %d", sc->sc_cgx); 245 246 return (sc); 247 } 248 249 /* 250 * Lookup an inode number in the hash and allocate a suj_ino if it does 251 * not exist. 252 */ 253 static struct suj_ino * 254 ino_lookup(ino_t ino, int creat) 255 { 256 struct suj_ino *sino; 257 struct inohd *hd; 258 struct suj_cg *sc; 259 260 sc = cg_lookup(ino_to_cg(fs, ino)); 261 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 262 return (sc->sc_lastino); 263 hd = &sc->sc_inohash[SUJ_HASH(ino)]; 264 LIST_FOREACH(sino, hd, si_next) 265 if (sino->si_ino == ino) 266 return (sino); 267 if (creat == 0) 268 return (NULL); 269 sino = errmalloc(sizeof(*sino)); 270 bzero(sino, sizeof(*sino)); 271 sino->si_ino = ino; 272 TAILQ_INIT(&sino->si_recs); 273 TAILQ_INIT(&sino->si_newrecs); 274 TAILQ_INIT(&sino->si_movs); 275 LIST_INSERT_HEAD(hd, sino, si_next); 276 277 return (sino); 278 } 279 280 /* 281 * Lookup a block number in the hash and allocate a suj_blk if it does 282 * not exist. 283 */ 284 static struct suj_blk * 285 blk_lookup(ufs2_daddr_t blk, int creat) 286 { 287 struct suj_blk *sblk; 288 struct suj_cg *sc; 289 struct blkhd *hd; 290 291 sc = cg_lookup(dtog(fs, blk)); 292 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 293 return (sc->sc_lastblk); 294 hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))]; 295 LIST_FOREACH(sblk, hd, sb_next) 296 if (sblk->sb_blk == blk) 297 return (sblk); 298 if (creat == 0) 299 return (NULL); 300 sblk = errmalloc(sizeof(*sblk)); 301 bzero(sblk, sizeof(*sblk)); 302 sblk->sb_blk = blk; 303 TAILQ_INIT(&sblk->sb_recs); 304 LIST_INSERT_HEAD(hd, sblk, sb_next); 305 306 return (sblk); 307 } 308 309 static struct data_blk * 310 dblk_lookup(ufs2_daddr_t blk) 311 { 312 struct data_blk *dblk; 313 struct dblkhd *hd; 314 315 hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))]; 316 if (lastblk && lastblk->db_blk == blk) 317 return (lastblk); 318 LIST_FOREACH(dblk, hd, db_next) 319 if (dblk->db_blk == blk) 320 return (dblk); 321 /* 322 * The inode block wasn't located, allocate a new one. 323 */ 324 dblk = errmalloc(sizeof(*dblk)); 325 bzero(dblk, sizeof(*dblk)); 326 LIST_INSERT_HEAD(hd, dblk, db_next); 327 dblk->db_blk = blk; 328 return (dblk); 329 } 330 331 static uint8_t * 332 dblk_read(ufs2_daddr_t blk, int size) 333 { 334 struct data_blk *dblk; 335 336 dblk = dblk_lookup(blk); 337 /* 338 * I doubt size mismatches can happen in practice but it is trivial 339 * to handle. 340 */ 341 if (size != dblk->db_size) { 342 if (dblk->db_buf) 343 free(dblk->db_buf); 344 dblk->db_buf = errmalloc(size); 345 dblk->db_size = size; 346 if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1) 347 err(1, "Failed to read data block %jd", blk); 348 } 349 return (dblk->db_buf); 350 } 351 352 static void 353 dblk_dirty(ufs2_daddr_t blk) 354 { 355 struct data_blk *dblk; 356 357 dblk = dblk_lookup(blk); 358 dblk->db_dirty = 1; 359 } 360 361 static void 362 dblk_write(void) 363 { 364 struct data_blk *dblk; 365 int i; 366 367 for (i = 0; i < SUJ_HASHSIZE; i++) { 368 LIST_FOREACH(dblk, &dbhash[i], db_next) { 369 if (dblk->db_dirty == 0 || dblk->db_size == 0) 370 continue; 371 if (bwrite(disk, fsbtodb(fs, dblk->db_blk), 372 dblk->db_buf, dblk->db_size) == -1) 373 err(1, "Unable to write block %jd", 374 dblk->db_blk); 375 } 376 } 377 } 378 379 static union dinode * 380 ino_read(ino_t ino) 381 { 382 struct ino_blk *iblk; 383 struct iblkhd *hd; 384 struct suj_cg *sc; 385 ufs2_daddr_t blk; 386 int off; 387 388 blk = ino_to_fsba(fs, ino); 389 sc = cg_lookup(ino_to_cg(fs, ino)); 390 iblk = sc->sc_lastiblk; 391 if (iblk && iblk->ib_blk == blk) 392 goto found; 393 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 394 LIST_FOREACH(iblk, hd, ib_next) 395 if (iblk->ib_blk == blk) 396 goto found; 397 /* 398 * The inode block wasn't located, allocate a new one. 399 */ 400 iblk = errmalloc(sizeof(*iblk)); 401 bzero(iblk, sizeof(*iblk)); 402 iblk->ib_buf = errmalloc(fs->fs_bsize); 403 iblk->ib_blk = blk; 404 LIST_INSERT_HEAD(hd, iblk, ib_next); 405 if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1) 406 err(1, "Failed to read inode block %jd", blk); 407 found: 408 sc->sc_lastiblk = iblk; 409 off = ino_to_fsbo(fs, ino); 410 if (fs->fs_magic == FS_UFS1_MAGIC) 411 return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off]; 412 else 413 return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off]; 414 } 415 416 static void 417 ino_dirty(ino_t ino) 418 { 419 struct ino_blk *iblk; 420 struct iblkhd *hd; 421 struct suj_cg *sc; 422 ufs2_daddr_t blk; 423 424 blk = ino_to_fsba(fs, ino); 425 sc = cg_lookup(ino_to_cg(fs, ino)); 426 iblk = sc->sc_lastiblk; 427 if (iblk && iblk->ib_blk == blk) { 428 iblk->ib_dirty = 1; 429 return; 430 } 431 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 432 LIST_FOREACH(iblk, hd, ib_next) { 433 if (iblk->ib_blk == blk) { 434 iblk->ib_dirty = 1; 435 return; 436 } 437 } 438 ino_read(ino); 439 ino_dirty(ino); 440 } 441 442 static void 443 iblk_write(struct ino_blk *iblk) 444 { 445 446 if (iblk->ib_dirty == 0) 447 return; 448 if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf, 449 fs->fs_bsize) == -1) 450 err(1, "Failed to write inode block %jd", iblk->ib_blk); 451 } 452 453 static int 454 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 455 { 456 ufs2_daddr_t bstart; 457 ufs2_daddr_t bend; 458 ufs2_daddr_t end; 459 460 end = start + frags; 461 bstart = brec->jb_blkno + brec->jb_oldfrags; 462 bend = bstart + brec->jb_frags; 463 if (start < bend && end > bstart) 464 return (1); 465 return (0); 466 } 467 468 static int 469 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 470 int frags) 471 { 472 473 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 474 return (0); 475 if (brec->jb_blkno + brec->jb_oldfrags != start) 476 return (0); 477 if (brec->jb_frags != frags) 478 return (0); 479 return (1); 480 } 481 482 static void 483 blk_setmask(struct jblkrec *brec, int *mask) 484 { 485 int i; 486 487 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 488 *mask |= 1 << i; 489 } 490 491 /* 492 * Determine whether a given block has been reallocated to a new location. 493 * Returns a mask of overlapping bits if any frags have been reused or 494 * zero if the block has not been re-used and the contents can be trusted. 495 * 496 * This is used to ensure that an orphaned pointer due to truncate is safe 497 * to be freed. The mask value can be used to free partial blocks. 498 */ 499 static int 500 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 501 { 502 struct suj_blk *sblk; 503 struct suj_rec *srec; 504 struct jblkrec *brec; 505 int mask; 506 int off; 507 508 /* 509 * To be certain we're not freeing a reallocated block we lookup 510 * this block in the blk hash and see if there is an allocation 511 * journal record that overlaps with any fragments in the block 512 * we're concerned with. If any fragments have ben reallocated 513 * the block has already been freed and re-used for another purpose. 514 */ 515 mask = 0; 516 sblk = blk_lookup(blknum(fs, blk), 0); 517 if (sblk == NULL) 518 return (0); 519 off = blk - sblk->sb_blk; 520 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 521 brec = (struct jblkrec *)srec->sr_rec; 522 /* 523 * If the block overlaps but does not match 524 * exactly it's a new allocation. If it matches 525 * exactly this record refers to the current 526 * location. 527 */ 528 if (blk_overlaps(brec, blk, frags) == 0) 529 continue; 530 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 531 mask = 0; 532 else 533 blk_setmask(brec, &mask); 534 } 535 if (debug) 536 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 537 blk, sblk->sb_blk, off, mask); 538 return (mask >> off); 539 } 540 541 /* 542 * Determine whether it is safe to follow an indirect. It is not safe 543 * if any part of the indirect has been reallocated or the last journal 544 * entry was an allocation. Just allocated indirects may not have valid 545 * pointers yet and all of their children will have their own records. 546 * It is also not safe to follow an indirect if the cg bitmap has been 547 * cleared as a new allocation may write to the block prior to the journal 548 * being written. 549 * 550 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 551 */ 552 static int 553 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 554 { 555 struct suj_blk *sblk; 556 struct jblkrec *brec; 557 558 sblk = blk_lookup(blk, 0); 559 if (sblk == NULL) 560 return (1); 561 if (TAILQ_EMPTY(&sblk->sb_recs)) 562 return (1); 563 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 564 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 565 if (brec->jb_op == JOP_FREEBLK) 566 return (!blk_isfree(blk)); 567 return (0); 568 } 569 570 /* 571 * Clear an inode from the cg bitmap. If the inode was already clear return 572 * 0 so the caller knows it does not have to check the inode contents. 573 */ 574 static int 575 ino_free(ino_t ino, int mode) 576 { 577 struct suj_cg *sc; 578 uint8_t *inosused; 579 struct cg *cgp; 580 int cg; 581 582 cg = ino_to_cg(fs, ino); 583 ino = ino % fs->fs_ipg; 584 sc = cg_lookup(cg); 585 cgp = sc->sc_cgp; 586 inosused = cg_inosused(cgp); 587 /* 588 * The bitmap may never have made it to the disk so we have to 589 * conditionally clear. We can avoid writing the cg in this case. 590 */ 591 if (isclr(inosused, ino)) 592 return (0); 593 freeinos++; 594 clrbit(inosused, ino); 595 if (ino < cgp->cg_irotor) 596 cgp->cg_irotor = ino; 597 cgp->cg_cs.cs_nifree++; 598 if ((mode & IFMT) == IFDIR) { 599 freedir++; 600 cgp->cg_cs.cs_ndir--; 601 } 602 sc->sc_dirty = 1; 603 604 return (1); 605 } 606 607 /* 608 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 609 * set in the mask. 610 */ 611 static void 612 blk_free(ufs2_daddr_t bno, int mask, int frags) 613 { 614 ufs1_daddr_t fragno, cgbno; 615 struct suj_cg *sc; 616 struct cg *cgp; 617 int i, cg; 618 uint8_t *blksfree; 619 620 if (debug) 621 printf("Freeing %d frags at blk %jd\n", frags, bno); 622 cg = dtog(fs, bno); 623 sc = cg_lookup(cg); 624 cgp = sc->sc_cgp; 625 cgbno = dtogd(fs, bno); 626 blksfree = cg_blksfree(cgp); 627 628 /* 629 * If it's not allocated we only wrote the journal entry 630 * and never the bitmaps. Here we unconditionally clear and 631 * resolve the cg summary later. 632 */ 633 if (frags == fs->fs_frag && mask == 0) { 634 fragno = fragstoblks(fs, cgbno); 635 ffs_setblock(fs, blksfree, fragno); 636 freeblocks++; 637 } else { 638 /* 639 * deallocate the fragment 640 */ 641 for (i = 0; i < frags; i++) 642 if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) { 643 freefrags++; 644 setbit(blksfree, cgbno + i); 645 } 646 } 647 sc->sc_dirty = 1; 648 } 649 650 /* 651 * Returns 1 if the whole block starting at 'bno' is marked free and 0 652 * otherwise. 653 */ 654 static int 655 blk_isfree(ufs2_daddr_t bno) 656 { 657 struct suj_cg *sc; 658 659 sc = cg_lookup(dtog(fs, bno)); 660 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 661 } 662 663 /* 664 * Fetch an indirect block to find the block at a given lbn. The lbn 665 * may be negative to fetch a specific indirect block pointer or positive 666 * to fetch a specific block. 667 */ 668 static ufs2_daddr_t 669 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn) 670 { 671 ufs2_daddr_t *bap2; 672 ufs2_daddr_t *bap1; 673 ufs_lbn_t lbnadd; 674 ufs_lbn_t base; 675 int level; 676 int i; 677 678 if (blk == 0) 679 return (0); 680 level = lbn_level(cur); 681 if (level == -1) 682 errx(1, "Invalid indir lbn %jd", lbn); 683 if (level == 0 && lbn < 0) 684 errx(1, "Invalid lbn %jd", lbn); 685 bap2 = (void *)dblk_read(blk, fs->fs_bsize); 686 bap1 = (void *)bap2; 687 lbnadd = 1; 688 base = -(cur + level); 689 for (i = level; i > 0; i--) 690 lbnadd *= NINDIR(fs); 691 if (lbn > 0) 692 i = (lbn - base) / lbnadd; 693 else 694 i = (-lbn - base) / lbnadd; 695 if (i < 0 || i >= NINDIR(fs)) 696 errx(1, "Invalid indirect index %d produced by lbn %jd", 697 i, lbn); 698 if (level == 0) 699 cur = base + (i * lbnadd); 700 else 701 cur = -(base + (i * lbnadd)) - (level - 1); 702 if (fs->fs_magic == FS_UFS1_MAGIC) 703 blk = bap1[i]; 704 else 705 blk = bap2[i]; 706 if (cur == lbn) 707 return (blk); 708 if (level == 0) { 709 abort(); 710 errx(1, "Invalid lbn %jd at level 0", lbn); 711 } 712 return indir_blkatoff(blk, ino, cur, lbn); 713 } 714 715 /* 716 * Finds the disk block address at the specified lbn within the inode 717 * specified by ip. This follows the whole tree and honors di_size and 718 * di_extsize so it is a true test of reachability. The lbn may be 719 * negative if an extattr or indirect block is requested. 720 */ 721 static ufs2_daddr_t 722 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags) 723 { 724 ufs_lbn_t tmpval; 725 ufs_lbn_t cur; 726 ufs_lbn_t next; 727 int i; 728 729 /* 730 * Handle extattr blocks first. 731 */ 732 if (lbn < 0 && lbn >= -NXADDR) { 733 lbn = -1 - lbn; 734 if (lbn > lblkno(fs, ip->dp2.di_extsize - 1)) 735 return (0); 736 *frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn)); 737 return (ip->dp2.di_extb[lbn]); 738 } 739 /* 740 * Now direct and indirect. 741 */ 742 if (DIP(ip, di_mode) == IFLNK && 743 DIP(ip, di_size) < fs->fs_maxsymlinklen) 744 return (0); 745 if (lbn >= 0 && lbn < NDADDR) { 746 *frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn)); 747 return (DIP(ip, di_db[lbn])); 748 } 749 *frags = fs->fs_frag; 750 751 for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++, 752 tmpval *= NINDIR(fs), cur = next) { 753 next = cur + tmpval; 754 if (lbn == -cur - i) 755 return (DIP(ip, di_ib[i])); 756 /* 757 * Determine whether the lbn in question is within this tree. 758 */ 759 if (lbn < 0 && -lbn >= next) 760 continue; 761 if (lbn > 0 && lbn >= next) 762 continue; 763 return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn); 764 } 765 errx(1, "lbn %jd not in ino", lbn); 766 } 767 768 /* 769 * Determine whether a block exists at a particular lbn in an inode. 770 * Returns 1 if found, 0 if not. lbn may be negative for indirects 771 * or ext blocks. 772 */ 773 static int 774 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 775 { 776 union dinode *ip; 777 ufs2_daddr_t nblk; 778 779 ip = ino_read(ino); 780 781 if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0) 782 return (0); 783 nblk = ino_blkatoff(ip, ino, lbn, frags); 784 785 return (nblk == blk); 786 } 787 788 /* 789 * Determines whether a pointer to an inode exists within a directory 790 * at a specified offset. Returns the mode of the found entry. 791 */ 792 static int 793 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 794 { 795 union dinode *dip; 796 struct direct *dp; 797 ufs2_daddr_t blk; 798 uint8_t *block; 799 ufs_lbn_t lbn; 800 int blksize; 801 int frags; 802 int dpoff; 803 int doff; 804 805 *isdot = 0; 806 dip = ino_read(parent); 807 *mode = DIP(dip, di_mode); 808 if ((*mode & IFMT) != IFDIR) { 809 if (debug) { 810 /* 811 * This can happen if the parent inode 812 * was reallocated. 813 */ 814 if (*mode != 0) 815 printf("Directory %d has bad mode %o\n", 816 parent, *mode); 817 else 818 printf("Directory %d zero inode\n", parent); 819 } 820 return (0); 821 } 822 lbn = lblkno(fs, diroff); 823 doff = blkoff(fs, diroff); 824 blksize = sblksize(fs, DIP(dip, di_size), lbn); 825 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 826 if (debug) 827 printf("ino %d absent from %d due to offset %jd" 828 " exceeding size %jd\n", 829 child, parent, diroff, DIP(dip, di_size)); 830 return (0); 831 } 832 blk = ino_blkatoff(dip, parent, lbn, &frags); 833 if (blk <= 0) { 834 if (debug) 835 printf("Sparse directory %d", parent); 836 return (0); 837 } 838 block = dblk_read(blk, blksize); 839 /* 840 * Walk through the records from the start of the block to be 841 * certain we hit a valid record and not some junk in the middle 842 * of a file name. Stop when we reach or pass the expected offset. 843 */ 844 dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ; 845 do { 846 dp = (struct direct *)&block[dpoff]; 847 if (dpoff == doff) 848 break; 849 if (dp->d_reclen == 0) 850 break; 851 dpoff += dp->d_reclen; 852 } while (dpoff <= doff); 853 if (dpoff > fs->fs_bsize) 854 errx(1, "Corrupt directory block in dir ino %d", parent); 855 /* Not found. */ 856 if (dpoff != doff) { 857 if (debug) 858 printf("ino %d not found in %d, lbn %jd, dpoff %d\n", 859 child, parent, lbn, dpoff); 860 return (0); 861 } 862 /* 863 * We found the item in question. Record the mode and whether it's 864 * a . or .. link for the caller. 865 */ 866 if (dp->d_ino == child) { 867 if (child == parent) 868 *isdot = 1; 869 else if (dp->d_namlen == 2 && 870 dp->d_name[0] == '.' && dp->d_name[1] == '.') 871 *isdot = 1; 872 *mode = DTTOIF(dp->d_type); 873 return (1); 874 } 875 if (debug) 876 printf("ino %d doesn't match dirent ino %d in parent %d\n", 877 child, dp->d_ino, parent); 878 return (0); 879 } 880 881 #define VISIT_INDIR 0x0001 882 #define VISIT_EXT 0x0002 883 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 884 885 /* 886 * Read an indirect level which may or may not be linked into an inode. 887 */ 888 static void 889 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 890 ino_visitor visitor, int flags) 891 { 892 ufs2_daddr_t *bap2; 893 ufs1_daddr_t *bap1; 894 ufs_lbn_t lbnadd; 895 ufs2_daddr_t nblk; 896 ufs_lbn_t nlbn; 897 int level; 898 int i; 899 900 /* 901 * Don't visit indirect blocks with contents we can't trust. This 902 * should only happen when indir_visit() is called to complete a 903 * truncate that never finished and not when a pointer is found via 904 * an inode. 905 */ 906 if (blk == 0) 907 return; 908 level = lbn_level(lbn); 909 if (level == -1) 910 errx(1, "Invalid level for lbn %jd", lbn); 911 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 912 if (debug) 913 printf("blk %jd ino %d lbn %jd(%d) is not indir.\n", 914 blk, ino, lbn, level); 915 goto out; 916 } 917 lbnadd = 1; 918 for (i = level; i > 0; i--) 919 lbnadd *= NINDIR(fs); 920 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 921 bap2 = (void *)bap1; 922 for (i = 0; i < NINDIR(fs); i++) { 923 if (fs->fs_magic == FS_UFS1_MAGIC) 924 nblk = *bap1++; 925 else 926 nblk = *bap2++; 927 if (nblk == 0) 928 continue; 929 if (level == 0) { 930 nlbn = -lbn + i * lbnadd; 931 (*frags) += fs->fs_frag; 932 visitor(ino, nlbn, nblk, fs->fs_frag); 933 } else { 934 nlbn = (lbn + 1) - (i * lbnadd); 935 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 936 } 937 } 938 out: 939 if (flags & VISIT_INDIR) { 940 (*frags) += fs->fs_frag; 941 visitor(ino, lbn, blk, fs->fs_frag); 942 } 943 } 944 945 /* 946 * Visit each block in an inode as specified by 'flags' and call a 947 * callback function. The callback may inspect or free blocks. The 948 * count of frags found according to the size in the file is returned. 949 * This is not valid for sparse files but may be used to determine 950 * the correct di_blocks for a file. 951 */ 952 static uint64_t 953 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags) 954 { 955 ufs_lbn_t nextlbn; 956 ufs_lbn_t tmpval; 957 ufs_lbn_t lbn; 958 uint64_t size; 959 uint64_t fragcnt; 960 int mode; 961 int frags; 962 int i; 963 964 size = DIP(ip, di_size); 965 mode = DIP(ip, di_mode) & IFMT; 966 fragcnt = 0; 967 if ((flags & VISIT_EXT) && 968 fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) { 969 for (i = 0; i < NXADDR; i++) { 970 if (ip->dp2.di_extb[i] == 0) 971 continue; 972 frags = sblksize(fs, ip->dp2.di_extsize, i); 973 frags = numfrags(fs, frags); 974 fragcnt += frags; 975 visitor(ino, -1 - i, ip->dp2.di_extb[i], frags); 976 } 977 } 978 /* Skip datablocks for short links and devices. */ 979 if (mode == IFBLK || mode == IFCHR || 980 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 981 return (fragcnt); 982 for (i = 0; i < NDADDR; i++) { 983 if (DIP(ip, di_db[i]) == 0) 984 continue; 985 frags = sblksize(fs, size, i); 986 frags = numfrags(fs, frags); 987 fragcnt += frags; 988 visitor(ino, i, DIP(ip, di_db[i]), frags); 989 } 990 /* 991 * We know the following indirects are real as we're following 992 * real pointers to them. 993 */ 994 flags |= VISIT_ROOT; 995 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 996 lbn = nextlbn) { 997 nextlbn = lbn + tmpval; 998 tmpval *= NINDIR(fs); 999 if (DIP(ip, di_ib[i]) == 0) 1000 continue; 1001 indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor, 1002 flags); 1003 } 1004 return (fragcnt); 1005 } 1006 1007 /* 1008 * Null visitor function used when we just want to count blocks and 1009 * record the lbn. 1010 */ 1011 ufs_lbn_t visitlbn; 1012 static void 1013 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1014 { 1015 if (lbn > 0) 1016 visitlbn = lbn; 1017 } 1018 1019 /* 1020 * Recalculate di_blocks when we discover that a block allocation or 1021 * free was not successfully completed. The kernel does not roll this back 1022 * because it would be too expensive to compute which indirects were 1023 * reachable at the time the inode was written. 1024 */ 1025 static void 1026 ino_adjblks(struct suj_ino *sino) 1027 { 1028 union dinode *ip; 1029 uint64_t blocks; 1030 uint64_t frags; 1031 off_t isize; 1032 off_t size; 1033 ino_t ino; 1034 1035 ino = sino->si_ino; 1036 ip = ino_read(ino); 1037 /* No need to adjust zero'd inodes. */ 1038 if (DIP(ip, di_mode) == 0) 1039 return; 1040 /* 1041 * Visit all blocks and count them as well as recording the last 1042 * valid lbn in the file. If the file size doesn't agree with the 1043 * last lbn we need to truncate to fix it. Otherwise just adjust 1044 * the blocks count. 1045 */ 1046 visitlbn = 0; 1047 frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1048 blocks = fsbtodb(fs, frags); 1049 /* 1050 * We assume the size and direct block list is kept coherent by 1051 * softdep. For files that have extended into indirects we truncate 1052 * to the size in the inode or the maximum size permitted by 1053 * populated indirects. 1054 */ 1055 if (visitlbn >= NDADDR) { 1056 isize = DIP(ip, di_size); 1057 size = lblktosize(fs, visitlbn + 1); 1058 if (isize > size) 1059 isize = size; 1060 /* Always truncate to free any unpopulated indirects. */ 1061 ino_trunc(sino->si_ino, isize); 1062 return; 1063 } 1064 if (blocks == DIP(ip, di_blocks)) 1065 return; 1066 if (debug) 1067 printf("ino %d adjusting block count from %jd to %jd\n", 1068 ino, DIP(ip, di_blocks), blocks); 1069 DIP_SET(ip, di_blocks, blocks); 1070 ino_dirty(ino); 1071 } 1072 1073 static void 1074 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1075 { 1076 int mask; 1077 1078 mask = blk_freemask(blk, ino, lbn, frags); 1079 if (debug) 1080 printf("blk %jd freemask 0x%X\n", blk, mask); 1081 blk_free(blk, mask, frags); 1082 } 1083 1084 /* 1085 * Free a block or tree of blocks that was previously rooted in ino at 1086 * the given lbn. If the lbn is an indirect all children are freed 1087 * recursively. 1088 */ 1089 static void 1090 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 1091 { 1092 uint64_t resid; 1093 int mask; 1094 1095 mask = blk_freemask(blk, ino, lbn, frags); 1096 if (debug) 1097 printf("blk %jd freemask 0x%X\n", blk, mask); 1098 resid = 0; 1099 if (lbn <= -NDADDR && follow && mask == 0) 1100 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 1101 else 1102 blk_free(blk, mask, frags); 1103 } 1104 1105 static void 1106 ino_setskip(struct suj_ino *sino, ino_t parent) 1107 { 1108 int isdot; 1109 int mode; 1110 1111 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 1112 sino->si_skipparent = 1; 1113 } 1114 1115 /* 1116 * Free the children of a directory when the directory is discarded. 1117 */ 1118 static void 1119 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1120 { 1121 struct suj_ino *sino; 1122 struct suj_rec *srec; 1123 struct jrefrec *rrec; 1124 struct direct *dp; 1125 off_t diroff; 1126 uint8_t *block; 1127 int skipparent; 1128 int isparent; 1129 int dpoff; 1130 int size; 1131 1132 sino = ino_lookup(ino, 0); 1133 if (sino) 1134 skipparent = sino->si_skipparent; 1135 else 1136 skipparent = 0; 1137 size = lfragtosize(fs, frags); 1138 block = dblk_read(blk, size); 1139 dp = (struct direct *)&block[0]; 1140 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1141 dp = (struct direct *)&block[dpoff]; 1142 if (dp->d_ino == 0 || dp->d_ino == WINO) 1143 continue; 1144 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1145 continue; 1146 isparent = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1147 dp->d_name[1] == '.'; 1148 if (isparent && skipparent == 1) 1149 continue; 1150 if (debug) 1151 printf("Directory %d removing ino %d name %s\n", 1152 ino, dp->d_ino, dp->d_name); 1153 /* 1154 * Lookup this inode to see if we have a record for it. 1155 * If not, we've already adjusted it assuming this path 1156 * was valid and we have to adjust once more. 1157 */ 1158 sino = ino_lookup(dp->d_ino, 0); 1159 if (sino == NULL || sino->si_hasrecs == 0) { 1160 ino_decr(ino); 1161 continue; 1162 } 1163 /* 1164 * Use ino_adjust() so if we lose the last non-dot reference 1165 * to a directory it can be discarded. 1166 */ 1167 if (sino->si_linkadj) { 1168 sino->si_nlink--; 1169 if (isparent) 1170 sino->si_dotlinks--; 1171 ino_adjust(sino); 1172 } 1173 /* 1174 * Tell any child directories we've already removed their 1175 * parent. Don't try to adjust our link down again. 1176 */ 1177 if (isparent == 0) 1178 ino_setskip(sino, ino); 1179 /* 1180 * If we haven't yet processed this inode we need to make 1181 * sure we will successfully discover the lost path. If not 1182 * use nlinkadj to remember. 1183 */ 1184 diroff = lblktosize(fs, lbn) + dpoff; 1185 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1186 rrec = (struct jrefrec *)srec->sr_rec; 1187 if (rrec->jr_parent == ino && 1188 rrec->jr_diroff == diroff) 1189 break; 1190 } 1191 if (srec == NULL) 1192 sino->si_nlinkadj++; 1193 } 1194 } 1195 1196 /* 1197 * Reclaim an inode, freeing all blocks and decrementing all children's 1198 * link counts. Free the inode back to the cg. 1199 */ 1200 static void 1201 ino_reclaim(union dinode *ip, ino_t ino, int mode) 1202 { 1203 uint32_t gen; 1204 1205 if (ino == ROOTINO) 1206 errx(1, "Attempting to free ROOTINO"); 1207 if (debug) 1208 printf("Truncating and freeing ino %d, nlink %d, mode %o\n", 1209 ino, DIP(ip, di_nlink), DIP(ip, di_mode)); 1210 1211 /* We are freeing an inode or directory. */ 1212 if ((DIP(ip, di_mode) & IFMT) == IFDIR) 1213 ino_visit(ip, ino, ino_free_children, 0); 1214 DIP_SET(ip, di_nlink, 0); 1215 ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1216 /* Here we have to clear the inode and release any blocks it holds. */ 1217 gen = DIP(ip, di_gen); 1218 if (fs->fs_magic == FS_UFS1_MAGIC) 1219 bzero(ip, sizeof(struct ufs1_dinode)); 1220 else 1221 bzero(ip, sizeof(struct ufs2_dinode)); 1222 DIP_SET(ip, di_gen, gen); 1223 ino_dirty(ino); 1224 ino_free(ino, mode); 1225 return; 1226 } 1227 1228 /* 1229 * Adjust an inode's link count down by one when a directory goes away. 1230 */ 1231 static void 1232 ino_decr(ino_t ino) 1233 { 1234 union dinode *ip; 1235 int reqlink; 1236 int nlink; 1237 int mode; 1238 1239 ip = ino_read(ino); 1240 nlink = DIP(ip, di_nlink); 1241 mode = DIP(ip, di_mode); 1242 if (nlink < 1) 1243 errx(1, "Inode %d link count %d invalid", ino, nlink); 1244 if (mode == 0) 1245 errx(1, "Inode %d has a link of %d with 0 mode.", ino, nlink); 1246 nlink--; 1247 if ((mode & IFMT) == IFDIR) 1248 reqlink = 2; 1249 else 1250 reqlink = 1; 1251 if (nlink < reqlink) { 1252 if (debug) 1253 printf("ino %d not enough links to live %d < %d\n", 1254 ino, nlink, reqlink); 1255 ino_reclaim(ip, ino, mode); 1256 return; 1257 } 1258 DIP_SET(ip, di_nlink, nlink); 1259 ino_dirty(ino); 1260 } 1261 1262 /* 1263 * Adjust the inode link count to 'nlink'. If the count reaches zero 1264 * free it. 1265 */ 1266 static void 1267 ino_adjust(struct suj_ino *sino) 1268 { 1269 struct jrefrec *rrec; 1270 struct suj_rec *srec; 1271 struct suj_ino *stmp; 1272 union dinode *ip; 1273 nlink_t nlink; 1274 int reqlink; 1275 int mode; 1276 ino_t ino; 1277 1278 nlink = sino->si_nlink; 1279 ino = sino->si_ino; 1280 /* 1281 * If it's a directory with no real names pointing to it go ahead 1282 * and truncate it. This will free any children. 1283 */ 1284 if ((sino->si_mode & IFMT) == IFDIR && 1285 nlink - sino->si_dotlinks == 0) { 1286 sino->si_nlink = nlink = 0; 1287 /* 1288 * Mark any .. links so they know not to free this inode 1289 * when they are removed. 1290 */ 1291 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1292 rrec = (struct jrefrec *)srec->sr_rec; 1293 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1294 stmp = ino_lookup(rrec->jr_parent, 0); 1295 if (stmp) 1296 ino_setskip(stmp, ino); 1297 } 1298 } 1299 } 1300 ip = ino_read(ino); 1301 mode = DIP(ip, di_mode) & IFMT; 1302 if (nlink > LINK_MAX) 1303 errx(1, 1304 "ino %d nlink manipulation error, new link %d, old link %d", 1305 ino, nlink, DIP(ip, di_nlink)); 1306 if (debug) 1307 printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n", 1308 ino, nlink, DIP(ip, di_nlink), sino->si_mode); 1309 if (mode == 0) { 1310 if (debug) 1311 printf("ino %d, zero inode freeing bitmap\n", ino); 1312 ino_free(ino, sino->si_mode); 1313 return; 1314 } 1315 /* XXX Should be an assert? */ 1316 if (mode != sino->si_mode && debug) 1317 printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode); 1318 if ((mode & IFMT) == IFDIR) 1319 reqlink = 2; 1320 else 1321 reqlink = 1; 1322 /* If the inode doesn't have enough links to live, free it. */ 1323 if (nlink < reqlink) { 1324 if (debug) 1325 printf("ino %d not enough links to live %d < %d\n", 1326 ino, nlink, reqlink); 1327 ino_reclaim(ip, ino, mode); 1328 return; 1329 } 1330 /* If required write the updated link count. */ 1331 if (DIP(ip, di_nlink) == nlink) { 1332 if (debug) 1333 printf("ino %d, link matches, skipping.\n", ino); 1334 return; 1335 } 1336 DIP_SET(ip, di_nlink, nlink); 1337 ino_dirty(ino); 1338 } 1339 1340 /* 1341 * Truncate some or all blocks in an indirect, freeing any that are required 1342 * and zeroing the indirect. 1343 */ 1344 static void 1345 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn) 1346 { 1347 ufs2_daddr_t *bap2; 1348 ufs1_daddr_t *bap1; 1349 ufs_lbn_t lbnadd; 1350 ufs2_daddr_t nblk; 1351 ufs_lbn_t next; 1352 ufs_lbn_t nlbn; 1353 int dirty; 1354 int level; 1355 int i; 1356 1357 if (blk == 0) 1358 return; 1359 dirty = 0; 1360 level = lbn_level(lbn); 1361 if (level == -1) 1362 errx(1, "Invalid level for lbn %jd", lbn); 1363 lbnadd = 1; 1364 for (i = level; i > 0; i--) 1365 lbnadd *= NINDIR(fs); 1366 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 1367 bap2 = (void *)bap1; 1368 for (i = 0; i < NINDIR(fs); i++) { 1369 if (fs->fs_magic == FS_UFS1_MAGIC) 1370 nblk = *bap1++; 1371 else 1372 nblk = *bap2++; 1373 if (nblk == 0) 1374 continue; 1375 if (level != 0) { 1376 nlbn = (lbn + 1) - (i * lbnadd); 1377 /* 1378 * Calculate the lbn of the next indirect to 1379 * determine if any of this indirect must be 1380 * reclaimed. 1381 */ 1382 next = -(lbn + level) + ((i+1) * lbnadd); 1383 if (next <= lastlbn) 1384 continue; 1385 indir_trunc(ino, nlbn, nblk, lastlbn); 1386 /* If all of this indirect was reclaimed, free it. */ 1387 nlbn = next - lbnadd; 1388 if (nlbn < lastlbn) 1389 continue; 1390 } else { 1391 nlbn = -lbn + i * lbnadd; 1392 if (nlbn < lastlbn) 1393 continue; 1394 } 1395 dirty = 1; 1396 blk_free(nblk, 0, fs->fs_frag); 1397 if (fs->fs_magic == FS_UFS1_MAGIC) 1398 *(bap1 - 1) = 0; 1399 else 1400 *(bap2 - 1) = 0; 1401 } 1402 if (dirty) 1403 dblk_dirty(blk); 1404 } 1405 1406 /* 1407 * Truncate an inode to the minimum of the given size or the last populated 1408 * block after any over size have been discarded. The kernel would allocate 1409 * the last block in the file but fsck does not and neither do we. This 1410 * code never extends files, only shrinks them. 1411 */ 1412 static void 1413 ino_trunc(ino_t ino, off_t size) 1414 { 1415 union dinode *ip; 1416 ufs2_daddr_t bn; 1417 uint64_t totalfrags; 1418 ufs_lbn_t nextlbn; 1419 ufs_lbn_t lastlbn; 1420 ufs_lbn_t tmpval; 1421 ufs_lbn_t lbn; 1422 ufs_lbn_t i; 1423 int frags; 1424 off_t cursize; 1425 off_t off; 1426 int mode; 1427 1428 ip = ino_read(ino); 1429 mode = DIP(ip, di_mode) & IFMT; 1430 cursize = DIP(ip, di_size); 1431 if (debug) 1432 printf("Truncating ino %d, mode %o to size %jd from size %jd\n", 1433 ino, mode, size, cursize); 1434 1435 /* Skip datablocks for short links and devices. */ 1436 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1437 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) 1438 return; 1439 /* Don't extend. */ 1440 if (size > cursize) 1441 size = cursize; 1442 lastlbn = lblkno(fs, blkroundup(fs, size)); 1443 for (i = lastlbn; i < NDADDR; i++) { 1444 if (DIP(ip, di_db[i]) == 0) 1445 continue; 1446 frags = sblksize(fs, cursize, i); 1447 frags = numfrags(fs, frags); 1448 blk_free(DIP(ip, di_db[i]), 0, frags); 1449 DIP_SET(ip, di_db[i], 0); 1450 } 1451 /* 1452 * Follow indirect blocks, freeing anything required. 1453 */ 1454 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1455 lbn = nextlbn) { 1456 nextlbn = lbn + tmpval; 1457 tmpval *= NINDIR(fs); 1458 /* If we're not freeing any in this indirect range skip it. */ 1459 if (lastlbn >= nextlbn) 1460 continue; 1461 if (DIP(ip, di_ib[i]) == 0) 1462 continue; 1463 indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn); 1464 /* If we freed everything in this indirect free the indir. */ 1465 if (lastlbn > lbn) 1466 continue; 1467 blk_free(DIP(ip, di_ib[i]), 0, frags); 1468 DIP_SET(ip, di_ib[i], 0); 1469 } 1470 ino_dirty(ino); 1471 /* 1472 * Now that we've freed any whole blocks that exceed the desired 1473 * truncation size, figure out how many blocks remain and what the 1474 * last populated lbn is. We will set the size to this last lbn 1475 * rather than worrying about allocating the final lbn as the kernel 1476 * would've done. This is consistent with normal fsck behavior. 1477 */ 1478 visitlbn = 0; 1479 totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1480 if (size > lblktosize(fs, visitlbn + 1)) 1481 size = lblktosize(fs, visitlbn + 1); 1482 /* 1483 * If we're truncating direct blocks we have to adjust frags 1484 * accordingly. 1485 */ 1486 if (visitlbn < NDADDR && totalfrags) { 1487 long oldspace, newspace; 1488 1489 bn = DIP(ip, di_db[visitlbn]); 1490 if (bn == 0) 1491 errx(1, "Bad blk at ino %d lbn %jd\n", ino, visitlbn); 1492 oldspace = sblksize(fs, cursize, visitlbn); 1493 newspace = sblksize(fs, size, visitlbn); 1494 if (oldspace != newspace) { 1495 bn += numfrags(fs, newspace); 1496 frags = numfrags(fs, oldspace - newspace); 1497 blk_free(bn, 0, frags); 1498 totalfrags -= frags; 1499 } 1500 } 1501 DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags)); 1502 DIP_SET(ip, di_size, size); 1503 /* 1504 * If we've truncated into the middle of a block or frag we have 1505 * to zero it here. Otherwise the file could extend into 1506 * uninitialized space later. 1507 */ 1508 off = blkoff(fs, size); 1509 if (off) { 1510 uint8_t *buf; 1511 long clrsize; 1512 1513 bn = ino_blkatoff(ip, ino, visitlbn, &frags); 1514 if (bn == 0) 1515 errx(1, "Block missing from ino %d at lbn %jd\n", 1516 ino, visitlbn); 1517 clrsize = frags * fs->fs_fsize; 1518 buf = dblk_read(bn, clrsize); 1519 clrsize -= off; 1520 buf += off; 1521 bzero(buf, clrsize); 1522 dblk_dirty(bn); 1523 } 1524 return; 1525 } 1526 1527 /* 1528 * Process records available for one inode and determine whether the 1529 * link count is correct or needs adjusting. 1530 */ 1531 static void 1532 ino_check(struct suj_ino *sino) 1533 { 1534 struct suj_rec *srec; 1535 struct jrefrec *rrec; 1536 nlink_t dotlinks; 1537 int newlinks; 1538 int removes; 1539 int nlink; 1540 ino_t ino; 1541 int isdot; 1542 int isat; 1543 int mode; 1544 1545 if (sino->si_hasrecs == 0) 1546 return; 1547 ino = sino->si_ino; 1548 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1549 nlink = rrec->jr_nlink; 1550 newlinks = 0; 1551 dotlinks = 0; 1552 removes = sino->si_nlinkadj; 1553 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1554 rrec = (struct jrefrec *)srec->sr_rec; 1555 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1556 rrec->jr_ino, &mode, &isdot); 1557 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1558 errx(1, "Inode mode/directory type mismatch %o != %o", 1559 mode, rrec->jr_mode); 1560 if (debug) 1561 printf("jrefrec: op %d ino %d, nlink %d, parent %d, " 1562 "diroff %jd, mode %o, isat %d, isdot %d\n", 1563 rrec->jr_op, rrec->jr_ino, rrec->jr_nlink, 1564 rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode, 1565 isat, isdot); 1566 mode = rrec->jr_mode & IFMT; 1567 if (rrec->jr_op == JOP_REMREF) 1568 removes++; 1569 newlinks += isat; 1570 if (isdot) 1571 dotlinks += isat; 1572 } 1573 /* 1574 * The number of links that remain are the starting link count 1575 * subtracted by the total number of removes with the total 1576 * links discovered back in. An incomplete remove thus 1577 * makes no change to the link count but an add increases 1578 * by one. 1579 */ 1580 if (debug) 1581 printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n", 1582 ino, nlink, newlinks, removes, dotlinks); 1583 nlink += newlinks; 1584 nlink -= removes; 1585 sino->si_linkadj = 1; 1586 sino->si_nlink = nlink; 1587 sino->si_dotlinks = dotlinks; 1588 sino->si_mode = mode; 1589 ino_adjust(sino); 1590 } 1591 1592 /* 1593 * Process records available for one block and determine whether it is 1594 * still allocated and whether the owning inode needs to be updated or 1595 * a free completed. 1596 */ 1597 static void 1598 blk_check(struct suj_blk *sblk) 1599 { 1600 struct suj_rec *srec; 1601 struct jblkrec *brec; 1602 struct suj_ino *sino; 1603 ufs2_daddr_t blk; 1604 int mask; 1605 int frags; 1606 int isat; 1607 1608 /* 1609 * Each suj_blk actually contains records for any fragments in that 1610 * block. As a result we must evaluate each record individually. 1611 */ 1612 sino = NULL; 1613 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1614 brec = (struct jblkrec *)srec->sr_rec; 1615 frags = brec->jb_frags; 1616 blk = brec->jb_blkno + brec->jb_oldfrags; 1617 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1618 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1619 sino = ino_lookup(brec->jb_ino, 1); 1620 sino->si_blkadj = 1; 1621 } 1622 if (debug) 1623 printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n", 1624 brec->jb_op, blk, brec->jb_ino, brec->jb_lbn, 1625 brec->jb_frags, isat, frags); 1626 /* 1627 * If we found the block at this address we still have to 1628 * determine if we need to free the tail end that was 1629 * added by adding contiguous fragments from the same block. 1630 */ 1631 if (isat == 1) { 1632 if (frags == brec->jb_frags) 1633 continue; 1634 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1635 brec->jb_frags); 1636 mask >>= frags; 1637 blk += frags; 1638 frags = brec->jb_frags - frags; 1639 blk_free(blk, mask, frags); 1640 continue; 1641 } 1642 /* 1643 * The block wasn't found, attempt to free it. It won't be 1644 * freed if it was actually reallocated. If this was an 1645 * allocation we don't want to follow indirects as they 1646 * may not be written yet. Any children of the indirect will 1647 * have their own records. If it's a free we need to 1648 * recursively free children. 1649 */ 1650 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1651 brec->jb_op == JOP_FREEBLK); 1652 } 1653 } 1654 1655 /* 1656 * Walk the list of inode records for this cg and resolve moved and duplicate 1657 * inode references now that we have a complete picture. 1658 */ 1659 static void 1660 cg_build(struct suj_cg *sc) 1661 { 1662 struct suj_ino *sino; 1663 int i; 1664 1665 for (i = 0; i < SUJ_HASHSIZE; i++) 1666 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1667 ino_build(sino); 1668 } 1669 1670 /* 1671 * Handle inodes requiring truncation. This must be done prior to 1672 * looking up any inodes in directories. 1673 */ 1674 static void 1675 cg_trunc(struct suj_cg *sc) 1676 { 1677 struct suj_ino *sino; 1678 int i; 1679 1680 for (i = 0; i < SUJ_HASHSIZE; i++) 1681 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1682 if (sino->si_trunc) { 1683 ino_trunc(sino->si_ino, 1684 sino->si_trunc->jt_size); 1685 sino->si_trunc = NULL; 1686 } 1687 } 1688 1689 /* 1690 * Free any partially allocated blocks and then resolve inode block 1691 * counts. 1692 */ 1693 static void 1694 cg_check_blk(struct suj_cg *sc) 1695 { 1696 struct suj_ino *sino; 1697 struct suj_blk *sblk; 1698 int i; 1699 1700 1701 for (i = 0; i < SUJ_HASHSIZE; i++) 1702 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1703 blk_check(sblk); 1704 /* 1705 * Now that we've freed blocks which are not referenced we 1706 * make a second pass over all inodes to adjust their block 1707 * counts. 1708 */ 1709 for (i = 0; i < SUJ_HASHSIZE; i++) 1710 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1711 if (sino->si_blkadj) 1712 ino_adjblks(sino); 1713 } 1714 1715 /* 1716 * Walk the list of inode records for this cg, recovering any 1717 * changes which were not complete at the time of crash. 1718 */ 1719 static void 1720 cg_check_ino(struct suj_cg *sc) 1721 { 1722 struct suj_ino *sino; 1723 int i; 1724 1725 for (i = 0; i < SUJ_HASHSIZE; i++) 1726 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1727 ino_check(sino); 1728 } 1729 1730 /* 1731 * Write a potentially dirty cg. Recalculate the summary information and 1732 * update the superblock summary. 1733 */ 1734 static void 1735 cg_write(struct suj_cg *sc) 1736 { 1737 ufs1_daddr_t fragno, cgbno, maxbno; 1738 u_int8_t *blksfree; 1739 struct cg *cgp; 1740 int blk; 1741 int i; 1742 1743 if (sc->sc_dirty == 0) 1744 return; 1745 /* 1746 * Fix the frag and cluster summary. 1747 */ 1748 cgp = sc->sc_cgp; 1749 cgp->cg_cs.cs_nbfree = 0; 1750 cgp->cg_cs.cs_nffree = 0; 1751 bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum)); 1752 maxbno = fragstoblks(fs, fs->fs_fpg); 1753 if (fs->fs_contigsumsize > 0) { 1754 for (i = 1; i <= fs->fs_contigsumsize; i++) 1755 cg_clustersum(cgp)[i] = 0; 1756 bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT)); 1757 } 1758 blksfree = cg_blksfree(cgp); 1759 for (cgbno = 0; cgbno < maxbno; cgbno++) { 1760 if (ffs_isfreeblock(fs, blksfree, cgbno)) 1761 continue; 1762 if (ffs_isblock(fs, blksfree, cgbno)) { 1763 ffs_clusteracct(fs, cgp, cgbno, 1); 1764 cgp->cg_cs.cs_nbfree++; 1765 continue; 1766 } 1767 fragno = blkstofrags(fs, cgbno); 1768 blk = blkmap(fs, blksfree, fragno); 1769 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1770 for (i = 0; i < fs->fs_frag; i++) 1771 if (isset(blksfree, fragno + i)) 1772 cgp->cg_cs.cs_nffree++; 1773 } 1774 /* 1775 * Update the superblock cg summary from our now correct values 1776 * before writing the block. 1777 */ 1778 fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs; 1779 if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 1780 fs->fs_bsize) == -1) 1781 err(1, "Unable to write cylinder group %d", sc->sc_cgx); 1782 } 1783 1784 /* 1785 * Write out any modified inodes. 1786 */ 1787 static void 1788 cg_write_inos(struct suj_cg *sc) 1789 { 1790 struct ino_blk *iblk; 1791 int i; 1792 1793 for (i = 0; i < SUJ_HASHSIZE; i++) 1794 LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next) 1795 if (iblk->ib_dirty) 1796 iblk_write(iblk); 1797 } 1798 1799 static void 1800 cg_apply(void (*apply)(struct suj_cg *)) 1801 { 1802 struct suj_cg *scg; 1803 int i; 1804 1805 for (i = 0; i < SUJ_HASHSIZE; i++) 1806 LIST_FOREACH(scg, &cghash[i], sc_next) 1807 apply(scg); 1808 } 1809 1810 /* 1811 * Process the unlinked but referenced file list. Freeing all inodes. 1812 */ 1813 static void 1814 ino_unlinked(void) 1815 { 1816 union dinode *ip; 1817 uint16_t mode; 1818 ino_t inon; 1819 ino_t ino; 1820 1821 ino = fs->fs_sujfree; 1822 fs->fs_sujfree = 0; 1823 while (ino != 0) { 1824 ip = ino_read(ino); 1825 mode = DIP(ip, di_mode) & IFMT; 1826 inon = DIP(ip, di_freelink); 1827 DIP_SET(ip, di_freelink, 0); 1828 /* 1829 * XXX Should this be an errx? 1830 */ 1831 if (DIP(ip, di_nlink) == 0) { 1832 if (debug) 1833 printf("Freeing unlinked ino %d mode %o\n", 1834 ino, mode); 1835 ino_reclaim(ip, ino, mode); 1836 } else if (debug) 1837 printf("Skipping ino %d mode %o with link %d\n", 1838 ino, mode, DIP(ip, di_nlink)); 1839 ino = inon; 1840 } 1841 } 1842 1843 /* 1844 * Append a new record to the list of records requiring processing. 1845 */ 1846 static void 1847 ino_append(union jrec *rec) 1848 { 1849 struct jrefrec *refrec; 1850 struct jmvrec *mvrec; 1851 struct suj_ino *sino; 1852 struct suj_rec *srec; 1853 1854 mvrec = &rec->rec_jmvrec; 1855 refrec = &rec->rec_jrefrec; 1856 if (debug && mvrec->jm_op == JOP_MVREF) 1857 printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n", 1858 mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff, 1859 mvrec->jm_oldoff); 1860 else if (debug && 1861 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1862 printf("ino ref: op %d, ino %d, nlink %d, " 1863 "parent %d, diroff %jd\n", 1864 refrec->jr_op, refrec->jr_ino, refrec->jr_nlink, 1865 refrec->jr_parent, refrec->jr_diroff); 1866 /* 1867 * Lookup the ino and clear truncate if one is found. Partial 1868 * truncates are always done synchronously so if we discover 1869 * an operation that requires a lock the truncation has completed 1870 * and can be discarded. 1871 */ 1872 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1873 sino->si_trunc = NULL; 1874 sino->si_hasrecs = 1; 1875 srec = errmalloc(sizeof(*srec)); 1876 srec->sr_rec = rec; 1877 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1878 } 1879 1880 /* 1881 * Add a reference adjustment to the sino list and eliminate dups. The 1882 * primary loop in ino_build_ref() checks for dups but new ones may be 1883 * created as a result of offset adjustments. 1884 */ 1885 static void 1886 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1887 { 1888 struct jrefrec *refrec; 1889 struct suj_rec *srn; 1890 struct jrefrec *rrn; 1891 1892 refrec = (struct jrefrec *)srec->sr_rec; 1893 /* 1894 * We walk backwards so that the oldest link count is preserved. If 1895 * an add record conflicts with a remove keep the remove. Redundant 1896 * removes are eliminated in ino_build_ref. Otherwise we keep the 1897 * oldest record at a given location. 1898 */ 1899 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 1900 srn = TAILQ_PREV(srn, srechd, sr_next)) { 1901 rrn = (struct jrefrec *)srn->sr_rec; 1902 if (rrn->jr_parent != refrec->jr_parent || 1903 rrn->jr_diroff != refrec->jr_diroff) 1904 continue; 1905 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 1906 rrn->jr_mode = refrec->jr_mode; 1907 return; 1908 } 1909 /* 1910 * Adding a remove. 1911 * 1912 * Replace the record in place with the old nlink in case 1913 * we replace the head of the list. Abandon srec as a dup. 1914 */ 1915 refrec->jr_nlink = rrn->jr_nlink; 1916 srn->sr_rec = srec->sr_rec; 1917 return; 1918 } 1919 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 1920 } 1921 1922 /* 1923 * Create a duplicate of a reference at a previous location. 1924 */ 1925 static void 1926 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 1927 { 1928 struct jrefrec *rrn; 1929 struct suj_rec *srn; 1930 1931 rrn = errmalloc(sizeof(*refrec)); 1932 *rrn = *refrec; 1933 rrn->jr_op = JOP_ADDREF; 1934 rrn->jr_diroff = diroff; 1935 srn = errmalloc(sizeof(*srn)); 1936 srn->sr_rec = (union jrec *)rrn; 1937 ino_add_ref(sino, srn); 1938 } 1939 1940 /* 1941 * Add a reference to the list at all known locations. We follow the offset 1942 * changes for a single instance and create duplicate add refs at each so 1943 * that we can tolerate any version of the directory block. Eliminate 1944 * removes which collide with adds that are seen in the journal. They should 1945 * not adjust the link count down. 1946 */ 1947 static void 1948 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 1949 { 1950 struct jrefrec *refrec; 1951 struct jmvrec *mvrec; 1952 struct suj_rec *srp; 1953 struct suj_rec *srn; 1954 struct jrefrec *rrn; 1955 off_t diroff; 1956 1957 refrec = (struct jrefrec *)srec->sr_rec; 1958 /* 1959 * Search for a mvrec that matches this offset. Whether it's an add 1960 * or a remove we can delete the mvref after creating a dup record in 1961 * the old location. 1962 */ 1963 if (!TAILQ_EMPTY(&sino->si_movs)) { 1964 diroff = refrec->jr_diroff; 1965 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 1966 srp = TAILQ_PREV(srn, srechd, sr_next); 1967 mvrec = (struct jmvrec *)srn->sr_rec; 1968 if (mvrec->jm_parent != refrec->jr_parent || 1969 mvrec->jm_newoff != diroff) 1970 continue; 1971 diroff = mvrec->jm_oldoff; 1972 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 1973 ino_dup_ref(sino, refrec, diroff); 1974 } 1975 } 1976 /* 1977 * If a remove wasn't eliminated by an earlier add just append it to 1978 * the list. 1979 */ 1980 if (refrec->jr_op == JOP_REMREF) { 1981 ino_add_ref(sino, srec); 1982 return; 1983 } 1984 /* 1985 * Walk the list of records waiting to be added to the list. We 1986 * must check for moves that apply to our current offset and remove 1987 * them from the list. Remove any duplicates to eliminate removes 1988 * with corresponding adds. 1989 */ 1990 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 1991 switch (srn->sr_rec->rec_jrefrec.jr_op) { 1992 case JOP_ADDREF: 1993 /* 1994 * This should actually be an error we should 1995 * have a remove for every add journaled. 1996 */ 1997 rrn = (struct jrefrec *)srn->sr_rec; 1998 if (rrn->jr_parent != refrec->jr_parent || 1999 rrn->jr_diroff != refrec->jr_diroff) 2000 break; 2001 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2002 break; 2003 case JOP_REMREF: 2004 /* 2005 * Once we remove the current iteration of the 2006 * record at this address we're done. 2007 */ 2008 rrn = (struct jrefrec *)srn->sr_rec; 2009 if (rrn->jr_parent != refrec->jr_parent || 2010 rrn->jr_diroff != refrec->jr_diroff) 2011 break; 2012 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2013 ino_add_ref(sino, srec); 2014 return; 2015 case JOP_MVREF: 2016 /* 2017 * Update our diroff based on any moves that match 2018 * and remove the move. 2019 */ 2020 mvrec = (struct jmvrec *)srn->sr_rec; 2021 if (mvrec->jm_parent != refrec->jr_parent || 2022 mvrec->jm_oldoff != refrec->jr_diroff) 2023 break; 2024 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 2025 refrec->jr_diroff = mvrec->jm_newoff; 2026 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2027 break; 2028 default: 2029 errx(1, "ino_build_ref: Unknown op %d", 2030 srn->sr_rec->rec_jrefrec.jr_op); 2031 } 2032 } 2033 ino_add_ref(sino, srec); 2034 } 2035 2036 /* 2037 * Walk the list of new records and add them in-order resolving any 2038 * dups and adjusted offsets. 2039 */ 2040 static void 2041 ino_build(struct suj_ino *sino) 2042 { 2043 struct suj_rec *srec; 2044 2045 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 2046 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 2047 switch (srec->sr_rec->rec_jrefrec.jr_op) { 2048 case JOP_ADDREF: 2049 case JOP_REMREF: 2050 ino_build_ref(sino, srec); 2051 break; 2052 case JOP_MVREF: 2053 /* 2054 * Add this mvrec to the queue of pending mvs. 2055 */ 2056 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 2057 break; 2058 default: 2059 errx(1, "ino_build: Unknown op %d", 2060 srec->sr_rec->rec_jrefrec.jr_op); 2061 } 2062 } 2063 if (TAILQ_EMPTY(&sino->si_recs)) 2064 sino->si_hasrecs = 0; 2065 } 2066 2067 /* 2068 * Modify journal records so they refer to the base block number 2069 * and a start and end frag range. This is to facilitate the discovery 2070 * of overlapping fragment allocations. 2071 */ 2072 static void 2073 blk_build(struct jblkrec *blkrec) 2074 { 2075 struct suj_rec *srec; 2076 struct suj_blk *sblk; 2077 struct jblkrec *blkrn; 2078 struct suj_ino *sino; 2079 ufs2_daddr_t blk; 2080 off_t foff; 2081 int frag; 2082 2083 if (debug) 2084 printf("blk_build: op %d blkno %jd frags %d oldfrags %d " 2085 "ino %d lbn %jd\n", 2086 blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags, 2087 blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn); 2088 2089 /* 2090 * Look up the inode and clear the truncate if any lbns after the 2091 * truncate lbn are freed or allocated. 2092 */ 2093 sino = ino_lookup(blkrec->jb_ino, 0); 2094 if (sino && sino->si_trunc) { 2095 foff = lblktosize(fs, blkrec->jb_lbn); 2096 foff += lfragtosize(fs, blkrec->jb_frags); 2097 if (foff > sino->si_trunc->jt_size) 2098 sino->si_trunc = NULL; 2099 } 2100 blk = blknum(fs, blkrec->jb_blkno); 2101 frag = fragnum(fs, blkrec->jb_blkno); 2102 sblk = blk_lookup(blk, 1); 2103 /* 2104 * Rewrite the record using oldfrags to indicate the offset into 2105 * the block. Leave jb_frags as the actual allocated count. 2106 */ 2107 blkrec->jb_blkno -= frag; 2108 blkrec->jb_oldfrags = frag; 2109 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 2110 errx(1, "Invalid fragment count %d oldfrags %d", 2111 blkrec->jb_frags, frag); 2112 /* 2113 * Detect dups. If we detect a dup we always discard the oldest 2114 * record as it is superseded by the new record. This speeds up 2115 * later stages but also eliminates free records which are used 2116 * to indicate that the contents of indirects can be trusted. 2117 */ 2118 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 2119 blkrn = (struct jblkrec *)srec->sr_rec; 2120 if (blkrn->jb_ino != blkrec->jb_ino || 2121 blkrn->jb_lbn != blkrec->jb_lbn || 2122 blkrn->jb_blkno != blkrec->jb_blkno || 2123 blkrn->jb_frags != blkrec->jb_frags || 2124 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 2125 continue; 2126 if (debug) 2127 printf("Removed dup.\n"); 2128 /* Discard the free which is a dup with an alloc. */ 2129 if (blkrec->jb_op == JOP_FREEBLK) 2130 return; 2131 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 2132 free(srec); 2133 break; 2134 } 2135 srec = errmalloc(sizeof(*srec)); 2136 srec->sr_rec = (union jrec *)blkrec; 2137 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 2138 } 2139 2140 static void 2141 ino_build_trunc(struct jtrncrec *rec) 2142 { 2143 struct suj_ino *sino; 2144 2145 if (debug) 2146 printf("ino_build_trunc: ino %d, size %jd\n", 2147 rec->jt_ino, rec->jt_size); 2148 sino = ino_lookup(rec->jt_ino, 1); 2149 sino->si_trunc = rec; 2150 } 2151 2152 /* 2153 * Build up tables of the operations we need to recover. 2154 */ 2155 static void 2156 suj_build(void) 2157 { 2158 struct suj_seg *seg; 2159 union jrec *rec; 2160 int off; 2161 int i; 2162 2163 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2164 if (debug) 2165 printf("seg %jd has %d records, oldseq %jd.\n", 2166 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 2167 seg->ss_rec.jsr_oldest); 2168 off = 0; 2169 rec = (union jrec *)seg->ss_blk; 2170 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2171 /* skip the segrec. */ 2172 if ((off % DEV_BSIZE) == 0) 2173 continue; 2174 switch (rec->rec_jrefrec.jr_op) { 2175 case JOP_ADDREF: 2176 case JOP_REMREF: 2177 case JOP_MVREF: 2178 ino_append(rec); 2179 break; 2180 case JOP_NEWBLK: 2181 case JOP_FREEBLK: 2182 blk_build((struct jblkrec *)rec); 2183 break; 2184 case JOP_TRUNC: 2185 ino_build_trunc((struct jtrncrec *)rec); 2186 break; 2187 default: 2188 errx(1, "Unknown journal operation %d (%d)", 2189 rec->rec_jrefrec.jr_op, off); 2190 } 2191 i++; 2192 } 2193 } 2194 } 2195 2196 /* 2197 * Prune the journal segments to those we care about based on the 2198 * oldest sequence in the newest segment. Order the segment list 2199 * based on sequence number. 2200 */ 2201 static void 2202 suj_prune(void) 2203 { 2204 struct suj_seg *seg; 2205 struct suj_seg *segn; 2206 uint64_t newseq; 2207 int discard; 2208 2209 if (debug) 2210 printf("Pruning up to %jd\n", oldseq); 2211 /* First free the expired segments. */ 2212 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2213 if (seg->ss_rec.jsr_seq >= oldseq) 2214 continue; 2215 TAILQ_REMOVE(&allsegs, seg, ss_next); 2216 free(seg->ss_blk); 2217 free(seg); 2218 } 2219 /* Next ensure that segments are ordered properly. */ 2220 seg = TAILQ_FIRST(&allsegs); 2221 if (seg == NULL) { 2222 if (debug) 2223 printf("Empty journal\n"); 2224 return; 2225 } 2226 newseq = seg->ss_rec.jsr_seq; 2227 for (;;) { 2228 seg = TAILQ_LAST(&allsegs, seghd); 2229 if (seg->ss_rec.jsr_seq >= newseq) 2230 break; 2231 TAILQ_REMOVE(&allsegs, seg, ss_next); 2232 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2233 newseq = seg->ss_rec.jsr_seq; 2234 2235 } 2236 if (newseq != oldseq) 2237 errx(1, "Journal file sequence mismatch %jd != %jd", 2238 newseq, oldseq); 2239 /* 2240 * The kernel may asynchronously write segments which can create 2241 * gaps in the sequence space. Throw away any segments after the 2242 * gap as the kernel guarantees only those that are contiguously 2243 * reachable are marked as completed. 2244 */ 2245 discard = 0; 2246 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2247 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2248 jrecs += seg->ss_rec.jsr_cnt; 2249 jbytes += seg->ss_rec.jsr_blocks * DEV_BSIZE; 2250 continue; 2251 } 2252 discard = 1; 2253 if (debug) 2254 printf("Journal order mismatch %jd != %jd pruning\n", 2255 newseq-1, seg->ss_rec.jsr_seq); 2256 TAILQ_REMOVE(&allsegs, seg, ss_next); 2257 free(seg->ss_blk); 2258 free(seg); 2259 } 2260 if (debug) 2261 printf("Processing journal segments from %jd to %jd\n", 2262 oldseq, newseq-1); 2263 } 2264 2265 /* 2266 * Verify the journal inode before attempting to read records. 2267 */ 2268 static int 2269 suj_verifyino(union dinode *ip) 2270 { 2271 2272 if (DIP(ip, di_nlink) != 1) { 2273 printf("Invalid link count %d for journal inode %d\n", 2274 DIP(ip, di_nlink), sujino); 2275 return (-1); 2276 } 2277 2278 if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2279 (SF_IMMUTABLE | SF_NOUNLINK)) { 2280 printf("Invalid flags 0x%X for journal inode %d\n", 2281 DIP(ip, di_flags), sujino); 2282 return (-1); 2283 } 2284 2285 if (DIP(ip, di_mode) != (IFREG | IREAD)) { 2286 printf("Invalid mode %o for journal inode %d\n", 2287 DIP(ip, di_mode), sujino); 2288 return (-1); 2289 } 2290 2291 if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) { 2292 printf("Invalid size %jd for journal inode %d\n", 2293 DIP(ip, di_size), sujino); 2294 return (-1); 2295 } 2296 2297 if (DIP(ip, di_modrev) != fs->fs_mtime) { 2298 printf("Journal timestamp does not match fs mount time\n"); 2299 return (-1); 2300 } 2301 2302 return (0); 2303 } 2304 2305 struct jblocks { 2306 struct jextent *jb_extent; /* Extent array. */ 2307 int jb_avail; /* Available extents. */ 2308 int jb_used; /* Last used extent. */ 2309 int jb_head; /* Allocator head. */ 2310 int jb_off; /* Allocator extent offset. */ 2311 }; 2312 struct jextent { 2313 ufs2_daddr_t je_daddr; /* Disk block address. */ 2314 int je_blocks; /* Disk block count. */ 2315 }; 2316 2317 struct jblocks *suj_jblocks; 2318 2319 static struct jblocks * 2320 jblocks_create(void) 2321 { 2322 struct jblocks *jblocks; 2323 int size; 2324 2325 jblocks = errmalloc(sizeof(*jblocks)); 2326 jblocks->jb_avail = 10; 2327 jblocks->jb_used = 0; 2328 jblocks->jb_head = 0; 2329 jblocks->jb_off = 0; 2330 size = sizeof(struct jextent) * jblocks->jb_avail; 2331 jblocks->jb_extent = errmalloc(size); 2332 bzero(jblocks->jb_extent, size); 2333 2334 return (jblocks); 2335 } 2336 2337 /* 2338 * Return the next available disk block and the amount of contiguous 2339 * free space it contains. 2340 */ 2341 static ufs2_daddr_t 2342 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2343 { 2344 struct jextent *jext; 2345 ufs2_daddr_t daddr; 2346 int freecnt; 2347 int blocks; 2348 2349 blocks = bytes / DEV_BSIZE; 2350 jext = &jblocks->jb_extent[jblocks->jb_head]; 2351 freecnt = jext->je_blocks - jblocks->jb_off; 2352 if (freecnt == 0) { 2353 jblocks->jb_off = 0; 2354 if (++jblocks->jb_head > jblocks->jb_used) 2355 return (0); 2356 jext = &jblocks->jb_extent[jblocks->jb_head]; 2357 freecnt = jext->je_blocks; 2358 } 2359 if (freecnt > blocks) 2360 freecnt = blocks; 2361 *actual = freecnt * DEV_BSIZE; 2362 daddr = jext->je_daddr + jblocks->jb_off; 2363 2364 return (daddr); 2365 } 2366 2367 /* 2368 * Advance the allocation head by a specified number of bytes, consuming 2369 * one journal segment. 2370 */ 2371 static void 2372 jblocks_advance(struct jblocks *jblocks, int bytes) 2373 { 2374 2375 jblocks->jb_off += bytes / DEV_BSIZE; 2376 } 2377 2378 static void 2379 jblocks_destroy(struct jblocks *jblocks) 2380 { 2381 2382 free(jblocks->jb_extent); 2383 free(jblocks); 2384 } 2385 2386 static void 2387 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2388 { 2389 struct jextent *jext; 2390 int size; 2391 2392 jext = &jblocks->jb_extent[jblocks->jb_used]; 2393 /* Adding the first block. */ 2394 if (jext->je_daddr == 0) { 2395 jext->je_daddr = daddr; 2396 jext->je_blocks = blocks; 2397 return; 2398 } 2399 /* Extending the last extent. */ 2400 if (jext->je_daddr + jext->je_blocks == daddr) { 2401 jext->je_blocks += blocks; 2402 return; 2403 } 2404 /* Adding a new extent. */ 2405 if (++jblocks->jb_used == jblocks->jb_avail) { 2406 jblocks->jb_avail *= 2; 2407 size = sizeof(struct jextent) * jblocks->jb_avail; 2408 jext = errmalloc(size); 2409 bzero(jext, size); 2410 bcopy(jblocks->jb_extent, jext, 2411 sizeof(struct jextent) * jblocks->jb_used); 2412 free(jblocks->jb_extent); 2413 jblocks->jb_extent = jext; 2414 } 2415 jext = &jblocks->jb_extent[jblocks->jb_used]; 2416 jext->je_daddr = daddr; 2417 jext->je_blocks = blocks; 2418 2419 return; 2420 } 2421 2422 /* 2423 * Add a file block from the journal to the extent map. We can't read 2424 * each file block individually because the kernel treats it as a circular 2425 * buffer and segments may span mutliple contiguous blocks. 2426 */ 2427 static void 2428 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2429 { 2430 2431 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2432 } 2433 2434 static void 2435 suj_read(void) 2436 { 2437 uint8_t block[1 * 1024 * 1024]; 2438 struct suj_seg *seg; 2439 struct jsegrec *recn; 2440 struct jsegrec *rec; 2441 ufs2_daddr_t blk; 2442 int readsize; 2443 int blocks; 2444 int recsize; 2445 int size; 2446 int i; 2447 2448 /* 2449 * Read records until we exhaust the journal space. If we find 2450 * an invalid record we start searching for a valid segment header 2451 * at the next block. This is because we don't have a head/tail 2452 * pointer and must recover the information indirectly. At the gap 2453 * between the head and tail we won't necessarily have a valid 2454 * segment. 2455 */ 2456 restart: 2457 for (;;) { 2458 size = sizeof(block); 2459 blk = jblocks_next(suj_jblocks, size, &readsize); 2460 if (blk == 0) 2461 return; 2462 size = readsize; 2463 /* 2464 * Read 1MB at a time and scan for records within this block. 2465 */ 2466 if (bread(disk, blk, &block, size) == -1) 2467 err(1, "Error reading journal block %jd", 2468 (intmax_t)blk); 2469 for (rec = (void *)block; size; size -= recsize, 2470 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2471 recsize = DEV_BSIZE; 2472 if (rec->jsr_time != fs->fs_mtime) { 2473 if (debug) 2474 printf("Rec time %jd != fs mtime %jd\n", 2475 rec->jsr_time, fs->fs_mtime); 2476 jblocks_advance(suj_jblocks, recsize); 2477 continue; 2478 } 2479 if (rec->jsr_cnt == 0) { 2480 if (debug) 2481 printf("Found illegal count %d\n", 2482 rec->jsr_cnt); 2483 jblocks_advance(suj_jblocks, recsize); 2484 continue; 2485 } 2486 blocks = rec->jsr_blocks; 2487 recsize = blocks * DEV_BSIZE; 2488 if (recsize > size) { 2489 /* 2490 * We may just have run out of buffer, restart 2491 * the loop to re-read from this spot. 2492 */ 2493 if (size < fs->fs_bsize && 2494 size != readsize && 2495 recsize <= fs->fs_bsize) 2496 goto restart; 2497 if (debug) 2498 printf("Found invalid segsize %d > %d\n", 2499 recsize, size); 2500 recsize = DEV_BSIZE; 2501 jblocks_advance(suj_jblocks, recsize); 2502 continue; 2503 } 2504 /* 2505 * Verify that all blocks in the segment are present. 2506 */ 2507 for (i = 1; i < blocks; i++) { 2508 recn = (void *) 2509 ((uintptr_t)rec) + i * DEV_BSIZE; 2510 if (recn->jsr_seq == rec->jsr_seq && 2511 recn->jsr_time == rec->jsr_time) 2512 continue; 2513 if (debug) 2514 printf("Incomplete record %jd (%d)\n", 2515 rec->jsr_seq, i); 2516 recsize = i * DEV_BSIZE; 2517 jblocks_advance(suj_jblocks, recsize); 2518 goto restart; 2519 } 2520 seg = errmalloc(sizeof(*seg)); 2521 seg->ss_blk = errmalloc(recsize); 2522 seg->ss_rec = *rec; 2523 bcopy((void *)rec, seg->ss_blk, recsize); 2524 if (rec->jsr_oldest > oldseq) 2525 oldseq = rec->jsr_oldest; 2526 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2527 jblocks_advance(suj_jblocks, recsize); 2528 } 2529 } 2530 } 2531 2532 /* 2533 * Search a directory block for the SUJ_FILE. 2534 */ 2535 static void 2536 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2537 { 2538 char block[MAXBSIZE]; 2539 struct direct *dp; 2540 int bytes; 2541 int off; 2542 2543 if (sujino) 2544 return; 2545 bytes = lfragtosize(fs, frags); 2546 if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0) 2547 err(1, "Failed to read ROOTINO directory block %jd", blk); 2548 for (off = 0; off < bytes; off += dp->d_reclen) { 2549 dp = (struct direct *)&block[off]; 2550 if (dp->d_reclen == 0) 2551 break; 2552 if (dp->d_ino == 0) 2553 continue; 2554 if (dp->d_namlen != strlen(SUJ_FILE)) 2555 continue; 2556 if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0) 2557 continue; 2558 sujino = dp->d_ino; 2559 return; 2560 } 2561 } 2562 2563 /* 2564 * Orchestrate the verification of a filesystem via the softupdates journal. 2565 */ 2566 int 2567 suj_check(const char *filesys) 2568 { 2569 union dinode *jip; 2570 union dinode *ip; 2571 uint64_t blocks; 2572 2573 opendisk(filesys); 2574 TAILQ_INIT(&allsegs); 2575 /* 2576 * Find the journal inode. 2577 */ 2578 ip = ino_read(ROOTINO); 2579 sujino = 0; 2580 ino_visit(ip, ROOTINO, suj_find, 0); 2581 if (sujino == 0) 2582 errx(1, "Journal inode removed. Use tunefs to re-create."); 2583 /* 2584 * Fetch the journal inode and verify it. 2585 */ 2586 jip = ino_read(sujino); 2587 printf("** SU+J Recovering %s\n", filesys); 2588 if (suj_verifyino(jip) != 0) 2589 return (-1); 2590 /* 2591 * Build a list of journal blocks in jblocks before parsing the 2592 * available journal blocks in with suj_read(). 2593 */ 2594 printf("** Reading %jd byte journal from inode %d.\n", 2595 DIP(jip, di_size), sujino); 2596 suj_jblocks = jblocks_create(); 2597 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2598 if (blocks != numfrags(fs, DIP(jip, di_size))) 2599 errx(1, "Sparse journal inode %d.\n", sujino); 2600 suj_read(); 2601 jblocks_destroy(suj_jblocks); 2602 suj_jblocks = NULL; 2603 if (preen || reply("RECOVER")) { 2604 printf("** Building recovery table.\n"); 2605 suj_prune(); 2606 suj_build(); 2607 cg_apply(cg_build); 2608 printf("** Resolving unreferenced inode list.\n"); 2609 ino_unlinked(); 2610 printf("** Processing journal entries.\n"); 2611 cg_apply(cg_trunc); 2612 cg_apply(cg_check_blk); 2613 cg_apply(cg_check_ino); 2614 } 2615 if (preen == 0 && reply("WRITE CHANGES") == 0) 2616 return (0); 2617 /* 2618 * To remain idempotent with partial truncations the free bitmaps 2619 * must be written followed by indirect blocks and lastly inode 2620 * blocks. This preserves access to the modified pointers until 2621 * they are freed. 2622 */ 2623 cg_apply(cg_write); 2624 dblk_write(); 2625 cg_apply(cg_write_inos); 2626 /* Write back superblock. */ 2627 closedisk(filesys); 2628 printf("** %jd journal records in %jd bytes for %.2f%% utilization\n", 2629 jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2630 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n", 2631 freeinos, freedir, freeblocks, freefrags); 2632 2633 return (0); 2634 } 2635