xref: /freebsd/sbin/fsck_ffs/suj.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/disk.h>
32 #include <sys/disklabel.h>
33 #include <sys/mount.h>
34 #include <sys/stat.h>
35 
36 #include <ufs/ufs/extattr.h>
37 #include <ufs/ufs/quota.h>
38 #include <ufs/ufs/ufsmount.h>
39 #include <ufs/ufs/dinode.h>
40 #include <ufs/ufs/dir.h>
41 #include <ufs/ffs/fs.h>
42 
43 #include <assert.h>
44 #include <err.h>
45 #include <setjmp.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <stdint.h>
50 #include <libufs.h>
51 #include <string.h>
52 #include <strings.h>
53 #include <sysexits.h>
54 #include <time.h>
55 
56 #include "fsck.h"
57 
58 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
59 
60 struct suj_seg {
61 	TAILQ_ENTRY(suj_seg) ss_next;
62 	struct jsegrec	ss_rec;
63 	uint8_t		*ss_blk;
64 };
65 
66 struct suj_rec {
67 	TAILQ_ENTRY(suj_rec) sr_next;
68 	union jrec	*sr_rec;
69 };
70 TAILQ_HEAD(srechd, suj_rec);
71 
72 struct suj_ino {
73 	LIST_ENTRY(suj_ino)	si_next;
74 	struct srechd		si_recs;
75 	struct srechd		si_newrecs;
76 	struct srechd		si_movs;
77 	struct jtrncrec		*si_trunc;
78 	ino_t			si_ino;
79 	char			si_skipparent;
80 	char			si_hasrecs;
81 	char			si_blkadj;
82 	char			si_linkadj;
83 	int			si_mode;
84 	nlink_t			si_nlinkadj;
85 	nlink_t			si_nlink;
86 	nlink_t			si_dotlinks;
87 };
88 LIST_HEAD(inohd, suj_ino);
89 
90 struct suj_blk {
91 	LIST_ENTRY(suj_blk)	sb_next;
92 	struct srechd		sb_recs;
93 	ufs2_daddr_t		sb_blk;
94 };
95 LIST_HEAD(blkhd, suj_blk);
96 
97 struct suj_cg {
98 	LIST_ENTRY(suj_cg)	sc_next;
99 	struct blkhd		sc_blkhash[HASHSIZE];
100 	struct inohd		sc_inohash[HASHSIZE];
101 	struct ino_blk		*sc_lastiblk;
102 	struct suj_ino		*sc_lastino;
103 	struct suj_blk		*sc_lastblk;
104 	struct bufarea		*sc_cgbp;
105 	struct cg		*sc_cgp;
106 	int			sc_cgx;
107 };
108 
109 static LIST_HEAD(cghd, suj_cg) cghash[HASHSIZE];
110 static struct suj_cg *lastcg;
111 
112 static TAILQ_HEAD(seghd, suj_seg) allsegs;
113 static uint64_t oldseq;
114 static struct fs *fs = NULL;
115 static ino_t sujino;
116 static char *joptype[JOP_NUMJOPTYPES] = JOP_NAMES;
117 
118 /*
119  * Summary statistics.
120  */
121 static uint64_t freefrags;
122 static uint64_t freeblocks;
123 static uint64_t freeinos;
124 static uint64_t freedir;
125 static uint64_t jbytes;
126 static uint64_t jrecs;
127 
128 static jmp_buf	jmpbuf;
129 
130 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
131 static void err_suj(const char *, ...) __dead2;
132 static void ino_trunc(ino_t, off_t);
133 static void ino_decr(ino_t);
134 static void ino_adjust(struct suj_ino *);
135 static void ino_build(struct suj_ino *);
136 static int blk_isfree(ufs2_daddr_t);
137 static void initsuj(void);
138 
139 static void *
140 errmalloc(size_t n)
141 {
142 	void *a;
143 
144 	a = Malloc(n);
145 	if (a == NULL)
146 		err(EX_OSERR, "malloc(%zu)", n);
147 	return (a);
148 }
149 
150 /*
151  * When hit a fatal error in journalling check, print out
152  * the error and then offer to fallback to normal fsck.
153  */
154 static void
155 err_suj(const char * restrict fmt, ...)
156 {
157 	va_list ap;
158 
159 	if (preen)
160 		(void)fprintf(stdout, "%s: ", cdevname);
161 
162 	va_start(ap, fmt);
163 	(void)vfprintf(stdout, fmt, ap);
164 	va_end(ap);
165 
166 	longjmp(jmpbuf, -1);
167 }
168 
169 /*
170  * Lookup a cg by number in the hash so we can keep track of which cgs
171  * need stats rebuilt.
172  */
173 static struct suj_cg *
174 cg_lookup(int cgx)
175 {
176 	struct cghd *hd;
177 	struct suj_cg *sc;
178 	struct bufarea *cgbp;
179 
180 	if (cgx < 0 || cgx >= fs->fs_ncg)
181 		err_suj("Bad cg number %d\n", cgx);
182 	if (lastcg && lastcg->sc_cgx == cgx)
183 		return (lastcg);
184 	cgbp = cglookup(cgx);
185 	if (!check_cgmagic(cgx, cgbp))
186 		err_suj("UNABLE TO REBUILD CYLINDER GROUP %d", cgx);
187 	hd = &cghash[HASH(cgx)];
188 	LIST_FOREACH(sc, hd, sc_next)
189 		if (sc->sc_cgx == cgx) {
190 			sc->sc_cgbp = cgbp;
191 			sc->sc_cgp = sc->sc_cgbp->b_un.b_cg;
192 			lastcg = sc;
193 			return (sc);
194 		}
195 	sc = errmalloc(sizeof(*sc));
196 	bzero(sc, sizeof(*sc));
197 	sc->sc_cgbp = cgbp;
198 	sc->sc_cgp = sc->sc_cgbp->b_un.b_cg;
199 	sc->sc_cgx = cgx;
200 	LIST_INSERT_HEAD(hd, sc, sc_next);
201 	return (sc);
202 }
203 
204 /*
205  * Lookup an inode number in the hash and allocate a suj_ino if it does
206  * not exist.
207  */
208 static struct suj_ino *
209 ino_lookup(ino_t ino, int creat)
210 {
211 	struct suj_ino *sino;
212 	struct inohd *hd;
213 	struct suj_cg *sc;
214 
215 	sc = cg_lookup(ino_to_cg(fs, ino));
216 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
217 		return (sc->sc_lastino);
218 	hd = &sc->sc_inohash[HASH(ino)];
219 	LIST_FOREACH(sino, hd, si_next)
220 		if (sino->si_ino == ino)
221 			return (sino);
222 	if (creat == 0)
223 		return (NULL);
224 	sino = errmalloc(sizeof(*sino));
225 	bzero(sino, sizeof(*sino));
226 	sino->si_ino = ino;
227 	TAILQ_INIT(&sino->si_recs);
228 	TAILQ_INIT(&sino->si_newrecs);
229 	TAILQ_INIT(&sino->si_movs);
230 	LIST_INSERT_HEAD(hd, sino, si_next);
231 
232 	return (sino);
233 }
234 
235 /*
236  * Lookup a block number in the hash and allocate a suj_blk if it does
237  * not exist.
238  */
239 static struct suj_blk *
240 blk_lookup(ufs2_daddr_t blk, int creat)
241 {
242 	struct suj_blk *sblk;
243 	struct suj_cg *sc;
244 	struct blkhd *hd;
245 
246 	sc = cg_lookup(dtog(fs, blk));
247 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
248 		return (sc->sc_lastblk);
249 	hd = &sc->sc_blkhash[HASH(fragstoblks(fs, blk))];
250 	LIST_FOREACH(sblk, hd, sb_next)
251 		if (sblk->sb_blk == blk)
252 			return (sblk);
253 	if (creat == 0)
254 		return (NULL);
255 	sblk = errmalloc(sizeof(*sblk));
256 	bzero(sblk, sizeof(*sblk));
257 	sblk->sb_blk = blk;
258 	TAILQ_INIT(&sblk->sb_recs);
259 	LIST_INSERT_HEAD(hd, sblk, sb_next);
260 
261 	return (sblk);
262 }
263 
264 static int
265 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
266 {
267 	ufs2_daddr_t bstart;
268 	ufs2_daddr_t bend;
269 	ufs2_daddr_t end;
270 
271 	end = start + frags;
272 	bstart = brec->jb_blkno + brec->jb_oldfrags;
273 	bend = bstart + brec->jb_frags;
274 	if (start < bend && end > bstart)
275 		return (1);
276 	return (0);
277 }
278 
279 static int
280 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
281     int frags)
282 {
283 
284 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
285 		return (0);
286 	if (brec->jb_blkno + brec->jb_oldfrags != start)
287 		return (0);
288 	if (brec->jb_frags < frags)
289 		return (0);
290 	return (1);
291 }
292 
293 static void
294 blk_setmask(struct jblkrec *brec, int *mask)
295 {
296 	int i;
297 
298 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
299 		*mask |= 1 << i;
300 }
301 
302 /*
303  * Determine whether a given block has been reallocated to a new location.
304  * Returns a mask of overlapping bits if any frags have been reused or
305  * zero if the block has not been re-used and the contents can be trusted.
306  *
307  * This is used to ensure that an orphaned pointer due to truncate is safe
308  * to be freed.  The mask value can be used to free partial blocks.
309  */
310 static int
311 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
312 {
313 	struct suj_blk *sblk;
314 	struct suj_rec *srec;
315 	struct jblkrec *brec;
316 	int mask;
317 	int off;
318 
319 	/*
320 	 * To be certain we're not freeing a reallocated block we lookup
321 	 * this block in the blk hash and see if there is an allocation
322 	 * journal record that overlaps with any fragments in the block
323 	 * we're concerned with.  If any fragments have been reallocated
324 	 * the block has already been freed and re-used for another purpose.
325 	 */
326 	mask = 0;
327 	sblk = blk_lookup(blknum(fs, blk), 0);
328 	if (sblk == NULL)
329 		return (0);
330 	off = blk - sblk->sb_blk;
331 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
332 		brec = (struct jblkrec *)srec->sr_rec;
333 		/*
334 		 * If the block overlaps but does not match
335 		 * exactly this record refers to the current
336 		 * location.
337 		 */
338 		if (blk_overlaps(brec, blk, frags) == 0)
339 			continue;
340 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
341 			mask = 0;
342 		else
343 			blk_setmask(brec, &mask);
344 	}
345 	if (debug)
346 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
347 		    blk, sblk->sb_blk, off, mask);
348 	return (mask >> off);
349 }
350 
351 /*
352  * Determine whether it is safe to follow an indirect.  It is not safe
353  * if any part of the indirect has been reallocated or the last journal
354  * entry was an allocation.  Just allocated indirects may not have valid
355  * pointers yet and all of their children will have their own records.
356  * It is also not safe to follow an indirect if the cg bitmap has been
357  * cleared as a new allocation may write to the block prior to the journal
358  * being written.
359  *
360  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
361  */
362 static int
363 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
364 {
365 	struct suj_blk *sblk;
366 	struct jblkrec *brec;
367 
368 	sblk = blk_lookup(blk, 0);
369 	if (sblk == NULL)
370 		return (1);
371 	if (TAILQ_EMPTY(&sblk->sb_recs))
372 		return (1);
373 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
374 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
375 		if (brec->jb_op == JOP_FREEBLK)
376 			return (!blk_isfree(blk));
377 	return (0);
378 }
379 
380 /*
381  * Check to see if the requested block is available.
382  * We can just check in the cylinder-group maps as
383  * they will only have usable blocks in them.
384  */
385 ufs2_daddr_t
386 suj_checkblkavail(ufs2_daddr_t blkno, long frags)
387 {
388 	struct bufarea *cgbp;
389 	struct cg *cgp;
390 	ufs2_daddr_t j, k, baseblk;
391 	long cg;
392 
393 	if ((u_int64_t)blkno > sblock.fs_size)
394 		return (0);
395 	cg = dtog(&sblock, blkno);
396 	cgbp = cglookup(cg);
397 	cgp = cgbp->b_un.b_cg;
398 	if (!check_cgmagic(cg, cgbp))
399 		return (-((cg + 1) * sblock.fs_fpg - sblock.fs_frag));
400 	baseblk = dtogd(&sblock, blkno);
401 	for (j = 0; j <= sblock.fs_frag - frags; j++) {
402 		if (!isset(cg_blksfree(cgp), baseblk + j))
403 			continue;
404 		for (k = 1; k < frags; k++)
405 			if (!isset(cg_blksfree(cgp), baseblk + j + k))
406 				break;
407 		if (k < frags) {
408 			j += k;
409 			continue;
410 		}
411 		for (k = 0; k < frags; k++)
412 			clrbit(cg_blksfree(cgp), baseblk + j + k);
413 		n_blks += frags;
414 		if (frags == sblock.fs_frag)
415 			cgp->cg_cs.cs_nbfree--;
416 		else
417 			cgp->cg_cs.cs_nffree -= frags;
418 		cgdirty(cgbp);
419 		return ((cg * sblock.fs_fpg) + baseblk + j);
420 	}
421 	return (0);
422 }
423 
424 /*
425  * Clear an inode from the cg bitmap.  If the inode was already clear return
426  * 0 so the caller knows it does not have to check the inode contents.
427  */
428 static int
429 ino_free(ino_t ino, int mode)
430 {
431 	struct suj_cg *sc;
432 	uint8_t *inosused;
433 	struct cg *cgp;
434 	int cg;
435 
436 	cg = ino_to_cg(fs, ino);
437 	ino = ino % fs->fs_ipg;
438 	sc = cg_lookup(cg);
439 	cgp = sc->sc_cgp;
440 	inosused = cg_inosused(cgp);
441 	/*
442 	 * The bitmap may never have made it to the disk so we have to
443 	 * conditionally clear.  We can avoid writing the cg in this case.
444 	 */
445 	if (isclr(inosused, ino))
446 		return (0);
447 	freeinos++;
448 	clrbit(inosused, ino);
449 	if (ino < cgp->cg_irotor)
450 		cgp->cg_irotor = ino;
451 	cgp->cg_cs.cs_nifree++;
452 	if ((mode & IFMT) == IFDIR) {
453 		freedir++;
454 		cgp->cg_cs.cs_ndir--;
455 	}
456 	cgdirty(sc->sc_cgbp);
457 
458 	return (1);
459 }
460 
461 /*
462  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
463  * set in the mask.
464  */
465 static void
466 blk_free(ino_t ino, ufs2_daddr_t bno, int mask, int frags)
467 {
468 	ufs1_daddr_t fragno, cgbno;
469 	struct suj_cg *sc;
470 	struct cg *cgp;
471 	int i, cg;
472 	uint8_t *blksfree;
473 
474 	if (debug)
475 		printf("Freeing %d frags at blk %jd mask 0x%x\n",
476 		    frags, bno, mask);
477 	/*
478 	 * Check to see if the block needs to be claimed by a snapshot.
479 	 * If wanted, the snapshot references it. Otherwise we free it.
480 	 */
481 	if (snapblkfree(fs, bno, lfragtosize(fs, frags), ino,
482 	    suj_checkblkavail))
483 		return;
484 	cg = dtog(fs, bno);
485 	sc = cg_lookup(cg);
486 	cgp = sc->sc_cgp;
487 	cgbno = dtogd(fs, bno);
488 	blksfree = cg_blksfree(cgp);
489 
490 	/*
491 	 * If it's not allocated we only wrote the journal entry
492 	 * and never the bitmaps.  Here we unconditionally clear and
493 	 * resolve the cg summary later.
494 	 */
495 	if (frags == fs->fs_frag && mask == 0) {
496 		fragno = fragstoblks(fs, cgbno);
497 		ffs_setblock(fs, blksfree, fragno);
498 		freeblocks++;
499 	} else {
500 		/*
501 		 * deallocate the fragment
502 		 */
503 		for (i = 0; i < frags; i++)
504 			if ((mask & (1 << i)) == 0 &&
505 			    isclr(blksfree, cgbno +i)) {
506 				freefrags++;
507 				setbit(blksfree, cgbno + i);
508 			}
509 	}
510 	cgdirty(sc->sc_cgbp);
511 }
512 
513 /*
514  * Returns 1 if the whole block starting at 'bno' is marked free and 0
515  * otherwise.
516  */
517 static int
518 blk_isfree(ufs2_daddr_t bno)
519 {
520 	struct suj_cg *sc;
521 
522 	sc = cg_lookup(dtog(fs, bno));
523 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
524 }
525 
526 /*
527  * Determine whether a block exists at a particular lbn in an inode.
528  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
529  * or ext blocks.
530  */
531 static int
532 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
533 {
534 	struct inode ip;
535 	union dinode *dp;
536 	ufs2_daddr_t nblk;
537 
538 	ginode(ino, &ip);
539 	dp = ip.i_dp;
540 	if (DIP(dp, di_nlink) == 0 || DIP(dp, di_mode) == 0) {
541 		irelse(&ip);
542 		return (0);
543 	}
544 	nblk = ino_blkatoff(dp, ino, lbn, frags, NULL);
545 	irelse(&ip);
546 	return (nblk == blk);
547 }
548 
549 /*
550  * Clear the directory entry at diroff that should point to child.  Minimal
551  * checking is done and it is assumed that this path was verified with isat.
552  */
553 static void
554 ino_clrat(ino_t parent, off_t diroff, ino_t child)
555 {
556 	union dinode *dip;
557 	struct direct *dp;
558 	struct inode ip;
559 	ufs2_daddr_t blk;
560 	struct bufarea *bp;
561 	ufs_lbn_t lbn;
562 	int blksize;
563 	int frags;
564 	int doff;
565 
566 	if (debug)
567 		printf("Clearing inode %ju from parent %ju at offset %jd\n",
568 		    (uintmax_t)child, (uintmax_t)parent, diroff);
569 
570 	lbn = lblkno(fs, diroff);
571 	doff = blkoff(fs, diroff);
572 	ginode(parent, &ip);
573 	dip = ip.i_dp;
574 	blk = ino_blkatoff(dip, parent, lbn, &frags, NULL);
575 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
576 	irelse(&ip);
577 	bp = getdatablk(blk, blksize, BT_DIRDATA);
578 	if (bp->b_errs != 0)
579 		err_suj("ino_clrat: UNRECOVERABLE I/O ERROR");
580 	dp = (struct direct *)&bp->b_un.b_buf[doff];
581 	if (dp->d_ino != child)
582 		errx(1, "Inode %ju does not exist in %ju at %jd",
583 		    (uintmax_t)child, (uintmax_t)parent, diroff);
584 	dp->d_ino = 0;
585 	dirty(bp);
586 	brelse(bp);
587 	/*
588 	 * The actual .. reference count will already have been removed
589 	 * from the parent by the .. remref record.
590 	 */
591 }
592 
593 /*
594  * Determines whether a pointer to an inode exists within a directory
595  * at a specified offset.  Returns the mode of the found entry.
596  */
597 static int
598 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
599 {
600 	struct inode ip;
601 	union dinode *dip;
602 	struct bufarea *bp;
603 	struct direct *dp;
604 	ufs2_daddr_t blk;
605 	ufs_lbn_t lbn;
606 	int blksize;
607 	int frags;
608 	int dpoff;
609 	int doff;
610 
611 	*isdot = 0;
612 	ginode(parent, &ip);
613 	dip = ip.i_dp;
614 	*mode = DIP(dip, di_mode);
615 	if ((*mode & IFMT) != IFDIR) {
616 		if (debug) {
617 			/*
618 			 * This can happen if the parent inode
619 			 * was reallocated.
620 			 */
621 			if (*mode != 0)
622 				printf("Directory %ju has bad mode %o\n",
623 				    (uintmax_t)parent, *mode);
624 			else
625 				printf("Directory %ju has zero mode\n",
626 				    (uintmax_t)parent);
627 		}
628 		irelse(&ip);
629 		return (0);
630 	}
631 	lbn = lblkno(fs, diroff);
632 	doff = blkoff(fs, diroff);
633 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
634 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
635 		if (debug)
636 			printf("ino %ju absent from %ju due to offset %jd"
637 			    " exceeding size %jd\n",
638 			    (uintmax_t)child, (uintmax_t)parent, diroff,
639 			    DIP(dip, di_size));
640 		irelse(&ip);
641 		return (0);
642 	}
643 	blk = ino_blkatoff(dip, parent, lbn, &frags, NULL);
644 	irelse(&ip);
645 	if (blk <= 0) {
646 		if (debug)
647 			printf("Sparse directory %ju", (uintmax_t)parent);
648 		return (0);
649 	}
650 	bp = getdatablk(blk, blksize, BT_DIRDATA);
651 	if (bp->b_errs != 0)
652 		err_suj("ino_isat: UNRECOVERABLE I/O ERROR");
653 	/*
654 	 * Walk through the records from the start of the block to be
655 	 * certain we hit a valid record and not some junk in the middle
656 	 * of a file name.  Stop when we reach or pass the expected offset.
657 	 */
658 	dpoff = rounddown(doff, DIRBLKSIZ);
659 	do {
660 		dp = (struct direct *)&bp->b_un.b_buf[dpoff];
661 		if (dpoff == doff)
662 			break;
663 		if (dp->d_reclen == 0)
664 			break;
665 		dpoff += dp->d_reclen;
666 	} while (dpoff <= doff);
667 	if (dpoff > fs->fs_bsize)
668 		err_suj("Corrupt directory block in dir ino %ju\n",
669 		    (uintmax_t)parent);
670 	/* Not found. */
671 	if (dpoff != doff) {
672 		if (debug)
673 			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
674 			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
675 		brelse(bp);
676 		return (0);
677 	}
678 	/*
679 	 * We found the item in question.  Record the mode and whether it's
680 	 * a . or .. link for the caller.
681 	 */
682 	if (dp->d_ino == child) {
683 		if (child == parent)
684 			*isdot = 1;
685 		else if (dp->d_namlen == 2 &&
686 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
687 			*isdot = 1;
688 		*mode = DTTOIF(dp->d_type);
689 		brelse(bp);
690 		return (1);
691 	}
692 	if (debug)
693 		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
694 		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
695 	brelse(bp);
696 	return (0);
697 }
698 
699 #define	VISIT_INDIR	0x0001
700 #define	VISIT_EXT	0x0002
701 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
702 
703 /*
704  * Read an indirect level which may or may not be linked into an inode.
705  */
706 static void
707 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
708     ino_visitor visitor, int flags)
709 {
710 	struct bufarea *bp;
711 	ufs_lbn_t lbnadd;
712 	ufs2_daddr_t nblk;
713 	ufs_lbn_t nlbn;
714 	int level;
715 	int i;
716 
717 	/*
718 	 * Don't visit indirect blocks with contents we can't trust.  This
719 	 * should only happen when indir_visit() is called to complete a
720 	 * truncate that never finished and not when a pointer is found via
721 	 * an inode.
722 	 */
723 	if (blk == 0)
724 		return;
725 	level = lbn_level(lbn);
726 	if (level == -1)
727 		err_suj("Invalid level for lbn %jd\n", lbn);
728 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
729 		if (debug)
730 			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
731 			    blk, (uintmax_t)ino, lbn, level);
732 		goto out;
733 	}
734 	lbnadd = 1;
735 	for (i = level; i > 0; i--)
736 		lbnadd *= NINDIR(fs);
737 	bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level);
738 	if (bp->b_errs != 0)
739 		err_suj("indir_visit: UNRECOVERABLE I/O ERROR\n");
740 	for (i = 0; i < NINDIR(fs); i++) {
741 		if ((nblk = IBLK(bp, i)) == 0)
742 			continue;
743 		if (level == 0) {
744 			nlbn = -lbn + i * lbnadd;
745 			(*frags) += fs->fs_frag;
746 			visitor(ino, nlbn, nblk, fs->fs_frag);
747 		} else {
748 			nlbn = (lbn + 1) - (i * lbnadd);
749 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
750 		}
751 	}
752 	brelse(bp);
753 out:
754 	if (flags & VISIT_INDIR) {
755 		(*frags) += fs->fs_frag;
756 		visitor(ino, lbn, blk, fs->fs_frag);
757 	}
758 }
759 
760 /*
761  * Visit each block in an inode as specified by 'flags' and call a
762  * callback function.  The callback may inspect or free blocks.  The
763  * count of frags found according to the size in the file is returned.
764  * This is not valid for sparse files but may be used to determine
765  * the correct di_blocks for a file.
766  */
767 static uint64_t
768 ino_visit(union dinode *dp, ino_t ino, ino_visitor visitor, int flags)
769 {
770 	ufs_lbn_t nextlbn;
771 	ufs_lbn_t tmpval;
772 	ufs_lbn_t lbn;
773 	uint64_t size;
774 	uint64_t fragcnt;
775 	int mode;
776 	int frags;
777 	int i;
778 
779 	size = DIP(dp, di_size);
780 	mode = DIP(dp, di_mode) & IFMT;
781 	fragcnt = 0;
782 	if ((flags & VISIT_EXT) &&
783 	    fs->fs_magic == FS_UFS2_MAGIC && dp->dp2.di_extsize) {
784 		for (i = 0; i < UFS_NXADDR; i++) {
785 			if (dp->dp2.di_extb[i] == 0)
786 				continue;
787 			frags = sblksize(fs, dp->dp2.di_extsize, i);
788 			frags = numfrags(fs, frags);
789 			fragcnt += frags;
790 			visitor(ino, -1 - i, dp->dp2.di_extb[i], frags);
791 		}
792 	}
793 	/* Skip datablocks for short links and devices. */
794 	if (mode == IFBLK || mode == IFCHR ||
795 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
796 		return (fragcnt);
797 	for (i = 0; i < UFS_NDADDR; i++) {
798 		if (DIP(dp, di_db[i]) == 0)
799 			continue;
800 		frags = sblksize(fs, size, i);
801 		frags = numfrags(fs, frags);
802 		fragcnt += frags;
803 		visitor(ino, i, DIP(dp, di_db[i]), frags);
804 	}
805 	/*
806 	 * We know the following indirects are real as we're following
807 	 * real pointers to them.
808 	 */
809 	flags |= VISIT_ROOT;
810 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
811 	    lbn = nextlbn) {
812 		nextlbn = lbn + tmpval;
813 		tmpval *= NINDIR(fs);
814 		if (DIP(dp, di_ib[i]) == 0)
815 			continue;
816 		indir_visit(ino, -lbn - i, DIP(dp, di_ib[i]), &fragcnt, visitor,
817 		    flags);
818 	}
819 	return (fragcnt);
820 }
821 
822 /*
823  * Null visitor function used when we just want to count blocks and
824  * record the lbn.
825  */
826 ufs_lbn_t visitlbn;
827 static void
828 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
829 {
830 	if (lbn > 0)
831 		visitlbn = lbn;
832 }
833 
834 /*
835  * Recalculate di_blocks when we discover that a block allocation or
836  * free was not successfully completed.  The kernel does not roll this back
837  * because it would be too expensive to compute which indirects were
838  * reachable at the time the inode was written.
839  */
840 static void
841 ino_adjblks(struct suj_ino *sino)
842 {
843 	struct inode ip;
844 	union dinode *dp;
845 	uint64_t blocks;
846 	uint64_t frags;
847 	off_t isize;
848 	off_t size;
849 	ino_t ino;
850 
851 	ino = sino->si_ino;
852 	ginode(ino, &ip);
853 	dp = ip.i_dp;
854 	/* No need to adjust zero'd inodes. */
855 	if (DIP(dp, di_mode) == 0) {
856 		irelse(&ip);
857 		return;
858 	}
859 	/*
860 	 * Visit all blocks and count them as well as recording the last
861 	 * valid lbn in the file.  If the file size doesn't agree with the
862 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
863 	 * the blocks count.
864 	 */
865 	visitlbn = 0;
866 	frags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT);
867 	blocks = fsbtodb(fs, frags);
868 	/*
869 	 * We assume the size and direct block list is kept coherent by
870 	 * softdep.  For files that have extended into indirects we truncate
871 	 * to the size in the inode or the maximum size permitted by
872 	 * populated indirects.
873 	 */
874 	if (visitlbn >= UFS_NDADDR) {
875 		isize = DIP(dp, di_size);
876 		size = lblktosize(fs, visitlbn + 1);
877 		if (isize > size)
878 			isize = size;
879 		/* Always truncate to free any unpopulated indirects. */
880 		ino_trunc(ino, isize);
881 		irelse(&ip);
882 		return;
883 	}
884 	if (blocks == DIP(dp, di_blocks)) {
885 		irelse(&ip);
886 		return;
887 	}
888 	if (debug)
889 		printf("ino %ju adjusting block count from %jd to %jd\n",
890 		    (uintmax_t)ino, DIP(dp, di_blocks), blocks);
891 	DIP_SET(dp, di_blocks, blocks);
892 	inodirty(&ip);
893 	irelse(&ip);
894 }
895 
896 static void
897 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
898 {
899 
900 	blk_free(ino, blk, blk_freemask(blk, ino, lbn, frags), frags);
901 }
902 
903 /*
904  * Free a block or tree of blocks that was previously rooted in ino at
905  * the given lbn.  If the lbn is an indirect all children are freed
906  * recursively.
907  */
908 static void
909 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
910 {
911 	uint64_t resid;
912 	int mask;
913 
914 	mask = blk_freemask(blk, ino, lbn, frags);
915 	resid = 0;
916 	if (lbn <= -UFS_NDADDR && follow && mask == 0)
917 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
918 	else
919 		blk_free(ino, blk, mask, frags);
920 }
921 
922 static void
923 ino_setskip(struct suj_ino *sino, ino_t parent)
924 {
925 	int isdot;
926 	int mode;
927 
928 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
929 		sino->si_skipparent = 1;
930 }
931 
932 static void
933 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
934 {
935 	struct suj_ino *sino;
936 	struct suj_rec *srec;
937 	struct jrefrec *rrec;
938 
939 	/*
940 	 * Lookup this inode to see if we have a record for it.
941 	 */
942 	sino = ino_lookup(child, 0);
943 	/*
944 	 * Tell any child directories we've already removed their
945 	 * parent link cnt.  Don't try to adjust our link down again.
946 	 */
947 	if (sino != NULL && isdotdot == 0)
948 		ino_setskip(sino, parent);
949 	/*
950 	 * No valid record for this inode.  Just drop the on-disk
951 	 * link by one.
952 	 */
953 	if (sino == NULL || sino->si_hasrecs == 0) {
954 		ino_decr(child);
955 		return;
956 	}
957 	/*
958 	 * Use ino_adjust() if ino_check() has already processed this
959 	 * child.  If we lose the last non-dot reference to a
960 	 * directory it will be discarded.
961 	 */
962 	if (sino->si_linkadj) {
963 		if (sino->si_nlink == 0)
964 			err_suj("ino_remref: ino %ld mode 0%o about to go "
965 			    "negative\n", sino->si_ino, sino->si_mode);
966 		sino->si_nlink--;
967 		if (isdotdot)
968 			sino->si_dotlinks--;
969 		ino_adjust(sino);
970 		return;
971 	}
972 	/*
973 	 * If we haven't yet processed this inode we need to make
974 	 * sure we will successfully discover the lost path.  If not
975 	 * use nlinkadj to remember.
976 	 */
977 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
978 		rrec = (struct jrefrec *)srec->sr_rec;
979 		if (rrec->jr_parent == parent &&
980 		    rrec->jr_diroff == diroff)
981 			return;
982 	}
983 	sino->si_nlinkadj++;
984 }
985 
986 /*
987  * Free the children of a directory when the directory is discarded.
988  */
989 static void
990 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
991 {
992 	struct suj_ino *sino;
993 	struct bufarea *bp;
994 	struct direct *dp;
995 	off_t diroff;
996 	int skipparent;
997 	int isdotdot;
998 	int dpoff;
999 	int size;
1000 
1001 	sino = ino_lookup(ino, 0);
1002 	if (sino)
1003 		skipparent = sino->si_skipparent;
1004 	else
1005 		skipparent = 0;
1006 	size = lfragtosize(fs, frags);
1007 	bp = getdatablk(blk, size, BT_DIRDATA);
1008 	if (bp->b_errs != 0)
1009 		err_suj("ino_free_children: UNRECOVERABLE I/O ERROR");
1010 	dp = (struct direct *)&bp->b_un.b_buf[0];
1011 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1012 		dp = (struct direct *)&bp->b_un.b_buf[dpoff];
1013 		if (dp->d_ino == 0 || dp->d_ino == UFS_WINO)
1014 			continue;
1015 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1016 			continue;
1017 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1018 		    dp->d_name[1] == '.';
1019 		if (isdotdot && skipparent == 1)
1020 			continue;
1021 		if (debug)
1022 			printf("Directory %ju removing ino %ju name %s\n",
1023 			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1024 		diroff = lblktosize(fs, lbn) + dpoff;
1025 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1026 	}
1027 	brelse(bp);
1028 }
1029 
1030 /*
1031  * Reclaim an inode, freeing all blocks and decrementing all children's
1032  * link counts.  Free the inode back to the cg.
1033  */
1034 static void
1035 ino_reclaim(struct inode *ip, ino_t ino, int mode)
1036 {
1037 	union dinode *dp;
1038 	uint32_t gen;
1039 
1040 	dp = ip->i_dp;
1041 	if (ino == UFS_ROOTINO)
1042 		err_suj("Attempting to free UFS_ROOTINO\n");
1043 	if (debug)
1044 		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1045 		    (uintmax_t)ino, DIP(dp, di_nlink), DIP(dp, di_mode));
1046 
1047 	/* We are freeing an inode or directory. */
1048 	if ((DIP(dp, di_mode) & IFMT) == IFDIR)
1049 		ino_visit(dp, ino, ino_free_children, 0);
1050 	DIP_SET(dp, di_nlink, 0);
1051 	if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0)
1052 		snapremove(ino);
1053 	ino_visit(dp, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1054 	/* Here we have to clear the inode and release any blocks it holds. */
1055 	gen = DIP(dp, di_gen);
1056 	if (fs->fs_magic == FS_UFS1_MAGIC)
1057 		bzero(dp, sizeof(struct ufs1_dinode));
1058 	else
1059 		bzero(dp, sizeof(struct ufs2_dinode));
1060 	DIP_SET(dp, di_gen, gen);
1061 	inodirty(ip);
1062 	ino_free(ino, mode);
1063 	return;
1064 }
1065 
1066 /*
1067  * Adjust an inode's link count down by one when a directory goes away.
1068  */
1069 static void
1070 ino_decr(ino_t ino)
1071 {
1072 	struct inode ip;
1073 	union dinode *dp;
1074 	int reqlink;
1075 	int nlink;
1076 	int mode;
1077 
1078 	ginode(ino, &ip);
1079 	dp = ip.i_dp;
1080 	nlink = DIP(dp, di_nlink);
1081 	mode = DIP(dp, di_mode);
1082 	if (nlink < 1)
1083 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1084 	if (mode == 0)
1085 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1086 	nlink--;
1087 	if ((mode & IFMT) == IFDIR)
1088 		reqlink = 2;
1089 	else
1090 		reqlink = 1;
1091 	if (nlink < reqlink) {
1092 		if (debug)
1093 			printf("ino %ju not enough links to live %d < %d\n",
1094 			    (uintmax_t)ino, nlink, reqlink);
1095 		ino_reclaim(&ip, ino, mode);
1096 		irelse(&ip);
1097 		return;
1098 	}
1099 	DIP_SET(dp, di_nlink, nlink);
1100 	inodirty(&ip);
1101 	irelse(&ip);
1102 }
1103 
1104 /*
1105  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1106  * free it.
1107  */
1108 static void
1109 ino_adjust(struct suj_ino *sino)
1110 {
1111 	struct jrefrec *rrec;
1112 	struct suj_rec *srec;
1113 	struct suj_ino *stmp;
1114 	union dinode *dp;
1115 	struct inode ip;
1116 	nlink_t nlink;
1117 	nlink_t reqlink;
1118 	int recmode;
1119 	int isdot;
1120 	int mode;
1121 	ino_t ino;
1122 
1123 	nlink = sino->si_nlink;
1124 	ino = sino->si_ino;
1125 	mode = sino->si_mode & IFMT;
1126 	/*
1127 	 * If it's a directory with no dot links, it was truncated before
1128 	 * the name was cleared.  We need to clear the dirent that
1129 	 * points at it.
1130 	 */
1131 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1132 		sino->si_nlink = nlink = 0;
1133 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1134 			rrec = (struct jrefrec *)srec->sr_rec;
1135 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1136 			    &recmode, &isdot) == 0)
1137 				continue;
1138 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1139 			break;
1140 		}
1141 		if (srec == NULL)
1142 			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1143 	}
1144 	/*
1145 	 * If it's a directory with no real names pointing to it go ahead
1146 	 * and truncate it.  This will free any children.
1147 	 */
1148 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1149 		sino->si_nlink = nlink = 0;
1150 		/*
1151 		 * Mark any .. links so they know not to free this inode
1152 		 * when they are removed.
1153 		 */
1154 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1155 			rrec = (struct jrefrec *)srec->sr_rec;
1156 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1157 				stmp = ino_lookup(rrec->jr_parent, 0);
1158 				if (stmp)
1159 					ino_setskip(stmp, ino);
1160 			}
1161 		}
1162 	}
1163 	ginode(ino, &ip);
1164 	dp = ip.i_dp;
1165 	mode = DIP(dp, di_mode) & IFMT;
1166 	if (nlink > UFS_LINK_MAX)
1167 		err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
1168 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink));
1169 	if (debug)
1170 	       printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
1171 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink),
1172 		    sino->si_mode);
1173 	if (mode == 0) {
1174 		if (debug)
1175 			printf("ino %ju, zero inode freeing bitmap\n",
1176 			    (uintmax_t)ino);
1177 		ino_free(ino, sino->si_mode);
1178 		irelse(&ip);
1179 		return;
1180 	}
1181 	/* XXX Should be an assert? */
1182 	if (mode != sino->si_mode && debug)
1183 		printf("ino %ju, mode %o != %o\n",
1184 		    (uintmax_t)ino, mode, sino->si_mode);
1185 	if ((mode & IFMT) == IFDIR)
1186 		reqlink = 2;
1187 	else
1188 		reqlink = 1;
1189 	/* If the inode doesn't have enough links to live, free it. */
1190 	if (nlink < reqlink) {
1191 		if (debug)
1192 			printf("ino %ju not enough links to live %ju < %ju\n",
1193 			    (uintmax_t)ino, (uintmax_t)nlink,
1194 			    (uintmax_t)reqlink);
1195 		ino_reclaim(&ip, ino, mode);
1196 		irelse(&ip);
1197 		return;
1198 	}
1199 	/* If required write the updated link count. */
1200 	if (DIP(dp, di_nlink) == nlink) {
1201 		if (debug)
1202 			printf("ino %ju, link matches, skipping.\n",
1203 			    (uintmax_t)ino);
1204 		irelse(&ip);
1205 		return;
1206 	}
1207 	DIP_SET(dp, di_nlink, nlink);
1208 	inodirty(&ip);
1209 	irelse(&ip);
1210 }
1211 
1212 /*
1213  * Truncate some or all blocks in an indirect, freeing any that are required
1214  * and zeroing the indirect.
1215  */
1216 static void
1217 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn,
1218 	union dinode *dp)
1219 {
1220 	struct bufarea *bp;
1221 	ufs_lbn_t lbnadd;
1222 	ufs2_daddr_t nblk;
1223 	ufs_lbn_t next;
1224 	ufs_lbn_t nlbn;
1225 	int isdirty;
1226 	int level;
1227 	int i;
1228 
1229 	if (blk == 0)
1230 		return;
1231 	isdirty = 0;
1232 	level = lbn_level(lbn);
1233 	if (level == -1)
1234 		err_suj("Invalid level for lbn %jd\n", lbn);
1235 	lbnadd = 1;
1236 	for (i = level; i > 0; i--)
1237 		lbnadd *= NINDIR(fs);
1238 	bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level);
1239 	if (bp->b_errs != 0)
1240 		err_suj("indir_trunc: UNRECOVERABLE I/O ERROR");
1241 	for (i = 0; i < NINDIR(fs); i++) {
1242 		if ((nblk = IBLK(bp, i)) == 0)
1243 			continue;
1244 		if (level != 0) {
1245 			nlbn = (lbn + 1) - (i * lbnadd);
1246 			/*
1247 			 * Calculate the lbn of the next indirect to
1248 			 * determine if any of this indirect must be
1249 			 * reclaimed.
1250 			 */
1251 			next = -(lbn + level) + ((i+1) * lbnadd);
1252 			if (next <= lastlbn)
1253 				continue;
1254 			indir_trunc(ino, nlbn, nblk, lastlbn, dp);
1255 			/* If all of this indirect was reclaimed, free it. */
1256 			nlbn = next - lbnadd;
1257 			if (nlbn < lastlbn)
1258 				continue;
1259 		} else {
1260 			nlbn = -lbn + i * lbnadd;
1261 			if (nlbn < lastlbn)
1262 				continue;
1263 		}
1264 		isdirty = 1;
1265 		blk_free(ino, nblk, 0, fs->fs_frag);
1266 		IBLK_SET(bp, i, 0);
1267 	}
1268 	if (isdirty)
1269 		dirty(bp);
1270 	brelse(bp);
1271 }
1272 
1273 /*
1274  * Truncate an inode to the minimum of the given size or the last populated
1275  * block after any over size have been discarded.  The kernel would allocate
1276  * the last block in the file but fsck does not and neither do we.  This
1277  * code never extends files, only shrinks them.
1278  */
1279 static void
1280 ino_trunc(ino_t ino, off_t size)
1281 {
1282 	struct inode ip;
1283 	union dinode *dp;
1284 	struct bufarea *bp;
1285 	ufs2_daddr_t bn;
1286 	uint64_t totalfrags;
1287 	ufs_lbn_t nextlbn;
1288 	ufs_lbn_t lastlbn;
1289 	ufs_lbn_t tmpval;
1290 	ufs_lbn_t lbn;
1291 	ufs_lbn_t i;
1292 	int blksize, frags;
1293 	off_t cursize;
1294 	off_t off;
1295 	int mode;
1296 
1297 	ginode(ino, &ip);
1298 	dp = ip.i_dp;
1299 	mode = DIP(dp, di_mode) & IFMT;
1300 	cursize = DIP(dp, di_size);
1301 	/* If no size change, nothing to do */
1302 	if (size == cursize) {
1303 		irelse(&ip);
1304 		return;
1305 	}
1306 	if (debug)
1307 		printf("Truncating ino %ju, mode %o to size %jd from "
1308 		    "size %jd\n", (uintmax_t)ino, mode, size, cursize);
1309 
1310 	/* Skip datablocks for short links and devices. */
1311 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1312 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) {
1313 		irelse(&ip);
1314 		return;
1315 	}
1316 	/* Don't extend. */
1317 	if (size > cursize) {
1318 		irelse(&ip);
1319 		return;
1320 	}
1321 	if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) {
1322 		if (size > 0)
1323 			err_suj("Partial truncation of ino %ju snapshot file\n",
1324 			    (uintmax_t)ino);
1325 		snapremove(ino);
1326 	}
1327 	lastlbn = lblkno(fs, blkroundup(fs, size));
1328 	for (i = lastlbn; i < UFS_NDADDR; i++) {
1329 		if ((bn = DIP(dp, di_db[i])) == 0)
1330 			continue;
1331 		blksize = sblksize(fs, cursize, i);
1332 		blk_free(ino, bn, 0, numfrags(fs, blksize));
1333 		DIP_SET(dp, di_db[i], 0);
1334 	}
1335 	/*
1336 	 * Follow indirect blocks, freeing anything required.
1337 	 */
1338 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1339 	    lbn = nextlbn) {
1340 		nextlbn = lbn + tmpval;
1341 		tmpval *= NINDIR(fs);
1342 		/* If we're not freeing any in this indirect range skip it. */
1343 		if (lastlbn >= nextlbn)
1344 			continue;
1345 		if ((bn = DIP(dp, di_ib[i])) == 0)
1346   			continue;
1347 		indir_trunc(ino, -lbn - i, bn, lastlbn, dp);
1348   		/* If we freed everything in this indirect free the indir. */
1349   		if (lastlbn > lbn)
1350   			continue;
1351 		blk_free(ino, bn, 0, fs->fs_frag);
1352 		DIP_SET(dp, di_ib[i], 0);
1353 	}
1354 	/*
1355 	 * Now that we've freed any whole blocks that exceed the desired
1356 	 * truncation size, figure out how many blocks remain and what the
1357 	 * last populated lbn is.  We will set the size to this last lbn
1358 	 * rather than worrying about allocating the final lbn as the kernel
1359 	 * would've done.  This is consistent with normal fsck behavior.
1360 	 */
1361 	visitlbn = 0;
1362 	totalfrags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1363 	if (size > lblktosize(fs, visitlbn + 1))
1364 		size = lblktosize(fs, visitlbn + 1);
1365 	/*
1366 	 * If we're truncating direct blocks we have to adjust frags
1367 	 * accordingly.
1368 	 */
1369 	if (visitlbn < UFS_NDADDR && totalfrags) {
1370 		long oldspace, newspace;
1371 
1372 		bn = DIP(dp, di_db[visitlbn]);
1373 		if (bn == 0)
1374 			err_suj("Bad blk at ino %ju lbn %jd\n",
1375 			    (uintmax_t)ino, visitlbn);
1376 		oldspace = sblksize(fs, cursize, visitlbn);
1377 		newspace = sblksize(fs, size, visitlbn);
1378 		if (oldspace != newspace) {
1379 			bn += numfrags(fs, newspace);
1380 			frags = numfrags(fs, oldspace - newspace);
1381 			blk_free(ino, bn, 0, frags);
1382 			totalfrags -= frags;
1383 		}
1384 	}
1385 	DIP_SET(dp, di_blocks, fsbtodb(fs, totalfrags));
1386 	DIP_SET(dp, di_size, size);
1387 	inodirty(&ip);
1388 	/*
1389 	 * If we've truncated into the middle of a block or frag we have
1390 	 * to zero it here.  Otherwise the file could extend into
1391 	 * uninitialized space later.
1392 	 */
1393 	off = blkoff(fs, size);
1394 	if (off && DIP(dp, di_mode) != IFDIR) {
1395 		long clrsize;
1396 
1397 		bn = ino_blkatoff(dp, ino, visitlbn, &frags, NULL);
1398 		if (bn == 0)
1399 			err_suj("Block missing from ino %ju at lbn %jd\n",
1400 			    (uintmax_t)ino, visitlbn);
1401 		clrsize = frags * fs->fs_fsize;
1402 		bp = getdatablk(bn, clrsize, BT_DATA);
1403 		if (bp->b_errs != 0)
1404 			err_suj("ino_trunc: UNRECOVERABLE I/O ERROR");
1405 		clrsize -= off;
1406 		bzero(&bp->b_un.b_buf[off], clrsize);
1407 		dirty(bp);
1408 		brelse(bp);
1409 	}
1410 	irelse(&ip);
1411 	return;
1412 }
1413 
1414 /*
1415  * Process records available for one inode and determine whether the
1416  * link count is correct or needs adjusting.
1417  */
1418 static void
1419 ino_check(struct suj_ino *sino)
1420 {
1421 	struct suj_rec *srec;
1422 	struct jrefrec *rrec;
1423 	nlink_t dotlinks;
1424 	nlink_t newlinks;
1425 	nlink_t removes;
1426 	nlink_t nlink;
1427 	ino_t ino;
1428 	int isdot;
1429 	int isat;
1430 	int mode;
1431 
1432 	if (sino->si_hasrecs == 0)
1433 		return;
1434 	ino = sino->si_ino;
1435 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1436 	nlink = rrec->jr_nlink;
1437 	newlinks = 0;
1438 	dotlinks = 0;
1439 	removes = sino->si_nlinkadj;
1440 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1441 		rrec = (struct jrefrec *)srec->sr_rec;
1442 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1443 		    rrec->jr_ino, &mode, &isdot);
1444 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1445 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1446 			    mode, rrec->jr_mode);
1447 		if (debug)
1448 			printf("jrefrec: op %s ino %ju, nlink %ju, parent %ju, "
1449 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1450 			    JOP_OPTYPE(rrec->jr_op), (uintmax_t)rrec->jr_ino,
1451 			    (uintmax_t)rrec->jr_nlink,
1452 			    (uintmax_t)rrec->jr_parent,
1453 			    (uintmax_t)rrec->jr_diroff,
1454 			    rrec->jr_mode, isat, isdot);
1455 		mode = rrec->jr_mode & IFMT;
1456 		if (rrec->jr_op == JOP_REMREF)
1457 			removes++;
1458 		newlinks += isat;
1459 		if (isdot)
1460 			dotlinks += isat;
1461 	}
1462 	/*
1463 	 * The number of links that remain are the starting link count
1464 	 * subtracted by the total number of removes with the total
1465 	 * links discovered back in.  An incomplete remove thus
1466 	 * makes no change to the link count but an add increases
1467 	 * by one.
1468 	 */
1469 	if (debug)
1470 		printf(
1471 		    "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
1472 		    (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
1473 		    (uintmax_t)removes, (uintmax_t)dotlinks);
1474 	nlink += newlinks;
1475 	nlink -= removes;
1476 	sino->si_linkadj = 1;
1477 	sino->si_nlink = nlink;
1478 	sino->si_dotlinks = dotlinks;
1479 	sino->si_mode = mode;
1480 	ino_adjust(sino);
1481 }
1482 
1483 /*
1484  * Process records available for one block and determine whether it is
1485  * still allocated and whether the owning inode needs to be updated or
1486  * a free completed.
1487  */
1488 static void
1489 blk_check(struct suj_blk *sblk)
1490 {
1491 	struct suj_rec *srec;
1492 	struct jblkrec *brec;
1493 	struct suj_ino *sino;
1494 	ufs2_daddr_t blk;
1495 	int mask;
1496 	int frags;
1497 	int isat;
1498 
1499 	/*
1500 	 * Each suj_blk actually contains records for any fragments in that
1501 	 * block.  As a result we must evaluate each record individually.
1502 	 */
1503 	sino = NULL;
1504 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1505 		brec = (struct jblkrec *)srec->sr_rec;
1506 		frags = brec->jb_frags;
1507 		blk = brec->jb_blkno + brec->jb_oldfrags;
1508 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1509 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1510 			sino = ino_lookup(brec->jb_ino, 1);
1511 			sino->si_blkadj = 1;
1512 		}
1513 		if (debug)
1514 			printf("op %s blk %jd ino %ju lbn %jd frags %d isat %d "
1515 			    "(%d)\n", JOP_OPTYPE(brec->jb_op), blk,
1516 			    (uintmax_t)brec->jb_ino, brec->jb_lbn,
1517 			    brec->jb_frags, isat, frags);
1518 		/*
1519 		 * If we found the block at this address we still have to
1520 		 * determine if we need to free the tail end that was
1521 		 * added by adding contiguous fragments from the same block.
1522 		 */
1523 		if (isat == 1) {
1524 			if (frags == brec->jb_frags)
1525 				continue;
1526 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1527 			    brec->jb_frags);
1528 			mask >>= frags;
1529 			blk += frags;
1530 			frags = brec->jb_frags - frags;
1531 			blk_free(brec->jb_ino, blk, mask, frags);
1532 			continue;
1533 		}
1534 		/*
1535 	 	 * The block wasn't found, attempt to free it.  It won't be
1536 		 * freed if it was actually reallocated.  If this was an
1537 		 * allocation we don't want to follow indirects as they
1538 		 * may not be written yet.  Any children of the indirect will
1539 		 * have their own records.  If it's a free we need to
1540 		 * recursively free children.
1541 		 */
1542 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1543 		    brec->jb_op == JOP_FREEBLK);
1544 	}
1545 }
1546 
1547 /*
1548  * Walk the list of inode records for this cg and resolve moved and duplicate
1549  * inode references now that we have a complete picture.
1550  */
1551 static void
1552 cg_build(struct suj_cg *sc)
1553 {
1554 	struct suj_ino *sino;
1555 	int i;
1556 
1557 	for (i = 0; i < HASHSIZE; i++)
1558 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1559 			ino_build(sino);
1560 }
1561 
1562 /*
1563  * Handle inodes requiring truncation.  This must be done prior to
1564  * looking up any inodes in directories.
1565  */
1566 static void
1567 cg_trunc(struct suj_cg *sc)
1568 {
1569 	struct suj_ino *sino;
1570 	int i;
1571 
1572 	for (i = 0; i < HASHSIZE; i++) {
1573 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1574 			if (sino->si_trunc) {
1575 				ino_trunc(sino->si_ino,
1576 				    sino->si_trunc->jt_size);
1577 				sino->si_blkadj = 0;
1578 				sino->si_trunc = NULL;
1579 			}
1580 			if (sino->si_blkadj)
1581 				ino_adjblks(sino);
1582 		}
1583 	}
1584 }
1585 
1586 static void
1587 cg_adj_blk(struct suj_cg *sc)
1588 {
1589 	struct suj_ino *sino;
1590 	int i;
1591 
1592 	for (i = 0; i < HASHSIZE; i++) {
1593 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1594 			if (sino->si_blkadj)
1595 				ino_adjblks(sino);
1596 		}
1597 	}
1598 }
1599 
1600 /*
1601  * Free any partially allocated blocks and then resolve inode block
1602  * counts.
1603  */
1604 static void
1605 cg_check_blk(struct suj_cg *sc)
1606 {
1607 	struct suj_blk *sblk;
1608 	int i;
1609 
1610 
1611 	for (i = 0; i < HASHSIZE; i++)
1612 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1613 			blk_check(sblk);
1614 }
1615 
1616 /*
1617  * Walk the list of inode records for this cg, recovering any
1618  * changes which were not complete at the time of crash.
1619  */
1620 static void
1621 cg_check_ino(struct suj_cg *sc)
1622 {
1623 	struct suj_ino *sino;
1624 	int i;
1625 
1626 	for (i = 0; i < HASHSIZE; i++)
1627 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1628 			ino_check(sino);
1629 }
1630 
1631 static void
1632 cg_apply(void (*apply)(struct suj_cg *))
1633 {
1634 	struct suj_cg *scg;
1635 	int i;
1636 
1637 	for (i = 0; i < HASHSIZE; i++)
1638 		LIST_FOREACH(scg, &cghash[i], sc_next)
1639 			apply(scg);
1640 }
1641 
1642 /*
1643  * Process the unlinked but referenced file list.  Freeing all inodes.
1644  */
1645 static void
1646 ino_unlinked(void)
1647 {
1648 	struct inode ip;
1649 	union dinode *dp;
1650 	uint16_t mode;
1651 	ino_t inon;
1652 	ino_t ino;
1653 
1654 	ino = fs->fs_sujfree;
1655 	fs->fs_sujfree = 0;
1656 	while (ino != 0) {
1657 		ginode(ino, &ip);
1658 		dp = ip.i_dp;
1659 		mode = DIP(dp, di_mode) & IFMT;
1660 		inon = DIP(dp, di_freelink);
1661 		DIP_SET(dp, di_freelink, 0);
1662 		inodirty(&ip);
1663 		/*
1664 		 * XXX Should this be an errx?
1665 		 */
1666 		if (DIP(dp, di_nlink) == 0) {
1667 			if (debug)
1668 				printf("Freeing unlinked ino %ju mode %o\n",
1669 				    (uintmax_t)ino, mode);
1670 			ino_reclaim(&ip, ino, mode);
1671 		} else if (debug)
1672 			printf("Skipping ino %ju mode %o with link %d\n",
1673 			    (uintmax_t)ino, mode, DIP(dp, di_nlink));
1674 		ino = inon;
1675 		irelse(&ip);
1676 	}
1677 }
1678 
1679 /*
1680  * Append a new record to the list of records requiring processing.
1681  */
1682 static void
1683 ino_append(union jrec *rec)
1684 {
1685 	struct jrefrec *refrec;
1686 	struct jmvrec *mvrec;
1687 	struct suj_ino *sino;
1688 	struct suj_rec *srec;
1689 
1690 	mvrec = &rec->rec_jmvrec;
1691 	refrec = &rec->rec_jrefrec;
1692 	if (debug && mvrec->jm_op == JOP_MVREF)
1693 		printf("ino move: ino %ju, parent %ju, "
1694 		    "diroff %jd, oldoff %jd\n",
1695 		    (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
1696 		    (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
1697 	else if (debug &&
1698 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1699 		printf("ino ref: op %s, ino %ju, nlink %ju, "
1700 		    "parent %ju, diroff %jd\n",
1701 		    JOP_OPTYPE(refrec->jr_op), (uintmax_t)refrec->jr_ino,
1702 		    (uintmax_t)refrec->jr_nlink,
1703 		    (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
1704 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1705 	sino->si_hasrecs = 1;
1706 	srec = errmalloc(sizeof(*srec));
1707 	srec->sr_rec = rec;
1708 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1709 }
1710 
1711 /*
1712  * Add a reference adjustment to the sino list and eliminate dups.  The
1713  * primary loop in ino_build_ref() checks for dups but new ones may be
1714  * created as a result of offset adjustments.
1715  */
1716 static void
1717 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1718 {
1719 	struct jrefrec *refrec;
1720 	struct suj_rec *srn;
1721 	struct jrefrec *rrn;
1722 
1723 	refrec = (struct jrefrec *)srec->sr_rec;
1724 	/*
1725 	 * We walk backwards so that the oldest link count is preserved.  If
1726 	 * an add record conflicts with a remove keep the remove.  Redundant
1727 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1728 	 * oldest record at a given location.
1729 	 */
1730 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1731 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1732 		rrn = (struct jrefrec *)srn->sr_rec;
1733 		if (rrn->jr_parent != refrec->jr_parent ||
1734 		    rrn->jr_diroff != refrec->jr_diroff)
1735 			continue;
1736 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1737 			rrn->jr_mode = refrec->jr_mode;
1738 			return;
1739 		}
1740 		/*
1741 		 * Adding a remove.
1742 		 *
1743 		 * Replace the record in place with the old nlink in case
1744 		 * we replace the head of the list.  Abandon srec as a dup.
1745 		 */
1746 		refrec->jr_nlink = rrn->jr_nlink;
1747 		srn->sr_rec = srec->sr_rec;
1748 		return;
1749 	}
1750 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
1751 }
1752 
1753 /*
1754  * Create a duplicate of a reference at a previous location.
1755  */
1756 static void
1757 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
1758 {
1759 	struct jrefrec *rrn;
1760 	struct suj_rec *srn;
1761 
1762 	rrn = errmalloc(sizeof(*refrec));
1763 	*rrn = *refrec;
1764 	rrn->jr_op = JOP_ADDREF;
1765 	rrn->jr_diroff = diroff;
1766 	srn = errmalloc(sizeof(*srn));
1767 	srn->sr_rec = (union jrec *)rrn;
1768 	ino_add_ref(sino, srn);
1769 }
1770 
1771 /*
1772  * Add a reference to the list at all known locations.  We follow the offset
1773  * changes for a single instance and create duplicate add refs at each so
1774  * that we can tolerate any version of the directory block.  Eliminate
1775  * removes which collide with adds that are seen in the journal.  They should
1776  * not adjust the link count down.
1777  */
1778 static void
1779 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
1780 {
1781 	struct jrefrec *refrec;
1782 	struct jmvrec *mvrec;
1783 	struct suj_rec *srp;
1784 	struct suj_rec *srn;
1785 	struct jrefrec *rrn;
1786 	off_t diroff;
1787 
1788 	refrec = (struct jrefrec *)srec->sr_rec;
1789 	/*
1790 	 * Search for a mvrec that matches this offset.  Whether it's an add
1791 	 * or a remove we can delete the mvref after creating a dup record in
1792 	 * the old location.
1793 	 */
1794 	if (!TAILQ_EMPTY(&sino->si_movs)) {
1795 		diroff = refrec->jr_diroff;
1796 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
1797 			srp = TAILQ_PREV(srn, srechd, sr_next);
1798 			mvrec = (struct jmvrec *)srn->sr_rec;
1799 			if (mvrec->jm_parent != refrec->jr_parent ||
1800 			    mvrec->jm_newoff != diroff)
1801 				continue;
1802 			diroff = mvrec->jm_oldoff;
1803 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
1804 			free(srn);
1805 			ino_dup_ref(sino, refrec, diroff);
1806 		}
1807 	}
1808 	/*
1809 	 * If a remove wasn't eliminated by an earlier add just append it to
1810 	 * the list.
1811 	 */
1812 	if (refrec->jr_op == JOP_REMREF) {
1813 		ino_add_ref(sino, srec);
1814 		return;
1815 	}
1816 	/*
1817 	 * Walk the list of records waiting to be added to the list.  We
1818 	 * must check for moves that apply to our current offset and remove
1819 	 * them from the list.  Remove any duplicates to eliminate removes
1820 	 * with corresponding adds.
1821 	 */
1822 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
1823 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
1824 		case JOP_ADDREF:
1825 			/*
1826 			 * This should actually be an error we should
1827 			 * have a remove for every add journaled.
1828 			 */
1829 			rrn = (struct jrefrec *)srn->sr_rec;
1830 			if (rrn->jr_parent != refrec->jr_parent ||
1831 			    rrn->jr_diroff != refrec->jr_diroff)
1832 				break;
1833 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1834 			break;
1835 		case JOP_REMREF:
1836 			/*
1837 			 * Once we remove the current iteration of the
1838 			 * record at this address we're done.
1839 			 */
1840 			rrn = (struct jrefrec *)srn->sr_rec;
1841 			if (rrn->jr_parent != refrec->jr_parent ||
1842 			    rrn->jr_diroff != refrec->jr_diroff)
1843 				break;
1844 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1845 			ino_add_ref(sino, srec);
1846 			return;
1847 		case JOP_MVREF:
1848 			/*
1849 			 * Update our diroff based on any moves that match
1850 			 * and remove the move.
1851 			 */
1852 			mvrec = (struct jmvrec *)srn->sr_rec;
1853 			if (mvrec->jm_parent != refrec->jr_parent ||
1854 			    mvrec->jm_oldoff != refrec->jr_diroff)
1855 				break;
1856 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
1857 			refrec->jr_diroff = mvrec->jm_newoff;
1858 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1859 			break;
1860 		default:
1861 			err_suj("ino_build_ref: Unknown op %s\n",
1862 			    JOP_OPTYPE(srn->sr_rec->rec_jrefrec.jr_op));
1863 		}
1864 	}
1865 	ino_add_ref(sino, srec);
1866 }
1867 
1868 /*
1869  * Walk the list of new records and add them in-order resolving any
1870  * dups and adjusted offsets.
1871  */
1872 static void
1873 ino_build(struct suj_ino *sino)
1874 {
1875 	struct suj_rec *srec;
1876 
1877 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
1878 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
1879 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
1880 		case JOP_ADDREF:
1881 		case JOP_REMREF:
1882 			ino_build_ref(sino, srec);
1883 			break;
1884 		case JOP_MVREF:
1885 			/*
1886 			 * Add this mvrec to the queue of pending mvs.
1887 			 */
1888 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
1889 			break;
1890 		default:
1891 			err_suj("ino_build: Unknown op %s\n",
1892 			    JOP_OPTYPE(srec->sr_rec->rec_jrefrec.jr_op));
1893 		}
1894 	}
1895 	if (TAILQ_EMPTY(&sino->si_recs))
1896 		sino->si_hasrecs = 0;
1897 }
1898 
1899 /*
1900  * Modify journal records so they refer to the base block number
1901  * and a start and end frag range.  This is to facilitate the discovery
1902  * of overlapping fragment allocations.
1903  */
1904 static void
1905 blk_build(struct jblkrec *blkrec)
1906 {
1907 	struct suj_rec *srec;
1908 	struct suj_blk *sblk;
1909 	struct jblkrec *blkrn;
1910 	ufs2_daddr_t blk;
1911 	int frag;
1912 
1913 	if (debug)
1914 		printf("blk_build: op %s blkno %jd frags %d oldfrags %d "
1915 		    "ino %ju lbn %jd\n",
1916 		    JOP_OPTYPE(blkrec->jb_op), (uintmax_t)blkrec->jb_blkno,
1917 		    blkrec->jb_frags, blkrec->jb_oldfrags,
1918 		    (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
1919 
1920 	blk = blknum(fs, blkrec->jb_blkno);
1921 	frag = fragnum(fs, blkrec->jb_blkno);
1922 	if (blkrec->jb_blkno < 0 || blk + fs->fs_frag - frag > fs->fs_size)
1923 		err_suj("Out-of-bounds journal block number %jd\n",
1924 		    blkrec->jb_blkno);
1925 	sblk = blk_lookup(blk, 1);
1926 	/*
1927 	 * Rewrite the record using oldfrags to indicate the offset into
1928 	 * the block.  Leave jb_frags as the actual allocated count.
1929 	 */
1930 	blkrec->jb_blkno -= frag;
1931 	blkrec->jb_oldfrags = frag;
1932 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
1933 		err_suj("Invalid fragment count %d oldfrags %d\n",
1934 		    blkrec->jb_frags, frag);
1935 	/*
1936 	 * Detect dups.  If we detect a dup we always discard the oldest
1937 	 * record as it is superseded by the new record.  This speeds up
1938 	 * later stages but also eliminates free records which are used
1939 	 * to indicate that the contents of indirects can be trusted.
1940 	 */
1941 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1942 		blkrn = (struct jblkrec *)srec->sr_rec;
1943 		if (blkrn->jb_ino != blkrec->jb_ino ||
1944 		    blkrn->jb_lbn != blkrec->jb_lbn ||
1945 		    blkrn->jb_blkno != blkrec->jb_blkno ||
1946 		    blkrn->jb_frags != blkrec->jb_frags ||
1947 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
1948 			continue;
1949 		if (debug)
1950 			printf("Removed dup.\n");
1951 		/* Discard the free which is a dup with an alloc. */
1952 		if (blkrec->jb_op == JOP_FREEBLK)
1953 			return;
1954 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
1955 		free(srec);
1956 		break;
1957 	}
1958 	srec = errmalloc(sizeof(*srec));
1959 	srec->sr_rec = (union jrec *)blkrec;
1960 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
1961 }
1962 
1963 static void
1964 ino_build_trunc(struct jtrncrec *rec)
1965 {
1966 	struct suj_ino *sino;
1967 
1968 	if (debug)
1969 		printf("ino_build_trunc: op %d ino %ju, size %jd\n",
1970 		    rec->jt_op, (uintmax_t)rec->jt_ino,
1971 		    (uintmax_t)rec->jt_size);
1972 	if (chkfilesize(IFREG, rec->jt_size) == 0)
1973 		err_suj("ino_build: truncation size too large %ju\n",
1974 		    (intmax_t)rec->jt_size);
1975 	sino = ino_lookup(rec->jt_ino, 1);
1976 	if (rec->jt_op == JOP_SYNC) {
1977 		sino->si_trunc = NULL;
1978 		return;
1979 	}
1980 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
1981 		sino->si_trunc = rec;
1982 }
1983 
1984 /*
1985  * Build up tables of the operations we need to recover.
1986  */
1987 static void
1988 suj_build(void)
1989 {
1990 	struct suj_seg *seg;
1991 	union jrec *rec;
1992 	int off;
1993 	int i;
1994 
1995 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
1996 		if (debug)
1997 			printf("seg %jd has %d records, oldseq %jd.\n",
1998 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
1999 			    seg->ss_rec.jsr_oldest);
2000 		off = 0;
2001 		rec = (union jrec *)seg->ss_blk;
2002 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2003 			/* skip the segrec. */
2004 			if ((off % real_dev_bsize) == 0)
2005 				continue;
2006 			switch (rec->rec_jrefrec.jr_op) {
2007 			case JOP_ADDREF:
2008 			case JOP_REMREF:
2009 			case JOP_MVREF:
2010 				ino_append(rec);
2011 				break;
2012 			case JOP_NEWBLK:
2013 			case JOP_FREEBLK:
2014 				blk_build((struct jblkrec *)rec);
2015 				break;
2016 			case JOP_TRUNC:
2017 			case JOP_SYNC:
2018 				ino_build_trunc((struct jtrncrec *)rec);
2019 				break;
2020 			default:
2021 				err_suj("Unknown journal operation %s at %d\n",
2022 				    JOP_OPTYPE(rec->rec_jrefrec.jr_op), off);
2023 			}
2024 			i++;
2025 		}
2026 	}
2027 }
2028 
2029 /*
2030  * Prune the journal segments to those we care about based on the
2031  * oldest sequence in the newest segment.  Order the segment list
2032  * based on sequence number.
2033  */
2034 static void
2035 suj_prune(void)
2036 {
2037 	struct suj_seg *seg;
2038 	struct suj_seg *segn;
2039 	uint64_t newseq;
2040 	int discard;
2041 
2042 	if (debug)
2043 		printf("Pruning up to %jd\n", oldseq);
2044 	/* First free the expired segments. */
2045 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2046 		if (seg->ss_rec.jsr_seq >= oldseq)
2047 			continue;
2048 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2049 		free(seg->ss_blk);
2050 		free(seg);
2051 	}
2052 	/* Next ensure that segments are ordered properly. */
2053 	seg = TAILQ_FIRST(&allsegs);
2054 	if (seg == NULL) {
2055 		if (debug)
2056 			printf("Empty journal\n");
2057 		return;
2058 	}
2059 	newseq = seg->ss_rec.jsr_seq;
2060 	for (;;) {
2061 		seg = TAILQ_LAST(&allsegs, seghd);
2062 		if (seg->ss_rec.jsr_seq >= newseq)
2063 			break;
2064 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2065 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2066 		newseq = seg->ss_rec.jsr_seq;
2067 
2068 	}
2069 	if (newseq != oldseq) {
2070 		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2071 			printf("%jd, ", seg->ss_rec.jsr_seq);
2072 		}
2073 		printf("\n");
2074 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2075 		    newseq, oldseq);
2076 	}
2077 	/*
2078 	 * The kernel may asynchronously write segments which can create
2079 	 * gaps in the sequence space.  Throw away any segments after the
2080 	 * gap as the kernel guarantees only those that are contiguously
2081 	 * reachable are marked as completed.
2082 	 */
2083 	discard = 0;
2084 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2085 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2086 			jrecs += seg->ss_rec.jsr_cnt;
2087 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2088 			continue;
2089 		}
2090 		discard = 1;
2091 		if (debug)
2092 			printf("Journal order mismatch %jd != %jd pruning\n",
2093 			    newseq-1, seg->ss_rec.jsr_seq);
2094 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2095 		free(seg->ss_blk);
2096 		free(seg);
2097 	}
2098 	if (debug)
2099 		printf("Processing journal segments from %jd to %jd\n",
2100 		    oldseq, newseq-1);
2101 }
2102 
2103 /*
2104  * Verify the journal inode before attempting to read records.
2105  */
2106 static int
2107 suj_verifyino(union dinode *dp)
2108 {
2109 
2110 	if (DIP(dp, di_nlink) != 1) {
2111 		printf("Invalid link count %d for journal inode %ju\n",
2112 		    DIP(dp, di_nlink), (uintmax_t)sujino);
2113 		return (-1);
2114 	}
2115 
2116 	if ((DIP(dp, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2117 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2118 		printf("Invalid flags 0x%X for journal inode %ju\n",
2119 		    DIP(dp, di_flags), (uintmax_t)sujino);
2120 		return (-1);
2121 	}
2122 
2123 	if (DIP(dp, di_mode) != (IFREG | IREAD)) {
2124 		printf("Invalid mode %o for journal inode %ju\n",
2125 		    DIP(dp, di_mode), (uintmax_t)sujino);
2126 		return (-1);
2127 	}
2128 
2129 	if (DIP(dp, di_size) < SUJ_MIN) {
2130 		printf("Invalid size %jd for journal inode %ju\n",
2131 		    DIP(dp, di_size), (uintmax_t)sujino);
2132 		return (-1);
2133 	}
2134 
2135 	if (DIP(dp, di_modrev) != fs->fs_mtime) {
2136 		if (!bkgrdcheck || debug)
2137 			printf("Journal timestamp does not match "
2138 			    "fs mount time\n");
2139 		return (-1);
2140 	}
2141 
2142 	return (0);
2143 }
2144 
2145 struct jblocks {
2146 	struct jextent *jb_extent;	/* Extent array. */
2147 	int		jb_avail;	/* Available extents. */
2148 	int		jb_used;	/* Last used extent. */
2149 	int		jb_head;	/* Allocator head. */
2150 	int		jb_off;		/* Allocator extent offset. */
2151 };
2152 struct jextent {
2153 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2154 	int		je_blocks;	/* Disk block count. */
2155 };
2156 
2157 static struct jblocks *suj_jblocks;
2158 
2159 static struct jblocks *
2160 jblocks_create(void)
2161 {
2162 	struct jblocks *jblocks;
2163 	int size;
2164 
2165 	jblocks = errmalloc(sizeof(*jblocks));
2166 	jblocks->jb_avail = 10;
2167 	jblocks->jb_used = 0;
2168 	jblocks->jb_head = 0;
2169 	jblocks->jb_off = 0;
2170 	size = sizeof(struct jextent) * jblocks->jb_avail;
2171 	jblocks->jb_extent = errmalloc(size);
2172 	bzero(jblocks->jb_extent, size);
2173 
2174 	return (jblocks);
2175 }
2176 
2177 /*
2178  * Return the next available disk block and the amount of contiguous
2179  * free space it contains.
2180  */
2181 static ufs2_daddr_t
2182 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2183 {
2184 	struct jextent *jext;
2185 	ufs2_daddr_t daddr;
2186 	int freecnt;
2187 	int blocks;
2188 
2189 	blocks = btodb(bytes);
2190 	jext = &jblocks->jb_extent[jblocks->jb_head];
2191 	freecnt = jext->je_blocks - jblocks->jb_off;
2192 	if (freecnt == 0) {
2193 		jblocks->jb_off = 0;
2194 		if (++jblocks->jb_head > jblocks->jb_used)
2195 			return (0);
2196 		jext = &jblocks->jb_extent[jblocks->jb_head];
2197 		freecnt = jext->je_blocks;
2198 	}
2199 	if (freecnt > blocks)
2200 		freecnt = blocks;
2201 	*actual = dbtob(freecnt);
2202 	daddr = jext->je_daddr + jblocks->jb_off;
2203 
2204 	return (daddr);
2205 }
2206 
2207 /*
2208  * Advance the allocation head by a specified number of bytes, consuming
2209  * one journal segment.
2210  */
2211 static void
2212 jblocks_advance(struct jblocks *jblocks, int bytes)
2213 {
2214 
2215 	jblocks->jb_off += btodb(bytes);
2216 }
2217 
2218 static void
2219 jblocks_destroy(struct jblocks *jblocks)
2220 {
2221 
2222 	free(jblocks->jb_extent);
2223 	free(jblocks);
2224 }
2225 
2226 static void
2227 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2228 {
2229 	struct jextent *jext;
2230 	int size;
2231 
2232 	jext = &jblocks->jb_extent[jblocks->jb_used];
2233 	/* Adding the first block. */
2234 	if (jext->je_daddr == 0) {
2235 		jext->je_daddr = daddr;
2236 		jext->je_blocks = blocks;
2237 		return;
2238 	}
2239 	/* Extending the last extent. */
2240 	if (jext->je_daddr + jext->je_blocks == daddr) {
2241 		jext->je_blocks += blocks;
2242 		return;
2243 	}
2244 	/* Adding a new extent. */
2245 	if (++jblocks->jb_used == jblocks->jb_avail) {
2246 		jblocks->jb_avail *= 2;
2247 		size = sizeof(struct jextent) * jblocks->jb_avail;
2248 		jext = errmalloc(size);
2249 		bzero(jext, size);
2250 		bcopy(jblocks->jb_extent, jext,
2251 		    sizeof(struct jextent) * jblocks->jb_used);
2252 		free(jblocks->jb_extent);
2253 		jblocks->jb_extent = jext;
2254 	}
2255 	jext = &jblocks->jb_extent[jblocks->jb_used];
2256 	jext->je_daddr = daddr;
2257 	jext->je_blocks = blocks;
2258 
2259 	return;
2260 }
2261 
2262 /*
2263  * Add a file block from the journal to the extent map.  We can't read
2264  * each file block individually because the kernel treats it as a circular
2265  * buffer and segments may span multiple contiguous blocks.
2266  */
2267 static void
2268 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2269 {
2270 
2271 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2272 }
2273 
2274 static void
2275 suj_read(void)
2276 {
2277 	uint8_t block[1 * 1024 * 1024];
2278 	struct suj_seg *seg;
2279 	struct jsegrec *recn;
2280 	struct jsegrec *rec;
2281 	ufs2_daddr_t blk;
2282 	int readsize;
2283 	int blocks;
2284 	int recsize;
2285 	int size;
2286 	int i;
2287 
2288 	/*
2289 	 * Read records until we exhaust the journal space.  If we find
2290 	 * an invalid record we start searching for a valid segment header
2291 	 * at the next block.  This is because we don't have a head/tail
2292 	 * pointer and must recover the information indirectly.  At the gap
2293 	 * between the head and tail we won't necessarily have a valid
2294 	 * segment.
2295 	 */
2296 restart:
2297 	for (;;) {
2298 		size = sizeof(block);
2299 		blk = jblocks_next(suj_jblocks, size, &readsize);
2300 		if (blk == 0)
2301 			return;
2302 		size = readsize;
2303 		/*
2304 		 * Read 1MB at a time and scan for records within this block.
2305 		 */
2306 		if (pread(fsreadfd, &block, size, dbtob(blk)) != size) {
2307 			err_suj("Error reading journal block %jd\n",
2308 			    (intmax_t)blk);
2309 		}
2310 		for (rec = (void *)block; size; size -= recsize,
2311 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2312 			recsize = real_dev_bsize;
2313 			if (rec->jsr_time != fs->fs_mtime) {
2314 #ifdef notdef
2315 				if (debug)
2316 					printf("Rec time %jd != fs mtime %jd\n",
2317 					    rec->jsr_time, fs->fs_mtime);
2318 #endif
2319 				jblocks_advance(suj_jblocks, recsize);
2320 				continue;
2321 			}
2322 			if (rec->jsr_cnt == 0) {
2323 				if (debug)
2324 					printf("Found illegal count %d\n",
2325 					    rec->jsr_cnt);
2326 				jblocks_advance(suj_jblocks, recsize);
2327 				continue;
2328 			}
2329 			blocks = rec->jsr_blocks;
2330 			recsize = blocks * real_dev_bsize;
2331 			if (recsize > size) {
2332 				/*
2333 				 * We may just have run out of buffer, restart
2334 				 * the loop to re-read from this spot.
2335 				 */
2336 				if (size < fs->fs_bsize &&
2337 				    size != readsize &&
2338 				    recsize <= fs->fs_bsize)
2339 					goto restart;
2340 				if (debug)
2341 					printf("Found invalid segsize "
2342 					    "%d > %d\n", recsize, size);
2343 				recsize = real_dev_bsize;
2344 				jblocks_advance(suj_jblocks, recsize);
2345 				continue;
2346 			}
2347 			/*
2348 			 * Verify that all blocks in the segment are present.
2349 			 */
2350 			for (i = 1; i < blocks; i++) {
2351 				recn = (void *)((uintptr_t)rec) + i *
2352 				    real_dev_bsize;
2353 				if (recn->jsr_seq == rec->jsr_seq &&
2354 				    recn->jsr_time == rec->jsr_time)
2355 					continue;
2356 				if (debug)
2357 					printf("Incomplete record %jd (%d)\n",
2358 					    rec->jsr_seq, i);
2359 				recsize = i * real_dev_bsize;
2360 				jblocks_advance(suj_jblocks, recsize);
2361 				goto restart;
2362 			}
2363 			seg = errmalloc(sizeof(*seg));
2364 			seg->ss_blk = errmalloc(recsize);
2365 			seg->ss_rec = *rec;
2366 			bcopy((void *)rec, seg->ss_blk, recsize);
2367 			if (rec->jsr_oldest > oldseq)
2368 				oldseq = rec->jsr_oldest;
2369 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2370 			jblocks_advance(suj_jblocks, recsize);
2371 		}
2372 	}
2373 }
2374 
2375 /*
2376  * Orchestrate the verification of a filesystem via the softupdates journal.
2377  */
2378 int
2379 suj_check(const char *filesys)
2380 {
2381 	struct inodesc idesc;
2382 	struct csum *cgsum;
2383 	union dinode *dp, *jip;
2384 	struct inode ip;
2385 	uint64_t blocks;
2386 	int i, retval;
2387 	struct suj_seg *seg;
2388 	struct suj_seg *segn;
2389 
2390 	initsuj();
2391 	fs = &sblock;
2392 	if (real_dev_bsize == 0 && ioctl(fsreadfd, DIOCGSECTORSIZE,
2393 	    &real_dev_bsize) == -1)
2394 		real_dev_bsize = secsize;
2395 	if (debug)
2396 		printf("dev_bsize %u\n", real_dev_bsize);
2397 
2398 	/*
2399 	 * Set an exit point when SUJ check failed
2400 	 */
2401 	retval = setjmp(jmpbuf);
2402 	if (retval != 0) {
2403 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2404 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2405 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2406 				free(seg->ss_blk);
2407 				free(seg);
2408 		}
2409 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2410 			ckfini(0);
2411 			exit(EEXIT);
2412 		} else
2413 			return (-1);
2414 	}
2415 
2416 	/*
2417 	 * Search the root directory for the SUJ_FILE.
2418 	 */
2419 	idesc.id_type = DATA;
2420 	idesc.id_fix = IGNORE;
2421 	idesc.id_number = UFS_ROOTINO;
2422 	idesc.id_func = findino;
2423 	idesc.id_name = SUJ_FILE;
2424 	ginode(UFS_ROOTINO, &ip);
2425 	dp = ip.i_dp;
2426 	if ((DIP(dp, di_mode) & IFMT) != IFDIR) {
2427 		irelse(&ip);
2428 		err_suj("root inode is not a directory\n");
2429 	}
2430 	if (DIP(dp, di_size) < 0 || DIP(dp, di_size) > MAXDIRSIZE) {
2431 		irelse(&ip);
2432 		err_suj("negative or oversized root directory %jd\n",
2433 		    (uintmax_t)DIP(dp, di_size));
2434 	}
2435 	if ((ckinode(dp, &idesc) & FOUND) == FOUND) {
2436 		sujino = idesc.id_parent;
2437 		irelse(&ip);
2438 	} else {
2439 		if (!bkgrdcheck || debug)
2440 			printf("Journal inode removed.  "
2441 			    "Use tunefs to re-create.\n");
2442 		sblock.fs_flags &= ~FS_SUJ;
2443 		sblock.fs_sujfree = 0;
2444 		irelse(&ip);
2445 		return (-1);
2446 	}
2447 	/*
2448 	 * Fetch the journal inode and verify it.
2449 	 */
2450 	ginode(sujino, &ip);
2451 	jip = ip.i_dp;
2452 	if (!bkgrdcheck || debug)
2453 		printf("** SU+J Recovering %s\n", filesys);
2454 	if (suj_verifyino(jip) != 0 || (!preen && !reply("USE JOURNAL"))) {
2455 		irelse(&ip);
2456 		return (-1);
2457 	}
2458 	/*
2459 	 * Build a list of journal blocks in jblocks before parsing the
2460 	 * available journal blocks in with suj_read().
2461 	 */
2462 	if (!bkgrdcheck || debug)
2463 		printf("** Reading %jd byte journal from inode %ju.\n",
2464 		    DIP(jip, di_size), (uintmax_t)sujino);
2465 	suj_jblocks = jblocks_create();
2466 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2467 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2468 		if (!bkgrdcheck || debug)
2469 			printf("Sparse journal inode %ju.\n",
2470 			    (uintmax_t)sujino);
2471 		irelse(&ip);
2472 		return (-1);
2473 	}
2474 	/* If journal is valid then do journal check rather than background */
2475 	if (bkgrdcheck) {
2476 		irelse(&ip);
2477 		return (0);
2478 	}
2479 	irelse(&ip);
2480 	suj_read();
2481 	jblocks_destroy(suj_jblocks);
2482 	suj_jblocks = NULL;
2483 	if (preen || reply("RECOVER")) {
2484 		printf("** Building recovery table.\n");
2485 		suj_prune();
2486 		suj_build();
2487 		cg_apply(cg_build);
2488 		printf("** Resolving unreferenced inode list.\n");
2489 		ino_unlinked();
2490 		printf("** Processing journal entries.\n");
2491 		cg_apply(cg_trunc);
2492 		cg_apply(cg_check_blk);
2493 		cg_apply(cg_adj_blk);
2494 		cg_apply(cg_check_ino);
2495 	}
2496 	if (preen == 0 && (jrecs > 0 || jbytes > 0) &&
2497 	    reply("WRITE CHANGES") == 0)
2498 		return (0);
2499 	/*
2500 	 * Check block counts of snapshot inodes and
2501 	 * make copies of any needed snapshot blocks.
2502 	 */
2503 	for (i = 0; i < snapcnt; i++)
2504 		check_blkcnt(&snaplist[i]);
2505 	snapflush(suj_checkblkavail);
2506 	/*
2507 	 * Recompute the fs summary info from correct cs summaries.
2508 	 */
2509 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
2510 	for (i = 0; i < fs->fs_ncg; i++) {
2511 		cgsum = &fs->fs_cs(fs, i);
2512 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
2513 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
2514 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
2515 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
2516 	}
2517 	fs->fs_pendinginodes = 0;
2518 	fs->fs_pendingblocks = 0;
2519 	fs->fs_clean = 1;
2520 	fs->fs_time = time(NULL);
2521 	fs->fs_mtime = time(NULL);
2522 	sbdirty();
2523 	ckfini(1);
2524 	if (jrecs > 0 || jbytes > 0) {
2525 		printf("** %jd journal records in %jd bytes for %.2f%% "
2526 		    "utilization\n", jrecs, jbytes,
2527 		    ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2528 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd "
2529 		    "frags.\n", freeinos, freedir, freeblocks, freefrags);
2530 	}
2531 
2532 	return (0);
2533 }
2534 
2535 static void
2536 initsuj(void)
2537 {
2538 	int i;
2539 
2540 	for (i = 0; i < HASHSIZE; i++)
2541 		LIST_INIT(&cghash[i]);
2542 	lastcg = NULL;
2543 	TAILQ_INIT(&allsegs);
2544 	oldseq = 0;
2545 	fs = NULL;
2546 	sujino = 0;
2547 	freefrags = 0;
2548 	freeblocks = 0;
2549 	freeinos = 0;
2550 	freedir = 0;
2551 	jbytes = 0;
2552 	jrecs = 0;
2553 	suj_jblocks = NULL;
2554 }
2555