xref: /freebsd/sbin/fsck_ffs/suj.c (revision 5c5819b2b6a94570e3519cffc3fac9dddd9d85e4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/disk.h>
34 #include <sys/disklabel.h>
35 #include <sys/mount.h>
36 #include <sys/stat.h>
37 
38 #include <ufs/ufs/ufsmount.h>
39 #include <ufs/ufs/dinode.h>
40 #include <ufs/ufs/dir.h>
41 #include <ufs/ffs/fs.h>
42 
43 #include <assert.h>
44 #include <err.h>
45 #include <setjmp.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <stdint.h>
50 #include <libufs.h>
51 #include <string.h>
52 #include <strings.h>
53 #include <sysexits.h>
54 #include <time.h>
55 
56 #include "fsck.h"
57 
58 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
59 #define	SUJ_HASHSIZE	2048
60 #define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
61 #define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
62 
63 struct suj_seg {
64 	TAILQ_ENTRY(suj_seg) ss_next;
65 	struct jsegrec	ss_rec;
66 	uint8_t		*ss_blk;
67 };
68 
69 struct suj_rec {
70 	TAILQ_ENTRY(suj_rec) sr_next;
71 	union jrec	*sr_rec;
72 };
73 TAILQ_HEAD(srechd, suj_rec);
74 
75 struct suj_ino {
76 	LIST_ENTRY(suj_ino)	si_next;
77 	struct srechd		si_recs;
78 	struct srechd		si_newrecs;
79 	struct srechd		si_movs;
80 	struct jtrncrec		*si_trunc;
81 	ino_t			si_ino;
82 	char			si_skipparent;
83 	char			si_hasrecs;
84 	char			si_blkadj;
85 	char			si_linkadj;
86 	int			si_mode;
87 	nlink_t			si_nlinkadj;
88 	nlink_t			si_nlink;
89 	nlink_t			si_dotlinks;
90 };
91 LIST_HEAD(inohd, suj_ino);
92 
93 struct suj_blk {
94 	LIST_ENTRY(suj_blk)	sb_next;
95 	struct srechd		sb_recs;
96 	ufs2_daddr_t		sb_blk;
97 };
98 LIST_HEAD(blkhd, suj_blk);
99 
100 struct data_blk {
101 	LIST_ENTRY(data_blk)	db_next;
102 	uint8_t			*db_buf;
103 	ufs2_daddr_t		db_blk;
104 	int			db_size;
105 	int			db_dirty;
106 };
107 
108 struct ino_blk {
109 	LIST_ENTRY(ino_blk)	ib_next;
110 	uint8_t			*ib_buf;
111 	int			ib_dirty;
112 	ufs2_daddr_t		ib_blk;
113 };
114 LIST_HEAD(iblkhd, ino_blk);
115 
116 struct suj_cg {
117 	LIST_ENTRY(suj_cg)	sc_next;
118 	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
119 	struct inohd		sc_inohash[SUJ_HASHSIZE];
120 	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
121 	struct ino_blk		*sc_lastiblk;
122 	struct suj_ino		*sc_lastino;
123 	struct suj_blk		*sc_lastblk;
124 	uint8_t			*sc_cgbuf;
125 	struct cg		*sc_cgp;
126 	int			sc_dirty;
127 	int			sc_cgx;
128 };
129 
130 static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
131 static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
132 static struct suj_cg *lastcg;
133 static struct data_blk *lastblk;
134 
135 static TAILQ_HEAD(seghd, suj_seg) allsegs;
136 static uint64_t oldseq;
137 static struct fs *fs = NULL;
138 static ino_t sujino;
139 
140 /*
141  * Summary statistics.
142  */
143 static uint64_t freefrags;
144 static uint64_t freeblocks;
145 static uint64_t freeinos;
146 static uint64_t freedir;
147 static uint64_t jbytes;
148 static uint64_t jrecs;
149 
150 static jmp_buf	jmpbuf;
151 
152 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
153 static void err_suj(const char *, ...) __dead2;
154 static void ino_trunc(ino_t, off_t);
155 static void ino_decr(ino_t);
156 static void ino_adjust(struct suj_ino *);
157 static void ino_build(struct suj_ino *);
158 static int blk_isfree(ufs2_daddr_t);
159 static void initsuj(void);
160 
161 static void *
162 errmalloc(size_t n)
163 {
164 	void *a;
165 
166 	a = Malloc(n);
167 	if (a == NULL)
168 		err(EX_OSERR, "malloc(%zu)", n);
169 	return (a);
170 }
171 
172 /*
173  * When hit a fatal error in journalling check, print out
174  * the error and then offer to fallback to normal fsck.
175  */
176 static void
177 err_suj(const char * restrict fmt, ...)
178 {
179 	va_list ap;
180 
181 	if (preen)
182 		(void)fprintf(stdout, "%s: ", cdevname);
183 
184 	va_start(ap, fmt);
185 	(void)vfprintf(stdout, fmt, ap);
186 	va_end(ap);
187 
188 	longjmp(jmpbuf, -1);
189 }
190 
191 /*
192  * Mark file system as clean, write the super-block back, close the disk.
193  */
194 static void
195 closedisk(const char *devnam)
196 {
197 	struct csum *cgsum;
198 	uint32_t i;
199 
200 	/*
201 	 * Recompute the fs summary info from correct cs summaries.
202 	 */
203 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
204 	for (i = 0; i < fs->fs_ncg; i++) {
205 		cgsum = &fs->fs_cs(fs, i);
206 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
207 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
208 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
209 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
210 	}
211 	fs->fs_pendinginodes = 0;
212 	fs->fs_pendingblocks = 0;
213 	fs->fs_clean = 1;
214 	fs->fs_time = time(NULL);
215 	fs->fs_mtime = time(NULL);
216 	if (sbput(disk.d_fd, fs, 0) == -1)
217 		err(EX_OSERR, "sbput(%s)", devnam);
218 	if (ufs_disk_close(&disk) == -1)
219 		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
220 	fs = NULL;
221 }
222 
223 /*
224  * Lookup a cg by number in the hash so we can keep track of which cgs
225  * need stats rebuilt.
226  */
227 static struct suj_cg *
228 cg_lookup(int cgx)
229 {
230 	struct cghd *hd;
231 	struct suj_cg *sc;
232 
233 	if (cgx < 0 || cgx >= fs->fs_ncg)
234 		err_suj("Bad cg number %d\n", cgx);
235 	if (lastcg && lastcg->sc_cgx == cgx)
236 		return (lastcg);
237 	hd = &cghash[SUJ_HASH(cgx)];
238 	LIST_FOREACH(sc, hd, sc_next)
239 		if (sc->sc_cgx == cgx) {
240 			lastcg = sc;
241 			return (sc);
242 		}
243 	sc = errmalloc(sizeof(*sc));
244 	bzero(sc, sizeof(*sc));
245 	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
246 	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
247 	sc->sc_cgx = cgx;
248 	LIST_INSERT_HEAD(hd, sc, sc_next);
249 	/*
250 	 * Use bread() here rather than cgget() because the cylinder group
251 	 * may be corrupted but we want it anyway so we can fix it.
252 	 */
253 	if (bread(&disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
254 	    fs->fs_bsize) == -1)
255 		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
256 
257 	return (sc);
258 }
259 
260 /*
261  * Lookup an inode number in the hash and allocate a suj_ino if it does
262  * not exist.
263  */
264 static struct suj_ino *
265 ino_lookup(ino_t ino, int creat)
266 {
267 	struct suj_ino *sino;
268 	struct inohd *hd;
269 	struct suj_cg *sc;
270 
271 	sc = cg_lookup(ino_to_cg(fs, ino));
272 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
273 		return (sc->sc_lastino);
274 	hd = &sc->sc_inohash[SUJ_HASH(ino)];
275 	LIST_FOREACH(sino, hd, si_next)
276 		if (sino->si_ino == ino)
277 			return (sino);
278 	if (creat == 0)
279 		return (NULL);
280 	sino = errmalloc(sizeof(*sino));
281 	bzero(sino, sizeof(*sino));
282 	sino->si_ino = ino;
283 	TAILQ_INIT(&sino->si_recs);
284 	TAILQ_INIT(&sino->si_newrecs);
285 	TAILQ_INIT(&sino->si_movs);
286 	LIST_INSERT_HEAD(hd, sino, si_next);
287 
288 	return (sino);
289 }
290 
291 /*
292  * Lookup a block number in the hash and allocate a suj_blk if it does
293  * not exist.
294  */
295 static struct suj_blk *
296 blk_lookup(ufs2_daddr_t blk, int creat)
297 {
298 	struct suj_blk *sblk;
299 	struct suj_cg *sc;
300 	struct blkhd *hd;
301 
302 	sc = cg_lookup(dtog(fs, blk));
303 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
304 		return (sc->sc_lastblk);
305 	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
306 	LIST_FOREACH(sblk, hd, sb_next)
307 		if (sblk->sb_blk == blk)
308 			return (sblk);
309 	if (creat == 0)
310 		return (NULL);
311 	sblk = errmalloc(sizeof(*sblk));
312 	bzero(sblk, sizeof(*sblk));
313 	sblk->sb_blk = blk;
314 	TAILQ_INIT(&sblk->sb_recs);
315 	LIST_INSERT_HEAD(hd, sblk, sb_next);
316 
317 	return (sblk);
318 }
319 
320 static struct data_blk *
321 dblk_lookup(ufs2_daddr_t blk)
322 {
323 	struct data_blk *dblk;
324 	struct dblkhd *hd;
325 
326 	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
327 	if (lastblk && lastblk->db_blk == blk)
328 		return (lastblk);
329 	LIST_FOREACH(dblk, hd, db_next)
330 		if (dblk->db_blk == blk)
331 			return (dblk);
332 	/*
333 	 * The inode block wasn't located, allocate a new one.
334 	 */
335 	dblk = errmalloc(sizeof(*dblk));
336 	bzero(dblk, sizeof(*dblk));
337 	LIST_INSERT_HEAD(hd, dblk, db_next);
338 	dblk->db_blk = blk;
339 	return (dblk);
340 }
341 
342 static uint8_t *
343 dblk_read(ufs2_daddr_t blk, int size)
344 {
345 	struct data_blk *dblk;
346 
347 	dblk = dblk_lookup(blk);
348 	/*
349 	 * I doubt size mismatches can happen in practice but it is trivial
350 	 * to handle.
351 	 */
352 	if (size != dblk->db_size) {
353 		if (dblk->db_buf)
354 			free(dblk->db_buf);
355 		dblk->db_buf = errmalloc(size);
356 		dblk->db_size = size;
357 		if (bread(&disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
358 			err_suj("Failed to read data block %jd\n", blk);
359 	}
360 	return (dblk->db_buf);
361 }
362 
363 static void
364 dblk_dirty(ufs2_daddr_t blk)
365 {
366 	struct data_blk *dblk;
367 
368 	dblk = dblk_lookup(blk);
369 	dblk->db_dirty = 1;
370 }
371 
372 static void
373 dblk_write(void)
374 {
375 	struct data_blk *dblk;
376 	int i;
377 
378 	for (i = 0; i < SUJ_HASHSIZE; i++) {
379 		LIST_FOREACH(dblk, &dbhash[i], db_next) {
380 			if (dblk->db_dirty == 0 || dblk->db_size == 0)
381 				continue;
382 			if (bwrite(&disk, fsbtodb(fs, dblk->db_blk),
383 			    dblk->db_buf, dblk->db_size) == -1)
384 				err_suj("Unable to write block %jd\n",
385 				    dblk->db_blk);
386 		}
387 	}
388 }
389 
390 static union dinode *
391 ino_read(ino_t ino)
392 {
393 	struct ino_blk *iblk;
394 	struct iblkhd *hd;
395 	struct suj_cg *sc;
396 	ufs2_daddr_t blk;
397 	int off;
398 
399 	blk = ino_to_fsba(fs, ino);
400 	sc = cg_lookup(ino_to_cg(fs, ino));
401 	iblk = sc->sc_lastiblk;
402 	if (iblk && iblk->ib_blk == blk)
403 		goto found;
404 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
405 	LIST_FOREACH(iblk, hd, ib_next)
406 		if (iblk->ib_blk == blk)
407 			goto found;
408 	/*
409 	 * The inode block wasn't located, allocate a new one.
410 	 */
411 	iblk = errmalloc(sizeof(*iblk));
412 	bzero(iblk, sizeof(*iblk));
413 	iblk->ib_buf = errmalloc(fs->fs_bsize);
414 	iblk->ib_blk = blk;
415 	LIST_INSERT_HEAD(hd, iblk, ib_next);
416 	if (bread(&disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
417 		err_suj("Failed to read inode block %jd\n", blk);
418 found:
419 	sc->sc_lastiblk = iblk;
420 	off = ino_to_fsbo(fs, ino);
421 	if (fs->fs_magic == FS_UFS1_MAGIC)
422 		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
423 	else
424 		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
425 }
426 
427 static void
428 ino_dirty(ino_t ino)
429 {
430 	struct ino_blk *iblk;
431 	struct iblkhd *hd;
432 	struct suj_cg *sc;
433 	ufs2_daddr_t blk;
434 	int off;
435 
436 	blk = ino_to_fsba(fs, ino);
437 	sc = cg_lookup(ino_to_cg(fs, ino));
438 	iblk = sc->sc_lastiblk;
439 	if (iblk && iblk->ib_blk == blk) {
440 		if (fs->fs_magic == FS_UFS2_MAGIC) {
441 			off = ino_to_fsbo(fs, ino);
442 			ffs_update_dinode_ckhash(fs,
443 			    &((struct ufs2_dinode *)iblk->ib_buf)[off]);
444 		}
445 		iblk->ib_dirty = 1;
446 		return;
447 	}
448 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
449 	LIST_FOREACH(iblk, hd, ib_next) {
450 		if (iblk->ib_blk == blk) {
451 			if (fs->fs_magic == FS_UFS2_MAGIC) {
452 				off = ino_to_fsbo(fs, ino);
453 				ffs_update_dinode_ckhash(fs,
454 				    &((struct ufs2_dinode *)iblk->ib_buf)[off]);
455 			}
456 			iblk->ib_dirty = 1;
457 			return;
458 		}
459 	}
460 	ino_read(ino);
461 	ino_dirty(ino);
462 }
463 
464 static void
465 iblk_write(struct ino_blk *iblk)
466 {
467 
468 	if (iblk->ib_dirty == 0)
469 		return;
470 	if (bwrite(&disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
471 	    fs->fs_bsize) == -1)
472 		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
473 }
474 
475 static int
476 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
477 {
478 	ufs2_daddr_t bstart;
479 	ufs2_daddr_t bend;
480 	ufs2_daddr_t end;
481 
482 	end = start + frags;
483 	bstart = brec->jb_blkno + brec->jb_oldfrags;
484 	bend = bstart + brec->jb_frags;
485 	if (start < bend && end > bstart)
486 		return (1);
487 	return (0);
488 }
489 
490 static int
491 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
492     int frags)
493 {
494 
495 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
496 		return (0);
497 	if (brec->jb_blkno + brec->jb_oldfrags != start)
498 		return (0);
499 	if (brec->jb_frags < frags)
500 		return (0);
501 	return (1);
502 }
503 
504 static void
505 blk_setmask(struct jblkrec *brec, int *mask)
506 {
507 	int i;
508 
509 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
510 		*mask |= 1 << i;
511 }
512 
513 /*
514  * Determine whether a given block has been reallocated to a new location.
515  * Returns a mask of overlapping bits if any frags have been reused or
516  * zero if the block has not been re-used and the contents can be trusted.
517  *
518  * This is used to ensure that an orphaned pointer due to truncate is safe
519  * to be freed.  The mask value can be used to free partial blocks.
520  */
521 static int
522 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
523 {
524 	struct suj_blk *sblk;
525 	struct suj_rec *srec;
526 	struct jblkrec *brec;
527 	int mask;
528 	int off;
529 
530 	/*
531 	 * To be certain we're not freeing a reallocated block we lookup
532 	 * this block in the blk hash and see if there is an allocation
533 	 * journal record that overlaps with any fragments in the block
534 	 * we're concerned with.  If any fragments have ben reallocated
535 	 * the block has already been freed and re-used for another purpose.
536 	 */
537 	mask = 0;
538 	sblk = blk_lookup(blknum(fs, blk), 0);
539 	if (sblk == NULL)
540 		return (0);
541 	off = blk - sblk->sb_blk;
542 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
543 		brec = (struct jblkrec *)srec->sr_rec;
544 		/*
545 		 * If the block overlaps but does not match
546 		 * exactly this record refers to the current
547 		 * location.
548 		 */
549 		if (blk_overlaps(brec, blk, frags) == 0)
550 			continue;
551 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
552 			mask = 0;
553 		else
554 			blk_setmask(brec, &mask);
555 	}
556 	if (debug)
557 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
558 		    blk, sblk->sb_blk, off, mask);
559 	return (mask >> off);
560 }
561 
562 /*
563  * Determine whether it is safe to follow an indirect.  It is not safe
564  * if any part of the indirect has been reallocated or the last journal
565  * entry was an allocation.  Just allocated indirects may not have valid
566  * pointers yet and all of their children will have their own records.
567  * It is also not safe to follow an indirect if the cg bitmap has been
568  * cleared as a new allocation may write to the block prior to the journal
569  * being written.
570  *
571  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
572  */
573 static int
574 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
575 {
576 	struct suj_blk *sblk;
577 	struct jblkrec *brec;
578 
579 	sblk = blk_lookup(blk, 0);
580 	if (sblk == NULL)
581 		return (1);
582 	if (TAILQ_EMPTY(&sblk->sb_recs))
583 		return (1);
584 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
585 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
586 		if (brec->jb_op == JOP_FREEBLK)
587 			return (!blk_isfree(blk));
588 	return (0);
589 }
590 
591 /*
592  * Clear an inode from the cg bitmap.  If the inode was already clear return
593  * 0 so the caller knows it does not have to check the inode contents.
594  */
595 static int
596 ino_free(ino_t ino, int mode)
597 {
598 	struct suj_cg *sc;
599 	uint8_t *inosused;
600 	struct cg *cgp;
601 	int cg;
602 
603 	cg = ino_to_cg(fs, ino);
604 	ino = ino % fs->fs_ipg;
605 	sc = cg_lookup(cg);
606 	cgp = sc->sc_cgp;
607 	inosused = cg_inosused(cgp);
608 	/*
609 	 * The bitmap may never have made it to the disk so we have to
610 	 * conditionally clear.  We can avoid writing the cg in this case.
611 	 */
612 	if (isclr(inosused, ino))
613 		return (0);
614 	freeinos++;
615 	clrbit(inosused, ino);
616 	if (ino < cgp->cg_irotor)
617 		cgp->cg_irotor = ino;
618 	cgp->cg_cs.cs_nifree++;
619 	if ((mode & IFMT) == IFDIR) {
620 		freedir++;
621 		cgp->cg_cs.cs_ndir--;
622 	}
623 	sc->sc_dirty = 1;
624 
625 	return (1);
626 }
627 
628 /*
629  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
630  * set in the mask.
631  */
632 static void
633 blk_free(ufs2_daddr_t bno, int mask, int frags)
634 {
635 	ufs1_daddr_t fragno, cgbno;
636 	struct suj_cg *sc;
637 	struct cg *cgp;
638 	int i, cg;
639 	uint8_t *blksfree;
640 
641 	if (debug)
642 		printf("Freeing %d frags at blk %jd mask 0x%x\n",
643 		    frags, bno, mask);
644 	cg = dtog(fs, bno);
645 	sc = cg_lookup(cg);
646 	cgp = sc->sc_cgp;
647 	cgbno = dtogd(fs, bno);
648 	blksfree = cg_blksfree(cgp);
649 
650 	/*
651 	 * If it's not allocated we only wrote the journal entry
652 	 * and never the bitmaps.  Here we unconditionally clear and
653 	 * resolve the cg summary later.
654 	 */
655 	if (frags == fs->fs_frag && mask == 0) {
656 		fragno = fragstoblks(fs, cgbno);
657 		ffs_setblock(fs, blksfree, fragno);
658 		freeblocks++;
659 	} else {
660 		/*
661 		 * deallocate the fragment
662 		 */
663 		for (i = 0; i < frags; i++)
664 			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
665 				freefrags++;
666 				setbit(blksfree, cgbno + i);
667 			}
668 	}
669 	sc->sc_dirty = 1;
670 }
671 
672 /*
673  * Returns 1 if the whole block starting at 'bno' is marked free and 0
674  * otherwise.
675  */
676 static int
677 blk_isfree(ufs2_daddr_t bno)
678 {
679 	struct suj_cg *sc;
680 
681 	sc = cg_lookup(dtog(fs, bno));
682 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
683 }
684 
685 /*
686  * Fetch an indirect block to find the block at a given lbn.  The lbn
687  * may be negative to fetch a specific indirect block pointer or positive
688  * to fetch a specific block.
689  */
690 static ufs2_daddr_t
691 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
692 {
693 	ufs2_daddr_t *bap2;
694 	ufs2_daddr_t *bap1;
695 	ufs_lbn_t lbnadd;
696 	ufs_lbn_t base;
697 	int level;
698 	int i;
699 
700 	if (blk == 0)
701 		return (0);
702 	level = lbn_level(cur);
703 	if (level == -1)
704 		err_suj("Invalid indir lbn %jd\n", lbn);
705 	if (level == 0 && lbn < 0)
706 		err_suj("Invalid lbn %jd\n", lbn);
707 	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
708 	bap1 = (void *)bap2;
709 	lbnadd = 1;
710 	base = -(cur + level);
711 	for (i = level; i > 0; i--)
712 		lbnadd *= NINDIR(fs);
713 	if (lbn > 0)
714 		i = (lbn - base) / lbnadd;
715 	else
716 		i = (-lbn - base) / lbnadd;
717 	if (i < 0 || i >= NINDIR(fs))
718 		err_suj("Invalid indirect index %d produced by lbn %jd\n",
719 		    i, lbn);
720 	if (level == 0)
721 		cur = base + (i * lbnadd);
722 	else
723 		cur = -(base + (i * lbnadd)) - (level - 1);
724 	if (fs->fs_magic == FS_UFS1_MAGIC)
725 		blk = bap1[i];
726 	else
727 		blk = bap2[i];
728 	if (cur == lbn)
729 		return (blk);
730 	if (level == 0)
731 		err_suj("Invalid lbn %jd at level 0\n", lbn);
732 	return indir_blkatoff(blk, ino, cur, lbn);
733 }
734 
735 /*
736  * Finds the disk block address at the specified lbn within the inode
737  * specified by ip.  This follows the whole tree and honors di_size and
738  * di_extsize so it is a true test of reachability.  The lbn may be
739  * negative if an extattr or indirect block is requested.
740  */
741 static ufs2_daddr_t
742 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
743 {
744 	ufs_lbn_t tmpval;
745 	ufs_lbn_t cur;
746 	ufs_lbn_t next;
747 	int i;
748 
749 	/*
750 	 * Handle extattr blocks first.
751 	 */
752 	if (lbn < 0 && lbn >= -UFS_NXADDR) {
753 		lbn = -1 - lbn;
754 		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
755 			return (0);
756 		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
757 		return (ip->dp2.di_extb[lbn]);
758 	}
759 	/*
760 	 * Now direct and indirect.
761 	 */
762 	if (DIP(ip, di_mode) == IFLNK &&
763 	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
764 		return (0);
765 	if (lbn >= 0 && lbn < UFS_NDADDR) {
766 		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
767 		return (DIP(ip, di_db[lbn]));
768 	}
769 	*frags = fs->fs_frag;
770 
771 	for (i = 0, tmpval = NINDIR(fs), cur = UFS_NDADDR; i < UFS_NIADDR; i++,
772 	    tmpval *= NINDIR(fs), cur = next) {
773 		next = cur + tmpval;
774 		if (lbn == -cur - i)
775 			return (DIP(ip, di_ib[i]));
776 		/*
777 		 * Determine whether the lbn in question is within this tree.
778 		 */
779 		if (lbn < 0 && -lbn >= next)
780 			continue;
781 		if (lbn > 0 && lbn >= next)
782 			continue;
783 		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
784 	}
785 	err_suj("lbn %jd not in ino\n", lbn);
786 	/* NOTREACHED */
787 }
788 
789 /*
790  * Determine whether a block exists at a particular lbn in an inode.
791  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
792  * or ext blocks.
793  */
794 static int
795 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
796 {
797 	union dinode *ip;
798 	ufs2_daddr_t nblk;
799 
800 	ip = ino_read(ino);
801 
802 	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
803 		return (0);
804 	nblk = ino_blkatoff(ip, ino, lbn, frags);
805 
806 	return (nblk == blk);
807 }
808 
809 /*
810  * Clear the directory entry at diroff that should point to child.  Minimal
811  * checking is done and it is assumed that this path was verified with isat.
812  */
813 static void
814 ino_clrat(ino_t parent, off_t diroff, ino_t child)
815 {
816 	union dinode *dip;
817 	struct direct *dp;
818 	ufs2_daddr_t blk;
819 	uint8_t *block;
820 	ufs_lbn_t lbn;
821 	int blksize;
822 	int frags;
823 	int doff;
824 
825 	if (debug)
826 		printf("Clearing inode %ju from parent %ju at offset %jd\n",
827 		    (uintmax_t)child, (uintmax_t)parent, diroff);
828 
829 	lbn = lblkno(fs, diroff);
830 	doff = blkoff(fs, diroff);
831 	dip = ino_read(parent);
832 	blk = ino_blkatoff(dip, parent, lbn, &frags);
833 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
834 	block = dblk_read(blk, blksize);
835 	dp = (struct direct *)&block[doff];
836 	if (dp->d_ino != child)
837 		errx(1, "Inode %ju does not exist in %ju at %jd",
838 		    (uintmax_t)child, (uintmax_t)parent, diroff);
839 	dp->d_ino = 0;
840 	dblk_dirty(blk);
841 	/*
842 	 * The actual .. reference count will already have been removed
843 	 * from the parent by the .. remref record.
844 	 */
845 }
846 
847 /*
848  * Determines whether a pointer to an inode exists within a directory
849  * at a specified offset.  Returns the mode of the found entry.
850  */
851 static int
852 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
853 {
854 	union dinode *dip;
855 	struct direct *dp;
856 	ufs2_daddr_t blk;
857 	uint8_t *block;
858 	ufs_lbn_t lbn;
859 	int blksize;
860 	int frags;
861 	int dpoff;
862 	int doff;
863 
864 	*isdot = 0;
865 	dip = ino_read(parent);
866 	*mode = DIP(dip, di_mode);
867 	if ((*mode & IFMT) != IFDIR) {
868 		if (debug) {
869 			/*
870 			 * This can happen if the parent inode
871 			 * was reallocated.
872 			 */
873 			if (*mode != 0)
874 				printf("Directory %ju has bad mode %o\n",
875 				    (uintmax_t)parent, *mode);
876 			else
877 				printf("Directory %ju has zero mode\n",
878 				    (uintmax_t)parent);
879 		}
880 		return (0);
881 	}
882 	lbn = lblkno(fs, diroff);
883 	doff = blkoff(fs, diroff);
884 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
885 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
886 		if (debug)
887 			printf("ino %ju absent from %ju due to offset %jd"
888 			    " exceeding size %jd\n",
889 			    (uintmax_t)child, (uintmax_t)parent, diroff,
890 			    DIP(dip, di_size));
891 		return (0);
892 	}
893 	blk = ino_blkatoff(dip, parent, lbn, &frags);
894 	if (blk <= 0) {
895 		if (debug)
896 			printf("Sparse directory %ju", (uintmax_t)parent);
897 		return (0);
898 	}
899 	block = dblk_read(blk, blksize);
900 	/*
901 	 * Walk through the records from the start of the block to be
902 	 * certain we hit a valid record and not some junk in the middle
903 	 * of a file name.  Stop when we reach or pass the expected offset.
904 	 */
905 	dpoff = rounddown(doff, DIRBLKSIZ);
906 	do {
907 		dp = (struct direct *)&block[dpoff];
908 		if (dpoff == doff)
909 			break;
910 		if (dp->d_reclen == 0)
911 			break;
912 		dpoff += dp->d_reclen;
913 	} while (dpoff <= doff);
914 	if (dpoff > fs->fs_bsize)
915 		err_suj("Corrupt directory block in dir ino %ju\n",
916 		    (uintmax_t)parent);
917 	/* Not found. */
918 	if (dpoff != doff) {
919 		if (debug)
920 			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
921 			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
922 		return (0);
923 	}
924 	/*
925 	 * We found the item in question.  Record the mode and whether it's
926 	 * a . or .. link for the caller.
927 	 */
928 	if (dp->d_ino == child) {
929 		if (child == parent)
930 			*isdot = 1;
931 		else if (dp->d_namlen == 2 &&
932 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
933 			*isdot = 1;
934 		*mode = DTTOIF(dp->d_type);
935 		return (1);
936 	}
937 	if (debug)
938 		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
939 		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
940 	return (0);
941 }
942 
943 #define	VISIT_INDIR	0x0001
944 #define	VISIT_EXT	0x0002
945 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
946 
947 /*
948  * Read an indirect level which may or may not be linked into an inode.
949  */
950 static void
951 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
952     ino_visitor visitor, int flags)
953 {
954 	ufs2_daddr_t *bap2;
955 	ufs1_daddr_t *bap1;
956 	ufs_lbn_t lbnadd;
957 	ufs2_daddr_t nblk;
958 	ufs_lbn_t nlbn;
959 	int level;
960 	int i;
961 
962 	/*
963 	 * Don't visit indirect blocks with contents we can't trust.  This
964 	 * should only happen when indir_visit() is called to complete a
965 	 * truncate that never finished and not when a pointer is found via
966 	 * an inode.
967 	 */
968 	if (blk == 0)
969 		return;
970 	level = lbn_level(lbn);
971 	if (level == -1)
972 		err_suj("Invalid level for lbn %jd\n", lbn);
973 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
974 		if (debug)
975 			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
976 			    blk, (uintmax_t)ino, lbn, level);
977 		goto out;
978 	}
979 	lbnadd = 1;
980 	for (i = level; i > 0; i--)
981 		lbnadd *= NINDIR(fs);
982 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
983 	bap2 = (void *)bap1;
984 	for (i = 0; i < NINDIR(fs); i++) {
985 		if (fs->fs_magic == FS_UFS1_MAGIC)
986 			nblk = *bap1++;
987 		else
988 			nblk = *bap2++;
989 		if (nblk == 0)
990 			continue;
991 		if (level == 0) {
992 			nlbn = -lbn + i * lbnadd;
993 			(*frags) += fs->fs_frag;
994 			visitor(ino, nlbn, nblk, fs->fs_frag);
995 		} else {
996 			nlbn = (lbn + 1) - (i * lbnadd);
997 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
998 		}
999 	}
1000 out:
1001 	if (flags & VISIT_INDIR) {
1002 		(*frags) += fs->fs_frag;
1003 		visitor(ino, lbn, blk, fs->fs_frag);
1004 	}
1005 }
1006 
1007 /*
1008  * Visit each block in an inode as specified by 'flags' and call a
1009  * callback function.  The callback may inspect or free blocks.  The
1010  * count of frags found according to the size in the file is returned.
1011  * This is not valid for sparse files but may be used to determine
1012  * the correct di_blocks for a file.
1013  */
1014 static uint64_t
1015 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1016 {
1017 	ufs_lbn_t nextlbn;
1018 	ufs_lbn_t tmpval;
1019 	ufs_lbn_t lbn;
1020 	uint64_t size;
1021 	uint64_t fragcnt;
1022 	int mode;
1023 	int frags;
1024 	int i;
1025 
1026 	size = DIP(ip, di_size);
1027 	mode = DIP(ip, di_mode) & IFMT;
1028 	fragcnt = 0;
1029 	if ((flags & VISIT_EXT) &&
1030 	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1031 		for (i = 0; i < UFS_NXADDR; i++) {
1032 			if (ip->dp2.di_extb[i] == 0)
1033 				continue;
1034 			frags = sblksize(fs, ip->dp2.di_extsize, i);
1035 			frags = numfrags(fs, frags);
1036 			fragcnt += frags;
1037 			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1038 		}
1039 	}
1040 	/* Skip datablocks for short links and devices. */
1041 	if (mode == IFBLK || mode == IFCHR ||
1042 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1043 		return (fragcnt);
1044 	for (i = 0; i < UFS_NDADDR; i++) {
1045 		if (DIP(ip, di_db[i]) == 0)
1046 			continue;
1047 		frags = sblksize(fs, size, i);
1048 		frags = numfrags(fs, frags);
1049 		fragcnt += frags;
1050 		visitor(ino, i, DIP(ip, di_db[i]), frags);
1051 	}
1052 	/*
1053 	 * We know the following indirects are real as we're following
1054 	 * real pointers to them.
1055 	 */
1056 	flags |= VISIT_ROOT;
1057 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1058 	    lbn = nextlbn) {
1059 		nextlbn = lbn + tmpval;
1060 		tmpval *= NINDIR(fs);
1061 		if (DIP(ip, di_ib[i]) == 0)
1062 			continue;
1063 		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1064 		    flags);
1065 	}
1066 	return (fragcnt);
1067 }
1068 
1069 /*
1070  * Null visitor function used when we just want to count blocks and
1071  * record the lbn.
1072  */
1073 ufs_lbn_t visitlbn;
1074 static void
1075 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1076 {
1077 	if (lbn > 0)
1078 		visitlbn = lbn;
1079 }
1080 
1081 /*
1082  * Recalculate di_blocks when we discover that a block allocation or
1083  * free was not successfully completed.  The kernel does not roll this back
1084  * because it would be too expensive to compute which indirects were
1085  * reachable at the time the inode was written.
1086  */
1087 static void
1088 ino_adjblks(struct suj_ino *sino)
1089 {
1090 	union dinode *ip;
1091 	uint64_t blocks;
1092 	uint64_t frags;
1093 	off_t isize;
1094 	off_t size;
1095 	ino_t ino;
1096 
1097 	ino = sino->si_ino;
1098 	ip = ino_read(ino);
1099 	/* No need to adjust zero'd inodes. */
1100 	if (DIP(ip, di_mode) == 0)
1101 		return;
1102 	/*
1103 	 * Visit all blocks and count them as well as recording the last
1104 	 * valid lbn in the file.  If the file size doesn't agree with the
1105 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1106 	 * the blocks count.
1107 	 */
1108 	visitlbn = 0;
1109 	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1110 	blocks = fsbtodb(fs, frags);
1111 	/*
1112 	 * We assume the size and direct block list is kept coherent by
1113 	 * softdep.  For files that have extended into indirects we truncate
1114 	 * to the size in the inode or the maximum size permitted by
1115 	 * populated indirects.
1116 	 */
1117 	if (visitlbn >= UFS_NDADDR) {
1118 		isize = DIP(ip, di_size);
1119 		size = lblktosize(fs, visitlbn + 1);
1120 		if (isize > size)
1121 			isize = size;
1122 		/* Always truncate to free any unpopulated indirects. */
1123 		ino_trunc(sino->si_ino, isize);
1124 		return;
1125 	}
1126 	if (blocks == DIP(ip, di_blocks))
1127 		return;
1128 	if (debug)
1129 		printf("ino %ju adjusting block count from %jd to %jd\n",
1130 		    (uintmax_t)ino, DIP(ip, di_blocks), blocks);
1131 	DIP_SET(ip, di_blocks, blocks);
1132 	ino_dirty(ino);
1133 }
1134 
1135 static void
1136 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1137 {
1138 
1139 	blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
1140 }
1141 
1142 /*
1143  * Free a block or tree of blocks that was previously rooted in ino at
1144  * the given lbn.  If the lbn is an indirect all children are freed
1145  * recursively.
1146  */
1147 static void
1148 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1149 {
1150 	uint64_t resid;
1151 	int mask;
1152 
1153 	mask = blk_freemask(blk, ino, lbn, frags);
1154 	resid = 0;
1155 	if (lbn <= -UFS_NDADDR && follow && mask == 0)
1156 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1157 	else
1158 		blk_free(blk, mask, frags);
1159 }
1160 
1161 static void
1162 ino_setskip(struct suj_ino *sino, ino_t parent)
1163 {
1164 	int isdot;
1165 	int mode;
1166 
1167 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1168 		sino->si_skipparent = 1;
1169 }
1170 
1171 static void
1172 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1173 {
1174 	struct suj_ino *sino;
1175 	struct suj_rec *srec;
1176 	struct jrefrec *rrec;
1177 
1178 	/*
1179 	 * Lookup this inode to see if we have a record for it.
1180 	 */
1181 	sino = ino_lookup(child, 0);
1182 	/*
1183 	 * Tell any child directories we've already removed their
1184 	 * parent link cnt.  Don't try to adjust our link down again.
1185 	 */
1186 	if (sino != NULL && isdotdot == 0)
1187 		ino_setskip(sino, parent);
1188 	/*
1189 	 * No valid record for this inode.  Just drop the on-disk
1190 	 * link by one.
1191 	 */
1192 	if (sino == NULL || sino->si_hasrecs == 0) {
1193 		ino_decr(child);
1194 		return;
1195 	}
1196 	/*
1197 	 * Use ino_adjust() if ino_check() has already processed this
1198 	 * child.  If we lose the last non-dot reference to a
1199 	 * directory it will be discarded.
1200 	 */
1201 	if (sino->si_linkadj) {
1202 		sino->si_nlink--;
1203 		if (isdotdot)
1204 			sino->si_dotlinks--;
1205 		ino_adjust(sino);
1206 		return;
1207 	}
1208 	/*
1209 	 * If we haven't yet processed this inode we need to make
1210 	 * sure we will successfully discover the lost path.  If not
1211 	 * use nlinkadj to remember.
1212 	 */
1213 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1214 		rrec = (struct jrefrec *)srec->sr_rec;
1215 		if (rrec->jr_parent == parent &&
1216 		    rrec->jr_diroff == diroff)
1217 			return;
1218 	}
1219 	sino->si_nlinkadj++;
1220 }
1221 
1222 /*
1223  * Free the children of a directory when the directory is discarded.
1224  */
1225 static void
1226 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1227 {
1228 	struct suj_ino *sino;
1229 	struct direct *dp;
1230 	off_t diroff;
1231 	uint8_t *block;
1232 	int skipparent;
1233 	int isdotdot;
1234 	int dpoff;
1235 	int size;
1236 
1237 	sino = ino_lookup(ino, 0);
1238 	if (sino)
1239 		skipparent = sino->si_skipparent;
1240 	else
1241 		skipparent = 0;
1242 	size = lfragtosize(fs, frags);
1243 	block = dblk_read(blk, size);
1244 	dp = (struct direct *)&block[0];
1245 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1246 		dp = (struct direct *)&block[dpoff];
1247 		if (dp->d_ino == 0 || dp->d_ino == UFS_WINO)
1248 			continue;
1249 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1250 			continue;
1251 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1252 		    dp->d_name[1] == '.';
1253 		if (isdotdot && skipparent == 1)
1254 			continue;
1255 		if (debug)
1256 			printf("Directory %ju removing ino %ju name %s\n",
1257 			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1258 		diroff = lblktosize(fs, lbn) + dpoff;
1259 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1260 	}
1261 }
1262 
1263 /*
1264  * Reclaim an inode, freeing all blocks and decrementing all children's
1265  * link counts.  Free the inode back to the cg.
1266  */
1267 static void
1268 ino_reclaim(union dinode *ip, ino_t ino, int mode)
1269 {
1270 	uint32_t gen;
1271 
1272 	if (ino == UFS_ROOTINO)
1273 		err_suj("Attempting to free UFS_ROOTINO\n");
1274 	if (debug)
1275 		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1276 		    (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1277 
1278 	/* We are freeing an inode or directory. */
1279 	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1280 		ino_visit(ip, ino, ino_free_children, 0);
1281 	DIP_SET(ip, di_nlink, 0);
1282 	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1283 	/* Here we have to clear the inode and release any blocks it holds. */
1284 	gen = DIP(ip, di_gen);
1285 	if (fs->fs_magic == FS_UFS1_MAGIC)
1286 		bzero(ip, sizeof(struct ufs1_dinode));
1287 	else
1288 		bzero(ip, sizeof(struct ufs2_dinode));
1289 	DIP_SET(ip, di_gen, gen);
1290 	ino_dirty(ino);
1291 	ino_free(ino, mode);
1292 	return;
1293 }
1294 
1295 /*
1296  * Adjust an inode's link count down by one when a directory goes away.
1297  */
1298 static void
1299 ino_decr(ino_t ino)
1300 {
1301 	union dinode *ip;
1302 	int reqlink;
1303 	int nlink;
1304 	int mode;
1305 
1306 	ip = ino_read(ino);
1307 	nlink = DIP(ip, di_nlink);
1308 	mode = DIP(ip, di_mode);
1309 	if (nlink < 1)
1310 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1311 	if (mode == 0)
1312 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1313 	nlink--;
1314 	if ((mode & IFMT) == IFDIR)
1315 		reqlink = 2;
1316 	else
1317 		reqlink = 1;
1318 	if (nlink < reqlink) {
1319 		if (debug)
1320 			printf("ino %ju not enough links to live %d < %d\n",
1321 			    (uintmax_t)ino, nlink, reqlink);
1322 		ino_reclaim(ip, ino, mode);
1323 		return;
1324 	}
1325 	DIP_SET(ip, di_nlink, nlink);
1326 	ino_dirty(ino);
1327 }
1328 
1329 /*
1330  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1331  * free it.
1332  */
1333 static void
1334 ino_adjust(struct suj_ino *sino)
1335 {
1336 	struct jrefrec *rrec;
1337 	struct suj_rec *srec;
1338 	struct suj_ino *stmp;
1339 	union dinode *ip;
1340 	nlink_t nlink;
1341 	nlink_t reqlink;
1342 	int recmode;
1343 	int isdot;
1344 	int mode;
1345 	ino_t ino;
1346 
1347 	nlink = sino->si_nlink;
1348 	ino = sino->si_ino;
1349 	mode = sino->si_mode & IFMT;
1350 	/*
1351 	 * If it's a directory with no dot links, it was truncated before
1352 	 * the name was cleared.  We need to clear the dirent that
1353 	 * points at it.
1354 	 */
1355 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1356 		sino->si_nlink = nlink = 0;
1357 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1358 			rrec = (struct jrefrec *)srec->sr_rec;
1359 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1360 			    &recmode, &isdot) == 0)
1361 				continue;
1362 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1363 			break;
1364 		}
1365 		if (srec == NULL)
1366 			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1367 	}
1368 	/*
1369 	 * If it's a directory with no real names pointing to it go ahead
1370 	 * and truncate it.  This will free any children.
1371 	 */
1372 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1373 		sino->si_nlink = nlink = 0;
1374 		/*
1375 		 * Mark any .. links so they know not to free this inode
1376 		 * when they are removed.
1377 		 */
1378 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1379 			rrec = (struct jrefrec *)srec->sr_rec;
1380 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1381 				stmp = ino_lookup(rrec->jr_parent, 0);
1382 				if (stmp)
1383 					ino_setskip(stmp, ino);
1384 			}
1385 		}
1386 	}
1387 	ip = ino_read(ino);
1388 	mode = DIP(ip, di_mode) & IFMT;
1389 	if (nlink > UFS_LINK_MAX)
1390 		err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
1391 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink));
1392 	if (debug)
1393 	       printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
1394 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(ip, di_nlink),
1395 		    sino->si_mode);
1396 	if (mode == 0) {
1397 		if (debug)
1398 			printf("ino %ju, zero inode freeing bitmap\n",
1399 			    (uintmax_t)ino);
1400 		ino_free(ino, sino->si_mode);
1401 		return;
1402 	}
1403 	/* XXX Should be an assert? */
1404 	if (mode != sino->si_mode && debug)
1405 		printf("ino %ju, mode %o != %o\n",
1406 		    (uintmax_t)ino, mode, sino->si_mode);
1407 	if ((mode & IFMT) == IFDIR)
1408 		reqlink = 2;
1409 	else
1410 		reqlink = 1;
1411 	/* If the inode doesn't have enough links to live, free it. */
1412 	if (nlink < reqlink) {
1413 		if (debug)
1414 			printf("ino %ju not enough links to live %ju < %ju\n",
1415 			    (uintmax_t)ino, (uintmax_t)nlink,
1416 			    (uintmax_t)reqlink);
1417 		ino_reclaim(ip, ino, mode);
1418 		return;
1419 	}
1420 	/* If required write the updated link count. */
1421 	if (DIP(ip, di_nlink) == nlink) {
1422 		if (debug)
1423 			printf("ino %ju, link matches, skipping.\n",
1424 			    (uintmax_t)ino);
1425 		return;
1426 	}
1427 	DIP_SET(ip, di_nlink, nlink);
1428 	ino_dirty(ino);
1429 }
1430 
1431 /*
1432  * Truncate some or all blocks in an indirect, freeing any that are required
1433  * and zeroing the indirect.
1434  */
1435 static void
1436 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1437 {
1438 	ufs2_daddr_t *bap2;
1439 	ufs1_daddr_t *bap1;
1440 	ufs_lbn_t lbnadd;
1441 	ufs2_daddr_t nblk;
1442 	ufs_lbn_t next;
1443 	ufs_lbn_t nlbn;
1444 	int dirty;
1445 	int level;
1446 	int i;
1447 
1448 	if (blk == 0)
1449 		return;
1450 	dirty = 0;
1451 	level = lbn_level(lbn);
1452 	if (level == -1)
1453 		err_suj("Invalid level for lbn %jd\n", lbn);
1454 	lbnadd = 1;
1455 	for (i = level; i > 0; i--)
1456 		lbnadd *= NINDIR(fs);
1457 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1458 	bap2 = (void *)bap1;
1459 	for (i = 0; i < NINDIR(fs); i++) {
1460 		if (fs->fs_magic == FS_UFS1_MAGIC)
1461 			nblk = *bap1++;
1462 		else
1463 			nblk = *bap2++;
1464 		if (nblk == 0)
1465 			continue;
1466 		if (level != 0) {
1467 			nlbn = (lbn + 1) - (i * lbnadd);
1468 			/*
1469 			 * Calculate the lbn of the next indirect to
1470 			 * determine if any of this indirect must be
1471 			 * reclaimed.
1472 			 */
1473 			next = -(lbn + level) + ((i+1) * lbnadd);
1474 			if (next <= lastlbn)
1475 				continue;
1476 			indir_trunc(ino, nlbn, nblk, lastlbn);
1477 			/* If all of this indirect was reclaimed, free it. */
1478 			nlbn = next - lbnadd;
1479 			if (nlbn < lastlbn)
1480 				continue;
1481 		} else {
1482 			nlbn = -lbn + i * lbnadd;
1483 			if (nlbn < lastlbn)
1484 				continue;
1485 		}
1486 		dirty = 1;
1487 		blk_free(nblk, 0, fs->fs_frag);
1488 		if (fs->fs_magic == FS_UFS1_MAGIC)
1489 			*(bap1 - 1) = 0;
1490 		else
1491 			*(bap2 - 1) = 0;
1492 	}
1493 	if (dirty)
1494 		dblk_dirty(blk);
1495 }
1496 
1497 /*
1498  * Truncate an inode to the minimum of the given size or the last populated
1499  * block after any over size have been discarded.  The kernel would allocate
1500  * the last block in the file but fsck does not and neither do we.  This
1501  * code never extends files, only shrinks them.
1502  */
1503 static void
1504 ino_trunc(ino_t ino, off_t size)
1505 {
1506 	union dinode *ip;
1507 	ufs2_daddr_t bn;
1508 	uint64_t totalfrags;
1509 	ufs_lbn_t nextlbn;
1510 	ufs_lbn_t lastlbn;
1511 	ufs_lbn_t tmpval;
1512 	ufs_lbn_t lbn;
1513 	ufs_lbn_t i;
1514 	int frags;
1515 	off_t cursize;
1516 	off_t off;
1517 	int mode;
1518 
1519 	ip = ino_read(ino);
1520 	mode = DIP(ip, di_mode) & IFMT;
1521 	cursize = DIP(ip, di_size);
1522 	if (debug)
1523 		printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1524 		    (uintmax_t)ino, mode, size, cursize);
1525 
1526 	/* Skip datablocks for short links and devices. */
1527 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1528 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1529 		return;
1530 	/* Don't extend. */
1531 	if (size > cursize)
1532 		size = cursize;
1533 	lastlbn = lblkno(fs, blkroundup(fs, size));
1534 	for (i = lastlbn; i < UFS_NDADDR; i++) {
1535 		if (DIP(ip, di_db[i]) == 0)
1536 			continue;
1537 		frags = sblksize(fs, cursize, i);
1538 		frags = numfrags(fs, frags);
1539 		blk_free(DIP(ip, di_db[i]), 0, frags);
1540 		DIP_SET(ip, di_db[i], 0);
1541 	}
1542 	/*
1543 	 * Follow indirect blocks, freeing anything required.
1544 	 */
1545 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1546 	    lbn = nextlbn) {
1547 		nextlbn = lbn + tmpval;
1548 		tmpval *= NINDIR(fs);
1549 		/* If we're not freeing any in this indirect range skip it. */
1550 		if (lastlbn >= nextlbn)
1551 			continue;
1552 		if (DIP(ip, di_ib[i]) == 0)
1553 			continue;
1554 		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1555 		/* If we freed everything in this indirect free the indir. */
1556 		if (lastlbn > lbn)
1557 			continue;
1558 		blk_free(DIP(ip, di_ib[i]), 0, fs->fs_frag);
1559 		DIP_SET(ip, di_ib[i], 0);
1560 	}
1561 	ino_dirty(ino);
1562 	/*
1563 	 * Now that we've freed any whole blocks that exceed the desired
1564 	 * truncation size, figure out how many blocks remain and what the
1565 	 * last populated lbn is.  We will set the size to this last lbn
1566 	 * rather than worrying about allocating the final lbn as the kernel
1567 	 * would've done.  This is consistent with normal fsck behavior.
1568 	 */
1569 	visitlbn = 0;
1570 	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1571 	if (size > lblktosize(fs, visitlbn + 1))
1572 		size = lblktosize(fs, visitlbn + 1);
1573 	/*
1574 	 * If we're truncating direct blocks we have to adjust frags
1575 	 * accordingly.
1576 	 */
1577 	if (visitlbn < UFS_NDADDR && totalfrags) {
1578 		long oldspace, newspace;
1579 
1580 		bn = DIP(ip, di_db[visitlbn]);
1581 		if (bn == 0)
1582 			err_suj("Bad blk at ino %ju lbn %jd\n",
1583 			    (uintmax_t)ino, visitlbn);
1584 		oldspace = sblksize(fs, cursize, visitlbn);
1585 		newspace = sblksize(fs, size, visitlbn);
1586 		if (oldspace != newspace) {
1587 			bn += numfrags(fs, newspace);
1588 			frags = numfrags(fs, oldspace - newspace);
1589 			blk_free(bn, 0, frags);
1590 			totalfrags -= frags;
1591 		}
1592 	}
1593 	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1594 	DIP_SET(ip, di_size, size);
1595 	/*
1596 	 * If we've truncated into the middle of a block or frag we have
1597 	 * to zero it here.  Otherwise the file could extend into
1598 	 * uninitialized space later.
1599 	 */
1600 	off = blkoff(fs, size);
1601 	if (off && DIP(ip, di_mode) != IFDIR) {
1602 		uint8_t *buf;
1603 		long clrsize;
1604 
1605 		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1606 		if (bn == 0)
1607 			err_suj("Block missing from ino %ju at lbn %jd\n",
1608 			    (uintmax_t)ino, visitlbn);
1609 		clrsize = frags * fs->fs_fsize;
1610 		buf = dblk_read(bn, clrsize);
1611 		clrsize -= off;
1612 		buf += off;
1613 		bzero(buf, clrsize);
1614 		dblk_dirty(bn);
1615 	}
1616 	return;
1617 }
1618 
1619 /*
1620  * Process records available for one inode and determine whether the
1621  * link count is correct or needs adjusting.
1622  */
1623 static void
1624 ino_check(struct suj_ino *sino)
1625 {
1626 	struct suj_rec *srec;
1627 	struct jrefrec *rrec;
1628 	nlink_t dotlinks;
1629 	nlink_t newlinks;
1630 	nlink_t removes;
1631 	nlink_t nlink;
1632 	ino_t ino;
1633 	int isdot;
1634 	int isat;
1635 	int mode;
1636 
1637 	if (sino->si_hasrecs == 0)
1638 		return;
1639 	ino = sino->si_ino;
1640 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1641 	nlink = rrec->jr_nlink;
1642 	newlinks = 0;
1643 	dotlinks = 0;
1644 	removes = sino->si_nlinkadj;
1645 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1646 		rrec = (struct jrefrec *)srec->sr_rec;
1647 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1648 		    rrec->jr_ino, &mode, &isdot);
1649 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1650 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1651 			    mode, rrec->jr_mode);
1652 		if (debug)
1653 			printf("jrefrec: op %d ino %ju, nlink %ju, parent %ju, "
1654 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1655 			    rrec->jr_op, (uintmax_t)rrec->jr_ino,
1656 			    (uintmax_t)rrec->jr_nlink,
1657 			    (uintmax_t)rrec->jr_parent,
1658 			    (uintmax_t)rrec->jr_diroff,
1659 			    rrec->jr_mode, isat, isdot);
1660 		mode = rrec->jr_mode & IFMT;
1661 		if (rrec->jr_op == JOP_REMREF)
1662 			removes++;
1663 		newlinks += isat;
1664 		if (isdot)
1665 			dotlinks += isat;
1666 	}
1667 	/*
1668 	 * The number of links that remain are the starting link count
1669 	 * subtracted by the total number of removes with the total
1670 	 * links discovered back in.  An incomplete remove thus
1671 	 * makes no change to the link count but an add increases
1672 	 * by one.
1673 	 */
1674 	if (debug)
1675 		printf(
1676 		    "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
1677 		    (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
1678 		    (uintmax_t)removes, (uintmax_t)dotlinks);
1679 	nlink += newlinks;
1680 	nlink -= removes;
1681 	sino->si_linkadj = 1;
1682 	sino->si_nlink = nlink;
1683 	sino->si_dotlinks = dotlinks;
1684 	sino->si_mode = mode;
1685 	ino_adjust(sino);
1686 }
1687 
1688 /*
1689  * Process records available for one block and determine whether it is
1690  * still allocated and whether the owning inode needs to be updated or
1691  * a free completed.
1692  */
1693 static void
1694 blk_check(struct suj_blk *sblk)
1695 {
1696 	struct suj_rec *srec;
1697 	struct jblkrec *brec;
1698 	struct suj_ino *sino;
1699 	ufs2_daddr_t blk;
1700 	int mask;
1701 	int frags;
1702 	int isat;
1703 
1704 	/*
1705 	 * Each suj_blk actually contains records for any fragments in that
1706 	 * block.  As a result we must evaluate each record individually.
1707 	 */
1708 	sino = NULL;
1709 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1710 		brec = (struct jblkrec *)srec->sr_rec;
1711 		frags = brec->jb_frags;
1712 		blk = brec->jb_blkno + brec->jb_oldfrags;
1713 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1714 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1715 			sino = ino_lookup(brec->jb_ino, 1);
1716 			sino->si_blkadj = 1;
1717 		}
1718 		if (debug)
1719 			printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1720 			    brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1721 			    brec->jb_lbn, brec->jb_frags, isat, frags);
1722 		/*
1723 		 * If we found the block at this address we still have to
1724 		 * determine if we need to free the tail end that was
1725 		 * added by adding contiguous fragments from the same block.
1726 		 */
1727 		if (isat == 1) {
1728 			if (frags == brec->jb_frags)
1729 				continue;
1730 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1731 			    brec->jb_frags);
1732 			mask >>= frags;
1733 			blk += frags;
1734 			frags = brec->jb_frags - frags;
1735 			blk_free(blk, mask, frags);
1736 			continue;
1737 		}
1738 		/*
1739 	 	 * The block wasn't found, attempt to free it.  It won't be
1740 		 * freed if it was actually reallocated.  If this was an
1741 		 * allocation we don't want to follow indirects as they
1742 		 * may not be written yet.  Any children of the indirect will
1743 		 * have their own records.  If it's a free we need to
1744 		 * recursively free children.
1745 		 */
1746 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1747 		    brec->jb_op == JOP_FREEBLK);
1748 	}
1749 }
1750 
1751 /*
1752  * Walk the list of inode records for this cg and resolve moved and duplicate
1753  * inode references now that we have a complete picture.
1754  */
1755 static void
1756 cg_build(struct suj_cg *sc)
1757 {
1758 	struct suj_ino *sino;
1759 	int i;
1760 
1761 	for (i = 0; i < SUJ_HASHSIZE; i++)
1762 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1763 			ino_build(sino);
1764 }
1765 
1766 /*
1767  * Handle inodes requiring truncation.  This must be done prior to
1768  * looking up any inodes in directories.
1769  */
1770 static void
1771 cg_trunc(struct suj_cg *sc)
1772 {
1773 	struct suj_ino *sino;
1774 	int i;
1775 
1776 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1777 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1778 			if (sino->si_trunc) {
1779 				ino_trunc(sino->si_ino,
1780 				    sino->si_trunc->jt_size);
1781 				sino->si_blkadj = 0;
1782 				sino->si_trunc = NULL;
1783 			}
1784 			if (sino->si_blkadj)
1785 				ino_adjblks(sino);
1786 		}
1787 	}
1788 }
1789 
1790 static void
1791 cg_adj_blk(struct suj_cg *sc)
1792 {
1793 	struct suj_ino *sino;
1794 	int i;
1795 
1796 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1797 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1798 			if (sino->si_blkadj)
1799 				ino_adjblks(sino);
1800 		}
1801 	}
1802 }
1803 
1804 /*
1805  * Free any partially allocated blocks and then resolve inode block
1806  * counts.
1807  */
1808 static void
1809 cg_check_blk(struct suj_cg *sc)
1810 {
1811 	struct suj_blk *sblk;
1812 	int i;
1813 
1814 
1815 	for (i = 0; i < SUJ_HASHSIZE; i++)
1816 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1817 			blk_check(sblk);
1818 }
1819 
1820 /*
1821  * Walk the list of inode records for this cg, recovering any
1822  * changes which were not complete at the time of crash.
1823  */
1824 static void
1825 cg_check_ino(struct suj_cg *sc)
1826 {
1827 	struct suj_ino *sino;
1828 	int i;
1829 
1830 	for (i = 0; i < SUJ_HASHSIZE; i++)
1831 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1832 			ino_check(sino);
1833 }
1834 
1835 /*
1836  * Write a potentially dirty cg.  Recalculate the summary information and
1837  * update the superblock summary.
1838  */
1839 static void
1840 cg_write(struct suj_cg *sc)
1841 {
1842 	ufs1_daddr_t fragno, cgbno, maxbno;
1843 	u_int8_t *blksfree;
1844 	struct cg *cgp;
1845 	int blk;
1846 	int i;
1847 
1848 	if (sc->sc_dirty == 0)
1849 		return;
1850 	/*
1851 	 * Fix the frag and cluster summary.
1852 	 */
1853 	cgp = sc->sc_cgp;
1854 	cgp->cg_cs.cs_nbfree = 0;
1855 	cgp->cg_cs.cs_nffree = 0;
1856 	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1857 	maxbno = fragstoblks(fs, fs->fs_fpg);
1858 	if (fs->fs_contigsumsize > 0) {
1859 		for (i = 1; i <= fs->fs_contigsumsize; i++)
1860 			cg_clustersum(cgp)[i] = 0;
1861 		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1862 	}
1863 	blksfree = cg_blksfree(cgp);
1864 	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1865 		if (ffs_isfreeblock(fs, blksfree, cgbno))
1866 			continue;
1867 		if (ffs_isblock(fs, blksfree, cgbno)) {
1868 			ffs_clusteracct(fs, cgp, cgbno, 1);
1869 			cgp->cg_cs.cs_nbfree++;
1870 			continue;
1871 		}
1872 		fragno = blkstofrags(fs, cgbno);
1873 		blk = blkmap(fs, blksfree, fragno);
1874 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1875 		for (i = 0; i < fs->fs_frag; i++)
1876 			if (isset(blksfree, fragno + i))
1877 				cgp->cg_cs.cs_nffree++;
1878 	}
1879 	/*
1880 	 * Update the superblock cg summary from our now correct values
1881 	 * before writing the block.
1882 	 */
1883 	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1884 	if (cgput(&disk, cgp) == -1)
1885 		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1886 }
1887 
1888 /*
1889  * Write out any modified inodes.
1890  */
1891 static void
1892 cg_write_inos(struct suj_cg *sc)
1893 {
1894 	struct ino_blk *iblk;
1895 	int i;
1896 
1897 	for (i = 0; i < SUJ_HASHSIZE; i++)
1898 		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1899 			if (iblk->ib_dirty)
1900 				iblk_write(iblk);
1901 }
1902 
1903 static void
1904 cg_apply(void (*apply)(struct suj_cg *))
1905 {
1906 	struct suj_cg *scg;
1907 	int i;
1908 
1909 	for (i = 0; i < SUJ_HASHSIZE; i++)
1910 		LIST_FOREACH(scg, &cghash[i], sc_next)
1911 			apply(scg);
1912 }
1913 
1914 /*
1915  * Process the unlinked but referenced file list.  Freeing all inodes.
1916  */
1917 static void
1918 ino_unlinked(void)
1919 {
1920 	union dinode *ip;
1921 	uint16_t mode;
1922 	ino_t inon;
1923 	ino_t ino;
1924 
1925 	ino = fs->fs_sujfree;
1926 	fs->fs_sujfree = 0;
1927 	while (ino != 0) {
1928 		ip = ino_read(ino);
1929 		mode = DIP(ip, di_mode) & IFMT;
1930 		inon = DIP(ip, di_freelink);
1931 		DIP_SET(ip, di_freelink, 0);
1932 		/*
1933 		 * XXX Should this be an errx?
1934 		 */
1935 		if (DIP(ip, di_nlink) == 0) {
1936 			if (debug)
1937 				printf("Freeing unlinked ino %ju mode %o\n",
1938 				    (uintmax_t)ino, mode);
1939 			ino_reclaim(ip, ino, mode);
1940 		} else if (debug)
1941 			printf("Skipping ino %ju mode %o with link %d\n",
1942 			    (uintmax_t)ino, mode, DIP(ip, di_nlink));
1943 		ino = inon;
1944 	}
1945 }
1946 
1947 /*
1948  * Append a new record to the list of records requiring processing.
1949  */
1950 static void
1951 ino_append(union jrec *rec)
1952 {
1953 	struct jrefrec *refrec;
1954 	struct jmvrec *mvrec;
1955 	struct suj_ino *sino;
1956 	struct suj_rec *srec;
1957 
1958 	mvrec = &rec->rec_jmvrec;
1959 	refrec = &rec->rec_jrefrec;
1960 	if (debug && mvrec->jm_op == JOP_MVREF)
1961 		printf("ino move: ino %ju, parent %ju, "
1962 		    "diroff %jd, oldoff %jd\n",
1963 		    (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
1964 		    (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
1965 	else if (debug &&
1966 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1967 		printf("ino ref: op %d, ino %ju, nlink %ju, "
1968 		    "parent %ju, diroff %jd\n",
1969 		    refrec->jr_op, (uintmax_t)refrec->jr_ino,
1970 		    (uintmax_t)refrec->jr_nlink,
1971 		    (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
1972 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1973 	sino->si_hasrecs = 1;
1974 	srec = errmalloc(sizeof(*srec));
1975 	srec->sr_rec = rec;
1976 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1977 }
1978 
1979 /*
1980  * Add a reference adjustment to the sino list and eliminate dups.  The
1981  * primary loop in ino_build_ref() checks for dups but new ones may be
1982  * created as a result of offset adjustments.
1983  */
1984 static void
1985 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1986 {
1987 	struct jrefrec *refrec;
1988 	struct suj_rec *srn;
1989 	struct jrefrec *rrn;
1990 
1991 	refrec = (struct jrefrec *)srec->sr_rec;
1992 	/*
1993 	 * We walk backwards so that the oldest link count is preserved.  If
1994 	 * an add record conflicts with a remove keep the remove.  Redundant
1995 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1996 	 * oldest record at a given location.
1997 	 */
1998 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1999 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
2000 		rrn = (struct jrefrec *)srn->sr_rec;
2001 		if (rrn->jr_parent != refrec->jr_parent ||
2002 		    rrn->jr_diroff != refrec->jr_diroff)
2003 			continue;
2004 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2005 			rrn->jr_mode = refrec->jr_mode;
2006 			return;
2007 		}
2008 		/*
2009 		 * Adding a remove.
2010 		 *
2011 		 * Replace the record in place with the old nlink in case
2012 		 * we replace the head of the list.  Abandon srec as a dup.
2013 		 */
2014 		refrec->jr_nlink = rrn->jr_nlink;
2015 		srn->sr_rec = srec->sr_rec;
2016 		return;
2017 	}
2018 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2019 }
2020 
2021 /*
2022  * Create a duplicate of a reference at a previous location.
2023  */
2024 static void
2025 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2026 {
2027 	struct jrefrec *rrn;
2028 	struct suj_rec *srn;
2029 
2030 	rrn = errmalloc(sizeof(*refrec));
2031 	*rrn = *refrec;
2032 	rrn->jr_op = JOP_ADDREF;
2033 	rrn->jr_diroff = diroff;
2034 	srn = errmalloc(sizeof(*srn));
2035 	srn->sr_rec = (union jrec *)rrn;
2036 	ino_add_ref(sino, srn);
2037 }
2038 
2039 /*
2040  * Add a reference to the list at all known locations.  We follow the offset
2041  * changes for a single instance and create duplicate add refs at each so
2042  * that we can tolerate any version of the directory block.  Eliminate
2043  * removes which collide with adds that are seen in the journal.  They should
2044  * not adjust the link count down.
2045  */
2046 static void
2047 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2048 {
2049 	struct jrefrec *refrec;
2050 	struct jmvrec *mvrec;
2051 	struct suj_rec *srp;
2052 	struct suj_rec *srn;
2053 	struct jrefrec *rrn;
2054 	off_t diroff;
2055 
2056 	refrec = (struct jrefrec *)srec->sr_rec;
2057 	/*
2058 	 * Search for a mvrec that matches this offset.  Whether it's an add
2059 	 * or a remove we can delete the mvref after creating a dup record in
2060 	 * the old location.
2061 	 */
2062 	if (!TAILQ_EMPTY(&sino->si_movs)) {
2063 		diroff = refrec->jr_diroff;
2064 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2065 			srp = TAILQ_PREV(srn, srechd, sr_next);
2066 			mvrec = (struct jmvrec *)srn->sr_rec;
2067 			if (mvrec->jm_parent != refrec->jr_parent ||
2068 			    mvrec->jm_newoff != diroff)
2069 				continue;
2070 			diroff = mvrec->jm_oldoff;
2071 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2072 			free(srn);
2073 			ino_dup_ref(sino, refrec, diroff);
2074 		}
2075 	}
2076 	/*
2077 	 * If a remove wasn't eliminated by an earlier add just append it to
2078 	 * the list.
2079 	 */
2080 	if (refrec->jr_op == JOP_REMREF) {
2081 		ino_add_ref(sino, srec);
2082 		return;
2083 	}
2084 	/*
2085 	 * Walk the list of records waiting to be added to the list.  We
2086 	 * must check for moves that apply to our current offset and remove
2087 	 * them from the list.  Remove any duplicates to eliminate removes
2088 	 * with corresponding adds.
2089 	 */
2090 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2091 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2092 		case JOP_ADDREF:
2093 			/*
2094 			 * This should actually be an error we should
2095 			 * have a remove for every add journaled.
2096 			 */
2097 			rrn = (struct jrefrec *)srn->sr_rec;
2098 			if (rrn->jr_parent != refrec->jr_parent ||
2099 			    rrn->jr_diroff != refrec->jr_diroff)
2100 				break;
2101 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2102 			break;
2103 		case JOP_REMREF:
2104 			/*
2105 			 * Once we remove the current iteration of the
2106 			 * record at this address we're done.
2107 			 */
2108 			rrn = (struct jrefrec *)srn->sr_rec;
2109 			if (rrn->jr_parent != refrec->jr_parent ||
2110 			    rrn->jr_diroff != refrec->jr_diroff)
2111 				break;
2112 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2113 			ino_add_ref(sino, srec);
2114 			return;
2115 		case JOP_MVREF:
2116 			/*
2117 			 * Update our diroff based on any moves that match
2118 			 * and remove the move.
2119 			 */
2120 			mvrec = (struct jmvrec *)srn->sr_rec;
2121 			if (mvrec->jm_parent != refrec->jr_parent ||
2122 			    mvrec->jm_oldoff != refrec->jr_diroff)
2123 				break;
2124 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2125 			refrec->jr_diroff = mvrec->jm_newoff;
2126 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2127 			break;
2128 		default:
2129 			err_suj("ino_build_ref: Unknown op %d\n",
2130 			    srn->sr_rec->rec_jrefrec.jr_op);
2131 		}
2132 	}
2133 	ino_add_ref(sino, srec);
2134 }
2135 
2136 /*
2137  * Walk the list of new records and add them in-order resolving any
2138  * dups and adjusted offsets.
2139  */
2140 static void
2141 ino_build(struct suj_ino *sino)
2142 {
2143 	struct suj_rec *srec;
2144 
2145 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2146 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2147 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2148 		case JOP_ADDREF:
2149 		case JOP_REMREF:
2150 			ino_build_ref(sino, srec);
2151 			break;
2152 		case JOP_MVREF:
2153 			/*
2154 			 * Add this mvrec to the queue of pending mvs.
2155 			 */
2156 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2157 			break;
2158 		default:
2159 			err_suj("ino_build: Unknown op %d\n",
2160 			    srec->sr_rec->rec_jrefrec.jr_op);
2161 		}
2162 	}
2163 	if (TAILQ_EMPTY(&sino->si_recs))
2164 		sino->si_hasrecs = 0;
2165 }
2166 
2167 /*
2168  * Modify journal records so they refer to the base block number
2169  * and a start and end frag range.  This is to facilitate the discovery
2170  * of overlapping fragment allocations.
2171  */
2172 static void
2173 blk_build(struct jblkrec *blkrec)
2174 {
2175 	struct suj_rec *srec;
2176 	struct suj_blk *sblk;
2177 	struct jblkrec *blkrn;
2178 	ufs2_daddr_t blk;
2179 	int frag;
2180 
2181 	if (debug)
2182 		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2183 		    "ino %ju lbn %jd\n",
2184 		    blkrec->jb_op, (uintmax_t)blkrec->jb_blkno,
2185 		    blkrec->jb_frags, blkrec->jb_oldfrags,
2186 		    (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
2187 
2188 	blk = blknum(fs, blkrec->jb_blkno);
2189 	frag = fragnum(fs, blkrec->jb_blkno);
2190 	sblk = blk_lookup(blk, 1);
2191 	/*
2192 	 * Rewrite the record using oldfrags to indicate the offset into
2193 	 * the block.  Leave jb_frags as the actual allocated count.
2194 	 */
2195 	blkrec->jb_blkno -= frag;
2196 	blkrec->jb_oldfrags = frag;
2197 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2198 		err_suj("Invalid fragment count %d oldfrags %d\n",
2199 		    blkrec->jb_frags, frag);
2200 	/*
2201 	 * Detect dups.  If we detect a dup we always discard the oldest
2202 	 * record as it is superseded by the new record.  This speeds up
2203 	 * later stages but also eliminates free records which are used
2204 	 * to indicate that the contents of indirects can be trusted.
2205 	 */
2206 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2207 		blkrn = (struct jblkrec *)srec->sr_rec;
2208 		if (blkrn->jb_ino != blkrec->jb_ino ||
2209 		    blkrn->jb_lbn != blkrec->jb_lbn ||
2210 		    blkrn->jb_blkno != blkrec->jb_blkno ||
2211 		    blkrn->jb_frags != blkrec->jb_frags ||
2212 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2213 			continue;
2214 		if (debug)
2215 			printf("Removed dup.\n");
2216 		/* Discard the free which is a dup with an alloc. */
2217 		if (blkrec->jb_op == JOP_FREEBLK)
2218 			return;
2219 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2220 		free(srec);
2221 		break;
2222 	}
2223 	srec = errmalloc(sizeof(*srec));
2224 	srec->sr_rec = (union jrec *)blkrec;
2225 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2226 }
2227 
2228 static void
2229 ino_build_trunc(struct jtrncrec *rec)
2230 {
2231 	struct suj_ino *sino;
2232 
2233 	if (debug)
2234 		printf("ino_build_trunc: op %d ino %ju, size %jd\n",
2235 		    rec->jt_op, (uintmax_t)rec->jt_ino,
2236 		    (uintmax_t)rec->jt_size);
2237 	sino = ino_lookup(rec->jt_ino, 1);
2238 	if (rec->jt_op == JOP_SYNC) {
2239 		sino->si_trunc = NULL;
2240 		return;
2241 	}
2242 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2243 		sino->si_trunc = rec;
2244 }
2245 
2246 /*
2247  * Build up tables of the operations we need to recover.
2248  */
2249 static void
2250 suj_build(void)
2251 {
2252 	struct suj_seg *seg;
2253 	union jrec *rec;
2254 	int off;
2255 	int i;
2256 
2257 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2258 		if (debug)
2259 			printf("seg %jd has %d records, oldseq %jd.\n",
2260 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2261 			    seg->ss_rec.jsr_oldest);
2262 		off = 0;
2263 		rec = (union jrec *)seg->ss_blk;
2264 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2265 			/* skip the segrec. */
2266 			if ((off % real_dev_bsize) == 0)
2267 				continue;
2268 			switch (rec->rec_jrefrec.jr_op) {
2269 			case JOP_ADDREF:
2270 			case JOP_REMREF:
2271 			case JOP_MVREF:
2272 				ino_append(rec);
2273 				break;
2274 			case JOP_NEWBLK:
2275 			case JOP_FREEBLK:
2276 				blk_build((struct jblkrec *)rec);
2277 				break;
2278 			case JOP_TRUNC:
2279 			case JOP_SYNC:
2280 				ino_build_trunc((struct jtrncrec *)rec);
2281 				break;
2282 			default:
2283 				err_suj("Unknown journal operation %d (%d)\n",
2284 				    rec->rec_jrefrec.jr_op, off);
2285 			}
2286 			i++;
2287 		}
2288 	}
2289 }
2290 
2291 /*
2292  * Prune the journal segments to those we care about based on the
2293  * oldest sequence in the newest segment.  Order the segment list
2294  * based on sequence number.
2295  */
2296 static void
2297 suj_prune(void)
2298 {
2299 	struct suj_seg *seg;
2300 	struct suj_seg *segn;
2301 	uint64_t newseq;
2302 	int discard;
2303 
2304 	if (debug)
2305 		printf("Pruning up to %jd\n", oldseq);
2306 	/* First free the expired segments. */
2307 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2308 		if (seg->ss_rec.jsr_seq >= oldseq)
2309 			continue;
2310 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2311 		free(seg->ss_blk);
2312 		free(seg);
2313 	}
2314 	/* Next ensure that segments are ordered properly. */
2315 	seg = TAILQ_FIRST(&allsegs);
2316 	if (seg == NULL) {
2317 		if (debug)
2318 			printf("Empty journal\n");
2319 		return;
2320 	}
2321 	newseq = seg->ss_rec.jsr_seq;
2322 	for (;;) {
2323 		seg = TAILQ_LAST(&allsegs, seghd);
2324 		if (seg->ss_rec.jsr_seq >= newseq)
2325 			break;
2326 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2327 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2328 		newseq = seg->ss_rec.jsr_seq;
2329 
2330 	}
2331 	if (newseq != oldseq) {
2332 		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2333 			printf("%jd, ", seg->ss_rec.jsr_seq);
2334 		}
2335 		printf("\n");
2336 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2337 		    newseq, oldseq);
2338 	}
2339 	/*
2340 	 * The kernel may asynchronously write segments which can create
2341 	 * gaps in the sequence space.  Throw away any segments after the
2342 	 * gap as the kernel guarantees only those that are contiguously
2343 	 * reachable are marked as completed.
2344 	 */
2345 	discard = 0;
2346 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2347 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2348 			jrecs += seg->ss_rec.jsr_cnt;
2349 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2350 			continue;
2351 		}
2352 		discard = 1;
2353 		if (debug)
2354 			printf("Journal order mismatch %jd != %jd pruning\n",
2355 			    newseq-1, seg->ss_rec.jsr_seq);
2356 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2357 		free(seg->ss_blk);
2358 		free(seg);
2359 	}
2360 	if (debug)
2361 		printf("Processing journal segments from %jd to %jd\n",
2362 		    oldseq, newseq-1);
2363 }
2364 
2365 /*
2366  * Verify the journal inode before attempting to read records.
2367  */
2368 static int
2369 suj_verifyino(union dinode *ip)
2370 {
2371 
2372 	if (DIP(ip, di_nlink) != 1) {
2373 		printf("Invalid link count %d for journal inode %ju\n",
2374 		    DIP(ip, di_nlink), (uintmax_t)sujino);
2375 		return (-1);
2376 	}
2377 
2378 	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2379 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2380 		printf("Invalid flags 0x%X for journal inode %ju\n",
2381 		    DIP(ip, di_flags), (uintmax_t)sujino);
2382 		return (-1);
2383 	}
2384 
2385 	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2386 		printf("Invalid mode %o for journal inode %ju\n",
2387 		    DIP(ip, di_mode), (uintmax_t)sujino);
2388 		return (-1);
2389 	}
2390 
2391 	if (DIP(ip, di_size) < SUJ_MIN) {
2392 		printf("Invalid size %jd for journal inode %ju\n",
2393 		    DIP(ip, di_size), (uintmax_t)sujino);
2394 		return (-1);
2395 	}
2396 
2397 	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2398 		printf("Journal timestamp does not match fs mount time\n");
2399 		return (-1);
2400 	}
2401 
2402 	return (0);
2403 }
2404 
2405 struct jblocks {
2406 	struct jextent *jb_extent;	/* Extent array. */
2407 	int		jb_avail;	/* Available extents. */
2408 	int		jb_used;	/* Last used extent. */
2409 	int		jb_head;	/* Allocator head. */
2410 	int		jb_off;		/* Allocator extent offset. */
2411 };
2412 struct jextent {
2413 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2414 	int		je_blocks;	/* Disk block count. */
2415 };
2416 
2417 static struct jblocks *suj_jblocks;
2418 
2419 static struct jblocks *
2420 jblocks_create(void)
2421 {
2422 	struct jblocks *jblocks;
2423 	int size;
2424 
2425 	jblocks = errmalloc(sizeof(*jblocks));
2426 	jblocks->jb_avail = 10;
2427 	jblocks->jb_used = 0;
2428 	jblocks->jb_head = 0;
2429 	jblocks->jb_off = 0;
2430 	size = sizeof(struct jextent) * jblocks->jb_avail;
2431 	jblocks->jb_extent = errmalloc(size);
2432 	bzero(jblocks->jb_extent, size);
2433 
2434 	return (jblocks);
2435 }
2436 
2437 /*
2438  * Return the next available disk block and the amount of contiguous
2439  * free space it contains.
2440  */
2441 static ufs2_daddr_t
2442 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2443 {
2444 	struct jextent *jext;
2445 	ufs2_daddr_t daddr;
2446 	int freecnt;
2447 	int blocks;
2448 
2449 	blocks = bytes / disk.d_bsize;
2450 	jext = &jblocks->jb_extent[jblocks->jb_head];
2451 	freecnt = jext->je_blocks - jblocks->jb_off;
2452 	if (freecnt == 0) {
2453 		jblocks->jb_off = 0;
2454 		if (++jblocks->jb_head > jblocks->jb_used)
2455 			return (0);
2456 		jext = &jblocks->jb_extent[jblocks->jb_head];
2457 		freecnt = jext->je_blocks;
2458 	}
2459 	if (freecnt > blocks)
2460 		freecnt = blocks;
2461 	*actual = freecnt * disk.d_bsize;
2462 	daddr = jext->je_daddr + jblocks->jb_off;
2463 
2464 	return (daddr);
2465 }
2466 
2467 /*
2468  * Advance the allocation head by a specified number of bytes, consuming
2469  * one journal segment.
2470  */
2471 static void
2472 jblocks_advance(struct jblocks *jblocks, int bytes)
2473 {
2474 
2475 	jblocks->jb_off += bytes / disk.d_bsize;
2476 }
2477 
2478 static void
2479 jblocks_destroy(struct jblocks *jblocks)
2480 {
2481 
2482 	free(jblocks->jb_extent);
2483 	free(jblocks);
2484 }
2485 
2486 static void
2487 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2488 {
2489 	struct jextent *jext;
2490 	int size;
2491 
2492 	jext = &jblocks->jb_extent[jblocks->jb_used];
2493 	/* Adding the first block. */
2494 	if (jext->je_daddr == 0) {
2495 		jext->je_daddr = daddr;
2496 		jext->je_blocks = blocks;
2497 		return;
2498 	}
2499 	/* Extending the last extent. */
2500 	if (jext->je_daddr + jext->je_blocks == daddr) {
2501 		jext->je_blocks += blocks;
2502 		return;
2503 	}
2504 	/* Adding a new extent. */
2505 	if (++jblocks->jb_used == jblocks->jb_avail) {
2506 		jblocks->jb_avail *= 2;
2507 		size = sizeof(struct jextent) * jblocks->jb_avail;
2508 		jext = errmalloc(size);
2509 		bzero(jext, size);
2510 		bcopy(jblocks->jb_extent, jext,
2511 		    sizeof(struct jextent) * jblocks->jb_used);
2512 		free(jblocks->jb_extent);
2513 		jblocks->jb_extent = jext;
2514 	}
2515 	jext = &jblocks->jb_extent[jblocks->jb_used];
2516 	jext->je_daddr = daddr;
2517 	jext->je_blocks = blocks;
2518 
2519 	return;
2520 }
2521 
2522 /*
2523  * Add a file block from the journal to the extent map.  We can't read
2524  * each file block individually because the kernel treats it as a circular
2525  * buffer and segments may span mutliple contiguous blocks.
2526  */
2527 static void
2528 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2529 {
2530 
2531 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2532 }
2533 
2534 static void
2535 suj_read(void)
2536 {
2537 	uint8_t block[1 * 1024 * 1024];
2538 	struct suj_seg *seg;
2539 	struct jsegrec *recn;
2540 	struct jsegrec *rec;
2541 	ufs2_daddr_t blk;
2542 	int readsize;
2543 	int blocks;
2544 	int recsize;
2545 	int size;
2546 	int i;
2547 
2548 	/*
2549 	 * Read records until we exhaust the journal space.  If we find
2550 	 * an invalid record we start searching for a valid segment header
2551 	 * at the next block.  This is because we don't have a head/tail
2552 	 * pointer and must recover the information indirectly.  At the gap
2553 	 * between the head and tail we won't necessarily have a valid
2554 	 * segment.
2555 	 */
2556 restart:
2557 	for (;;) {
2558 		size = sizeof(block);
2559 		blk = jblocks_next(suj_jblocks, size, &readsize);
2560 		if (blk == 0)
2561 			return;
2562 		size = readsize;
2563 		/*
2564 		 * Read 1MB at a time and scan for records within this block.
2565 		 */
2566 		if (bread(&disk, blk, &block, size) == -1) {
2567 			err_suj("Error reading journal block %jd\n",
2568 			    (intmax_t)blk);
2569 		}
2570 		for (rec = (void *)block; size; size -= recsize,
2571 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2572 			recsize = real_dev_bsize;
2573 			if (rec->jsr_time != fs->fs_mtime) {
2574 				if (debug)
2575 					printf("Rec time %jd != fs mtime %jd\n",
2576 					    rec->jsr_time, fs->fs_mtime);
2577 				jblocks_advance(suj_jblocks, recsize);
2578 				continue;
2579 			}
2580 			if (rec->jsr_cnt == 0) {
2581 				if (debug)
2582 					printf("Found illegal count %d\n",
2583 					    rec->jsr_cnt);
2584 				jblocks_advance(suj_jblocks, recsize);
2585 				continue;
2586 			}
2587 			blocks = rec->jsr_blocks;
2588 			recsize = blocks * real_dev_bsize;
2589 			if (recsize > size) {
2590 				/*
2591 				 * We may just have run out of buffer, restart
2592 				 * the loop to re-read from this spot.
2593 				 */
2594 				if (size < fs->fs_bsize &&
2595 				    size != readsize &&
2596 				    recsize <= fs->fs_bsize)
2597 					goto restart;
2598 				if (debug)
2599 					printf("Found invalid segsize %d > %d\n",
2600 					    recsize, size);
2601 				recsize = real_dev_bsize;
2602 				jblocks_advance(suj_jblocks, recsize);
2603 				continue;
2604 			}
2605 			/*
2606 			 * Verify that all blocks in the segment are present.
2607 			 */
2608 			for (i = 1; i < blocks; i++) {
2609 				recn = (void *)((uintptr_t)rec) + i *
2610 				    real_dev_bsize;
2611 				if (recn->jsr_seq == rec->jsr_seq &&
2612 				    recn->jsr_time == rec->jsr_time)
2613 					continue;
2614 				if (debug)
2615 					printf("Incomplete record %jd (%d)\n",
2616 					    rec->jsr_seq, i);
2617 				recsize = i * real_dev_bsize;
2618 				jblocks_advance(suj_jblocks, recsize);
2619 				goto restart;
2620 			}
2621 			seg = errmalloc(sizeof(*seg));
2622 			seg->ss_blk = errmalloc(recsize);
2623 			seg->ss_rec = *rec;
2624 			bcopy((void *)rec, seg->ss_blk, recsize);
2625 			if (rec->jsr_oldest > oldseq)
2626 				oldseq = rec->jsr_oldest;
2627 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2628 			jblocks_advance(suj_jblocks, recsize);
2629 		}
2630 	}
2631 }
2632 
2633 /*
2634  * Search a directory block for the SUJ_FILE.
2635  */
2636 static void
2637 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2638 {
2639 	char block[MAXBSIZE];
2640 	struct direct *dp;
2641 	int bytes;
2642 	int off;
2643 
2644 	if (sujino)
2645 		return;
2646 	bytes = lfragtosize(fs, frags);
2647 	if (bread(&disk, fsbtodb(fs, blk), block, bytes) <= 0)
2648 		err_suj("Failed to read UFS_ROOTINO directory block %jd\n",
2649 		    blk);
2650 	for (off = 0; off < bytes; off += dp->d_reclen) {
2651 		dp = (struct direct *)&block[off];
2652 		if (dp->d_reclen == 0)
2653 			break;
2654 		if (dp->d_ino == 0)
2655 			continue;
2656 		if (dp->d_namlen != strlen(SUJ_FILE))
2657 			continue;
2658 		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2659 			continue;
2660 		sujino = dp->d_ino;
2661 		return;
2662 	}
2663 }
2664 
2665 /*
2666  * Orchestrate the verification of a filesystem via the softupdates journal.
2667  */
2668 int
2669 suj_check(const char *filesys)
2670 {
2671 	union dinode *jip;
2672 	union dinode *ip;
2673 	uint64_t blocks;
2674 	int retval;
2675 	struct suj_seg *seg;
2676 	struct suj_seg *segn;
2677 
2678 	initsuj();
2679 	fs = &sblock;
2680 	if (real_dev_bsize == 0 && ioctl(disk.d_fd, DIOCGSECTORSIZE,
2681 	    &real_dev_bsize) == -1)
2682 		real_dev_bsize = secsize;
2683 	if (debug)
2684 		printf("dev_bsize %u\n", real_dev_bsize);
2685 
2686 	/*
2687 	 * Set an exit point when SUJ check failed
2688 	 */
2689 	retval = setjmp(jmpbuf);
2690 	if (retval != 0) {
2691 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2692 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2693 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2694 				free(seg->ss_blk);
2695 				free(seg);
2696 		}
2697 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2698 			ckfini(0);
2699 			exit(EEXIT);
2700 		} else
2701 			return (-1);
2702 	}
2703 
2704 	/*
2705 	 * Find the journal inode.
2706 	 */
2707 	ip = ino_read(UFS_ROOTINO);
2708 	sujino = 0;
2709 	ino_visit(ip, UFS_ROOTINO, suj_find, 0);
2710 	if (sujino == 0) {
2711 		printf("Journal inode removed.  Use tunefs to re-create.\n");
2712 		sblock.fs_flags &= ~FS_SUJ;
2713 		sblock.fs_sujfree = 0;
2714 		return (-1);
2715 	}
2716 	/*
2717 	 * Fetch the journal inode and verify it.
2718 	 */
2719 	jip = ino_read(sujino);
2720 	printf("** SU+J Recovering %s\n", filesys);
2721 	if (suj_verifyino(jip) != 0)
2722 		return (-1);
2723 	if (!preen && !reply("USE JOURNAL"))
2724 		return (-1);
2725 	/*
2726 	 * Build a list of journal blocks in jblocks before parsing the
2727 	 * available journal blocks in with suj_read().
2728 	 */
2729 	printf("** Reading %jd byte journal from inode %ju.\n",
2730 	    DIP(jip, di_size), (uintmax_t)sujino);
2731 	suj_jblocks = jblocks_create();
2732 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2733 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2734 		printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2735 		return (-1);
2736 	}
2737 	suj_read();
2738 	jblocks_destroy(suj_jblocks);
2739 	suj_jblocks = NULL;
2740 	if (preen || reply("RECOVER")) {
2741 		printf("** Building recovery table.\n");
2742 		suj_prune();
2743 		suj_build();
2744 		cg_apply(cg_build);
2745 		printf("** Resolving unreferenced inode list.\n");
2746 		ino_unlinked();
2747 		printf("** Processing journal entries.\n");
2748 		cg_apply(cg_trunc);
2749 		cg_apply(cg_check_blk);
2750 		cg_apply(cg_adj_blk);
2751 		cg_apply(cg_check_ino);
2752 	}
2753 	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2754 		return (0);
2755 	/*
2756 	 * To remain idempotent with partial truncations the free bitmaps
2757 	 * must be written followed by indirect blocks and lastly inode
2758 	 * blocks.  This preserves access to the modified pointers until
2759 	 * they are freed.
2760 	 */
2761 	cg_apply(cg_write);
2762 	dblk_write();
2763 	cg_apply(cg_write_inos);
2764 	/* Write back superblock. */
2765 	closedisk(filesys);
2766 	if (jrecs > 0 || jbytes > 0) {
2767 		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2768 		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2769 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2770 		    freeinos, freedir, freeblocks, freefrags);
2771 	}
2772 
2773 	return (0);
2774 }
2775 
2776 static void
2777 initsuj(void)
2778 {
2779 	int i;
2780 
2781 	for (i = 0; i < SUJ_HASHSIZE; i++) {
2782 		LIST_INIT(&cghash[i]);
2783 		LIST_INIT(&dbhash[i]);
2784 	}
2785 	lastcg = NULL;
2786 	lastblk = NULL;
2787 	TAILQ_INIT(&allsegs);
2788 	oldseq = 0;
2789 	fs = NULL;
2790 	sujino = 0;
2791 	freefrags = 0;
2792 	freeblocks = 0;
2793 	freeinos = 0;
2794 	freedir = 0;
2795 	jbytes = 0;
2796 	jrecs = 0;
2797 	suj_jblocks = NULL;
2798 }
2799