xref: /freebsd/sbin/fsck_ffs/suj.c (revision 36daf0495aa68d669ac6abf004940ec1b1e83e42)
1 /*-
2  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/disk.h>
32 #include <sys/disklabel.h>
33 #include <sys/mount.h>
34 #include <sys/stat.h>
35 
36 #include <ufs/ufs/ufsmount.h>
37 #include <ufs/ufs/dinode.h>
38 #include <ufs/ufs/dir.h>
39 #include <ufs/ffs/fs.h>
40 
41 #include <assert.h>
42 #include <err.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <stdint.h>
48 #include <libufs.h>
49 #include <string.h>
50 #include <strings.h>
51 #include <sysexits.h>
52 #include <time.h>
53 
54 #include "fsck.h"
55 
56 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
57 #define	SUJ_HASHSIZE	2048
58 #define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
59 #define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
60 
61 struct suj_seg {
62 	TAILQ_ENTRY(suj_seg) ss_next;
63 	struct jsegrec	ss_rec;
64 	uint8_t		*ss_blk;
65 };
66 
67 struct suj_rec {
68 	TAILQ_ENTRY(suj_rec) sr_next;
69 	union jrec	*sr_rec;
70 };
71 TAILQ_HEAD(srechd, suj_rec);
72 
73 struct suj_ino {
74 	LIST_ENTRY(suj_ino)	si_next;
75 	struct srechd		si_recs;
76 	struct srechd		si_newrecs;
77 	struct srechd		si_movs;
78 	struct jtrncrec		*si_trunc;
79 	ino_t			si_ino;
80 	char			si_skipparent;
81 	char			si_hasrecs;
82 	char			si_blkadj;
83 	char			si_linkadj;
84 	int			si_mode;
85 	nlink_t			si_nlinkadj;
86 	nlink_t			si_nlink;
87 	nlink_t			si_dotlinks;
88 };
89 LIST_HEAD(inohd, suj_ino);
90 
91 struct suj_blk {
92 	LIST_ENTRY(suj_blk)	sb_next;
93 	struct srechd		sb_recs;
94 	ufs2_daddr_t		sb_blk;
95 };
96 LIST_HEAD(blkhd, suj_blk);
97 
98 struct data_blk {
99 	LIST_ENTRY(data_blk)	db_next;
100 	uint8_t			*db_buf;
101 	ufs2_daddr_t		db_blk;
102 	int			db_size;
103 	int			db_dirty;
104 };
105 
106 struct ino_blk {
107 	LIST_ENTRY(ino_blk)	ib_next;
108 	uint8_t			*ib_buf;
109 	int			ib_dirty;
110 	ufs2_daddr_t		ib_blk;
111 };
112 LIST_HEAD(iblkhd, ino_blk);
113 
114 struct suj_cg {
115 	LIST_ENTRY(suj_cg)	sc_next;
116 	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
117 	struct inohd		sc_inohash[SUJ_HASHSIZE];
118 	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
119 	struct ino_blk		*sc_lastiblk;
120 	struct suj_ino		*sc_lastino;
121 	struct suj_blk		*sc_lastblk;
122 	uint8_t			*sc_cgbuf;
123 	struct cg		*sc_cgp;
124 	int			sc_dirty;
125 	int			sc_cgx;
126 };
127 
128 LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
129 LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
130 struct suj_cg *lastcg;
131 struct data_blk *lastblk;
132 
133 TAILQ_HEAD(seghd, suj_seg) allsegs;
134 uint64_t oldseq;
135 static struct uufsd *disk = NULL;
136 static struct fs *fs = NULL;
137 ino_t sujino;
138 
139 /*
140  * Summary statistics.
141  */
142 uint64_t freefrags;
143 uint64_t freeblocks;
144 uint64_t freeinos;
145 uint64_t freedir;
146 uint64_t jbytes;
147 uint64_t jrecs;
148 
149 static jmp_buf	jmpbuf;
150 
151 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
152 static void err_suj(const char *, ...) __dead2;
153 static void ino_trunc(ino_t, off_t);
154 static void ino_decr(ino_t);
155 static void ino_adjust(struct suj_ino *);
156 static void ino_build(struct suj_ino *);
157 static int blk_isfree(ufs2_daddr_t);
158 
159 static void *
160 errmalloc(size_t n)
161 {
162 	void *a;
163 
164 	a = malloc(n);
165 	if (a == NULL)
166 		err(EX_OSERR, "malloc(%zu)", n);
167 	return (a);
168 }
169 
170 /*
171  * When hit a fatal error in journalling check, print out
172  * the error and then offer to fallback to normal fsck.
173  */
174 static void
175 err_suj(const char * restrict fmt, ...)
176 {
177 	va_list ap;
178 
179 	if (preen)
180 		(void)fprintf(stdout, "%s: ", cdevname);
181 
182 	va_start(ap, fmt);
183 	(void)vfprintf(stdout, fmt, ap);
184 	va_end(ap);
185 
186 	longjmp(jmpbuf, -1);
187 }
188 
189 /*
190  * Open the given provider, load superblock.
191  */
192 static void
193 opendisk(const char *devnam)
194 {
195 	if (disk != NULL)
196 		return;
197 	disk = malloc(sizeof(*disk));
198 	if (disk == NULL)
199 		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
200 	if (ufs_disk_fillout(disk, devnam) == -1) {
201 		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
202 		    disk->d_error);
203 	}
204 	fs = &disk->d_fs;
205 	if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
206 	    &real_dev_bsize) == -1)
207 		real_dev_bsize = secsize;
208 	if (debug)
209 		printf("dev_bsize %ld\n", real_dev_bsize);
210 }
211 
212 /*
213  * Mark file system as clean, write the super-block back, close the disk.
214  */
215 static void
216 closedisk(const char *devnam)
217 {
218 	struct csum *cgsum;
219 	int i;
220 
221 	/*
222 	 * Recompute the fs summary info from correct cs summaries.
223 	 */
224 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
225 	for (i = 0; i < fs->fs_ncg; i++) {
226 		cgsum = &fs->fs_cs(fs, i);
227 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
228 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
229 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
230 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
231 	}
232 	fs->fs_pendinginodes = 0;
233 	fs->fs_pendingblocks = 0;
234 	fs->fs_clean = 1;
235 	fs->fs_time = time(NULL);
236 	fs->fs_mtime = time(NULL);
237 	if (sbwrite(disk, 0) == -1)
238 		err(EX_OSERR, "sbwrite(%s)", devnam);
239 	if (ufs_disk_close(disk) == -1)
240 		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
241 	free(disk);
242 	disk = NULL;
243 	fs = NULL;
244 }
245 
246 /*
247  * Lookup a cg by number in the hash so we can keep track of which cgs
248  * need stats rebuilt.
249  */
250 static struct suj_cg *
251 cg_lookup(int cgx)
252 {
253 	struct cghd *hd;
254 	struct suj_cg *sc;
255 
256 	if (cgx < 0 || cgx >= fs->fs_ncg)
257 		err_suj("Bad cg number %d\n", cgx);
258 	if (lastcg && lastcg->sc_cgx == cgx)
259 		return (lastcg);
260 	hd = &cghash[SUJ_HASH(cgx)];
261 	LIST_FOREACH(sc, hd, sc_next)
262 		if (sc->sc_cgx == cgx) {
263 			lastcg = sc;
264 			return (sc);
265 		}
266 	sc = errmalloc(sizeof(*sc));
267 	bzero(sc, sizeof(*sc));
268 	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
269 	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
270 	sc->sc_cgx = cgx;
271 	LIST_INSERT_HEAD(hd, sc, sc_next);
272 	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
273 	    fs->fs_bsize) == -1)
274 		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
275 
276 	return (sc);
277 }
278 
279 /*
280  * Lookup an inode number in the hash and allocate a suj_ino if it does
281  * not exist.
282  */
283 static struct suj_ino *
284 ino_lookup(ino_t ino, int creat)
285 {
286 	struct suj_ino *sino;
287 	struct inohd *hd;
288 	struct suj_cg *sc;
289 
290 	sc = cg_lookup(ino_to_cg(fs, ino));
291 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
292 		return (sc->sc_lastino);
293 	hd = &sc->sc_inohash[SUJ_HASH(ino)];
294 	LIST_FOREACH(sino, hd, si_next)
295 		if (sino->si_ino == ino)
296 			return (sino);
297 	if (creat == 0)
298 		return (NULL);
299 	sino = errmalloc(sizeof(*sino));
300 	bzero(sino, sizeof(*sino));
301 	sino->si_ino = ino;
302 	TAILQ_INIT(&sino->si_recs);
303 	TAILQ_INIT(&sino->si_newrecs);
304 	TAILQ_INIT(&sino->si_movs);
305 	LIST_INSERT_HEAD(hd, sino, si_next);
306 
307 	return (sino);
308 }
309 
310 /*
311  * Lookup a block number in the hash and allocate a suj_blk if it does
312  * not exist.
313  */
314 static struct suj_blk *
315 blk_lookup(ufs2_daddr_t blk, int creat)
316 {
317 	struct suj_blk *sblk;
318 	struct suj_cg *sc;
319 	struct blkhd *hd;
320 
321 	sc = cg_lookup(dtog(fs, blk));
322 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
323 		return (sc->sc_lastblk);
324 	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
325 	LIST_FOREACH(sblk, hd, sb_next)
326 		if (sblk->sb_blk == blk)
327 			return (sblk);
328 	if (creat == 0)
329 		return (NULL);
330 	sblk = errmalloc(sizeof(*sblk));
331 	bzero(sblk, sizeof(*sblk));
332 	sblk->sb_blk = blk;
333 	TAILQ_INIT(&sblk->sb_recs);
334 	LIST_INSERT_HEAD(hd, sblk, sb_next);
335 
336 	return (sblk);
337 }
338 
339 static struct data_blk *
340 dblk_lookup(ufs2_daddr_t blk)
341 {
342 	struct data_blk *dblk;
343 	struct dblkhd *hd;
344 
345 	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
346 	if (lastblk && lastblk->db_blk == blk)
347 		return (lastblk);
348 	LIST_FOREACH(dblk, hd, db_next)
349 		if (dblk->db_blk == blk)
350 			return (dblk);
351 	/*
352 	 * The inode block wasn't located, allocate a new one.
353 	 */
354 	dblk = errmalloc(sizeof(*dblk));
355 	bzero(dblk, sizeof(*dblk));
356 	LIST_INSERT_HEAD(hd, dblk, db_next);
357 	dblk->db_blk = blk;
358 	return (dblk);
359 }
360 
361 static uint8_t *
362 dblk_read(ufs2_daddr_t blk, int size)
363 {
364 	struct data_blk *dblk;
365 
366 	dblk = dblk_lookup(blk);
367 	/*
368 	 * I doubt size mismatches can happen in practice but it is trivial
369 	 * to handle.
370 	 */
371 	if (size != dblk->db_size) {
372 		if (dblk->db_buf)
373 			free(dblk->db_buf);
374 		dblk->db_buf = errmalloc(size);
375 		dblk->db_size = size;
376 		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
377 			err_suj("Failed to read data block %jd\n", blk);
378 	}
379 	return (dblk->db_buf);
380 }
381 
382 static void
383 dblk_dirty(ufs2_daddr_t blk)
384 {
385 	struct data_blk *dblk;
386 
387 	dblk = dblk_lookup(blk);
388 	dblk->db_dirty = 1;
389 }
390 
391 static void
392 dblk_write(void)
393 {
394 	struct data_blk *dblk;
395 	int i;
396 
397 	for (i = 0; i < SUJ_HASHSIZE; i++) {
398 		LIST_FOREACH(dblk, &dbhash[i], db_next) {
399 			if (dblk->db_dirty == 0 || dblk->db_size == 0)
400 				continue;
401 			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
402 			    dblk->db_buf, dblk->db_size) == -1)
403 				err_suj("Unable to write block %jd\n",
404 				    dblk->db_blk);
405 		}
406 	}
407 }
408 
409 static union dinode *
410 ino_read(ino_t ino)
411 {
412 	struct ino_blk *iblk;
413 	struct iblkhd *hd;
414 	struct suj_cg *sc;
415 	ufs2_daddr_t blk;
416 	int off;
417 
418 	blk = ino_to_fsba(fs, ino);
419 	sc = cg_lookup(ino_to_cg(fs, ino));
420 	iblk = sc->sc_lastiblk;
421 	if (iblk && iblk->ib_blk == blk)
422 		goto found;
423 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
424 	LIST_FOREACH(iblk, hd, ib_next)
425 		if (iblk->ib_blk == blk)
426 			goto found;
427 	/*
428 	 * The inode block wasn't located, allocate a new one.
429 	 */
430 	iblk = errmalloc(sizeof(*iblk));
431 	bzero(iblk, sizeof(*iblk));
432 	iblk->ib_buf = errmalloc(fs->fs_bsize);
433 	iblk->ib_blk = blk;
434 	LIST_INSERT_HEAD(hd, iblk, ib_next);
435 	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
436 		err_suj("Failed to read inode block %jd\n", blk);
437 found:
438 	sc->sc_lastiblk = iblk;
439 	off = ino_to_fsbo(fs, ino);
440 	if (fs->fs_magic == FS_UFS1_MAGIC)
441 		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
442 	else
443 		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
444 }
445 
446 static void
447 ino_dirty(ino_t ino)
448 {
449 	struct ino_blk *iblk;
450 	struct iblkhd *hd;
451 	struct suj_cg *sc;
452 	ufs2_daddr_t blk;
453 
454 	blk = ino_to_fsba(fs, ino);
455 	sc = cg_lookup(ino_to_cg(fs, ino));
456 	iblk = sc->sc_lastiblk;
457 	if (iblk && iblk->ib_blk == blk) {
458 		iblk->ib_dirty = 1;
459 		return;
460 	}
461 	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
462 	LIST_FOREACH(iblk, hd, ib_next) {
463 		if (iblk->ib_blk == blk) {
464 			iblk->ib_dirty = 1;
465 			return;
466 		}
467 	}
468 	ino_read(ino);
469 	ino_dirty(ino);
470 }
471 
472 static void
473 iblk_write(struct ino_blk *iblk)
474 {
475 
476 	if (iblk->ib_dirty == 0)
477 		return;
478 	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
479 	    fs->fs_bsize) == -1)
480 		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
481 }
482 
483 static int
484 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
485 {
486 	ufs2_daddr_t bstart;
487 	ufs2_daddr_t bend;
488 	ufs2_daddr_t end;
489 
490 	end = start + frags;
491 	bstart = brec->jb_blkno + brec->jb_oldfrags;
492 	bend = bstart + brec->jb_frags;
493 	if (start < bend && end > bstart)
494 		return (1);
495 	return (0);
496 }
497 
498 static int
499 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
500     int frags)
501 {
502 
503 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
504 		return (0);
505 	if (brec->jb_blkno + brec->jb_oldfrags != start)
506 		return (0);
507 	if (brec->jb_frags != frags)
508 		return (0);
509 	return (1);
510 }
511 
512 static void
513 blk_setmask(struct jblkrec *brec, int *mask)
514 {
515 	int i;
516 
517 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
518 		*mask |= 1 << i;
519 }
520 
521 /*
522  * Determine whether a given block has been reallocated to a new location.
523  * Returns a mask of overlapping bits if any frags have been reused or
524  * zero if the block has not been re-used and the contents can be trusted.
525  *
526  * This is used to ensure that an orphaned pointer due to truncate is safe
527  * to be freed.  The mask value can be used to free partial blocks.
528  */
529 static int
530 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
531 {
532 	struct suj_blk *sblk;
533 	struct suj_rec *srec;
534 	struct jblkrec *brec;
535 	int mask;
536 	int off;
537 
538 	/*
539 	 * To be certain we're not freeing a reallocated block we lookup
540 	 * this block in the blk hash and see if there is an allocation
541 	 * journal record that overlaps with any fragments in the block
542 	 * we're concerned with.  If any fragments have ben reallocated
543 	 * the block has already been freed and re-used for another purpose.
544 	 */
545 	mask = 0;
546 	sblk = blk_lookup(blknum(fs, blk), 0);
547 	if (sblk == NULL)
548 		return (0);
549 	off = blk - sblk->sb_blk;
550 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
551 		brec = (struct jblkrec *)srec->sr_rec;
552 		/*
553 		 * If the block overlaps but does not match
554 		 * exactly it's a new allocation.  If it matches
555 		 * exactly this record refers to the current
556 		 * location.
557 		 */
558 		if (blk_overlaps(brec, blk, frags) == 0)
559 			continue;
560 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
561 			mask = 0;
562 		else
563 			blk_setmask(brec, &mask);
564 	}
565 	if (debug)
566 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
567 		    blk, sblk->sb_blk, off, mask);
568 	return (mask >> off);
569 }
570 
571 /*
572  * Determine whether it is safe to follow an indirect.  It is not safe
573  * if any part of the indirect has been reallocated or the last journal
574  * entry was an allocation.  Just allocated indirects may not have valid
575  * pointers yet and all of their children will have their own records.
576  * It is also not safe to follow an indirect if the cg bitmap has been
577  * cleared as a new allocation may write to the block prior to the journal
578  * being written.
579  *
580  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
581  */
582 static int
583 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
584 {
585 	struct suj_blk *sblk;
586 	struct jblkrec *brec;
587 
588 	sblk = blk_lookup(blk, 0);
589 	if (sblk == NULL)
590 		return (1);
591 	if (TAILQ_EMPTY(&sblk->sb_recs))
592 		return (1);
593 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
594 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
595 		if (brec->jb_op == JOP_FREEBLK)
596 			return (!blk_isfree(blk));
597 	return (0);
598 }
599 
600 /*
601  * Clear an inode from the cg bitmap.  If the inode was already clear return
602  * 0 so the caller knows it does not have to check the inode contents.
603  */
604 static int
605 ino_free(ino_t ino, int mode)
606 {
607 	struct suj_cg *sc;
608 	uint8_t *inosused;
609 	struct cg *cgp;
610 	int cg;
611 
612 	cg = ino_to_cg(fs, ino);
613 	ino = ino % fs->fs_ipg;
614 	sc = cg_lookup(cg);
615 	cgp = sc->sc_cgp;
616 	inosused = cg_inosused(cgp);
617 	/*
618 	 * The bitmap may never have made it to the disk so we have to
619 	 * conditionally clear.  We can avoid writing the cg in this case.
620 	 */
621 	if (isclr(inosused, ino))
622 		return (0);
623 	freeinos++;
624 	clrbit(inosused, ino);
625 	if (ino < cgp->cg_irotor)
626 		cgp->cg_irotor = ino;
627 	cgp->cg_cs.cs_nifree++;
628 	if ((mode & IFMT) == IFDIR) {
629 		freedir++;
630 		cgp->cg_cs.cs_ndir--;
631 	}
632 	sc->sc_dirty = 1;
633 
634 	return (1);
635 }
636 
637 /*
638  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
639  * set in the mask.
640  */
641 static void
642 blk_free(ufs2_daddr_t bno, int mask, int frags)
643 {
644 	ufs1_daddr_t fragno, cgbno;
645 	struct suj_cg *sc;
646 	struct cg *cgp;
647 	int i, cg;
648 	uint8_t *blksfree;
649 
650 	if (debug)
651 		printf("Freeing %d frags at blk %jd\n", frags, bno);
652 	cg = dtog(fs, bno);
653 	sc = cg_lookup(cg);
654 	cgp = sc->sc_cgp;
655 	cgbno = dtogd(fs, bno);
656 	blksfree = cg_blksfree(cgp);
657 
658 	/*
659 	 * If it's not allocated we only wrote the journal entry
660 	 * and never the bitmaps.  Here we unconditionally clear and
661 	 * resolve the cg summary later.
662 	 */
663 	if (frags == fs->fs_frag && mask == 0) {
664 		fragno = fragstoblks(fs, cgbno);
665 		ffs_setblock(fs, blksfree, fragno);
666 		freeblocks++;
667 	} else {
668 		/*
669 		 * deallocate the fragment
670 		 */
671 		for (i = 0; i < frags; i++)
672 			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
673 				freefrags++;
674 				setbit(blksfree, cgbno + i);
675 			}
676 	}
677 	sc->sc_dirty = 1;
678 }
679 
680 /*
681  * Returns 1 if the whole block starting at 'bno' is marked free and 0
682  * otherwise.
683  */
684 static int
685 blk_isfree(ufs2_daddr_t bno)
686 {
687 	struct suj_cg *sc;
688 
689 	sc = cg_lookup(dtog(fs, bno));
690 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
691 }
692 
693 /*
694  * Fetch an indirect block to find the block at a given lbn.  The lbn
695  * may be negative to fetch a specific indirect block pointer or positive
696  * to fetch a specific block.
697  */
698 static ufs2_daddr_t
699 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
700 {
701 	ufs2_daddr_t *bap2;
702 	ufs2_daddr_t *bap1;
703 	ufs_lbn_t lbnadd;
704 	ufs_lbn_t base;
705 	int level;
706 	int i;
707 
708 	if (blk == 0)
709 		return (0);
710 	level = lbn_level(cur);
711 	if (level == -1)
712 		err_suj("Invalid indir lbn %jd\n", lbn);
713 	if (level == 0 && lbn < 0)
714 		err_suj("Invalid lbn %jd\n", lbn);
715 	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
716 	bap1 = (void *)bap2;
717 	lbnadd = 1;
718 	base = -(cur + level);
719 	for (i = level; i > 0; i--)
720 		lbnadd *= NINDIR(fs);
721 	if (lbn > 0)
722 		i = (lbn - base) / lbnadd;
723 	else
724 		i = (-lbn - base) / lbnadd;
725 	if (i < 0 || i >= NINDIR(fs))
726 		err_suj("Invalid indirect index %d produced by lbn %jd\n",
727 		    i, lbn);
728 	if (level == 0)
729 		cur = base + (i * lbnadd);
730 	else
731 		cur = -(base + (i * lbnadd)) - (level - 1);
732 	if (fs->fs_magic == FS_UFS1_MAGIC)
733 		blk = bap1[i];
734 	else
735 		blk = bap2[i];
736 	if (cur == lbn)
737 		return (blk);
738 	if (level == 0)
739 		err_suj("Invalid lbn %jd at level 0\n", lbn);
740 	return indir_blkatoff(blk, ino, cur, lbn);
741 }
742 
743 /*
744  * Finds the disk block address at the specified lbn within the inode
745  * specified by ip.  This follows the whole tree and honors di_size and
746  * di_extsize so it is a true test of reachability.  The lbn may be
747  * negative if an extattr or indirect block is requested.
748  */
749 static ufs2_daddr_t
750 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
751 {
752 	ufs_lbn_t tmpval;
753 	ufs_lbn_t cur;
754 	ufs_lbn_t next;
755 	int i;
756 
757 	/*
758 	 * Handle extattr blocks first.
759 	 */
760 	if (lbn < 0 && lbn >= -NXADDR) {
761 		lbn = -1 - lbn;
762 		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
763 			return (0);
764 		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
765 		return (ip->dp2.di_extb[lbn]);
766 	}
767 	/*
768 	 * Now direct and indirect.
769 	 */
770 	if (DIP(ip, di_mode) == IFLNK &&
771 	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
772 		return (0);
773 	if (lbn >= 0 && lbn < NDADDR) {
774 		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
775 		return (DIP(ip, di_db[lbn]));
776 	}
777 	*frags = fs->fs_frag;
778 
779 	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
780 	    tmpval *= NINDIR(fs), cur = next) {
781 		next = cur + tmpval;
782 		if (lbn == -cur - i)
783 			return (DIP(ip, di_ib[i]));
784 		/*
785 		 * Determine whether the lbn in question is within this tree.
786 		 */
787 		if (lbn < 0 && -lbn >= next)
788 			continue;
789 		if (lbn > 0 && lbn >= next)
790 			continue;
791 		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
792 	}
793 	err_suj("lbn %jd not in ino\n", lbn);
794 	/* NOTREACHED */
795 }
796 
797 /*
798  * Determine whether a block exists at a particular lbn in an inode.
799  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
800  * or ext blocks.
801  */
802 static int
803 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
804 {
805 	union dinode *ip;
806 	ufs2_daddr_t nblk;
807 
808 	ip = ino_read(ino);
809 
810 	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
811 		return (0);
812 	nblk = ino_blkatoff(ip, ino, lbn, frags);
813 
814 	return (nblk == blk);
815 }
816 
817 /*
818  * Clear the directory entry at diroff that should point to child.  Minimal
819  * checking is done and it is assumed that this path was verified with isat.
820  */
821 static void
822 ino_clrat(ino_t parent, off_t diroff, ino_t child)
823 {
824 	union dinode *dip;
825 	struct direct *dp;
826 	ufs2_daddr_t blk;
827 	uint8_t *block;
828 	ufs_lbn_t lbn;
829 	int blksize;
830 	int frags;
831 	int doff;
832 
833 	if (debug)
834 		printf("Clearing inode %d from parent %d at offset %jd\n",
835 		    child, parent, diroff);
836 
837 	lbn = lblkno(fs, diroff);
838 	doff = blkoff(fs, diroff);
839 	dip = ino_read(parent);
840 	blk = ino_blkatoff(dip, parent, lbn, &frags);
841 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
842 	block = dblk_read(blk, blksize);
843 	dp = (struct direct *)&block[doff];
844 	if (dp->d_ino != child)
845 		errx(1, "Inode %d does not exist in %d at %jd",
846 		    child, parent, diroff);
847 	dp->d_ino = 0;
848 	dblk_dirty(blk);
849 	/*
850 	 * The actual .. reference count will already have been removed
851 	 * from the parent by the .. remref record.
852 	 */
853 }
854 
855 /*
856  * Determines whether a pointer to an inode exists within a directory
857  * at a specified offset.  Returns the mode of the found entry.
858  */
859 static int
860 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
861 {
862 	union dinode *dip;
863 	struct direct *dp;
864 	ufs2_daddr_t blk;
865 	uint8_t *block;
866 	ufs_lbn_t lbn;
867 	int blksize;
868 	int frags;
869 	int dpoff;
870 	int doff;
871 
872 	*isdot = 0;
873 	dip = ino_read(parent);
874 	*mode = DIP(dip, di_mode);
875 	if ((*mode & IFMT) != IFDIR) {
876 		if (debug) {
877 			/*
878 			 * This can happen if the parent inode
879 			 * was reallocated.
880 			 */
881 			if (*mode != 0)
882 				printf("Directory %d has bad mode %o\n",
883 				    parent, *mode);
884 			else
885 				printf("Directory %d zero inode\n", parent);
886 		}
887 		return (0);
888 	}
889 	lbn = lblkno(fs, diroff);
890 	doff = blkoff(fs, diroff);
891 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
892 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
893 		if (debug)
894 			printf("ino %d absent from %d due to offset %jd"
895 			    " exceeding size %jd\n",
896 			    child, parent, diroff, DIP(dip, di_size));
897 		return (0);
898 	}
899 	blk = ino_blkatoff(dip, parent, lbn, &frags);
900 	if (blk <= 0) {
901 		if (debug)
902 			printf("Sparse directory %d", parent);
903 		return (0);
904 	}
905 	block = dblk_read(blk, blksize);
906 	/*
907 	 * Walk through the records from the start of the block to be
908 	 * certain we hit a valid record and not some junk in the middle
909 	 * of a file name.  Stop when we reach or pass the expected offset.
910 	 */
911 	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
912 	do {
913 		dp = (struct direct *)&block[dpoff];
914 		if (dpoff == doff)
915 			break;
916 		if (dp->d_reclen == 0)
917 			break;
918 		dpoff += dp->d_reclen;
919 	} while (dpoff <= doff);
920 	if (dpoff > fs->fs_bsize)
921 		err_suj("Corrupt directory block in dir ino %d\n", parent);
922 	/* Not found. */
923 	if (dpoff != doff) {
924 		if (debug)
925 			printf("ino %d not found in %d, lbn %jd, dpoff %d\n",
926 			    child, parent, lbn, dpoff);
927 		return (0);
928 	}
929 	/*
930 	 * We found the item in question.  Record the mode and whether it's
931 	 * a . or .. link for the caller.
932 	 */
933 	if (dp->d_ino == child) {
934 		if (child == parent)
935 			*isdot = 1;
936 		else if (dp->d_namlen == 2 &&
937 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
938 			*isdot = 1;
939 		*mode = DTTOIF(dp->d_type);
940 		return (1);
941 	}
942 	if (debug)
943 		printf("ino %d doesn't match dirent ino %d in parent %d\n",
944 		    child, dp->d_ino, parent);
945 	return (0);
946 }
947 
948 #define	VISIT_INDIR	0x0001
949 #define	VISIT_EXT	0x0002
950 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
951 
952 /*
953  * Read an indirect level which may or may not be linked into an inode.
954  */
955 static void
956 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
957     ino_visitor visitor, int flags)
958 {
959 	ufs2_daddr_t *bap2;
960 	ufs1_daddr_t *bap1;
961 	ufs_lbn_t lbnadd;
962 	ufs2_daddr_t nblk;
963 	ufs_lbn_t nlbn;
964 	int level;
965 	int i;
966 
967 	/*
968 	 * Don't visit indirect blocks with contents we can't trust.  This
969 	 * should only happen when indir_visit() is called to complete a
970 	 * truncate that never finished and not when a pointer is found via
971 	 * an inode.
972 	 */
973 	if (blk == 0)
974 		return;
975 	level = lbn_level(lbn);
976 	if (level == -1)
977 		err_suj("Invalid level for lbn %jd\n", lbn);
978 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
979 		if (debug)
980 			printf("blk %jd ino %d lbn %jd(%d) is not indir.\n",
981 			    blk, ino, lbn, level);
982 		goto out;
983 	}
984 	lbnadd = 1;
985 	for (i = level; i > 0; i--)
986 		lbnadd *= NINDIR(fs);
987 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
988 	bap2 = (void *)bap1;
989 	for (i = 0; i < NINDIR(fs); i++) {
990 		if (fs->fs_magic == FS_UFS1_MAGIC)
991 			nblk = *bap1++;
992 		else
993 			nblk = *bap2++;
994 		if (nblk == 0)
995 			continue;
996 		if (level == 0) {
997 			nlbn = -lbn + i * lbnadd;
998 			(*frags) += fs->fs_frag;
999 			visitor(ino, nlbn, nblk, fs->fs_frag);
1000 		} else {
1001 			nlbn = (lbn + 1) - (i * lbnadd);
1002 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1003 		}
1004 	}
1005 out:
1006 	if (flags & VISIT_INDIR) {
1007 		(*frags) += fs->fs_frag;
1008 		visitor(ino, lbn, blk, fs->fs_frag);
1009 	}
1010 }
1011 
1012 /*
1013  * Visit each block in an inode as specified by 'flags' and call a
1014  * callback function.  The callback may inspect or free blocks.  The
1015  * count of frags found according to the size in the file is returned.
1016  * This is not valid for sparse files but may be used to determine
1017  * the correct di_blocks for a file.
1018  */
1019 static uint64_t
1020 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1021 {
1022 	ufs_lbn_t nextlbn;
1023 	ufs_lbn_t tmpval;
1024 	ufs_lbn_t lbn;
1025 	uint64_t size;
1026 	uint64_t fragcnt;
1027 	int mode;
1028 	int frags;
1029 	int i;
1030 
1031 	size = DIP(ip, di_size);
1032 	mode = DIP(ip, di_mode) & IFMT;
1033 	fragcnt = 0;
1034 	if ((flags & VISIT_EXT) &&
1035 	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1036 		for (i = 0; i < NXADDR; i++) {
1037 			if (ip->dp2.di_extb[i] == 0)
1038 				continue;
1039 			frags = sblksize(fs, ip->dp2.di_extsize, i);
1040 			frags = numfrags(fs, frags);
1041 			fragcnt += frags;
1042 			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1043 		}
1044 	}
1045 	/* Skip datablocks for short links and devices. */
1046 	if (mode == IFBLK || mode == IFCHR ||
1047 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1048 		return (fragcnt);
1049 	for (i = 0; i < NDADDR; i++) {
1050 		if (DIP(ip, di_db[i]) == 0)
1051 			continue;
1052 		frags = sblksize(fs, size, i);
1053 		frags = numfrags(fs, frags);
1054 		fragcnt += frags;
1055 		visitor(ino, i, DIP(ip, di_db[i]), frags);
1056 	}
1057 	/*
1058 	 * We know the following indirects are real as we're following
1059 	 * real pointers to them.
1060 	 */
1061 	flags |= VISIT_ROOT;
1062 	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1063 	    lbn = nextlbn) {
1064 		nextlbn = lbn + tmpval;
1065 		tmpval *= NINDIR(fs);
1066 		if (DIP(ip, di_ib[i]) == 0)
1067 			continue;
1068 		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1069 		    flags);
1070 	}
1071 	return (fragcnt);
1072 }
1073 
1074 /*
1075  * Null visitor function used when we just want to count blocks and
1076  * record the lbn.
1077  */
1078 ufs_lbn_t visitlbn;
1079 static void
1080 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1081 {
1082 	if (lbn > 0)
1083 		visitlbn = lbn;
1084 }
1085 
1086 /*
1087  * Recalculate di_blocks when we discover that a block allocation or
1088  * free was not successfully completed.  The kernel does not roll this back
1089  * because it would be too expensive to compute which indirects were
1090  * reachable at the time the inode was written.
1091  */
1092 static void
1093 ino_adjblks(struct suj_ino *sino)
1094 {
1095 	union dinode *ip;
1096 	uint64_t blocks;
1097 	uint64_t frags;
1098 	off_t isize;
1099 	off_t size;
1100 	ino_t ino;
1101 
1102 	ino = sino->si_ino;
1103 	ip = ino_read(ino);
1104 	/* No need to adjust zero'd inodes. */
1105 	if (DIP(ip, di_mode) == 0)
1106 		return;
1107 	/*
1108 	 * Visit all blocks and count them as well as recording the last
1109 	 * valid lbn in the file.  If the file size doesn't agree with the
1110 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1111 	 * the blocks count.
1112 	 */
1113 	visitlbn = 0;
1114 	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1115 	blocks = fsbtodb(fs, frags);
1116 	/*
1117 	 * We assume the size and direct block list is kept coherent by
1118 	 * softdep.  For files that have extended into indirects we truncate
1119 	 * to the size in the inode or the maximum size permitted by
1120 	 * populated indirects.
1121 	 */
1122 	if (visitlbn >= NDADDR) {
1123 		isize = DIP(ip, di_size);
1124 		size = lblktosize(fs, visitlbn + 1);
1125 		if (isize > size)
1126 			isize = size;
1127 		/* Always truncate to free any unpopulated indirects. */
1128 		ino_trunc(sino->si_ino, isize);
1129 		return;
1130 	}
1131 	if (blocks == DIP(ip, di_blocks))
1132 		return;
1133 	if (debug)
1134 		printf("ino %d adjusting block count from %jd to %jd\n",
1135 		    ino, DIP(ip, di_blocks), blocks);
1136 	DIP_SET(ip, di_blocks, blocks);
1137 	ino_dirty(ino);
1138 }
1139 
1140 static void
1141 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1142 {
1143 	int mask;
1144 
1145 	mask = blk_freemask(blk, ino, lbn, frags);
1146 	if (debug)
1147 		printf("blk %jd freemask 0x%X\n", blk, mask);
1148 	blk_free(blk, mask, frags);
1149 }
1150 
1151 /*
1152  * Free a block or tree of blocks that was previously rooted in ino at
1153  * the given lbn.  If the lbn is an indirect all children are freed
1154  * recursively.
1155  */
1156 static void
1157 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1158 {
1159 	uint64_t resid;
1160 	int mask;
1161 
1162 	mask = blk_freemask(blk, ino, lbn, frags);
1163 	if (debug)
1164 		printf("blk %jd freemask 0x%X\n", blk, mask);
1165 	resid = 0;
1166 	if (lbn <= -NDADDR && follow && mask == 0)
1167 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1168 	else
1169 		blk_free(blk, mask, frags);
1170 }
1171 
1172 static void
1173 ino_setskip(struct suj_ino *sino, ino_t parent)
1174 {
1175 	int isdot;
1176 	int mode;
1177 
1178 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1179 		sino->si_skipparent = 1;
1180 }
1181 
1182 static void
1183 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1184 {
1185 	struct suj_ino *sino;
1186 	struct suj_rec *srec;
1187 	struct jrefrec *rrec;
1188 
1189 	/*
1190 	 * Lookup this inode to see if we have a record for it.
1191 	 */
1192 	sino = ino_lookup(child, 0);
1193 	/*
1194 	 * Tell any child directories we've already removed their
1195 	 * parent link cnt.  Don't try to adjust our link down again.
1196 	 */
1197 	if (sino != NULL && isdotdot == 0)
1198 		ino_setskip(sino, parent);
1199 	/*
1200 	 * No valid record for this inode.  Just drop the on-disk
1201 	 * link by one.
1202 	 */
1203 	if (sino == NULL || sino->si_hasrecs == 0) {
1204 		ino_decr(child);
1205 		return;
1206 	}
1207 	/*
1208 	 * Use ino_adjust() if ino_check() has already processed this
1209 	 * child.  If we lose the last non-dot reference to a
1210 	 * directory it will be discarded.
1211 	 */
1212 	if (sino->si_linkadj) {
1213 		sino->si_nlink--;
1214 		if (isdotdot)
1215 			sino->si_dotlinks--;
1216 		ino_adjust(sino);
1217 		return;
1218 	}
1219 	/*
1220 	 * If we haven't yet processed this inode we need to make
1221 	 * sure we will successfully discover the lost path.  If not
1222 	 * use nlinkadj to remember.
1223 	 */
1224 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1225 		rrec = (struct jrefrec *)srec->sr_rec;
1226 		if (rrec->jr_parent == parent &&
1227 		    rrec->jr_diroff == diroff)
1228 			return;
1229 	}
1230 	sino->si_nlinkadj++;
1231 }
1232 
1233 /*
1234  * Free the children of a directory when the directory is discarded.
1235  */
1236 static void
1237 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1238 {
1239 	struct suj_ino *sino;
1240 	struct direct *dp;
1241 	off_t diroff;
1242 	uint8_t *block;
1243 	int skipparent;
1244 	int isdotdot;
1245 	int dpoff;
1246 	int size;
1247 
1248 	sino = ino_lookup(ino, 0);
1249 	if (sino)
1250 		skipparent = sino->si_skipparent;
1251 	else
1252 		skipparent = 0;
1253 	size = lfragtosize(fs, frags);
1254 	block = dblk_read(blk, size);
1255 	dp = (struct direct *)&block[0];
1256 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1257 		dp = (struct direct *)&block[dpoff];
1258 		if (dp->d_ino == 0 || dp->d_ino == WINO)
1259 			continue;
1260 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1261 			continue;
1262 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1263 		    dp->d_name[1] == '.';
1264 		if (isdotdot && skipparent == 1)
1265 			continue;
1266 		if (debug)
1267 			printf("Directory %d removing ino %d name %s\n",
1268 			    ino, dp->d_ino, dp->d_name);
1269 		diroff = lblktosize(fs, lbn) + dpoff;
1270 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1271 	}
1272 }
1273 
1274 /*
1275  * Reclaim an inode, freeing all blocks and decrementing all children's
1276  * link counts.  Free the inode back to the cg.
1277  */
1278 static void
1279 ino_reclaim(union dinode *ip, ino_t ino, int mode)
1280 {
1281 	uint32_t gen;
1282 
1283 	if (ino == ROOTINO)
1284 		err_suj("Attempting to free ROOTINO\n");
1285 	if (debug)
1286 		printf("Truncating and freeing ino %d, nlink %d, mode %o\n",
1287 		    ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1288 
1289 	/* We are freeing an inode or directory. */
1290 	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1291 		ino_visit(ip, ino, ino_free_children, 0);
1292 	DIP_SET(ip, di_nlink, 0);
1293 	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1294 	/* Here we have to clear the inode and release any blocks it holds. */
1295 	gen = DIP(ip, di_gen);
1296 	if (fs->fs_magic == FS_UFS1_MAGIC)
1297 		bzero(ip, sizeof(struct ufs1_dinode));
1298 	else
1299 		bzero(ip, sizeof(struct ufs2_dinode));
1300 	DIP_SET(ip, di_gen, gen);
1301 	ino_dirty(ino);
1302 	ino_free(ino, mode);
1303 	return;
1304 }
1305 
1306 /*
1307  * Adjust an inode's link count down by one when a directory goes away.
1308  */
1309 static void
1310 ino_decr(ino_t ino)
1311 {
1312 	union dinode *ip;
1313 	int reqlink;
1314 	int nlink;
1315 	int mode;
1316 
1317 	ip = ino_read(ino);
1318 	nlink = DIP(ip, di_nlink);
1319 	mode = DIP(ip, di_mode);
1320 	if (nlink < 1)
1321 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1322 	if (mode == 0)
1323 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1324 	nlink--;
1325 	if ((mode & IFMT) == IFDIR)
1326 		reqlink = 2;
1327 	else
1328 		reqlink = 1;
1329 	if (nlink < reqlink) {
1330 		if (debug)
1331 			printf("ino %d not enough links to live %d < %d\n",
1332 			    ino, nlink, reqlink);
1333 		ino_reclaim(ip, ino, mode);
1334 		return;
1335 	}
1336 	DIP_SET(ip, di_nlink, nlink);
1337 	ino_dirty(ino);
1338 }
1339 
1340 /*
1341  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1342  * free it.
1343  */
1344 static void
1345 ino_adjust(struct suj_ino *sino)
1346 {
1347 	struct jrefrec *rrec;
1348 	struct suj_rec *srec;
1349 	struct suj_ino *stmp;
1350 	union dinode *ip;
1351 	nlink_t nlink;
1352 	int recmode;
1353 	int reqlink;
1354 	int isdot;
1355 	int mode;
1356 	ino_t ino;
1357 
1358 	nlink = sino->si_nlink;
1359 	ino = sino->si_ino;
1360 	mode = sino->si_mode & IFMT;
1361 	/*
1362 	 * If it's a directory with no dot links, it was truncated before
1363 	 * the name was cleared.  We need to clear the dirent that
1364 	 * points at it.
1365 	 */
1366 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1367 		sino->si_nlink = nlink = 0;
1368 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1369 			rrec = (struct jrefrec *)srec->sr_rec;
1370 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1371 			    &recmode, &isdot) == 0)
1372 				continue;
1373 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1374 			break;
1375 		}
1376 		if (srec == NULL)
1377 			errx(1, "Directory %d name not found", ino);
1378 	}
1379 	/*
1380 	 * If it's a directory with no real names pointing to it go ahead
1381 	 * and truncate it.  This will free any children.
1382 	 */
1383 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1384 		sino->si_nlink = nlink = 0;
1385 		/*
1386 		 * Mark any .. links so they know not to free this inode
1387 		 * when they are removed.
1388 		 */
1389 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1390 			rrec = (struct jrefrec *)srec->sr_rec;
1391 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1392 				stmp = ino_lookup(rrec->jr_parent, 0);
1393 				if (stmp)
1394 					ino_setskip(stmp, ino);
1395 			}
1396 		}
1397 	}
1398 	ip = ino_read(ino);
1399 	mode = DIP(ip, di_mode) & IFMT;
1400 	if (nlink > LINK_MAX)
1401 		err_suj(
1402 		    "ino %d nlink manipulation error, new link %d, old link %d\n",
1403 		    ino, nlink, DIP(ip, di_nlink));
1404 	if (debug)
1405 		printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n",
1406 		    ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1407 	if (mode == 0) {
1408 		if (debug)
1409 			printf("ino %d, zero inode freeing bitmap\n", ino);
1410 		ino_free(ino, sino->si_mode);
1411 		return;
1412 	}
1413 	/* XXX Should be an assert? */
1414 	if (mode != sino->si_mode && debug)
1415 		printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode);
1416 	if ((mode & IFMT) == IFDIR)
1417 		reqlink = 2;
1418 	else
1419 		reqlink = 1;
1420 	/* If the inode doesn't have enough links to live, free it. */
1421 	if (nlink < reqlink) {
1422 		if (debug)
1423 			printf("ino %d not enough links to live %d < %d\n",
1424 			    ino, nlink, reqlink);
1425 		ino_reclaim(ip, ino, mode);
1426 		return;
1427 	}
1428 	/* If required write the updated link count. */
1429 	if (DIP(ip, di_nlink) == nlink) {
1430 		if (debug)
1431 			printf("ino %d, link matches, skipping.\n", ino);
1432 		return;
1433 	}
1434 	DIP_SET(ip, di_nlink, nlink);
1435 	ino_dirty(ino);
1436 }
1437 
1438 /*
1439  * Truncate some or all blocks in an indirect, freeing any that are required
1440  * and zeroing the indirect.
1441  */
1442 static void
1443 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1444 {
1445 	ufs2_daddr_t *bap2;
1446 	ufs1_daddr_t *bap1;
1447 	ufs_lbn_t lbnadd;
1448 	ufs2_daddr_t nblk;
1449 	ufs_lbn_t next;
1450 	ufs_lbn_t nlbn;
1451 	int dirty;
1452 	int level;
1453 	int i;
1454 
1455 	if (blk == 0)
1456 		return;
1457 	dirty = 0;
1458 	level = lbn_level(lbn);
1459 	if (level == -1)
1460 		err_suj("Invalid level for lbn %jd\n", lbn);
1461 	lbnadd = 1;
1462 	for (i = level; i > 0; i--)
1463 		lbnadd *= NINDIR(fs);
1464 	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1465 	bap2 = (void *)bap1;
1466 	for (i = 0; i < NINDIR(fs); i++) {
1467 		if (fs->fs_magic == FS_UFS1_MAGIC)
1468 			nblk = *bap1++;
1469 		else
1470 			nblk = *bap2++;
1471 		if (nblk == 0)
1472 			continue;
1473 		if (level != 0) {
1474 			nlbn = (lbn + 1) - (i * lbnadd);
1475 			/*
1476 			 * Calculate the lbn of the next indirect to
1477 			 * determine if any of this indirect must be
1478 			 * reclaimed.
1479 			 */
1480 			next = -(lbn + level) + ((i+1) * lbnadd);
1481 			if (next <= lastlbn)
1482 				continue;
1483 			indir_trunc(ino, nlbn, nblk, lastlbn);
1484 			/* If all of this indirect was reclaimed, free it. */
1485 			nlbn = next - lbnadd;
1486 			if (nlbn < lastlbn)
1487 				continue;
1488 		} else {
1489 			nlbn = -lbn + i * lbnadd;
1490 			if (nlbn < lastlbn)
1491 				continue;
1492 		}
1493 		dirty = 1;
1494 		blk_free(nblk, 0, fs->fs_frag);
1495 		if (fs->fs_magic == FS_UFS1_MAGIC)
1496 			*(bap1 - 1) = 0;
1497 		else
1498 			*(bap2 - 1) = 0;
1499 	}
1500 	if (dirty)
1501 		dblk_dirty(blk);
1502 }
1503 
1504 /*
1505  * Truncate an inode to the minimum of the given size or the last populated
1506  * block after any over size have been discarded.  The kernel would allocate
1507  * the last block in the file but fsck does not and neither do we.  This
1508  * code never extends files, only shrinks them.
1509  */
1510 static void
1511 ino_trunc(ino_t ino, off_t size)
1512 {
1513 	union dinode *ip;
1514 	ufs2_daddr_t bn;
1515 	uint64_t totalfrags;
1516 	ufs_lbn_t nextlbn;
1517 	ufs_lbn_t lastlbn;
1518 	ufs_lbn_t tmpval;
1519 	ufs_lbn_t lbn;
1520 	ufs_lbn_t i;
1521 	int frags;
1522 	off_t cursize;
1523 	off_t off;
1524 	int mode;
1525 
1526 	ip = ino_read(ino);
1527 	mode = DIP(ip, di_mode) & IFMT;
1528 	cursize = DIP(ip, di_size);
1529 	if (debug)
1530 		printf("Truncating ino %d, mode %o to size %jd from size %jd\n",
1531 		    ino, mode, size, cursize);
1532 
1533 	/* Skip datablocks for short links and devices. */
1534 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1535 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1536 		return;
1537 	/* Don't extend. */
1538 	if (size > cursize)
1539 		size = cursize;
1540 	lastlbn = lblkno(fs, blkroundup(fs, size));
1541 	for (i = lastlbn; i < NDADDR; i++) {
1542 		if (DIP(ip, di_db[i]) == 0)
1543 			continue;
1544 		frags = sblksize(fs, cursize, i);
1545 		frags = numfrags(fs, frags);
1546 		blk_free(DIP(ip, di_db[i]), 0, frags);
1547 		DIP_SET(ip, di_db[i], 0);
1548 	}
1549 	/*
1550 	 * Follow indirect blocks, freeing anything required.
1551 	 */
1552 	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1553 	    lbn = nextlbn) {
1554 		nextlbn = lbn + tmpval;
1555 		tmpval *= NINDIR(fs);
1556 		/* If we're not freeing any in this indirect range skip it. */
1557 		if (lastlbn >= nextlbn)
1558 			continue;
1559 		if (DIP(ip, di_ib[i]) == 0)
1560 			continue;
1561 		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1562 		/* If we freed everything in this indirect free the indir. */
1563 		if (lastlbn > lbn)
1564 			continue;
1565 		blk_free(DIP(ip, di_ib[i]), 0, frags);
1566 		DIP_SET(ip, di_ib[i], 0);
1567 	}
1568 	ino_dirty(ino);
1569 	/*
1570 	 * Now that we've freed any whole blocks that exceed the desired
1571 	 * truncation size, figure out how many blocks remain and what the
1572 	 * last populated lbn is.  We will set the size to this last lbn
1573 	 * rather than worrying about allocating the final lbn as the kernel
1574 	 * would've done.  This is consistent with normal fsck behavior.
1575 	 */
1576 	visitlbn = 0;
1577 	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1578 	if (size > lblktosize(fs, visitlbn + 1))
1579 		size = lblktosize(fs, visitlbn + 1);
1580 	/*
1581 	 * If we're truncating direct blocks we have to adjust frags
1582 	 * accordingly.
1583 	 */
1584 	if (visitlbn < NDADDR && totalfrags) {
1585 		long oldspace, newspace;
1586 
1587 		bn = DIP(ip, di_db[visitlbn]);
1588 		if (bn == 0)
1589 			err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn);
1590 		oldspace = sblksize(fs, cursize, visitlbn);
1591 		newspace = sblksize(fs, size, visitlbn);
1592 		if (oldspace != newspace) {
1593 			bn += numfrags(fs, newspace);
1594 			frags = numfrags(fs, oldspace - newspace);
1595 			blk_free(bn, 0, frags);
1596 			totalfrags -= frags;
1597 		}
1598 	}
1599 	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1600 	DIP_SET(ip, di_size, size);
1601 	/*
1602 	 * If we've truncated into the middle of a block or frag we have
1603 	 * to zero it here.  Otherwise the file could extend into
1604 	 * uninitialized space later.
1605 	 */
1606 	off = blkoff(fs, size);
1607 	if (off && DIP(ip, di_mode) != IFDIR) {
1608 		uint8_t *buf;
1609 		long clrsize;
1610 
1611 		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1612 		if (bn == 0)
1613 			err_suj("Block missing from ino %d at lbn %jd\n",
1614 			    ino, visitlbn);
1615 		clrsize = frags * fs->fs_fsize;
1616 		buf = dblk_read(bn, clrsize);
1617 		clrsize -= off;
1618 		buf += off;
1619 		bzero(buf, clrsize);
1620 		dblk_dirty(bn);
1621 	}
1622 	return;
1623 }
1624 
1625 /*
1626  * Process records available for one inode and determine whether the
1627  * link count is correct or needs adjusting.
1628  */
1629 static void
1630 ino_check(struct suj_ino *sino)
1631 {
1632 	struct suj_rec *srec;
1633 	struct jrefrec *rrec;
1634 	nlink_t dotlinks;
1635 	int newlinks;
1636 	int removes;
1637 	int nlink;
1638 	ino_t ino;
1639 	int isdot;
1640 	int isat;
1641 	int mode;
1642 
1643 	if (sino->si_hasrecs == 0)
1644 		return;
1645 	ino = sino->si_ino;
1646 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1647 	nlink = rrec->jr_nlink;
1648 	newlinks = 0;
1649 	dotlinks = 0;
1650 	removes = sino->si_nlinkadj;
1651 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1652 		rrec = (struct jrefrec *)srec->sr_rec;
1653 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1654 		    rrec->jr_ino, &mode, &isdot);
1655 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1656 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1657 			    mode, rrec->jr_mode);
1658 		if (debug)
1659 			printf("jrefrec: op %d ino %d, nlink %d, parent %d, "
1660 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1661 			    rrec->jr_op, rrec->jr_ino, rrec->jr_nlink,
1662 			    rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode,
1663 			    isat, isdot);
1664 		mode = rrec->jr_mode & IFMT;
1665 		if (rrec->jr_op == JOP_REMREF)
1666 			removes++;
1667 		newlinks += isat;
1668 		if (isdot)
1669 			dotlinks += isat;
1670 	}
1671 	/*
1672 	 * The number of links that remain are the starting link count
1673 	 * subtracted by the total number of removes with the total
1674 	 * links discovered back in.  An incomplete remove thus
1675 	 * makes no change to the link count but an add increases
1676 	 * by one.
1677 	 */
1678 	if (debug)
1679 		printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n",
1680 		    ino, nlink, newlinks, removes, dotlinks);
1681 	nlink += newlinks;
1682 	nlink -= removes;
1683 	sino->si_linkadj = 1;
1684 	sino->si_nlink = nlink;
1685 	sino->si_dotlinks = dotlinks;
1686 	sino->si_mode = mode;
1687 	ino_adjust(sino);
1688 }
1689 
1690 /*
1691  * Process records available for one block and determine whether it is
1692  * still allocated and whether the owning inode needs to be updated or
1693  * a free completed.
1694  */
1695 static void
1696 blk_check(struct suj_blk *sblk)
1697 {
1698 	struct suj_rec *srec;
1699 	struct jblkrec *brec;
1700 	struct suj_ino *sino;
1701 	ufs2_daddr_t blk;
1702 	int mask;
1703 	int frags;
1704 	int isat;
1705 
1706 	/*
1707 	 * Each suj_blk actually contains records for any fragments in that
1708 	 * block.  As a result we must evaluate each record individually.
1709 	 */
1710 	sino = NULL;
1711 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1712 		brec = (struct jblkrec *)srec->sr_rec;
1713 		frags = brec->jb_frags;
1714 		blk = brec->jb_blkno + brec->jb_oldfrags;
1715 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1716 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1717 			sino = ino_lookup(brec->jb_ino, 1);
1718 			sino->si_blkadj = 1;
1719 		}
1720 		if (debug)
1721 			printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n",
1722 			    brec->jb_op, blk, brec->jb_ino, brec->jb_lbn,
1723 			    brec->jb_frags, isat, frags);
1724 		/*
1725 		 * If we found the block at this address we still have to
1726 		 * determine if we need to free the tail end that was
1727 		 * added by adding contiguous fragments from the same block.
1728 		 */
1729 		if (isat == 1) {
1730 			if (frags == brec->jb_frags)
1731 				continue;
1732 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1733 			    brec->jb_frags);
1734 			mask >>= frags;
1735 			blk += frags;
1736 			frags = brec->jb_frags - frags;
1737 			blk_free(blk, mask, frags);
1738 			continue;
1739 		}
1740 		/*
1741 	 	 * The block wasn't found, attempt to free it.  It won't be
1742 		 * freed if it was actually reallocated.  If this was an
1743 		 * allocation we don't want to follow indirects as they
1744 		 * may not be written yet.  Any children of the indirect will
1745 		 * have their own records.  If it's a free we need to
1746 		 * recursively free children.
1747 		 */
1748 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1749 		    brec->jb_op == JOP_FREEBLK);
1750 	}
1751 }
1752 
1753 /*
1754  * Walk the list of inode records for this cg and resolve moved and duplicate
1755  * inode references now that we have a complete picture.
1756  */
1757 static void
1758 cg_build(struct suj_cg *sc)
1759 {
1760 	struct suj_ino *sino;
1761 	int i;
1762 
1763 	for (i = 0; i < SUJ_HASHSIZE; i++)
1764 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1765 			ino_build(sino);
1766 }
1767 
1768 /*
1769  * Handle inodes requiring truncation.  This must be done prior to
1770  * looking up any inodes in directories.
1771  */
1772 static void
1773 cg_trunc(struct suj_cg *sc)
1774 {
1775 	struct suj_ino *sino;
1776 	int i;
1777 
1778 	for (i = 0; i < SUJ_HASHSIZE; i++) {
1779 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1780 			if (sino->si_trunc) {
1781 				ino_trunc(sino->si_ino,
1782 				    sino->si_trunc->jt_size);
1783 				sino->si_blkadj = 0;
1784 				sino->si_trunc = NULL;
1785 			}
1786 			if (sino->si_blkadj)
1787 				ino_adjblks(sino);
1788 		}
1789 	}
1790 }
1791 
1792 /*
1793  * Free any partially allocated blocks and then resolve inode block
1794  * counts.
1795  */
1796 static void
1797 cg_check_blk(struct suj_cg *sc)
1798 {
1799 	struct suj_blk *sblk;
1800 	int i;
1801 
1802 
1803 	for (i = 0; i < SUJ_HASHSIZE; i++)
1804 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1805 			blk_check(sblk);
1806 }
1807 
1808 /*
1809  * Walk the list of inode records for this cg, recovering any
1810  * changes which were not complete at the time of crash.
1811  */
1812 static void
1813 cg_check_ino(struct suj_cg *sc)
1814 {
1815 	struct suj_ino *sino;
1816 	int i;
1817 
1818 	for (i = 0; i < SUJ_HASHSIZE; i++)
1819 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1820 			ino_check(sino);
1821 }
1822 
1823 /*
1824  * Write a potentially dirty cg.  Recalculate the summary information and
1825  * update the superblock summary.
1826  */
1827 static void
1828 cg_write(struct suj_cg *sc)
1829 {
1830 	ufs1_daddr_t fragno, cgbno, maxbno;
1831 	u_int8_t *blksfree;
1832 	struct cg *cgp;
1833 	int blk;
1834 	int i;
1835 
1836 	if (sc->sc_dirty == 0)
1837 		return;
1838 	/*
1839 	 * Fix the frag and cluster summary.
1840 	 */
1841 	cgp = sc->sc_cgp;
1842 	cgp->cg_cs.cs_nbfree = 0;
1843 	cgp->cg_cs.cs_nffree = 0;
1844 	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1845 	maxbno = fragstoblks(fs, fs->fs_fpg);
1846 	if (fs->fs_contigsumsize > 0) {
1847 		for (i = 1; i <= fs->fs_contigsumsize; i++)
1848 			cg_clustersum(cgp)[i] = 0;
1849 		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1850 	}
1851 	blksfree = cg_blksfree(cgp);
1852 	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1853 		if (ffs_isfreeblock(fs, blksfree, cgbno))
1854 			continue;
1855 		if (ffs_isblock(fs, blksfree, cgbno)) {
1856 			ffs_clusteracct(fs, cgp, cgbno, 1);
1857 			cgp->cg_cs.cs_nbfree++;
1858 			continue;
1859 		}
1860 		fragno = blkstofrags(fs, cgbno);
1861 		blk = blkmap(fs, blksfree, fragno);
1862 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1863 		for (i = 0; i < fs->fs_frag; i++)
1864 			if (isset(blksfree, fragno + i))
1865 				cgp->cg_cs.cs_nffree++;
1866 	}
1867 	/*
1868 	 * Update the superblock cg summary from our now correct values
1869 	 * before writing the block.
1870 	 */
1871 	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1872 	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1873 	    fs->fs_bsize) == -1)
1874 		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1875 }
1876 
1877 /*
1878  * Write out any modified inodes.
1879  */
1880 static void
1881 cg_write_inos(struct suj_cg *sc)
1882 {
1883 	struct ino_blk *iblk;
1884 	int i;
1885 
1886 	for (i = 0; i < SUJ_HASHSIZE; i++)
1887 		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1888 			if (iblk->ib_dirty)
1889 				iblk_write(iblk);
1890 }
1891 
1892 static void
1893 cg_apply(void (*apply)(struct suj_cg *))
1894 {
1895 	struct suj_cg *scg;
1896 	int i;
1897 
1898 	for (i = 0; i < SUJ_HASHSIZE; i++)
1899 		LIST_FOREACH(scg, &cghash[i], sc_next)
1900 			apply(scg);
1901 }
1902 
1903 /*
1904  * Process the unlinked but referenced file list.  Freeing all inodes.
1905  */
1906 static void
1907 ino_unlinked(void)
1908 {
1909 	union dinode *ip;
1910 	uint16_t mode;
1911 	ino_t inon;
1912 	ino_t ino;
1913 
1914 	ino = fs->fs_sujfree;
1915 	fs->fs_sujfree = 0;
1916 	while (ino != 0) {
1917 		ip = ino_read(ino);
1918 		mode = DIP(ip, di_mode) & IFMT;
1919 		inon = DIP(ip, di_freelink);
1920 		DIP_SET(ip, di_freelink, 0);
1921 		/*
1922 		 * XXX Should this be an errx?
1923 		 */
1924 		if (DIP(ip, di_nlink) == 0) {
1925 			if (debug)
1926 				printf("Freeing unlinked ino %d mode %o\n",
1927 				    ino, mode);
1928 			ino_reclaim(ip, ino, mode);
1929 		} else if (debug)
1930 			printf("Skipping ino %d mode %o with link %d\n",
1931 			    ino, mode, DIP(ip, di_nlink));
1932 		ino = inon;
1933 	}
1934 }
1935 
1936 /*
1937  * Append a new record to the list of records requiring processing.
1938  */
1939 static void
1940 ino_append(union jrec *rec)
1941 {
1942 	struct jrefrec *refrec;
1943 	struct jmvrec *mvrec;
1944 	struct suj_ino *sino;
1945 	struct suj_rec *srec;
1946 
1947 	mvrec = &rec->rec_jmvrec;
1948 	refrec = &rec->rec_jrefrec;
1949 	if (debug && mvrec->jm_op == JOP_MVREF)
1950 		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1951 		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1952 		    mvrec->jm_oldoff);
1953 	else if (debug &&
1954 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1955 		printf("ino ref: op %d, ino %d, nlink %d, "
1956 		    "parent %d, diroff %jd\n",
1957 		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1958 		    refrec->jr_parent, refrec->jr_diroff);
1959 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1960 	sino->si_hasrecs = 1;
1961 	srec = errmalloc(sizeof(*srec));
1962 	srec->sr_rec = rec;
1963 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1964 }
1965 
1966 /*
1967  * Add a reference adjustment to the sino list and eliminate dups.  The
1968  * primary loop in ino_build_ref() checks for dups but new ones may be
1969  * created as a result of offset adjustments.
1970  */
1971 static void
1972 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1973 {
1974 	struct jrefrec *refrec;
1975 	struct suj_rec *srn;
1976 	struct jrefrec *rrn;
1977 
1978 	refrec = (struct jrefrec *)srec->sr_rec;
1979 	/*
1980 	 * We walk backwards so that the oldest link count is preserved.  If
1981 	 * an add record conflicts with a remove keep the remove.  Redundant
1982 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1983 	 * oldest record at a given location.
1984 	 */
1985 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1986 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1987 		rrn = (struct jrefrec *)srn->sr_rec;
1988 		if (rrn->jr_parent != refrec->jr_parent ||
1989 		    rrn->jr_diroff != refrec->jr_diroff)
1990 			continue;
1991 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1992 			rrn->jr_mode = refrec->jr_mode;
1993 			return;
1994 		}
1995 		/*
1996 		 * Adding a remove.
1997 		 *
1998 		 * Replace the record in place with the old nlink in case
1999 		 * we replace the head of the list.  Abandon srec as a dup.
2000 		 */
2001 		refrec->jr_nlink = rrn->jr_nlink;
2002 		srn->sr_rec = srec->sr_rec;
2003 		return;
2004 	}
2005 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2006 }
2007 
2008 /*
2009  * Create a duplicate of a reference at a previous location.
2010  */
2011 static void
2012 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2013 {
2014 	struct jrefrec *rrn;
2015 	struct suj_rec *srn;
2016 
2017 	rrn = errmalloc(sizeof(*refrec));
2018 	*rrn = *refrec;
2019 	rrn->jr_op = JOP_ADDREF;
2020 	rrn->jr_diroff = diroff;
2021 	srn = errmalloc(sizeof(*srn));
2022 	srn->sr_rec = (union jrec *)rrn;
2023 	ino_add_ref(sino, srn);
2024 }
2025 
2026 /*
2027  * Add a reference to the list at all known locations.  We follow the offset
2028  * changes for a single instance and create duplicate add refs at each so
2029  * that we can tolerate any version of the directory block.  Eliminate
2030  * removes which collide with adds that are seen in the journal.  They should
2031  * not adjust the link count down.
2032  */
2033 static void
2034 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2035 {
2036 	struct jrefrec *refrec;
2037 	struct jmvrec *mvrec;
2038 	struct suj_rec *srp;
2039 	struct suj_rec *srn;
2040 	struct jrefrec *rrn;
2041 	off_t diroff;
2042 
2043 	refrec = (struct jrefrec *)srec->sr_rec;
2044 	/*
2045 	 * Search for a mvrec that matches this offset.  Whether it's an add
2046 	 * or a remove we can delete the mvref after creating a dup record in
2047 	 * the old location.
2048 	 */
2049 	if (!TAILQ_EMPTY(&sino->si_movs)) {
2050 		diroff = refrec->jr_diroff;
2051 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2052 			srp = TAILQ_PREV(srn, srechd, sr_next);
2053 			mvrec = (struct jmvrec *)srn->sr_rec;
2054 			if (mvrec->jm_parent != refrec->jr_parent ||
2055 			    mvrec->jm_newoff != diroff)
2056 				continue;
2057 			diroff = mvrec->jm_oldoff;
2058 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2059 			free(srn);
2060 			ino_dup_ref(sino, refrec, diroff);
2061 		}
2062 	}
2063 	/*
2064 	 * If a remove wasn't eliminated by an earlier add just append it to
2065 	 * the list.
2066 	 */
2067 	if (refrec->jr_op == JOP_REMREF) {
2068 		ino_add_ref(sino, srec);
2069 		return;
2070 	}
2071 	/*
2072 	 * Walk the list of records waiting to be added to the list.  We
2073 	 * must check for moves that apply to our current offset and remove
2074 	 * them from the list.  Remove any duplicates to eliminate removes
2075 	 * with corresponding adds.
2076 	 */
2077 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2078 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2079 		case JOP_ADDREF:
2080 			/*
2081 			 * This should actually be an error we should
2082 			 * have a remove for every add journaled.
2083 			 */
2084 			rrn = (struct jrefrec *)srn->sr_rec;
2085 			if (rrn->jr_parent != refrec->jr_parent ||
2086 			    rrn->jr_diroff != refrec->jr_diroff)
2087 				break;
2088 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2089 			break;
2090 		case JOP_REMREF:
2091 			/*
2092 			 * Once we remove the current iteration of the
2093 			 * record at this address we're done.
2094 			 */
2095 			rrn = (struct jrefrec *)srn->sr_rec;
2096 			if (rrn->jr_parent != refrec->jr_parent ||
2097 			    rrn->jr_diroff != refrec->jr_diroff)
2098 				break;
2099 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2100 			ino_add_ref(sino, srec);
2101 			return;
2102 		case JOP_MVREF:
2103 			/*
2104 			 * Update our diroff based on any moves that match
2105 			 * and remove the move.
2106 			 */
2107 			mvrec = (struct jmvrec *)srn->sr_rec;
2108 			if (mvrec->jm_parent != refrec->jr_parent ||
2109 			    mvrec->jm_oldoff != refrec->jr_diroff)
2110 				break;
2111 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2112 			refrec->jr_diroff = mvrec->jm_newoff;
2113 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2114 			break;
2115 		default:
2116 			err_suj("ino_build_ref: Unknown op %d\n",
2117 			    srn->sr_rec->rec_jrefrec.jr_op);
2118 		}
2119 	}
2120 	ino_add_ref(sino, srec);
2121 }
2122 
2123 /*
2124  * Walk the list of new records and add them in-order resolving any
2125  * dups and adjusted offsets.
2126  */
2127 static void
2128 ino_build(struct suj_ino *sino)
2129 {
2130 	struct suj_rec *srec;
2131 
2132 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2133 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2134 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2135 		case JOP_ADDREF:
2136 		case JOP_REMREF:
2137 			ino_build_ref(sino, srec);
2138 			break;
2139 		case JOP_MVREF:
2140 			/*
2141 			 * Add this mvrec to the queue of pending mvs.
2142 			 */
2143 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2144 			break;
2145 		default:
2146 			err_suj("ino_build: Unknown op %d\n",
2147 			    srec->sr_rec->rec_jrefrec.jr_op);
2148 		}
2149 	}
2150 	if (TAILQ_EMPTY(&sino->si_recs))
2151 		sino->si_hasrecs = 0;
2152 }
2153 
2154 /*
2155  * Modify journal records so they refer to the base block number
2156  * and a start and end frag range.  This is to facilitate the discovery
2157  * of overlapping fragment allocations.
2158  */
2159 static void
2160 blk_build(struct jblkrec *blkrec)
2161 {
2162 	struct suj_rec *srec;
2163 	struct suj_blk *sblk;
2164 	struct jblkrec *blkrn;
2165 	ufs2_daddr_t blk;
2166 	int frag;
2167 
2168 	if (debug)
2169 		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2170 		    "ino %d lbn %jd\n",
2171 		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2172 		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2173 
2174 	blk = blknum(fs, blkrec->jb_blkno);
2175 	frag = fragnum(fs, blkrec->jb_blkno);
2176 	sblk = blk_lookup(blk, 1);
2177 	/*
2178 	 * Rewrite the record using oldfrags to indicate the offset into
2179 	 * the block.  Leave jb_frags as the actual allocated count.
2180 	 */
2181 	blkrec->jb_blkno -= frag;
2182 	blkrec->jb_oldfrags = frag;
2183 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2184 		err_suj("Invalid fragment count %d oldfrags %d\n",
2185 		    blkrec->jb_frags, frag);
2186 	/*
2187 	 * Detect dups.  If we detect a dup we always discard the oldest
2188 	 * record as it is superseded by the new record.  This speeds up
2189 	 * later stages but also eliminates free records which are used
2190 	 * to indicate that the contents of indirects can be trusted.
2191 	 */
2192 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2193 		blkrn = (struct jblkrec *)srec->sr_rec;
2194 		if (blkrn->jb_ino != blkrec->jb_ino ||
2195 		    blkrn->jb_lbn != blkrec->jb_lbn ||
2196 		    blkrn->jb_blkno != blkrec->jb_blkno ||
2197 		    blkrn->jb_frags != blkrec->jb_frags ||
2198 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2199 			continue;
2200 		if (debug)
2201 			printf("Removed dup.\n");
2202 		/* Discard the free which is a dup with an alloc. */
2203 		if (blkrec->jb_op == JOP_FREEBLK)
2204 			return;
2205 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2206 		free(srec);
2207 		break;
2208 	}
2209 	srec = errmalloc(sizeof(*srec));
2210 	srec->sr_rec = (union jrec *)blkrec;
2211 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2212 }
2213 
2214 static void
2215 ino_build_trunc(struct jtrncrec *rec)
2216 {
2217 	struct suj_ino *sino;
2218 
2219 	if (debug)
2220 		printf("ino_build_trunc: op %d ino %d, size %jd\n",
2221 		    rec->jt_op, rec->jt_ino, rec->jt_size);
2222 	sino = ino_lookup(rec->jt_ino, 1);
2223 	if (rec->jt_op == JOP_SYNC) {
2224 		sino->si_trunc = NULL;
2225 		return;
2226 	}
2227 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2228 		sino->si_trunc = rec;
2229 }
2230 
2231 /*
2232  * Build up tables of the operations we need to recover.
2233  */
2234 static void
2235 suj_build(void)
2236 {
2237 	struct suj_seg *seg;
2238 	union jrec *rec;
2239 	int off;
2240 	int i;
2241 
2242 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2243 		if (debug)
2244 			printf("seg %jd has %d records, oldseq %jd.\n",
2245 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2246 			    seg->ss_rec.jsr_oldest);
2247 		off = 0;
2248 		rec = (union jrec *)seg->ss_blk;
2249 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2250 			/* skip the segrec. */
2251 			if ((off % real_dev_bsize) == 0)
2252 				continue;
2253 			switch (rec->rec_jrefrec.jr_op) {
2254 			case JOP_ADDREF:
2255 			case JOP_REMREF:
2256 			case JOP_MVREF:
2257 				ino_append(rec);
2258 				break;
2259 			case JOP_NEWBLK:
2260 			case JOP_FREEBLK:
2261 				blk_build((struct jblkrec *)rec);
2262 				break;
2263 			case JOP_TRUNC:
2264 			case JOP_SYNC:
2265 				ino_build_trunc((struct jtrncrec *)rec);
2266 				break;
2267 			default:
2268 				err_suj("Unknown journal operation %d (%d)\n",
2269 				    rec->rec_jrefrec.jr_op, off);
2270 			}
2271 			i++;
2272 		}
2273 	}
2274 }
2275 
2276 /*
2277  * Prune the journal segments to those we care about based on the
2278  * oldest sequence in the newest segment.  Order the segment list
2279  * based on sequence number.
2280  */
2281 static void
2282 suj_prune(void)
2283 {
2284 	struct suj_seg *seg;
2285 	struct suj_seg *segn;
2286 	uint64_t newseq;
2287 	int discard;
2288 
2289 	if (debug)
2290 		printf("Pruning up to %jd\n", oldseq);
2291 	/* First free the expired segments. */
2292 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2293 		if (seg->ss_rec.jsr_seq >= oldseq)
2294 			continue;
2295 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2296 		free(seg->ss_blk);
2297 		free(seg);
2298 	}
2299 	/* Next ensure that segments are ordered properly. */
2300 	seg = TAILQ_FIRST(&allsegs);
2301 	if (seg == NULL) {
2302 		if (debug)
2303 			printf("Empty journal\n");
2304 		return;
2305 	}
2306 	newseq = seg->ss_rec.jsr_seq;
2307 	for (;;) {
2308 		seg = TAILQ_LAST(&allsegs, seghd);
2309 		if (seg->ss_rec.jsr_seq >= newseq)
2310 			break;
2311 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2312 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2313 		newseq = seg->ss_rec.jsr_seq;
2314 
2315 	}
2316 	if (newseq != oldseq) {
2317 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2318 		    newseq, oldseq);
2319 	}
2320 	/*
2321 	 * The kernel may asynchronously write segments which can create
2322 	 * gaps in the sequence space.  Throw away any segments after the
2323 	 * gap as the kernel guarantees only those that are contiguously
2324 	 * reachable are marked as completed.
2325 	 */
2326 	discard = 0;
2327 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2328 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2329 			jrecs += seg->ss_rec.jsr_cnt;
2330 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2331 			continue;
2332 		}
2333 		discard = 1;
2334 		if (debug)
2335 			printf("Journal order mismatch %jd != %jd pruning\n",
2336 			    newseq-1, seg->ss_rec.jsr_seq);
2337 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2338 		free(seg->ss_blk);
2339 		free(seg);
2340 	}
2341 	if (debug)
2342 		printf("Processing journal segments from %jd to %jd\n",
2343 		    oldseq, newseq-1);
2344 }
2345 
2346 /*
2347  * Verify the journal inode before attempting to read records.
2348  */
2349 static int
2350 suj_verifyino(union dinode *ip)
2351 {
2352 
2353 	if (DIP(ip, di_nlink) != 1) {
2354 		printf("Invalid link count %d for journal inode %d\n",
2355 		    DIP(ip, di_nlink), sujino);
2356 		return (-1);
2357 	}
2358 
2359 	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2360 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2361 		printf("Invalid flags 0x%X for journal inode %d\n",
2362 		    DIP(ip, di_flags), sujino);
2363 		return (-1);
2364 	}
2365 
2366 	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2367 		printf("Invalid mode %o for journal inode %d\n",
2368 		    DIP(ip, di_mode), sujino);
2369 		return (-1);
2370 	}
2371 
2372 	if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) {
2373 		printf("Invalid size %jd for journal inode %d\n",
2374 		    DIP(ip, di_size), sujino);
2375 		return (-1);
2376 	}
2377 
2378 	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2379 		printf("Journal timestamp does not match fs mount time\n");
2380 		return (-1);
2381 	}
2382 
2383 	return (0);
2384 }
2385 
2386 struct jblocks {
2387 	struct jextent *jb_extent;	/* Extent array. */
2388 	int		jb_avail;	/* Available extents. */
2389 	int		jb_used;	/* Last used extent. */
2390 	int		jb_head;	/* Allocator head. */
2391 	int		jb_off;		/* Allocator extent offset. */
2392 };
2393 struct jextent {
2394 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2395 	int		je_blocks;	/* Disk block count. */
2396 };
2397 
2398 struct jblocks *suj_jblocks;
2399 
2400 static struct jblocks *
2401 jblocks_create(void)
2402 {
2403 	struct jblocks *jblocks;
2404 	int size;
2405 
2406 	jblocks = errmalloc(sizeof(*jblocks));
2407 	jblocks->jb_avail = 10;
2408 	jblocks->jb_used = 0;
2409 	jblocks->jb_head = 0;
2410 	jblocks->jb_off = 0;
2411 	size = sizeof(struct jextent) * jblocks->jb_avail;
2412 	jblocks->jb_extent = errmalloc(size);
2413 	bzero(jblocks->jb_extent, size);
2414 
2415 	return (jblocks);
2416 }
2417 
2418 /*
2419  * Return the next available disk block and the amount of contiguous
2420  * free space it contains.
2421  */
2422 static ufs2_daddr_t
2423 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2424 {
2425 	struct jextent *jext;
2426 	ufs2_daddr_t daddr;
2427 	int freecnt;
2428 	int blocks;
2429 
2430 	blocks = bytes / disk->d_bsize;
2431 	jext = &jblocks->jb_extent[jblocks->jb_head];
2432 	freecnt = jext->je_blocks - jblocks->jb_off;
2433 	if (freecnt == 0) {
2434 		jblocks->jb_off = 0;
2435 		if (++jblocks->jb_head > jblocks->jb_used)
2436 			return (0);
2437 		jext = &jblocks->jb_extent[jblocks->jb_head];
2438 		freecnt = jext->je_blocks;
2439 	}
2440 	if (freecnt > blocks)
2441 		freecnt = blocks;
2442 	*actual = freecnt * disk->d_bsize;
2443 	daddr = jext->je_daddr + jblocks->jb_off;
2444 
2445 	return (daddr);
2446 }
2447 
2448 /*
2449  * Advance the allocation head by a specified number of bytes, consuming
2450  * one journal segment.
2451  */
2452 static void
2453 jblocks_advance(struct jblocks *jblocks, int bytes)
2454 {
2455 
2456 	jblocks->jb_off += bytes / disk->d_bsize;
2457 }
2458 
2459 static void
2460 jblocks_destroy(struct jblocks *jblocks)
2461 {
2462 
2463 	free(jblocks->jb_extent);
2464 	free(jblocks);
2465 }
2466 
2467 static void
2468 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2469 {
2470 	struct jextent *jext;
2471 	int size;
2472 
2473 	jext = &jblocks->jb_extent[jblocks->jb_used];
2474 	/* Adding the first block. */
2475 	if (jext->je_daddr == 0) {
2476 		jext->je_daddr = daddr;
2477 		jext->je_blocks = blocks;
2478 		return;
2479 	}
2480 	/* Extending the last extent. */
2481 	if (jext->je_daddr + jext->je_blocks == daddr) {
2482 		jext->je_blocks += blocks;
2483 		return;
2484 	}
2485 	/* Adding a new extent. */
2486 	if (++jblocks->jb_used == jblocks->jb_avail) {
2487 		jblocks->jb_avail *= 2;
2488 		size = sizeof(struct jextent) * jblocks->jb_avail;
2489 		jext = errmalloc(size);
2490 		bzero(jext, size);
2491 		bcopy(jblocks->jb_extent, jext,
2492 		    sizeof(struct jextent) * jblocks->jb_used);
2493 		free(jblocks->jb_extent);
2494 		jblocks->jb_extent = jext;
2495 	}
2496 	jext = &jblocks->jb_extent[jblocks->jb_used];
2497 	jext->je_daddr = daddr;
2498 	jext->je_blocks = blocks;
2499 
2500 	return;
2501 }
2502 
2503 /*
2504  * Add a file block from the journal to the extent map.  We can't read
2505  * each file block individually because the kernel treats it as a circular
2506  * buffer and segments may span mutliple contiguous blocks.
2507  */
2508 static void
2509 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2510 {
2511 
2512 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2513 }
2514 
2515 static void
2516 suj_read(void)
2517 {
2518 	uint8_t block[1 * 1024 * 1024];
2519 	struct suj_seg *seg;
2520 	struct jsegrec *recn;
2521 	struct jsegrec *rec;
2522 	ufs2_daddr_t blk;
2523 	int readsize;
2524 	int blocks;
2525 	int recsize;
2526 	int size;
2527 	int i;
2528 
2529 	/*
2530 	 * Read records until we exhaust the journal space.  If we find
2531 	 * an invalid record we start searching for a valid segment header
2532 	 * at the next block.  This is because we don't have a head/tail
2533 	 * pointer and must recover the information indirectly.  At the gap
2534 	 * between the head and tail we won't necessarily have a valid
2535 	 * segment.
2536 	 */
2537 restart:
2538 	for (;;) {
2539 		size = sizeof(block);
2540 		blk = jblocks_next(suj_jblocks, size, &readsize);
2541 		if (blk == 0)
2542 			return;
2543 		size = readsize;
2544 		/*
2545 		 * Read 1MB at a time and scan for records within this block.
2546 		 */
2547 		if (bread(disk, blk, &block, size) == -1) {
2548 			err_suj("Error reading journal block %jd\n",
2549 			    (intmax_t)blk);
2550 		}
2551 		for (rec = (void *)block; size; size -= recsize,
2552 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2553 			recsize = real_dev_bsize;
2554 			if (rec->jsr_time != fs->fs_mtime) {
2555 				if (debug)
2556 					printf("Rec time %jd != fs mtime %jd\n",
2557 					    rec->jsr_time, fs->fs_mtime);
2558 				jblocks_advance(suj_jblocks, recsize);
2559 				continue;
2560 			}
2561 			if (rec->jsr_cnt == 0) {
2562 				if (debug)
2563 					printf("Found illegal count %d\n",
2564 					    rec->jsr_cnt);
2565 				jblocks_advance(suj_jblocks, recsize);
2566 				continue;
2567 			}
2568 			blocks = rec->jsr_blocks;
2569 			recsize = blocks * real_dev_bsize;
2570 			if (recsize > size) {
2571 				/*
2572 				 * We may just have run out of buffer, restart
2573 				 * the loop to re-read from this spot.
2574 				 */
2575 				if (size < fs->fs_bsize &&
2576 				    size != readsize &&
2577 				    recsize <= fs->fs_bsize)
2578 					goto restart;
2579 				if (debug)
2580 					printf("Found invalid segsize %d > %d\n",
2581 					    recsize, size);
2582 				recsize = real_dev_bsize;
2583 				jblocks_advance(suj_jblocks, recsize);
2584 				continue;
2585 			}
2586 			/*
2587 			 * Verify that all blocks in the segment are present.
2588 			 */
2589 			for (i = 1; i < blocks; i++) {
2590 				recn = (void *)((uintptr_t)rec) + i *
2591 				    real_dev_bsize;
2592 				if (recn->jsr_seq == rec->jsr_seq &&
2593 				    recn->jsr_time == rec->jsr_time)
2594 					continue;
2595 				if (debug)
2596 					printf("Incomplete record %jd (%d)\n",
2597 					    rec->jsr_seq, i);
2598 				recsize = i * real_dev_bsize;
2599 				jblocks_advance(suj_jblocks, recsize);
2600 				goto restart;
2601 			}
2602 			seg = errmalloc(sizeof(*seg));
2603 			seg->ss_blk = errmalloc(recsize);
2604 			seg->ss_rec = *rec;
2605 			bcopy((void *)rec, seg->ss_blk, recsize);
2606 			if (rec->jsr_oldest > oldseq)
2607 				oldseq = rec->jsr_oldest;
2608 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2609 			jblocks_advance(suj_jblocks, recsize);
2610 		}
2611 	}
2612 }
2613 
2614 /*
2615  * Search a directory block for the SUJ_FILE.
2616  */
2617 static void
2618 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2619 {
2620 	char block[MAXBSIZE];
2621 	struct direct *dp;
2622 	int bytes;
2623 	int off;
2624 
2625 	if (sujino)
2626 		return;
2627 	bytes = lfragtosize(fs, frags);
2628 	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2629 		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2630 	for (off = 0; off < bytes; off += dp->d_reclen) {
2631 		dp = (struct direct *)&block[off];
2632 		if (dp->d_reclen == 0)
2633 			break;
2634 		if (dp->d_ino == 0)
2635 			continue;
2636 		if (dp->d_namlen != strlen(SUJ_FILE))
2637 			continue;
2638 		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2639 			continue;
2640 		sujino = dp->d_ino;
2641 		return;
2642 	}
2643 }
2644 
2645 /*
2646  * Orchestrate the verification of a filesystem via the softupdates journal.
2647  */
2648 int
2649 suj_check(const char *filesys)
2650 {
2651 	union dinode *jip;
2652 	union dinode *ip;
2653 	uint64_t blocks;
2654 	int retval;
2655 	struct suj_seg *seg;
2656 	struct suj_seg *segn;
2657 
2658 	opendisk(filesys);
2659 	TAILQ_INIT(&allsegs);
2660 
2661 	/*
2662 	 * Set an exit point when SUJ check failed
2663 	 */
2664 	retval = setjmp(jmpbuf);
2665 	if (retval != 0) {
2666 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2667 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2668 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2669 				free(seg->ss_blk);
2670 				free(seg);
2671 		}
2672 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2673 			ckfini(0);
2674 			exit(EEXIT);
2675 		} else
2676 			return (-1);
2677 	}
2678 
2679 	/*
2680 	 * Find the journal inode.
2681 	 */
2682 	ip = ino_read(ROOTINO);
2683 	sujino = 0;
2684 	ino_visit(ip, ROOTINO, suj_find, 0);
2685 	if (sujino == 0) {
2686 		printf("Journal inode removed.  Use tunefs to re-create.\n");
2687 		sblock.fs_flags &= ~FS_SUJ;
2688 		sblock.fs_sujfree = 0;
2689 		return (-1);
2690 	}
2691 	/*
2692 	 * Fetch the journal inode and verify it.
2693 	 */
2694 	jip = ino_read(sujino);
2695 	printf("** SU+J Recovering %s\n", filesys);
2696 	if (suj_verifyino(jip) != 0)
2697 		return (-1);
2698 	/*
2699 	 * Build a list of journal blocks in jblocks before parsing the
2700 	 * available journal blocks in with suj_read().
2701 	 */
2702 	printf("** Reading %jd byte journal from inode %d.\n",
2703 	    DIP(jip, di_size), sujino);
2704 	suj_jblocks = jblocks_create();
2705 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2706 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2707 		printf("Sparse journal inode %d.\n", sujino);
2708 		return (-1);
2709 	}
2710 	suj_read();
2711 	jblocks_destroy(suj_jblocks);
2712 	suj_jblocks = NULL;
2713 	if (preen || reply("RECOVER")) {
2714 		printf("** Building recovery table.\n");
2715 		suj_prune();
2716 		suj_build();
2717 		cg_apply(cg_build);
2718 		printf("** Resolving unreferenced inode list.\n");
2719 		ino_unlinked();
2720 		printf("** Processing journal entries.\n");
2721 		cg_apply(cg_trunc);
2722 		cg_apply(cg_check_blk);
2723 		cg_apply(cg_check_ino);
2724 	}
2725 	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2726 		return (0);
2727 	/*
2728 	 * To remain idempotent with partial truncations the free bitmaps
2729 	 * must be written followed by indirect blocks and lastly inode
2730 	 * blocks.  This preserves access to the modified pointers until
2731 	 * they are freed.
2732 	 */
2733 	cg_apply(cg_write);
2734 	dblk_write();
2735 	cg_apply(cg_write_inos);
2736 	/* Write back superblock. */
2737 	closedisk(filesys);
2738 	if (jrecs > 0 || jbytes > 0) {
2739 		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2740 		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2741 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2742 		    freeinos, freedir, freeblocks, freefrags);
2743 	}
2744 
2745 	return (0);
2746 }
2747