1 /*- 2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/disk.h> 32 #include <sys/disklabel.h> 33 #include <sys/mount.h> 34 #include <sys/stat.h> 35 36 #include <ufs/ufs/ufsmount.h> 37 #include <ufs/ufs/dinode.h> 38 #include <ufs/ufs/dir.h> 39 #include <ufs/ffs/fs.h> 40 41 #include <assert.h> 42 #include <err.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <stdint.h> 48 #include <libufs.h> 49 #include <string.h> 50 #include <strings.h> 51 #include <sysexits.h> 52 #include <time.h> 53 54 #include "fsck.h" 55 56 #define DOTDOT_OFFSET DIRECTSIZ(1) 57 #define SUJ_HASHSIZE 2048 58 #define SUJ_HASHMASK (SUJ_HASHSIZE - 1) 59 #define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK) 60 61 struct suj_seg { 62 TAILQ_ENTRY(suj_seg) ss_next; 63 struct jsegrec ss_rec; 64 uint8_t *ss_blk; 65 }; 66 67 struct suj_rec { 68 TAILQ_ENTRY(suj_rec) sr_next; 69 union jrec *sr_rec; 70 }; 71 TAILQ_HEAD(srechd, suj_rec); 72 73 struct suj_ino { 74 LIST_ENTRY(suj_ino) si_next; 75 struct srechd si_recs; 76 struct srechd si_newrecs; 77 struct srechd si_movs; 78 struct jtrncrec *si_trunc; 79 ino_t si_ino; 80 char si_skipparent; 81 char si_hasrecs; 82 char si_blkadj; 83 char si_linkadj; 84 int si_mode; 85 nlink_t si_nlinkadj; 86 nlink_t si_nlink; 87 nlink_t si_dotlinks; 88 }; 89 LIST_HEAD(inohd, suj_ino); 90 91 struct suj_blk { 92 LIST_ENTRY(suj_blk) sb_next; 93 struct srechd sb_recs; 94 ufs2_daddr_t sb_blk; 95 }; 96 LIST_HEAD(blkhd, suj_blk); 97 98 struct data_blk { 99 LIST_ENTRY(data_blk) db_next; 100 uint8_t *db_buf; 101 ufs2_daddr_t db_blk; 102 int db_size; 103 int db_dirty; 104 }; 105 106 struct ino_blk { 107 LIST_ENTRY(ino_blk) ib_next; 108 uint8_t *ib_buf; 109 int ib_dirty; 110 ufs2_daddr_t ib_blk; 111 }; 112 LIST_HEAD(iblkhd, ino_blk); 113 114 struct suj_cg { 115 LIST_ENTRY(suj_cg) sc_next; 116 struct blkhd sc_blkhash[SUJ_HASHSIZE]; 117 struct inohd sc_inohash[SUJ_HASHSIZE]; 118 struct iblkhd sc_iblkhash[SUJ_HASHSIZE]; 119 struct ino_blk *sc_lastiblk; 120 struct suj_ino *sc_lastino; 121 struct suj_blk *sc_lastblk; 122 uint8_t *sc_cgbuf; 123 struct cg *sc_cgp; 124 int sc_dirty; 125 int sc_cgx; 126 }; 127 128 LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE]; 129 LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE]; 130 struct suj_cg *lastcg; 131 struct data_blk *lastblk; 132 133 TAILQ_HEAD(seghd, suj_seg) allsegs; 134 uint64_t oldseq; 135 static struct uufsd *disk = NULL; 136 static struct fs *fs = NULL; 137 ino_t sujino; 138 139 /* 140 * Summary statistics. 141 */ 142 uint64_t freefrags; 143 uint64_t freeblocks; 144 uint64_t freeinos; 145 uint64_t freedir; 146 uint64_t jbytes; 147 uint64_t jrecs; 148 149 static jmp_buf jmpbuf; 150 151 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 152 static void err_suj(const char *, ...) __dead2; 153 static void ino_trunc(ino_t, off_t); 154 static void ino_decr(ino_t); 155 static void ino_adjust(struct suj_ino *); 156 static void ino_build(struct suj_ino *); 157 static int blk_isfree(ufs2_daddr_t); 158 159 static void * 160 errmalloc(size_t n) 161 { 162 void *a; 163 164 a = malloc(n); 165 if (a == NULL) 166 err(EX_OSERR, "malloc(%zu)", n); 167 return (a); 168 } 169 170 /* 171 * When hit a fatal error in journalling check, print out 172 * the error and then offer to fallback to normal fsck. 173 */ 174 static void 175 err_suj(const char * restrict fmt, ...) 176 { 177 va_list ap; 178 179 if (preen) 180 (void)fprintf(stdout, "%s: ", cdevname); 181 182 va_start(ap, fmt); 183 (void)vfprintf(stdout, fmt, ap); 184 va_end(ap); 185 186 longjmp(jmpbuf, -1); 187 } 188 189 /* 190 * Open the given provider, load superblock. 191 */ 192 static void 193 opendisk(const char *devnam) 194 { 195 if (disk != NULL) 196 return; 197 disk = malloc(sizeof(*disk)); 198 if (disk == NULL) 199 err(EX_OSERR, "malloc(%zu)", sizeof(*disk)); 200 if (ufs_disk_fillout(disk, devnam) == -1) { 201 err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam, 202 disk->d_error); 203 } 204 fs = &disk->d_fs; 205 if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE, 206 &real_dev_bsize) == -1) 207 real_dev_bsize = secsize; 208 if (debug) 209 printf("dev_bsize %ld\n", real_dev_bsize); 210 } 211 212 /* 213 * Mark file system as clean, write the super-block back, close the disk. 214 */ 215 static void 216 closedisk(const char *devnam) 217 { 218 struct csum *cgsum; 219 int i; 220 221 /* 222 * Recompute the fs summary info from correct cs summaries. 223 */ 224 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 225 for (i = 0; i < fs->fs_ncg; i++) { 226 cgsum = &fs->fs_cs(fs, i); 227 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 228 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 229 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 230 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 231 } 232 fs->fs_pendinginodes = 0; 233 fs->fs_pendingblocks = 0; 234 fs->fs_clean = 1; 235 fs->fs_time = time(NULL); 236 fs->fs_mtime = time(NULL); 237 if (sbwrite(disk, 0) == -1) 238 err(EX_OSERR, "sbwrite(%s)", devnam); 239 if (ufs_disk_close(disk) == -1) 240 err(EX_OSERR, "ufs_disk_close(%s)", devnam); 241 free(disk); 242 disk = NULL; 243 fs = NULL; 244 } 245 246 /* 247 * Lookup a cg by number in the hash so we can keep track of which cgs 248 * need stats rebuilt. 249 */ 250 static struct suj_cg * 251 cg_lookup(int cgx) 252 { 253 struct cghd *hd; 254 struct suj_cg *sc; 255 256 if (cgx < 0 || cgx >= fs->fs_ncg) 257 err_suj("Bad cg number %d\n", cgx); 258 if (lastcg && lastcg->sc_cgx == cgx) 259 return (lastcg); 260 hd = &cghash[SUJ_HASH(cgx)]; 261 LIST_FOREACH(sc, hd, sc_next) 262 if (sc->sc_cgx == cgx) { 263 lastcg = sc; 264 return (sc); 265 } 266 sc = errmalloc(sizeof(*sc)); 267 bzero(sc, sizeof(*sc)); 268 sc->sc_cgbuf = errmalloc(fs->fs_bsize); 269 sc->sc_cgp = (struct cg *)sc->sc_cgbuf; 270 sc->sc_cgx = cgx; 271 LIST_INSERT_HEAD(hd, sc, sc_next); 272 if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 273 fs->fs_bsize) == -1) 274 err_suj("Unable to read cylinder group %d\n", sc->sc_cgx); 275 276 return (sc); 277 } 278 279 /* 280 * Lookup an inode number in the hash and allocate a suj_ino if it does 281 * not exist. 282 */ 283 static struct suj_ino * 284 ino_lookup(ino_t ino, int creat) 285 { 286 struct suj_ino *sino; 287 struct inohd *hd; 288 struct suj_cg *sc; 289 290 sc = cg_lookup(ino_to_cg(fs, ino)); 291 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 292 return (sc->sc_lastino); 293 hd = &sc->sc_inohash[SUJ_HASH(ino)]; 294 LIST_FOREACH(sino, hd, si_next) 295 if (sino->si_ino == ino) 296 return (sino); 297 if (creat == 0) 298 return (NULL); 299 sino = errmalloc(sizeof(*sino)); 300 bzero(sino, sizeof(*sino)); 301 sino->si_ino = ino; 302 TAILQ_INIT(&sino->si_recs); 303 TAILQ_INIT(&sino->si_newrecs); 304 TAILQ_INIT(&sino->si_movs); 305 LIST_INSERT_HEAD(hd, sino, si_next); 306 307 return (sino); 308 } 309 310 /* 311 * Lookup a block number in the hash and allocate a suj_blk if it does 312 * not exist. 313 */ 314 static struct suj_blk * 315 blk_lookup(ufs2_daddr_t blk, int creat) 316 { 317 struct suj_blk *sblk; 318 struct suj_cg *sc; 319 struct blkhd *hd; 320 321 sc = cg_lookup(dtog(fs, blk)); 322 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 323 return (sc->sc_lastblk); 324 hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))]; 325 LIST_FOREACH(sblk, hd, sb_next) 326 if (sblk->sb_blk == blk) 327 return (sblk); 328 if (creat == 0) 329 return (NULL); 330 sblk = errmalloc(sizeof(*sblk)); 331 bzero(sblk, sizeof(*sblk)); 332 sblk->sb_blk = blk; 333 TAILQ_INIT(&sblk->sb_recs); 334 LIST_INSERT_HEAD(hd, sblk, sb_next); 335 336 return (sblk); 337 } 338 339 static struct data_blk * 340 dblk_lookup(ufs2_daddr_t blk) 341 { 342 struct data_blk *dblk; 343 struct dblkhd *hd; 344 345 hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))]; 346 if (lastblk && lastblk->db_blk == blk) 347 return (lastblk); 348 LIST_FOREACH(dblk, hd, db_next) 349 if (dblk->db_blk == blk) 350 return (dblk); 351 /* 352 * The inode block wasn't located, allocate a new one. 353 */ 354 dblk = errmalloc(sizeof(*dblk)); 355 bzero(dblk, sizeof(*dblk)); 356 LIST_INSERT_HEAD(hd, dblk, db_next); 357 dblk->db_blk = blk; 358 return (dblk); 359 } 360 361 static uint8_t * 362 dblk_read(ufs2_daddr_t blk, int size) 363 { 364 struct data_blk *dblk; 365 366 dblk = dblk_lookup(blk); 367 /* 368 * I doubt size mismatches can happen in practice but it is trivial 369 * to handle. 370 */ 371 if (size != dblk->db_size) { 372 if (dblk->db_buf) 373 free(dblk->db_buf); 374 dblk->db_buf = errmalloc(size); 375 dblk->db_size = size; 376 if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1) 377 err_suj("Failed to read data block %jd\n", blk); 378 } 379 return (dblk->db_buf); 380 } 381 382 static void 383 dblk_dirty(ufs2_daddr_t blk) 384 { 385 struct data_blk *dblk; 386 387 dblk = dblk_lookup(blk); 388 dblk->db_dirty = 1; 389 } 390 391 static void 392 dblk_write(void) 393 { 394 struct data_blk *dblk; 395 int i; 396 397 for (i = 0; i < SUJ_HASHSIZE; i++) { 398 LIST_FOREACH(dblk, &dbhash[i], db_next) { 399 if (dblk->db_dirty == 0 || dblk->db_size == 0) 400 continue; 401 if (bwrite(disk, fsbtodb(fs, dblk->db_blk), 402 dblk->db_buf, dblk->db_size) == -1) 403 err_suj("Unable to write block %jd\n", 404 dblk->db_blk); 405 } 406 } 407 } 408 409 static union dinode * 410 ino_read(ino_t ino) 411 { 412 struct ino_blk *iblk; 413 struct iblkhd *hd; 414 struct suj_cg *sc; 415 ufs2_daddr_t blk; 416 int off; 417 418 blk = ino_to_fsba(fs, ino); 419 sc = cg_lookup(ino_to_cg(fs, ino)); 420 iblk = sc->sc_lastiblk; 421 if (iblk && iblk->ib_blk == blk) 422 goto found; 423 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 424 LIST_FOREACH(iblk, hd, ib_next) 425 if (iblk->ib_blk == blk) 426 goto found; 427 /* 428 * The inode block wasn't located, allocate a new one. 429 */ 430 iblk = errmalloc(sizeof(*iblk)); 431 bzero(iblk, sizeof(*iblk)); 432 iblk->ib_buf = errmalloc(fs->fs_bsize); 433 iblk->ib_blk = blk; 434 LIST_INSERT_HEAD(hd, iblk, ib_next); 435 if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1) 436 err_suj("Failed to read inode block %jd\n", blk); 437 found: 438 sc->sc_lastiblk = iblk; 439 off = ino_to_fsbo(fs, ino); 440 if (fs->fs_magic == FS_UFS1_MAGIC) 441 return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off]; 442 else 443 return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off]; 444 } 445 446 static void 447 ino_dirty(ino_t ino) 448 { 449 struct ino_blk *iblk; 450 struct iblkhd *hd; 451 struct suj_cg *sc; 452 ufs2_daddr_t blk; 453 454 blk = ino_to_fsba(fs, ino); 455 sc = cg_lookup(ino_to_cg(fs, ino)); 456 iblk = sc->sc_lastiblk; 457 if (iblk && iblk->ib_blk == blk) { 458 iblk->ib_dirty = 1; 459 return; 460 } 461 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 462 LIST_FOREACH(iblk, hd, ib_next) { 463 if (iblk->ib_blk == blk) { 464 iblk->ib_dirty = 1; 465 return; 466 } 467 } 468 ino_read(ino); 469 ino_dirty(ino); 470 } 471 472 static void 473 iblk_write(struct ino_blk *iblk) 474 { 475 476 if (iblk->ib_dirty == 0) 477 return; 478 if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf, 479 fs->fs_bsize) == -1) 480 err_suj("Failed to write inode block %jd\n", iblk->ib_blk); 481 } 482 483 static int 484 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 485 { 486 ufs2_daddr_t bstart; 487 ufs2_daddr_t bend; 488 ufs2_daddr_t end; 489 490 end = start + frags; 491 bstart = brec->jb_blkno + brec->jb_oldfrags; 492 bend = bstart + brec->jb_frags; 493 if (start < bend && end > bstart) 494 return (1); 495 return (0); 496 } 497 498 static int 499 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 500 int frags) 501 { 502 503 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 504 return (0); 505 if (brec->jb_blkno + brec->jb_oldfrags != start) 506 return (0); 507 if (brec->jb_frags != frags) 508 return (0); 509 return (1); 510 } 511 512 static void 513 blk_setmask(struct jblkrec *brec, int *mask) 514 { 515 int i; 516 517 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 518 *mask |= 1 << i; 519 } 520 521 /* 522 * Determine whether a given block has been reallocated to a new location. 523 * Returns a mask of overlapping bits if any frags have been reused or 524 * zero if the block has not been re-used and the contents can be trusted. 525 * 526 * This is used to ensure that an orphaned pointer due to truncate is safe 527 * to be freed. The mask value can be used to free partial blocks. 528 */ 529 static int 530 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 531 { 532 struct suj_blk *sblk; 533 struct suj_rec *srec; 534 struct jblkrec *brec; 535 int mask; 536 int off; 537 538 /* 539 * To be certain we're not freeing a reallocated block we lookup 540 * this block in the blk hash and see if there is an allocation 541 * journal record that overlaps with any fragments in the block 542 * we're concerned with. If any fragments have ben reallocated 543 * the block has already been freed and re-used for another purpose. 544 */ 545 mask = 0; 546 sblk = blk_lookup(blknum(fs, blk), 0); 547 if (sblk == NULL) 548 return (0); 549 off = blk - sblk->sb_blk; 550 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 551 brec = (struct jblkrec *)srec->sr_rec; 552 /* 553 * If the block overlaps but does not match 554 * exactly it's a new allocation. If it matches 555 * exactly this record refers to the current 556 * location. 557 */ 558 if (blk_overlaps(brec, blk, frags) == 0) 559 continue; 560 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 561 mask = 0; 562 else 563 blk_setmask(brec, &mask); 564 } 565 if (debug) 566 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 567 blk, sblk->sb_blk, off, mask); 568 return (mask >> off); 569 } 570 571 /* 572 * Determine whether it is safe to follow an indirect. It is not safe 573 * if any part of the indirect has been reallocated or the last journal 574 * entry was an allocation. Just allocated indirects may not have valid 575 * pointers yet and all of their children will have their own records. 576 * It is also not safe to follow an indirect if the cg bitmap has been 577 * cleared as a new allocation may write to the block prior to the journal 578 * being written. 579 * 580 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 581 */ 582 static int 583 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 584 { 585 struct suj_blk *sblk; 586 struct jblkrec *brec; 587 588 sblk = blk_lookup(blk, 0); 589 if (sblk == NULL) 590 return (1); 591 if (TAILQ_EMPTY(&sblk->sb_recs)) 592 return (1); 593 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 594 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 595 if (brec->jb_op == JOP_FREEBLK) 596 return (!blk_isfree(blk)); 597 return (0); 598 } 599 600 /* 601 * Clear an inode from the cg bitmap. If the inode was already clear return 602 * 0 so the caller knows it does not have to check the inode contents. 603 */ 604 static int 605 ino_free(ino_t ino, int mode) 606 { 607 struct suj_cg *sc; 608 uint8_t *inosused; 609 struct cg *cgp; 610 int cg; 611 612 cg = ino_to_cg(fs, ino); 613 ino = ino % fs->fs_ipg; 614 sc = cg_lookup(cg); 615 cgp = sc->sc_cgp; 616 inosused = cg_inosused(cgp); 617 /* 618 * The bitmap may never have made it to the disk so we have to 619 * conditionally clear. We can avoid writing the cg in this case. 620 */ 621 if (isclr(inosused, ino)) 622 return (0); 623 freeinos++; 624 clrbit(inosused, ino); 625 if (ino < cgp->cg_irotor) 626 cgp->cg_irotor = ino; 627 cgp->cg_cs.cs_nifree++; 628 if ((mode & IFMT) == IFDIR) { 629 freedir++; 630 cgp->cg_cs.cs_ndir--; 631 } 632 sc->sc_dirty = 1; 633 634 return (1); 635 } 636 637 /* 638 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 639 * set in the mask. 640 */ 641 static void 642 blk_free(ufs2_daddr_t bno, int mask, int frags) 643 { 644 ufs1_daddr_t fragno, cgbno; 645 struct suj_cg *sc; 646 struct cg *cgp; 647 int i, cg; 648 uint8_t *blksfree; 649 650 if (debug) 651 printf("Freeing %d frags at blk %jd\n", frags, bno); 652 cg = dtog(fs, bno); 653 sc = cg_lookup(cg); 654 cgp = sc->sc_cgp; 655 cgbno = dtogd(fs, bno); 656 blksfree = cg_blksfree(cgp); 657 658 /* 659 * If it's not allocated we only wrote the journal entry 660 * and never the bitmaps. Here we unconditionally clear and 661 * resolve the cg summary later. 662 */ 663 if (frags == fs->fs_frag && mask == 0) { 664 fragno = fragstoblks(fs, cgbno); 665 ffs_setblock(fs, blksfree, fragno); 666 freeblocks++; 667 } else { 668 /* 669 * deallocate the fragment 670 */ 671 for (i = 0; i < frags; i++) 672 if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) { 673 freefrags++; 674 setbit(blksfree, cgbno + i); 675 } 676 } 677 sc->sc_dirty = 1; 678 } 679 680 /* 681 * Returns 1 if the whole block starting at 'bno' is marked free and 0 682 * otherwise. 683 */ 684 static int 685 blk_isfree(ufs2_daddr_t bno) 686 { 687 struct suj_cg *sc; 688 689 sc = cg_lookup(dtog(fs, bno)); 690 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 691 } 692 693 /* 694 * Fetch an indirect block to find the block at a given lbn. The lbn 695 * may be negative to fetch a specific indirect block pointer or positive 696 * to fetch a specific block. 697 */ 698 static ufs2_daddr_t 699 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn) 700 { 701 ufs2_daddr_t *bap2; 702 ufs2_daddr_t *bap1; 703 ufs_lbn_t lbnadd; 704 ufs_lbn_t base; 705 int level; 706 int i; 707 708 if (blk == 0) 709 return (0); 710 level = lbn_level(cur); 711 if (level == -1) 712 err_suj("Invalid indir lbn %jd\n", lbn); 713 if (level == 0 && lbn < 0) 714 err_suj("Invalid lbn %jd\n", lbn); 715 bap2 = (void *)dblk_read(blk, fs->fs_bsize); 716 bap1 = (void *)bap2; 717 lbnadd = 1; 718 base = -(cur + level); 719 for (i = level; i > 0; i--) 720 lbnadd *= NINDIR(fs); 721 if (lbn > 0) 722 i = (lbn - base) / lbnadd; 723 else 724 i = (-lbn - base) / lbnadd; 725 if (i < 0 || i >= NINDIR(fs)) 726 err_suj("Invalid indirect index %d produced by lbn %jd\n", 727 i, lbn); 728 if (level == 0) 729 cur = base + (i * lbnadd); 730 else 731 cur = -(base + (i * lbnadd)) - (level - 1); 732 if (fs->fs_magic == FS_UFS1_MAGIC) 733 blk = bap1[i]; 734 else 735 blk = bap2[i]; 736 if (cur == lbn) 737 return (blk); 738 if (level == 0) 739 err_suj("Invalid lbn %jd at level 0\n", lbn); 740 return indir_blkatoff(blk, ino, cur, lbn); 741 } 742 743 /* 744 * Finds the disk block address at the specified lbn within the inode 745 * specified by ip. This follows the whole tree and honors di_size and 746 * di_extsize so it is a true test of reachability. The lbn may be 747 * negative if an extattr or indirect block is requested. 748 */ 749 static ufs2_daddr_t 750 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags) 751 { 752 ufs_lbn_t tmpval; 753 ufs_lbn_t cur; 754 ufs_lbn_t next; 755 int i; 756 757 /* 758 * Handle extattr blocks first. 759 */ 760 if (lbn < 0 && lbn >= -NXADDR) { 761 lbn = -1 - lbn; 762 if (lbn > lblkno(fs, ip->dp2.di_extsize - 1)) 763 return (0); 764 *frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn)); 765 return (ip->dp2.di_extb[lbn]); 766 } 767 /* 768 * Now direct and indirect. 769 */ 770 if (DIP(ip, di_mode) == IFLNK && 771 DIP(ip, di_size) < fs->fs_maxsymlinklen) 772 return (0); 773 if (lbn >= 0 && lbn < NDADDR) { 774 *frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn)); 775 return (DIP(ip, di_db[lbn])); 776 } 777 *frags = fs->fs_frag; 778 779 for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++, 780 tmpval *= NINDIR(fs), cur = next) { 781 next = cur + tmpval; 782 if (lbn == -cur - i) 783 return (DIP(ip, di_ib[i])); 784 /* 785 * Determine whether the lbn in question is within this tree. 786 */ 787 if (lbn < 0 && -lbn >= next) 788 continue; 789 if (lbn > 0 && lbn >= next) 790 continue; 791 return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn); 792 } 793 err_suj("lbn %jd not in ino\n", lbn); 794 /* NOTREACHED */ 795 } 796 797 /* 798 * Determine whether a block exists at a particular lbn in an inode. 799 * Returns 1 if found, 0 if not. lbn may be negative for indirects 800 * or ext blocks. 801 */ 802 static int 803 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 804 { 805 union dinode *ip; 806 ufs2_daddr_t nblk; 807 808 ip = ino_read(ino); 809 810 if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0) 811 return (0); 812 nblk = ino_blkatoff(ip, ino, lbn, frags); 813 814 return (nblk == blk); 815 } 816 817 /* 818 * Clear the directory entry at diroff that should point to child. Minimal 819 * checking is done and it is assumed that this path was verified with isat. 820 */ 821 static void 822 ino_clrat(ino_t parent, off_t diroff, ino_t child) 823 { 824 union dinode *dip; 825 struct direct *dp; 826 ufs2_daddr_t blk; 827 uint8_t *block; 828 ufs_lbn_t lbn; 829 int blksize; 830 int frags; 831 int doff; 832 833 if (debug) 834 printf("Clearing inode %d from parent %d at offset %jd\n", 835 child, parent, diroff); 836 837 lbn = lblkno(fs, diroff); 838 doff = blkoff(fs, diroff); 839 dip = ino_read(parent); 840 blk = ino_blkatoff(dip, parent, lbn, &frags); 841 blksize = sblksize(fs, DIP(dip, di_size), lbn); 842 block = dblk_read(blk, blksize); 843 dp = (struct direct *)&block[doff]; 844 if (dp->d_ino != child) 845 errx(1, "Inode %d does not exist in %d at %jd", 846 child, parent, diroff); 847 dp->d_ino = 0; 848 dblk_dirty(blk); 849 /* 850 * The actual .. reference count will already have been removed 851 * from the parent by the .. remref record. 852 */ 853 } 854 855 /* 856 * Determines whether a pointer to an inode exists within a directory 857 * at a specified offset. Returns the mode of the found entry. 858 */ 859 static int 860 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 861 { 862 union dinode *dip; 863 struct direct *dp; 864 ufs2_daddr_t blk; 865 uint8_t *block; 866 ufs_lbn_t lbn; 867 int blksize; 868 int frags; 869 int dpoff; 870 int doff; 871 872 *isdot = 0; 873 dip = ino_read(parent); 874 *mode = DIP(dip, di_mode); 875 if ((*mode & IFMT) != IFDIR) { 876 if (debug) { 877 /* 878 * This can happen if the parent inode 879 * was reallocated. 880 */ 881 if (*mode != 0) 882 printf("Directory %d has bad mode %o\n", 883 parent, *mode); 884 else 885 printf("Directory %d zero inode\n", parent); 886 } 887 return (0); 888 } 889 lbn = lblkno(fs, diroff); 890 doff = blkoff(fs, diroff); 891 blksize = sblksize(fs, DIP(dip, di_size), lbn); 892 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 893 if (debug) 894 printf("ino %d absent from %d due to offset %jd" 895 " exceeding size %jd\n", 896 child, parent, diroff, DIP(dip, di_size)); 897 return (0); 898 } 899 blk = ino_blkatoff(dip, parent, lbn, &frags); 900 if (blk <= 0) { 901 if (debug) 902 printf("Sparse directory %d", parent); 903 return (0); 904 } 905 block = dblk_read(blk, blksize); 906 /* 907 * Walk through the records from the start of the block to be 908 * certain we hit a valid record and not some junk in the middle 909 * of a file name. Stop when we reach or pass the expected offset. 910 */ 911 dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ; 912 do { 913 dp = (struct direct *)&block[dpoff]; 914 if (dpoff == doff) 915 break; 916 if (dp->d_reclen == 0) 917 break; 918 dpoff += dp->d_reclen; 919 } while (dpoff <= doff); 920 if (dpoff > fs->fs_bsize) 921 err_suj("Corrupt directory block in dir ino %d\n", parent); 922 /* Not found. */ 923 if (dpoff != doff) { 924 if (debug) 925 printf("ino %d not found in %d, lbn %jd, dpoff %d\n", 926 child, parent, lbn, dpoff); 927 return (0); 928 } 929 /* 930 * We found the item in question. Record the mode and whether it's 931 * a . or .. link for the caller. 932 */ 933 if (dp->d_ino == child) { 934 if (child == parent) 935 *isdot = 1; 936 else if (dp->d_namlen == 2 && 937 dp->d_name[0] == '.' && dp->d_name[1] == '.') 938 *isdot = 1; 939 *mode = DTTOIF(dp->d_type); 940 return (1); 941 } 942 if (debug) 943 printf("ino %d doesn't match dirent ino %d in parent %d\n", 944 child, dp->d_ino, parent); 945 return (0); 946 } 947 948 #define VISIT_INDIR 0x0001 949 #define VISIT_EXT 0x0002 950 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 951 952 /* 953 * Read an indirect level which may or may not be linked into an inode. 954 */ 955 static void 956 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 957 ino_visitor visitor, int flags) 958 { 959 ufs2_daddr_t *bap2; 960 ufs1_daddr_t *bap1; 961 ufs_lbn_t lbnadd; 962 ufs2_daddr_t nblk; 963 ufs_lbn_t nlbn; 964 int level; 965 int i; 966 967 /* 968 * Don't visit indirect blocks with contents we can't trust. This 969 * should only happen when indir_visit() is called to complete a 970 * truncate that never finished and not when a pointer is found via 971 * an inode. 972 */ 973 if (blk == 0) 974 return; 975 level = lbn_level(lbn); 976 if (level == -1) 977 err_suj("Invalid level for lbn %jd\n", lbn); 978 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 979 if (debug) 980 printf("blk %jd ino %d lbn %jd(%d) is not indir.\n", 981 blk, ino, lbn, level); 982 goto out; 983 } 984 lbnadd = 1; 985 for (i = level; i > 0; i--) 986 lbnadd *= NINDIR(fs); 987 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 988 bap2 = (void *)bap1; 989 for (i = 0; i < NINDIR(fs); i++) { 990 if (fs->fs_magic == FS_UFS1_MAGIC) 991 nblk = *bap1++; 992 else 993 nblk = *bap2++; 994 if (nblk == 0) 995 continue; 996 if (level == 0) { 997 nlbn = -lbn + i * lbnadd; 998 (*frags) += fs->fs_frag; 999 visitor(ino, nlbn, nblk, fs->fs_frag); 1000 } else { 1001 nlbn = (lbn + 1) - (i * lbnadd); 1002 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 1003 } 1004 } 1005 out: 1006 if (flags & VISIT_INDIR) { 1007 (*frags) += fs->fs_frag; 1008 visitor(ino, lbn, blk, fs->fs_frag); 1009 } 1010 } 1011 1012 /* 1013 * Visit each block in an inode as specified by 'flags' and call a 1014 * callback function. The callback may inspect or free blocks. The 1015 * count of frags found according to the size in the file is returned. 1016 * This is not valid for sparse files but may be used to determine 1017 * the correct di_blocks for a file. 1018 */ 1019 static uint64_t 1020 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags) 1021 { 1022 ufs_lbn_t nextlbn; 1023 ufs_lbn_t tmpval; 1024 ufs_lbn_t lbn; 1025 uint64_t size; 1026 uint64_t fragcnt; 1027 int mode; 1028 int frags; 1029 int i; 1030 1031 size = DIP(ip, di_size); 1032 mode = DIP(ip, di_mode) & IFMT; 1033 fragcnt = 0; 1034 if ((flags & VISIT_EXT) && 1035 fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) { 1036 for (i = 0; i < NXADDR; i++) { 1037 if (ip->dp2.di_extb[i] == 0) 1038 continue; 1039 frags = sblksize(fs, ip->dp2.di_extsize, i); 1040 frags = numfrags(fs, frags); 1041 fragcnt += frags; 1042 visitor(ino, -1 - i, ip->dp2.di_extb[i], frags); 1043 } 1044 } 1045 /* Skip datablocks for short links and devices. */ 1046 if (mode == IFBLK || mode == IFCHR || 1047 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 1048 return (fragcnt); 1049 for (i = 0; i < NDADDR; i++) { 1050 if (DIP(ip, di_db[i]) == 0) 1051 continue; 1052 frags = sblksize(fs, size, i); 1053 frags = numfrags(fs, frags); 1054 fragcnt += frags; 1055 visitor(ino, i, DIP(ip, di_db[i]), frags); 1056 } 1057 /* 1058 * We know the following indirects are real as we're following 1059 * real pointers to them. 1060 */ 1061 flags |= VISIT_ROOT; 1062 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1063 lbn = nextlbn) { 1064 nextlbn = lbn + tmpval; 1065 tmpval *= NINDIR(fs); 1066 if (DIP(ip, di_ib[i]) == 0) 1067 continue; 1068 indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor, 1069 flags); 1070 } 1071 return (fragcnt); 1072 } 1073 1074 /* 1075 * Null visitor function used when we just want to count blocks and 1076 * record the lbn. 1077 */ 1078 ufs_lbn_t visitlbn; 1079 static void 1080 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1081 { 1082 if (lbn > 0) 1083 visitlbn = lbn; 1084 } 1085 1086 /* 1087 * Recalculate di_blocks when we discover that a block allocation or 1088 * free was not successfully completed. The kernel does not roll this back 1089 * because it would be too expensive to compute which indirects were 1090 * reachable at the time the inode was written. 1091 */ 1092 static void 1093 ino_adjblks(struct suj_ino *sino) 1094 { 1095 union dinode *ip; 1096 uint64_t blocks; 1097 uint64_t frags; 1098 off_t isize; 1099 off_t size; 1100 ino_t ino; 1101 1102 ino = sino->si_ino; 1103 ip = ino_read(ino); 1104 /* No need to adjust zero'd inodes. */ 1105 if (DIP(ip, di_mode) == 0) 1106 return; 1107 /* 1108 * Visit all blocks and count them as well as recording the last 1109 * valid lbn in the file. If the file size doesn't agree with the 1110 * last lbn we need to truncate to fix it. Otherwise just adjust 1111 * the blocks count. 1112 */ 1113 visitlbn = 0; 1114 frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1115 blocks = fsbtodb(fs, frags); 1116 /* 1117 * We assume the size and direct block list is kept coherent by 1118 * softdep. For files that have extended into indirects we truncate 1119 * to the size in the inode or the maximum size permitted by 1120 * populated indirects. 1121 */ 1122 if (visitlbn >= NDADDR) { 1123 isize = DIP(ip, di_size); 1124 size = lblktosize(fs, visitlbn + 1); 1125 if (isize > size) 1126 isize = size; 1127 /* Always truncate to free any unpopulated indirects. */ 1128 ino_trunc(sino->si_ino, isize); 1129 return; 1130 } 1131 if (blocks == DIP(ip, di_blocks)) 1132 return; 1133 if (debug) 1134 printf("ino %d adjusting block count from %jd to %jd\n", 1135 ino, DIP(ip, di_blocks), blocks); 1136 DIP_SET(ip, di_blocks, blocks); 1137 ino_dirty(ino); 1138 } 1139 1140 static void 1141 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1142 { 1143 int mask; 1144 1145 mask = blk_freemask(blk, ino, lbn, frags); 1146 if (debug) 1147 printf("blk %jd freemask 0x%X\n", blk, mask); 1148 blk_free(blk, mask, frags); 1149 } 1150 1151 /* 1152 * Free a block or tree of blocks that was previously rooted in ino at 1153 * the given lbn. If the lbn is an indirect all children are freed 1154 * recursively. 1155 */ 1156 static void 1157 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 1158 { 1159 uint64_t resid; 1160 int mask; 1161 1162 mask = blk_freemask(blk, ino, lbn, frags); 1163 if (debug) 1164 printf("blk %jd freemask 0x%X\n", blk, mask); 1165 resid = 0; 1166 if (lbn <= -NDADDR && follow && mask == 0) 1167 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 1168 else 1169 blk_free(blk, mask, frags); 1170 } 1171 1172 static void 1173 ino_setskip(struct suj_ino *sino, ino_t parent) 1174 { 1175 int isdot; 1176 int mode; 1177 1178 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 1179 sino->si_skipparent = 1; 1180 } 1181 1182 static void 1183 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) 1184 { 1185 struct suj_ino *sino; 1186 struct suj_rec *srec; 1187 struct jrefrec *rrec; 1188 1189 /* 1190 * Lookup this inode to see if we have a record for it. 1191 */ 1192 sino = ino_lookup(child, 0); 1193 /* 1194 * Tell any child directories we've already removed their 1195 * parent link cnt. Don't try to adjust our link down again. 1196 */ 1197 if (sino != NULL && isdotdot == 0) 1198 ino_setskip(sino, parent); 1199 /* 1200 * No valid record for this inode. Just drop the on-disk 1201 * link by one. 1202 */ 1203 if (sino == NULL || sino->si_hasrecs == 0) { 1204 ino_decr(child); 1205 return; 1206 } 1207 /* 1208 * Use ino_adjust() if ino_check() has already processed this 1209 * child. If we lose the last non-dot reference to a 1210 * directory it will be discarded. 1211 */ 1212 if (sino->si_linkadj) { 1213 sino->si_nlink--; 1214 if (isdotdot) 1215 sino->si_dotlinks--; 1216 ino_adjust(sino); 1217 return; 1218 } 1219 /* 1220 * If we haven't yet processed this inode we need to make 1221 * sure we will successfully discover the lost path. If not 1222 * use nlinkadj to remember. 1223 */ 1224 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1225 rrec = (struct jrefrec *)srec->sr_rec; 1226 if (rrec->jr_parent == parent && 1227 rrec->jr_diroff == diroff) 1228 return; 1229 } 1230 sino->si_nlinkadj++; 1231 } 1232 1233 /* 1234 * Free the children of a directory when the directory is discarded. 1235 */ 1236 static void 1237 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1238 { 1239 struct suj_ino *sino; 1240 struct direct *dp; 1241 off_t diroff; 1242 uint8_t *block; 1243 int skipparent; 1244 int isdotdot; 1245 int dpoff; 1246 int size; 1247 1248 sino = ino_lookup(ino, 0); 1249 if (sino) 1250 skipparent = sino->si_skipparent; 1251 else 1252 skipparent = 0; 1253 size = lfragtosize(fs, frags); 1254 block = dblk_read(blk, size); 1255 dp = (struct direct *)&block[0]; 1256 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1257 dp = (struct direct *)&block[dpoff]; 1258 if (dp->d_ino == 0 || dp->d_ino == WINO) 1259 continue; 1260 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1261 continue; 1262 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1263 dp->d_name[1] == '.'; 1264 if (isdotdot && skipparent == 1) 1265 continue; 1266 if (debug) 1267 printf("Directory %d removing ino %d name %s\n", 1268 ino, dp->d_ino, dp->d_name); 1269 diroff = lblktosize(fs, lbn) + dpoff; 1270 ino_remref(ino, dp->d_ino, diroff, isdotdot); 1271 } 1272 } 1273 1274 /* 1275 * Reclaim an inode, freeing all blocks and decrementing all children's 1276 * link counts. Free the inode back to the cg. 1277 */ 1278 static void 1279 ino_reclaim(union dinode *ip, ino_t ino, int mode) 1280 { 1281 uint32_t gen; 1282 1283 if (ino == ROOTINO) 1284 err_suj("Attempting to free ROOTINO\n"); 1285 if (debug) 1286 printf("Truncating and freeing ino %d, nlink %d, mode %o\n", 1287 ino, DIP(ip, di_nlink), DIP(ip, di_mode)); 1288 1289 /* We are freeing an inode or directory. */ 1290 if ((DIP(ip, di_mode) & IFMT) == IFDIR) 1291 ino_visit(ip, ino, ino_free_children, 0); 1292 DIP_SET(ip, di_nlink, 0); 1293 ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1294 /* Here we have to clear the inode and release any blocks it holds. */ 1295 gen = DIP(ip, di_gen); 1296 if (fs->fs_magic == FS_UFS1_MAGIC) 1297 bzero(ip, sizeof(struct ufs1_dinode)); 1298 else 1299 bzero(ip, sizeof(struct ufs2_dinode)); 1300 DIP_SET(ip, di_gen, gen); 1301 ino_dirty(ino); 1302 ino_free(ino, mode); 1303 return; 1304 } 1305 1306 /* 1307 * Adjust an inode's link count down by one when a directory goes away. 1308 */ 1309 static void 1310 ino_decr(ino_t ino) 1311 { 1312 union dinode *ip; 1313 int reqlink; 1314 int nlink; 1315 int mode; 1316 1317 ip = ino_read(ino); 1318 nlink = DIP(ip, di_nlink); 1319 mode = DIP(ip, di_mode); 1320 if (nlink < 1) 1321 err_suj("Inode %d link count %d invalid\n", ino, nlink); 1322 if (mode == 0) 1323 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); 1324 nlink--; 1325 if ((mode & IFMT) == IFDIR) 1326 reqlink = 2; 1327 else 1328 reqlink = 1; 1329 if (nlink < reqlink) { 1330 if (debug) 1331 printf("ino %d not enough links to live %d < %d\n", 1332 ino, nlink, reqlink); 1333 ino_reclaim(ip, ino, mode); 1334 return; 1335 } 1336 DIP_SET(ip, di_nlink, nlink); 1337 ino_dirty(ino); 1338 } 1339 1340 /* 1341 * Adjust the inode link count to 'nlink'. If the count reaches zero 1342 * free it. 1343 */ 1344 static void 1345 ino_adjust(struct suj_ino *sino) 1346 { 1347 struct jrefrec *rrec; 1348 struct suj_rec *srec; 1349 struct suj_ino *stmp; 1350 union dinode *ip; 1351 nlink_t nlink; 1352 int recmode; 1353 int reqlink; 1354 int isdot; 1355 int mode; 1356 ino_t ino; 1357 1358 nlink = sino->si_nlink; 1359 ino = sino->si_ino; 1360 mode = sino->si_mode & IFMT; 1361 /* 1362 * If it's a directory with no dot links, it was truncated before 1363 * the name was cleared. We need to clear the dirent that 1364 * points at it. 1365 */ 1366 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { 1367 sino->si_nlink = nlink = 0; 1368 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1369 rrec = (struct jrefrec *)srec->sr_rec; 1370 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, 1371 &recmode, &isdot) == 0) 1372 continue; 1373 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); 1374 break; 1375 } 1376 if (srec == NULL) 1377 errx(1, "Directory %d name not found", ino); 1378 } 1379 /* 1380 * If it's a directory with no real names pointing to it go ahead 1381 * and truncate it. This will free any children. 1382 */ 1383 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { 1384 sino->si_nlink = nlink = 0; 1385 /* 1386 * Mark any .. links so they know not to free this inode 1387 * when they are removed. 1388 */ 1389 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1390 rrec = (struct jrefrec *)srec->sr_rec; 1391 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1392 stmp = ino_lookup(rrec->jr_parent, 0); 1393 if (stmp) 1394 ino_setskip(stmp, ino); 1395 } 1396 } 1397 } 1398 ip = ino_read(ino); 1399 mode = DIP(ip, di_mode) & IFMT; 1400 if (nlink > LINK_MAX) 1401 err_suj( 1402 "ino %d nlink manipulation error, new link %d, old link %d\n", 1403 ino, nlink, DIP(ip, di_nlink)); 1404 if (debug) 1405 printf("Adjusting ino %d, nlink %d, old link %d lastmode %o\n", 1406 ino, nlink, DIP(ip, di_nlink), sino->si_mode); 1407 if (mode == 0) { 1408 if (debug) 1409 printf("ino %d, zero inode freeing bitmap\n", ino); 1410 ino_free(ino, sino->si_mode); 1411 return; 1412 } 1413 /* XXX Should be an assert? */ 1414 if (mode != sino->si_mode && debug) 1415 printf("ino %d, mode %o != %o\n", ino, mode, sino->si_mode); 1416 if ((mode & IFMT) == IFDIR) 1417 reqlink = 2; 1418 else 1419 reqlink = 1; 1420 /* If the inode doesn't have enough links to live, free it. */ 1421 if (nlink < reqlink) { 1422 if (debug) 1423 printf("ino %d not enough links to live %d < %d\n", 1424 ino, nlink, reqlink); 1425 ino_reclaim(ip, ino, mode); 1426 return; 1427 } 1428 /* If required write the updated link count. */ 1429 if (DIP(ip, di_nlink) == nlink) { 1430 if (debug) 1431 printf("ino %d, link matches, skipping.\n", ino); 1432 return; 1433 } 1434 DIP_SET(ip, di_nlink, nlink); 1435 ino_dirty(ino); 1436 } 1437 1438 /* 1439 * Truncate some or all blocks in an indirect, freeing any that are required 1440 * and zeroing the indirect. 1441 */ 1442 static void 1443 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn) 1444 { 1445 ufs2_daddr_t *bap2; 1446 ufs1_daddr_t *bap1; 1447 ufs_lbn_t lbnadd; 1448 ufs2_daddr_t nblk; 1449 ufs_lbn_t next; 1450 ufs_lbn_t nlbn; 1451 int dirty; 1452 int level; 1453 int i; 1454 1455 if (blk == 0) 1456 return; 1457 dirty = 0; 1458 level = lbn_level(lbn); 1459 if (level == -1) 1460 err_suj("Invalid level for lbn %jd\n", lbn); 1461 lbnadd = 1; 1462 for (i = level; i > 0; i--) 1463 lbnadd *= NINDIR(fs); 1464 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 1465 bap2 = (void *)bap1; 1466 for (i = 0; i < NINDIR(fs); i++) { 1467 if (fs->fs_magic == FS_UFS1_MAGIC) 1468 nblk = *bap1++; 1469 else 1470 nblk = *bap2++; 1471 if (nblk == 0) 1472 continue; 1473 if (level != 0) { 1474 nlbn = (lbn + 1) - (i * lbnadd); 1475 /* 1476 * Calculate the lbn of the next indirect to 1477 * determine if any of this indirect must be 1478 * reclaimed. 1479 */ 1480 next = -(lbn + level) + ((i+1) * lbnadd); 1481 if (next <= lastlbn) 1482 continue; 1483 indir_trunc(ino, nlbn, nblk, lastlbn); 1484 /* If all of this indirect was reclaimed, free it. */ 1485 nlbn = next - lbnadd; 1486 if (nlbn < lastlbn) 1487 continue; 1488 } else { 1489 nlbn = -lbn + i * lbnadd; 1490 if (nlbn < lastlbn) 1491 continue; 1492 } 1493 dirty = 1; 1494 blk_free(nblk, 0, fs->fs_frag); 1495 if (fs->fs_magic == FS_UFS1_MAGIC) 1496 *(bap1 - 1) = 0; 1497 else 1498 *(bap2 - 1) = 0; 1499 } 1500 if (dirty) 1501 dblk_dirty(blk); 1502 } 1503 1504 /* 1505 * Truncate an inode to the minimum of the given size or the last populated 1506 * block after any over size have been discarded. The kernel would allocate 1507 * the last block in the file but fsck does not and neither do we. This 1508 * code never extends files, only shrinks them. 1509 */ 1510 static void 1511 ino_trunc(ino_t ino, off_t size) 1512 { 1513 union dinode *ip; 1514 ufs2_daddr_t bn; 1515 uint64_t totalfrags; 1516 ufs_lbn_t nextlbn; 1517 ufs_lbn_t lastlbn; 1518 ufs_lbn_t tmpval; 1519 ufs_lbn_t lbn; 1520 ufs_lbn_t i; 1521 int frags; 1522 off_t cursize; 1523 off_t off; 1524 int mode; 1525 1526 ip = ino_read(ino); 1527 mode = DIP(ip, di_mode) & IFMT; 1528 cursize = DIP(ip, di_size); 1529 if (debug) 1530 printf("Truncating ino %d, mode %o to size %jd from size %jd\n", 1531 ino, mode, size, cursize); 1532 1533 /* Skip datablocks for short links and devices. */ 1534 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1535 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) 1536 return; 1537 /* Don't extend. */ 1538 if (size > cursize) 1539 size = cursize; 1540 lastlbn = lblkno(fs, blkroundup(fs, size)); 1541 for (i = lastlbn; i < NDADDR; i++) { 1542 if (DIP(ip, di_db[i]) == 0) 1543 continue; 1544 frags = sblksize(fs, cursize, i); 1545 frags = numfrags(fs, frags); 1546 blk_free(DIP(ip, di_db[i]), 0, frags); 1547 DIP_SET(ip, di_db[i], 0); 1548 } 1549 /* 1550 * Follow indirect blocks, freeing anything required. 1551 */ 1552 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1553 lbn = nextlbn) { 1554 nextlbn = lbn + tmpval; 1555 tmpval *= NINDIR(fs); 1556 /* If we're not freeing any in this indirect range skip it. */ 1557 if (lastlbn >= nextlbn) 1558 continue; 1559 if (DIP(ip, di_ib[i]) == 0) 1560 continue; 1561 indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn); 1562 /* If we freed everything in this indirect free the indir. */ 1563 if (lastlbn > lbn) 1564 continue; 1565 blk_free(DIP(ip, di_ib[i]), 0, frags); 1566 DIP_SET(ip, di_ib[i], 0); 1567 } 1568 ino_dirty(ino); 1569 /* 1570 * Now that we've freed any whole blocks that exceed the desired 1571 * truncation size, figure out how many blocks remain and what the 1572 * last populated lbn is. We will set the size to this last lbn 1573 * rather than worrying about allocating the final lbn as the kernel 1574 * would've done. This is consistent with normal fsck behavior. 1575 */ 1576 visitlbn = 0; 1577 totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1578 if (size > lblktosize(fs, visitlbn + 1)) 1579 size = lblktosize(fs, visitlbn + 1); 1580 /* 1581 * If we're truncating direct blocks we have to adjust frags 1582 * accordingly. 1583 */ 1584 if (visitlbn < NDADDR && totalfrags) { 1585 long oldspace, newspace; 1586 1587 bn = DIP(ip, di_db[visitlbn]); 1588 if (bn == 0) 1589 err_suj("Bad blk at ino %d lbn %jd\n", ino, visitlbn); 1590 oldspace = sblksize(fs, cursize, visitlbn); 1591 newspace = sblksize(fs, size, visitlbn); 1592 if (oldspace != newspace) { 1593 bn += numfrags(fs, newspace); 1594 frags = numfrags(fs, oldspace - newspace); 1595 blk_free(bn, 0, frags); 1596 totalfrags -= frags; 1597 } 1598 } 1599 DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags)); 1600 DIP_SET(ip, di_size, size); 1601 /* 1602 * If we've truncated into the middle of a block or frag we have 1603 * to zero it here. Otherwise the file could extend into 1604 * uninitialized space later. 1605 */ 1606 off = blkoff(fs, size); 1607 if (off && DIP(ip, di_mode) != IFDIR) { 1608 uint8_t *buf; 1609 long clrsize; 1610 1611 bn = ino_blkatoff(ip, ino, visitlbn, &frags); 1612 if (bn == 0) 1613 err_suj("Block missing from ino %d at lbn %jd\n", 1614 ino, visitlbn); 1615 clrsize = frags * fs->fs_fsize; 1616 buf = dblk_read(bn, clrsize); 1617 clrsize -= off; 1618 buf += off; 1619 bzero(buf, clrsize); 1620 dblk_dirty(bn); 1621 } 1622 return; 1623 } 1624 1625 /* 1626 * Process records available for one inode and determine whether the 1627 * link count is correct or needs adjusting. 1628 */ 1629 static void 1630 ino_check(struct suj_ino *sino) 1631 { 1632 struct suj_rec *srec; 1633 struct jrefrec *rrec; 1634 nlink_t dotlinks; 1635 int newlinks; 1636 int removes; 1637 int nlink; 1638 ino_t ino; 1639 int isdot; 1640 int isat; 1641 int mode; 1642 1643 if (sino->si_hasrecs == 0) 1644 return; 1645 ino = sino->si_ino; 1646 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1647 nlink = rrec->jr_nlink; 1648 newlinks = 0; 1649 dotlinks = 0; 1650 removes = sino->si_nlinkadj; 1651 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1652 rrec = (struct jrefrec *)srec->sr_rec; 1653 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1654 rrec->jr_ino, &mode, &isdot); 1655 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1656 err_suj("Inode mode/directory type mismatch %o != %o\n", 1657 mode, rrec->jr_mode); 1658 if (debug) 1659 printf("jrefrec: op %d ino %d, nlink %d, parent %d, " 1660 "diroff %jd, mode %o, isat %d, isdot %d\n", 1661 rrec->jr_op, rrec->jr_ino, rrec->jr_nlink, 1662 rrec->jr_parent, rrec->jr_diroff, rrec->jr_mode, 1663 isat, isdot); 1664 mode = rrec->jr_mode & IFMT; 1665 if (rrec->jr_op == JOP_REMREF) 1666 removes++; 1667 newlinks += isat; 1668 if (isdot) 1669 dotlinks += isat; 1670 } 1671 /* 1672 * The number of links that remain are the starting link count 1673 * subtracted by the total number of removes with the total 1674 * links discovered back in. An incomplete remove thus 1675 * makes no change to the link count but an add increases 1676 * by one. 1677 */ 1678 if (debug) 1679 printf("ino %d nlink %d newlinks %d removes %d dotlinks %d\n", 1680 ino, nlink, newlinks, removes, dotlinks); 1681 nlink += newlinks; 1682 nlink -= removes; 1683 sino->si_linkadj = 1; 1684 sino->si_nlink = nlink; 1685 sino->si_dotlinks = dotlinks; 1686 sino->si_mode = mode; 1687 ino_adjust(sino); 1688 } 1689 1690 /* 1691 * Process records available for one block and determine whether it is 1692 * still allocated and whether the owning inode needs to be updated or 1693 * a free completed. 1694 */ 1695 static void 1696 blk_check(struct suj_blk *sblk) 1697 { 1698 struct suj_rec *srec; 1699 struct jblkrec *brec; 1700 struct suj_ino *sino; 1701 ufs2_daddr_t blk; 1702 int mask; 1703 int frags; 1704 int isat; 1705 1706 /* 1707 * Each suj_blk actually contains records for any fragments in that 1708 * block. As a result we must evaluate each record individually. 1709 */ 1710 sino = NULL; 1711 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1712 brec = (struct jblkrec *)srec->sr_rec; 1713 frags = brec->jb_frags; 1714 blk = brec->jb_blkno + brec->jb_oldfrags; 1715 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1716 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1717 sino = ino_lookup(brec->jb_ino, 1); 1718 sino->si_blkadj = 1; 1719 } 1720 if (debug) 1721 printf("op %d blk %jd ino %d lbn %jd frags %d isat %d (%d)\n", 1722 brec->jb_op, blk, brec->jb_ino, brec->jb_lbn, 1723 brec->jb_frags, isat, frags); 1724 /* 1725 * If we found the block at this address we still have to 1726 * determine if we need to free the tail end that was 1727 * added by adding contiguous fragments from the same block. 1728 */ 1729 if (isat == 1) { 1730 if (frags == brec->jb_frags) 1731 continue; 1732 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1733 brec->jb_frags); 1734 mask >>= frags; 1735 blk += frags; 1736 frags = brec->jb_frags - frags; 1737 blk_free(blk, mask, frags); 1738 continue; 1739 } 1740 /* 1741 * The block wasn't found, attempt to free it. It won't be 1742 * freed if it was actually reallocated. If this was an 1743 * allocation we don't want to follow indirects as they 1744 * may not be written yet. Any children of the indirect will 1745 * have their own records. If it's a free we need to 1746 * recursively free children. 1747 */ 1748 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1749 brec->jb_op == JOP_FREEBLK); 1750 } 1751 } 1752 1753 /* 1754 * Walk the list of inode records for this cg and resolve moved and duplicate 1755 * inode references now that we have a complete picture. 1756 */ 1757 static void 1758 cg_build(struct suj_cg *sc) 1759 { 1760 struct suj_ino *sino; 1761 int i; 1762 1763 for (i = 0; i < SUJ_HASHSIZE; i++) 1764 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1765 ino_build(sino); 1766 } 1767 1768 /* 1769 * Handle inodes requiring truncation. This must be done prior to 1770 * looking up any inodes in directories. 1771 */ 1772 static void 1773 cg_trunc(struct suj_cg *sc) 1774 { 1775 struct suj_ino *sino; 1776 int i; 1777 1778 for (i = 0; i < SUJ_HASHSIZE; i++) { 1779 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1780 if (sino->si_trunc) { 1781 ino_trunc(sino->si_ino, 1782 sino->si_trunc->jt_size); 1783 sino->si_blkadj = 0; 1784 sino->si_trunc = NULL; 1785 } 1786 if (sino->si_blkadj) 1787 ino_adjblks(sino); 1788 } 1789 } 1790 } 1791 1792 /* 1793 * Free any partially allocated blocks and then resolve inode block 1794 * counts. 1795 */ 1796 static void 1797 cg_check_blk(struct suj_cg *sc) 1798 { 1799 struct suj_blk *sblk; 1800 int i; 1801 1802 1803 for (i = 0; i < SUJ_HASHSIZE; i++) 1804 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1805 blk_check(sblk); 1806 } 1807 1808 /* 1809 * Walk the list of inode records for this cg, recovering any 1810 * changes which were not complete at the time of crash. 1811 */ 1812 static void 1813 cg_check_ino(struct suj_cg *sc) 1814 { 1815 struct suj_ino *sino; 1816 int i; 1817 1818 for (i = 0; i < SUJ_HASHSIZE; i++) 1819 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1820 ino_check(sino); 1821 } 1822 1823 /* 1824 * Write a potentially dirty cg. Recalculate the summary information and 1825 * update the superblock summary. 1826 */ 1827 static void 1828 cg_write(struct suj_cg *sc) 1829 { 1830 ufs1_daddr_t fragno, cgbno, maxbno; 1831 u_int8_t *blksfree; 1832 struct cg *cgp; 1833 int blk; 1834 int i; 1835 1836 if (sc->sc_dirty == 0) 1837 return; 1838 /* 1839 * Fix the frag and cluster summary. 1840 */ 1841 cgp = sc->sc_cgp; 1842 cgp->cg_cs.cs_nbfree = 0; 1843 cgp->cg_cs.cs_nffree = 0; 1844 bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum)); 1845 maxbno = fragstoblks(fs, fs->fs_fpg); 1846 if (fs->fs_contigsumsize > 0) { 1847 for (i = 1; i <= fs->fs_contigsumsize; i++) 1848 cg_clustersum(cgp)[i] = 0; 1849 bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT)); 1850 } 1851 blksfree = cg_blksfree(cgp); 1852 for (cgbno = 0; cgbno < maxbno; cgbno++) { 1853 if (ffs_isfreeblock(fs, blksfree, cgbno)) 1854 continue; 1855 if (ffs_isblock(fs, blksfree, cgbno)) { 1856 ffs_clusteracct(fs, cgp, cgbno, 1); 1857 cgp->cg_cs.cs_nbfree++; 1858 continue; 1859 } 1860 fragno = blkstofrags(fs, cgbno); 1861 blk = blkmap(fs, blksfree, fragno); 1862 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1863 for (i = 0; i < fs->fs_frag; i++) 1864 if (isset(blksfree, fragno + i)) 1865 cgp->cg_cs.cs_nffree++; 1866 } 1867 /* 1868 * Update the superblock cg summary from our now correct values 1869 * before writing the block. 1870 */ 1871 fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs; 1872 if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 1873 fs->fs_bsize) == -1) 1874 err_suj("Unable to write cylinder group %d\n", sc->sc_cgx); 1875 } 1876 1877 /* 1878 * Write out any modified inodes. 1879 */ 1880 static void 1881 cg_write_inos(struct suj_cg *sc) 1882 { 1883 struct ino_blk *iblk; 1884 int i; 1885 1886 for (i = 0; i < SUJ_HASHSIZE; i++) 1887 LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next) 1888 if (iblk->ib_dirty) 1889 iblk_write(iblk); 1890 } 1891 1892 static void 1893 cg_apply(void (*apply)(struct suj_cg *)) 1894 { 1895 struct suj_cg *scg; 1896 int i; 1897 1898 for (i = 0; i < SUJ_HASHSIZE; i++) 1899 LIST_FOREACH(scg, &cghash[i], sc_next) 1900 apply(scg); 1901 } 1902 1903 /* 1904 * Process the unlinked but referenced file list. Freeing all inodes. 1905 */ 1906 static void 1907 ino_unlinked(void) 1908 { 1909 union dinode *ip; 1910 uint16_t mode; 1911 ino_t inon; 1912 ino_t ino; 1913 1914 ino = fs->fs_sujfree; 1915 fs->fs_sujfree = 0; 1916 while (ino != 0) { 1917 ip = ino_read(ino); 1918 mode = DIP(ip, di_mode) & IFMT; 1919 inon = DIP(ip, di_freelink); 1920 DIP_SET(ip, di_freelink, 0); 1921 /* 1922 * XXX Should this be an errx? 1923 */ 1924 if (DIP(ip, di_nlink) == 0) { 1925 if (debug) 1926 printf("Freeing unlinked ino %d mode %o\n", 1927 ino, mode); 1928 ino_reclaim(ip, ino, mode); 1929 } else if (debug) 1930 printf("Skipping ino %d mode %o with link %d\n", 1931 ino, mode, DIP(ip, di_nlink)); 1932 ino = inon; 1933 } 1934 } 1935 1936 /* 1937 * Append a new record to the list of records requiring processing. 1938 */ 1939 static void 1940 ino_append(union jrec *rec) 1941 { 1942 struct jrefrec *refrec; 1943 struct jmvrec *mvrec; 1944 struct suj_ino *sino; 1945 struct suj_rec *srec; 1946 1947 mvrec = &rec->rec_jmvrec; 1948 refrec = &rec->rec_jrefrec; 1949 if (debug && mvrec->jm_op == JOP_MVREF) 1950 printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n", 1951 mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff, 1952 mvrec->jm_oldoff); 1953 else if (debug && 1954 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1955 printf("ino ref: op %d, ino %d, nlink %d, " 1956 "parent %d, diroff %jd\n", 1957 refrec->jr_op, refrec->jr_ino, refrec->jr_nlink, 1958 refrec->jr_parent, refrec->jr_diroff); 1959 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1960 sino->si_hasrecs = 1; 1961 srec = errmalloc(sizeof(*srec)); 1962 srec->sr_rec = rec; 1963 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1964 } 1965 1966 /* 1967 * Add a reference adjustment to the sino list and eliminate dups. The 1968 * primary loop in ino_build_ref() checks for dups but new ones may be 1969 * created as a result of offset adjustments. 1970 */ 1971 static void 1972 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1973 { 1974 struct jrefrec *refrec; 1975 struct suj_rec *srn; 1976 struct jrefrec *rrn; 1977 1978 refrec = (struct jrefrec *)srec->sr_rec; 1979 /* 1980 * We walk backwards so that the oldest link count is preserved. If 1981 * an add record conflicts with a remove keep the remove. Redundant 1982 * removes are eliminated in ino_build_ref. Otherwise we keep the 1983 * oldest record at a given location. 1984 */ 1985 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 1986 srn = TAILQ_PREV(srn, srechd, sr_next)) { 1987 rrn = (struct jrefrec *)srn->sr_rec; 1988 if (rrn->jr_parent != refrec->jr_parent || 1989 rrn->jr_diroff != refrec->jr_diroff) 1990 continue; 1991 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 1992 rrn->jr_mode = refrec->jr_mode; 1993 return; 1994 } 1995 /* 1996 * Adding a remove. 1997 * 1998 * Replace the record in place with the old nlink in case 1999 * we replace the head of the list. Abandon srec as a dup. 2000 */ 2001 refrec->jr_nlink = rrn->jr_nlink; 2002 srn->sr_rec = srec->sr_rec; 2003 return; 2004 } 2005 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 2006 } 2007 2008 /* 2009 * Create a duplicate of a reference at a previous location. 2010 */ 2011 static void 2012 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 2013 { 2014 struct jrefrec *rrn; 2015 struct suj_rec *srn; 2016 2017 rrn = errmalloc(sizeof(*refrec)); 2018 *rrn = *refrec; 2019 rrn->jr_op = JOP_ADDREF; 2020 rrn->jr_diroff = diroff; 2021 srn = errmalloc(sizeof(*srn)); 2022 srn->sr_rec = (union jrec *)rrn; 2023 ino_add_ref(sino, srn); 2024 } 2025 2026 /* 2027 * Add a reference to the list at all known locations. We follow the offset 2028 * changes for a single instance and create duplicate add refs at each so 2029 * that we can tolerate any version of the directory block. Eliminate 2030 * removes which collide with adds that are seen in the journal. They should 2031 * not adjust the link count down. 2032 */ 2033 static void 2034 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 2035 { 2036 struct jrefrec *refrec; 2037 struct jmvrec *mvrec; 2038 struct suj_rec *srp; 2039 struct suj_rec *srn; 2040 struct jrefrec *rrn; 2041 off_t diroff; 2042 2043 refrec = (struct jrefrec *)srec->sr_rec; 2044 /* 2045 * Search for a mvrec that matches this offset. Whether it's an add 2046 * or a remove we can delete the mvref after creating a dup record in 2047 * the old location. 2048 */ 2049 if (!TAILQ_EMPTY(&sino->si_movs)) { 2050 diroff = refrec->jr_diroff; 2051 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 2052 srp = TAILQ_PREV(srn, srechd, sr_next); 2053 mvrec = (struct jmvrec *)srn->sr_rec; 2054 if (mvrec->jm_parent != refrec->jr_parent || 2055 mvrec->jm_newoff != diroff) 2056 continue; 2057 diroff = mvrec->jm_oldoff; 2058 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 2059 free(srn); 2060 ino_dup_ref(sino, refrec, diroff); 2061 } 2062 } 2063 /* 2064 * If a remove wasn't eliminated by an earlier add just append it to 2065 * the list. 2066 */ 2067 if (refrec->jr_op == JOP_REMREF) { 2068 ino_add_ref(sino, srec); 2069 return; 2070 } 2071 /* 2072 * Walk the list of records waiting to be added to the list. We 2073 * must check for moves that apply to our current offset and remove 2074 * them from the list. Remove any duplicates to eliminate removes 2075 * with corresponding adds. 2076 */ 2077 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 2078 switch (srn->sr_rec->rec_jrefrec.jr_op) { 2079 case JOP_ADDREF: 2080 /* 2081 * This should actually be an error we should 2082 * have a remove for every add journaled. 2083 */ 2084 rrn = (struct jrefrec *)srn->sr_rec; 2085 if (rrn->jr_parent != refrec->jr_parent || 2086 rrn->jr_diroff != refrec->jr_diroff) 2087 break; 2088 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2089 break; 2090 case JOP_REMREF: 2091 /* 2092 * Once we remove the current iteration of the 2093 * record at this address we're done. 2094 */ 2095 rrn = (struct jrefrec *)srn->sr_rec; 2096 if (rrn->jr_parent != refrec->jr_parent || 2097 rrn->jr_diroff != refrec->jr_diroff) 2098 break; 2099 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2100 ino_add_ref(sino, srec); 2101 return; 2102 case JOP_MVREF: 2103 /* 2104 * Update our diroff based on any moves that match 2105 * and remove the move. 2106 */ 2107 mvrec = (struct jmvrec *)srn->sr_rec; 2108 if (mvrec->jm_parent != refrec->jr_parent || 2109 mvrec->jm_oldoff != refrec->jr_diroff) 2110 break; 2111 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 2112 refrec->jr_diroff = mvrec->jm_newoff; 2113 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2114 break; 2115 default: 2116 err_suj("ino_build_ref: Unknown op %d\n", 2117 srn->sr_rec->rec_jrefrec.jr_op); 2118 } 2119 } 2120 ino_add_ref(sino, srec); 2121 } 2122 2123 /* 2124 * Walk the list of new records and add them in-order resolving any 2125 * dups and adjusted offsets. 2126 */ 2127 static void 2128 ino_build(struct suj_ino *sino) 2129 { 2130 struct suj_rec *srec; 2131 2132 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 2133 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 2134 switch (srec->sr_rec->rec_jrefrec.jr_op) { 2135 case JOP_ADDREF: 2136 case JOP_REMREF: 2137 ino_build_ref(sino, srec); 2138 break; 2139 case JOP_MVREF: 2140 /* 2141 * Add this mvrec to the queue of pending mvs. 2142 */ 2143 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 2144 break; 2145 default: 2146 err_suj("ino_build: Unknown op %d\n", 2147 srec->sr_rec->rec_jrefrec.jr_op); 2148 } 2149 } 2150 if (TAILQ_EMPTY(&sino->si_recs)) 2151 sino->si_hasrecs = 0; 2152 } 2153 2154 /* 2155 * Modify journal records so they refer to the base block number 2156 * and a start and end frag range. This is to facilitate the discovery 2157 * of overlapping fragment allocations. 2158 */ 2159 static void 2160 blk_build(struct jblkrec *blkrec) 2161 { 2162 struct suj_rec *srec; 2163 struct suj_blk *sblk; 2164 struct jblkrec *blkrn; 2165 ufs2_daddr_t blk; 2166 int frag; 2167 2168 if (debug) 2169 printf("blk_build: op %d blkno %jd frags %d oldfrags %d " 2170 "ino %d lbn %jd\n", 2171 blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags, 2172 blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn); 2173 2174 blk = blknum(fs, blkrec->jb_blkno); 2175 frag = fragnum(fs, blkrec->jb_blkno); 2176 sblk = blk_lookup(blk, 1); 2177 /* 2178 * Rewrite the record using oldfrags to indicate the offset into 2179 * the block. Leave jb_frags as the actual allocated count. 2180 */ 2181 blkrec->jb_blkno -= frag; 2182 blkrec->jb_oldfrags = frag; 2183 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 2184 err_suj("Invalid fragment count %d oldfrags %d\n", 2185 blkrec->jb_frags, frag); 2186 /* 2187 * Detect dups. If we detect a dup we always discard the oldest 2188 * record as it is superseded by the new record. This speeds up 2189 * later stages but also eliminates free records which are used 2190 * to indicate that the contents of indirects can be trusted. 2191 */ 2192 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 2193 blkrn = (struct jblkrec *)srec->sr_rec; 2194 if (blkrn->jb_ino != blkrec->jb_ino || 2195 blkrn->jb_lbn != blkrec->jb_lbn || 2196 blkrn->jb_blkno != blkrec->jb_blkno || 2197 blkrn->jb_frags != blkrec->jb_frags || 2198 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 2199 continue; 2200 if (debug) 2201 printf("Removed dup.\n"); 2202 /* Discard the free which is a dup with an alloc. */ 2203 if (blkrec->jb_op == JOP_FREEBLK) 2204 return; 2205 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 2206 free(srec); 2207 break; 2208 } 2209 srec = errmalloc(sizeof(*srec)); 2210 srec->sr_rec = (union jrec *)blkrec; 2211 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 2212 } 2213 2214 static void 2215 ino_build_trunc(struct jtrncrec *rec) 2216 { 2217 struct suj_ino *sino; 2218 2219 if (debug) 2220 printf("ino_build_trunc: op %d ino %d, size %jd\n", 2221 rec->jt_op, rec->jt_ino, rec->jt_size); 2222 sino = ino_lookup(rec->jt_ino, 1); 2223 if (rec->jt_op == JOP_SYNC) { 2224 sino->si_trunc = NULL; 2225 return; 2226 } 2227 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size) 2228 sino->si_trunc = rec; 2229 } 2230 2231 /* 2232 * Build up tables of the operations we need to recover. 2233 */ 2234 static void 2235 suj_build(void) 2236 { 2237 struct suj_seg *seg; 2238 union jrec *rec; 2239 int off; 2240 int i; 2241 2242 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2243 if (debug) 2244 printf("seg %jd has %d records, oldseq %jd.\n", 2245 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 2246 seg->ss_rec.jsr_oldest); 2247 off = 0; 2248 rec = (union jrec *)seg->ss_blk; 2249 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2250 /* skip the segrec. */ 2251 if ((off % real_dev_bsize) == 0) 2252 continue; 2253 switch (rec->rec_jrefrec.jr_op) { 2254 case JOP_ADDREF: 2255 case JOP_REMREF: 2256 case JOP_MVREF: 2257 ino_append(rec); 2258 break; 2259 case JOP_NEWBLK: 2260 case JOP_FREEBLK: 2261 blk_build((struct jblkrec *)rec); 2262 break; 2263 case JOP_TRUNC: 2264 case JOP_SYNC: 2265 ino_build_trunc((struct jtrncrec *)rec); 2266 break; 2267 default: 2268 err_suj("Unknown journal operation %d (%d)\n", 2269 rec->rec_jrefrec.jr_op, off); 2270 } 2271 i++; 2272 } 2273 } 2274 } 2275 2276 /* 2277 * Prune the journal segments to those we care about based on the 2278 * oldest sequence in the newest segment. Order the segment list 2279 * based on sequence number. 2280 */ 2281 static void 2282 suj_prune(void) 2283 { 2284 struct suj_seg *seg; 2285 struct suj_seg *segn; 2286 uint64_t newseq; 2287 int discard; 2288 2289 if (debug) 2290 printf("Pruning up to %jd\n", oldseq); 2291 /* First free the expired segments. */ 2292 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2293 if (seg->ss_rec.jsr_seq >= oldseq) 2294 continue; 2295 TAILQ_REMOVE(&allsegs, seg, ss_next); 2296 free(seg->ss_blk); 2297 free(seg); 2298 } 2299 /* Next ensure that segments are ordered properly. */ 2300 seg = TAILQ_FIRST(&allsegs); 2301 if (seg == NULL) { 2302 if (debug) 2303 printf("Empty journal\n"); 2304 return; 2305 } 2306 newseq = seg->ss_rec.jsr_seq; 2307 for (;;) { 2308 seg = TAILQ_LAST(&allsegs, seghd); 2309 if (seg->ss_rec.jsr_seq >= newseq) 2310 break; 2311 TAILQ_REMOVE(&allsegs, seg, ss_next); 2312 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2313 newseq = seg->ss_rec.jsr_seq; 2314 2315 } 2316 if (newseq != oldseq) { 2317 err_suj("Journal file sequence mismatch %jd != %jd\n", 2318 newseq, oldseq); 2319 } 2320 /* 2321 * The kernel may asynchronously write segments which can create 2322 * gaps in the sequence space. Throw away any segments after the 2323 * gap as the kernel guarantees only those that are contiguously 2324 * reachable are marked as completed. 2325 */ 2326 discard = 0; 2327 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2328 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2329 jrecs += seg->ss_rec.jsr_cnt; 2330 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize; 2331 continue; 2332 } 2333 discard = 1; 2334 if (debug) 2335 printf("Journal order mismatch %jd != %jd pruning\n", 2336 newseq-1, seg->ss_rec.jsr_seq); 2337 TAILQ_REMOVE(&allsegs, seg, ss_next); 2338 free(seg->ss_blk); 2339 free(seg); 2340 } 2341 if (debug) 2342 printf("Processing journal segments from %jd to %jd\n", 2343 oldseq, newseq-1); 2344 } 2345 2346 /* 2347 * Verify the journal inode before attempting to read records. 2348 */ 2349 static int 2350 suj_verifyino(union dinode *ip) 2351 { 2352 2353 if (DIP(ip, di_nlink) != 1) { 2354 printf("Invalid link count %d for journal inode %d\n", 2355 DIP(ip, di_nlink), sujino); 2356 return (-1); 2357 } 2358 2359 if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2360 (SF_IMMUTABLE | SF_NOUNLINK)) { 2361 printf("Invalid flags 0x%X for journal inode %d\n", 2362 DIP(ip, di_flags), sujino); 2363 return (-1); 2364 } 2365 2366 if (DIP(ip, di_mode) != (IFREG | IREAD)) { 2367 printf("Invalid mode %o for journal inode %d\n", 2368 DIP(ip, di_mode), sujino); 2369 return (-1); 2370 } 2371 2372 if (DIP(ip, di_size) < SUJ_MIN || DIP(ip, di_size) > SUJ_MAX) { 2373 printf("Invalid size %jd for journal inode %d\n", 2374 DIP(ip, di_size), sujino); 2375 return (-1); 2376 } 2377 2378 if (DIP(ip, di_modrev) != fs->fs_mtime) { 2379 printf("Journal timestamp does not match fs mount time\n"); 2380 return (-1); 2381 } 2382 2383 return (0); 2384 } 2385 2386 struct jblocks { 2387 struct jextent *jb_extent; /* Extent array. */ 2388 int jb_avail; /* Available extents. */ 2389 int jb_used; /* Last used extent. */ 2390 int jb_head; /* Allocator head. */ 2391 int jb_off; /* Allocator extent offset. */ 2392 }; 2393 struct jextent { 2394 ufs2_daddr_t je_daddr; /* Disk block address. */ 2395 int je_blocks; /* Disk block count. */ 2396 }; 2397 2398 struct jblocks *suj_jblocks; 2399 2400 static struct jblocks * 2401 jblocks_create(void) 2402 { 2403 struct jblocks *jblocks; 2404 int size; 2405 2406 jblocks = errmalloc(sizeof(*jblocks)); 2407 jblocks->jb_avail = 10; 2408 jblocks->jb_used = 0; 2409 jblocks->jb_head = 0; 2410 jblocks->jb_off = 0; 2411 size = sizeof(struct jextent) * jblocks->jb_avail; 2412 jblocks->jb_extent = errmalloc(size); 2413 bzero(jblocks->jb_extent, size); 2414 2415 return (jblocks); 2416 } 2417 2418 /* 2419 * Return the next available disk block and the amount of contiguous 2420 * free space it contains. 2421 */ 2422 static ufs2_daddr_t 2423 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2424 { 2425 struct jextent *jext; 2426 ufs2_daddr_t daddr; 2427 int freecnt; 2428 int blocks; 2429 2430 blocks = bytes / disk->d_bsize; 2431 jext = &jblocks->jb_extent[jblocks->jb_head]; 2432 freecnt = jext->je_blocks - jblocks->jb_off; 2433 if (freecnt == 0) { 2434 jblocks->jb_off = 0; 2435 if (++jblocks->jb_head > jblocks->jb_used) 2436 return (0); 2437 jext = &jblocks->jb_extent[jblocks->jb_head]; 2438 freecnt = jext->je_blocks; 2439 } 2440 if (freecnt > blocks) 2441 freecnt = blocks; 2442 *actual = freecnt * disk->d_bsize; 2443 daddr = jext->je_daddr + jblocks->jb_off; 2444 2445 return (daddr); 2446 } 2447 2448 /* 2449 * Advance the allocation head by a specified number of bytes, consuming 2450 * one journal segment. 2451 */ 2452 static void 2453 jblocks_advance(struct jblocks *jblocks, int bytes) 2454 { 2455 2456 jblocks->jb_off += bytes / disk->d_bsize; 2457 } 2458 2459 static void 2460 jblocks_destroy(struct jblocks *jblocks) 2461 { 2462 2463 free(jblocks->jb_extent); 2464 free(jblocks); 2465 } 2466 2467 static void 2468 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2469 { 2470 struct jextent *jext; 2471 int size; 2472 2473 jext = &jblocks->jb_extent[jblocks->jb_used]; 2474 /* Adding the first block. */ 2475 if (jext->je_daddr == 0) { 2476 jext->je_daddr = daddr; 2477 jext->je_blocks = blocks; 2478 return; 2479 } 2480 /* Extending the last extent. */ 2481 if (jext->je_daddr + jext->je_blocks == daddr) { 2482 jext->je_blocks += blocks; 2483 return; 2484 } 2485 /* Adding a new extent. */ 2486 if (++jblocks->jb_used == jblocks->jb_avail) { 2487 jblocks->jb_avail *= 2; 2488 size = sizeof(struct jextent) * jblocks->jb_avail; 2489 jext = errmalloc(size); 2490 bzero(jext, size); 2491 bcopy(jblocks->jb_extent, jext, 2492 sizeof(struct jextent) * jblocks->jb_used); 2493 free(jblocks->jb_extent); 2494 jblocks->jb_extent = jext; 2495 } 2496 jext = &jblocks->jb_extent[jblocks->jb_used]; 2497 jext->je_daddr = daddr; 2498 jext->je_blocks = blocks; 2499 2500 return; 2501 } 2502 2503 /* 2504 * Add a file block from the journal to the extent map. We can't read 2505 * each file block individually because the kernel treats it as a circular 2506 * buffer and segments may span mutliple contiguous blocks. 2507 */ 2508 static void 2509 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2510 { 2511 2512 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2513 } 2514 2515 static void 2516 suj_read(void) 2517 { 2518 uint8_t block[1 * 1024 * 1024]; 2519 struct suj_seg *seg; 2520 struct jsegrec *recn; 2521 struct jsegrec *rec; 2522 ufs2_daddr_t blk; 2523 int readsize; 2524 int blocks; 2525 int recsize; 2526 int size; 2527 int i; 2528 2529 /* 2530 * Read records until we exhaust the journal space. If we find 2531 * an invalid record we start searching for a valid segment header 2532 * at the next block. This is because we don't have a head/tail 2533 * pointer and must recover the information indirectly. At the gap 2534 * between the head and tail we won't necessarily have a valid 2535 * segment. 2536 */ 2537 restart: 2538 for (;;) { 2539 size = sizeof(block); 2540 blk = jblocks_next(suj_jblocks, size, &readsize); 2541 if (blk == 0) 2542 return; 2543 size = readsize; 2544 /* 2545 * Read 1MB at a time and scan for records within this block. 2546 */ 2547 if (bread(disk, blk, &block, size) == -1) { 2548 err_suj("Error reading journal block %jd\n", 2549 (intmax_t)blk); 2550 } 2551 for (rec = (void *)block; size; size -= recsize, 2552 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2553 recsize = real_dev_bsize; 2554 if (rec->jsr_time != fs->fs_mtime) { 2555 if (debug) 2556 printf("Rec time %jd != fs mtime %jd\n", 2557 rec->jsr_time, fs->fs_mtime); 2558 jblocks_advance(suj_jblocks, recsize); 2559 continue; 2560 } 2561 if (rec->jsr_cnt == 0) { 2562 if (debug) 2563 printf("Found illegal count %d\n", 2564 rec->jsr_cnt); 2565 jblocks_advance(suj_jblocks, recsize); 2566 continue; 2567 } 2568 blocks = rec->jsr_blocks; 2569 recsize = blocks * real_dev_bsize; 2570 if (recsize > size) { 2571 /* 2572 * We may just have run out of buffer, restart 2573 * the loop to re-read from this spot. 2574 */ 2575 if (size < fs->fs_bsize && 2576 size != readsize && 2577 recsize <= fs->fs_bsize) 2578 goto restart; 2579 if (debug) 2580 printf("Found invalid segsize %d > %d\n", 2581 recsize, size); 2582 recsize = real_dev_bsize; 2583 jblocks_advance(suj_jblocks, recsize); 2584 continue; 2585 } 2586 /* 2587 * Verify that all blocks in the segment are present. 2588 */ 2589 for (i = 1; i < blocks; i++) { 2590 recn = (void *)((uintptr_t)rec) + i * 2591 real_dev_bsize; 2592 if (recn->jsr_seq == rec->jsr_seq && 2593 recn->jsr_time == rec->jsr_time) 2594 continue; 2595 if (debug) 2596 printf("Incomplete record %jd (%d)\n", 2597 rec->jsr_seq, i); 2598 recsize = i * real_dev_bsize; 2599 jblocks_advance(suj_jblocks, recsize); 2600 goto restart; 2601 } 2602 seg = errmalloc(sizeof(*seg)); 2603 seg->ss_blk = errmalloc(recsize); 2604 seg->ss_rec = *rec; 2605 bcopy((void *)rec, seg->ss_blk, recsize); 2606 if (rec->jsr_oldest > oldseq) 2607 oldseq = rec->jsr_oldest; 2608 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2609 jblocks_advance(suj_jblocks, recsize); 2610 } 2611 } 2612 } 2613 2614 /* 2615 * Search a directory block for the SUJ_FILE. 2616 */ 2617 static void 2618 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2619 { 2620 char block[MAXBSIZE]; 2621 struct direct *dp; 2622 int bytes; 2623 int off; 2624 2625 if (sujino) 2626 return; 2627 bytes = lfragtosize(fs, frags); 2628 if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0) 2629 err_suj("Failed to read ROOTINO directory block %jd\n", blk); 2630 for (off = 0; off < bytes; off += dp->d_reclen) { 2631 dp = (struct direct *)&block[off]; 2632 if (dp->d_reclen == 0) 2633 break; 2634 if (dp->d_ino == 0) 2635 continue; 2636 if (dp->d_namlen != strlen(SUJ_FILE)) 2637 continue; 2638 if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0) 2639 continue; 2640 sujino = dp->d_ino; 2641 return; 2642 } 2643 } 2644 2645 /* 2646 * Orchestrate the verification of a filesystem via the softupdates journal. 2647 */ 2648 int 2649 suj_check(const char *filesys) 2650 { 2651 union dinode *jip; 2652 union dinode *ip; 2653 uint64_t blocks; 2654 int retval; 2655 struct suj_seg *seg; 2656 struct suj_seg *segn; 2657 2658 opendisk(filesys); 2659 TAILQ_INIT(&allsegs); 2660 2661 /* 2662 * Set an exit point when SUJ check failed 2663 */ 2664 retval = setjmp(jmpbuf); 2665 if (retval != 0) { 2666 pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); 2667 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2668 TAILQ_REMOVE(&allsegs, seg, ss_next); 2669 free(seg->ss_blk); 2670 free(seg); 2671 } 2672 if (reply("FALLBACK TO FULL FSCK") == 0) { 2673 ckfini(0); 2674 exit(EEXIT); 2675 } else 2676 return (-1); 2677 } 2678 2679 /* 2680 * Find the journal inode. 2681 */ 2682 ip = ino_read(ROOTINO); 2683 sujino = 0; 2684 ino_visit(ip, ROOTINO, suj_find, 0); 2685 if (sujino == 0) { 2686 printf("Journal inode removed. Use tunefs to re-create.\n"); 2687 sblock.fs_flags &= ~FS_SUJ; 2688 sblock.fs_sujfree = 0; 2689 return (-1); 2690 } 2691 /* 2692 * Fetch the journal inode and verify it. 2693 */ 2694 jip = ino_read(sujino); 2695 printf("** SU+J Recovering %s\n", filesys); 2696 if (suj_verifyino(jip) != 0) 2697 return (-1); 2698 /* 2699 * Build a list of journal blocks in jblocks before parsing the 2700 * available journal blocks in with suj_read(). 2701 */ 2702 printf("** Reading %jd byte journal from inode %d.\n", 2703 DIP(jip, di_size), sujino); 2704 suj_jblocks = jblocks_create(); 2705 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2706 if (blocks != numfrags(fs, DIP(jip, di_size))) { 2707 printf("Sparse journal inode %d.\n", sujino); 2708 return (-1); 2709 } 2710 suj_read(); 2711 jblocks_destroy(suj_jblocks); 2712 suj_jblocks = NULL; 2713 if (preen || reply("RECOVER")) { 2714 printf("** Building recovery table.\n"); 2715 suj_prune(); 2716 suj_build(); 2717 cg_apply(cg_build); 2718 printf("** Resolving unreferenced inode list.\n"); 2719 ino_unlinked(); 2720 printf("** Processing journal entries.\n"); 2721 cg_apply(cg_trunc); 2722 cg_apply(cg_check_blk); 2723 cg_apply(cg_check_ino); 2724 } 2725 if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0) 2726 return (0); 2727 /* 2728 * To remain idempotent with partial truncations the free bitmaps 2729 * must be written followed by indirect blocks and lastly inode 2730 * blocks. This preserves access to the modified pointers until 2731 * they are freed. 2732 */ 2733 cg_apply(cg_write); 2734 dblk_write(); 2735 cg_apply(cg_write_inos); 2736 /* Write back superblock. */ 2737 closedisk(filesys); 2738 if (jrecs > 0 || jbytes > 0) { 2739 printf("** %jd journal records in %jd bytes for %.2f%% utilization\n", 2740 jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2741 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n", 2742 freeinos, freedir, freeblocks, freefrags); 2743 } 2744 2745 return (0); 2746 } 2747