1 /*- 2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/disk.h> 32 #include <sys/disklabel.h> 33 #include <sys/mount.h> 34 #include <sys/stat.h> 35 36 #include <ufs/ufs/ufsmount.h> 37 #include <ufs/ufs/dinode.h> 38 #include <ufs/ufs/dir.h> 39 #include <ufs/ffs/fs.h> 40 41 #include <assert.h> 42 #include <err.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <stdint.h> 48 #include <libufs.h> 49 #include <string.h> 50 #include <strings.h> 51 #include <sysexits.h> 52 #include <time.h> 53 54 #include "fsck.h" 55 56 #define DOTDOT_OFFSET DIRECTSIZ(1) 57 #define SUJ_HASHSIZE 2048 58 #define SUJ_HASHMASK (SUJ_HASHSIZE - 1) 59 #define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK) 60 61 struct suj_seg { 62 TAILQ_ENTRY(suj_seg) ss_next; 63 struct jsegrec ss_rec; 64 uint8_t *ss_blk; 65 }; 66 67 struct suj_rec { 68 TAILQ_ENTRY(suj_rec) sr_next; 69 union jrec *sr_rec; 70 }; 71 TAILQ_HEAD(srechd, suj_rec); 72 73 struct suj_ino { 74 LIST_ENTRY(suj_ino) si_next; 75 struct srechd si_recs; 76 struct srechd si_newrecs; 77 struct srechd si_movs; 78 struct jtrncrec *si_trunc; 79 ino_t si_ino; 80 char si_skipparent; 81 char si_hasrecs; 82 char si_blkadj; 83 char si_linkadj; 84 int si_mode; 85 nlink_t si_nlinkadj; 86 nlink_t si_nlink; 87 nlink_t si_dotlinks; 88 }; 89 LIST_HEAD(inohd, suj_ino); 90 91 struct suj_blk { 92 LIST_ENTRY(suj_blk) sb_next; 93 struct srechd sb_recs; 94 ufs2_daddr_t sb_blk; 95 }; 96 LIST_HEAD(blkhd, suj_blk); 97 98 struct data_blk { 99 LIST_ENTRY(data_blk) db_next; 100 uint8_t *db_buf; 101 ufs2_daddr_t db_blk; 102 int db_size; 103 int db_dirty; 104 }; 105 106 struct ino_blk { 107 LIST_ENTRY(ino_blk) ib_next; 108 uint8_t *ib_buf; 109 int ib_dirty; 110 ufs2_daddr_t ib_blk; 111 }; 112 LIST_HEAD(iblkhd, ino_blk); 113 114 struct suj_cg { 115 LIST_ENTRY(suj_cg) sc_next; 116 struct blkhd sc_blkhash[SUJ_HASHSIZE]; 117 struct inohd sc_inohash[SUJ_HASHSIZE]; 118 struct iblkhd sc_iblkhash[SUJ_HASHSIZE]; 119 struct ino_blk *sc_lastiblk; 120 struct suj_ino *sc_lastino; 121 struct suj_blk *sc_lastblk; 122 uint8_t *sc_cgbuf; 123 struct cg *sc_cgp; 124 int sc_dirty; 125 int sc_cgx; 126 }; 127 128 LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE]; 129 LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE]; 130 struct suj_cg *lastcg; 131 struct data_blk *lastblk; 132 133 TAILQ_HEAD(seghd, suj_seg) allsegs; 134 uint64_t oldseq; 135 static struct uufsd *disk = NULL; 136 static struct fs *fs = NULL; 137 ino_t sujino; 138 139 /* 140 * Summary statistics. 141 */ 142 uint64_t freefrags; 143 uint64_t freeblocks; 144 uint64_t freeinos; 145 uint64_t freedir; 146 uint64_t jbytes; 147 uint64_t jrecs; 148 149 static jmp_buf jmpbuf; 150 151 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 152 static void err_suj(const char *, ...) __dead2; 153 static void ino_trunc(ino_t, off_t); 154 static void ino_decr(ino_t); 155 static void ino_adjust(struct suj_ino *); 156 static void ino_build(struct suj_ino *); 157 static int blk_isfree(ufs2_daddr_t); 158 159 static void * 160 errmalloc(size_t n) 161 { 162 void *a; 163 164 a = malloc(n); 165 if (a == NULL) 166 err(EX_OSERR, "malloc(%zu)", n); 167 return (a); 168 } 169 170 /* 171 * When hit a fatal error in journalling check, print out 172 * the error and then offer to fallback to normal fsck. 173 */ 174 static void 175 err_suj(const char * restrict fmt, ...) 176 { 177 va_list ap; 178 179 if (preen) 180 (void)fprintf(stdout, "%s: ", cdevname); 181 182 va_start(ap, fmt); 183 (void)vfprintf(stdout, fmt, ap); 184 va_end(ap); 185 186 longjmp(jmpbuf, -1); 187 } 188 189 /* 190 * Open the given provider, load superblock. 191 */ 192 static void 193 opendisk(const char *devnam) 194 { 195 if (disk != NULL) 196 return; 197 disk = malloc(sizeof(*disk)); 198 if (disk == NULL) 199 err(EX_OSERR, "malloc(%zu)", sizeof(*disk)); 200 if (ufs_disk_fillout(disk, devnam) == -1) { 201 err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam, 202 disk->d_error); 203 } 204 fs = &disk->d_fs; 205 if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE, 206 &real_dev_bsize) == -1) 207 real_dev_bsize = secsize; 208 if (debug) 209 printf("dev_bsize %u\n", real_dev_bsize); 210 } 211 212 /* 213 * Mark file system as clean, write the super-block back, close the disk. 214 */ 215 static void 216 closedisk(const char *devnam) 217 { 218 struct csum *cgsum; 219 int i; 220 221 /* 222 * Recompute the fs summary info from correct cs summaries. 223 */ 224 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 225 for (i = 0; i < fs->fs_ncg; i++) { 226 cgsum = &fs->fs_cs(fs, i); 227 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 228 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 229 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 230 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 231 } 232 fs->fs_pendinginodes = 0; 233 fs->fs_pendingblocks = 0; 234 fs->fs_clean = 1; 235 fs->fs_time = time(NULL); 236 fs->fs_mtime = time(NULL); 237 if (sbwrite(disk, 0) == -1) 238 err(EX_OSERR, "sbwrite(%s)", devnam); 239 if (ufs_disk_close(disk) == -1) 240 err(EX_OSERR, "ufs_disk_close(%s)", devnam); 241 free(disk); 242 disk = NULL; 243 fs = NULL; 244 } 245 246 /* 247 * Lookup a cg by number in the hash so we can keep track of which cgs 248 * need stats rebuilt. 249 */ 250 static struct suj_cg * 251 cg_lookup(int cgx) 252 { 253 struct cghd *hd; 254 struct suj_cg *sc; 255 256 if (cgx < 0 || cgx >= fs->fs_ncg) 257 err_suj("Bad cg number %d\n", cgx); 258 if (lastcg && lastcg->sc_cgx == cgx) 259 return (lastcg); 260 hd = &cghash[SUJ_HASH(cgx)]; 261 LIST_FOREACH(sc, hd, sc_next) 262 if (sc->sc_cgx == cgx) { 263 lastcg = sc; 264 return (sc); 265 } 266 sc = errmalloc(sizeof(*sc)); 267 bzero(sc, sizeof(*sc)); 268 sc->sc_cgbuf = errmalloc(fs->fs_bsize); 269 sc->sc_cgp = (struct cg *)sc->sc_cgbuf; 270 sc->sc_cgx = cgx; 271 LIST_INSERT_HEAD(hd, sc, sc_next); 272 if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 273 fs->fs_bsize) == -1) 274 err_suj("Unable to read cylinder group %d\n", sc->sc_cgx); 275 276 return (sc); 277 } 278 279 /* 280 * Lookup an inode number in the hash and allocate a suj_ino if it does 281 * not exist. 282 */ 283 static struct suj_ino * 284 ino_lookup(ino_t ino, int creat) 285 { 286 struct suj_ino *sino; 287 struct inohd *hd; 288 struct suj_cg *sc; 289 290 sc = cg_lookup(ino_to_cg(fs, ino)); 291 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 292 return (sc->sc_lastino); 293 hd = &sc->sc_inohash[SUJ_HASH(ino)]; 294 LIST_FOREACH(sino, hd, si_next) 295 if (sino->si_ino == ino) 296 return (sino); 297 if (creat == 0) 298 return (NULL); 299 sino = errmalloc(sizeof(*sino)); 300 bzero(sino, sizeof(*sino)); 301 sino->si_ino = ino; 302 TAILQ_INIT(&sino->si_recs); 303 TAILQ_INIT(&sino->si_newrecs); 304 TAILQ_INIT(&sino->si_movs); 305 LIST_INSERT_HEAD(hd, sino, si_next); 306 307 return (sino); 308 } 309 310 /* 311 * Lookup a block number in the hash and allocate a suj_blk if it does 312 * not exist. 313 */ 314 static struct suj_blk * 315 blk_lookup(ufs2_daddr_t blk, int creat) 316 { 317 struct suj_blk *sblk; 318 struct suj_cg *sc; 319 struct blkhd *hd; 320 321 sc = cg_lookup(dtog(fs, blk)); 322 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 323 return (sc->sc_lastblk); 324 hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))]; 325 LIST_FOREACH(sblk, hd, sb_next) 326 if (sblk->sb_blk == blk) 327 return (sblk); 328 if (creat == 0) 329 return (NULL); 330 sblk = errmalloc(sizeof(*sblk)); 331 bzero(sblk, sizeof(*sblk)); 332 sblk->sb_blk = blk; 333 TAILQ_INIT(&sblk->sb_recs); 334 LIST_INSERT_HEAD(hd, sblk, sb_next); 335 336 return (sblk); 337 } 338 339 static struct data_blk * 340 dblk_lookup(ufs2_daddr_t blk) 341 { 342 struct data_blk *dblk; 343 struct dblkhd *hd; 344 345 hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))]; 346 if (lastblk && lastblk->db_blk == blk) 347 return (lastblk); 348 LIST_FOREACH(dblk, hd, db_next) 349 if (dblk->db_blk == blk) 350 return (dblk); 351 /* 352 * The inode block wasn't located, allocate a new one. 353 */ 354 dblk = errmalloc(sizeof(*dblk)); 355 bzero(dblk, sizeof(*dblk)); 356 LIST_INSERT_HEAD(hd, dblk, db_next); 357 dblk->db_blk = blk; 358 return (dblk); 359 } 360 361 static uint8_t * 362 dblk_read(ufs2_daddr_t blk, int size) 363 { 364 struct data_blk *dblk; 365 366 dblk = dblk_lookup(blk); 367 /* 368 * I doubt size mismatches can happen in practice but it is trivial 369 * to handle. 370 */ 371 if (size != dblk->db_size) { 372 if (dblk->db_buf) 373 free(dblk->db_buf); 374 dblk->db_buf = errmalloc(size); 375 dblk->db_size = size; 376 if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1) 377 err_suj("Failed to read data block %jd\n", blk); 378 } 379 return (dblk->db_buf); 380 } 381 382 static void 383 dblk_dirty(ufs2_daddr_t blk) 384 { 385 struct data_blk *dblk; 386 387 dblk = dblk_lookup(blk); 388 dblk->db_dirty = 1; 389 } 390 391 static void 392 dblk_write(void) 393 { 394 struct data_blk *dblk; 395 int i; 396 397 for (i = 0; i < SUJ_HASHSIZE; i++) { 398 LIST_FOREACH(dblk, &dbhash[i], db_next) { 399 if (dblk->db_dirty == 0 || dblk->db_size == 0) 400 continue; 401 if (bwrite(disk, fsbtodb(fs, dblk->db_blk), 402 dblk->db_buf, dblk->db_size) == -1) 403 err_suj("Unable to write block %jd\n", 404 dblk->db_blk); 405 } 406 } 407 } 408 409 static union dinode * 410 ino_read(ino_t ino) 411 { 412 struct ino_blk *iblk; 413 struct iblkhd *hd; 414 struct suj_cg *sc; 415 ufs2_daddr_t blk; 416 int off; 417 418 blk = ino_to_fsba(fs, ino); 419 sc = cg_lookup(ino_to_cg(fs, ino)); 420 iblk = sc->sc_lastiblk; 421 if (iblk && iblk->ib_blk == blk) 422 goto found; 423 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 424 LIST_FOREACH(iblk, hd, ib_next) 425 if (iblk->ib_blk == blk) 426 goto found; 427 /* 428 * The inode block wasn't located, allocate a new one. 429 */ 430 iblk = errmalloc(sizeof(*iblk)); 431 bzero(iblk, sizeof(*iblk)); 432 iblk->ib_buf = errmalloc(fs->fs_bsize); 433 iblk->ib_blk = blk; 434 LIST_INSERT_HEAD(hd, iblk, ib_next); 435 if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1) 436 err_suj("Failed to read inode block %jd\n", blk); 437 found: 438 sc->sc_lastiblk = iblk; 439 off = ino_to_fsbo(fs, ino); 440 if (fs->fs_magic == FS_UFS1_MAGIC) 441 return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off]; 442 else 443 return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off]; 444 } 445 446 static void 447 ino_dirty(ino_t ino) 448 { 449 struct ino_blk *iblk; 450 struct iblkhd *hd; 451 struct suj_cg *sc; 452 ufs2_daddr_t blk; 453 454 blk = ino_to_fsba(fs, ino); 455 sc = cg_lookup(ino_to_cg(fs, ino)); 456 iblk = sc->sc_lastiblk; 457 if (iblk && iblk->ib_blk == blk) { 458 iblk->ib_dirty = 1; 459 return; 460 } 461 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 462 LIST_FOREACH(iblk, hd, ib_next) { 463 if (iblk->ib_blk == blk) { 464 iblk->ib_dirty = 1; 465 return; 466 } 467 } 468 ino_read(ino); 469 ino_dirty(ino); 470 } 471 472 static void 473 iblk_write(struct ino_blk *iblk) 474 { 475 476 if (iblk->ib_dirty == 0) 477 return; 478 if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf, 479 fs->fs_bsize) == -1) 480 err_suj("Failed to write inode block %jd\n", iblk->ib_blk); 481 } 482 483 static int 484 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 485 { 486 ufs2_daddr_t bstart; 487 ufs2_daddr_t bend; 488 ufs2_daddr_t end; 489 490 end = start + frags; 491 bstart = brec->jb_blkno + brec->jb_oldfrags; 492 bend = bstart + brec->jb_frags; 493 if (start < bend && end > bstart) 494 return (1); 495 return (0); 496 } 497 498 static int 499 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 500 int frags) 501 { 502 503 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 504 return (0); 505 if (brec->jb_blkno + brec->jb_oldfrags != start) 506 return (0); 507 if (brec->jb_frags != frags) 508 return (0); 509 return (1); 510 } 511 512 static void 513 blk_setmask(struct jblkrec *brec, int *mask) 514 { 515 int i; 516 517 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 518 *mask |= 1 << i; 519 } 520 521 /* 522 * Determine whether a given block has been reallocated to a new location. 523 * Returns a mask of overlapping bits if any frags have been reused or 524 * zero if the block has not been re-used and the contents can be trusted. 525 * 526 * This is used to ensure that an orphaned pointer due to truncate is safe 527 * to be freed. The mask value can be used to free partial blocks. 528 */ 529 static int 530 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 531 { 532 struct suj_blk *sblk; 533 struct suj_rec *srec; 534 struct jblkrec *brec; 535 int mask; 536 int off; 537 538 /* 539 * To be certain we're not freeing a reallocated block we lookup 540 * this block in the blk hash and see if there is an allocation 541 * journal record that overlaps with any fragments in the block 542 * we're concerned with. If any fragments have ben reallocated 543 * the block has already been freed and re-used for another purpose. 544 */ 545 mask = 0; 546 sblk = blk_lookup(blknum(fs, blk), 0); 547 if (sblk == NULL) 548 return (0); 549 off = blk - sblk->sb_blk; 550 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 551 brec = (struct jblkrec *)srec->sr_rec; 552 /* 553 * If the block overlaps but does not match 554 * exactly it's a new allocation. If it matches 555 * exactly this record refers to the current 556 * location. 557 */ 558 if (blk_overlaps(brec, blk, frags) == 0) 559 continue; 560 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 561 mask = 0; 562 else 563 blk_setmask(brec, &mask); 564 } 565 if (debug) 566 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 567 blk, sblk->sb_blk, off, mask); 568 return (mask >> off); 569 } 570 571 /* 572 * Determine whether it is safe to follow an indirect. It is not safe 573 * if any part of the indirect has been reallocated or the last journal 574 * entry was an allocation. Just allocated indirects may not have valid 575 * pointers yet and all of their children will have their own records. 576 * It is also not safe to follow an indirect if the cg bitmap has been 577 * cleared as a new allocation may write to the block prior to the journal 578 * being written. 579 * 580 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 581 */ 582 static int 583 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 584 { 585 struct suj_blk *sblk; 586 struct jblkrec *brec; 587 588 sblk = blk_lookup(blk, 0); 589 if (sblk == NULL) 590 return (1); 591 if (TAILQ_EMPTY(&sblk->sb_recs)) 592 return (1); 593 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 594 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 595 if (brec->jb_op == JOP_FREEBLK) 596 return (!blk_isfree(blk)); 597 return (0); 598 } 599 600 /* 601 * Clear an inode from the cg bitmap. If the inode was already clear return 602 * 0 so the caller knows it does not have to check the inode contents. 603 */ 604 static int 605 ino_free(ino_t ino, int mode) 606 { 607 struct suj_cg *sc; 608 uint8_t *inosused; 609 struct cg *cgp; 610 int cg; 611 612 cg = ino_to_cg(fs, ino); 613 ino = ino % fs->fs_ipg; 614 sc = cg_lookup(cg); 615 cgp = sc->sc_cgp; 616 inosused = cg_inosused(cgp); 617 /* 618 * The bitmap may never have made it to the disk so we have to 619 * conditionally clear. We can avoid writing the cg in this case. 620 */ 621 if (isclr(inosused, ino)) 622 return (0); 623 freeinos++; 624 clrbit(inosused, ino); 625 if (ino < cgp->cg_irotor) 626 cgp->cg_irotor = ino; 627 cgp->cg_cs.cs_nifree++; 628 if ((mode & IFMT) == IFDIR) { 629 freedir++; 630 cgp->cg_cs.cs_ndir--; 631 } 632 sc->sc_dirty = 1; 633 634 return (1); 635 } 636 637 /* 638 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 639 * set in the mask. 640 */ 641 static void 642 blk_free(ufs2_daddr_t bno, int mask, int frags) 643 { 644 ufs1_daddr_t fragno, cgbno; 645 struct suj_cg *sc; 646 struct cg *cgp; 647 int i, cg; 648 uint8_t *blksfree; 649 650 if (debug) 651 printf("Freeing %d frags at blk %jd\n", frags, bno); 652 cg = dtog(fs, bno); 653 sc = cg_lookup(cg); 654 cgp = sc->sc_cgp; 655 cgbno = dtogd(fs, bno); 656 blksfree = cg_blksfree(cgp); 657 658 /* 659 * If it's not allocated we only wrote the journal entry 660 * and never the bitmaps. Here we unconditionally clear and 661 * resolve the cg summary later. 662 */ 663 if (frags == fs->fs_frag && mask == 0) { 664 fragno = fragstoblks(fs, cgbno); 665 ffs_setblock(fs, blksfree, fragno); 666 freeblocks++; 667 } else { 668 /* 669 * deallocate the fragment 670 */ 671 for (i = 0; i < frags; i++) 672 if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) { 673 freefrags++; 674 setbit(blksfree, cgbno + i); 675 } 676 } 677 sc->sc_dirty = 1; 678 } 679 680 /* 681 * Returns 1 if the whole block starting at 'bno' is marked free and 0 682 * otherwise. 683 */ 684 static int 685 blk_isfree(ufs2_daddr_t bno) 686 { 687 struct suj_cg *sc; 688 689 sc = cg_lookup(dtog(fs, bno)); 690 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 691 } 692 693 /* 694 * Fetch an indirect block to find the block at a given lbn. The lbn 695 * may be negative to fetch a specific indirect block pointer or positive 696 * to fetch a specific block. 697 */ 698 static ufs2_daddr_t 699 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn) 700 { 701 ufs2_daddr_t *bap2; 702 ufs2_daddr_t *bap1; 703 ufs_lbn_t lbnadd; 704 ufs_lbn_t base; 705 int level; 706 int i; 707 708 if (blk == 0) 709 return (0); 710 level = lbn_level(cur); 711 if (level == -1) 712 err_suj("Invalid indir lbn %jd\n", lbn); 713 if (level == 0 && lbn < 0) 714 err_suj("Invalid lbn %jd\n", lbn); 715 bap2 = (void *)dblk_read(blk, fs->fs_bsize); 716 bap1 = (void *)bap2; 717 lbnadd = 1; 718 base = -(cur + level); 719 for (i = level; i > 0; i--) 720 lbnadd *= NINDIR(fs); 721 if (lbn > 0) 722 i = (lbn - base) / lbnadd; 723 else 724 i = (-lbn - base) / lbnadd; 725 if (i < 0 || i >= NINDIR(fs)) 726 err_suj("Invalid indirect index %d produced by lbn %jd\n", 727 i, lbn); 728 if (level == 0) 729 cur = base + (i * lbnadd); 730 else 731 cur = -(base + (i * lbnadd)) - (level - 1); 732 if (fs->fs_magic == FS_UFS1_MAGIC) 733 blk = bap1[i]; 734 else 735 blk = bap2[i]; 736 if (cur == lbn) 737 return (blk); 738 if (level == 0) 739 err_suj("Invalid lbn %jd at level 0\n", lbn); 740 return indir_blkatoff(blk, ino, cur, lbn); 741 } 742 743 /* 744 * Finds the disk block address at the specified lbn within the inode 745 * specified by ip. This follows the whole tree and honors di_size and 746 * di_extsize so it is a true test of reachability. The lbn may be 747 * negative if an extattr or indirect block is requested. 748 */ 749 static ufs2_daddr_t 750 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags) 751 { 752 ufs_lbn_t tmpval; 753 ufs_lbn_t cur; 754 ufs_lbn_t next; 755 int i; 756 757 /* 758 * Handle extattr blocks first. 759 */ 760 if (lbn < 0 && lbn >= -NXADDR) { 761 lbn = -1 - lbn; 762 if (lbn > lblkno(fs, ip->dp2.di_extsize - 1)) 763 return (0); 764 *frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn)); 765 return (ip->dp2.di_extb[lbn]); 766 } 767 /* 768 * Now direct and indirect. 769 */ 770 if (DIP(ip, di_mode) == IFLNK && 771 DIP(ip, di_size) < fs->fs_maxsymlinklen) 772 return (0); 773 if (lbn >= 0 && lbn < NDADDR) { 774 *frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn)); 775 return (DIP(ip, di_db[lbn])); 776 } 777 *frags = fs->fs_frag; 778 779 for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++, 780 tmpval *= NINDIR(fs), cur = next) { 781 next = cur + tmpval; 782 if (lbn == -cur - i) 783 return (DIP(ip, di_ib[i])); 784 /* 785 * Determine whether the lbn in question is within this tree. 786 */ 787 if (lbn < 0 && -lbn >= next) 788 continue; 789 if (lbn > 0 && lbn >= next) 790 continue; 791 return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn); 792 } 793 err_suj("lbn %jd not in ino\n", lbn); 794 /* NOTREACHED */ 795 } 796 797 /* 798 * Determine whether a block exists at a particular lbn in an inode. 799 * Returns 1 if found, 0 if not. lbn may be negative for indirects 800 * or ext blocks. 801 */ 802 static int 803 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 804 { 805 union dinode *ip; 806 ufs2_daddr_t nblk; 807 808 ip = ino_read(ino); 809 810 if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0) 811 return (0); 812 nblk = ino_blkatoff(ip, ino, lbn, frags); 813 814 return (nblk == blk); 815 } 816 817 /* 818 * Clear the directory entry at diroff that should point to child. Minimal 819 * checking is done and it is assumed that this path was verified with isat. 820 */ 821 static void 822 ino_clrat(ino_t parent, off_t diroff, ino_t child) 823 { 824 union dinode *dip; 825 struct direct *dp; 826 ufs2_daddr_t blk; 827 uint8_t *block; 828 ufs_lbn_t lbn; 829 int blksize; 830 int frags; 831 int doff; 832 833 if (debug) 834 printf("Clearing inode %ju from parent %ju at offset %jd\n", 835 (uintmax_t)child, (uintmax_t)parent, diroff); 836 837 lbn = lblkno(fs, diroff); 838 doff = blkoff(fs, diroff); 839 dip = ino_read(parent); 840 blk = ino_blkatoff(dip, parent, lbn, &frags); 841 blksize = sblksize(fs, DIP(dip, di_size), lbn); 842 block = dblk_read(blk, blksize); 843 dp = (struct direct *)&block[doff]; 844 if (dp->d_ino != child) 845 errx(1, "Inode %ju does not exist in %ju at %jd", 846 (uintmax_t)child, (uintmax_t)parent, diroff); 847 dp->d_ino = 0; 848 dblk_dirty(blk); 849 /* 850 * The actual .. reference count will already have been removed 851 * from the parent by the .. remref record. 852 */ 853 } 854 855 /* 856 * Determines whether a pointer to an inode exists within a directory 857 * at a specified offset. Returns the mode of the found entry. 858 */ 859 static int 860 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 861 { 862 union dinode *dip; 863 struct direct *dp; 864 ufs2_daddr_t blk; 865 uint8_t *block; 866 ufs_lbn_t lbn; 867 int blksize; 868 int frags; 869 int dpoff; 870 int doff; 871 872 *isdot = 0; 873 dip = ino_read(parent); 874 *mode = DIP(dip, di_mode); 875 if ((*mode & IFMT) != IFDIR) { 876 if (debug) { 877 /* 878 * This can happen if the parent inode 879 * was reallocated. 880 */ 881 if (*mode != 0) 882 printf("Directory %ju has bad mode %o\n", 883 (uintmax_t)parent, *mode); 884 else 885 printf("Directory %ju has zero mode\n", 886 (uintmax_t)parent); 887 } 888 return (0); 889 } 890 lbn = lblkno(fs, diroff); 891 doff = blkoff(fs, diroff); 892 blksize = sblksize(fs, DIP(dip, di_size), lbn); 893 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 894 if (debug) 895 printf("ino %ju absent from %ju due to offset %jd" 896 " exceeding size %jd\n", 897 (uintmax_t)child, (uintmax_t)parent, diroff, 898 DIP(dip, di_size)); 899 return (0); 900 } 901 blk = ino_blkatoff(dip, parent, lbn, &frags); 902 if (blk <= 0) { 903 if (debug) 904 printf("Sparse directory %ju", (uintmax_t)parent); 905 return (0); 906 } 907 block = dblk_read(blk, blksize); 908 /* 909 * Walk through the records from the start of the block to be 910 * certain we hit a valid record and not some junk in the middle 911 * of a file name. Stop when we reach or pass the expected offset. 912 */ 913 dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ; 914 do { 915 dp = (struct direct *)&block[dpoff]; 916 if (dpoff == doff) 917 break; 918 if (dp->d_reclen == 0) 919 break; 920 dpoff += dp->d_reclen; 921 } while (dpoff <= doff); 922 if (dpoff > fs->fs_bsize) 923 err_suj("Corrupt directory block in dir ino %ju\n", 924 (uintmax_t)parent); 925 /* Not found. */ 926 if (dpoff != doff) { 927 if (debug) 928 printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n", 929 (uintmax_t)child, (uintmax_t)parent, lbn, dpoff); 930 return (0); 931 } 932 /* 933 * We found the item in question. Record the mode and whether it's 934 * a . or .. link for the caller. 935 */ 936 if (dp->d_ino == child) { 937 if (child == parent) 938 *isdot = 1; 939 else if (dp->d_namlen == 2 && 940 dp->d_name[0] == '.' && dp->d_name[1] == '.') 941 *isdot = 1; 942 *mode = DTTOIF(dp->d_type); 943 return (1); 944 } 945 if (debug) 946 printf("ino %ju doesn't match dirent ino %ju in parent %ju\n", 947 (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent); 948 return (0); 949 } 950 951 #define VISIT_INDIR 0x0001 952 #define VISIT_EXT 0x0002 953 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 954 955 /* 956 * Read an indirect level which may or may not be linked into an inode. 957 */ 958 static void 959 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 960 ino_visitor visitor, int flags) 961 { 962 ufs2_daddr_t *bap2; 963 ufs1_daddr_t *bap1; 964 ufs_lbn_t lbnadd; 965 ufs2_daddr_t nblk; 966 ufs_lbn_t nlbn; 967 int level; 968 int i; 969 970 /* 971 * Don't visit indirect blocks with contents we can't trust. This 972 * should only happen when indir_visit() is called to complete a 973 * truncate that never finished and not when a pointer is found via 974 * an inode. 975 */ 976 if (blk == 0) 977 return; 978 level = lbn_level(lbn); 979 if (level == -1) 980 err_suj("Invalid level for lbn %jd\n", lbn); 981 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 982 if (debug) 983 printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n", 984 blk, (uintmax_t)ino, lbn, level); 985 goto out; 986 } 987 lbnadd = 1; 988 for (i = level; i > 0; i--) 989 lbnadd *= NINDIR(fs); 990 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 991 bap2 = (void *)bap1; 992 for (i = 0; i < NINDIR(fs); i++) { 993 if (fs->fs_magic == FS_UFS1_MAGIC) 994 nblk = *bap1++; 995 else 996 nblk = *bap2++; 997 if (nblk == 0) 998 continue; 999 if (level == 0) { 1000 nlbn = -lbn + i * lbnadd; 1001 (*frags) += fs->fs_frag; 1002 visitor(ino, nlbn, nblk, fs->fs_frag); 1003 } else { 1004 nlbn = (lbn + 1) - (i * lbnadd); 1005 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 1006 } 1007 } 1008 out: 1009 if (flags & VISIT_INDIR) { 1010 (*frags) += fs->fs_frag; 1011 visitor(ino, lbn, blk, fs->fs_frag); 1012 } 1013 } 1014 1015 /* 1016 * Visit each block in an inode as specified by 'flags' and call a 1017 * callback function. The callback may inspect or free blocks. The 1018 * count of frags found according to the size in the file is returned. 1019 * This is not valid for sparse files but may be used to determine 1020 * the correct di_blocks for a file. 1021 */ 1022 static uint64_t 1023 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags) 1024 { 1025 ufs_lbn_t nextlbn; 1026 ufs_lbn_t tmpval; 1027 ufs_lbn_t lbn; 1028 uint64_t size; 1029 uint64_t fragcnt; 1030 int mode; 1031 int frags; 1032 int i; 1033 1034 size = DIP(ip, di_size); 1035 mode = DIP(ip, di_mode) & IFMT; 1036 fragcnt = 0; 1037 if ((flags & VISIT_EXT) && 1038 fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) { 1039 for (i = 0; i < NXADDR; i++) { 1040 if (ip->dp2.di_extb[i] == 0) 1041 continue; 1042 frags = sblksize(fs, ip->dp2.di_extsize, i); 1043 frags = numfrags(fs, frags); 1044 fragcnt += frags; 1045 visitor(ino, -1 - i, ip->dp2.di_extb[i], frags); 1046 } 1047 } 1048 /* Skip datablocks for short links and devices. */ 1049 if (mode == IFBLK || mode == IFCHR || 1050 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 1051 return (fragcnt); 1052 for (i = 0; i < NDADDR; i++) { 1053 if (DIP(ip, di_db[i]) == 0) 1054 continue; 1055 frags = sblksize(fs, size, i); 1056 frags = numfrags(fs, frags); 1057 fragcnt += frags; 1058 visitor(ino, i, DIP(ip, di_db[i]), frags); 1059 } 1060 /* 1061 * We know the following indirects are real as we're following 1062 * real pointers to them. 1063 */ 1064 flags |= VISIT_ROOT; 1065 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1066 lbn = nextlbn) { 1067 nextlbn = lbn + tmpval; 1068 tmpval *= NINDIR(fs); 1069 if (DIP(ip, di_ib[i]) == 0) 1070 continue; 1071 indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor, 1072 flags); 1073 } 1074 return (fragcnt); 1075 } 1076 1077 /* 1078 * Null visitor function used when we just want to count blocks and 1079 * record the lbn. 1080 */ 1081 ufs_lbn_t visitlbn; 1082 static void 1083 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1084 { 1085 if (lbn > 0) 1086 visitlbn = lbn; 1087 } 1088 1089 /* 1090 * Recalculate di_blocks when we discover that a block allocation or 1091 * free was not successfully completed. The kernel does not roll this back 1092 * because it would be too expensive to compute which indirects were 1093 * reachable at the time the inode was written. 1094 */ 1095 static void 1096 ino_adjblks(struct suj_ino *sino) 1097 { 1098 union dinode *ip; 1099 uint64_t blocks; 1100 uint64_t frags; 1101 off_t isize; 1102 off_t size; 1103 ino_t ino; 1104 1105 ino = sino->si_ino; 1106 ip = ino_read(ino); 1107 /* No need to adjust zero'd inodes. */ 1108 if (DIP(ip, di_mode) == 0) 1109 return; 1110 /* 1111 * Visit all blocks and count them as well as recording the last 1112 * valid lbn in the file. If the file size doesn't agree with the 1113 * last lbn we need to truncate to fix it. Otherwise just adjust 1114 * the blocks count. 1115 */ 1116 visitlbn = 0; 1117 frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1118 blocks = fsbtodb(fs, frags); 1119 /* 1120 * We assume the size and direct block list is kept coherent by 1121 * softdep. For files that have extended into indirects we truncate 1122 * to the size in the inode or the maximum size permitted by 1123 * populated indirects. 1124 */ 1125 if (visitlbn >= NDADDR) { 1126 isize = DIP(ip, di_size); 1127 size = lblktosize(fs, visitlbn + 1); 1128 if (isize > size) 1129 isize = size; 1130 /* Always truncate to free any unpopulated indirects. */ 1131 ino_trunc(sino->si_ino, isize); 1132 return; 1133 } 1134 if (blocks == DIP(ip, di_blocks)) 1135 return; 1136 if (debug) 1137 printf("ino %ju adjusting block count from %jd to %jd\n", 1138 (uintmax_t)ino, DIP(ip, di_blocks), blocks); 1139 DIP_SET(ip, di_blocks, blocks); 1140 ino_dirty(ino); 1141 } 1142 1143 static void 1144 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1145 { 1146 int mask; 1147 1148 mask = blk_freemask(blk, ino, lbn, frags); 1149 if (debug) 1150 printf("blk %jd freemask 0x%X\n", blk, mask); 1151 blk_free(blk, mask, frags); 1152 } 1153 1154 /* 1155 * Free a block or tree of blocks that was previously rooted in ino at 1156 * the given lbn. If the lbn is an indirect all children are freed 1157 * recursively. 1158 */ 1159 static void 1160 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 1161 { 1162 uint64_t resid; 1163 int mask; 1164 1165 mask = blk_freemask(blk, ino, lbn, frags); 1166 if (debug) 1167 printf("blk %jd freemask 0x%X\n", blk, mask); 1168 resid = 0; 1169 if (lbn <= -NDADDR && follow && mask == 0) 1170 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 1171 else 1172 blk_free(blk, mask, frags); 1173 } 1174 1175 static void 1176 ino_setskip(struct suj_ino *sino, ino_t parent) 1177 { 1178 int isdot; 1179 int mode; 1180 1181 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 1182 sino->si_skipparent = 1; 1183 } 1184 1185 static void 1186 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) 1187 { 1188 struct suj_ino *sino; 1189 struct suj_rec *srec; 1190 struct jrefrec *rrec; 1191 1192 /* 1193 * Lookup this inode to see if we have a record for it. 1194 */ 1195 sino = ino_lookup(child, 0); 1196 /* 1197 * Tell any child directories we've already removed their 1198 * parent link cnt. Don't try to adjust our link down again. 1199 */ 1200 if (sino != NULL && isdotdot == 0) 1201 ino_setskip(sino, parent); 1202 /* 1203 * No valid record for this inode. Just drop the on-disk 1204 * link by one. 1205 */ 1206 if (sino == NULL || sino->si_hasrecs == 0) { 1207 ino_decr(child); 1208 return; 1209 } 1210 /* 1211 * Use ino_adjust() if ino_check() has already processed this 1212 * child. If we lose the last non-dot reference to a 1213 * directory it will be discarded. 1214 */ 1215 if (sino->si_linkadj) { 1216 sino->si_nlink--; 1217 if (isdotdot) 1218 sino->si_dotlinks--; 1219 ino_adjust(sino); 1220 return; 1221 } 1222 /* 1223 * If we haven't yet processed this inode we need to make 1224 * sure we will successfully discover the lost path. If not 1225 * use nlinkadj to remember. 1226 */ 1227 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1228 rrec = (struct jrefrec *)srec->sr_rec; 1229 if (rrec->jr_parent == parent && 1230 rrec->jr_diroff == diroff) 1231 return; 1232 } 1233 sino->si_nlinkadj++; 1234 } 1235 1236 /* 1237 * Free the children of a directory when the directory is discarded. 1238 */ 1239 static void 1240 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1241 { 1242 struct suj_ino *sino; 1243 struct direct *dp; 1244 off_t diroff; 1245 uint8_t *block; 1246 int skipparent; 1247 int isdotdot; 1248 int dpoff; 1249 int size; 1250 1251 sino = ino_lookup(ino, 0); 1252 if (sino) 1253 skipparent = sino->si_skipparent; 1254 else 1255 skipparent = 0; 1256 size = lfragtosize(fs, frags); 1257 block = dblk_read(blk, size); 1258 dp = (struct direct *)&block[0]; 1259 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1260 dp = (struct direct *)&block[dpoff]; 1261 if (dp->d_ino == 0 || dp->d_ino == WINO) 1262 continue; 1263 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1264 continue; 1265 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1266 dp->d_name[1] == '.'; 1267 if (isdotdot && skipparent == 1) 1268 continue; 1269 if (debug) 1270 printf("Directory %ju removing ino %ju name %s\n", 1271 (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name); 1272 diroff = lblktosize(fs, lbn) + dpoff; 1273 ino_remref(ino, dp->d_ino, diroff, isdotdot); 1274 } 1275 } 1276 1277 /* 1278 * Reclaim an inode, freeing all blocks and decrementing all children's 1279 * link counts. Free the inode back to the cg. 1280 */ 1281 static void 1282 ino_reclaim(union dinode *ip, ino_t ino, int mode) 1283 { 1284 uint32_t gen; 1285 1286 if (ino == ROOTINO) 1287 err_suj("Attempting to free ROOTINO\n"); 1288 if (debug) 1289 printf("Truncating and freeing ino %ju, nlink %d, mode %o\n", 1290 (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode)); 1291 1292 /* We are freeing an inode or directory. */ 1293 if ((DIP(ip, di_mode) & IFMT) == IFDIR) 1294 ino_visit(ip, ino, ino_free_children, 0); 1295 DIP_SET(ip, di_nlink, 0); 1296 ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1297 /* Here we have to clear the inode and release any blocks it holds. */ 1298 gen = DIP(ip, di_gen); 1299 if (fs->fs_magic == FS_UFS1_MAGIC) 1300 bzero(ip, sizeof(struct ufs1_dinode)); 1301 else 1302 bzero(ip, sizeof(struct ufs2_dinode)); 1303 DIP_SET(ip, di_gen, gen); 1304 ino_dirty(ino); 1305 ino_free(ino, mode); 1306 return; 1307 } 1308 1309 /* 1310 * Adjust an inode's link count down by one when a directory goes away. 1311 */ 1312 static void 1313 ino_decr(ino_t ino) 1314 { 1315 union dinode *ip; 1316 int reqlink; 1317 int nlink; 1318 int mode; 1319 1320 ip = ino_read(ino); 1321 nlink = DIP(ip, di_nlink); 1322 mode = DIP(ip, di_mode); 1323 if (nlink < 1) 1324 err_suj("Inode %d link count %d invalid\n", ino, nlink); 1325 if (mode == 0) 1326 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); 1327 nlink--; 1328 if ((mode & IFMT) == IFDIR) 1329 reqlink = 2; 1330 else 1331 reqlink = 1; 1332 if (nlink < reqlink) { 1333 if (debug) 1334 printf("ino %ju not enough links to live %d < %d\n", 1335 (uintmax_t)ino, nlink, reqlink); 1336 ino_reclaim(ip, ino, mode); 1337 return; 1338 } 1339 DIP_SET(ip, di_nlink, nlink); 1340 ino_dirty(ino); 1341 } 1342 1343 /* 1344 * Adjust the inode link count to 'nlink'. If the count reaches zero 1345 * free it. 1346 */ 1347 static void 1348 ino_adjust(struct suj_ino *sino) 1349 { 1350 struct jrefrec *rrec; 1351 struct suj_rec *srec; 1352 struct suj_ino *stmp; 1353 union dinode *ip; 1354 nlink_t nlink; 1355 int recmode; 1356 int reqlink; 1357 int isdot; 1358 int mode; 1359 ino_t ino; 1360 1361 nlink = sino->si_nlink; 1362 ino = sino->si_ino; 1363 mode = sino->si_mode & IFMT; 1364 /* 1365 * If it's a directory with no dot links, it was truncated before 1366 * the name was cleared. We need to clear the dirent that 1367 * points at it. 1368 */ 1369 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { 1370 sino->si_nlink = nlink = 0; 1371 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1372 rrec = (struct jrefrec *)srec->sr_rec; 1373 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, 1374 &recmode, &isdot) == 0) 1375 continue; 1376 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); 1377 break; 1378 } 1379 if (srec == NULL) 1380 errx(1, "Directory %ju name not found", (uintmax_t)ino); 1381 } 1382 /* 1383 * If it's a directory with no real names pointing to it go ahead 1384 * and truncate it. This will free any children. 1385 */ 1386 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { 1387 sino->si_nlink = nlink = 0; 1388 /* 1389 * Mark any .. links so they know not to free this inode 1390 * when they are removed. 1391 */ 1392 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1393 rrec = (struct jrefrec *)srec->sr_rec; 1394 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1395 stmp = ino_lookup(rrec->jr_parent, 0); 1396 if (stmp) 1397 ino_setskip(stmp, ino); 1398 } 1399 } 1400 } 1401 ip = ino_read(ino); 1402 mode = DIP(ip, di_mode) & IFMT; 1403 if (nlink > LINK_MAX) 1404 err_suj("ino %ju nlink manipulation error, new %d, old %d\n", 1405 (uintmax_t)ino, nlink, DIP(ip, di_nlink)); 1406 if (debug) 1407 printf("Adjusting ino %ju, nlink %d, old link %d lastmode %o\n", 1408 (uintmax_t)ino, nlink, DIP(ip, di_nlink), sino->si_mode); 1409 if (mode == 0) { 1410 if (debug) 1411 printf("ino %ju, zero inode freeing bitmap\n", 1412 (uintmax_t)ino); 1413 ino_free(ino, sino->si_mode); 1414 return; 1415 } 1416 /* XXX Should be an assert? */ 1417 if (mode != sino->si_mode && debug) 1418 printf("ino %ju, mode %o != %o\n", 1419 (uintmax_t)ino, mode, sino->si_mode); 1420 if ((mode & IFMT) == IFDIR) 1421 reqlink = 2; 1422 else 1423 reqlink = 1; 1424 /* If the inode doesn't have enough links to live, free it. */ 1425 if (nlink < reqlink) { 1426 if (debug) 1427 printf("ino %ju not enough links to live %d < %d\n", 1428 (uintmax_t)ino, nlink, reqlink); 1429 ino_reclaim(ip, ino, mode); 1430 return; 1431 } 1432 /* If required write the updated link count. */ 1433 if (DIP(ip, di_nlink) == nlink) { 1434 if (debug) 1435 printf("ino %ju, link matches, skipping.\n", 1436 (uintmax_t)ino); 1437 return; 1438 } 1439 DIP_SET(ip, di_nlink, nlink); 1440 ino_dirty(ino); 1441 } 1442 1443 /* 1444 * Truncate some or all blocks in an indirect, freeing any that are required 1445 * and zeroing the indirect. 1446 */ 1447 static void 1448 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn) 1449 { 1450 ufs2_daddr_t *bap2; 1451 ufs1_daddr_t *bap1; 1452 ufs_lbn_t lbnadd; 1453 ufs2_daddr_t nblk; 1454 ufs_lbn_t next; 1455 ufs_lbn_t nlbn; 1456 int dirty; 1457 int level; 1458 int i; 1459 1460 if (blk == 0) 1461 return; 1462 dirty = 0; 1463 level = lbn_level(lbn); 1464 if (level == -1) 1465 err_suj("Invalid level for lbn %jd\n", lbn); 1466 lbnadd = 1; 1467 for (i = level; i > 0; i--) 1468 lbnadd *= NINDIR(fs); 1469 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 1470 bap2 = (void *)bap1; 1471 for (i = 0; i < NINDIR(fs); i++) { 1472 if (fs->fs_magic == FS_UFS1_MAGIC) 1473 nblk = *bap1++; 1474 else 1475 nblk = *bap2++; 1476 if (nblk == 0) 1477 continue; 1478 if (level != 0) { 1479 nlbn = (lbn + 1) - (i * lbnadd); 1480 /* 1481 * Calculate the lbn of the next indirect to 1482 * determine if any of this indirect must be 1483 * reclaimed. 1484 */ 1485 next = -(lbn + level) + ((i+1) * lbnadd); 1486 if (next <= lastlbn) 1487 continue; 1488 indir_trunc(ino, nlbn, nblk, lastlbn); 1489 /* If all of this indirect was reclaimed, free it. */ 1490 nlbn = next - lbnadd; 1491 if (nlbn < lastlbn) 1492 continue; 1493 } else { 1494 nlbn = -lbn + i * lbnadd; 1495 if (nlbn < lastlbn) 1496 continue; 1497 } 1498 dirty = 1; 1499 blk_free(nblk, 0, fs->fs_frag); 1500 if (fs->fs_magic == FS_UFS1_MAGIC) 1501 *(bap1 - 1) = 0; 1502 else 1503 *(bap2 - 1) = 0; 1504 } 1505 if (dirty) 1506 dblk_dirty(blk); 1507 } 1508 1509 /* 1510 * Truncate an inode to the minimum of the given size or the last populated 1511 * block after any over size have been discarded. The kernel would allocate 1512 * the last block in the file but fsck does not and neither do we. This 1513 * code never extends files, only shrinks them. 1514 */ 1515 static void 1516 ino_trunc(ino_t ino, off_t size) 1517 { 1518 union dinode *ip; 1519 ufs2_daddr_t bn; 1520 uint64_t totalfrags; 1521 ufs_lbn_t nextlbn; 1522 ufs_lbn_t lastlbn; 1523 ufs_lbn_t tmpval; 1524 ufs_lbn_t lbn; 1525 ufs_lbn_t i; 1526 int frags; 1527 off_t cursize; 1528 off_t off; 1529 int mode; 1530 1531 ip = ino_read(ino); 1532 mode = DIP(ip, di_mode) & IFMT; 1533 cursize = DIP(ip, di_size); 1534 if (debug) 1535 printf("Truncating ino %ju, mode %o to size %jd from size %jd\n", 1536 (uintmax_t)ino, mode, size, cursize); 1537 1538 /* Skip datablocks for short links and devices. */ 1539 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1540 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) 1541 return; 1542 /* Don't extend. */ 1543 if (size > cursize) 1544 size = cursize; 1545 lastlbn = lblkno(fs, blkroundup(fs, size)); 1546 for (i = lastlbn; i < NDADDR; i++) { 1547 if (DIP(ip, di_db[i]) == 0) 1548 continue; 1549 frags = sblksize(fs, cursize, i); 1550 frags = numfrags(fs, frags); 1551 blk_free(DIP(ip, di_db[i]), 0, frags); 1552 DIP_SET(ip, di_db[i], 0); 1553 } 1554 /* 1555 * Follow indirect blocks, freeing anything required. 1556 */ 1557 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1558 lbn = nextlbn) { 1559 nextlbn = lbn + tmpval; 1560 tmpval *= NINDIR(fs); 1561 /* If we're not freeing any in this indirect range skip it. */ 1562 if (lastlbn >= nextlbn) 1563 continue; 1564 if (DIP(ip, di_ib[i]) == 0) 1565 continue; 1566 indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn); 1567 /* If we freed everything in this indirect free the indir. */ 1568 if (lastlbn > lbn) 1569 continue; 1570 blk_free(DIP(ip, di_ib[i]), 0, frags); 1571 DIP_SET(ip, di_ib[i], 0); 1572 } 1573 ino_dirty(ino); 1574 /* 1575 * Now that we've freed any whole blocks that exceed the desired 1576 * truncation size, figure out how many blocks remain and what the 1577 * last populated lbn is. We will set the size to this last lbn 1578 * rather than worrying about allocating the final lbn as the kernel 1579 * would've done. This is consistent with normal fsck behavior. 1580 */ 1581 visitlbn = 0; 1582 totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1583 if (size > lblktosize(fs, visitlbn + 1)) 1584 size = lblktosize(fs, visitlbn + 1); 1585 /* 1586 * If we're truncating direct blocks we have to adjust frags 1587 * accordingly. 1588 */ 1589 if (visitlbn < NDADDR && totalfrags) { 1590 long oldspace, newspace; 1591 1592 bn = DIP(ip, di_db[visitlbn]); 1593 if (bn == 0) 1594 err_suj("Bad blk at ino %ju lbn %jd\n", 1595 (uintmax_t)ino, visitlbn); 1596 oldspace = sblksize(fs, cursize, visitlbn); 1597 newspace = sblksize(fs, size, visitlbn); 1598 if (oldspace != newspace) { 1599 bn += numfrags(fs, newspace); 1600 frags = numfrags(fs, oldspace - newspace); 1601 blk_free(bn, 0, frags); 1602 totalfrags -= frags; 1603 } 1604 } 1605 DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags)); 1606 DIP_SET(ip, di_size, size); 1607 /* 1608 * If we've truncated into the middle of a block or frag we have 1609 * to zero it here. Otherwise the file could extend into 1610 * uninitialized space later. 1611 */ 1612 off = blkoff(fs, size); 1613 if (off && DIP(ip, di_mode) != IFDIR) { 1614 uint8_t *buf; 1615 long clrsize; 1616 1617 bn = ino_blkatoff(ip, ino, visitlbn, &frags); 1618 if (bn == 0) 1619 err_suj("Block missing from ino %ju at lbn %jd\n", 1620 (uintmax_t)ino, visitlbn); 1621 clrsize = frags * fs->fs_fsize; 1622 buf = dblk_read(bn, clrsize); 1623 clrsize -= off; 1624 buf += off; 1625 bzero(buf, clrsize); 1626 dblk_dirty(bn); 1627 } 1628 return; 1629 } 1630 1631 /* 1632 * Process records available for one inode and determine whether the 1633 * link count is correct or needs adjusting. 1634 */ 1635 static void 1636 ino_check(struct suj_ino *sino) 1637 { 1638 struct suj_rec *srec; 1639 struct jrefrec *rrec; 1640 nlink_t dotlinks; 1641 int newlinks; 1642 int removes; 1643 int nlink; 1644 ino_t ino; 1645 int isdot; 1646 int isat; 1647 int mode; 1648 1649 if (sino->si_hasrecs == 0) 1650 return; 1651 ino = sino->si_ino; 1652 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1653 nlink = rrec->jr_nlink; 1654 newlinks = 0; 1655 dotlinks = 0; 1656 removes = sino->si_nlinkadj; 1657 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1658 rrec = (struct jrefrec *)srec->sr_rec; 1659 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1660 rrec->jr_ino, &mode, &isdot); 1661 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1662 err_suj("Inode mode/directory type mismatch %o != %o\n", 1663 mode, rrec->jr_mode); 1664 if (debug) 1665 printf("jrefrec: op %d ino %ju, nlink %d, parent %d, " 1666 "diroff %jd, mode %o, isat %d, isdot %d\n", 1667 rrec->jr_op, (uintmax_t)rrec->jr_ino, 1668 rrec->jr_nlink, rrec->jr_parent, rrec->jr_diroff, 1669 rrec->jr_mode, isat, isdot); 1670 mode = rrec->jr_mode & IFMT; 1671 if (rrec->jr_op == JOP_REMREF) 1672 removes++; 1673 newlinks += isat; 1674 if (isdot) 1675 dotlinks += isat; 1676 } 1677 /* 1678 * The number of links that remain are the starting link count 1679 * subtracted by the total number of removes with the total 1680 * links discovered back in. An incomplete remove thus 1681 * makes no change to the link count but an add increases 1682 * by one. 1683 */ 1684 if (debug) 1685 printf("ino %ju nlink %d newlinks %d removes %d dotlinks %d\n", 1686 (uintmax_t)ino, nlink, newlinks, removes, dotlinks); 1687 nlink += newlinks; 1688 nlink -= removes; 1689 sino->si_linkadj = 1; 1690 sino->si_nlink = nlink; 1691 sino->si_dotlinks = dotlinks; 1692 sino->si_mode = mode; 1693 ino_adjust(sino); 1694 } 1695 1696 /* 1697 * Process records available for one block and determine whether it is 1698 * still allocated and whether the owning inode needs to be updated or 1699 * a free completed. 1700 */ 1701 static void 1702 blk_check(struct suj_blk *sblk) 1703 { 1704 struct suj_rec *srec; 1705 struct jblkrec *brec; 1706 struct suj_ino *sino; 1707 ufs2_daddr_t blk; 1708 int mask; 1709 int frags; 1710 int isat; 1711 1712 /* 1713 * Each suj_blk actually contains records for any fragments in that 1714 * block. As a result we must evaluate each record individually. 1715 */ 1716 sino = NULL; 1717 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1718 brec = (struct jblkrec *)srec->sr_rec; 1719 frags = brec->jb_frags; 1720 blk = brec->jb_blkno + brec->jb_oldfrags; 1721 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1722 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1723 sino = ino_lookup(brec->jb_ino, 1); 1724 sino->si_blkadj = 1; 1725 } 1726 if (debug) 1727 printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n", 1728 brec->jb_op, blk, (uintmax_t)brec->jb_ino, 1729 brec->jb_lbn, brec->jb_frags, isat, frags); 1730 /* 1731 * If we found the block at this address we still have to 1732 * determine if we need to free the tail end that was 1733 * added by adding contiguous fragments from the same block. 1734 */ 1735 if (isat == 1) { 1736 if (frags == brec->jb_frags) 1737 continue; 1738 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1739 brec->jb_frags); 1740 mask >>= frags; 1741 blk += frags; 1742 frags = brec->jb_frags - frags; 1743 blk_free(blk, mask, frags); 1744 continue; 1745 } 1746 /* 1747 * The block wasn't found, attempt to free it. It won't be 1748 * freed if it was actually reallocated. If this was an 1749 * allocation we don't want to follow indirects as they 1750 * may not be written yet. Any children of the indirect will 1751 * have their own records. If it's a free we need to 1752 * recursively free children. 1753 */ 1754 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1755 brec->jb_op == JOP_FREEBLK); 1756 } 1757 } 1758 1759 /* 1760 * Walk the list of inode records for this cg and resolve moved and duplicate 1761 * inode references now that we have a complete picture. 1762 */ 1763 static void 1764 cg_build(struct suj_cg *sc) 1765 { 1766 struct suj_ino *sino; 1767 int i; 1768 1769 for (i = 0; i < SUJ_HASHSIZE; i++) 1770 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1771 ino_build(sino); 1772 } 1773 1774 /* 1775 * Handle inodes requiring truncation. This must be done prior to 1776 * looking up any inodes in directories. 1777 */ 1778 static void 1779 cg_trunc(struct suj_cg *sc) 1780 { 1781 struct suj_ino *sino; 1782 int i; 1783 1784 for (i = 0; i < SUJ_HASHSIZE; i++) { 1785 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1786 if (sino->si_trunc) { 1787 ino_trunc(sino->si_ino, 1788 sino->si_trunc->jt_size); 1789 sino->si_blkadj = 0; 1790 sino->si_trunc = NULL; 1791 } 1792 if (sino->si_blkadj) 1793 ino_adjblks(sino); 1794 } 1795 } 1796 } 1797 1798 static void 1799 cg_adj_blk(struct suj_cg *sc) 1800 { 1801 struct suj_ino *sino; 1802 int i; 1803 1804 for (i = 0; i < SUJ_HASHSIZE; i++) { 1805 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1806 if (sino->si_blkadj) 1807 ino_adjblks(sino); 1808 } 1809 } 1810 } 1811 1812 /* 1813 * Free any partially allocated blocks and then resolve inode block 1814 * counts. 1815 */ 1816 static void 1817 cg_check_blk(struct suj_cg *sc) 1818 { 1819 struct suj_blk *sblk; 1820 int i; 1821 1822 1823 for (i = 0; i < SUJ_HASHSIZE; i++) 1824 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1825 blk_check(sblk); 1826 } 1827 1828 /* 1829 * Walk the list of inode records for this cg, recovering any 1830 * changes which were not complete at the time of crash. 1831 */ 1832 static void 1833 cg_check_ino(struct suj_cg *sc) 1834 { 1835 struct suj_ino *sino; 1836 int i; 1837 1838 for (i = 0; i < SUJ_HASHSIZE; i++) 1839 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1840 ino_check(sino); 1841 } 1842 1843 /* 1844 * Write a potentially dirty cg. Recalculate the summary information and 1845 * update the superblock summary. 1846 */ 1847 static void 1848 cg_write(struct suj_cg *sc) 1849 { 1850 ufs1_daddr_t fragno, cgbno, maxbno; 1851 u_int8_t *blksfree; 1852 struct cg *cgp; 1853 int blk; 1854 int i; 1855 1856 if (sc->sc_dirty == 0) 1857 return; 1858 /* 1859 * Fix the frag and cluster summary. 1860 */ 1861 cgp = sc->sc_cgp; 1862 cgp->cg_cs.cs_nbfree = 0; 1863 cgp->cg_cs.cs_nffree = 0; 1864 bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum)); 1865 maxbno = fragstoblks(fs, fs->fs_fpg); 1866 if (fs->fs_contigsumsize > 0) { 1867 for (i = 1; i <= fs->fs_contigsumsize; i++) 1868 cg_clustersum(cgp)[i] = 0; 1869 bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT)); 1870 } 1871 blksfree = cg_blksfree(cgp); 1872 for (cgbno = 0; cgbno < maxbno; cgbno++) { 1873 if (ffs_isfreeblock(fs, blksfree, cgbno)) 1874 continue; 1875 if (ffs_isblock(fs, blksfree, cgbno)) { 1876 ffs_clusteracct(fs, cgp, cgbno, 1); 1877 cgp->cg_cs.cs_nbfree++; 1878 continue; 1879 } 1880 fragno = blkstofrags(fs, cgbno); 1881 blk = blkmap(fs, blksfree, fragno); 1882 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1883 for (i = 0; i < fs->fs_frag; i++) 1884 if (isset(blksfree, fragno + i)) 1885 cgp->cg_cs.cs_nffree++; 1886 } 1887 /* 1888 * Update the superblock cg summary from our now correct values 1889 * before writing the block. 1890 */ 1891 fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs; 1892 if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 1893 fs->fs_bsize) == -1) 1894 err_suj("Unable to write cylinder group %d\n", sc->sc_cgx); 1895 } 1896 1897 /* 1898 * Write out any modified inodes. 1899 */ 1900 static void 1901 cg_write_inos(struct suj_cg *sc) 1902 { 1903 struct ino_blk *iblk; 1904 int i; 1905 1906 for (i = 0; i < SUJ_HASHSIZE; i++) 1907 LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next) 1908 if (iblk->ib_dirty) 1909 iblk_write(iblk); 1910 } 1911 1912 static void 1913 cg_apply(void (*apply)(struct suj_cg *)) 1914 { 1915 struct suj_cg *scg; 1916 int i; 1917 1918 for (i = 0; i < SUJ_HASHSIZE; i++) 1919 LIST_FOREACH(scg, &cghash[i], sc_next) 1920 apply(scg); 1921 } 1922 1923 /* 1924 * Process the unlinked but referenced file list. Freeing all inodes. 1925 */ 1926 static void 1927 ino_unlinked(void) 1928 { 1929 union dinode *ip; 1930 uint16_t mode; 1931 ino_t inon; 1932 ino_t ino; 1933 1934 ino = fs->fs_sujfree; 1935 fs->fs_sujfree = 0; 1936 while (ino != 0) { 1937 ip = ino_read(ino); 1938 mode = DIP(ip, di_mode) & IFMT; 1939 inon = DIP(ip, di_freelink); 1940 DIP_SET(ip, di_freelink, 0); 1941 /* 1942 * XXX Should this be an errx? 1943 */ 1944 if (DIP(ip, di_nlink) == 0) { 1945 if (debug) 1946 printf("Freeing unlinked ino %ju mode %o\n", 1947 (uintmax_t)ino, mode); 1948 ino_reclaim(ip, ino, mode); 1949 } else if (debug) 1950 printf("Skipping ino %ju mode %o with link %d\n", 1951 (uintmax_t)ino, mode, DIP(ip, di_nlink)); 1952 ino = inon; 1953 } 1954 } 1955 1956 /* 1957 * Append a new record to the list of records requiring processing. 1958 */ 1959 static void 1960 ino_append(union jrec *rec) 1961 { 1962 struct jrefrec *refrec; 1963 struct jmvrec *mvrec; 1964 struct suj_ino *sino; 1965 struct suj_rec *srec; 1966 1967 mvrec = &rec->rec_jmvrec; 1968 refrec = &rec->rec_jrefrec; 1969 if (debug && mvrec->jm_op == JOP_MVREF) 1970 printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n", 1971 mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff, 1972 mvrec->jm_oldoff); 1973 else if (debug && 1974 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1975 printf("ino ref: op %d, ino %d, nlink %d, " 1976 "parent %d, diroff %jd\n", 1977 refrec->jr_op, refrec->jr_ino, refrec->jr_nlink, 1978 refrec->jr_parent, refrec->jr_diroff); 1979 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1980 sino->si_hasrecs = 1; 1981 srec = errmalloc(sizeof(*srec)); 1982 srec->sr_rec = rec; 1983 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1984 } 1985 1986 /* 1987 * Add a reference adjustment to the sino list and eliminate dups. The 1988 * primary loop in ino_build_ref() checks for dups but new ones may be 1989 * created as a result of offset adjustments. 1990 */ 1991 static void 1992 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1993 { 1994 struct jrefrec *refrec; 1995 struct suj_rec *srn; 1996 struct jrefrec *rrn; 1997 1998 refrec = (struct jrefrec *)srec->sr_rec; 1999 /* 2000 * We walk backwards so that the oldest link count is preserved. If 2001 * an add record conflicts with a remove keep the remove. Redundant 2002 * removes are eliminated in ino_build_ref. Otherwise we keep the 2003 * oldest record at a given location. 2004 */ 2005 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 2006 srn = TAILQ_PREV(srn, srechd, sr_next)) { 2007 rrn = (struct jrefrec *)srn->sr_rec; 2008 if (rrn->jr_parent != refrec->jr_parent || 2009 rrn->jr_diroff != refrec->jr_diroff) 2010 continue; 2011 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 2012 rrn->jr_mode = refrec->jr_mode; 2013 return; 2014 } 2015 /* 2016 * Adding a remove. 2017 * 2018 * Replace the record in place with the old nlink in case 2019 * we replace the head of the list. Abandon srec as a dup. 2020 */ 2021 refrec->jr_nlink = rrn->jr_nlink; 2022 srn->sr_rec = srec->sr_rec; 2023 return; 2024 } 2025 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 2026 } 2027 2028 /* 2029 * Create a duplicate of a reference at a previous location. 2030 */ 2031 static void 2032 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 2033 { 2034 struct jrefrec *rrn; 2035 struct suj_rec *srn; 2036 2037 rrn = errmalloc(sizeof(*refrec)); 2038 *rrn = *refrec; 2039 rrn->jr_op = JOP_ADDREF; 2040 rrn->jr_diroff = diroff; 2041 srn = errmalloc(sizeof(*srn)); 2042 srn->sr_rec = (union jrec *)rrn; 2043 ino_add_ref(sino, srn); 2044 } 2045 2046 /* 2047 * Add a reference to the list at all known locations. We follow the offset 2048 * changes for a single instance and create duplicate add refs at each so 2049 * that we can tolerate any version of the directory block. Eliminate 2050 * removes which collide with adds that are seen in the journal. They should 2051 * not adjust the link count down. 2052 */ 2053 static void 2054 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 2055 { 2056 struct jrefrec *refrec; 2057 struct jmvrec *mvrec; 2058 struct suj_rec *srp; 2059 struct suj_rec *srn; 2060 struct jrefrec *rrn; 2061 off_t diroff; 2062 2063 refrec = (struct jrefrec *)srec->sr_rec; 2064 /* 2065 * Search for a mvrec that matches this offset. Whether it's an add 2066 * or a remove we can delete the mvref after creating a dup record in 2067 * the old location. 2068 */ 2069 if (!TAILQ_EMPTY(&sino->si_movs)) { 2070 diroff = refrec->jr_diroff; 2071 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 2072 srp = TAILQ_PREV(srn, srechd, sr_next); 2073 mvrec = (struct jmvrec *)srn->sr_rec; 2074 if (mvrec->jm_parent != refrec->jr_parent || 2075 mvrec->jm_newoff != diroff) 2076 continue; 2077 diroff = mvrec->jm_oldoff; 2078 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 2079 free(srn); 2080 ino_dup_ref(sino, refrec, diroff); 2081 } 2082 } 2083 /* 2084 * If a remove wasn't eliminated by an earlier add just append it to 2085 * the list. 2086 */ 2087 if (refrec->jr_op == JOP_REMREF) { 2088 ino_add_ref(sino, srec); 2089 return; 2090 } 2091 /* 2092 * Walk the list of records waiting to be added to the list. We 2093 * must check for moves that apply to our current offset and remove 2094 * them from the list. Remove any duplicates to eliminate removes 2095 * with corresponding adds. 2096 */ 2097 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 2098 switch (srn->sr_rec->rec_jrefrec.jr_op) { 2099 case JOP_ADDREF: 2100 /* 2101 * This should actually be an error we should 2102 * have a remove for every add journaled. 2103 */ 2104 rrn = (struct jrefrec *)srn->sr_rec; 2105 if (rrn->jr_parent != refrec->jr_parent || 2106 rrn->jr_diroff != refrec->jr_diroff) 2107 break; 2108 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2109 break; 2110 case JOP_REMREF: 2111 /* 2112 * Once we remove the current iteration of the 2113 * record at this address we're done. 2114 */ 2115 rrn = (struct jrefrec *)srn->sr_rec; 2116 if (rrn->jr_parent != refrec->jr_parent || 2117 rrn->jr_diroff != refrec->jr_diroff) 2118 break; 2119 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2120 ino_add_ref(sino, srec); 2121 return; 2122 case JOP_MVREF: 2123 /* 2124 * Update our diroff based on any moves that match 2125 * and remove the move. 2126 */ 2127 mvrec = (struct jmvrec *)srn->sr_rec; 2128 if (mvrec->jm_parent != refrec->jr_parent || 2129 mvrec->jm_oldoff != refrec->jr_diroff) 2130 break; 2131 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 2132 refrec->jr_diroff = mvrec->jm_newoff; 2133 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2134 break; 2135 default: 2136 err_suj("ino_build_ref: Unknown op %d\n", 2137 srn->sr_rec->rec_jrefrec.jr_op); 2138 } 2139 } 2140 ino_add_ref(sino, srec); 2141 } 2142 2143 /* 2144 * Walk the list of new records and add them in-order resolving any 2145 * dups and adjusted offsets. 2146 */ 2147 static void 2148 ino_build(struct suj_ino *sino) 2149 { 2150 struct suj_rec *srec; 2151 2152 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 2153 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 2154 switch (srec->sr_rec->rec_jrefrec.jr_op) { 2155 case JOP_ADDREF: 2156 case JOP_REMREF: 2157 ino_build_ref(sino, srec); 2158 break; 2159 case JOP_MVREF: 2160 /* 2161 * Add this mvrec to the queue of pending mvs. 2162 */ 2163 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 2164 break; 2165 default: 2166 err_suj("ino_build: Unknown op %d\n", 2167 srec->sr_rec->rec_jrefrec.jr_op); 2168 } 2169 } 2170 if (TAILQ_EMPTY(&sino->si_recs)) 2171 sino->si_hasrecs = 0; 2172 } 2173 2174 /* 2175 * Modify journal records so they refer to the base block number 2176 * and a start and end frag range. This is to facilitate the discovery 2177 * of overlapping fragment allocations. 2178 */ 2179 static void 2180 blk_build(struct jblkrec *blkrec) 2181 { 2182 struct suj_rec *srec; 2183 struct suj_blk *sblk; 2184 struct jblkrec *blkrn; 2185 ufs2_daddr_t blk; 2186 int frag; 2187 2188 if (debug) 2189 printf("blk_build: op %d blkno %jd frags %d oldfrags %d " 2190 "ino %d lbn %jd\n", 2191 blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags, 2192 blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn); 2193 2194 blk = blknum(fs, blkrec->jb_blkno); 2195 frag = fragnum(fs, blkrec->jb_blkno); 2196 sblk = blk_lookup(blk, 1); 2197 /* 2198 * Rewrite the record using oldfrags to indicate the offset into 2199 * the block. Leave jb_frags as the actual allocated count. 2200 */ 2201 blkrec->jb_blkno -= frag; 2202 blkrec->jb_oldfrags = frag; 2203 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 2204 err_suj("Invalid fragment count %d oldfrags %d\n", 2205 blkrec->jb_frags, frag); 2206 /* 2207 * Detect dups. If we detect a dup we always discard the oldest 2208 * record as it is superseded by the new record. This speeds up 2209 * later stages but also eliminates free records which are used 2210 * to indicate that the contents of indirects can be trusted. 2211 */ 2212 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 2213 blkrn = (struct jblkrec *)srec->sr_rec; 2214 if (blkrn->jb_ino != blkrec->jb_ino || 2215 blkrn->jb_lbn != blkrec->jb_lbn || 2216 blkrn->jb_blkno != blkrec->jb_blkno || 2217 blkrn->jb_frags != blkrec->jb_frags || 2218 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 2219 continue; 2220 if (debug) 2221 printf("Removed dup.\n"); 2222 /* Discard the free which is a dup with an alloc. */ 2223 if (blkrec->jb_op == JOP_FREEBLK) 2224 return; 2225 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 2226 free(srec); 2227 break; 2228 } 2229 srec = errmalloc(sizeof(*srec)); 2230 srec->sr_rec = (union jrec *)blkrec; 2231 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 2232 } 2233 2234 static void 2235 ino_build_trunc(struct jtrncrec *rec) 2236 { 2237 struct suj_ino *sino; 2238 2239 if (debug) 2240 printf("ino_build_trunc: op %d ino %d, size %jd\n", 2241 rec->jt_op, rec->jt_ino, rec->jt_size); 2242 sino = ino_lookup(rec->jt_ino, 1); 2243 if (rec->jt_op == JOP_SYNC) { 2244 sino->si_trunc = NULL; 2245 return; 2246 } 2247 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size) 2248 sino->si_trunc = rec; 2249 } 2250 2251 /* 2252 * Build up tables of the operations we need to recover. 2253 */ 2254 static void 2255 suj_build(void) 2256 { 2257 struct suj_seg *seg; 2258 union jrec *rec; 2259 int off; 2260 int i; 2261 2262 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2263 if (debug) 2264 printf("seg %jd has %d records, oldseq %jd.\n", 2265 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 2266 seg->ss_rec.jsr_oldest); 2267 off = 0; 2268 rec = (union jrec *)seg->ss_blk; 2269 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2270 /* skip the segrec. */ 2271 if ((off % real_dev_bsize) == 0) 2272 continue; 2273 switch (rec->rec_jrefrec.jr_op) { 2274 case JOP_ADDREF: 2275 case JOP_REMREF: 2276 case JOP_MVREF: 2277 ino_append(rec); 2278 break; 2279 case JOP_NEWBLK: 2280 case JOP_FREEBLK: 2281 blk_build((struct jblkrec *)rec); 2282 break; 2283 case JOP_TRUNC: 2284 case JOP_SYNC: 2285 ino_build_trunc((struct jtrncrec *)rec); 2286 break; 2287 default: 2288 err_suj("Unknown journal operation %d (%d)\n", 2289 rec->rec_jrefrec.jr_op, off); 2290 } 2291 i++; 2292 } 2293 } 2294 } 2295 2296 /* 2297 * Prune the journal segments to those we care about based on the 2298 * oldest sequence in the newest segment. Order the segment list 2299 * based on sequence number. 2300 */ 2301 static void 2302 suj_prune(void) 2303 { 2304 struct suj_seg *seg; 2305 struct suj_seg *segn; 2306 uint64_t newseq; 2307 int discard; 2308 2309 if (debug) 2310 printf("Pruning up to %jd\n", oldseq); 2311 /* First free the expired segments. */ 2312 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2313 if (seg->ss_rec.jsr_seq >= oldseq) 2314 continue; 2315 TAILQ_REMOVE(&allsegs, seg, ss_next); 2316 free(seg->ss_blk); 2317 free(seg); 2318 } 2319 /* Next ensure that segments are ordered properly. */ 2320 seg = TAILQ_FIRST(&allsegs); 2321 if (seg == NULL) { 2322 if (debug) 2323 printf("Empty journal\n"); 2324 return; 2325 } 2326 newseq = seg->ss_rec.jsr_seq; 2327 for (;;) { 2328 seg = TAILQ_LAST(&allsegs, seghd); 2329 if (seg->ss_rec.jsr_seq >= newseq) 2330 break; 2331 TAILQ_REMOVE(&allsegs, seg, ss_next); 2332 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2333 newseq = seg->ss_rec.jsr_seq; 2334 2335 } 2336 if (newseq != oldseq) { 2337 err_suj("Journal file sequence mismatch %jd != %jd\n", 2338 newseq, oldseq); 2339 } 2340 /* 2341 * The kernel may asynchronously write segments which can create 2342 * gaps in the sequence space. Throw away any segments after the 2343 * gap as the kernel guarantees only those that are contiguously 2344 * reachable are marked as completed. 2345 */ 2346 discard = 0; 2347 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2348 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2349 jrecs += seg->ss_rec.jsr_cnt; 2350 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize; 2351 continue; 2352 } 2353 discard = 1; 2354 if (debug) 2355 printf("Journal order mismatch %jd != %jd pruning\n", 2356 newseq-1, seg->ss_rec.jsr_seq); 2357 TAILQ_REMOVE(&allsegs, seg, ss_next); 2358 free(seg->ss_blk); 2359 free(seg); 2360 } 2361 if (debug) 2362 printf("Processing journal segments from %jd to %jd\n", 2363 oldseq, newseq-1); 2364 } 2365 2366 /* 2367 * Verify the journal inode before attempting to read records. 2368 */ 2369 static int 2370 suj_verifyino(union dinode *ip) 2371 { 2372 2373 if (DIP(ip, di_nlink) != 1) { 2374 printf("Invalid link count %d for journal inode %ju\n", 2375 DIP(ip, di_nlink), (uintmax_t)sujino); 2376 return (-1); 2377 } 2378 2379 if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2380 (SF_IMMUTABLE | SF_NOUNLINK)) { 2381 printf("Invalid flags 0x%X for journal inode %ju\n", 2382 DIP(ip, di_flags), (uintmax_t)sujino); 2383 return (-1); 2384 } 2385 2386 if (DIP(ip, di_mode) != (IFREG | IREAD)) { 2387 printf("Invalid mode %o for journal inode %ju\n", 2388 DIP(ip, di_mode), (uintmax_t)sujino); 2389 return (-1); 2390 } 2391 2392 if (DIP(ip, di_size) < SUJ_MIN) { 2393 printf("Invalid size %jd for journal inode %ju\n", 2394 DIP(ip, di_size), (uintmax_t)sujino); 2395 return (-1); 2396 } 2397 2398 if (DIP(ip, di_modrev) != fs->fs_mtime) { 2399 printf("Journal timestamp does not match fs mount time\n"); 2400 return (-1); 2401 } 2402 2403 return (0); 2404 } 2405 2406 struct jblocks { 2407 struct jextent *jb_extent; /* Extent array. */ 2408 int jb_avail; /* Available extents. */ 2409 int jb_used; /* Last used extent. */ 2410 int jb_head; /* Allocator head. */ 2411 int jb_off; /* Allocator extent offset. */ 2412 }; 2413 struct jextent { 2414 ufs2_daddr_t je_daddr; /* Disk block address. */ 2415 int je_blocks; /* Disk block count. */ 2416 }; 2417 2418 struct jblocks *suj_jblocks; 2419 2420 static struct jblocks * 2421 jblocks_create(void) 2422 { 2423 struct jblocks *jblocks; 2424 int size; 2425 2426 jblocks = errmalloc(sizeof(*jblocks)); 2427 jblocks->jb_avail = 10; 2428 jblocks->jb_used = 0; 2429 jblocks->jb_head = 0; 2430 jblocks->jb_off = 0; 2431 size = sizeof(struct jextent) * jblocks->jb_avail; 2432 jblocks->jb_extent = errmalloc(size); 2433 bzero(jblocks->jb_extent, size); 2434 2435 return (jblocks); 2436 } 2437 2438 /* 2439 * Return the next available disk block and the amount of contiguous 2440 * free space it contains. 2441 */ 2442 static ufs2_daddr_t 2443 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2444 { 2445 struct jextent *jext; 2446 ufs2_daddr_t daddr; 2447 int freecnt; 2448 int blocks; 2449 2450 blocks = bytes / disk->d_bsize; 2451 jext = &jblocks->jb_extent[jblocks->jb_head]; 2452 freecnt = jext->je_blocks - jblocks->jb_off; 2453 if (freecnt == 0) { 2454 jblocks->jb_off = 0; 2455 if (++jblocks->jb_head > jblocks->jb_used) 2456 return (0); 2457 jext = &jblocks->jb_extent[jblocks->jb_head]; 2458 freecnt = jext->je_blocks; 2459 } 2460 if (freecnt > blocks) 2461 freecnt = blocks; 2462 *actual = freecnt * disk->d_bsize; 2463 daddr = jext->je_daddr + jblocks->jb_off; 2464 2465 return (daddr); 2466 } 2467 2468 /* 2469 * Advance the allocation head by a specified number of bytes, consuming 2470 * one journal segment. 2471 */ 2472 static void 2473 jblocks_advance(struct jblocks *jblocks, int bytes) 2474 { 2475 2476 jblocks->jb_off += bytes / disk->d_bsize; 2477 } 2478 2479 static void 2480 jblocks_destroy(struct jblocks *jblocks) 2481 { 2482 2483 free(jblocks->jb_extent); 2484 free(jblocks); 2485 } 2486 2487 static void 2488 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2489 { 2490 struct jextent *jext; 2491 int size; 2492 2493 jext = &jblocks->jb_extent[jblocks->jb_used]; 2494 /* Adding the first block. */ 2495 if (jext->je_daddr == 0) { 2496 jext->je_daddr = daddr; 2497 jext->je_blocks = blocks; 2498 return; 2499 } 2500 /* Extending the last extent. */ 2501 if (jext->je_daddr + jext->je_blocks == daddr) { 2502 jext->je_blocks += blocks; 2503 return; 2504 } 2505 /* Adding a new extent. */ 2506 if (++jblocks->jb_used == jblocks->jb_avail) { 2507 jblocks->jb_avail *= 2; 2508 size = sizeof(struct jextent) * jblocks->jb_avail; 2509 jext = errmalloc(size); 2510 bzero(jext, size); 2511 bcopy(jblocks->jb_extent, jext, 2512 sizeof(struct jextent) * jblocks->jb_used); 2513 free(jblocks->jb_extent); 2514 jblocks->jb_extent = jext; 2515 } 2516 jext = &jblocks->jb_extent[jblocks->jb_used]; 2517 jext->je_daddr = daddr; 2518 jext->je_blocks = blocks; 2519 2520 return; 2521 } 2522 2523 /* 2524 * Add a file block from the journal to the extent map. We can't read 2525 * each file block individually because the kernel treats it as a circular 2526 * buffer and segments may span mutliple contiguous blocks. 2527 */ 2528 static void 2529 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2530 { 2531 2532 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2533 } 2534 2535 static void 2536 suj_read(void) 2537 { 2538 uint8_t block[1 * 1024 * 1024]; 2539 struct suj_seg *seg; 2540 struct jsegrec *recn; 2541 struct jsegrec *rec; 2542 ufs2_daddr_t blk; 2543 int readsize; 2544 int blocks; 2545 int recsize; 2546 int size; 2547 int i; 2548 2549 /* 2550 * Read records until we exhaust the journal space. If we find 2551 * an invalid record we start searching for a valid segment header 2552 * at the next block. This is because we don't have a head/tail 2553 * pointer and must recover the information indirectly. At the gap 2554 * between the head and tail we won't necessarily have a valid 2555 * segment. 2556 */ 2557 restart: 2558 for (;;) { 2559 size = sizeof(block); 2560 blk = jblocks_next(suj_jblocks, size, &readsize); 2561 if (blk == 0) 2562 return; 2563 size = readsize; 2564 /* 2565 * Read 1MB at a time and scan for records within this block. 2566 */ 2567 if (bread(disk, blk, &block, size) == -1) { 2568 err_suj("Error reading journal block %jd\n", 2569 (intmax_t)blk); 2570 } 2571 for (rec = (void *)block; size; size -= recsize, 2572 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2573 recsize = real_dev_bsize; 2574 if (rec->jsr_time != fs->fs_mtime) { 2575 if (debug) 2576 printf("Rec time %jd != fs mtime %jd\n", 2577 rec->jsr_time, fs->fs_mtime); 2578 jblocks_advance(suj_jblocks, recsize); 2579 continue; 2580 } 2581 if (rec->jsr_cnt == 0) { 2582 if (debug) 2583 printf("Found illegal count %d\n", 2584 rec->jsr_cnt); 2585 jblocks_advance(suj_jblocks, recsize); 2586 continue; 2587 } 2588 blocks = rec->jsr_blocks; 2589 recsize = blocks * real_dev_bsize; 2590 if (recsize > size) { 2591 /* 2592 * We may just have run out of buffer, restart 2593 * the loop to re-read from this spot. 2594 */ 2595 if (size < fs->fs_bsize && 2596 size != readsize && 2597 recsize <= fs->fs_bsize) 2598 goto restart; 2599 if (debug) 2600 printf("Found invalid segsize %d > %d\n", 2601 recsize, size); 2602 recsize = real_dev_bsize; 2603 jblocks_advance(suj_jblocks, recsize); 2604 continue; 2605 } 2606 /* 2607 * Verify that all blocks in the segment are present. 2608 */ 2609 for (i = 1; i < blocks; i++) { 2610 recn = (void *)((uintptr_t)rec) + i * 2611 real_dev_bsize; 2612 if (recn->jsr_seq == rec->jsr_seq && 2613 recn->jsr_time == rec->jsr_time) 2614 continue; 2615 if (debug) 2616 printf("Incomplete record %jd (%d)\n", 2617 rec->jsr_seq, i); 2618 recsize = i * real_dev_bsize; 2619 jblocks_advance(suj_jblocks, recsize); 2620 goto restart; 2621 } 2622 seg = errmalloc(sizeof(*seg)); 2623 seg->ss_blk = errmalloc(recsize); 2624 seg->ss_rec = *rec; 2625 bcopy((void *)rec, seg->ss_blk, recsize); 2626 if (rec->jsr_oldest > oldseq) 2627 oldseq = rec->jsr_oldest; 2628 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2629 jblocks_advance(suj_jblocks, recsize); 2630 } 2631 } 2632 } 2633 2634 /* 2635 * Search a directory block for the SUJ_FILE. 2636 */ 2637 static void 2638 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2639 { 2640 char block[MAXBSIZE]; 2641 struct direct *dp; 2642 int bytes; 2643 int off; 2644 2645 if (sujino) 2646 return; 2647 bytes = lfragtosize(fs, frags); 2648 if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0) 2649 err_suj("Failed to read ROOTINO directory block %jd\n", blk); 2650 for (off = 0; off < bytes; off += dp->d_reclen) { 2651 dp = (struct direct *)&block[off]; 2652 if (dp->d_reclen == 0) 2653 break; 2654 if (dp->d_ino == 0) 2655 continue; 2656 if (dp->d_namlen != strlen(SUJ_FILE)) 2657 continue; 2658 if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0) 2659 continue; 2660 sujino = dp->d_ino; 2661 return; 2662 } 2663 } 2664 2665 /* 2666 * Orchestrate the verification of a filesystem via the softupdates journal. 2667 */ 2668 int 2669 suj_check(const char *filesys) 2670 { 2671 union dinode *jip; 2672 union dinode *ip; 2673 uint64_t blocks; 2674 int retval; 2675 struct suj_seg *seg; 2676 struct suj_seg *segn; 2677 2678 opendisk(filesys); 2679 TAILQ_INIT(&allsegs); 2680 2681 /* 2682 * Set an exit point when SUJ check failed 2683 */ 2684 retval = setjmp(jmpbuf); 2685 if (retval != 0) { 2686 pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); 2687 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2688 TAILQ_REMOVE(&allsegs, seg, ss_next); 2689 free(seg->ss_blk); 2690 free(seg); 2691 } 2692 if (reply("FALLBACK TO FULL FSCK") == 0) { 2693 ckfini(0); 2694 exit(EEXIT); 2695 } else 2696 return (-1); 2697 } 2698 2699 /* 2700 * Find the journal inode. 2701 */ 2702 ip = ino_read(ROOTINO); 2703 sujino = 0; 2704 ino_visit(ip, ROOTINO, suj_find, 0); 2705 if (sujino == 0) { 2706 printf("Journal inode removed. Use tunefs to re-create.\n"); 2707 sblock.fs_flags &= ~FS_SUJ; 2708 sblock.fs_sujfree = 0; 2709 return (-1); 2710 } 2711 /* 2712 * Fetch the journal inode and verify it. 2713 */ 2714 jip = ino_read(sujino); 2715 printf("** SU+J Recovering %s\n", filesys); 2716 if (suj_verifyino(jip) != 0) 2717 return (-1); 2718 /* 2719 * Build a list of journal blocks in jblocks before parsing the 2720 * available journal blocks in with suj_read(). 2721 */ 2722 printf("** Reading %jd byte journal from inode %ju.\n", 2723 DIP(jip, di_size), (uintmax_t)sujino); 2724 suj_jblocks = jblocks_create(); 2725 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2726 if (blocks != numfrags(fs, DIP(jip, di_size))) { 2727 printf("Sparse journal inode %ju.\n", (uintmax_t)sujino); 2728 return (-1); 2729 } 2730 suj_read(); 2731 jblocks_destroy(suj_jblocks); 2732 suj_jblocks = NULL; 2733 if (preen || reply("RECOVER")) { 2734 printf("** Building recovery table.\n"); 2735 suj_prune(); 2736 suj_build(); 2737 cg_apply(cg_build); 2738 printf("** Resolving unreferenced inode list.\n"); 2739 ino_unlinked(); 2740 printf("** Processing journal entries.\n"); 2741 cg_apply(cg_trunc); 2742 cg_apply(cg_check_blk); 2743 cg_apply(cg_adj_blk); 2744 cg_apply(cg_check_ino); 2745 } 2746 if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0) 2747 return (0); 2748 /* 2749 * To remain idempotent with partial truncations the free bitmaps 2750 * must be written followed by indirect blocks and lastly inode 2751 * blocks. This preserves access to the modified pointers until 2752 * they are freed. 2753 */ 2754 cg_apply(cg_write); 2755 dblk_write(); 2756 cg_apply(cg_write_inos); 2757 /* Write back superblock. */ 2758 closedisk(filesys); 2759 if (jrecs > 0 || jbytes > 0) { 2760 printf("** %jd journal records in %jd bytes for %.2f%% utilization\n", 2761 jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2762 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n", 2763 freeinos, freedir, freeblocks, freefrags); 2764 } 2765 2766 return (0); 2767 } 2768