1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include <sys/param.h> 31 #include <sys/disk.h> 32 #include <sys/disklabel.h> 33 #include <sys/mount.h> 34 #include <sys/stat.h> 35 36 #include <ufs/ufs/extattr.h> 37 #include <ufs/ufs/quota.h> 38 #include <ufs/ufs/ufsmount.h> 39 #include <ufs/ufs/dinode.h> 40 #include <ufs/ufs/dir.h> 41 #include <ufs/ffs/fs.h> 42 43 #include <assert.h> 44 #include <err.h> 45 #include <setjmp.h> 46 #include <stdarg.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <stdint.h> 50 #include <string.h> 51 #include <strings.h> 52 #include <sysexits.h> 53 #include <time.h> 54 55 #include "fsck.h" 56 57 #define DOTDOT_OFFSET DIRECTSIZ(1) 58 59 struct suj_seg { 60 TAILQ_ENTRY(suj_seg) ss_next; 61 struct jsegrec ss_rec; 62 uint8_t *ss_blk; 63 }; 64 65 struct suj_rec { 66 TAILQ_ENTRY(suj_rec) sr_next; 67 union jrec *sr_rec; 68 }; 69 TAILQ_HEAD(srechd, suj_rec); 70 71 struct suj_ino { 72 LIST_ENTRY(suj_ino) si_next; 73 struct srechd si_recs; 74 struct srechd si_newrecs; 75 struct srechd si_movs; 76 struct jtrncrec *si_trunc; 77 ino_t si_ino; 78 char si_skipparent; 79 char si_hasrecs; 80 char si_blkadj; 81 char si_linkadj; 82 int si_mode; 83 nlink_t si_nlinkadj; 84 nlink_t si_nlink; 85 nlink_t si_dotlinks; 86 }; 87 LIST_HEAD(inohd, suj_ino); 88 89 struct suj_blk { 90 LIST_ENTRY(suj_blk) sb_next; 91 struct srechd sb_recs; 92 ufs2_daddr_t sb_blk; 93 }; 94 LIST_HEAD(blkhd, suj_blk); 95 96 struct suj_cg { 97 LIST_ENTRY(suj_cg) sc_next; 98 struct blkhd sc_blkhash[HASHSIZE]; 99 struct inohd sc_inohash[HASHSIZE]; 100 struct ino_blk *sc_lastiblk; 101 struct suj_ino *sc_lastino; 102 struct suj_blk *sc_lastblk; 103 struct bufarea *sc_cgbp; 104 struct cg *sc_cgp; 105 int sc_cgx; 106 }; 107 108 static LIST_HEAD(cghd, suj_cg) cghash[HASHSIZE]; 109 static struct suj_cg *lastcg; 110 111 static TAILQ_HEAD(seghd, suj_seg) allsegs; 112 static uint64_t oldseq; 113 static struct fs *fs = NULL; 114 static ino_t sujino; 115 static char *joptype[JOP_NUMJOPTYPES] = JOP_NAMES; 116 117 /* 118 * Summary statistics. 119 */ 120 static uint64_t freefrags; 121 static uint64_t freeblocks; 122 static uint64_t freeinos; 123 static uint64_t freedir; 124 static uint64_t jbytes; 125 static uint64_t jrecs; 126 127 static jmp_buf jmpbuf; 128 129 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 130 static void err_suj(const char *, ...) __dead2; 131 static void ino_trunc(ino_t, off_t); 132 static void ino_decr(ino_t); 133 static void ino_adjust(struct suj_ino *); 134 static void ino_build(struct suj_ino *); 135 static int blk_isfree(ufs2_daddr_t); 136 static void initsuj(void); 137 138 static void * 139 errmalloc(size_t n) 140 { 141 void *a; 142 143 a = Malloc(n); 144 if (a == NULL) 145 err(EX_OSERR, "malloc(%zu)", n); 146 return (a); 147 } 148 149 /* 150 * When hit a fatal error in journalling check, print out 151 * the error and then offer to fallback to normal fsck. 152 */ 153 static void 154 err_suj(const char * restrict fmt, ...) 155 { 156 va_list ap; 157 158 if (preen) 159 (void)fprintf(stdout, "%s: ", cdevname); 160 161 va_start(ap, fmt); 162 (void)vfprintf(stdout, fmt, ap); 163 va_end(ap); 164 165 longjmp(jmpbuf, -1); 166 } 167 168 /* 169 * Lookup a cg by number in the hash so we can keep track of which cgs 170 * need stats rebuilt. 171 */ 172 static struct suj_cg * 173 cg_lookup(int cgx) 174 { 175 struct cghd *hd; 176 struct suj_cg *sc; 177 struct bufarea *cgbp; 178 179 if (cgx < 0 || cgx >= fs->fs_ncg) 180 err_suj("Bad cg number %d\n", cgx); 181 if (lastcg && lastcg->sc_cgx == cgx) 182 return (lastcg); 183 cgbp = cglookup(cgx); 184 if (!check_cgmagic(cgx, cgbp)) 185 err_suj("UNABLE TO REBUILD CYLINDER GROUP %d", cgx); 186 hd = &cghash[HASH(cgx)]; 187 LIST_FOREACH(sc, hd, sc_next) 188 if (sc->sc_cgx == cgx) { 189 sc->sc_cgbp = cgbp; 190 sc->sc_cgp = sc->sc_cgbp->b_un.b_cg; 191 lastcg = sc; 192 return (sc); 193 } 194 sc = errmalloc(sizeof(*sc)); 195 bzero(sc, sizeof(*sc)); 196 sc->sc_cgbp = cgbp; 197 sc->sc_cgp = sc->sc_cgbp->b_un.b_cg; 198 sc->sc_cgx = cgx; 199 LIST_INSERT_HEAD(hd, sc, sc_next); 200 return (sc); 201 } 202 203 /* 204 * Lookup an inode number in the hash and allocate a suj_ino if it does 205 * not exist. 206 */ 207 static struct suj_ino * 208 ino_lookup(ino_t ino, int creat) 209 { 210 struct suj_ino *sino; 211 struct inohd *hd; 212 struct suj_cg *sc; 213 214 sc = cg_lookup(ino_to_cg(fs, ino)); 215 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 216 return (sc->sc_lastino); 217 hd = &sc->sc_inohash[HASH(ino)]; 218 LIST_FOREACH(sino, hd, si_next) 219 if (sino->si_ino == ino) 220 return (sino); 221 if (creat == 0) 222 return (NULL); 223 sino = errmalloc(sizeof(*sino)); 224 bzero(sino, sizeof(*sino)); 225 sino->si_ino = ino; 226 TAILQ_INIT(&sino->si_recs); 227 TAILQ_INIT(&sino->si_newrecs); 228 TAILQ_INIT(&sino->si_movs); 229 LIST_INSERT_HEAD(hd, sino, si_next); 230 231 return (sino); 232 } 233 234 /* 235 * Lookup a block number in the hash and allocate a suj_blk if it does 236 * not exist. 237 */ 238 static struct suj_blk * 239 blk_lookup(ufs2_daddr_t blk, int creat) 240 { 241 struct suj_blk *sblk; 242 struct suj_cg *sc; 243 struct blkhd *hd; 244 245 sc = cg_lookup(dtog(fs, blk)); 246 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 247 return (sc->sc_lastblk); 248 hd = &sc->sc_blkhash[HASH(fragstoblks(fs, blk))]; 249 LIST_FOREACH(sblk, hd, sb_next) 250 if (sblk->sb_blk == blk) 251 return (sblk); 252 if (creat == 0) 253 return (NULL); 254 sblk = errmalloc(sizeof(*sblk)); 255 bzero(sblk, sizeof(*sblk)); 256 sblk->sb_blk = blk; 257 TAILQ_INIT(&sblk->sb_recs); 258 LIST_INSERT_HEAD(hd, sblk, sb_next); 259 260 return (sblk); 261 } 262 263 static int 264 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 265 { 266 ufs2_daddr_t bstart; 267 ufs2_daddr_t bend; 268 ufs2_daddr_t end; 269 270 end = start + frags; 271 bstart = brec->jb_blkno + brec->jb_oldfrags; 272 bend = bstart + brec->jb_frags; 273 if (start < bend && end > bstart) 274 return (1); 275 return (0); 276 } 277 278 static int 279 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 280 int frags) 281 { 282 283 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 284 return (0); 285 if (brec->jb_blkno + brec->jb_oldfrags != start) 286 return (0); 287 if (brec->jb_frags < frags) 288 return (0); 289 return (1); 290 } 291 292 static void 293 blk_setmask(struct jblkrec *brec, int *mask) 294 { 295 int i; 296 297 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 298 *mask |= 1 << i; 299 } 300 301 /* 302 * Determine whether a given block has been reallocated to a new location. 303 * Returns a mask of overlapping bits if any frags have been reused or 304 * zero if the block has not been re-used and the contents can be trusted. 305 * 306 * This is used to ensure that an orphaned pointer due to truncate is safe 307 * to be freed. The mask value can be used to free partial blocks. 308 */ 309 static int 310 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 311 { 312 struct suj_blk *sblk; 313 struct suj_rec *srec; 314 struct jblkrec *brec; 315 int mask; 316 int off; 317 318 /* 319 * To be certain we're not freeing a reallocated block we lookup 320 * this block in the blk hash and see if there is an allocation 321 * journal record that overlaps with any fragments in the block 322 * we're concerned with. If any fragments have been reallocated 323 * the block has already been freed and re-used for another purpose. 324 */ 325 mask = 0; 326 sblk = blk_lookup(blknum(fs, blk), 0); 327 if (sblk == NULL) 328 return (0); 329 off = blk - sblk->sb_blk; 330 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 331 brec = (struct jblkrec *)srec->sr_rec; 332 /* 333 * If the block overlaps but does not match 334 * exactly this record refers to the current 335 * location. 336 */ 337 if (blk_overlaps(brec, blk, frags) == 0) 338 continue; 339 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 340 mask = 0; 341 else 342 blk_setmask(brec, &mask); 343 } 344 if (debug) 345 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 346 blk, sblk->sb_blk, off, mask); 347 return (mask >> off); 348 } 349 350 /* 351 * Determine whether it is safe to follow an indirect. It is not safe 352 * if any part of the indirect has been reallocated or the last journal 353 * entry was an allocation. Just allocated indirects may not have valid 354 * pointers yet and all of their children will have their own records. 355 * It is also not safe to follow an indirect if the cg bitmap has been 356 * cleared as a new allocation may write to the block prior to the journal 357 * being written. 358 * 359 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 360 */ 361 static int 362 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 363 { 364 struct suj_blk *sblk; 365 struct jblkrec *brec; 366 367 sblk = blk_lookup(blk, 0); 368 if (sblk == NULL) 369 return (1); 370 if (TAILQ_EMPTY(&sblk->sb_recs)) 371 return (1); 372 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 373 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 374 if (brec->jb_op == JOP_FREEBLK) 375 return (!blk_isfree(blk)); 376 return (0); 377 } 378 379 /* 380 * Check to see if the requested block is available. 381 * We can just check in the cylinder-group maps as 382 * they will only have usable blocks in them. 383 */ 384 ufs2_daddr_t 385 suj_checkblkavail(ufs2_daddr_t blkno, long frags) 386 { 387 struct bufarea *cgbp; 388 struct cg *cgp; 389 ufs2_daddr_t j, k, baseblk; 390 long cg; 391 392 if ((u_int64_t)blkno > sblock.fs_size) 393 return (0); 394 cg = dtog(&sblock, blkno); 395 cgbp = cglookup(cg); 396 cgp = cgbp->b_un.b_cg; 397 if (!check_cgmagic(cg, cgbp)) 398 return (-((cg + 1) * sblock.fs_fpg - sblock.fs_frag)); 399 baseblk = dtogd(&sblock, blkno); 400 for (j = 0; j <= sblock.fs_frag - frags; j++) { 401 if (!isset(cg_blksfree(cgp), baseblk + j)) 402 continue; 403 for (k = 1; k < frags; k++) 404 if (!isset(cg_blksfree(cgp), baseblk + j + k)) 405 break; 406 if (k < frags) { 407 j += k; 408 continue; 409 } 410 for (k = 0; k < frags; k++) 411 clrbit(cg_blksfree(cgp), baseblk + j + k); 412 n_blks += frags; 413 if (frags == sblock.fs_frag) 414 cgp->cg_cs.cs_nbfree--; 415 else 416 cgp->cg_cs.cs_nffree -= frags; 417 cgdirty(cgbp); 418 return ((cg * sblock.fs_fpg) + baseblk + j); 419 } 420 return (0); 421 } 422 423 /* 424 * Clear an inode from the cg bitmap. If the inode was already clear return 425 * 0 so the caller knows it does not have to check the inode contents. 426 */ 427 static int 428 ino_free(ino_t ino, int mode) 429 { 430 struct suj_cg *sc; 431 uint8_t *inosused; 432 struct cg *cgp; 433 int cg; 434 435 cg = ino_to_cg(fs, ino); 436 ino = ino % fs->fs_ipg; 437 sc = cg_lookup(cg); 438 cgp = sc->sc_cgp; 439 inosused = cg_inosused(cgp); 440 /* 441 * The bitmap may never have made it to the disk so we have to 442 * conditionally clear. We can avoid writing the cg in this case. 443 */ 444 if (isclr(inosused, ino)) 445 return (0); 446 freeinos++; 447 clrbit(inosused, ino); 448 if (ino < cgp->cg_irotor) 449 cgp->cg_irotor = ino; 450 cgp->cg_cs.cs_nifree++; 451 if ((mode & IFMT) == IFDIR) { 452 freedir++; 453 cgp->cg_cs.cs_ndir--; 454 } 455 cgdirty(sc->sc_cgbp); 456 457 return (1); 458 } 459 460 /* 461 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 462 * set in the mask. 463 */ 464 static void 465 blk_free(ino_t ino, ufs2_daddr_t bno, int mask, int frags) 466 { 467 ufs1_daddr_t fragno, cgbno; 468 struct suj_cg *sc; 469 struct cg *cgp; 470 int i, cg; 471 uint8_t *blksfree; 472 473 if (debug) 474 printf("Freeing %d frags at blk %jd mask 0x%x\n", 475 frags, bno, mask); 476 /* 477 * Check to see if the block needs to be claimed by a snapshot. 478 * If wanted, the snapshot references it. Otherwise we free it. 479 */ 480 if (snapblkfree(fs, bno, lfragtosize(fs, frags), ino, 481 suj_checkblkavail)) 482 return; 483 cg = dtog(fs, bno); 484 sc = cg_lookup(cg); 485 cgp = sc->sc_cgp; 486 cgbno = dtogd(fs, bno); 487 blksfree = cg_blksfree(cgp); 488 489 /* 490 * If it's not allocated we only wrote the journal entry 491 * and never the bitmaps. Here we unconditionally clear and 492 * resolve the cg summary later. 493 */ 494 if (frags == fs->fs_frag && mask == 0) { 495 fragno = fragstoblks(fs, cgbno); 496 ffs_setblock(fs, blksfree, fragno); 497 freeblocks++; 498 } else { 499 /* 500 * deallocate the fragment 501 */ 502 for (i = 0; i < frags; i++) 503 if ((mask & (1 << i)) == 0 && 504 isclr(blksfree, cgbno +i)) { 505 freefrags++; 506 setbit(blksfree, cgbno + i); 507 } 508 } 509 cgdirty(sc->sc_cgbp); 510 } 511 512 /* 513 * Returns 1 if the whole block starting at 'bno' is marked free and 0 514 * otherwise. 515 */ 516 static int 517 blk_isfree(ufs2_daddr_t bno) 518 { 519 struct suj_cg *sc; 520 521 sc = cg_lookup(dtog(fs, bno)); 522 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 523 } 524 525 /* 526 * Determine whether a block exists at a particular lbn in an inode. 527 * Returns 1 if found, 0 if not. lbn may be negative for indirects 528 * or ext blocks. 529 */ 530 static int 531 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 532 { 533 struct inode ip; 534 union dinode *dp; 535 ufs2_daddr_t nblk; 536 537 ginode(ino, &ip); 538 dp = ip.i_dp; 539 if (DIP(dp, di_nlink) == 0 || DIP(dp, di_mode) == 0) { 540 irelse(&ip); 541 return (0); 542 } 543 nblk = ino_blkatoff(dp, ino, lbn, frags, NULL); 544 irelse(&ip); 545 return (nblk == blk); 546 } 547 548 /* 549 * Clear the directory entry at diroff that should point to child. Minimal 550 * checking is done and it is assumed that this path was verified with isat. 551 */ 552 static void 553 ino_clrat(ino_t parent, off_t diroff, ino_t child) 554 { 555 union dinode *dip; 556 struct direct *dp; 557 struct inode ip; 558 ufs2_daddr_t blk; 559 struct bufarea *bp; 560 ufs_lbn_t lbn; 561 int blksize; 562 int frags; 563 int doff; 564 565 if (debug) 566 printf("Clearing inode %ju from parent %ju at offset %jd\n", 567 (uintmax_t)child, (uintmax_t)parent, diroff); 568 569 lbn = lblkno(fs, diroff); 570 doff = blkoff(fs, diroff); 571 ginode(parent, &ip); 572 dip = ip.i_dp; 573 blk = ino_blkatoff(dip, parent, lbn, &frags, NULL); 574 blksize = sblksize(fs, DIP(dip, di_size), lbn); 575 irelse(&ip); 576 bp = getdatablk(blk, blksize, BT_DIRDATA); 577 if (bp->b_errs != 0) 578 err_suj("ino_clrat: UNRECOVERABLE I/O ERROR"); 579 dp = (struct direct *)&bp->b_un.b_buf[doff]; 580 if (dp->d_ino != child) 581 errx(1, "Inode %ju does not exist in %ju at %jd", 582 (uintmax_t)child, (uintmax_t)parent, diroff); 583 dp->d_ino = 0; 584 dirty(bp); 585 brelse(bp); 586 /* 587 * The actual .. reference count will already have been removed 588 * from the parent by the .. remref record. 589 */ 590 } 591 592 /* 593 * Determines whether a pointer to an inode exists within a directory 594 * at a specified offset. Returns the mode of the found entry. 595 */ 596 static int 597 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 598 { 599 struct inode ip; 600 union dinode *dip; 601 struct bufarea *bp; 602 struct direct *dp; 603 ufs2_daddr_t blk; 604 ufs_lbn_t lbn; 605 int blksize; 606 int frags; 607 int dpoff; 608 int doff; 609 610 *isdot = 0; 611 ginode(parent, &ip); 612 dip = ip.i_dp; 613 *mode = DIP(dip, di_mode); 614 if ((*mode & IFMT) != IFDIR) { 615 if (debug) { 616 /* 617 * This can happen if the parent inode 618 * was reallocated. 619 */ 620 if (*mode != 0) 621 printf("Directory %ju has bad mode %o\n", 622 (uintmax_t)parent, *mode); 623 else 624 printf("Directory %ju has zero mode\n", 625 (uintmax_t)parent); 626 } 627 irelse(&ip); 628 return (0); 629 } 630 lbn = lblkno(fs, diroff); 631 doff = blkoff(fs, diroff); 632 blksize = sblksize(fs, DIP(dip, di_size), lbn); 633 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 634 if (debug) 635 printf("ino %ju absent from %ju due to offset %jd" 636 " exceeding size %jd\n", 637 (uintmax_t)child, (uintmax_t)parent, diroff, 638 DIP(dip, di_size)); 639 irelse(&ip); 640 return (0); 641 } 642 blk = ino_blkatoff(dip, parent, lbn, &frags, NULL); 643 irelse(&ip); 644 if (blk <= 0) { 645 if (debug) 646 printf("Sparse directory %ju", (uintmax_t)parent); 647 return (0); 648 } 649 bp = getdatablk(blk, blksize, BT_DIRDATA); 650 if (bp->b_errs != 0) 651 err_suj("ino_isat: UNRECOVERABLE I/O ERROR"); 652 /* 653 * Walk through the records from the start of the block to be 654 * certain we hit a valid record and not some junk in the middle 655 * of a file name. Stop when we reach or pass the expected offset. 656 */ 657 dpoff = rounddown(doff, DIRBLKSIZ); 658 do { 659 dp = (struct direct *)&bp->b_un.b_buf[dpoff]; 660 if (dpoff == doff) 661 break; 662 if (dp->d_reclen == 0) 663 break; 664 dpoff += dp->d_reclen; 665 } while (dpoff <= doff); 666 if (dpoff > fs->fs_bsize) 667 err_suj("Corrupt directory block in dir ino %ju\n", 668 (uintmax_t)parent); 669 /* Not found. */ 670 if (dpoff != doff) { 671 if (debug) 672 printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n", 673 (uintmax_t)child, (uintmax_t)parent, lbn, dpoff); 674 brelse(bp); 675 return (0); 676 } 677 /* 678 * We found the item in question. Record the mode and whether it's 679 * a . or .. link for the caller. 680 */ 681 if (dp->d_ino == child) { 682 if (child == parent) 683 *isdot = 1; 684 else if (dp->d_namlen == 2 && 685 dp->d_name[0] == '.' && dp->d_name[1] == '.') 686 *isdot = 1; 687 *mode = DTTOIF(dp->d_type); 688 brelse(bp); 689 return (1); 690 } 691 if (debug) 692 printf("ino %ju doesn't match dirent ino %ju in parent %ju\n", 693 (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent); 694 brelse(bp); 695 return (0); 696 } 697 698 #define VISIT_INDIR 0x0001 699 #define VISIT_EXT 0x0002 700 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 701 702 /* 703 * Read an indirect level which may or may not be linked into an inode. 704 */ 705 static void 706 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 707 ino_visitor visitor, int flags) 708 { 709 struct bufarea *bp; 710 ufs_lbn_t lbnadd; 711 ufs2_daddr_t nblk; 712 ufs_lbn_t nlbn; 713 int level; 714 int i; 715 716 /* 717 * Don't visit indirect blocks with contents we can't trust. This 718 * should only happen when indir_visit() is called to complete a 719 * truncate that never finished and not when a pointer is found via 720 * an inode. 721 */ 722 if (blk == 0) 723 return; 724 level = lbn_level(lbn); 725 if (level == -1) 726 err_suj("Invalid level for lbn %jd\n", lbn); 727 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 728 if (debug) 729 printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n", 730 blk, (uintmax_t)ino, lbn, level); 731 goto out; 732 } 733 lbnadd = 1; 734 for (i = level; i > 0; i--) 735 lbnadd *= NINDIR(fs); 736 bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level); 737 if (bp->b_errs != 0) 738 err_suj("indir_visit: UNRECOVERABLE I/O ERROR\n"); 739 for (i = 0; i < NINDIR(fs); i++) { 740 if ((nblk = IBLK(bp, i)) == 0) 741 continue; 742 if (level == 0) { 743 nlbn = -lbn + i * lbnadd; 744 (*frags) += fs->fs_frag; 745 visitor(ino, nlbn, nblk, fs->fs_frag); 746 } else { 747 nlbn = (lbn + 1) - (i * lbnadd); 748 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 749 } 750 } 751 brelse(bp); 752 out: 753 if (flags & VISIT_INDIR) { 754 (*frags) += fs->fs_frag; 755 visitor(ino, lbn, blk, fs->fs_frag); 756 } 757 } 758 759 /* 760 * Visit each block in an inode as specified by 'flags' and call a 761 * callback function. The callback may inspect or free blocks. The 762 * count of frags found according to the size in the file is returned. 763 * This is not valid for sparse files but may be used to determine 764 * the correct di_blocks for a file. 765 */ 766 static uint64_t 767 ino_visit(union dinode *dp, ino_t ino, ino_visitor visitor, int flags) 768 { 769 ufs_lbn_t nextlbn; 770 ufs_lbn_t tmpval; 771 ufs_lbn_t lbn; 772 uint64_t size; 773 uint64_t fragcnt; 774 int mode; 775 int frags; 776 int i; 777 778 size = DIP(dp, di_size); 779 mode = DIP(dp, di_mode) & IFMT; 780 fragcnt = 0; 781 if ((flags & VISIT_EXT) && 782 fs->fs_magic == FS_UFS2_MAGIC && dp->dp2.di_extsize) { 783 for (i = 0; i < UFS_NXADDR; i++) { 784 if (dp->dp2.di_extb[i] == 0) 785 continue; 786 frags = sblksize(fs, dp->dp2.di_extsize, i); 787 frags = numfrags(fs, frags); 788 fragcnt += frags; 789 visitor(ino, -1 - i, dp->dp2.di_extb[i], frags); 790 } 791 } 792 /* Skip datablocks for short links and devices. */ 793 if (mode == IFBLK || mode == IFCHR || 794 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 795 return (fragcnt); 796 for (i = 0; i < UFS_NDADDR; i++) { 797 if (DIP(dp, di_db[i]) == 0) 798 continue; 799 frags = sblksize(fs, size, i); 800 frags = numfrags(fs, frags); 801 fragcnt += frags; 802 visitor(ino, i, DIP(dp, di_db[i]), frags); 803 } 804 /* 805 * We know the following indirects are real as we're following 806 * real pointers to them. 807 */ 808 flags |= VISIT_ROOT; 809 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, 810 lbn = nextlbn) { 811 nextlbn = lbn + tmpval; 812 tmpval *= NINDIR(fs); 813 if (DIP(dp, di_ib[i]) == 0) 814 continue; 815 indir_visit(ino, -lbn - i, DIP(dp, di_ib[i]), &fragcnt, visitor, 816 flags); 817 } 818 return (fragcnt); 819 } 820 821 /* 822 * Null visitor function used when we just want to count blocks and 823 * record the lbn. 824 */ 825 ufs_lbn_t visitlbn; 826 static void 827 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 828 { 829 if (lbn > 0) 830 visitlbn = lbn; 831 } 832 833 /* 834 * Recalculate di_blocks when we discover that a block allocation or 835 * free was not successfully completed. The kernel does not roll this back 836 * because it would be too expensive to compute which indirects were 837 * reachable at the time the inode was written. 838 */ 839 static void 840 ino_adjblks(struct suj_ino *sino) 841 { 842 struct inode ip; 843 union dinode *dp; 844 uint64_t blocks; 845 uint64_t frags; 846 off_t isize; 847 off_t size; 848 ino_t ino; 849 850 ino = sino->si_ino; 851 ginode(ino, &ip); 852 dp = ip.i_dp; 853 /* No need to adjust zero'd inodes. */ 854 if (DIP(dp, di_mode) == 0) { 855 irelse(&ip); 856 return; 857 } 858 /* 859 * Visit all blocks and count them as well as recording the last 860 * valid lbn in the file. If the file size doesn't agree with the 861 * last lbn we need to truncate to fix it. Otherwise just adjust 862 * the blocks count. 863 */ 864 visitlbn = 0; 865 frags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT); 866 blocks = fsbtodb(fs, frags); 867 /* 868 * We assume the size and direct block list is kept coherent by 869 * softdep. For files that have extended into indirects we truncate 870 * to the size in the inode or the maximum size permitted by 871 * populated indirects. 872 */ 873 if (visitlbn >= UFS_NDADDR) { 874 isize = DIP(dp, di_size); 875 size = lblktosize(fs, visitlbn + 1); 876 if (isize > size) 877 isize = size; 878 /* Always truncate to free any unpopulated indirects. */ 879 ino_trunc(ino, isize); 880 irelse(&ip); 881 return; 882 } 883 if (blocks == DIP(dp, di_blocks)) { 884 irelse(&ip); 885 return; 886 } 887 if (debug) 888 printf("ino %ju adjusting block count from %jd to %jd\n", 889 (uintmax_t)ino, DIP(dp, di_blocks), blocks); 890 DIP_SET(dp, di_blocks, blocks); 891 inodirty(&ip); 892 irelse(&ip); 893 } 894 895 static void 896 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 897 { 898 899 blk_free(ino, blk, blk_freemask(blk, ino, lbn, frags), frags); 900 } 901 902 /* 903 * Free a block or tree of blocks that was previously rooted in ino at 904 * the given lbn. If the lbn is an indirect all children are freed 905 * recursively. 906 */ 907 static void 908 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 909 { 910 uint64_t resid; 911 int mask; 912 913 mask = blk_freemask(blk, ino, lbn, frags); 914 resid = 0; 915 if (lbn <= -UFS_NDADDR && follow && mask == 0) 916 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 917 else 918 blk_free(ino, blk, mask, frags); 919 } 920 921 static void 922 ino_setskip(struct suj_ino *sino, ino_t parent) 923 { 924 int isdot; 925 int mode; 926 927 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 928 sino->si_skipparent = 1; 929 } 930 931 static void 932 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) 933 { 934 struct suj_ino *sino; 935 struct suj_rec *srec; 936 struct jrefrec *rrec; 937 938 /* 939 * Lookup this inode to see if we have a record for it. 940 */ 941 sino = ino_lookup(child, 0); 942 /* 943 * Tell any child directories we've already removed their 944 * parent link cnt. Don't try to adjust our link down again. 945 */ 946 if (sino != NULL && isdotdot == 0) 947 ino_setskip(sino, parent); 948 /* 949 * No valid record for this inode. Just drop the on-disk 950 * link by one. 951 */ 952 if (sino == NULL || sino->si_hasrecs == 0) { 953 ino_decr(child); 954 return; 955 } 956 /* 957 * Use ino_adjust() if ino_check() has already processed this 958 * child. If we lose the last non-dot reference to a 959 * directory it will be discarded. 960 */ 961 if (sino->si_linkadj) { 962 if (sino->si_nlink == 0) 963 err_suj("ino_remref: ino %ld mode 0%o about to go " 964 "negative\n", sino->si_ino, sino->si_mode); 965 sino->si_nlink--; 966 if (isdotdot) 967 sino->si_dotlinks--; 968 ino_adjust(sino); 969 return; 970 } 971 /* 972 * If we haven't yet processed this inode we need to make 973 * sure we will successfully discover the lost path. If not 974 * use nlinkadj to remember. 975 */ 976 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 977 rrec = (struct jrefrec *)srec->sr_rec; 978 if (rrec->jr_parent == parent && 979 rrec->jr_diroff == diroff) 980 return; 981 } 982 sino->si_nlinkadj++; 983 } 984 985 /* 986 * Free the children of a directory when the directory is discarded. 987 */ 988 static void 989 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 990 { 991 struct suj_ino *sino; 992 struct bufarea *bp; 993 struct direct *dp; 994 off_t diroff; 995 int skipparent; 996 int isdotdot; 997 int dpoff; 998 int size; 999 1000 sino = ino_lookup(ino, 0); 1001 if (sino) 1002 skipparent = sino->si_skipparent; 1003 else 1004 skipparent = 0; 1005 size = lfragtosize(fs, frags); 1006 bp = getdatablk(blk, size, BT_DIRDATA); 1007 if (bp->b_errs != 0) 1008 err_suj("ino_free_children: UNRECOVERABLE I/O ERROR"); 1009 dp = (struct direct *)&bp->b_un.b_buf[0]; 1010 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1011 dp = (struct direct *)&bp->b_un.b_buf[dpoff]; 1012 if (dp->d_ino == 0 || dp->d_ino == UFS_WINO) 1013 continue; 1014 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1015 continue; 1016 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1017 dp->d_name[1] == '.'; 1018 if (isdotdot && skipparent == 1) 1019 continue; 1020 if (debug) 1021 printf("Directory %ju removing ino %ju name %s\n", 1022 (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name); 1023 diroff = lblktosize(fs, lbn) + dpoff; 1024 ino_remref(ino, dp->d_ino, diroff, isdotdot); 1025 } 1026 brelse(bp); 1027 } 1028 1029 /* 1030 * Reclaim an inode, freeing all blocks and decrementing all children's 1031 * link counts. Free the inode back to the cg. 1032 */ 1033 static void 1034 ino_reclaim(struct inode *ip, ino_t ino, int mode) 1035 { 1036 union dinode *dp; 1037 uint32_t gen; 1038 1039 dp = ip->i_dp; 1040 if (ino == UFS_ROOTINO) 1041 err_suj("Attempting to free UFS_ROOTINO\n"); 1042 if (debug) 1043 printf("Truncating and freeing ino %ju, nlink %d, mode %o\n", 1044 (uintmax_t)ino, DIP(dp, di_nlink), DIP(dp, di_mode)); 1045 1046 /* We are freeing an inode or directory. */ 1047 if ((DIP(dp, di_mode) & IFMT) == IFDIR) 1048 ino_visit(dp, ino, ino_free_children, 0); 1049 DIP_SET(dp, di_nlink, 0); 1050 if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) 1051 snapremove(ino); 1052 ino_visit(dp, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1053 /* Here we have to clear the inode and release any blocks it holds. */ 1054 gen = DIP(dp, di_gen); 1055 if (fs->fs_magic == FS_UFS1_MAGIC) 1056 bzero(dp, sizeof(struct ufs1_dinode)); 1057 else 1058 bzero(dp, sizeof(struct ufs2_dinode)); 1059 DIP_SET(dp, di_gen, gen); 1060 inodirty(ip); 1061 ino_free(ino, mode); 1062 return; 1063 } 1064 1065 /* 1066 * Adjust an inode's link count down by one when a directory goes away. 1067 */ 1068 static void 1069 ino_decr(ino_t ino) 1070 { 1071 struct inode ip; 1072 union dinode *dp; 1073 int reqlink; 1074 int nlink; 1075 int mode; 1076 1077 ginode(ino, &ip); 1078 dp = ip.i_dp; 1079 nlink = DIP(dp, di_nlink); 1080 mode = DIP(dp, di_mode); 1081 if (nlink < 1) 1082 err_suj("Inode %d link count %d invalid\n", ino, nlink); 1083 if (mode == 0) 1084 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); 1085 nlink--; 1086 if ((mode & IFMT) == IFDIR) 1087 reqlink = 2; 1088 else 1089 reqlink = 1; 1090 if (nlink < reqlink) { 1091 if (debug) 1092 printf("ino %ju not enough links to live %d < %d\n", 1093 (uintmax_t)ino, nlink, reqlink); 1094 ino_reclaim(&ip, ino, mode); 1095 irelse(&ip); 1096 return; 1097 } 1098 DIP_SET(dp, di_nlink, nlink); 1099 inodirty(&ip); 1100 irelse(&ip); 1101 } 1102 1103 /* 1104 * Adjust the inode link count to 'nlink'. If the count reaches zero 1105 * free it. 1106 */ 1107 static void 1108 ino_adjust(struct suj_ino *sino) 1109 { 1110 struct jrefrec *rrec; 1111 struct suj_rec *srec; 1112 struct suj_ino *stmp; 1113 union dinode *dp; 1114 struct inode ip; 1115 nlink_t nlink; 1116 nlink_t reqlink; 1117 int recmode; 1118 int isdot; 1119 int mode; 1120 ino_t ino; 1121 1122 nlink = sino->si_nlink; 1123 ino = sino->si_ino; 1124 mode = sino->si_mode & IFMT; 1125 /* 1126 * If it's a directory with no dot links, it was truncated before 1127 * the name was cleared. We need to clear the dirent that 1128 * points at it. 1129 */ 1130 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { 1131 sino->si_nlink = nlink = 0; 1132 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1133 rrec = (struct jrefrec *)srec->sr_rec; 1134 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, 1135 &recmode, &isdot) == 0) 1136 continue; 1137 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); 1138 break; 1139 } 1140 if (srec == NULL) 1141 errx(1, "Directory %ju name not found", (uintmax_t)ino); 1142 } 1143 /* 1144 * If it's a directory with no real names pointing to it go ahead 1145 * and truncate it. This will free any children. 1146 */ 1147 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { 1148 sino->si_nlink = nlink = 0; 1149 /* 1150 * Mark any .. links so they know not to free this inode 1151 * when they are removed. 1152 */ 1153 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1154 rrec = (struct jrefrec *)srec->sr_rec; 1155 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1156 stmp = ino_lookup(rrec->jr_parent, 0); 1157 if (stmp) 1158 ino_setskip(stmp, ino); 1159 } 1160 } 1161 } 1162 ginode(ino, &ip); 1163 dp = ip.i_dp; 1164 mode = DIP(dp, di_mode) & IFMT; 1165 if (nlink > UFS_LINK_MAX) 1166 err_suj("ino %ju nlink manipulation error, new %ju, old %d\n", 1167 (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink)); 1168 if (debug) 1169 printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n", 1170 (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink), 1171 sino->si_mode); 1172 if (mode == 0) { 1173 if (debug) 1174 printf("ino %ju, zero inode freeing bitmap\n", 1175 (uintmax_t)ino); 1176 ino_free(ino, sino->si_mode); 1177 irelse(&ip); 1178 return; 1179 } 1180 /* XXX Should be an assert? */ 1181 if (mode != sino->si_mode && debug) 1182 printf("ino %ju, mode %o != %o\n", 1183 (uintmax_t)ino, mode, sino->si_mode); 1184 if ((mode & IFMT) == IFDIR) 1185 reqlink = 2; 1186 else 1187 reqlink = 1; 1188 /* If the inode doesn't have enough links to live, free it. */ 1189 if (nlink < reqlink) { 1190 if (debug) 1191 printf("ino %ju not enough links to live %ju < %ju\n", 1192 (uintmax_t)ino, (uintmax_t)nlink, 1193 (uintmax_t)reqlink); 1194 ino_reclaim(&ip, ino, mode); 1195 irelse(&ip); 1196 return; 1197 } 1198 /* If required write the updated link count. */ 1199 if (DIP(dp, di_nlink) == nlink) { 1200 if (debug) 1201 printf("ino %ju, link matches, skipping.\n", 1202 (uintmax_t)ino); 1203 irelse(&ip); 1204 return; 1205 } 1206 DIP_SET(dp, di_nlink, nlink); 1207 inodirty(&ip); 1208 irelse(&ip); 1209 } 1210 1211 /* 1212 * Truncate some or all blocks in an indirect, freeing any that are required 1213 * and zeroing the indirect. 1214 */ 1215 static void 1216 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn, 1217 union dinode *dp) 1218 { 1219 struct bufarea *bp; 1220 ufs_lbn_t lbnadd; 1221 ufs2_daddr_t nblk; 1222 ufs_lbn_t next; 1223 ufs_lbn_t nlbn; 1224 int isdirty; 1225 int level; 1226 int i; 1227 1228 if (blk == 0) 1229 return; 1230 isdirty = 0; 1231 level = lbn_level(lbn); 1232 if (level == -1) 1233 err_suj("Invalid level for lbn %jd\n", lbn); 1234 lbnadd = 1; 1235 for (i = level; i > 0; i--) 1236 lbnadd *= NINDIR(fs); 1237 bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level); 1238 if (bp->b_errs != 0) 1239 err_suj("indir_trunc: UNRECOVERABLE I/O ERROR"); 1240 for (i = 0; i < NINDIR(fs); i++) { 1241 if ((nblk = IBLK(bp, i)) == 0) 1242 continue; 1243 if (level != 0) { 1244 nlbn = (lbn + 1) - (i * lbnadd); 1245 /* 1246 * Calculate the lbn of the next indirect to 1247 * determine if any of this indirect must be 1248 * reclaimed. 1249 */ 1250 next = -(lbn + level) + ((i+1) * lbnadd); 1251 if (next <= lastlbn) 1252 continue; 1253 indir_trunc(ino, nlbn, nblk, lastlbn, dp); 1254 /* If all of this indirect was reclaimed, free it. */ 1255 nlbn = next - lbnadd; 1256 if (nlbn < lastlbn) 1257 continue; 1258 } else { 1259 nlbn = -lbn + i * lbnadd; 1260 if (nlbn < lastlbn) 1261 continue; 1262 } 1263 isdirty = 1; 1264 blk_free(ino, nblk, 0, fs->fs_frag); 1265 IBLK_SET(bp, i, 0); 1266 } 1267 if (isdirty) 1268 dirty(bp); 1269 brelse(bp); 1270 } 1271 1272 /* 1273 * Truncate an inode to the minimum of the given size or the last populated 1274 * block after any over size have been discarded. The kernel would allocate 1275 * the last block in the file but fsck does not and neither do we. This 1276 * code never extends files, only shrinks them. 1277 */ 1278 static void 1279 ino_trunc(ino_t ino, off_t size) 1280 { 1281 struct inode ip; 1282 union dinode *dp; 1283 struct bufarea *bp; 1284 ufs2_daddr_t bn; 1285 uint64_t totalfrags; 1286 ufs_lbn_t nextlbn; 1287 ufs_lbn_t lastlbn; 1288 ufs_lbn_t tmpval; 1289 ufs_lbn_t lbn; 1290 ufs_lbn_t i; 1291 int blksize, frags; 1292 off_t cursize; 1293 off_t off; 1294 int mode; 1295 1296 ginode(ino, &ip); 1297 dp = ip.i_dp; 1298 mode = DIP(dp, di_mode) & IFMT; 1299 cursize = DIP(dp, di_size); 1300 /* If no size change, nothing to do */ 1301 if (size == cursize) { 1302 irelse(&ip); 1303 return; 1304 } 1305 if (debug) 1306 printf("Truncating ino %ju, mode %o to size %jd from " 1307 "size %jd\n", (uintmax_t)ino, mode, size, cursize); 1308 1309 /* Skip datablocks for short links and devices. */ 1310 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1311 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) { 1312 irelse(&ip); 1313 return; 1314 } 1315 /* Don't extend. */ 1316 if (size > cursize) { 1317 irelse(&ip); 1318 return; 1319 } 1320 if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) { 1321 if (size > 0) 1322 err_suj("Partial truncation of ino %ju snapshot file\n", 1323 (uintmax_t)ino); 1324 snapremove(ino); 1325 } 1326 lastlbn = lblkno(fs, blkroundup(fs, size)); 1327 for (i = lastlbn; i < UFS_NDADDR; i++) { 1328 if ((bn = DIP(dp, di_db[i])) == 0) 1329 continue; 1330 blksize = sblksize(fs, cursize, i); 1331 blk_free(ino, bn, 0, numfrags(fs, blksize)); 1332 DIP_SET(dp, di_db[i], 0); 1333 } 1334 /* 1335 * Follow indirect blocks, freeing anything required. 1336 */ 1337 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, 1338 lbn = nextlbn) { 1339 nextlbn = lbn + tmpval; 1340 tmpval *= NINDIR(fs); 1341 /* If we're not freeing any in this indirect range skip it. */ 1342 if (lastlbn >= nextlbn) 1343 continue; 1344 if ((bn = DIP(dp, di_ib[i])) == 0) 1345 continue; 1346 indir_trunc(ino, -lbn - i, bn, lastlbn, dp); 1347 /* If we freed everything in this indirect free the indir. */ 1348 if (lastlbn > lbn) 1349 continue; 1350 blk_free(ino, bn, 0, fs->fs_frag); 1351 DIP_SET(dp, di_ib[i], 0); 1352 } 1353 /* 1354 * Now that we've freed any whole blocks that exceed the desired 1355 * truncation size, figure out how many blocks remain and what the 1356 * last populated lbn is. We will set the size to this last lbn 1357 * rather than worrying about allocating the final lbn as the kernel 1358 * would've done. This is consistent with normal fsck behavior. 1359 */ 1360 visitlbn = 0; 1361 totalfrags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1362 if (size > lblktosize(fs, visitlbn + 1)) 1363 size = lblktosize(fs, visitlbn + 1); 1364 /* 1365 * If we're truncating direct blocks we have to adjust frags 1366 * accordingly. 1367 */ 1368 if (visitlbn < UFS_NDADDR && totalfrags) { 1369 long oldspace, newspace; 1370 1371 bn = DIP(dp, di_db[visitlbn]); 1372 if (bn == 0) 1373 err_suj("Bad blk at ino %ju lbn %jd\n", 1374 (uintmax_t)ino, visitlbn); 1375 oldspace = sblksize(fs, cursize, visitlbn); 1376 newspace = sblksize(fs, size, visitlbn); 1377 if (oldspace != newspace) { 1378 bn += numfrags(fs, newspace); 1379 frags = numfrags(fs, oldspace - newspace); 1380 blk_free(ino, bn, 0, frags); 1381 totalfrags -= frags; 1382 } 1383 } 1384 DIP_SET(dp, di_blocks, fsbtodb(fs, totalfrags)); 1385 DIP_SET(dp, di_size, size); 1386 inodirty(&ip); 1387 /* 1388 * If we've truncated into the middle of a block or frag we have 1389 * to zero it here. Otherwise the file could extend into 1390 * uninitialized space later. 1391 */ 1392 off = blkoff(fs, size); 1393 if (off && DIP(dp, di_mode) != IFDIR) { 1394 long clrsize; 1395 1396 bn = ino_blkatoff(dp, ino, visitlbn, &frags, NULL); 1397 if (bn == 0) 1398 err_suj("Block missing from ino %ju at lbn %jd\n", 1399 (uintmax_t)ino, visitlbn); 1400 clrsize = frags * fs->fs_fsize; 1401 bp = getdatablk(bn, clrsize, BT_DATA); 1402 if (bp->b_errs != 0) 1403 err_suj("ino_trunc: UNRECOVERABLE I/O ERROR"); 1404 clrsize -= off; 1405 bzero(&bp->b_un.b_buf[off], clrsize); 1406 dirty(bp); 1407 brelse(bp); 1408 } 1409 irelse(&ip); 1410 return; 1411 } 1412 1413 /* 1414 * Process records available for one inode and determine whether the 1415 * link count is correct or needs adjusting. 1416 */ 1417 static void 1418 ino_check(struct suj_ino *sino) 1419 { 1420 struct suj_rec *srec; 1421 struct jrefrec *rrec; 1422 nlink_t dotlinks; 1423 nlink_t newlinks; 1424 nlink_t removes; 1425 nlink_t nlink; 1426 ino_t ino; 1427 int isdot; 1428 int isat; 1429 int mode; 1430 1431 if (sino->si_hasrecs == 0) 1432 return; 1433 ino = sino->si_ino; 1434 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1435 nlink = rrec->jr_nlink; 1436 newlinks = 0; 1437 dotlinks = 0; 1438 removes = sino->si_nlinkadj; 1439 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1440 rrec = (struct jrefrec *)srec->sr_rec; 1441 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1442 rrec->jr_ino, &mode, &isdot); 1443 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1444 err_suj("Inode mode/directory type mismatch %o != %o\n", 1445 mode, rrec->jr_mode); 1446 if (debug) 1447 printf("jrefrec: op %s ino %ju, nlink %ju, parent %ju, " 1448 "diroff %jd, mode %o, isat %d, isdot %d\n", 1449 JOP_OPTYPE(rrec->jr_op), (uintmax_t)rrec->jr_ino, 1450 (uintmax_t)rrec->jr_nlink, 1451 (uintmax_t)rrec->jr_parent, 1452 (uintmax_t)rrec->jr_diroff, 1453 rrec->jr_mode, isat, isdot); 1454 mode = rrec->jr_mode & IFMT; 1455 if (rrec->jr_op == JOP_REMREF) 1456 removes++; 1457 newlinks += isat; 1458 if (isdot) 1459 dotlinks += isat; 1460 } 1461 /* 1462 * The number of links that remain are the starting link count 1463 * subtracted by the total number of removes with the total 1464 * links discovered back in. An incomplete remove thus 1465 * makes no change to the link count but an add increases 1466 * by one. 1467 */ 1468 if (debug) 1469 printf( 1470 "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n", 1471 (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks, 1472 (uintmax_t)removes, (uintmax_t)dotlinks); 1473 nlink += newlinks; 1474 nlink -= removes; 1475 sino->si_linkadj = 1; 1476 sino->si_nlink = nlink; 1477 sino->si_dotlinks = dotlinks; 1478 sino->si_mode = mode; 1479 ino_adjust(sino); 1480 } 1481 1482 /* 1483 * Process records available for one block and determine whether it is 1484 * still allocated and whether the owning inode needs to be updated or 1485 * a free completed. 1486 */ 1487 static void 1488 blk_check(struct suj_blk *sblk) 1489 { 1490 struct suj_rec *srec; 1491 struct jblkrec *brec; 1492 struct suj_ino *sino; 1493 ufs2_daddr_t blk; 1494 int mask; 1495 int frags; 1496 int isat; 1497 1498 /* 1499 * Each suj_blk actually contains records for any fragments in that 1500 * block. As a result we must evaluate each record individually. 1501 */ 1502 sino = NULL; 1503 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1504 brec = (struct jblkrec *)srec->sr_rec; 1505 frags = brec->jb_frags; 1506 blk = brec->jb_blkno + brec->jb_oldfrags; 1507 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1508 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1509 sino = ino_lookup(brec->jb_ino, 1); 1510 sino->si_blkadj = 1; 1511 } 1512 if (debug) 1513 printf("op %s blk %jd ino %ju lbn %jd frags %d isat %d " 1514 "(%d)\n", JOP_OPTYPE(brec->jb_op), blk, 1515 (uintmax_t)brec->jb_ino, brec->jb_lbn, 1516 brec->jb_frags, isat, frags); 1517 /* 1518 * If we found the block at this address we still have to 1519 * determine if we need to free the tail end that was 1520 * added by adding contiguous fragments from the same block. 1521 */ 1522 if (isat == 1) { 1523 if (frags == brec->jb_frags) 1524 continue; 1525 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1526 brec->jb_frags); 1527 mask >>= frags; 1528 blk += frags; 1529 frags = brec->jb_frags - frags; 1530 blk_free(brec->jb_ino, blk, mask, frags); 1531 continue; 1532 } 1533 /* 1534 * The block wasn't found, attempt to free it. It won't be 1535 * freed if it was actually reallocated. If this was an 1536 * allocation we don't want to follow indirects as they 1537 * may not be written yet. Any children of the indirect will 1538 * have their own records. If it's a free we need to 1539 * recursively free children. 1540 */ 1541 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1542 brec->jb_op == JOP_FREEBLK); 1543 } 1544 } 1545 1546 /* 1547 * Walk the list of inode records for this cg and resolve moved and duplicate 1548 * inode references now that we have a complete picture. 1549 */ 1550 static void 1551 cg_build(struct suj_cg *sc) 1552 { 1553 struct suj_ino *sino; 1554 int i; 1555 1556 for (i = 0; i < HASHSIZE; i++) 1557 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1558 ino_build(sino); 1559 } 1560 1561 /* 1562 * Handle inodes requiring truncation. This must be done prior to 1563 * looking up any inodes in directories. 1564 */ 1565 static void 1566 cg_trunc(struct suj_cg *sc) 1567 { 1568 struct suj_ino *sino; 1569 int i; 1570 1571 for (i = 0; i < HASHSIZE; i++) { 1572 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1573 if (sino->si_trunc) { 1574 ino_trunc(sino->si_ino, 1575 sino->si_trunc->jt_size); 1576 sino->si_blkadj = 0; 1577 sino->si_trunc = NULL; 1578 } 1579 if (sino->si_blkadj) 1580 ino_adjblks(sino); 1581 } 1582 } 1583 } 1584 1585 static void 1586 cg_adj_blk(struct suj_cg *sc) 1587 { 1588 struct suj_ino *sino; 1589 int i; 1590 1591 for (i = 0; i < HASHSIZE; i++) { 1592 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1593 if (sino->si_blkadj) 1594 ino_adjblks(sino); 1595 } 1596 } 1597 } 1598 1599 /* 1600 * Free any partially allocated blocks and then resolve inode block 1601 * counts. 1602 */ 1603 static void 1604 cg_check_blk(struct suj_cg *sc) 1605 { 1606 struct suj_blk *sblk; 1607 int i; 1608 1609 1610 for (i = 0; i < HASHSIZE; i++) 1611 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1612 blk_check(sblk); 1613 } 1614 1615 /* 1616 * Walk the list of inode records for this cg, recovering any 1617 * changes which were not complete at the time of crash. 1618 */ 1619 static void 1620 cg_check_ino(struct suj_cg *sc) 1621 { 1622 struct suj_ino *sino; 1623 int i; 1624 1625 for (i = 0; i < HASHSIZE; i++) 1626 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1627 ino_check(sino); 1628 } 1629 1630 static void 1631 cg_apply(void (*apply)(struct suj_cg *)) 1632 { 1633 struct suj_cg *scg; 1634 int i; 1635 1636 for (i = 0; i < HASHSIZE; i++) 1637 LIST_FOREACH(scg, &cghash[i], sc_next) 1638 apply(scg); 1639 } 1640 1641 /* 1642 * Process the unlinked but referenced file list. Freeing all inodes. 1643 */ 1644 static void 1645 ino_unlinked(void) 1646 { 1647 struct inode ip; 1648 union dinode *dp; 1649 uint16_t mode; 1650 ino_t inon; 1651 ino_t ino; 1652 1653 ino = fs->fs_sujfree; 1654 fs->fs_sujfree = 0; 1655 while (ino != 0) { 1656 ginode(ino, &ip); 1657 dp = ip.i_dp; 1658 mode = DIP(dp, di_mode) & IFMT; 1659 inon = DIP(dp, di_freelink); 1660 DIP_SET(dp, di_freelink, 0); 1661 inodirty(&ip); 1662 /* 1663 * XXX Should this be an errx? 1664 */ 1665 if (DIP(dp, di_nlink) == 0) { 1666 if (debug) 1667 printf("Freeing unlinked ino %ju mode %o\n", 1668 (uintmax_t)ino, mode); 1669 ino_reclaim(&ip, ino, mode); 1670 } else if (debug) 1671 printf("Skipping ino %ju mode %o with link %d\n", 1672 (uintmax_t)ino, mode, DIP(dp, di_nlink)); 1673 ino = inon; 1674 irelse(&ip); 1675 } 1676 } 1677 1678 /* 1679 * Append a new record to the list of records requiring processing. 1680 */ 1681 static void 1682 ino_append(union jrec *rec) 1683 { 1684 struct jrefrec *refrec; 1685 struct jmvrec *mvrec; 1686 struct suj_ino *sino; 1687 struct suj_rec *srec; 1688 1689 mvrec = &rec->rec_jmvrec; 1690 refrec = &rec->rec_jrefrec; 1691 if (debug && mvrec->jm_op == JOP_MVREF) 1692 printf("ino move: ino %ju, parent %ju, " 1693 "diroff %jd, oldoff %jd\n", 1694 (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent, 1695 (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff); 1696 else if (debug && 1697 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1698 printf("ino ref: op %s, ino %ju, nlink %ju, " 1699 "parent %ju, diroff %jd\n", 1700 JOP_OPTYPE(refrec->jr_op), (uintmax_t)refrec->jr_ino, 1701 (uintmax_t)refrec->jr_nlink, 1702 (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff); 1703 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1704 sino->si_hasrecs = 1; 1705 srec = errmalloc(sizeof(*srec)); 1706 srec->sr_rec = rec; 1707 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1708 } 1709 1710 /* 1711 * Add a reference adjustment to the sino list and eliminate dups. The 1712 * primary loop in ino_build_ref() checks for dups but new ones may be 1713 * created as a result of offset adjustments. 1714 */ 1715 static void 1716 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1717 { 1718 struct jrefrec *refrec; 1719 struct suj_rec *srn; 1720 struct jrefrec *rrn; 1721 1722 refrec = (struct jrefrec *)srec->sr_rec; 1723 /* 1724 * We walk backwards so that the oldest link count is preserved. If 1725 * an add record conflicts with a remove keep the remove. Redundant 1726 * removes are eliminated in ino_build_ref. Otherwise we keep the 1727 * oldest record at a given location. 1728 */ 1729 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 1730 srn = TAILQ_PREV(srn, srechd, sr_next)) { 1731 rrn = (struct jrefrec *)srn->sr_rec; 1732 if (rrn->jr_parent != refrec->jr_parent || 1733 rrn->jr_diroff != refrec->jr_diroff) 1734 continue; 1735 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 1736 rrn->jr_mode = refrec->jr_mode; 1737 return; 1738 } 1739 /* 1740 * Adding a remove. 1741 * 1742 * Replace the record in place with the old nlink in case 1743 * we replace the head of the list. Abandon srec as a dup. 1744 */ 1745 refrec->jr_nlink = rrn->jr_nlink; 1746 srn->sr_rec = srec->sr_rec; 1747 return; 1748 } 1749 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 1750 } 1751 1752 /* 1753 * Create a duplicate of a reference at a previous location. 1754 */ 1755 static void 1756 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 1757 { 1758 struct jrefrec *rrn; 1759 struct suj_rec *srn; 1760 1761 rrn = errmalloc(sizeof(*refrec)); 1762 *rrn = *refrec; 1763 rrn->jr_op = JOP_ADDREF; 1764 rrn->jr_diroff = diroff; 1765 srn = errmalloc(sizeof(*srn)); 1766 srn->sr_rec = (union jrec *)rrn; 1767 ino_add_ref(sino, srn); 1768 } 1769 1770 /* 1771 * Add a reference to the list at all known locations. We follow the offset 1772 * changes for a single instance and create duplicate add refs at each so 1773 * that we can tolerate any version of the directory block. Eliminate 1774 * removes which collide with adds that are seen in the journal. They should 1775 * not adjust the link count down. 1776 */ 1777 static void 1778 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 1779 { 1780 struct jrefrec *refrec; 1781 struct jmvrec *mvrec; 1782 struct suj_rec *srp; 1783 struct suj_rec *srn; 1784 struct jrefrec *rrn; 1785 off_t diroff; 1786 1787 refrec = (struct jrefrec *)srec->sr_rec; 1788 /* 1789 * Search for a mvrec that matches this offset. Whether it's an add 1790 * or a remove we can delete the mvref after creating a dup record in 1791 * the old location. 1792 */ 1793 if (!TAILQ_EMPTY(&sino->si_movs)) { 1794 diroff = refrec->jr_diroff; 1795 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 1796 srp = TAILQ_PREV(srn, srechd, sr_next); 1797 mvrec = (struct jmvrec *)srn->sr_rec; 1798 if (mvrec->jm_parent != refrec->jr_parent || 1799 mvrec->jm_newoff != diroff) 1800 continue; 1801 diroff = mvrec->jm_oldoff; 1802 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 1803 free(srn); 1804 ino_dup_ref(sino, refrec, diroff); 1805 } 1806 } 1807 /* 1808 * If a remove wasn't eliminated by an earlier add just append it to 1809 * the list. 1810 */ 1811 if (refrec->jr_op == JOP_REMREF) { 1812 ino_add_ref(sino, srec); 1813 return; 1814 } 1815 /* 1816 * Walk the list of records waiting to be added to the list. We 1817 * must check for moves that apply to our current offset and remove 1818 * them from the list. Remove any duplicates to eliminate removes 1819 * with corresponding adds. 1820 */ 1821 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 1822 switch (srn->sr_rec->rec_jrefrec.jr_op) { 1823 case JOP_ADDREF: 1824 /* 1825 * This should actually be an error we should 1826 * have a remove for every add journaled. 1827 */ 1828 rrn = (struct jrefrec *)srn->sr_rec; 1829 if (rrn->jr_parent != refrec->jr_parent || 1830 rrn->jr_diroff != refrec->jr_diroff) 1831 break; 1832 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1833 break; 1834 case JOP_REMREF: 1835 /* 1836 * Once we remove the current iteration of the 1837 * record at this address we're done. 1838 */ 1839 rrn = (struct jrefrec *)srn->sr_rec; 1840 if (rrn->jr_parent != refrec->jr_parent || 1841 rrn->jr_diroff != refrec->jr_diroff) 1842 break; 1843 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1844 ino_add_ref(sino, srec); 1845 return; 1846 case JOP_MVREF: 1847 /* 1848 * Update our diroff based on any moves that match 1849 * and remove the move. 1850 */ 1851 mvrec = (struct jmvrec *)srn->sr_rec; 1852 if (mvrec->jm_parent != refrec->jr_parent || 1853 mvrec->jm_oldoff != refrec->jr_diroff) 1854 break; 1855 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 1856 refrec->jr_diroff = mvrec->jm_newoff; 1857 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1858 break; 1859 default: 1860 err_suj("ino_build_ref: Unknown op %s\n", 1861 JOP_OPTYPE(srn->sr_rec->rec_jrefrec.jr_op)); 1862 } 1863 } 1864 ino_add_ref(sino, srec); 1865 } 1866 1867 /* 1868 * Walk the list of new records and add them in-order resolving any 1869 * dups and adjusted offsets. 1870 */ 1871 static void 1872 ino_build(struct suj_ino *sino) 1873 { 1874 struct suj_rec *srec; 1875 1876 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 1877 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 1878 switch (srec->sr_rec->rec_jrefrec.jr_op) { 1879 case JOP_ADDREF: 1880 case JOP_REMREF: 1881 ino_build_ref(sino, srec); 1882 break; 1883 case JOP_MVREF: 1884 /* 1885 * Add this mvrec to the queue of pending mvs. 1886 */ 1887 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 1888 break; 1889 default: 1890 err_suj("ino_build: Unknown op %s\n", 1891 JOP_OPTYPE(srec->sr_rec->rec_jrefrec.jr_op)); 1892 } 1893 } 1894 if (TAILQ_EMPTY(&sino->si_recs)) 1895 sino->si_hasrecs = 0; 1896 } 1897 1898 /* 1899 * Modify journal records so they refer to the base block number 1900 * and a start and end frag range. This is to facilitate the discovery 1901 * of overlapping fragment allocations. 1902 */ 1903 static void 1904 blk_build(struct jblkrec *blkrec) 1905 { 1906 struct suj_rec *srec; 1907 struct suj_blk *sblk; 1908 struct jblkrec *blkrn; 1909 ufs2_daddr_t blk; 1910 int frag; 1911 1912 if (debug) 1913 printf("blk_build: op %s blkno %jd frags %d oldfrags %d " 1914 "ino %ju lbn %jd\n", 1915 JOP_OPTYPE(blkrec->jb_op), (uintmax_t)blkrec->jb_blkno, 1916 blkrec->jb_frags, blkrec->jb_oldfrags, 1917 (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn); 1918 1919 blk = blknum(fs, blkrec->jb_blkno); 1920 frag = fragnum(fs, blkrec->jb_blkno); 1921 if (blkrec->jb_blkno < 0 || blk + fs->fs_frag - frag > fs->fs_size) 1922 err_suj("Out-of-bounds journal block number %jd\n", 1923 blkrec->jb_blkno); 1924 sblk = blk_lookup(blk, 1); 1925 /* 1926 * Rewrite the record using oldfrags to indicate the offset into 1927 * the block. Leave jb_frags as the actual allocated count. 1928 */ 1929 blkrec->jb_blkno -= frag; 1930 blkrec->jb_oldfrags = frag; 1931 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 1932 err_suj("Invalid fragment count %d oldfrags %d\n", 1933 blkrec->jb_frags, frag); 1934 /* 1935 * Detect dups. If we detect a dup we always discard the oldest 1936 * record as it is superseded by the new record. This speeds up 1937 * later stages but also eliminates free records which are used 1938 * to indicate that the contents of indirects can be trusted. 1939 */ 1940 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1941 blkrn = (struct jblkrec *)srec->sr_rec; 1942 if (blkrn->jb_ino != blkrec->jb_ino || 1943 blkrn->jb_lbn != blkrec->jb_lbn || 1944 blkrn->jb_blkno != blkrec->jb_blkno || 1945 blkrn->jb_frags != blkrec->jb_frags || 1946 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 1947 continue; 1948 if (debug) 1949 printf("Removed dup.\n"); 1950 /* Discard the free which is a dup with an alloc. */ 1951 if (blkrec->jb_op == JOP_FREEBLK) 1952 return; 1953 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 1954 free(srec); 1955 break; 1956 } 1957 srec = errmalloc(sizeof(*srec)); 1958 srec->sr_rec = (union jrec *)blkrec; 1959 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 1960 } 1961 1962 static void 1963 ino_build_trunc(struct jtrncrec *rec) 1964 { 1965 struct suj_ino *sino; 1966 1967 if (debug) 1968 printf("ino_build_trunc: op %d ino %ju, size %jd\n", 1969 rec->jt_op, (uintmax_t)rec->jt_ino, 1970 (uintmax_t)rec->jt_size); 1971 if (chkfilesize(IFREG, rec->jt_size) == 0) 1972 err_suj("ino_build: truncation size too large %ju\n", 1973 (intmax_t)rec->jt_size); 1974 sino = ino_lookup(rec->jt_ino, 1); 1975 if (rec->jt_op == JOP_SYNC) { 1976 sino->si_trunc = NULL; 1977 return; 1978 } 1979 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size) 1980 sino->si_trunc = rec; 1981 } 1982 1983 /* 1984 * Build up tables of the operations we need to recover. 1985 */ 1986 static void 1987 suj_build(void) 1988 { 1989 struct suj_seg *seg; 1990 union jrec *rec; 1991 int off; 1992 int i; 1993 1994 TAILQ_FOREACH(seg, &allsegs, ss_next) { 1995 if (debug) 1996 printf("seg %jd has %d records, oldseq %jd.\n", 1997 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 1998 seg->ss_rec.jsr_oldest); 1999 off = 0; 2000 rec = (union jrec *)seg->ss_blk; 2001 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2002 /* skip the segrec. */ 2003 if ((off % real_dev_bsize) == 0) 2004 continue; 2005 switch (rec->rec_jrefrec.jr_op) { 2006 case JOP_ADDREF: 2007 case JOP_REMREF: 2008 case JOP_MVREF: 2009 ino_append(rec); 2010 break; 2011 case JOP_NEWBLK: 2012 case JOP_FREEBLK: 2013 blk_build((struct jblkrec *)rec); 2014 break; 2015 case JOP_TRUNC: 2016 case JOP_SYNC: 2017 ino_build_trunc((struct jtrncrec *)rec); 2018 break; 2019 default: 2020 err_suj("Unknown journal operation %s at %d\n", 2021 JOP_OPTYPE(rec->rec_jrefrec.jr_op), off); 2022 } 2023 i++; 2024 } 2025 } 2026 } 2027 2028 /* 2029 * Prune the journal segments to those we care about based on the 2030 * oldest sequence in the newest segment. Order the segment list 2031 * based on sequence number. 2032 */ 2033 static void 2034 suj_prune(void) 2035 { 2036 struct suj_seg *seg; 2037 struct suj_seg *segn; 2038 uint64_t newseq; 2039 int discard; 2040 2041 if (debug) 2042 printf("Pruning up to %jd\n", oldseq); 2043 /* First free the expired segments. */ 2044 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2045 if (seg->ss_rec.jsr_seq >= oldseq) 2046 continue; 2047 TAILQ_REMOVE(&allsegs, seg, ss_next); 2048 free(seg->ss_blk); 2049 free(seg); 2050 } 2051 /* Next ensure that segments are ordered properly. */ 2052 seg = TAILQ_FIRST(&allsegs); 2053 if (seg == NULL) { 2054 if (debug) 2055 printf("Empty journal\n"); 2056 return; 2057 } 2058 newseq = seg->ss_rec.jsr_seq; 2059 for (;;) { 2060 seg = TAILQ_LAST(&allsegs, seghd); 2061 if (seg->ss_rec.jsr_seq >= newseq) 2062 break; 2063 TAILQ_REMOVE(&allsegs, seg, ss_next); 2064 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2065 newseq = seg->ss_rec.jsr_seq; 2066 2067 } 2068 if (newseq != oldseq) { 2069 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2070 printf("%jd, ", seg->ss_rec.jsr_seq); 2071 } 2072 printf("\n"); 2073 err_suj("Journal file sequence mismatch %jd != %jd\n", 2074 newseq, oldseq); 2075 } 2076 /* 2077 * The kernel may asynchronously write segments which can create 2078 * gaps in the sequence space. Throw away any segments after the 2079 * gap as the kernel guarantees only those that are contiguously 2080 * reachable are marked as completed. 2081 */ 2082 discard = 0; 2083 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2084 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2085 jrecs += seg->ss_rec.jsr_cnt; 2086 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize; 2087 continue; 2088 } 2089 discard = 1; 2090 if (debug) 2091 printf("Journal order mismatch %jd != %jd pruning\n", 2092 newseq-1, seg->ss_rec.jsr_seq); 2093 TAILQ_REMOVE(&allsegs, seg, ss_next); 2094 free(seg->ss_blk); 2095 free(seg); 2096 } 2097 if (debug) 2098 printf("Processing journal segments from %jd to %jd\n", 2099 oldseq, newseq-1); 2100 } 2101 2102 /* 2103 * Verify the journal inode before attempting to read records. 2104 */ 2105 static int 2106 suj_verifyino(union dinode *dp) 2107 { 2108 2109 if (DIP(dp, di_nlink) != 1) { 2110 printf("Invalid link count %d for journal inode %ju\n", 2111 DIP(dp, di_nlink), (uintmax_t)sujino); 2112 return (-1); 2113 } 2114 2115 if ((DIP(dp, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2116 (SF_IMMUTABLE | SF_NOUNLINK)) { 2117 printf("Invalid flags 0x%X for journal inode %ju\n", 2118 DIP(dp, di_flags), (uintmax_t)sujino); 2119 return (-1); 2120 } 2121 2122 if (DIP(dp, di_mode) != (IFREG | IREAD)) { 2123 printf("Invalid mode %o for journal inode %ju\n", 2124 DIP(dp, di_mode), (uintmax_t)sujino); 2125 return (-1); 2126 } 2127 2128 if (DIP(dp, di_size) < SUJ_MIN) { 2129 printf("Invalid size %jd for journal inode %ju\n", 2130 DIP(dp, di_size), (uintmax_t)sujino); 2131 return (-1); 2132 } 2133 2134 if (DIP(dp, di_modrev) != fs->fs_mtime) { 2135 if (!bkgrdcheck || debug) 2136 printf("Journal timestamp does not match " 2137 "fs mount time\n"); 2138 return (-1); 2139 } 2140 2141 return (0); 2142 } 2143 2144 struct jblocks { 2145 struct jextent *jb_extent; /* Extent array. */ 2146 int jb_avail; /* Available extents. */ 2147 int jb_used; /* Last used extent. */ 2148 int jb_head; /* Allocator head. */ 2149 int jb_off; /* Allocator extent offset. */ 2150 }; 2151 struct jextent { 2152 ufs2_daddr_t je_daddr; /* Disk block address. */ 2153 int je_blocks; /* Disk block count. */ 2154 }; 2155 2156 static struct jblocks *suj_jblocks; 2157 2158 static struct jblocks * 2159 jblocks_create(void) 2160 { 2161 struct jblocks *jblocks; 2162 int size; 2163 2164 jblocks = errmalloc(sizeof(*jblocks)); 2165 jblocks->jb_avail = 10; 2166 jblocks->jb_used = 0; 2167 jblocks->jb_head = 0; 2168 jblocks->jb_off = 0; 2169 size = sizeof(struct jextent) * jblocks->jb_avail; 2170 jblocks->jb_extent = errmalloc(size); 2171 bzero(jblocks->jb_extent, size); 2172 2173 return (jblocks); 2174 } 2175 2176 /* 2177 * Return the next available disk block and the amount of contiguous 2178 * free space it contains. 2179 */ 2180 static ufs2_daddr_t 2181 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2182 { 2183 struct jextent *jext; 2184 ufs2_daddr_t daddr; 2185 int freecnt; 2186 int blocks; 2187 2188 blocks = btodb(bytes); 2189 jext = &jblocks->jb_extent[jblocks->jb_head]; 2190 freecnt = jext->je_blocks - jblocks->jb_off; 2191 if (freecnt == 0) { 2192 jblocks->jb_off = 0; 2193 if (++jblocks->jb_head > jblocks->jb_used) 2194 return (0); 2195 jext = &jblocks->jb_extent[jblocks->jb_head]; 2196 freecnt = jext->je_blocks; 2197 } 2198 if (freecnt > blocks) 2199 freecnt = blocks; 2200 *actual = dbtob(freecnt); 2201 daddr = jext->je_daddr + jblocks->jb_off; 2202 2203 return (daddr); 2204 } 2205 2206 /* 2207 * Advance the allocation head by a specified number of bytes, consuming 2208 * one journal segment. 2209 */ 2210 static void 2211 jblocks_advance(struct jblocks *jblocks, int bytes) 2212 { 2213 2214 jblocks->jb_off += btodb(bytes); 2215 } 2216 2217 static void 2218 jblocks_destroy(struct jblocks *jblocks) 2219 { 2220 2221 free(jblocks->jb_extent); 2222 free(jblocks); 2223 } 2224 2225 static void 2226 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2227 { 2228 struct jextent *jext; 2229 int size; 2230 2231 jext = &jblocks->jb_extent[jblocks->jb_used]; 2232 /* Adding the first block. */ 2233 if (jext->je_daddr == 0) { 2234 jext->je_daddr = daddr; 2235 jext->je_blocks = blocks; 2236 return; 2237 } 2238 /* Extending the last extent. */ 2239 if (jext->je_daddr + jext->je_blocks == daddr) { 2240 jext->je_blocks += blocks; 2241 return; 2242 } 2243 /* Adding a new extent. */ 2244 if (++jblocks->jb_used == jblocks->jb_avail) { 2245 jblocks->jb_avail *= 2; 2246 size = sizeof(struct jextent) * jblocks->jb_avail; 2247 jext = errmalloc(size); 2248 bzero(jext, size); 2249 bcopy(jblocks->jb_extent, jext, 2250 sizeof(struct jextent) * jblocks->jb_used); 2251 free(jblocks->jb_extent); 2252 jblocks->jb_extent = jext; 2253 } 2254 jext = &jblocks->jb_extent[jblocks->jb_used]; 2255 jext->je_daddr = daddr; 2256 jext->je_blocks = blocks; 2257 2258 return; 2259 } 2260 2261 /* 2262 * Add a file block from the journal to the extent map. We can't read 2263 * each file block individually because the kernel treats it as a circular 2264 * buffer and segments may span multiple contiguous blocks. 2265 */ 2266 static void 2267 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2268 { 2269 2270 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2271 } 2272 2273 static void 2274 suj_read(void) 2275 { 2276 uint8_t block[1 * 1024 * 1024] __aligned(LIBUFS_BUFALIGN); 2277 struct suj_seg *seg; 2278 struct jsegrec *recn; 2279 struct jsegrec *rec; 2280 ufs2_daddr_t blk; 2281 int readsize; 2282 int blocks; 2283 int recsize; 2284 int size; 2285 int i; 2286 2287 /* 2288 * Read records until we exhaust the journal space. If we find 2289 * an invalid record we start searching for a valid segment header 2290 * at the next block. This is because we don't have a head/tail 2291 * pointer and must recover the information indirectly. At the gap 2292 * between the head and tail we won't necessarily have a valid 2293 * segment. 2294 */ 2295 restart: 2296 for (;;) { 2297 size = sizeof(block); 2298 blk = jblocks_next(suj_jblocks, size, &readsize); 2299 if (blk == 0) 2300 return; 2301 size = readsize; 2302 /* 2303 * Read 1MB at a time and scan for records within this block. 2304 */ 2305 if (pread(fsreadfd, &block, size, dbtob(blk)) != size) { 2306 err_suj("Error reading journal block %jd\n", 2307 (intmax_t)blk); 2308 } 2309 for (rec = (void *)block; size; size -= recsize, 2310 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2311 recsize = real_dev_bsize; 2312 if (rec->jsr_time != fs->fs_mtime) { 2313 #ifdef notdef 2314 if (debug) 2315 printf("Rec time %jd != fs mtime %jd\n", 2316 rec->jsr_time, fs->fs_mtime); 2317 #endif 2318 jblocks_advance(suj_jblocks, recsize); 2319 continue; 2320 } 2321 if (rec->jsr_cnt == 0) { 2322 if (debug) 2323 printf("Found illegal count %d\n", 2324 rec->jsr_cnt); 2325 jblocks_advance(suj_jblocks, recsize); 2326 continue; 2327 } 2328 blocks = rec->jsr_blocks; 2329 recsize = blocks * real_dev_bsize; 2330 if (recsize > size) { 2331 /* 2332 * We may just have run out of buffer, restart 2333 * the loop to re-read from this spot. 2334 */ 2335 if (size < fs->fs_bsize && 2336 size != readsize && 2337 recsize <= fs->fs_bsize) 2338 goto restart; 2339 if (debug) 2340 printf("Found invalid segsize " 2341 "%d > %d\n", recsize, size); 2342 recsize = real_dev_bsize; 2343 jblocks_advance(suj_jblocks, recsize); 2344 continue; 2345 } 2346 /* 2347 * Verify that all blocks in the segment are present. 2348 */ 2349 for (i = 1; i < blocks; i++) { 2350 recn = (void *)((uintptr_t)rec) + i * 2351 real_dev_bsize; 2352 if (recn->jsr_seq == rec->jsr_seq && 2353 recn->jsr_time == rec->jsr_time) 2354 continue; 2355 if (debug) 2356 printf("Incomplete record %jd (%d)\n", 2357 rec->jsr_seq, i); 2358 recsize = i * real_dev_bsize; 2359 jblocks_advance(suj_jblocks, recsize); 2360 goto restart; 2361 } 2362 seg = errmalloc(sizeof(*seg)); 2363 seg->ss_blk = errmalloc(recsize); 2364 seg->ss_rec = *rec; 2365 bcopy((void *)rec, seg->ss_blk, recsize); 2366 if (rec->jsr_oldest > oldseq) 2367 oldseq = rec->jsr_oldest; 2368 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2369 jblocks_advance(suj_jblocks, recsize); 2370 } 2371 } 2372 } 2373 2374 /* 2375 * Orchestrate the verification of a filesystem via the softupdates journal. 2376 */ 2377 int 2378 suj_check(const char *filesys) 2379 { 2380 struct inodesc idesc; 2381 struct csum *cgsum; 2382 union dinode *dp, *jip; 2383 struct inode ip; 2384 uint64_t blocks; 2385 int i, retval; 2386 struct suj_seg *seg; 2387 struct suj_seg *segn; 2388 2389 initsuj(); 2390 fs = &sblock; 2391 if (real_dev_bsize == 0 && ioctl(fsreadfd, DIOCGSECTORSIZE, 2392 &real_dev_bsize) == -1) 2393 real_dev_bsize = secsize; 2394 if (debug) 2395 printf("dev_bsize %u\n", real_dev_bsize); 2396 2397 /* 2398 * Set an exit point when SUJ check failed 2399 */ 2400 retval = setjmp(jmpbuf); 2401 if (retval != 0) { 2402 pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); 2403 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2404 TAILQ_REMOVE(&allsegs, seg, ss_next); 2405 free(seg->ss_blk); 2406 free(seg); 2407 } 2408 if (reply("FALLBACK TO FULL FSCK") == 0) { 2409 ckfini(0); 2410 exit(EEXIT); 2411 } else 2412 return (-1); 2413 } 2414 2415 /* 2416 * Search the root directory for the SUJ_FILE. 2417 */ 2418 idesc.id_type = DATA; 2419 idesc.id_fix = IGNORE; 2420 idesc.id_number = UFS_ROOTINO; 2421 idesc.id_func = findino; 2422 idesc.id_name = SUJ_FILE; 2423 ginode(UFS_ROOTINO, &ip); 2424 dp = ip.i_dp; 2425 if ((DIP(dp, di_mode) & IFMT) != IFDIR) { 2426 irelse(&ip); 2427 err_suj("root inode is not a directory\n"); 2428 } 2429 if (DIP(dp, di_size) < 0 || DIP(dp, di_size) > MAXDIRSIZE) { 2430 irelse(&ip); 2431 err_suj("negative or oversized root directory %jd\n", 2432 (uintmax_t)DIP(dp, di_size)); 2433 } 2434 if ((ckinode(dp, &idesc) & FOUND) == FOUND) { 2435 sujino = idesc.id_parent; 2436 irelse(&ip); 2437 } else { 2438 if (!bkgrdcheck || debug) 2439 printf("Journal inode removed. " 2440 "Use tunefs to re-create.\n"); 2441 sblock.fs_flags &= ~FS_SUJ; 2442 sblock.fs_sujfree = 0; 2443 irelse(&ip); 2444 return (-1); 2445 } 2446 /* 2447 * Fetch the journal inode and verify it. 2448 */ 2449 ginode(sujino, &ip); 2450 jip = ip.i_dp; 2451 if (!bkgrdcheck || debug) 2452 printf("** SU+J Recovering %s\n", filesys); 2453 if (suj_verifyino(jip) != 0 || (!preen && !reply("USE JOURNAL"))) { 2454 irelse(&ip); 2455 return (-1); 2456 } 2457 /* 2458 * Build a list of journal blocks in jblocks before parsing the 2459 * available journal blocks in with suj_read(). 2460 */ 2461 if (!bkgrdcheck || debug) 2462 printf("** Reading %jd byte journal from inode %ju.\n", 2463 DIP(jip, di_size), (uintmax_t)sujino); 2464 suj_jblocks = jblocks_create(); 2465 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2466 if (blocks != numfrags(fs, DIP(jip, di_size))) { 2467 if (!bkgrdcheck || debug) 2468 printf("Sparse journal inode %ju.\n", 2469 (uintmax_t)sujino); 2470 irelse(&ip); 2471 return (-1); 2472 } 2473 /* If journal is valid then do journal check rather than background */ 2474 if (bkgrdcheck) { 2475 irelse(&ip); 2476 return (0); 2477 } 2478 irelse(&ip); 2479 suj_read(); 2480 jblocks_destroy(suj_jblocks); 2481 suj_jblocks = NULL; 2482 if (preen || reply("RECOVER")) { 2483 printf("** Building recovery table.\n"); 2484 suj_prune(); 2485 suj_build(); 2486 cg_apply(cg_build); 2487 printf("** Resolving unreferenced inode list.\n"); 2488 ino_unlinked(); 2489 printf("** Processing journal entries.\n"); 2490 cg_apply(cg_trunc); 2491 cg_apply(cg_check_blk); 2492 cg_apply(cg_adj_blk); 2493 cg_apply(cg_check_ino); 2494 } 2495 if (preen == 0 && (jrecs > 0 || jbytes > 0) && 2496 reply("WRITE CHANGES") == 0) 2497 return (0); 2498 /* 2499 * Check block counts of snapshot inodes and 2500 * make copies of any needed snapshot blocks. 2501 */ 2502 for (i = 0; i < snapcnt; i++) 2503 check_blkcnt(&snaplist[i]); 2504 snapflush(suj_checkblkavail); 2505 /* 2506 * Recompute the fs summary info from correct cs summaries. 2507 */ 2508 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 2509 for (i = 0; i < fs->fs_ncg; i++) { 2510 cgsum = &fs->fs_cs(fs, i); 2511 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 2512 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 2513 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 2514 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 2515 } 2516 fs->fs_pendinginodes = 0; 2517 fs->fs_pendingblocks = 0; 2518 fs->fs_clean = 1; 2519 fs->fs_time = time(NULL); 2520 fs->fs_mtime = time(NULL); 2521 sbdirty(); 2522 ckfini(1); 2523 if (jrecs > 0 || jbytes > 0) { 2524 printf("** %jd journal records in %jd bytes for %.2f%% " 2525 "utilization\n", jrecs, jbytes, 2526 ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2527 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd " 2528 "frags.\n", freeinos, freedir, freeblocks, freefrags); 2529 } 2530 2531 return (0); 2532 } 2533 2534 static void 2535 initsuj(void) 2536 { 2537 int i; 2538 2539 for (i = 0; i < HASHSIZE; i++) 2540 LIST_INIT(&cghash[i]); 2541 lastcg = NULL; 2542 TAILQ_INIT(&allsegs); 2543 oldseq = 0; 2544 fs = NULL; 2545 sujino = 0; 2546 freefrags = 0; 2547 freeblocks = 0; 2548 freeinos = 0; 2549 freedir = 0; 2550 jbytes = 0; 2551 jrecs = 0; 2552 suj_jblocks = NULL; 2553 } 2554