xref: /freebsd/sbin/fsck_ffs/suj.c (revision 646a7fea0c8a60ce2795ffc1bdf58e0fd0f7d624)
1 /*-
2  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/disk.h>
32 #include <sys/disklabel.h>
33 #include <sys/mount.h>
34 #include <sys/stat.h>
35 
36 #include <ufs/ufs/ufsmount.h>
37 #include <ufs/ufs/dinode.h>
38 #include <ufs/ufs/dir.h>
39 #include <ufs/ffs/fs.h>
40 
41 #include <assert.h>
42 #include <err.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <stdint.h>
48 #include <libufs.h>
49 #include <string.h>
50 #include <strings.h>
51 #include <sysexits.h>
52 #include <time.h>
53 
54 #include "fsck.h"
55 
56 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
57 #define	SUJ_HASHSIZE	2048
58 #define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
59 #define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
60 
61 struct suj_seg {
62 	TAILQ_ENTRY(suj_seg) ss_next;
63 	struct jsegrec	ss_rec;
64 	uint8_t		*ss_blk;
65 };
66 
67 struct suj_rec {
68 	TAILQ_ENTRY(suj_rec) sr_next;
69 	union jrec	*sr_rec;
70 };
71 TAILQ_HEAD(srechd, suj_rec);
72 
73 struct suj_ino {
74 	LIST_ENTRY(suj_ino)	si_next;
75 	struct srechd		si_recs;
76 	struct srechd		si_newrecs;
77 	struct srechd		si_movs;
78 	struct jtrncrec		*si_trunc;
79 	ino_t			si_ino;
80 	char			si_skipparent;
81 	char			si_hasrecs;
82 	char			si_blkadj;
83 	char			si_linkadj;
84 	int			si_mode;
85 	nlink_t			si_nlinkadj;
86 	nlink_t			si_nlink;
87 	nlink_t			si_dotlinks;
88 };
89 LIST_HEAD(inohd, suj_ino);
90 
91 struct suj_blk {
92 	LIST_ENTRY(suj_blk)	sb_next;
93 	struct srechd		sb_recs;
94 	ufs2_daddr_t		sb_blk;
95 };
96 LIST_HEAD(blkhd, suj_blk);
97 
98 struct data_blk {
99 	LIST_ENTRY(data_blk)	db_next;
100 	uint8_t			*db_buf;
101 	ufs2_daddr_t		db_blk;
102 	int			db_size;
103 	int			db_dirty;
104 };
105 
106 struct ino_blk {
107 	LIST_ENTRY(ino_blk)	ib_next;
108 	uint8_t			*ib_buf;
109 	int			ib_dirty;
110 	ufs2_daddr_t		ib_blk;
111 };
112 LIST_HEAD(iblkhd, ino_blk);
113 
114 struct suj_cg {
115 	LIST_ENTRY(suj_cg)	sc_next;
116 	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
117 	struct inohd		sc_inohash[SUJ_HASHSIZE];
118 	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
119 	struct ino_blk		*sc_lastiblk;
120 	struct suj_ino		*sc_lastino;
121 	struct suj_blk		*sc_lastblk;
122 	uint8_t			*sc_cgbuf;
123 	struct cg		*sc_cgp;
124 	int			sc_dirty;
125 	int			sc_cgx;
126 };
127 
128 LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
129 LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
130 struct suj_cg *lastcg;
131 struct data_blk *lastblk;
132 
133 TAILQ_HEAD(seghd, suj_seg) allsegs;
134 uint64_t oldseq;
135 static struct uufsd *disk = NULL;
136 static struct fs *fs = NULL;
137 ino_t sujino;
138 
139 /*
140  * Summary statistics.
141  */
142 uint64_t freefrags;
143 uint64_t freeblocks;
144 uint64_t freeinos;
145 uint64_t freedir;
146 uint64_t jbytes;
147 uint64_t jrecs;
148 
149 static jmp_buf	jmpbuf;
150 
151 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
152 static void err_suj(const char *, ...) __dead2;
153 static void ino_trunc(ino_t, off_t);
154 static void ino_decr(ino_t);
155 static void ino_adjust(struct suj_ino *);
156 static void ino_build(struct suj_ino *);
157 static int blk_isfree(ufs2_daddr_t);
158 
159 static void *
160 errmalloc(size_t n)
161 {
162 	void *a;
163 
164 	a = malloc(n);
165 	if (a == NULL)
166 		err(EX_OSERR, "malloc(%zu)", n);
167 	return (a);
168 }
169 
170 /*
171  * When hit a fatal error in journalling check, print out
172  * the error and then offer to fallback to normal fsck.
173  */
174 static void
175 err_suj(const char * restrict fmt, ...)
176 {
177 	va_list ap;
178 
179 	if (preen)
180 		(void)fprintf(stdout, "%s: ", cdevname);
181 
182 	va_start(ap, fmt);
183 	(void)vfprintf(stdout, fmt, ap);
184 	va_end(ap);
185 
186 	longjmp(jmpbuf, -1);
187 }
188 
189 /*
190  * Open the given provider, load superblock.
191  */
192 static void
193 opendisk(const char *devnam)
194 {
195 	if (disk != NULL)
196 		return;
197 	disk = malloc(sizeof(*disk));
198 	if (disk == NULL)
199 		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
200 	if (ufs_disk_fillout(disk, devnam) == -1) {
201 		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
202 		    disk->d_error);
203 	}
204 	fs = &disk->d_fs;
205 	if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
206 	    &real_dev_bsize) == -1)
207 		real_dev_bsize = secsize;
208 	if (debug)
209 		printf("dev_bsize %u\n", real_dev_bsize);
210 }
211 
212 /*
213  * Mark file system as clean, write the super-block back, close the disk.
214  */
215 static void
216 closedisk(const char *devnam)
217 {
218 	struct csum *cgsum;
219 	int i;
220 
221 	/*
222 	 * Recompute the fs summary info from correct cs summaries.
223 	 */
224 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
225 	for (i = 0; i < fs->fs_ncg; i++) {
226 		cgsum = &fs->fs_cs(fs, i);
227 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
228 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
229 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
230 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
231 	}
232 	fs->fs_pendinginodes = 0;
233 	fs->fs_pendingblocks = 0;
234 	fs->fs_clean = 1;
235 	fs->fs_time = time(NULL);
236 	fs->fs_mtime = time(NULL);
237 	if (sbwrite(disk, 0) == -1)
238 		err(EX_OSERR, "sbwrite(%s)", devnam);
239 	if (ufs_disk_close(disk) == -1)
240 		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
241 	free(disk);
242 	disk = NULL;
243 	fs = NULL;
244 }
245 
246 /*
247  * Lookup a cg by number in the hash so we can keep track of which cgs
248  * need stats rebuilt.
249  */
250 static struct suj_cg *
251 cg_lookup(int cgx)
252 {
253 	struct cghd *hd;
254 	struct suj_cg *sc;
255 
256 	if (cgx < 0 || cgx >= fs->fs_ncg)
257 		err_suj("Bad cg number %d\n", cgx);
258 	if (lastcg && lastcg->sc_cgx == cgx)
259 		return (lastcg);
260 	hd = &cghash[SUJ_HASH(cgx)];
261 	LIST_FOREACH(sc, hd, sc_next)
262 		if (sc->sc_cgx == cgx) {
263 			lastcg = sc;
264 			return (sc);
265 		}
266 	sc = errmalloc(sizeof(*sc));
267 	bzero(sc, sizeof(*sc));
268 	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
269 	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
270 	sc->sc_cgx = cgx;
271 	LIST_INSERT_HEAD(hd, sc, sc_next);
272 	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
273 	    fs->fs_bsize) == -1)
274 		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
275 
276 	return (sc);
277 }
278 
279 /*
280  * Lookup an inode number in the hash and allocate a suj_ino if it does
281  * not exist.
282  */
283 static struct suj_ino *
284 ino_lookup(ino_t ino, int creat)
285 {
286 	struct suj_ino *sino;
287 	struct inohd *hd;
288 	struct suj_cg *sc;
289 
290 	sc = cg_lookup(ino_to_cg(fs, ino));
291 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
292 		return (sc->sc_lastino);
293 	hd = &sc->sc_inohash[SUJ_HASH(ino)];
294 	LIST_FOREACH(sino, hd, si_next)
295 		if (sino->si_ino == ino)
296 			return (sino);
297 	if (creat == 0)
298 		return (NULL);
299 	sino = errmalloc(sizeof(*sino));
300 	bzero(sino, sizeof(*sino));
301 	sino->si_ino = ino;
302 	TAILQ_INIT(&sino->si_recs);
303 	TAILQ_INIT(&sino->si_newrecs);
304 	TAILQ_INIT(&sino->si_movs);
305 	LIST_INSERT_HEAD(hd, sino, si_next);
306 
307 	return (sino);
308 }
309 
310 /*
311  * Lookup a block number in the hash and allocate a suj_blk if it does
312  * not exist.
313  */
314 static struct suj_blk *
315 blk_lookup(ufs2_daddr_t blk, int creat)
316 {
317 	struct suj_blk *sblk;
318 	struct suj_cg *sc;
319 	struct blkhd *hd;
320 
321 	sc = cg_lookup(dtog(fs, blk));
322 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
323 		return (sc->sc_lastblk);
324 	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
325 	LIST_FOREACH(sblk, hd, sb_next)
326 		if (sblk->sb_blk == blk)
327 			return (sblk);
328 	if (creat == 0)
329 		return (NULL);
330 	sblk = errmalloc(sizeof(*sblk));
331 	bzero(sblk, sizeof(*sblk));
332 	sblk->sb_blk = blk;
333 	TAILQ_INIT(&sblk->sb_recs);
334 	LIST_INSERT_HEAD(hd, sblk, sb_next);
335 
336 	return (sblk);
337 }
338 
339 static struct data_blk *
340 dblk_lookup(ufs2_daddr_t blk)
341 {
342 	struct data_blk *dblk;
343 	struct dblkhd *hd;
344 
345 	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
346 	if (lastblk && lastblk->db_blk == blk)
347 		return (lastblk);
348 	LIST_FOREACH(dblk, hd, db_next)
349 		if (dblk->db_blk == blk)
350 			return (dblk);
351 	/*
352 	 * The inode block wasn't located, allocate a new one.
353 	 */
354 	dblk = errmalloc(sizeof(*dblk));
355 	bzero(dblk, sizeof(*dblk));
356 	LIST_INSERT_HEAD(hd, dblk, db_next);
357 	dblk->db_blk = blk;
358 	return (dblk);
359 }
360 
361 static uint8_t *
362 dblk_read(ufs2_daddr_t blk, int size)
363 {
364 	struct data_blk *dblk;
365 
366 	dblk = dblk_lookup(blk);
367 	/*
368 	 * I doubt size mismatches can happen in practice but it is trivial
369 	 * to handle.
370 	 */
371 	if (size != dblk->db_size) {
372 		if (dblk->db_buf)
373 			free(dblk->db_buf);
374 		dblk->db_buf = errmalloc(size);
375 		dblk->db_size = size;
376 		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
377 			err_suj("Failed to read data block %jd\n", blk);
378 	}
379 	return (dblk->db_buf);
380 }
381 
382 static void
383 dblk_dirty(ufs2_daddr_t blk)
384 {
385 	struct data_blk *dblk;
386 
387 	dblk = dblk_lookup(blk);
388 	dblk->db_dirty = 1;
389 }
390 
391 static void
392 dblk_write(void)
393 {
394 	struct data_blk *dblk;
395 	int i;
396 
397 	for (i = 0; i < SUJ_HASHSIZE; i++) {
398 		LIST_FOREACH(dblk, &dbhash[i], db_next) {
399 			if (dblk->db_dirty == 0 || dblk->db_size == 0)
400 				continue;
401 			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
402 			    dblk->db_buf, dblk->db_size) == -1)
403 				err_suj("Unable to write block %jd\n",
404 				    dblk->db_blk);
405 		}
406 	}
407 }
408 
409 static union dinode *
410 ino_read(ino_t ino)
411 {
412 	struct ino_blk *iblk;
413 	struct iblkhd *hd;
414 	struct suj_cg *sc;
415 	ufs2_daddr_t blk;
416 	int off;
417 
418 	blk = ino_to_fsba(fs, ino);
419 	sc = cg_lookup(ino_to_cg(fs, ino));
420 	iblk = sc->sc_lastiblk;
421 	if (iblk && iblk->ib_blk == blk)
422 		goto found;
423 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
424 	LIST_FOREACH(iblk, hd, ib_next)
425 		if (iblk->ib_blk == blk)
426 			goto found;
427 	/*
428 	 * The inode block wasn't located, allocate a new one.
429 	 */
430 	iblk = errmalloc(sizeof(*iblk));
431 	bzero(iblk, sizeof(*iblk));
432 	iblk->ib_buf = errmalloc(fs->fs_bsize);
433 	iblk->ib_blk = blk;
434 	LIST_INSERT_HEAD(hd, iblk, ib_next);
435 	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
436 		err_suj("Failed to read inode block %jd\n", blk);
437 found:
438 	sc->sc_lastiblk = iblk;
439 	off = ino_to_fsbo(fs, ino);
440 	if (fs->fs_magic == FS_UFS1_MAGIC)
441 		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
442 	else
443 		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
444 }
445 
446 static void
447 ino_dirty(ino_t ino)
448 {
449 	struct ino_blk *iblk;
450 	struct iblkhd *hd;
451 	struct suj_cg *sc;
452 	ufs2_daddr_t blk;
453 
454 	blk = ino_to_fsba(fs, ino);
455 	sc = cg_lookup(ino_to_cg(fs, ino));
456 	iblk = sc->sc_lastiblk;
457 	if (iblk && iblk->ib_blk == blk) {
458 		iblk->ib_dirty = 1;
459 		return;
460 	}
461 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
462 	LIST_FOREACH(iblk, hd, ib_next) {
463 		if (iblk->ib_blk == blk) {
464 			iblk->ib_dirty = 1;
465 			return;
466 		}
467 	}
468 	ino_read(ino);
469 	ino_dirty(ino);
470 }
471 
472 static void
473 iblk_write(struct ino_blk *iblk)
474 {
475 
476 	if (iblk->ib_dirty == 0)
477 		return;
478 	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
479 	    fs->fs_bsize) == -1)
480 		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
481 }
482 
483 static int
484 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
485 {
486 	ufs2_daddr_t bstart;
487 	ufs2_daddr_t bend;
488 	ufs2_daddr_t end;
489 
490 	end = start + frags;
491 	bstart = brec->jb_blkno + brec->jb_oldfrags;
492 	bend = bstart + brec->jb_frags;
493 	if (start < bend && end > bstart)
494 		return (1);
495 	return (0);
496 }
497 
498 static int
499 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
500     int frags)
501 {
502 
503 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
504 		return (0);
505 	if (brec->jb_blkno + brec->jb_oldfrags != start)
506 		return (0);
507 	if (brec->jb_frags < frags)
508 		return (0);
509 	return (1);
510 }
511 
512 static void
513 blk_setmask(struct jblkrec *brec, int *mask)
514 {
515 	int i;
516 
517 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
518 		*mask |= 1 << i;
519 }
520 
521 /*
522  * Determine whether a given block has been reallocated to a new location.
523  * Returns a mask of overlapping bits if any frags have been reused or
524  * zero if the block has not been re-used and the contents can be trusted.
525  *
526  * This is used to ensure that an orphaned pointer due to truncate is safe
527  * to be freed.  The mask value can be used to free partial blocks.
528  */
529 static int
530 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
531 {
532 	struct suj_blk *sblk;
533 	struct suj_rec *srec;
534 	struct jblkrec *brec;
535 	int mask;
536 	int off;
537 
538 	/*
539 	 * To be certain we're not freeing a reallocated block we lookup
540 	 * this block in the blk hash and see if there is an allocation
541 	 * journal record that overlaps with any fragments in the block
542 	 * we're concerned with.  If any fragments have ben reallocated
543 	 * the block has already been freed and re-used for another purpose.
544 	 */
545 	mask = 0;
546 	sblk = blk_lookup(blknum(fs, blk), 0);
547 	if (sblk == NULL)
548 		return (0);
549 	off = blk - sblk->sb_blk;
550 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
551 		brec = (struct jblkrec *)srec->sr_rec;
552 		/*
553 		 * If the block overlaps but does not match
554 		 * exactly this record refers to the current
555 		 * location.
556 		 */
557 		if (blk_overlaps(brec, blk, frags) == 0)
558 			continue;
559 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
560 			mask = 0;
561 		else
562 			blk_setmask(brec, &mask);
563 	}
564 	if (debug)
565 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
566 		    blk, sblk->sb_blk, off, mask);
567 	return (mask >> off);
568 }
569 
570 /*
571  * Determine whether it is safe to follow an indirect.  It is not safe
572  * if any part of the indirect has been reallocated or the last journal
573  * entry was an allocation.  Just allocated indirects may not have valid
574  * pointers yet and all of their children will have their own records.
575  * It is also not safe to follow an indirect if the cg bitmap has been
576  * cleared as a new allocation may write to the block prior to the journal
577  * being written.
578  *
579  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
580  */
581 static int
582 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
583 {
584 	struct suj_blk *sblk;
585 	struct jblkrec *brec;
586 
587 	sblk = blk_lookup(blk, 0);
588 	if (sblk == NULL)
589 		return (1);
590 	if (TAILQ_EMPTY(&sblk->sb_recs))
591 		return (1);
592 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
593 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
594 		if (brec->jb_op == JOP_FREEBLK)
595 			return (!blk_isfree(blk));
596 	return (0);
597 }
598 
599 /*
600  * Clear an inode from the cg bitmap.  If the inode was already clear return
601  * 0 so the caller knows it does not have to check the inode contents.
602  */
603 static int
604 ino_free(ino_t ino, int mode)
605 {
606 	struct suj_cg *sc;
607 	uint8_t *inosused;
608 	struct cg *cgp;
609 	int cg;
610 
611 	cg = ino_to_cg(fs, ino);
612 	ino = ino % fs->fs_ipg;
613 	sc = cg_lookup(cg);
614 	cgp = sc->sc_cgp;
615 	inosused = cg_inosused(cgp);
616 	/*
617 	 * The bitmap may never have made it to the disk so we have to
618 	 * conditionally clear.  We can avoid writing the cg in this case.
619 	 */
620 	if (isclr(inosused, ino))
621 		return (0);
622 	freeinos++;
623 	clrbit(inosused, ino);
624 	if (ino < cgp->cg_irotor)
625 		cgp->cg_irotor = ino;
626 	cgp->cg_cs.cs_nifree++;
627 	if ((mode & IFMT) == IFDIR) {
628 		freedir++;
629 		cgp->cg_cs.cs_ndir--;
630 	}
631 	sc->sc_dirty = 1;
632 
633 	return (1);
634 }
635 
636 /*
637  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
638  * set in the mask.
639  */
640 static void
641 blk_free(ufs2_daddr_t bno, int mask, int frags)
642 {
643 	ufs1_daddr_t fragno, cgbno;
644 	struct suj_cg *sc;
645 	struct cg *cgp;
646 	int i, cg;
647 	uint8_t *blksfree;
648 
649 	if (debug)
650 		printf("Freeing %d frags at blk %jd mask 0x%x\n",
651 		    frags, bno, mask);
652 	cg = dtog(fs, bno);
653 	sc = cg_lookup(cg);
654 	cgp = sc->sc_cgp;
655 	cgbno = dtogd(fs, bno);
656 	blksfree = cg_blksfree(cgp);
657 
658 	/*
659 	 * If it's not allocated we only wrote the journal entry
660 	 * and never the bitmaps.  Here we unconditionally clear and
661 	 * resolve the cg summary later.
662 	 */
663 	if (frags == fs->fs_frag && mask == 0) {
664 		fragno = fragstoblks(fs, cgbno);
665 		ffs_setblock(fs, blksfree, fragno);
666 		freeblocks++;
667 	} else {
668 		/*
669 		 * deallocate the fragment
670 		 */
671 		for (i = 0; i < frags; i++)
672 			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
673 				freefrags++;
674 				setbit(blksfree, cgbno + i);
675 			}
676 	}
677 	sc->sc_dirty = 1;
678 }
679 
680 /*
681  * Returns 1 if the whole block starting at 'bno' is marked free and 0
682  * otherwise.
683  */
684 static int
685 blk_isfree(ufs2_daddr_t bno)
686 {
687 	struct suj_cg *sc;
688 
689 	sc = cg_lookup(dtog(fs, bno));
690 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
691 }
692 
693 /*
694  * Fetch an indirect block to find the block at a given lbn.  The lbn
695  * may be negative to fetch a specific indirect block pointer or positive
696  * to fetch a specific block.
697  */
698 static ufs2_daddr_t
699 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
700 {
701 	ufs2_daddr_t *bap2;
702 	ufs2_daddr_t *bap1;
703 	ufs_lbn_t lbnadd;
704 	ufs_lbn_t base;
705 	int level;
706 	int i;
707 
708 	if (blk == 0)
709 		return (0);
710 	level = lbn_level(cur);
711 	if (level == -1)
712 		err_suj("Invalid indir lbn %jd\n", lbn);
713 	if (level == 0 && lbn < 0)
714 		err_suj("Invalid lbn %jd\n", lbn);
715 	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
716 	bap1 = (void *)bap2;
717 	lbnadd = 1;
718 	base = -(cur + level);
719 	for (i = level; i > 0; i--)
720 		lbnadd *= NINDIR(fs);
721 	if (lbn > 0)
722 		i = (lbn - base) / lbnadd;
723 	else
724 		i = (-lbn - base) / lbnadd;
725 	if (i < 0 || i >= NINDIR(fs))
726 		err_suj("Invalid indirect index %d produced by lbn %jd\n",
727 		    i, lbn);
728 	if (level == 0)
729 		cur = base + (i * lbnadd);
730 	else
731 		cur = -(base + (i * lbnadd)) - (level - 1);
732 	if (fs->fs_magic == FS_UFS1_MAGIC)
733 		blk = bap1[i];
734 	else
735 		blk = bap2[i];
736 	if (cur == lbn)
737 		return (blk);
738 	if (level == 0)
739 		err_suj("Invalid lbn %jd at level 0\n", lbn);
740 	return indir_blkatoff(blk, ino, cur, lbn);
741 }
742 
743 /*
744  * Finds the disk block address at the specified lbn within the inode
745  * specified by ip.  This follows the whole tree and honors di_size and
746  * di_extsize so it is a true test of reachability.  The lbn may be
747  * negative if an extattr or indirect block is requested.
748  */
749 static ufs2_daddr_t
750 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
751 {
752 	ufs_lbn_t tmpval;
753 	ufs_lbn_t cur;
754 	ufs_lbn_t next;
755 	int i;
756 
757 	/*
758 	 * Handle extattr blocks first.
759 	 */
760 	if (lbn < 0 && lbn >= -NXADDR) {
761 		lbn = -1 - lbn;
762 		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
763 			return (0);
764 		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
765 		return (ip->dp2.di_extb[lbn]);
766 	}
767 	/*
768 	 * Now direct and indirect.
769 	 */
770 	if (DIP(ip, di_mode) == IFLNK &&
771 	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
772 		return (0);
773 	if (lbn >= 0 && lbn < NDADDR) {
774 		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
775 		return (DIP(ip, di_db[lbn]));
776 	}
777 	*frags = fs->fs_frag;
778 
779 	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
780 	    tmpval *= NINDIR(fs), cur = next) {
781 		next = cur + tmpval;
782 		if (lbn == -cur - i)
783 			return (DIP(ip, di_ib[i]));
784 		/*
785 		 * Determine whether the lbn in question is within this tree.
786 		 */
787 		if (lbn < 0 && -lbn >= next)
788 			continue;
789 		if (lbn > 0 && lbn >= next)
790 			continue;
791 		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
792 	}
793 	err_suj("lbn %jd not in ino\n", lbn);
794 	/* NOTREACHED */
795 }
796 
797 /*
798  * Determine whether a block exists at a particular lbn in an inode.
799  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
800  * or ext blocks.
801  */
802 static int
803 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
804 {
805 	union dinode *ip;
806 	ufs2_daddr_t nblk;
807 
808 	ip = ino_read(ino);
809 
810 	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
811 		return (0);
812 	nblk = ino_blkatoff(ip, ino, lbn, frags);
813 
814 	return (nblk == blk);
815 }
816 
817 /*
818  * Clear the directory entry at diroff that should point to child.  Minimal
819  * checking is done and it is assumed that this path was verified with isat.
820  */
821 static void
822 ino_clrat(ino_t parent, off_t diroff, ino_t child)
823 {
824 	union dinode *dip;
825 	struct direct *dp;
826 	ufs2_daddr_t blk;
827 	uint8_t *block;
828 	ufs_lbn_t lbn;
829 	int blksize;
830 	int frags;
831 	int doff;
832 
833 	if (debug)
834 		printf("Clearing inode %ju from parent %ju at offset %jd\n",
835 		    (uintmax_t)child, (uintmax_t)parent, diroff);
836 
837 	lbn = lblkno(fs, diroff);
838 	doff = blkoff(fs, diroff);
839 	dip = ino_read(parent);
840 	blk = ino_blkatoff(dip, parent, lbn, &frags);
841 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
842 	block = dblk_read(blk, blksize);
843 	dp = (struct direct *)&block[doff];
844 	if (dp->d_ino != child)
845 		errx(1, "Inode %ju does not exist in %ju at %jd",
846 		    (uintmax_t)child, (uintmax_t)parent, diroff);
847 	dp->d_ino = 0;
848 	dblk_dirty(blk);
849 	/*
850 	 * The actual .. reference count will already have been removed
851 	 * from the parent by the .. remref record.
852 	 */
853 }
854 
855 /*
856  * Determines whether a pointer to an inode exists within a directory
857  * at a specified offset.  Returns the mode of the found entry.
858  */
859 static int
860 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
861 {
862 	union dinode *dip;
863 	struct direct *dp;
864 	ufs2_daddr_t blk;
865 	uint8_t *block;
866 	ufs_lbn_t lbn;
867 	int blksize;
868 	int frags;
869 	int dpoff;
870 	int doff;
871 
872 	*isdot = 0;
873 	dip = ino_read(parent);
874 	*mode = DIP(dip, di_mode);
875 	if ((*mode & IFMT) != IFDIR) {
876 		if (debug) {
877 			/*
878 			 * This can happen if the parent inode
879 			 * was reallocated.
880 			 */
881 			if (*mode != 0)
882 				printf("Directory %ju has bad mode %o\n",
883 				    (uintmax_t)parent, *mode);
884 			else
885 				printf("Directory %ju has zero mode\n",
886 				    (uintmax_t)parent);
887 		}
888 		return (0);
889 	}
890 	lbn = lblkno(fs, diroff);
891 	doff = blkoff(fs, diroff);
892 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
893 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
894 		if (debug)
895 			printf("ino %ju absent from %ju due to offset %jd"
896 			    " exceeding size %jd\n",
897 			    (uintmax_t)child, (uintmax_t)parent, diroff,
898 			    DIP(dip, di_size));
899 		return (0);
900 	}
901 	blk = ino_blkatoff(dip, parent, lbn, &frags);
902 	if (blk <= 0) {
903 		if (debug)
904 			printf("Sparse directory %ju", (uintmax_t)parent);
905 		return (0);
906 	}
907 	block = dblk_read(blk, blksize);
908 	/*
909 	 * Walk through the records from the start of the block to be
910 	 * certain we hit a valid record and not some junk in the middle
911 	 * of a file name.  Stop when we reach or pass the expected offset.
912 	 */
913 	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
914 	do {
915 		dp = (struct direct *)&block[dpoff];
916 		if (dpoff == doff)
917 			break;
918 		if (dp->d_reclen == 0)
919 			break;
920 		dpoff += dp->d_reclen;
921 	} while (dpoff <= doff);
922 	if (dpoff > fs->fs_bsize)
923 		err_suj("Corrupt directory block in dir ino %ju\n",
924 		    (uintmax_t)parent);
925 	/* Not found. */
926 	if (dpoff != doff) {
927 		if (debug)
928 			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
929 			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
930 		return (0);
931 	}
932 	/*
933 	 * We found the item in question.  Record the mode and whether it's
934 	 * a . or .. link for the caller.
935 	 */
936 	if (dp->d_ino == child) {
937 		if (child == parent)
938 			*isdot = 1;
939 		else if (dp->d_namlen == 2 &&
940 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
941 			*isdot = 1;
942 		*mode = DTTOIF(dp->d_type);
943 		return (1);
944 	}
945 	if (debug)
946 		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
947 		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
948 	return (0);
949 }
950 
951 #define	VISIT_INDIR	0x0001
952 #define	VISIT_EXT	0x0002
953 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
954 
955 /*
956  * Read an indirect level which may or may not be linked into an inode.
957  */
958 static void
959 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
960     ino_visitor visitor, int flags)
961 {
962 	ufs2_daddr_t *bap2;
963 	ufs1_daddr_t *bap1;
964 	ufs_lbn_t lbnadd;
965 	ufs2_daddr_t nblk;
966 	ufs_lbn_t nlbn;
967 	int level;
968 	int i;
969 
970 	/*
971 	 * Don't visit indirect blocks with contents we can't trust.  This
972 	 * should only happen when indir_visit() is called to complete a
973 	 * truncate that never finished and not when a pointer is found via
974 	 * an inode.
975 	 */
976 	if (blk == 0)
977 		return;
978 	level = lbn_level(lbn);
979 	if (level == -1)
980 		err_suj("Invalid level for lbn %jd\n", lbn);
981 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
982 		if (debug)
983 			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
984 			    blk, (uintmax_t)ino, lbn, level);
985 		goto out;
986 	}
987 	lbnadd = 1;
988 	for (i = level; i > 0; i--)
989 		lbnadd *= NINDIR(fs);
990 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
991 	bap2 = (void *)bap1;
992 	for (i = 0; i < NINDIR(fs); i++) {
993 		if (fs->fs_magic == FS_UFS1_MAGIC)
994 			nblk = *bap1++;
995 		else
996 			nblk = *bap2++;
997 		if (nblk == 0)
998 			continue;
999 		if (level == 0) {
1000 			nlbn = -lbn + i * lbnadd;
1001 			(*frags) += fs->fs_frag;
1002 			visitor(ino, nlbn, nblk, fs->fs_frag);
1003 		} else {
1004 			nlbn = (lbn + 1) - (i * lbnadd);
1005 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1006 		}
1007 	}
1008 out:
1009 	if (flags & VISIT_INDIR) {
1010 		(*frags) += fs->fs_frag;
1011 		visitor(ino, lbn, blk, fs->fs_frag);
1012 	}
1013 }
1014 
1015 /*
1016  * Visit each block in an inode as specified by 'flags' and call a
1017  * callback function.  The callback may inspect or free blocks.  The
1018  * count of frags found according to the size in the file is returned.
1019  * This is not valid for sparse files but may be used to determine
1020  * the correct di_blocks for a file.
1021  */
1022 static uint64_t
1023 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1024 {
1025 	ufs_lbn_t nextlbn;
1026 	ufs_lbn_t tmpval;
1027 	ufs_lbn_t lbn;
1028 	uint64_t size;
1029 	uint64_t fragcnt;
1030 	int mode;
1031 	int frags;
1032 	int i;
1033 
1034 	size = DIP(ip, di_size);
1035 	mode = DIP(ip, di_mode) & IFMT;
1036 	fragcnt = 0;
1037 	if ((flags & VISIT_EXT) &&
1038 	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1039 		for (i = 0; i < NXADDR; i++) {
1040 			if (ip->dp2.di_extb[i] == 0)
1041 				continue;
1042 			frags = sblksize(fs, ip->dp2.di_extsize, i);
1043 			frags = numfrags(fs, frags);
1044 			fragcnt += frags;
1045 			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1046 		}
1047 	}
1048 	/* Skip datablocks for short links and devices. */
1049 	if (mode == IFBLK || mode == IFCHR ||
1050 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1051 		return (fragcnt);
1052 	for (i = 0; i < NDADDR; i++) {
1053 		if (DIP(ip, di_db[i]) == 0)
1054 			continue;
1055 		frags = sblksize(fs, size, i);
1056 		frags = numfrags(fs, frags);
1057 		fragcnt += frags;
1058 		visitor(ino, i, DIP(ip, di_db[i]), frags);
1059 	}
1060 	/*
1061 	 * We know the following indirects are real as we're following
1062 	 * real pointers to them.
1063 	 */
1064 	flags |= VISIT_ROOT;
1065 	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1066 	    lbn = nextlbn) {
1067 		nextlbn = lbn + tmpval;
1068 		tmpval *= NINDIR(fs);
1069 		if (DIP(ip, di_ib[i]) == 0)
1070 			continue;
1071 		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1072 		    flags);
1073 	}
1074 	return (fragcnt);
1075 }
1076 
1077 /*
1078  * Null visitor function used when we just want to count blocks and
1079  * record the lbn.
1080  */
1081 ufs_lbn_t visitlbn;
1082 static void
1083 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1084 {
1085 	if (lbn > 0)
1086 		visitlbn = lbn;
1087 }
1088 
1089 /*
1090  * Recalculate di_blocks when we discover that a block allocation or
1091  * free was not successfully completed.  The kernel does not roll this back
1092  * because it would be too expensive to compute which indirects were
1093  * reachable at the time the inode was written.
1094  */
1095 static void
1096 ino_adjblks(struct suj_ino *sino)
1097 {
1098 	union dinode *ip;
1099 	uint64_t blocks;
1100 	uint64_t frags;
1101 	off_t isize;
1102 	off_t size;
1103 	ino_t ino;
1104 
1105 	ino = sino->si_ino;
1106 	ip = ino_read(ino);
1107 	/* No need to adjust zero'd inodes. */
1108 	if (DIP(ip, di_mode) == 0)
1109 		return;
1110 	/*
1111 	 * Visit all blocks and count them as well as recording the last
1112 	 * valid lbn in the file.  If the file size doesn't agree with the
1113 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1114 	 * the blocks count.
1115 	 */
1116 	visitlbn = 0;
1117 	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1118 	blocks = fsbtodb(fs, frags);
1119 	/*
1120 	 * We assume the size and direct block list is kept coherent by
1121 	 * softdep.  For files that have extended into indirects we truncate
1122 	 * to the size in the inode or the maximum size permitted by
1123 	 * populated indirects.
1124 	 */
1125 	if (visitlbn >= NDADDR) {
1126 		isize = DIP(ip, di_size);
1127 		size = lblktosize(fs, visitlbn + 1);
1128 		if (isize > size)
1129 			isize = size;
1130 		/* Always truncate to free any unpopulated indirects. */
1131 		ino_trunc(sino->si_ino, isize);
1132 		return;
1133 	}
1134 	if (blocks == DIP(ip, di_blocks))
1135 		return;
1136 	if (debug)
1137 		printf("ino %ju adjusting block count from %jd to %jd\n",
1138 		    (uintmax_t)ino, DIP(ip, di_blocks), blocks);
1139 	DIP_SET(ip, di_blocks, blocks);
1140 	ino_dirty(ino);
1141 }
1142 
1143 static void
1144 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1145 {
1146 
1147 	blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
1148 }
1149 
1150 /*
1151  * Free a block or tree of blocks that was previously rooted in ino at
1152  * the given lbn.  If the lbn is an indirect all children are freed
1153  * recursively.
1154  */
1155 static void
1156 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1157 {
1158 	uint64_t resid;
1159 	int mask;
1160 
1161 	mask = blk_freemask(blk, ino, lbn, frags);
1162 	resid = 0;
1163 	if (lbn <= -NDADDR && follow && mask == 0)
1164 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1165 	else
1166 		blk_free(blk, mask, frags);
1167 }
1168 
1169 static void
1170 ino_setskip(struct suj_ino *sino, ino_t parent)
1171 {
1172 	int isdot;
1173 	int mode;
1174 
1175 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1176 		sino->si_skipparent = 1;
1177 }
1178 
1179 static void
1180 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1181 {
1182 	struct suj_ino *sino;
1183 	struct suj_rec *srec;
1184 	struct jrefrec *rrec;
1185 
1186 	/*
1187 	 * Lookup this inode to see if we have a record for it.
1188 	 */
1189 	sino = ino_lookup(child, 0);
1190 	/*
1191 	 * Tell any child directories we've already removed their
1192 	 * parent link cnt.  Don't try to adjust our link down again.
1193 	 */
1194 	if (sino != NULL && isdotdot == 0)
1195 		ino_setskip(sino, parent);
1196 	/*
1197 	 * No valid record for this inode.  Just drop the on-disk
1198 	 * link by one.
1199 	 */
1200 	if (sino == NULL || sino->si_hasrecs == 0) {
1201 		ino_decr(child);
1202 		return;
1203 	}
1204 	/*
1205 	 * Use ino_adjust() if ino_check() has already processed this
1206 	 * child.  If we lose the last non-dot reference to a
1207 	 * directory it will be discarded.
1208 	 */
1209 	if (sino->si_linkadj) {
1210 		sino->si_nlink--;
1211 		if (isdotdot)
1212 			sino->si_dotlinks--;
1213 		ino_adjust(sino);
1214 		return;
1215 	}
1216 	/*
1217 	 * If we haven't yet processed this inode we need to make
1218 	 * sure we will successfully discover the lost path.  If not
1219 	 * use nlinkadj to remember.
1220 	 */
1221 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1222 		rrec = (struct jrefrec *)srec->sr_rec;
1223 		if (rrec->jr_parent == parent &&
1224 		    rrec->jr_diroff == diroff)
1225 			return;
1226 	}
1227 	sino->si_nlinkadj++;
1228 }
1229 
1230 /*
1231  * Free the children of a directory when the directory is discarded.
1232  */
1233 static void
1234 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1235 {
1236 	struct suj_ino *sino;
1237 	struct direct *dp;
1238 	off_t diroff;
1239 	uint8_t *block;
1240 	int skipparent;
1241 	int isdotdot;
1242 	int dpoff;
1243 	int size;
1244 
1245 	sino = ino_lookup(ino, 0);
1246 	if (sino)
1247 		skipparent = sino->si_skipparent;
1248 	else
1249 		skipparent = 0;
1250 	size = lfragtosize(fs, frags);
1251 	block = dblk_read(blk, size);
1252 	dp = (struct direct *)&block[0];
1253 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1254 		dp = (struct direct *)&block[dpoff];
1255 		if (dp->d_ino == 0 || dp->d_ino == WINO)
1256 			continue;
1257 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1258 			continue;
1259 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1260 		    dp->d_name[1] == '.';
1261 		if (isdotdot && skipparent == 1)
1262 			continue;
1263 		if (debug)
1264 			printf("Directory %ju removing ino %ju name %s\n",
1265 			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1266 		diroff = lblktosize(fs, lbn) + dpoff;
1267 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1268 	}
1269 }
1270 
1271 /*
1272  * Reclaim an inode, freeing all blocks and decrementing all children's
1273  * link counts.  Free the inode back to the cg.
1274  */
1275 static void
1276 ino_reclaim(union dinode *ip, ino_t ino, int mode)
1277 {
1278 	uint32_t gen;
1279 
1280 	if (ino == ROOTINO)
1281 		err_suj("Attempting to free ROOTINO\n");
1282 	if (debug)
1283 		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1284 		    (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1285 
1286 	/* We are freeing an inode or directory. */
1287 	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1288 		ino_visit(ip, ino, ino_free_children, 0);
1289 	DIP_SET(ip, di_nlink, 0);
1290 	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1291 	/* Here we have to clear the inode and release any blocks it holds. */
1292 	gen = DIP(ip, di_gen);
1293 	if (fs->fs_magic == FS_UFS1_MAGIC)
1294 		bzero(ip, sizeof(struct ufs1_dinode));
1295 	else
1296 		bzero(ip, sizeof(struct ufs2_dinode));
1297 	DIP_SET(ip, di_gen, gen);
1298 	ino_dirty(ino);
1299 	ino_free(ino, mode);
1300 	return;
1301 }
1302 
1303 /*
1304  * Adjust an inode's link count down by one when a directory goes away.
1305  */
1306 static void
1307 ino_decr(ino_t ino)
1308 {
1309 	union dinode *ip;
1310 	int reqlink;
1311 	int nlink;
1312 	int mode;
1313 
1314 	ip = ino_read(ino);
1315 	nlink = DIP(ip, di_nlink);
1316 	mode = DIP(ip, di_mode);
1317 	if (nlink < 1)
1318 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1319 	if (mode == 0)
1320 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1321 	nlink--;
1322 	if ((mode & IFMT) == IFDIR)
1323 		reqlink = 2;
1324 	else
1325 		reqlink = 1;
1326 	if (nlink < reqlink) {
1327 		if (debug)
1328 			printf("ino %ju not enough links to live %d < %d\n",
1329 			    (uintmax_t)ino, nlink, reqlink);
1330 		ino_reclaim(ip, ino, mode);
1331 		return;
1332 	}
1333 	DIP_SET(ip, di_nlink, nlink);
1334 	ino_dirty(ino);
1335 }
1336 
1337 /*
1338  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1339  * free it.
1340  */
1341 static void
1342 ino_adjust(struct suj_ino *sino)
1343 {
1344 	struct jrefrec *rrec;
1345 	struct suj_rec *srec;
1346 	struct suj_ino *stmp;
1347 	union dinode *ip;
1348 	nlink_t nlink;
1349 	int recmode;
1350 	int reqlink;
1351 	int isdot;
1352 	int mode;
1353 	ino_t ino;
1354 
1355 	nlink = sino->si_nlink;
1356 	ino = sino->si_ino;
1357 	mode = sino->si_mode & IFMT;
1358 	/*
1359 	 * If it's a directory with no dot links, it was truncated before
1360 	 * the name was cleared.  We need to clear the dirent that
1361 	 * points at it.
1362 	 */
1363 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1364 		sino->si_nlink = nlink = 0;
1365 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1366 			rrec = (struct jrefrec *)srec->sr_rec;
1367 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1368 			    &recmode, &isdot) == 0)
1369 				continue;
1370 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1371 			break;
1372 		}
1373 		if (srec == NULL)
1374 			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1375 	}
1376 	/*
1377 	 * If it's a directory with no real names pointing to it go ahead
1378 	 * and truncate it.  This will free any children.
1379 	 */
1380 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1381 		sino->si_nlink = nlink = 0;
1382 		/*
1383 		 * Mark any .. links so they know not to free this inode
1384 		 * when they are removed.
1385 		 */
1386 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1387 			rrec = (struct jrefrec *)srec->sr_rec;
1388 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1389 				stmp = ino_lookup(rrec->jr_parent, 0);
1390 				if (stmp)
1391 					ino_setskip(stmp, ino);
1392 			}
1393 		}
1394 	}
1395 	ip = ino_read(ino);
1396 	mode = DIP(ip, di_mode) & IFMT;
1397 	if (nlink > LINK_MAX)
1398 		err_suj("ino %ju nlink manipulation error, new %d, old %d\n",
1399 		    (uintmax_t)ino, nlink, DIP(ip, di_nlink));
1400 	if (debug)
1401 		printf("Adjusting ino %ju, nlink %d, old link %d lastmode %o\n",
1402 		    (uintmax_t)ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1403 	if (mode == 0) {
1404 		if (debug)
1405 			printf("ino %ju, zero inode freeing bitmap\n",
1406 			    (uintmax_t)ino);
1407 		ino_free(ino, sino->si_mode);
1408 		return;
1409 	}
1410 	/* XXX Should be an assert? */
1411 	if (mode != sino->si_mode && debug)
1412 		printf("ino %ju, mode %o != %o\n",
1413 		    (uintmax_t)ino, mode, sino->si_mode);
1414 	if ((mode & IFMT) == IFDIR)
1415 		reqlink = 2;
1416 	else
1417 		reqlink = 1;
1418 	/* If the inode doesn't have enough links to live, free it. */
1419 	if (nlink < reqlink) {
1420 		if (debug)
1421 			printf("ino %ju not enough links to live %d < %d\n",
1422 			    (uintmax_t)ino, nlink, reqlink);
1423 		ino_reclaim(ip, ino, mode);
1424 		return;
1425 	}
1426 	/* If required write the updated link count. */
1427 	if (DIP(ip, di_nlink) == nlink) {
1428 		if (debug)
1429 			printf("ino %ju, link matches, skipping.\n",
1430 			    (uintmax_t)ino);
1431 		return;
1432 	}
1433 	DIP_SET(ip, di_nlink, nlink);
1434 	ino_dirty(ino);
1435 }
1436 
1437 /*
1438  * Truncate some or all blocks in an indirect, freeing any that are required
1439  * and zeroing the indirect.
1440  */
1441 static void
1442 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1443 {
1444 	ufs2_daddr_t *bap2;
1445 	ufs1_daddr_t *bap1;
1446 	ufs_lbn_t lbnadd;
1447 	ufs2_daddr_t nblk;
1448 	ufs_lbn_t next;
1449 	ufs_lbn_t nlbn;
1450 	int dirty;
1451 	int level;
1452 	int i;
1453 
1454 	if (blk == 0)
1455 		return;
1456 	dirty = 0;
1457 	level = lbn_level(lbn);
1458 	if (level == -1)
1459 		err_suj("Invalid level for lbn %jd\n", lbn);
1460 	lbnadd = 1;
1461 	for (i = level; i > 0; i--)
1462 		lbnadd *= NINDIR(fs);
1463 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1464 	bap2 = (void *)bap1;
1465 	for (i = 0; i < NINDIR(fs); i++) {
1466 		if (fs->fs_magic == FS_UFS1_MAGIC)
1467 			nblk = *bap1++;
1468 		else
1469 			nblk = *bap2++;
1470 		if (nblk == 0)
1471 			continue;
1472 		if (level != 0) {
1473 			nlbn = (lbn + 1) - (i * lbnadd);
1474 			/*
1475 			 * Calculate the lbn of the next indirect to
1476 			 * determine if any of this indirect must be
1477 			 * reclaimed.
1478 			 */
1479 			next = -(lbn + level) + ((i+1) * lbnadd);
1480 			if (next <= lastlbn)
1481 				continue;
1482 			indir_trunc(ino, nlbn, nblk, lastlbn);
1483 			/* If all of this indirect was reclaimed, free it. */
1484 			nlbn = next - lbnadd;
1485 			if (nlbn < lastlbn)
1486 				continue;
1487 		} else {
1488 			nlbn = -lbn + i * lbnadd;
1489 			if (nlbn < lastlbn)
1490 				continue;
1491 		}
1492 		dirty = 1;
1493 		blk_free(nblk, 0, fs->fs_frag);
1494 		if (fs->fs_magic == FS_UFS1_MAGIC)
1495 			*(bap1 - 1) = 0;
1496 		else
1497 			*(bap2 - 1) = 0;
1498 	}
1499 	if (dirty)
1500 		dblk_dirty(blk);
1501 }
1502 
1503 /*
1504  * Truncate an inode to the minimum of the given size or the last populated
1505  * block after any over size have been discarded.  The kernel would allocate
1506  * the last block in the file but fsck does not and neither do we.  This
1507  * code never extends files, only shrinks them.
1508  */
1509 static void
1510 ino_trunc(ino_t ino, off_t size)
1511 {
1512 	union dinode *ip;
1513 	ufs2_daddr_t bn;
1514 	uint64_t totalfrags;
1515 	ufs_lbn_t nextlbn;
1516 	ufs_lbn_t lastlbn;
1517 	ufs_lbn_t tmpval;
1518 	ufs_lbn_t lbn;
1519 	ufs_lbn_t i;
1520 	int frags;
1521 	off_t cursize;
1522 	off_t off;
1523 	int mode;
1524 
1525 	ip = ino_read(ino);
1526 	mode = DIP(ip, di_mode) & IFMT;
1527 	cursize = DIP(ip, di_size);
1528 	if (debug)
1529 		printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1530 		    (uintmax_t)ino, mode, size, cursize);
1531 
1532 	/* Skip datablocks for short links and devices. */
1533 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1534 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1535 		return;
1536 	/* Don't extend. */
1537 	if (size > cursize)
1538 		size = cursize;
1539 	lastlbn = lblkno(fs, blkroundup(fs, size));
1540 	for (i = lastlbn; i < NDADDR; i++) {
1541 		if (DIP(ip, di_db[i]) == 0)
1542 			continue;
1543 		frags = sblksize(fs, cursize, i);
1544 		frags = numfrags(fs, frags);
1545 		blk_free(DIP(ip, di_db[i]), 0, frags);
1546 		DIP_SET(ip, di_db[i], 0);
1547 	}
1548 	/*
1549 	 * Follow indirect blocks, freeing anything required.
1550 	 */
1551 	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1552 	    lbn = nextlbn) {
1553 		nextlbn = lbn + tmpval;
1554 		tmpval *= NINDIR(fs);
1555 		/* If we're not freeing any in this indirect range skip it. */
1556 		if (lastlbn >= nextlbn)
1557 			continue;
1558 		if (DIP(ip, di_ib[i]) == 0)
1559 			continue;
1560 		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1561 		/* If we freed everything in this indirect free the indir. */
1562 		if (lastlbn > lbn)
1563 			continue;
1564 		blk_free(DIP(ip, di_ib[i]), 0, frags);
1565 		DIP_SET(ip, di_ib[i], 0);
1566 	}
1567 	ino_dirty(ino);
1568 	/*
1569 	 * Now that we've freed any whole blocks that exceed the desired
1570 	 * truncation size, figure out how many blocks remain and what the
1571 	 * last populated lbn is.  We will set the size to this last lbn
1572 	 * rather than worrying about allocating the final lbn as the kernel
1573 	 * would've done.  This is consistent with normal fsck behavior.
1574 	 */
1575 	visitlbn = 0;
1576 	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1577 	if (size > lblktosize(fs, visitlbn + 1))
1578 		size = lblktosize(fs, visitlbn + 1);
1579 	/*
1580 	 * If we're truncating direct blocks we have to adjust frags
1581 	 * accordingly.
1582 	 */
1583 	if (visitlbn < NDADDR && totalfrags) {
1584 		long oldspace, newspace;
1585 
1586 		bn = DIP(ip, di_db[visitlbn]);
1587 		if (bn == 0)
1588 			err_suj("Bad blk at ino %ju lbn %jd\n",
1589 			    (uintmax_t)ino, visitlbn);
1590 		oldspace = sblksize(fs, cursize, visitlbn);
1591 		newspace = sblksize(fs, size, visitlbn);
1592 		if (oldspace != newspace) {
1593 			bn += numfrags(fs, newspace);
1594 			frags = numfrags(fs, oldspace - newspace);
1595 			blk_free(bn, 0, frags);
1596 			totalfrags -= frags;
1597 		}
1598 	}
1599 	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1600 	DIP_SET(ip, di_size, size);
1601 	/*
1602 	 * If we've truncated into the middle of a block or frag we have
1603 	 * to zero it here.  Otherwise the file could extend into
1604 	 * uninitialized space later.
1605 	 */
1606 	off = blkoff(fs, size);
1607 	if (off && DIP(ip, di_mode) != IFDIR) {
1608 		uint8_t *buf;
1609 		long clrsize;
1610 
1611 		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1612 		if (bn == 0)
1613 			err_suj("Block missing from ino %ju at lbn %jd\n",
1614 			    (uintmax_t)ino, visitlbn);
1615 		clrsize = frags * fs->fs_fsize;
1616 		buf = dblk_read(bn, clrsize);
1617 		clrsize -= off;
1618 		buf += off;
1619 		bzero(buf, clrsize);
1620 		dblk_dirty(bn);
1621 	}
1622 	return;
1623 }
1624 
1625 /*
1626  * Process records available for one inode and determine whether the
1627  * link count is correct or needs adjusting.
1628  */
1629 static void
1630 ino_check(struct suj_ino *sino)
1631 {
1632 	struct suj_rec *srec;
1633 	struct jrefrec *rrec;
1634 	nlink_t dotlinks;
1635 	int newlinks;
1636 	int removes;
1637 	int nlink;
1638 	ino_t ino;
1639 	int isdot;
1640 	int isat;
1641 	int mode;
1642 
1643 	if (sino->si_hasrecs == 0)
1644 		return;
1645 	ino = sino->si_ino;
1646 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1647 	nlink = rrec->jr_nlink;
1648 	newlinks = 0;
1649 	dotlinks = 0;
1650 	removes = sino->si_nlinkadj;
1651 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1652 		rrec = (struct jrefrec *)srec->sr_rec;
1653 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1654 		    rrec->jr_ino, &mode, &isdot);
1655 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1656 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1657 			    mode, rrec->jr_mode);
1658 		if (debug)
1659 			printf("jrefrec: op %d ino %ju, nlink %d, parent %d, "
1660 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1661 			    rrec->jr_op, (uintmax_t)rrec->jr_ino,
1662 			    rrec->jr_nlink, rrec->jr_parent, rrec->jr_diroff,
1663 			    rrec->jr_mode, isat, isdot);
1664 		mode = rrec->jr_mode & IFMT;
1665 		if (rrec->jr_op == JOP_REMREF)
1666 			removes++;
1667 		newlinks += isat;
1668 		if (isdot)
1669 			dotlinks += isat;
1670 	}
1671 	/*
1672 	 * The number of links that remain are the starting link count
1673 	 * subtracted by the total number of removes with the total
1674 	 * links discovered back in.  An incomplete remove thus
1675 	 * makes no change to the link count but an add increases
1676 	 * by one.
1677 	 */
1678 	if (debug)
1679 		printf("ino %ju nlink %d newlinks %d removes %d dotlinks %d\n",
1680 		    (uintmax_t)ino, nlink, newlinks, removes, dotlinks);
1681 	nlink += newlinks;
1682 	nlink -= removes;
1683 	sino->si_linkadj = 1;
1684 	sino->si_nlink = nlink;
1685 	sino->si_dotlinks = dotlinks;
1686 	sino->si_mode = mode;
1687 	ino_adjust(sino);
1688 }
1689 
1690 /*
1691  * Process records available for one block and determine whether it is
1692  * still allocated and whether the owning inode needs to be updated or
1693  * a free completed.
1694  */
1695 static void
1696 blk_check(struct suj_blk *sblk)
1697 {
1698 	struct suj_rec *srec;
1699 	struct jblkrec *brec;
1700 	struct suj_ino *sino;
1701 	ufs2_daddr_t blk;
1702 	int mask;
1703 	int frags;
1704 	int isat;
1705 
1706 	/*
1707 	 * Each suj_blk actually contains records for any fragments in that
1708 	 * block.  As a result we must evaluate each record individually.
1709 	 */
1710 	sino = NULL;
1711 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1712 		brec = (struct jblkrec *)srec->sr_rec;
1713 		frags = brec->jb_frags;
1714 		blk = brec->jb_blkno + brec->jb_oldfrags;
1715 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1716 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1717 			sino = ino_lookup(brec->jb_ino, 1);
1718 			sino->si_blkadj = 1;
1719 		}
1720 		if (debug)
1721 			printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1722 			    brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1723 			    brec->jb_lbn, brec->jb_frags, isat, frags);
1724 		/*
1725 		 * If we found the block at this address we still have to
1726 		 * determine if we need to free the tail end that was
1727 		 * added by adding contiguous fragments from the same block.
1728 		 */
1729 		if (isat == 1) {
1730 			if (frags == brec->jb_frags)
1731 				continue;
1732 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1733 			    brec->jb_frags);
1734 			mask >>= frags;
1735 			blk += frags;
1736 			frags = brec->jb_frags - frags;
1737 			blk_free(blk, mask, frags);
1738 			continue;
1739 		}
1740 		/*
1741 	 	 * The block wasn't found, attempt to free it.  It won't be
1742 		 * freed if it was actually reallocated.  If this was an
1743 		 * allocation we don't want to follow indirects as they
1744 		 * may not be written yet.  Any children of the indirect will
1745 		 * have their own records.  If it's a free we need to
1746 		 * recursively free children.
1747 		 */
1748 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1749 		    brec->jb_op == JOP_FREEBLK);
1750 	}
1751 }
1752 
1753 /*
1754  * Walk the list of inode records for this cg and resolve moved and duplicate
1755  * inode references now that we have a complete picture.
1756  */
1757 static void
1758 cg_build(struct suj_cg *sc)
1759 {
1760 	struct suj_ino *sino;
1761 	int i;
1762 
1763 	for (i = 0; i < SUJ_HASHSIZE; i++)
1764 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1765 			ino_build(sino);
1766 }
1767 
1768 /*
1769  * Handle inodes requiring truncation.  This must be done prior to
1770  * looking up any inodes in directories.
1771  */
1772 static void
1773 cg_trunc(struct suj_cg *sc)
1774 {
1775 	struct suj_ino *sino;
1776 	int i;
1777 
1778 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1779 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1780 			if (sino->si_trunc) {
1781 				ino_trunc(sino->si_ino,
1782 				    sino->si_trunc->jt_size);
1783 				sino->si_blkadj = 0;
1784 				sino->si_trunc = NULL;
1785 			}
1786 			if (sino->si_blkadj)
1787 				ino_adjblks(sino);
1788 		}
1789 	}
1790 }
1791 
1792 static void
1793 cg_adj_blk(struct suj_cg *sc)
1794 {
1795 	struct suj_ino *sino;
1796 	int i;
1797 
1798 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1799 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1800 			if (sino->si_blkadj)
1801 				ino_adjblks(sino);
1802 		}
1803 	}
1804 }
1805 
1806 /*
1807  * Free any partially allocated blocks and then resolve inode block
1808  * counts.
1809  */
1810 static void
1811 cg_check_blk(struct suj_cg *sc)
1812 {
1813 	struct suj_blk *sblk;
1814 	int i;
1815 
1816 
1817 	for (i = 0; i < SUJ_HASHSIZE; i++)
1818 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1819 			blk_check(sblk);
1820 }
1821 
1822 /*
1823  * Walk the list of inode records for this cg, recovering any
1824  * changes which were not complete at the time of crash.
1825  */
1826 static void
1827 cg_check_ino(struct suj_cg *sc)
1828 {
1829 	struct suj_ino *sino;
1830 	int i;
1831 
1832 	for (i = 0; i < SUJ_HASHSIZE; i++)
1833 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1834 			ino_check(sino);
1835 }
1836 
1837 /*
1838  * Write a potentially dirty cg.  Recalculate the summary information and
1839  * update the superblock summary.
1840  */
1841 static void
1842 cg_write(struct suj_cg *sc)
1843 {
1844 	ufs1_daddr_t fragno, cgbno, maxbno;
1845 	u_int8_t *blksfree;
1846 	struct cg *cgp;
1847 	int blk;
1848 	int i;
1849 
1850 	if (sc->sc_dirty == 0)
1851 		return;
1852 	/*
1853 	 * Fix the frag and cluster summary.
1854 	 */
1855 	cgp = sc->sc_cgp;
1856 	cgp->cg_cs.cs_nbfree = 0;
1857 	cgp->cg_cs.cs_nffree = 0;
1858 	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1859 	maxbno = fragstoblks(fs, fs->fs_fpg);
1860 	if (fs->fs_contigsumsize > 0) {
1861 		for (i = 1; i <= fs->fs_contigsumsize; i++)
1862 			cg_clustersum(cgp)[i] = 0;
1863 		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1864 	}
1865 	blksfree = cg_blksfree(cgp);
1866 	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1867 		if (ffs_isfreeblock(fs, blksfree, cgbno))
1868 			continue;
1869 		if (ffs_isblock(fs, blksfree, cgbno)) {
1870 			ffs_clusteracct(fs, cgp, cgbno, 1);
1871 			cgp->cg_cs.cs_nbfree++;
1872 			continue;
1873 		}
1874 		fragno = blkstofrags(fs, cgbno);
1875 		blk = blkmap(fs, blksfree, fragno);
1876 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1877 		for (i = 0; i < fs->fs_frag; i++)
1878 			if (isset(blksfree, fragno + i))
1879 				cgp->cg_cs.cs_nffree++;
1880 	}
1881 	/*
1882 	 * Update the superblock cg summary from our now correct values
1883 	 * before writing the block.
1884 	 */
1885 	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1886 	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1887 	    fs->fs_bsize) == -1)
1888 		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1889 }
1890 
1891 /*
1892  * Write out any modified inodes.
1893  */
1894 static void
1895 cg_write_inos(struct suj_cg *sc)
1896 {
1897 	struct ino_blk *iblk;
1898 	int i;
1899 
1900 	for (i = 0; i < SUJ_HASHSIZE; i++)
1901 		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1902 			if (iblk->ib_dirty)
1903 				iblk_write(iblk);
1904 }
1905 
1906 static void
1907 cg_apply(void (*apply)(struct suj_cg *))
1908 {
1909 	struct suj_cg *scg;
1910 	int i;
1911 
1912 	for (i = 0; i < SUJ_HASHSIZE; i++)
1913 		LIST_FOREACH(scg, &cghash[i], sc_next)
1914 			apply(scg);
1915 }
1916 
1917 /*
1918  * Process the unlinked but referenced file list.  Freeing all inodes.
1919  */
1920 static void
1921 ino_unlinked(void)
1922 {
1923 	union dinode *ip;
1924 	uint16_t mode;
1925 	ino_t inon;
1926 	ino_t ino;
1927 
1928 	ino = fs->fs_sujfree;
1929 	fs->fs_sujfree = 0;
1930 	while (ino != 0) {
1931 		ip = ino_read(ino);
1932 		mode = DIP(ip, di_mode) & IFMT;
1933 		inon = DIP(ip, di_freelink);
1934 		DIP_SET(ip, di_freelink, 0);
1935 		/*
1936 		 * XXX Should this be an errx?
1937 		 */
1938 		if (DIP(ip, di_nlink) == 0) {
1939 			if (debug)
1940 				printf("Freeing unlinked ino %ju mode %o\n",
1941 				    (uintmax_t)ino, mode);
1942 			ino_reclaim(ip, ino, mode);
1943 		} else if (debug)
1944 			printf("Skipping ino %ju mode %o with link %d\n",
1945 			    (uintmax_t)ino, mode, DIP(ip, di_nlink));
1946 		ino = inon;
1947 	}
1948 }
1949 
1950 /*
1951  * Append a new record to the list of records requiring processing.
1952  */
1953 static void
1954 ino_append(union jrec *rec)
1955 {
1956 	struct jrefrec *refrec;
1957 	struct jmvrec *mvrec;
1958 	struct suj_ino *sino;
1959 	struct suj_rec *srec;
1960 
1961 	mvrec = &rec->rec_jmvrec;
1962 	refrec = &rec->rec_jrefrec;
1963 	if (debug && mvrec->jm_op == JOP_MVREF)
1964 		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1965 		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1966 		    mvrec->jm_oldoff);
1967 	else if (debug &&
1968 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1969 		printf("ino ref: op %d, ino %d, nlink %d, "
1970 		    "parent %d, diroff %jd\n",
1971 		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1972 		    refrec->jr_parent, refrec->jr_diroff);
1973 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1974 	sino->si_hasrecs = 1;
1975 	srec = errmalloc(sizeof(*srec));
1976 	srec->sr_rec = rec;
1977 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1978 }
1979 
1980 /*
1981  * Add a reference adjustment to the sino list and eliminate dups.  The
1982  * primary loop in ino_build_ref() checks for dups but new ones may be
1983  * created as a result of offset adjustments.
1984  */
1985 static void
1986 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1987 {
1988 	struct jrefrec *refrec;
1989 	struct suj_rec *srn;
1990 	struct jrefrec *rrn;
1991 
1992 	refrec = (struct jrefrec *)srec->sr_rec;
1993 	/*
1994 	 * We walk backwards so that the oldest link count is preserved.  If
1995 	 * an add record conflicts with a remove keep the remove.  Redundant
1996 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1997 	 * oldest record at a given location.
1998 	 */
1999 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
2000 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
2001 		rrn = (struct jrefrec *)srn->sr_rec;
2002 		if (rrn->jr_parent != refrec->jr_parent ||
2003 		    rrn->jr_diroff != refrec->jr_diroff)
2004 			continue;
2005 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2006 			rrn->jr_mode = refrec->jr_mode;
2007 			return;
2008 		}
2009 		/*
2010 		 * Adding a remove.
2011 		 *
2012 		 * Replace the record in place with the old nlink in case
2013 		 * we replace the head of the list.  Abandon srec as a dup.
2014 		 */
2015 		refrec->jr_nlink = rrn->jr_nlink;
2016 		srn->sr_rec = srec->sr_rec;
2017 		return;
2018 	}
2019 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2020 }
2021 
2022 /*
2023  * Create a duplicate of a reference at a previous location.
2024  */
2025 static void
2026 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2027 {
2028 	struct jrefrec *rrn;
2029 	struct suj_rec *srn;
2030 
2031 	rrn = errmalloc(sizeof(*refrec));
2032 	*rrn = *refrec;
2033 	rrn->jr_op = JOP_ADDREF;
2034 	rrn->jr_diroff = diroff;
2035 	srn = errmalloc(sizeof(*srn));
2036 	srn->sr_rec = (union jrec *)rrn;
2037 	ino_add_ref(sino, srn);
2038 }
2039 
2040 /*
2041  * Add a reference to the list at all known locations.  We follow the offset
2042  * changes for a single instance and create duplicate add refs at each so
2043  * that we can tolerate any version of the directory block.  Eliminate
2044  * removes which collide with adds that are seen in the journal.  They should
2045  * not adjust the link count down.
2046  */
2047 static void
2048 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2049 {
2050 	struct jrefrec *refrec;
2051 	struct jmvrec *mvrec;
2052 	struct suj_rec *srp;
2053 	struct suj_rec *srn;
2054 	struct jrefrec *rrn;
2055 	off_t diroff;
2056 
2057 	refrec = (struct jrefrec *)srec->sr_rec;
2058 	/*
2059 	 * Search for a mvrec that matches this offset.  Whether it's an add
2060 	 * or a remove we can delete the mvref after creating a dup record in
2061 	 * the old location.
2062 	 */
2063 	if (!TAILQ_EMPTY(&sino->si_movs)) {
2064 		diroff = refrec->jr_diroff;
2065 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2066 			srp = TAILQ_PREV(srn, srechd, sr_next);
2067 			mvrec = (struct jmvrec *)srn->sr_rec;
2068 			if (mvrec->jm_parent != refrec->jr_parent ||
2069 			    mvrec->jm_newoff != diroff)
2070 				continue;
2071 			diroff = mvrec->jm_oldoff;
2072 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2073 			free(srn);
2074 			ino_dup_ref(sino, refrec, diroff);
2075 		}
2076 	}
2077 	/*
2078 	 * If a remove wasn't eliminated by an earlier add just append it to
2079 	 * the list.
2080 	 */
2081 	if (refrec->jr_op == JOP_REMREF) {
2082 		ino_add_ref(sino, srec);
2083 		return;
2084 	}
2085 	/*
2086 	 * Walk the list of records waiting to be added to the list.  We
2087 	 * must check for moves that apply to our current offset and remove
2088 	 * them from the list.  Remove any duplicates to eliminate removes
2089 	 * with corresponding adds.
2090 	 */
2091 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2092 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2093 		case JOP_ADDREF:
2094 			/*
2095 			 * This should actually be an error we should
2096 			 * have a remove for every add journaled.
2097 			 */
2098 			rrn = (struct jrefrec *)srn->sr_rec;
2099 			if (rrn->jr_parent != refrec->jr_parent ||
2100 			    rrn->jr_diroff != refrec->jr_diroff)
2101 				break;
2102 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2103 			break;
2104 		case JOP_REMREF:
2105 			/*
2106 			 * Once we remove the current iteration of the
2107 			 * record at this address we're done.
2108 			 */
2109 			rrn = (struct jrefrec *)srn->sr_rec;
2110 			if (rrn->jr_parent != refrec->jr_parent ||
2111 			    rrn->jr_diroff != refrec->jr_diroff)
2112 				break;
2113 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2114 			ino_add_ref(sino, srec);
2115 			return;
2116 		case JOP_MVREF:
2117 			/*
2118 			 * Update our diroff based on any moves that match
2119 			 * and remove the move.
2120 			 */
2121 			mvrec = (struct jmvrec *)srn->sr_rec;
2122 			if (mvrec->jm_parent != refrec->jr_parent ||
2123 			    mvrec->jm_oldoff != refrec->jr_diroff)
2124 				break;
2125 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2126 			refrec->jr_diroff = mvrec->jm_newoff;
2127 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2128 			break;
2129 		default:
2130 			err_suj("ino_build_ref: Unknown op %d\n",
2131 			    srn->sr_rec->rec_jrefrec.jr_op);
2132 		}
2133 	}
2134 	ino_add_ref(sino, srec);
2135 }
2136 
2137 /*
2138  * Walk the list of new records and add them in-order resolving any
2139  * dups and adjusted offsets.
2140  */
2141 static void
2142 ino_build(struct suj_ino *sino)
2143 {
2144 	struct suj_rec *srec;
2145 
2146 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2147 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2148 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2149 		case JOP_ADDREF:
2150 		case JOP_REMREF:
2151 			ino_build_ref(sino, srec);
2152 			break;
2153 		case JOP_MVREF:
2154 			/*
2155 			 * Add this mvrec to the queue of pending mvs.
2156 			 */
2157 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2158 			break;
2159 		default:
2160 			err_suj("ino_build: Unknown op %d\n",
2161 			    srec->sr_rec->rec_jrefrec.jr_op);
2162 		}
2163 	}
2164 	if (TAILQ_EMPTY(&sino->si_recs))
2165 		sino->si_hasrecs = 0;
2166 }
2167 
2168 /*
2169  * Modify journal records so they refer to the base block number
2170  * and a start and end frag range.  This is to facilitate the discovery
2171  * of overlapping fragment allocations.
2172  */
2173 static void
2174 blk_build(struct jblkrec *blkrec)
2175 {
2176 	struct suj_rec *srec;
2177 	struct suj_blk *sblk;
2178 	struct jblkrec *blkrn;
2179 	ufs2_daddr_t blk;
2180 	int frag;
2181 
2182 	if (debug)
2183 		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2184 		    "ino %d lbn %jd\n",
2185 		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2186 		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2187 
2188 	blk = blknum(fs, blkrec->jb_blkno);
2189 	frag = fragnum(fs, blkrec->jb_blkno);
2190 	sblk = blk_lookup(blk, 1);
2191 	/*
2192 	 * Rewrite the record using oldfrags to indicate the offset into
2193 	 * the block.  Leave jb_frags as the actual allocated count.
2194 	 */
2195 	blkrec->jb_blkno -= frag;
2196 	blkrec->jb_oldfrags = frag;
2197 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2198 		err_suj("Invalid fragment count %d oldfrags %d\n",
2199 		    blkrec->jb_frags, frag);
2200 	/*
2201 	 * Detect dups.  If we detect a dup we always discard the oldest
2202 	 * record as it is superseded by the new record.  This speeds up
2203 	 * later stages but also eliminates free records which are used
2204 	 * to indicate that the contents of indirects can be trusted.
2205 	 */
2206 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2207 		blkrn = (struct jblkrec *)srec->sr_rec;
2208 		if (blkrn->jb_ino != blkrec->jb_ino ||
2209 		    blkrn->jb_lbn != blkrec->jb_lbn ||
2210 		    blkrn->jb_blkno != blkrec->jb_blkno ||
2211 		    blkrn->jb_frags != blkrec->jb_frags ||
2212 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2213 			continue;
2214 		if (debug)
2215 			printf("Removed dup.\n");
2216 		/* Discard the free which is a dup with an alloc. */
2217 		if (blkrec->jb_op == JOP_FREEBLK)
2218 			return;
2219 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2220 		free(srec);
2221 		break;
2222 	}
2223 	srec = errmalloc(sizeof(*srec));
2224 	srec->sr_rec = (union jrec *)blkrec;
2225 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2226 }
2227 
2228 static void
2229 ino_build_trunc(struct jtrncrec *rec)
2230 {
2231 	struct suj_ino *sino;
2232 
2233 	if (debug)
2234 		printf("ino_build_trunc: op %d ino %d, size %jd\n",
2235 		    rec->jt_op, rec->jt_ino, rec->jt_size);
2236 	sino = ino_lookup(rec->jt_ino, 1);
2237 	if (rec->jt_op == JOP_SYNC) {
2238 		sino->si_trunc = NULL;
2239 		return;
2240 	}
2241 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2242 		sino->si_trunc = rec;
2243 }
2244 
2245 /*
2246  * Build up tables of the operations we need to recover.
2247  */
2248 static void
2249 suj_build(void)
2250 {
2251 	struct suj_seg *seg;
2252 	union jrec *rec;
2253 	int off;
2254 	int i;
2255 
2256 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2257 		if (debug)
2258 			printf("seg %jd has %d records, oldseq %jd.\n",
2259 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2260 			    seg->ss_rec.jsr_oldest);
2261 		off = 0;
2262 		rec = (union jrec *)seg->ss_blk;
2263 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2264 			/* skip the segrec. */
2265 			if ((off % real_dev_bsize) == 0)
2266 				continue;
2267 			switch (rec->rec_jrefrec.jr_op) {
2268 			case JOP_ADDREF:
2269 			case JOP_REMREF:
2270 			case JOP_MVREF:
2271 				ino_append(rec);
2272 				break;
2273 			case JOP_NEWBLK:
2274 			case JOP_FREEBLK:
2275 				blk_build((struct jblkrec *)rec);
2276 				break;
2277 			case JOP_TRUNC:
2278 			case JOP_SYNC:
2279 				ino_build_trunc((struct jtrncrec *)rec);
2280 				break;
2281 			default:
2282 				err_suj("Unknown journal operation %d (%d)\n",
2283 				    rec->rec_jrefrec.jr_op, off);
2284 			}
2285 			i++;
2286 		}
2287 	}
2288 }
2289 
2290 /*
2291  * Prune the journal segments to those we care about based on the
2292  * oldest sequence in the newest segment.  Order the segment list
2293  * based on sequence number.
2294  */
2295 static void
2296 suj_prune(void)
2297 {
2298 	struct suj_seg *seg;
2299 	struct suj_seg *segn;
2300 	uint64_t newseq;
2301 	int discard;
2302 
2303 	if (debug)
2304 		printf("Pruning up to %jd\n", oldseq);
2305 	/* First free the expired segments. */
2306 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2307 		if (seg->ss_rec.jsr_seq >= oldseq)
2308 			continue;
2309 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2310 		free(seg->ss_blk);
2311 		free(seg);
2312 	}
2313 	/* Next ensure that segments are ordered properly. */
2314 	seg = TAILQ_FIRST(&allsegs);
2315 	if (seg == NULL) {
2316 		if (debug)
2317 			printf("Empty journal\n");
2318 		return;
2319 	}
2320 	newseq = seg->ss_rec.jsr_seq;
2321 	for (;;) {
2322 		seg = TAILQ_LAST(&allsegs, seghd);
2323 		if (seg->ss_rec.jsr_seq >= newseq)
2324 			break;
2325 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2326 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2327 		newseq = seg->ss_rec.jsr_seq;
2328 
2329 	}
2330 	if (newseq != oldseq) {
2331 		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2332 			printf("%jd, ", seg->ss_rec.jsr_seq);
2333 		}
2334 		printf("\n");
2335 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2336 		    newseq, oldseq);
2337 	}
2338 	/*
2339 	 * The kernel may asynchronously write segments which can create
2340 	 * gaps in the sequence space.  Throw away any segments after the
2341 	 * gap as the kernel guarantees only those that are contiguously
2342 	 * reachable are marked as completed.
2343 	 */
2344 	discard = 0;
2345 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2346 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2347 			jrecs += seg->ss_rec.jsr_cnt;
2348 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2349 			continue;
2350 		}
2351 		discard = 1;
2352 		if (debug)
2353 			printf("Journal order mismatch %jd != %jd pruning\n",
2354 			    newseq-1, seg->ss_rec.jsr_seq);
2355 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2356 		free(seg->ss_blk);
2357 		free(seg);
2358 	}
2359 	if (debug)
2360 		printf("Processing journal segments from %jd to %jd\n",
2361 		    oldseq, newseq-1);
2362 }
2363 
2364 /*
2365  * Verify the journal inode before attempting to read records.
2366  */
2367 static int
2368 suj_verifyino(union dinode *ip)
2369 {
2370 
2371 	if (DIP(ip, di_nlink) != 1) {
2372 		printf("Invalid link count %d for journal inode %ju\n",
2373 		    DIP(ip, di_nlink), (uintmax_t)sujino);
2374 		return (-1);
2375 	}
2376 
2377 	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2378 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2379 		printf("Invalid flags 0x%X for journal inode %ju\n",
2380 		    DIP(ip, di_flags), (uintmax_t)sujino);
2381 		return (-1);
2382 	}
2383 
2384 	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2385 		printf("Invalid mode %o for journal inode %ju\n",
2386 		    DIP(ip, di_mode), (uintmax_t)sujino);
2387 		return (-1);
2388 	}
2389 
2390 	if (DIP(ip, di_size) < SUJ_MIN) {
2391 		printf("Invalid size %jd for journal inode %ju\n",
2392 		    DIP(ip, di_size), (uintmax_t)sujino);
2393 		return (-1);
2394 	}
2395 
2396 	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2397 		printf("Journal timestamp does not match fs mount time\n");
2398 		return (-1);
2399 	}
2400 
2401 	return (0);
2402 }
2403 
2404 struct jblocks {
2405 	struct jextent *jb_extent;	/* Extent array. */
2406 	int		jb_avail;	/* Available extents. */
2407 	int		jb_used;	/* Last used extent. */
2408 	int		jb_head;	/* Allocator head. */
2409 	int		jb_off;		/* Allocator extent offset. */
2410 };
2411 struct jextent {
2412 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2413 	int		je_blocks;	/* Disk block count. */
2414 };
2415 
2416 struct jblocks *suj_jblocks;
2417 
2418 static struct jblocks *
2419 jblocks_create(void)
2420 {
2421 	struct jblocks *jblocks;
2422 	int size;
2423 
2424 	jblocks = errmalloc(sizeof(*jblocks));
2425 	jblocks->jb_avail = 10;
2426 	jblocks->jb_used = 0;
2427 	jblocks->jb_head = 0;
2428 	jblocks->jb_off = 0;
2429 	size = sizeof(struct jextent) * jblocks->jb_avail;
2430 	jblocks->jb_extent = errmalloc(size);
2431 	bzero(jblocks->jb_extent, size);
2432 
2433 	return (jblocks);
2434 }
2435 
2436 /*
2437  * Return the next available disk block and the amount of contiguous
2438  * free space it contains.
2439  */
2440 static ufs2_daddr_t
2441 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2442 {
2443 	struct jextent *jext;
2444 	ufs2_daddr_t daddr;
2445 	int freecnt;
2446 	int blocks;
2447 
2448 	blocks = bytes / disk->d_bsize;
2449 	jext = &jblocks->jb_extent[jblocks->jb_head];
2450 	freecnt = jext->je_blocks - jblocks->jb_off;
2451 	if (freecnt == 0) {
2452 		jblocks->jb_off = 0;
2453 		if (++jblocks->jb_head > jblocks->jb_used)
2454 			return (0);
2455 		jext = &jblocks->jb_extent[jblocks->jb_head];
2456 		freecnt = jext->je_blocks;
2457 	}
2458 	if (freecnt > blocks)
2459 		freecnt = blocks;
2460 	*actual = freecnt * disk->d_bsize;
2461 	daddr = jext->je_daddr + jblocks->jb_off;
2462 
2463 	return (daddr);
2464 }
2465 
2466 /*
2467  * Advance the allocation head by a specified number of bytes, consuming
2468  * one journal segment.
2469  */
2470 static void
2471 jblocks_advance(struct jblocks *jblocks, int bytes)
2472 {
2473 
2474 	jblocks->jb_off += bytes / disk->d_bsize;
2475 }
2476 
2477 static void
2478 jblocks_destroy(struct jblocks *jblocks)
2479 {
2480 
2481 	free(jblocks->jb_extent);
2482 	free(jblocks);
2483 }
2484 
2485 static void
2486 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2487 {
2488 	struct jextent *jext;
2489 	int size;
2490 
2491 	jext = &jblocks->jb_extent[jblocks->jb_used];
2492 	/* Adding the first block. */
2493 	if (jext->je_daddr == 0) {
2494 		jext->je_daddr = daddr;
2495 		jext->je_blocks = blocks;
2496 		return;
2497 	}
2498 	/* Extending the last extent. */
2499 	if (jext->je_daddr + jext->je_blocks == daddr) {
2500 		jext->je_blocks += blocks;
2501 		return;
2502 	}
2503 	/* Adding a new extent. */
2504 	if (++jblocks->jb_used == jblocks->jb_avail) {
2505 		jblocks->jb_avail *= 2;
2506 		size = sizeof(struct jextent) * jblocks->jb_avail;
2507 		jext = errmalloc(size);
2508 		bzero(jext, size);
2509 		bcopy(jblocks->jb_extent, jext,
2510 		    sizeof(struct jextent) * jblocks->jb_used);
2511 		free(jblocks->jb_extent);
2512 		jblocks->jb_extent = jext;
2513 	}
2514 	jext = &jblocks->jb_extent[jblocks->jb_used];
2515 	jext->je_daddr = daddr;
2516 	jext->je_blocks = blocks;
2517 
2518 	return;
2519 }
2520 
2521 /*
2522  * Add a file block from the journal to the extent map.  We can't read
2523  * each file block individually because the kernel treats it as a circular
2524  * buffer and segments may span mutliple contiguous blocks.
2525  */
2526 static void
2527 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2528 {
2529 
2530 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2531 }
2532 
2533 static void
2534 suj_read(void)
2535 {
2536 	uint8_t block[1 * 1024 * 1024];
2537 	struct suj_seg *seg;
2538 	struct jsegrec *recn;
2539 	struct jsegrec *rec;
2540 	ufs2_daddr_t blk;
2541 	int readsize;
2542 	int blocks;
2543 	int recsize;
2544 	int size;
2545 	int i;
2546 
2547 	/*
2548 	 * Read records until we exhaust the journal space.  If we find
2549 	 * an invalid record we start searching for a valid segment header
2550 	 * at the next block.  This is because we don't have a head/tail
2551 	 * pointer and must recover the information indirectly.  At the gap
2552 	 * between the head and tail we won't necessarily have a valid
2553 	 * segment.
2554 	 */
2555 restart:
2556 	for (;;) {
2557 		size = sizeof(block);
2558 		blk = jblocks_next(suj_jblocks, size, &readsize);
2559 		if (blk == 0)
2560 			return;
2561 		size = readsize;
2562 		/*
2563 		 * Read 1MB at a time and scan for records within this block.
2564 		 */
2565 		if (bread(disk, blk, &block, size) == -1) {
2566 			err_suj("Error reading journal block %jd\n",
2567 			    (intmax_t)blk);
2568 		}
2569 		for (rec = (void *)block; size; size -= recsize,
2570 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2571 			recsize = real_dev_bsize;
2572 			if (rec->jsr_time != fs->fs_mtime) {
2573 				if (debug)
2574 					printf("Rec time %jd != fs mtime %jd\n",
2575 					    rec->jsr_time, fs->fs_mtime);
2576 				jblocks_advance(suj_jblocks, recsize);
2577 				continue;
2578 			}
2579 			if (rec->jsr_cnt == 0) {
2580 				if (debug)
2581 					printf("Found illegal count %d\n",
2582 					    rec->jsr_cnt);
2583 				jblocks_advance(suj_jblocks, recsize);
2584 				continue;
2585 			}
2586 			blocks = rec->jsr_blocks;
2587 			recsize = blocks * real_dev_bsize;
2588 			if (recsize > size) {
2589 				/*
2590 				 * We may just have run out of buffer, restart
2591 				 * the loop to re-read from this spot.
2592 				 */
2593 				if (size < fs->fs_bsize &&
2594 				    size != readsize &&
2595 				    recsize <= fs->fs_bsize)
2596 					goto restart;
2597 				if (debug)
2598 					printf("Found invalid segsize %d > %d\n",
2599 					    recsize, size);
2600 				recsize = real_dev_bsize;
2601 				jblocks_advance(suj_jblocks, recsize);
2602 				continue;
2603 			}
2604 			/*
2605 			 * Verify that all blocks in the segment are present.
2606 			 */
2607 			for (i = 1; i < blocks; i++) {
2608 				recn = (void *)((uintptr_t)rec) + i *
2609 				    real_dev_bsize;
2610 				if (recn->jsr_seq == rec->jsr_seq &&
2611 				    recn->jsr_time == rec->jsr_time)
2612 					continue;
2613 				if (debug)
2614 					printf("Incomplete record %jd (%d)\n",
2615 					    rec->jsr_seq, i);
2616 				recsize = i * real_dev_bsize;
2617 				jblocks_advance(suj_jblocks, recsize);
2618 				goto restart;
2619 			}
2620 			seg = errmalloc(sizeof(*seg));
2621 			seg->ss_blk = errmalloc(recsize);
2622 			seg->ss_rec = *rec;
2623 			bcopy((void *)rec, seg->ss_blk, recsize);
2624 			if (rec->jsr_oldest > oldseq)
2625 				oldseq = rec->jsr_oldest;
2626 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2627 			jblocks_advance(suj_jblocks, recsize);
2628 		}
2629 	}
2630 }
2631 
2632 /*
2633  * Search a directory block for the SUJ_FILE.
2634  */
2635 static void
2636 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2637 {
2638 	char block[MAXBSIZE];
2639 	struct direct *dp;
2640 	int bytes;
2641 	int off;
2642 
2643 	if (sujino)
2644 		return;
2645 	bytes = lfragtosize(fs, frags);
2646 	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2647 		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2648 	for (off = 0; off < bytes; off += dp->d_reclen) {
2649 		dp = (struct direct *)&block[off];
2650 		if (dp->d_reclen == 0)
2651 			break;
2652 		if (dp->d_ino == 0)
2653 			continue;
2654 		if (dp->d_namlen != strlen(SUJ_FILE))
2655 			continue;
2656 		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2657 			continue;
2658 		sujino = dp->d_ino;
2659 		return;
2660 	}
2661 }
2662 
2663 /*
2664  * Orchestrate the verification of a filesystem via the softupdates journal.
2665  */
2666 int
2667 suj_check(const char *filesys)
2668 {
2669 	union dinode *jip;
2670 	union dinode *ip;
2671 	uint64_t blocks;
2672 	int retval;
2673 	struct suj_seg *seg;
2674 	struct suj_seg *segn;
2675 
2676 	opendisk(filesys);
2677 	TAILQ_INIT(&allsegs);
2678 
2679 	/*
2680 	 * Set an exit point when SUJ check failed
2681 	 */
2682 	retval = setjmp(jmpbuf);
2683 	if (retval != 0) {
2684 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2685 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2686 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2687 				free(seg->ss_blk);
2688 				free(seg);
2689 		}
2690 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2691 			ckfini(0);
2692 			exit(EEXIT);
2693 		} else
2694 			return (-1);
2695 	}
2696 
2697 	/*
2698 	 * Find the journal inode.
2699 	 */
2700 	ip = ino_read(ROOTINO);
2701 	sujino = 0;
2702 	ino_visit(ip, ROOTINO, suj_find, 0);
2703 	if (sujino == 0) {
2704 		printf("Journal inode removed.  Use tunefs to re-create.\n");
2705 		sblock.fs_flags &= ~FS_SUJ;
2706 		sblock.fs_sujfree = 0;
2707 		return (-1);
2708 	}
2709 	/*
2710 	 * Fetch the journal inode and verify it.
2711 	 */
2712 	jip = ino_read(sujino);
2713 	printf("** SU+J Recovering %s\n", filesys);
2714 	if (suj_verifyino(jip) != 0)
2715 		return (-1);
2716 	/*
2717 	 * Build a list of journal blocks in jblocks before parsing the
2718 	 * available journal blocks in with suj_read().
2719 	 */
2720 	printf("** Reading %jd byte journal from inode %ju.\n",
2721 	    DIP(jip, di_size), (uintmax_t)sujino);
2722 	suj_jblocks = jblocks_create();
2723 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2724 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2725 		printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2726 		return (-1);
2727 	}
2728 	suj_read();
2729 	jblocks_destroy(suj_jblocks);
2730 	suj_jblocks = NULL;
2731 	if (preen || reply("RECOVER")) {
2732 		printf("** Building recovery table.\n");
2733 		suj_prune();
2734 		suj_build();
2735 		cg_apply(cg_build);
2736 		printf("** Resolving unreferenced inode list.\n");
2737 		ino_unlinked();
2738 		printf("** Processing journal entries.\n");
2739 		cg_apply(cg_trunc);
2740 		cg_apply(cg_check_blk);
2741 		cg_apply(cg_adj_blk);
2742 		cg_apply(cg_check_ino);
2743 	}
2744 	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2745 		return (0);
2746 	/*
2747 	 * To remain idempotent with partial truncations the free bitmaps
2748 	 * must be written followed by indirect blocks and lastly inode
2749 	 * blocks.  This preserves access to the modified pointers until
2750 	 * they are freed.
2751 	 */
2752 	cg_apply(cg_write);
2753 	dblk_write();
2754 	cg_apply(cg_write_inos);
2755 	/* Write back superblock. */
2756 	closedisk(filesys);
2757 	if (jrecs > 0 || jbytes > 0) {
2758 		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2759 		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2760 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2761 		    freeinos, freedir, freeblocks, freefrags);
2762 	}
2763 
2764 	return (0);
2765 }
2766