xref: /freebsd/sbin/fsck_ffs/suj.c (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/disk.h>
31 #include <sys/disklabel.h>
32 #include <sys/mount.h>
33 #include <sys/stat.h>
34 
35 #include <ufs/ufs/extattr.h>
36 #include <ufs/ufs/quota.h>
37 #include <ufs/ufs/ufsmount.h>
38 #include <ufs/ufs/dinode.h>
39 #include <ufs/ufs/dir.h>
40 #include <ufs/ffs/fs.h>
41 
42 #include <assert.h>
43 #include <err.h>
44 #include <setjmp.h>
45 #include <stdarg.h>
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <stdint.h>
49 #include <string.h>
50 #include <strings.h>
51 #include <sysexits.h>
52 #include <time.h>
53 
54 #include "fsck.h"
55 
56 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
57 
58 struct suj_seg {
59 	TAILQ_ENTRY(suj_seg) ss_next;
60 	struct jsegrec	ss_rec;
61 	uint8_t		*ss_blk;
62 };
63 
64 struct suj_rec {
65 	TAILQ_ENTRY(suj_rec) sr_next;
66 	union jrec	*sr_rec;
67 };
68 TAILQ_HEAD(srechd, suj_rec);
69 
70 struct suj_ino {
71 	LIST_ENTRY(suj_ino)	si_next;
72 	struct srechd		si_recs;
73 	struct srechd		si_newrecs;
74 	struct srechd		si_movs;
75 	struct jtrncrec		*si_trunc;
76 	ino_t			si_ino;
77 	char			si_skipparent;
78 	char			si_hasrecs;
79 	char			si_blkadj;
80 	char			si_linkadj;
81 	int			si_mode;
82 	nlink_t			si_nlinkadj;
83 	nlink_t			si_nlink;
84 	nlink_t			si_dotlinks;
85 };
86 LIST_HEAD(inohd, suj_ino);
87 
88 struct suj_blk {
89 	LIST_ENTRY(suj_blk)	sb_next;
90 	struct srechd		sb_recs;
91 	ufs2_daddr_t		sb_blk;
92 };
93 LIST_HEAD(blkhd, suj_blk);
94 
95 struct suj_cg {
96 	LIST_ENTRY(suj_cg)	sc_next;
97 	struct blkhd		sc_blkhash[HASHSIZE];
98 	struct inohd		sc_inohash[HASHSIZE];
99 	struct ino_blk		*sc_lastiblk;
100 	struct suj_ino		*sc_lastino;
101 	struct suj_blk		*sc_lastblk;
102 	struct bufarea		*sc_cgbp;
103 	struct cg		*sc_cgp;
104 	int			sc_cgx;
105 };
106 
107 static LIST_HEAD(cghd, suj_cg) cghash[HASHSIZE];
108 static struct suj_cg *lastcg;
109 
110 static TAILQ_HEAD(seghd, suj_seg) allsegs;
111 static uint64_t oldseq;
112 static struct fs *fs = NULL;
113 static ino_t sujino;
114 static char *joptype[JOP_NUMJOPTYPES] = JOP_NAMES;
115 
116 /*
117  * Summary statistics.
118  */
119 static uint64_t freefrags;
120 static uint64_t freeblocks;
121 static uint64_t freeinos;
122 static uint64_t freedir;
123 static uint64_t jbytes;
124 static uint64_t jrecs;
125 
126 static jmp_buf	jmpbuf;
127 
128 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
129 static void err_suj(const char *, ...) __dead2;
130 static void ino_trunc(ino_t, off_t);
131 static void ino_decr(ino_t);
132 static void ino_adjust(struct suj_ino *);
133 static void ino_build(struct suj_ino *);
134 static int blk_isfree(ufs2_daddr_t);
135 static void initsuj(void);
136 
137 static void *
138 errmalloc(size_t n)
139 {
140 	void *a;
141 
142 	a = Malloc(n);
143 	if (a == NULL)
144 		err(EX_OSERR, "malloc(%zu)", n);
145 	return (a);
146 }
147 
148 /*
149  * When hit a fatal error in journalling check, print out
150  * the error and then offer to fallback to normal fsck.
151  */
152 static void
153 err_suj(const char * restrict fmt, ...)
154 {
155 	va_list ap;
156 
157 	if (preen)
158 		(void)fprintf(stdout, "%s: ", cdevname);
159 
160 	va_start(ap, fmt);
161 	(void)vfprintf(stdout, fmt, ap);
162 	va_end(ap);
163 
164 	longjmp(jmpbuf, -1);
165 }
166 
167 /*
168  * Lookup a cg by number in the hash so we can keep track of which cgs
169  * need stats rebuilt.
170  */
171 static struct suj_cg *
172 cg_lookup(int cgx)
173 {
174 	struct cghd *hd;
175 	struct suj_cg *sc;
176 	struct bufarea *cgbp;
177 
178 	if (cgx < 0 || cgx >= fs->fs_ncg)
179 		err_suj("Bad cg number %d\n", cgx);
180 	if (lastcg && lastcg->sc_cgx == cgx)
181 		return (lastcg);
182 	cgbp = cglookup(cgx);
183 	if (!check_cgmagic(cgx, cgbp))
184 		err_suj("UNABLE TO REBUILD CYLINDER GROUP %d", cgx);
185 	hd = &cghash[HASH(cgx)];
186 	LIST_FOREACH(sc, hd, sc_next)
187 		if (sc->sc_cgx == cgx) {
188 			sc->sc_cgbp = cgbp;
189 			sc->sc_cgp = sc->sc_cgbp->b_un.b_cg;
190 			lastcg = sc;
191 			return (sc);
192 		}
193 	sc = errmalloc(sizeof(*sc));
194 	bzero(sc, sizeof(*sc));
195 	sc->sc_cgbp = cgbp;
196 	sc->sc_cgp = sc->sc_cgbp->b_un.b_cg;
197 	sc->sc_cgx = cgx;
198 	LIST_INSERT_HEAD(hd, sc, sc_next);
199 	return (sc);
200 }
201 
202 /*
203  * Lookup an inode number in the hash and allocate a suj_ino if it does
204  * not exist.
205  */
206 static struct suj_ino *
207 ino_lookup(ino_t ino, int creat)
208 {
209 	struct suj_ino *sino;
210 	struct inohd *hd;
211 	struct suj_cg *sc;
212 
213 	sc = cg_lookup(ino_to_cg(fs, ino));
214 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
215 		return (sc->sc_lastino);
216 	hd = &sc->sc_inohash[HASH(ino)];
217 	LIST_FOREACH(sino, hd, si_next)
218 		if (sino->si_ino == ino)
219 			return (sino);
220 	if (creat == 0)
221 		return (NULL);
222 	sino = errmalloc(sizeof(*sino));
223 	bzero(sino, sizeof(*sino));
224 	sino->si_ino = ino;
225 	TAILQ_INIT(&sino->si_recs);
226 	TAILQ_INIT(&sino->si_newrecs);
227 	TAILQ_INIT(&sino->si_movs);
228 	LIST_INSERT_HEAD(hd, sino, si_next);
229 
230 	return (sino);
231 }
232 
233 /*
234  * Lookup a block number in the hash and allocate a suj_blk if it does
235  * not exist.
236  */
237 static struct suj_blk *
238 blk_lookup(ufs2_daddr_t blk, int creat)
239 {
240 	struct suj_blk *sblk;
241 	struct suj_cg *sc;
242 	struct blkhd *hd;
243 
244 	sc = cg_lookup(dtog(fs, blk));
245 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
246 		return (sc->sc_lastblk);
247 	hd = &sc->sc_blkhash[HASH(fragstoblks(fs, blk))];
248 	LIST_FOREACH(sblk, hd, sb_next)
249 		if (sblk->sb_blk == blk)
250 			return (sblk);
251 	if (creat == 0)
252 		return (NULL);
253 	sblk = errmalloc(sizeof(*sblk));
254 	bzero(sblk, sizeof(*sblk));
255 	sblk->sb_blk = blk;
256 	TAILQ_INIT(&sblk->sb_recs);
257 	LIST_INSERT_HEAD(hd, sblk, sb_next);
258 
259 	return (sblk);
260 }
261 
262 static int
263 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
264 {
265 	ufs2_daddr_t bstart;
266 	ufs2_daddr_t bend;
267 	ufs2_daddr_t end;
268 
269 	end = start + frags;
270 	bstart = brec->jb_blkno + brec->jb_oldfrags;
271 	bend = bstart + brec->jb_frags;
272 	if (start < bend && end > bstart)
273 		return (1);
274 	return (0);
275 }
276 
277 static int
278 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
279     int frags)
280 {
281 
282 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
283 		return (0);
284 	if (brec->jb_blkno + brec->jb_oldfrags != start)
285 		return (0);
286 	if (brec->jb_frags < frags)
287 		return (0);
288 	return (1);
289 }
290 
291 static void
292 blk_setmask(struct jblkrec *brec, int *mask)
293 {
294 	int i;
295 
296 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
297 		*mask |= 1 << i;
298 }
299 
300 /*
301  * Determine whether a given block has been reallocated to a new location.
302  * Returns a mask of overlapping bits if any frags have been reused or
303  * zero if the block has not been re-used and the contents can be trusted.
304  *
305  * This is used to ensure that an orphaned pointer due to truncate is safe
306  * to be freed.  The mask value can be used to free partial blocks.
307  */
308 static int
309 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
310 {
311 	struct suj_blk *sblk;
312 	struct suj_rec *srec;
313 	struct jblkrec *brec;
314 	int mask;
315 	int off;
316 
317 	/*
318 	 * To be certain we're not freeing a reallocated block we lookup
319 	 * this block in the blk hash and see if there is an allocation
320 	 * journal record that overlaps with any fragments in the block
321 	 * we're concerned with.  If any fragments have been reallocated
322 	 * the block has already been freed and re-used for another purpose.
323 	 */
324 	mask = 0;
325 	sblk = blk_lookup(blknum(fs, blk), 0);
326 	if (sblk == NULL)
327 		return (0);
328 	off = blk - sblk->sb_blk;
329 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
330 		brec = (struct jblkrec *)srec->sr_rec;
331 		/*
332 		 * If the block overlaps but does not match
333 		 * exactly this record refers to the current
334 		 * location.
335 		 */
336 		if (blk_overlaps(brec, blk, frags) == 0)
337 			continue;
338 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
339 			mask = 0;
340 		else
341 			blk_setmask(brec, &mask);
342 	}
343 	if (debug)
344 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
345 		    blk, sblk->sb_blk, off, mask);
346 	return (mask >> off);
347 }
348 
349 /*
350  * Determine whether it is safe to follow an indirect.  It is not safe
351  * if any part of the indirect has been reallocated or the last journal
352  * entry was an allocation.  Just allocated indirects may not have valid
353  * pointers yet and all of their children will have their own records.
354  * It is also not safe to follow an indirect if the cg bitmap has been
355  * cleared as a new allocation may write to the block prior to the journal
356  * being written.
357  *
358  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
359  */
360 static int
361 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
362 {
363 	struct suj_blk *sblk;
364 	struct jblkrec *brec;
365 
366 	sblk = blk_lookup(blk, 0);
367 	if (sblk == NULL)
368 		return (1);
369 	if (TAILQ_EMPTY(&sblk->sb_recs))
370 		return (1);
371 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
372 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
373 		if (brec->jb_op == JOP_FREEBLK)
374 			return (!blk_isfree(blk));
375 	return (0);
376 }
377 
378 /*
379  * Check to see if the requested block is available.
380  * We can just check in the cylinder-group maps as
381  * they will only have usable blocks in them.
382  */
383 ufs2_daddr_t
384 suj_checkblkavail(ufs2_daddr_t blkno, long frags)
385 {
386 	struct bufarea *cgbp;
387 	struct cg *cgp;
388 	ufs2_daddr_t j, k, baseblk;
389 	long cg;
390 
391 	if ((u_int64_t)blkno > sblock.fs_size)
392 		return (0);
393 	cg = dtog(&sblock, blkno);
394 	cgbp = cglookup(cg);
395 	cgp = cgbp->b_un.b_cg;
396 	if (!check_cgmagic(cg, cgbp))
397 		return (-((cg + 1) * sblock.fs_fpg - sblock.fs_frag));
398 	baseblk = dtogd(&sblock, blkno);
399 	for (j = 0; j <= sblock.fs_frag - frags; j++) {
400 		if (!isset(cg_blksfree(cgp), baseblk + j))
401 			continue;
402 		for (k = 1; k < frags; k++)
403 			if (!isset(cg_blksfree(cgp), baseblk + j + k))
404 				break;
405 		if (k < frags) {
406 			j += k;
407 			continue;
408 		}
409 		for (k = 0; k < frags; k++)
410 			clrbit(cg_blksfree(cgp), baseblk + j + k);
411 		n_blks += frags;
412 		if (frags == sblock.fs_frag)
413 			cgp->cg_cs.cs_nbfree--;
414 		else
415 			cgp->cg_cs.cs_nffree -= frags;
416 		cgdirty(cgbp);
417 		return ((cg * sblock.fs_fpg) + baseblk + j);
418 	}
419 	return (0);
420 }
421 
422 /*
423  * Clear an inode from the cg bitmap.  If the inode was already clear return
424  * 0 so the caller knows it does not have to check the inode contents.
425  */
426 static int
427 ino_free(ino_t ino, int mode)
428 {
429 	struct suj_cg *sc;
430 	uint8_t *inosused;
431 	struct cg *cgp;
432 	int cg;
433 
434 	cg = ino_to_cg(fs, ino);
435 	ino = ino % fs->fs_ipg;
436 	sc = cg_lookup(cg);
437 	cgp = sc->sc_cgp;
438 	inosused = cg_inosused(cgp);
439 	/*
440 	 * The bitmap may never have made it to the disk so we have to
441 	 * conditionally clear.  We can avoid writing the cg in this case.
442 	 */
443 	if (isclr(inosused, ino))
444 		return (0);
445 	freeinos++;
446 	clrbit(inosused, ino);
447 	if (ino < cgp->cg_irotor)
448 		cgp->cg_irotor = ino;
449 	cgp->cg_cs.cs_nifree++;
450 	if ((mode & IFMT) == IFDIR) {
451 		freedir++;
452 		cgp->cg_cs.cs_ndir--;
453 	}
454 	cgdirty(sc->sc_cgbp);
455 
456 	return (1);
457 }
458 
459 /*
460  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
461  * set in the mask.
462  */
463 static void
464 blk_free(ino_t ino, ufs2_daddr_t bno, int mask, int frags)
465 {
466 	ufs1_daddr_t fragno, cgbno;
467 	struct suj_cg *sc;
468 	struct cg *cgp;
469 	int i, cg;
470 	uint8_t *blksfree;
471 
472 	if (debug)
473 		printf("Freeing %d frags at blk %jd mask 0x%x\n",
474 		    frags, bno, mask);
475 	/*
476 	 * Check to see if the block needs to be claimed by a snapshot.
477 	 * If wanted, the snapshot references it. Otherwise we free it.
478 	 */
479 	if (snapblkfree(fs, bno, lfragtosize(fs, frags), ino,
480 	    suj_checkblkavail))
481 		return;
482 	cg = dtog(fs, bno);
483 	sc = cg_lookup(cg);
484 	cgp = sc->sc_cgp;
485 	cgbno = dtogd(fs, bno);
486 	blksfree = cg_blksfree(cgp);
487 
488 	/*
489 	 * If it's not allocated we only wrote the journal entry
490 	 * and never the bitmaps.  Here we unconditionally clear and
491 	 * resolve the cg summary later.
492 	 */
493 	if (frags == fs->fs_frag && mask == 0) {
494 		fragno = fragstoblks(fs, cgbno);
495 		ffs_setblock(fs, blksfree, fragno);
496 		freeblocks++;
497 	} else {
498 		/*
499 		 * deallocate the fragment
500 		 */
501 		for (i = 0; i < frags; i++)
502 			if ((mask & (1 << i)) == 0 &&
503 			    isclr(blksfree, cgbno +i)) {
504 				freefrags++;
505 				setbit(blksfree, cgbno + i);
506 			}
507 	}
508 	cgdirty(sc->sc_cgbp);
509 }
510 
511 /*
512  * Returns 1 if the whole block starting at 'bno' is marked free and 0
513  * otherwise.
514  */
515 static int
516 blk_isfree(ufs2_daddr_t bno)
517 {
518 	struct suj_cg *sc;
519 
520 	sc = cg_lookup(dtog(fs, bno));
521 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
522 }
523 
524 /*
525  * Determine whether a block exists at a particular lbn in an inode.
526  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
527  * or ext blocks.
528  */
529 static int
530 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
531 {
532 	struct inode ip;
533 	union dinode *dp;
534 	ufs2_daddr_t nblk;
535 
536 	ginode(ino, &ip);
537 	dp = ip.i_dp;
538 	if (DIP(dp, di_nlink) == 0 || DIP(dp, di_mode) == 0) {
539 		irelse(&ip);
540 		return (0);
541 	}
542 	nblk = ino_blkatoff(dp, ino, lbn, frags, NULL);
543 	irelse(&ip);
544 	return (nblk == blk);
545 }
546 
547 /*
548  * Clear the directory entry at diroff that should point to child.  Minimal
549  * checking is done and it is assumed that this path was verified with isat.
550  */
551 static void
552 ino_clrat(ino_t parent, off_t diroff, ino_t child)
553 {
554 	union dinode *dip;
555 	struct direct *dp;
556 	struct inode ip;
557 	ufs2_daddr_t blk;
558 	struct bufarea *bp;
559 	ufs_lbn_t lbn;
560 	int blksize;
561 	int frags;
562 	int doff;
563 
564 	if (debug)
565 		printf("Clearing inode %ju from parent %ju at offset %jd\n",
566 		    (uintmax_t)child, (uintmax_t)parent, diroff);
567 
568 	lbn = lblkno(fs, diroff);
569 	doff = blkoff(fs, diroff);
570 	ginode(parent, &ip);
571 	dip = ip.i_dp;
572 	blk = ino_blkatoff(dip, parent, lbn, &frags, NULL);
573 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
574 	irelse(&ip);
575 	bp = getdatablk(blk, blksize, BT_DIRDATA);
576 	if (bp->b_errs != 0)
577 		err_suj("ino_clrat: UNRECOVERABLE I/O ERROR");
578 	dp = (struct direct *)&bp->b_un.b_buf[doff];
579 	if (dp->d_ino != child)
580 		errx(1, "Inode %ju does not exist in %ju at %jd",
581 		    (uintmax_t)child, (uintmax_t)parent, diroff);
582 	dp->d_ino = 0;
583 	dirty(bp);
584 	brelse(bp);
585 	/*
586 	 * The actual .. reference count will already have been removed
587 	 * from the parent by the .. remref record.
588 	 */
589 }
590 
591 /*
592  * Determines whether a pointer to an inode exists within a directory
593  * at a specified offset.  Returns the mode of the found entry.
594  */
595 static int
596 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
597 {
598 	struct inode ip;
599 	union dinode *dip;
600 	struct bufarea *bp;
601 	struct direct *dp;
602 	ufs2_daddr_t blk;
603 	ufs_lbn_t lbn;
604 	int blksize;
605 	int frags;
606 	int dpoff;
607 	int doff;
608 
609 	*isdot = 0;
610 	ginode(parent, &ip);
611 	dip = ip.i_dp;
612 	*mode = DIP(dip, di_mode);
613 	if ((*mode & IFMT) != IFDIR) {
614 		if (debug) {
615 			/*
616 			 * This can happen if the parent inode
617 			 * was reallocated.
618 			 */
619 			if (*mode != 0)
620 				printf("Directory %ju has bad mode %o\n",
621 				    (uintmax_t)parent, *mode);
622 			else
623 				printf("Directory %ju has zero mode\n",
624 				    (uintmax_t)parent);
625 		}
626 		irelse(&ip);
627 		return (0);
628 	}
629 	lbn = lblkno(fs, diroff);
630 	doff = blkoff(fs, diroff);
631 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
632 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
633 		if (debug)
634 			printf("ino %ju absent from %ju due to offset %jd"
635 			    " exceeding size %jd\n",
636 			    (uintmax_t)child, (uintmax_t)parent, diroff,
637 			    DIP(dip, di_size));
638 		irelse(&ip);
639 		return (0);
640 	}
641 	blk = ino_blkatoff(dip, parent, lbn, &frags, NULL);
642 	irelse(&ip);
643 	if (blk <= 0) {
644 		if (debug)
645 			printf("Sparse directory %ju", (uintmax_t)parent);
646 		return (0);
647 	}
648 	bp = getdatablk(blk, blksize, BT_DIRDATA);
649 	if (bp->b_errs != 0)
650 		err_suj("ino_isat: UNRECOVERABLE I/O ERROR");
651 	/*
652 	 * Walk through the records from the start of the block to be
653 	 * certain we hit a valid record and not some junk in the middle
654 	 * of a file name.  Stop when we reach or pass the expected offset.
655 	 */
656 	dpoff = rounddown(doff, DIRBLKSIZ);
657 	do {
658 		dp = (struct direct *)&bp->b_un.b_buf[dpoff];
659 		if (dpoff == doff)
660 			break;
661 		if (dp->d_reclen == 0)
662 			break;
663 		dpoff += dp->d_reclen;
664 	} while (dpoff <= doff);
665 	if (dpoff > fs->fs_bsize)
666 		err_suj("Corrupt directory block in dir ino %ju\n",
667 		    (uintmax_t)parent);
668 	/* Not found. */
669 	if (dpoff != doff) {
670 		if (debug)
671 			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
672 			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
673 		brelse(bp);
674 		return (0);
675 	}
676 	/*
677 	 * We found the item in question.  Record the mode and whether it's
678 	 * a . or .. link for the caller.
679 	 */
680 	if (dp->d_ino == child) {
681 		if (child == parent)
682 			*isdot = 1;
683 		else if (dp->d_namlen == 2 &&
684 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
685 			*isdot = 1;
686 		*mode = DTTOIF(dp->d_type);
687 		brelse(bp);
688 		return (1);
689 	}
690 	if (debug)
691 		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
692 		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
693 	brelse(bp);
694 	return (0);
695 }
696 
697 #define	VISIT_INDIR	0x0001
698 #define	VISIT_EXT	0x0002
699 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
700 
701 /*
702  * Read an indirect level which may or may not be linked into an inode.
703  */
704 static void
705 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
706     ino_visitor visitor, int flags)
707 {
708 	struct bufarea *bp;
709 	ufs_lbn_t lbnadd;
710 	ufs2_daddr_t nblk;
711 	ufs_lbn_t nlbn;
712 	int level;
713 	int i;
714 
715 	/*
716 	 * Don't visit indirect blocks with contents we can't trust.  This
717 	 * should only happen when indir_visit() is called to complete a
718 	 * truncate that never finished and not when a pointer is found via
719 	 * an inode.
720 	 */
721 	if (blk == 0)
722 		return;
723 	level = lbn_level(lbn);
724 	if (level == -1)
725 		err_suj("Invalid level for lbn %jd\n", lbn);
726 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
727 		if (debug)
728 			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
729 			    blk, (uintmax_t)ino, lbn, level);
730 		goto out;
731 	}
732 	lbnadd = 1;
733 	for (i = level; i > 0; i--)
734 		lbnadd *= NINDIR(fs);
735 	bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level);
736 	if (bp->b_errs != 0)
737 		err_suj("indir_visit: UNRECOVERABLE I/O ERROR\n");
738 	for (i = 0; i < NINDIR(fs); i++) {
739 		if ((nblk = IBLK(bp, i)) == 0)
740 			continue;
741 		if (level == 0) {
742 			nlbn = -lbn + i * lbnadd;
743 			(*frags) += fs->fs_frag;
744 			visitor(ino, nlbn, nblk, fs->fs_frag);
745 		} else {
746 			nlbn = (lbn + 1) - (i * lbnadd);
747 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
748 		}
749 	}
750 	brelse(bp);
751 out:
752 	if (flags & VISIT_INDIR) {
753 		(*frags) += fs->fs_frag;
754 		visitor(ino, lbn, blk, fs->fs_frag);
755 	}
756 }
757 
758 /*
759  * Visit each block in an inode as specified by 'flags' and call a
760  * callback function.  The callback may inspect or free blocks.  The
761  * count of frags found according to the size in the file is returned.
762  * This is not valid for sparse files but may be used to determine
763  * the correct di_blocks for a file.
764  */
765 static uint64_t
766 ino_visit(union dinode *dp, ino_t ino, ino_visitor visitor, int flags)
767 {
768 	ufs_lbn_t nextlbn;
769 	ufs_lbn_t tmpval;
770 	ufs_lbn_t lbn;
771 	uint64_t size;
772 	uint64_t fragcnt;
773 	int mode;
774 	int frags;
775 	int i;
776 
777 	size = DIP(dp, di_size);
778 	mode = DIP(dp, di_mode) & IFMT;
779 	fragcnt = 0;
780 	if ((flags & VISIT_EXT) &&
781 	    fs->fs_magic == FS_UFS2_MAGIC && dp->dp2.di_extsize) {
782 		for (i = 0; i < UFS_NXADDR; i++) {
783 			if (dp->dp2.di_extb[i] == 0)
784 				continue;
785 			frags = sblksize(fs, dp->dp2.di_extsize, i);
786 			frags = numfrags(fs, frags);
787 			fragcnt += frags;
788 			visitor(ino, -1 - i, dp->dp2.di_extb[i], frags);
789 		}
790 	}
791 	/* Skip datablocks for short links and devices. */
792 	if (mode == IFBLK || mode == IFCHR ||
793 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
794 		return (fragcnt);
795 	for (i = 0; i < UFS_NDADDR; i++) {
796 		if (DIP(dp, di_db[i]) == 0)
797 			continue;
798 		frags = sblksize(fs, size, i);
799 		frags = numfrags(fs, frags);
800 		fragcnt += frags;
801 		visitor(ino, i, DIP(dp, di_db[i]), frags);
802 	}
803 	/*
804 	 * We know the following indirects are real as we're following
805 	 * real pointers to them.
806 	 */
807 	flags |= VISIT_ROOT;
808 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
809 	    lbn = nextlbn) {
810 		nextlbn = lbn + tmpval;
811 		tmpval *= NINDIR(fs);
812 		if (DIP(dp, di_ib[i]) == 0)
813 			continue;
814 		indir_visit(ino, -lbn - i, DIP(dp, di_ib[i]), &fragcnt, visitor,
815 		    flags);
816 	}
817 	return (fragcnt);
818 }
819 
820 /*
821  * Null visitor function used when we just want to count blocks and
822  * record the lbn.
823  */
824 ufs_lbn_t visitlbn;
825 static void
826 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
827 {
828 	if (lbn > 0)
829 		visitlbn = lbn;
830 }
831 
832 /*
833  * Recalculate di_blocks when we discover that a block allocation or
834  * free was not successfully completed.  The kernel does not roll this back
835  * because it would be too expensive to compute which indirects were
836  * reachable at the time the inode was written.
837  */
838 static void
839 ino_adjblks(struct suj_ino *sino)
840 {
841 	struct inode ip;
842 	union dinode *dp;
843 	uint64_t blocks;
844 	uint64_t frags;
845 	off_t isize;
846 	off_t size;
847 	ino_t ino;
848 
849 	ino = sino->si_ino;
850 	ginode(ino, &ip);
851 	dp = ip.i_dp;
852 	/* No need to adjust zero'd inodes. */
853 	if (DIP(dp, di_mode) == 0) {
854 		irelse(&ip);
855 		return;
856 	}
857 	/*
858 	 * Visit all blocks and count them as well as recording the last
859 	 * valid lbn in the file.  If the file size doesn't agree with the
860 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
861 	 * the blocks count.
862 	 */
863 	visitlbn = 0;
864 	frags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT);
865 	blocks = fsbtodb(fs, frags);
866 	/*
867 	 * We assume the size and direct block list is kept coherent by
868 	 * softdep.  For files that have extended into indirects we truncate
869 	 * to the size in the inode or the maximum size permitted by
870 	 * populated indirects.
871 	 */
872 	if (visitlbn >= UFS_NDADDR) {
873 		isize = DIP(dp, di_size);
874 		size = lblktosize(fs, visitlbn + 1);
875 		if (isize > size)
876 			isize = size;
877 		/* Always truncate to free any unpopulated indirects. */
878 		ino_trunc(ino, isize);
879 		irelse(&ip);
880 		return;
881 	}
882 	if (blocks == DIP(dp, di_blocks)) {
883 		irelse(&ip);
884 		return;
885 	}
886 	if (debug)
887 		printf("ino %ju adjusting block count from %jd to %jd\n",
888 		    (uintmax_t)ino, DIP(dp, di_blocks), blocks);
889 	DIP_SET(dp, di_blocks, blocks);
890 	inodirty(&ip);
891 	irelse(&ip);
892 }
893 
894 static void
895 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
896 {
897 
898 	blk_free(ino, blk, blk_freemask(blk, ino, lbn, frags), frags);
899 }
900 
901 /*
902  * Free a block or tree of blocks that was previously rooted in ino at
903  * the given lbn.  If the lbn is an indirect all children are freed
904  * recursively.
905  */
906 static void
907 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
908 {
909 	uint64_t resid;
910 	int mask;
911 
912 	mask = blk_freemask(blk, ino, lbn, frags);
913 	resid = 0;
914 	if (lbn <= -UFS_NDADDR && follow && mask == 0)
915 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
916 	else
917 		blk_free(ino, blk, mask, frags);
918 }
919 
920 static void
921 ino_setskip(struct suj_ino *sino, ino_t parent)
922 {
923 	int isdot;
924 	int mode;
925 
926 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
927 		sino->si_skipparent = 1;
928 }
929 
930 static void
931 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
932 {
933 	struct suj_ino *sino;
934 	struct suj_rec *srec;
935 	struct jrefrec *rrec;
936 
937 	/*
938 	 * Lookup this inode to see if we have a record for it.
939 	 */
940 	sino = ino_lookup(child, 0);
941 	/*
942 	 * Tell any child directories we've already removed their
943 	 * parent link cnt.  Don't try to adjust our link down again.
944 	 */
945 	if (sino != NULL && isdotdot == 0)
946 		ino_setskip(sino, parent);
947 	/*
948 	 * No valid record for this inode.  Just drop the on-disk
949 	 * link by one.
950 	 */
951 	if (sino == NULL || sino->si_hasrecs == 0) {
952 		ino_decr(child);
953 		return;
954 	}
955 	/*
956 	 * Use ino_adjust() if ino_check() has already processed this
957 	 * child.  If we lose the last non-dot reference to a
958 	 * directory it will be discarded.
959 	 */
960 	if (sino->si_linkadj) {
961 		if (sino->si_nlink == 0)
962 			err_suj("ino_remref: ino %ld mode 0%o about to go "
963 			    "negative\n", sino->si_ino, sino->si_mode);
964 		sino->si_nlink--;
965 		if (isdotdot)
966 			sino->si_dotlinks--;
967 		ino_adjust(sino);
968 		return;
969 	}
970 	/*
971 	 * If we haven't yet processed this inode we need to make
972 	 * sure we will successfully discover the lost path.  If not
973 	 * use nlinkadj to remember.
974 	 */
975 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
976 		rrec = (struct jrefrec *)srec->sr_rec;
977 		if (rrec->jr_parent == parent &&
978 		    rrec->jr_diroff == diroff)
979 			return;
980 	}
981 	sino->si_nlinkadj++;
982 }
983 
984 /*
985  * Free the children of a directory when the directory is discarded.
986  */
987 static void
988 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
989 {
990 	struct suj_ino *sino;
991 	struct bufarea *bp;
992 	struct direct *dp;
993 	off_t diroff;
994 	int skipparent;
995 	int isdotdot;
996 	int dpoff;
997 	int size;
998 
999 	sino = ino_lookup(ino, 0);
1000 	if (sino)
1001 		skipparent = sino->si_skipparent;
1002 	else
1003 		skipparent = 0;
1004 	size = lfragtosize(fs, frags);
1005 	bp = getdatablk(blk, size, BT_DIRDATA);
1006 	if (bp->b_errs != 0)
1007 		err_suj("ino_free_children: UNRECOVERABLE I/O ERROR");
1008 	dp = (struct direct *)&bp->b_un.b_buf[0];
1009 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1010 		dp = (struct direct *)&bp->b_un.b_buf[dpoff];
1011 		if (dp->d_ino == 0 || dp->d_ino == UFS_WINO)
1012 			continue;
1013 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1014 			continue;
1015 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1016 		    dp->d_name[1] == '.';
1017 		if (isdotdot && skipparent == 1)
1018 			continue;
1019 		if (debug)
1020 			printf("Directory %ju removing ino %ju name %s\n",
1021 			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1022 		diroff = lblktosize(fs, lbn) + dpoff;
1023 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1024 	}
1025 	brelse(bp);
1026 }
1027 
1028 /*
1029  * Reclaim an inode, freeing all blocks and decrementing all children's
1030  * link counts.  Free the inode back to the cg.
1031  */
1032 static void
1033 ino_reclaim(struct inode *ip, ino_t ino, int mode)
1034 {
1035 	union dinode *dp;
1036 	uint32_t gen;
1037 
1038 	dp = ip->i_dp;
1039 	if (ino == UFS_ROOTINO)
1040 		err_suj("Attempting to free UFS_ROOTINO\n");
1041 	if (debug)
1042 		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1043 		    (uintmax_t)ino, DIP(dp, di_nlink), DIP(dp, di_mode));
1044 
1045 	/* We are freeing an inode or directory. */
1046 	if ((DIP(dp, di_mode) & IFMT) == IFDIR)
1047 		ino_visit(dp, ino, ino_free_children, 0);
1048 	DIP_SET(dp, di_nlink, 0);
1049 	if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0)
1050 		snapremove(ino);
1051 	ino_visit(dp, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1052 	/* Here we have to clear the inode and release any blocks it holds. */
1053 	gen = DIP(dp, di_gen);
1054 	if (fs->fs_magic == FS_UFS1_MAGIC)
1055 		bzero(dp, sizeof(struct ufs1_dinode));
1056 	else
1057 		bzero(dp, sizeof(struct ufs2_dinode));
1058 	DIP_SET(dp, di_gen, gen);
1059 	inodirty(ip);
1060 	ino_free(ino, mode);
1061 	return;
1062 }
1063 
1064 /*
1065  * Adjust an inode's link count down by one when a directory goes away.
1066  */
1067 static void
1068 ino_decr(ino_t ino)
1069 {
1070 	struct inode ip;
1071 	union dinode *dp;
1072 	int reqlink;
1073 	int nlink;
1074 	int mode;
1075 
1076 	ginode(ino, &ip);
1077 	dp = ip.i_dp;
1078 	nlink = DIP(dp, di_nlink);
1079 	mode = DIP(dp, di_mode);
1080 	if (nlink < 1)
1081 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1082 	if (mode == 0)
1083 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1084 	nlink--;
1085 	if ((mode & IFMT) == IFDIR)
1086 		reqlink = 2;
1087 	else
1088 		reqlink = 1;
1089 	if (nlink < reqlink) {
1090 		if (debug)
1091 			printf("ino %ju not enough links to live %d < %d\n",
1092 			    (uintmax_t)ino, nlink, reqlink);
1093 		ino_reclaim(&ip, ino, mode);
1094 		irelse(&ip);
1095 		return;
1096 	}
1097 	DIP_SET(dp, di_nlink, nlink);
1098 	inodirty(&ip);
1099 	irelse(&ip);
1100 }
1101 
1102 /*
1103  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1104  * free it.
1105  */
1106 static void
1107 ino_adjust(struct suj_ino *sino)
1108 {
1109 	struct jrefrec *rrec;
1110 	struct suj_rec *srec;
1111 	struct suj_ino *stmp;
1112 	union dinode *dp;
1113 	struct inode ip;
1114 	nlink_t nlink;
1115 	nlink_t reqlink;
1116 	int recmode;
1117 	int isdot;
1118 	int mode;
1119 	ino_t ino;
1120 
1121 	nlink = sino->si_nlink;
1122 	ino = sino->si_ino;
1123 	mode = sino->si_mode & IFMT;
1124 	/*
1125 	 * If it's a directory with no dot links, it was truncated before
1126 	 * the name was cleared.  We need to clear the dirent that
1127 	 * points at it.
1128 	 */
1129 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1130 		sino->si_nlink = nlink = 0;
1131 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1132 			rrec = (struct jrefrec *)srec->sr_rec;
1133 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1134 			    &recmode, &isdot) == 0)
1135 				continue;
1136 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1137 			break;
1138 		}
1139 		if (srec == NULL)
1140 			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1141 	}
1142 	/*
1143 	 * If it's a directory with no real names pointing to it go ahead
1144 	 * and truncate it.  This will free any children.
1145 	 */
1146 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1147 		sino->si_nlink = nlink = 0;
1148 		/*
1149 		 * Mark any .. links so they know not to free this inode
1150 		 * when they are removed.
1151 		 */
1152 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1153 			rrec = (struct jrefrec *)srec->sr_rec;
1154 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1155 				stmp = ino_lookup(rrec->jr_parent, 0);
1156 				if (stmp)
1157 					ino_setskip(stmp, ino);
1158 			}
1159 		}
1160 	}
1161 	ginode(ino, &ip);
1162 	dp = ip.i_dp;
1163 	mode = DIP(dp, di_mode) & IFMT;
1164 	if (nlink > UFS_LINK_MAX)
1165 		err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
1166 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink));
1167 	if (debug)
1168 	       printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
1169 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink),
1170 		    sino->si_mode);
1171 	if (mode == 0) {
1172 		if (debug)
1173 			printf("ino %ju, zero inode freeing bitmap\n",
1174 			    (uintmax_t)ino);
1175 		ino_free(ino, sino->si_mode);
1176 		irelse(&ip);
1177 		return;
1178 	}
1179 	/* XXX Should be an assert? */
1180 	if (mode != sino->si_mode && debug)
1181 		printf("ino %ju, mode %o != %o\n",
1182 		    (uintmax_t)ino, mode, sino->si_mode);
1183 	if ((mode & IFMT) == IFDIR)
1184 		reqlink = 2;
1185 	else
1186 		reqlink = 1;
1187 	/* If the inode doesn't have enough links to live, free it. */
1188 	if (nlink < reqlink) {
1189 		if (debug)
1190 			printf("ino %ju not enough links to live %ju < %ju\n",
1191 			    (uintmax_t)ino, (uintmax_t)nlink,
1192 			    (uintmax_t)reqlink);
1193 		ino_reclaim(&ip, ino, mode);
1194 		irelse(&ip);
1195 		return;
1196 	}
1197 	/* If required write the updated link count. */
1198 	if (DIP(dp, di_nlink) == nlink) {
1199 		if (debug)
1200 			printf("ino %ju, link matches, skipping.\n",
1201 			    (uintmax_t)ino);
1202 		irelse(&ip);
1203 		return;
1204 	}
1205 	DIP_SET(dp, di_nlink, nlink);
1206 	inodirty(&ip);
1207 	irelse(&ip);
1208 }
1209 
1210 /*
1211  * Truncate some or all blocks in an indirect, freeing any that are required
1212  * and zeroing the indirect.
1213  */
1214 static void
1215 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn,
1216 	union dinode *dp)
1217 {
1218 	struct bufarea *bp;
1219 	ufs_lbn_t lbnadd;
1220 	ufs2_daddr_t nblk;
1221 	ufs_lbn_t next;
1222 	ufs_lbn_t nlbn;
1223 	int isdirty;
1224 	int level;
1225 	int i;
1226 
1227 	if (blk == 0)
1228 		return;
1229 	isdirty = 0;
1230 	level = lbn_level(lbn);
1231 	if (level == -1)
1232 		err_suj("Invalid level for lbn %jd\n", lbn);
1233 	lbnadd = 1;
1234 	for (i = level; i > 0; i--)
1235 		lbnadd *= NINDIR(fs);
1236 	bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level);
1237 	if (bp->b_errs != 0)
1238 		err_suj("indir_trunc: UNRECOVERABLE I/O ERROR");
1239 	for (i = 0; i < NINDIR(fs); i++) {
1240 		if ((nblk = IBLK(bp, i)) == 0)
1241 			continue;
1242 		if (level != 0) {
1243 			nlbn = (lbn + 1) - (i * lbnadd);
1244 			/*
1245 			 * Calculate the lbn of the next indirect to
1246 			 * determine if any of this indirect must be
1247 			 * reclaimed.
1248 			 */
1249 			next = -(lbn + level) + ((i+1) * lbnadd);
1250 			if (next <= lastlbn)
1251 				continue;
1252 			indir_trunc(ino, nlbn, nblk, lastlbn, dp);
1253 			/* If all of this indirect was reclaimed, free it. */
1254 			nlbn = next - lbnadd;
1255 			if (nlbn < lastlbn)
1256 				continue;
1257 		} else {
1258 			nlbn = -lbn + i * lbnadd;
1259 			if (nlbn < lastlbn)
1260 				continue;
1261 		}
1262 		isdirty = 1;
1263 		blk_free(ino, nblk, 0, fs->fs_frag);
1264 		IBLK_SET(bp, i, 0);
1265 	}
1266 	if (isdirty)
1267 		dirty(bp);
1268 	brelse(bp);
1269 }
1270 
1271 /*
1272  * Truncate an inode to the minimum of the given size or the last populated
1273  * block after any over size have been discarded.  The kernel would allocate
1274  * the last block in the file but fsck does not and neither do we.  This
1275  * code never extends files, only shrinks them.
1276  */
1277 static void
1278 ino_trunc(ino_t ino, off_t size)
1279 {
1280 	struct inode ip;
1281 	union dinode *dp;
1282 	struct bufarea *bp;
1283 	ufs2_daddr_t bn;
1284 	uint64_t totalfrags;
1285 	ufs_lbn_t nextlbn;
1286 	ufs_lbn_t lastlbn;
1287 	ufs_lbn_t tmpval;
1288 	ufs_lbn_t lbn;
1289 	ufs_lbn_t i;
1290 	int blksize, frags;
1291 	off_t cursize;
1292 	off_t off;
1293 	int mode;
1294 
1295 	ginode(ino, &ip);
1296 	dp = ip.i_dp;
1297 	mode = DIP(dp, di_mode) & IFMT;
1298 	cursize = DIP(dp, di_size);
1299 	/* If no size change, nothing to do */
1300 	if (size == cursize) {
1301 		irelse(&ip);
1302 		return;
1303 	}
1304 	if (debug)
1305 		printf("Truncating ino %ju, mode %o to size %jd from "
1306 		    "size %jd\n", (uintmax_t)ino, mode, size, cursize);
1307 
1308 	/* Skip datablocks for short links and devices. */
1309 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1310 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) {
1311 		irelse(&ip);
1312 		return;
1313 	}
1314 	/* Don't extend. */
1315 	if (size > cursize) {
1316 		irelse(&ip);
1317 		return;
1318 	}
1319 	if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) {
1320 		if (size > 0)
1321 			err_suj("Partial truncation of ino %ju snapshot file\n",
1322 			    (uintmax_t)ino);
1323 		snapremove(ino);
1324 	}
1325 	lastlbn = lblkno(fs, blkroundup(fs, size));
1326 	for (i = lastlbn; i < UFS_NDADDR; i++) {
1327 		if ((bn = DIP(dp, di_db[i])) == 0)
1328 			continue;
1329 		blksize = sblksize(fs, cursize, i);
1330 		blk_free(ino, bn, 0, numfrags(fs, blksize));
1331 		DIP_SET(dp, di_db[i], 0);
1332 	}
1333 	/*
1334 	 * Follow indirect blocks, freeing anything required.
1335 	 */
1336 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1337 	    lbn = nextlbn) {
1338 		nextlbn = lbn + tmpval;
1339 		tmpval *= NINDIR(fs);
1340 		/* If we're not freeing any in this indirect range skip it. */
1341 		if (lastlbn >= nextlbn)
1342 			continue;
1343 		if ((bn = DIP(dp, di_ib[i])) == 0)
1344   			continue;
1345 		indir_trunc(ino, -lbn - i, bn, lastlbn, dp);
1346   		/* If we freed everything in this indirect free the indir. */
1347   		if (lastlbn > lbn)
1348   			continue;
1349 		blk_free(ino, bn, 0, fs->fs_frag);
1350 		DIP_SET(dp, di_ib[i], 0);
1351 	}
1352 	/*
1353 	 * Now that we've freed any whole blocks that exceed the desired
1354 	 * truncation size, figure out how many blocks remain and what the
1355 	 * last populated lbn is.  We will set the size to this last lbn
1356 	 * rather than worrying about allocating the final lbn as the kernel
1357 	 * would've done.  This is consistent with normal fsck behavior.
1358 	 */
1359 	visitlbn = 0;
1360 	totalfrags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1361 	if (size > lblktosize(fs, visitlbn + 1))
1362 		size = lblktosize(fs, visitlbn + 1);
1363 	/*
1364 	 * If we're truncating direct blocks we have to adjust frags
1365 	 * accordingly.
1366 	 */
1367 	if (visitlbn < UFS_NDADDR && totalfrags) {
1368 		long oldspace, newspace;
1369 
1370 		bn = DIP(dp, di_db[visitlbn]);
1371 		if (bn == 0)
1372 			err_suj("Bad blk at ino %ju lbn %jd\n",
1373 			    (uintmax_t)ino, visitlbn);
1374 		oldspace = sblksize(fs, cursize, visitlbn);
1375 		newspace = sblksize(fs, size, visitlbn);
1376 		if (oldspace != newspace) {
1377 			bn += numfrags(fs, newspace);
1378 			frags = numfrags(fs, oldspace - newspace);
1379 			blk_free(ino, bn, 0, frags);
1380 			totalfrags -= frags;
1381 		}
1382 	}
1383 	DIP_SET(dp, di_blocks, fsbtodb(fs, totalfrags));
1384 	DIP_SET(dp, di_size, size);
1385 	inodirty(&ip);
1386 	/*
1387 	 * If we've truncated into the middle of a block or frag we have
1388 	 * to zero it here.  Otherwise the file could extend into
1389 	 * uninitialized space later.
1390 	 */
1391 	off = blkoff(fs, size);
1392 	if (off && DIP(dp, di_mode) != IFDIR) {
1393 		long clrsize;
1394 
1395 		bn = ino_blkatoff(dp, ino, visitlbn, &frags, NULL);
1396 		if (bn == 0)
1397 			err_suj("Block missing from ino %ju at lbn %jd\n",
1398 			    (uintmax_t)ino, visitlbn);
1399 		clrsize = frags * fs->fs_fsize;
1400 		bp = getdatablk(bn, clrsize, BT_DATA);
1401 		if (bp->b_errs != 0)
1402 			err_suj("ino_trunc: UNRECOVERABLE I/O ERROR");
1403 		clrsize -= off;
1404 		bzero(&bp->b_un.b_buf[off], clrsize);
1405 		dirty(bp);
1406 		brelse(bp);
1407 	}
1408 	irelse(&ip);
1409 	return;
1410 }
1411 
1412 /*
1413  * Process records available for one inode and determine whether the
1414  * link count is correct or needs adjusting.
1415  */
1416 static void
1417 ino_check(struct suj_ino *sino)
1418 {
1419 	struct suj_rec *srec;
1420 	struct jrefrec *rrec;
1421 	nlink_t dotlinks;
1422 	nlink_t newlinks;
1423 	nlink_t removes;
1424 	nlink_t nlink;
1425 	ino_t ino;
1426 	int isdot;
1427 	int isat;
1428 	int mode;
1429 
1430 	if (sino->si_hasrecs == 0)
1431 		return;
1432 	ino = sino->si_ino;
1433 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1434 	nlink = rrec->jr_nlink;
1435 	newlinks = 0;
1436 	dotlinks = 0;
1437 	removes = sino->si_nlinkadj;
1438 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1439 		rrec = (struct jrefrec *)srec->sr_rec;
1440 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1441 		    rrec->jr_ino, &mode, &isdot);
1442 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1443 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1444 			    mode, rrec->jr_mode);
1445 		if (debug)
1446 			printf("jrefrec: op %s ino %ju, nlink %ju, parent %ju, "
1447 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1448 			    JOP_OPTYPE(rrec->jr_op), (uintmax_t)rrec->jr_ino,
1449 			    (uintmax_t)rrec->jr_nlink,
1450 			    (uintmax_t)rrec->jr_parent,
1451 			    (uintmax_t)rrec->jr_diroff,
1452 			    rrec->jr_mode, isat, isdot);
1453 		mode = rrec->jr_mode & IFMT;
1454 		if (rrec->jr_op == JOP_REMREF)
1455 			removes++;
1456 		newlinks += isat;
1457 		if (isdot)
1458 			dotlinks += isat;
1459 	}
1460 	/*
1461 	 * The number of links that remain are the starting link count
1462 	 * subtracted by the total number of removes with the total
1463 	 * links discovered back in.  An incomplete remove thus
1464 	 * makes no change to the link count but an add increases
1465 	 * by one.
1466 	 */
1467 	if (debug)
1468 		printf(
1469 		    "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
1470 		    (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
1471 		    (uintmax_t)removes, (uintmax_t)dotlinks);
1472 	nlink += newlinks;
1473 	nlink -= removes;
1474 	sino->si_linkadj = 1;
1475 	sino->si_nlink = nlink;
1476 	sino->si_dotlinks = dotlinks;
1477 	sino->si_mode = mode;
1478 	ino_adjust(sino);
1479 }
1480 
1481 /*
1482  * Process records available for one block and determine whether it is
1483  * still allocated and whether the owning inode needs to be updated or
1484  * a free completed.
1485  */
1486 static void
1487 blk_check(struct suj_blk *sblk)
1488 {
1489 	struct suj_rec *srec;
1490 	struct jblkrec *brec;
1491 	struct suj_ino *sino;
1492 	ufs2_daddr_t blk;
1493 	int mask;
1494 	int frags;
1495 	int isat;
1496 
1497 	/*
1498 	 * Each suj_blk actually contains records for any fragments in that
1499 	 * block.  As a result we must evaluate each record individually.
1500 	 */
1501 	sino = NULL;
1502 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1503 		brec = (struct jblkrec *)srec->sr_rec;
1504 		frags = brec->jb_frags;
1505 		blk = brec->jb_blkno + brec->jb_oldfrags;
1506 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1507 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1508 			sino = ino_lookup(brec->jb_ino, 1);
1509 			sino->si_blkadj = 1;
1510 		}
1511 		if (debug)
1512 			printf("op %s blk %jd ino %ju lbn %jd frags %d isat %d "
1513 			    "(%d)\n", JOP_OPTYPE(brec->jb_op), blk,
1514 			    (uintmax_t)brec->jb_ino, brec->jb_lbn,
1515 			    brec->jb_frags, isat, frags);
1516 		/*
1517 		 * If we found the block at this address we still have to
1518 		 * determine if we need to free the tail end that was
1519 		 * added by adding contiguous fragments from the same block.
1520 		 */
1521 		if (isat == 1) {
1522 			if (frags == brec->jb_frags)
1523 				continue;
1524 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1525 			    brec->jb_frags);
1526 			mask >>= frags;
1527 			blk += frags;
1528 			frags = brec->jb_frags - frags;
1529 			blk_free(brec->jb_ino, blk, mask, frags);
1530 			continue;
1531 		}
1532 		/*
1533 	 	 * The block wasn't found, attempt to free it.  It won't be
1534 		 * freed if it was actually reallocated.  If this was an
1535 		 * allocation we don't want to follow indirects as they
1536 		 * may not be written yet.  Any children of the indirect will
1537 		 * have their own records.  If it's a free we need to
1538 		 * recursively free children.
1539 		 */
1540 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1541 		    brec->jb_op == JOP_FREEBLK);
1542 	}
1543 }
1544 
1545 /*
1546  * Walk the list of inode records for this cg and resolve moved and duplicate
1547  * inode references now that we have a complete picture.
1548  */
1549 static void
1550 cg_build(struct suj_cg *sc)
1551 {
1552 	struct suj_ino *sino;
1553 	int i;
1554 
1555 	for (i = 0; i < HASHSIZE; i++)
1556 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1557 			ino_build(sino);
1558 }
1559 
1560 /*
1561  * Handle inodes requiring truncation.  This must be done prior to
1562  * looking up any inodes in directories.
1563  */
1564 static void
1565 cg_trunc(struct suj_cg *sc)
1566 {
1567 	struct suj_ino *sino;
1568 	int i;
1569 
1570 	for (i = 0; i < HASHSIZE; i++) {
1571 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1572 			if (sino->si_trunc) {
1573 				ino_trunc(sino->si_ino,
1574 				    sino->si_trunc->jt_size);
1575 				sino->si_blkadj = 0;
1576 				sino->si_trunc = NULL;
1577 			}
1578 			if (sino->si_blkadj)
1579 				ino_adjblks(sino);
1580 		}
1581 	}
1582 }
1583 
1584 static void
1585 cg_adj_blk(struct suj_cg *sc)
1586 {
1587 	struct suj_ino *sino;
1588 	int i;
1589 
1590 	for (i = 0; i < HASHSIZE; i++) {
1591 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1592 			if (sino->si_blkadj)
1593 				ino_adjblks(sino);
1594 		}
1595 	}
1596 }
1597 
1598 /*
1599  * Free any partially allocated blocks and then resolve inode block
1600  * counts.
1601  */
1602 static void
1603 cg_check_blk(struct suj_cg *sc)
1604 {
1605 	struct suj_blk *sblk;
1606 	int i;
1607 
1608 
1609 	for (i = 0; i < HASHSIZE; i++)
1610 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1611 			blk_check(sblk);
1612 }
1613 
1614 /*
1615  * Walk the list of inode records for this cg, recovering any
1616  * changes which were not complete at the time of crash.
1617  */
1618 static void
1619 cg_check_ino(struct suj_cg *sc)
1620 {
1621 	struct suj_ino *sino;
1622 	int i;
1623 
1624 	for (i = 0; i < HASHSIZE; i++)
1625 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1626 			ino_check(sino);
1627 }
1628 
1629 static void
1630 cg_apply(void (*apply)(struct suj_cg *))
1631 {
1632 	struct suj_cg *scg;
1633 	int i;
1634 
1635 	for (i = 0; i < HASHSIZE; i++)
1636 		LIST_FOREACH(scg, &cghash[i], sc_next)
1637 			apply(scg);
1638 }
1639 
1640 /*
1641  * Process the unlinked but referenced file list.  Freeing all inodes.
1642  */
1643 static void
1644 ino_unlinked(void)
1645 {
1646 	struct inode ip;
1647 	union dinode *dp;
1648 	uint16_t mode;
1649 	ino_t inon;
1650 	ino_t ino;
1651 
1652 	ino = fs->fs_sujfree;
1653 	fs->fs_sujfree = 0;
1654 	while (ino != 0) {
1655 		ginode(ino, &ip);
1656 		dp = ip.i_dp;
1657 		mode = DIP(dp, di_mode) & IFMT;
1658 		inon = DIP(dp, di_freelink);
1659 		DIP_SET(dp, di_freelink, 0);
1660 		inodirty(&ip);
1661 		/*
1662 		 * XXX Should this be an errx?
1663 		 */
1664 		if (DIP(dp, di_nlink) == 0) {
1665 			if (debug)
1666 				printf("Freeing unlinked ino %ju mode %o\n",
1667 				    (uintmax_t)ino, mode);
1668 			ino_reclaim(&ip, ino, mode);
1669 		} else if (debug)
1670 			printf("Skipping ino %ju mode %o with link %d\n",
1671 			    (uintmax_t)ino, mode, DIP(dp, di_nlink));
1672 		ino = inon;
1673 		irelse(&ip);
1674 	}
1675 }
1676 
1677 /*
1678  * Append a new record to the list of records requiring processing.
1679  */
1680 static void
1681 ino_append(union jrec *rec)
1682 {
1683 	struct jrefrec *refrec;
1684 	struct jmvrec *mvrec;
1685 	struct suj_ino *sino;
1686 	struct suj_rec *srec;
1687 
1688 	mvrec = &rec->rec_jmvrec;
1689 	refrec = &rec->rec_jrefrec;
1690 	if (debug && mvrec->jm_op == JOP_MVREF)
1691 		printf("ino move: ino %ju, parent %ju, "
1692 		    "diroff %jd, oldoff %jd\n",
1693 		    (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
1694 		    (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
1695 	else if (debug &&
1696 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1697 		printf("ino ref: op %s, ino %ju, nlink %ju, "
1698 		    "parent %ju, diroff %jd\n",
1699 		    JOP_OPTYPE(refrec->jr_op), (uintmax_t)refrec->jr_ino,
1700 		    (uintmax_t)refrec->jr_nlink,
1701 		    (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
1702 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1703 	sino->si_hasrecs = 1;
1704 	srec = errmalloc(sizeof(*srec));
1705 	srec->sr_rec = rec;
1706 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1707 }
1708 
1709 /*
1710  * Add a reference adjustment to the sino list and eliminate dups.  The
1711  * primary loop in ino_build_ref() checks for dups but new ones may be
1712  * created as a result of offset adjustments.
1713  */
1714 static void
1715 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1716 {
1717 	struct jrefrec *refrec;
1718 	struct suj_rec *srn;
1719 	struct jrefrec *rrn;
1720 
1721 	refrec = (struct jrefrec *)srec->sr_rec;
1722 	/*
1723 	 * We walk backwards so that the oldest link count is preserved.  If
1724 	 * an add record conflicts with a remove keep the remove.  Redundant
1725 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1726 	 * oldest record at a given location.
1727 	 */
1728 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1729 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1730 		rrn = (struct jrefrec *)srn->sr_rec;
1731 		if (rrn->jr_parent != refrec->jr_parent ||
1732 		    rrn->jr_diroff != refrec->jr_diroff)
1733 			continue;
1734 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1735 			rrn->jr_mode = refrec->jr_mode;
1736 			return;
1737 		}
1738 		/*
1739 		 * Adding a remove.
1740 		 *
1741 		 * Replace the record in place with the old nlink in case
1742 		 * we replace the head of the list.  Abandon srec as a dup.
1743 		 */
1744 		refrec->jr_nlink = rrn->jr_nlink;
1745 		srn->sr_rec = srec->sr_rec;
1746 		return;
1747 	}
1748 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
1749 }
1750 
1751 /*
1752  * Create a duplicate of a reference at a previous location.
1753  */
1754 static void
1755 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
1756 {
1757 	struct jrefrec *rrn;
1758 	struct suj_rec *srn;
1759 
1760 	rrn = errmalloc(sizeof(*refrec));
1761 	*rrn = *refrec;
1762 	rrn->jr_op = JOP_ADDREF;
1763 	rrn->jr_diroff = diroff;
1764 	srn = errmalloc(sizeof(*srn));
1765 	srn->sr_rec = (union jrec *)rrn;
1766 	ino_add_ref(sino, srn);
1767 }
1768 
1769 /*
1770  * Add a reference to the list at all known locations.  We follow the offset
1771  * changes for a single instance and create duplicate add refs at each so
1772  * that we can tolerate any version of the directory block.  Eliminate
1773  * removes which collide with adds that are seen in the journal.  They should
1774  * not adjust the link count down.
1775  */
1776 static void
1777 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
1778 {
1779 	struct jrefrec *refrec;
1780 	struct jmvrec *mvrec;
1781 	struct suj_rec *srp;
1782 	struct suj_rec *srn;
1783 	struct jrefrec *rrn;
1784 	off_t diroff;
1785 
1786 	refrec = (struct jrefrec *)srec->sr_rec;
1787 	/*
1788 	 * Search for a mvrec that matches this offset.  Whether it's an add
1789 	 * or a remove we can delete the mvref after creating a dup record in
1790 	 * the old location.
1791 	 */
1792 	if (!TAILQ_EMPTY(&sino->si_movs)) {
1793 		diroff = refrec->jr_diroff;
1794 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
1795 			srp = TAILQ_PREV(srn, srechd, sr_next);
1796 			mvrec = (struct jmvrec *)srn->sr_rec;
1797 			if (mvrec->jm_parent != refrec->jr_parent ||
1798 			    mvrec->jm_newoff != diroff)
1799 				continue;
1800 			diroff = mvrec->jm_oldoff;
1801 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
1802 			free(srn);
1803 			ino_dup_ref(sino, refrec, diroff);
1804 		}
1805 	}
1806 	/*
1807 	 * If a remove wasn't eliminated by an earlier add just append it to
1808 	 * the list.
1809 	 */
1810 	if (refrec->jr_op == JOP_REMREF) {
1811 		ino_add_ref(sino, srec);
1812 		return;
1813 	}
1814 	/*
1815 	 * Walk the list of records waiting to be added to the list.  We
1816 	 * must check for moves that apply to our current offset and remove
1817 	 * them from the list.  Remove any duplicates to eliminate removes
1818 	 * with corresponding adds.
1819 	 */
1820 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
1821 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
1822 		case JOP_ADDREF:
1823 			/*
1824 			 * This should actually be an error we should
1825 			 * have a remove for every add journaled.
1826 			 */
1827 			rrn = (struct jrefrec *)srn->sr_rec;
1828 			if (rrn->jr_parent != refrec->jr_parent ||
1829 			    rrn->jr_diroff != refrec->jr_diroff)
1830 				break;
1831 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1832 			break;
1833 		case JOP_REMREF:
1834 			/*
1835 			 * Once we remove the current iteration of the
1836 			 * record at this address we're done.
1837 			 */
1838 			rrn = (struct jrefrec *)srn->sr_rec;
1839 			if (rrn->jr_parent != refrec->jr_parent ||
1840 			    rrn->jr_diroff != refrec->jr_diroff)
1841 				break;
1842 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1843 			ino_add_ref(sino, srec);
1844 			return;
1845 		case JOP_MVREF:
1846 			/*
1847 			 * Update our diroff based on any moves that match
1848 			 * and remove the move.
1849 			 */
1850 			mvrec = (struct jmvrec *)srn->sr_rec;
1851 			if (mvrec->jm_parent != refrec->jr_parent ||
1852 			    mvrec->jm_oldoff != refrec->jr_diroff)
1853 				break;
1854 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
1855 			refrec->jr_diroff = mvrec->jm_newoff;
1856 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1857 			break;
1858 		default:
1859 			err_suj("ino_build_ref: Unknown op %s\n",
1860 			    JOP_OPTYPE(srn->sr_rec->rec_jrefrec.jr_op));
1861 		}
1862 	}
1863 	ino_add_ref(sino, srec);
1864 }
1865 
1866 /*
1867  * Walk the list of new records and add them in-order resolving any
1868  * dups and adjusted offsets.
1869  */
1870 static void
1871 ino_build(struct suj_ino *sino)
1872 {
1873 	struct suj_rec *srec;
1874 
1875 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
1876 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
1877 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
1878 		case JOP_ADDREF:
1879 		case JOP_REMREF:
1880 			ino_build_ref(sino, srec);
1881 			break;
1882 		case JOP_MVREF:
1883 			/*
1884 			 * Add this mvrec to the queue of pending mvs.
1885 			 */
1886 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
1887 			break;
1888 		default:
1889 			err_suj("ino_build: Unknown op %s\n",
1890 			    JOP_OPTYPE(srec->sr_rec->rec_jrefrec.jr_op));
1891 		}
1892 	}
1893 	if (TAILQ_EMPTY(&sino->si_recs))
1894 		sino->si_hasrecs = 0;
1895 }
1896 
1897 /*
1898  * Modify journal records so they refer to the base block number
1899  * and a start and end frag range.  This is to facilitate the discovery
1900  * of overlapping fragment allocations.
1901  */
1902 static void
1903 blk_build(struct jblkrec *blkrec)
1904 {
1905 	struct suj_rec *srec;
1906 	struct suj_blk *sblk;
1907 	struct jblkrec *blkrn;
1908 	ufs2_daddr_t blk;
1909 	int frag;
1910 
1911 	if (debug)
1912 		printf("blk_build: op %s blkno %jd frags %d oldfrags %d "
1913 		    "ino %ju lbn %jd\n",
1914 		    JOP_OPTYPE(blkrec->jb_op), (uintmax_t)blkrec->jb_blkno,
1915 		    blkrec->jb_frags, blkrec->jb_oldfrags,
1916 		    (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
1917 
1918 	blk = blknum(fs, blkrec->jb_blkno);
1919 	frag = fragnum(fs, blkrec->jb_blkno);
1920 	if (blkrec->jb_blkno < 0 || blk + fs->fs_frag - frag > fs->fs_size)
1921 		err_suj("Out-of-bounds journal block number %jd\n",
1922 		    blkrec->jb_blkno);
1923 	sblk = blk_lookup(blk, 1);
1924 	/*
1925 	 * Rewrite the record using oldfrags to indicate the offset into
1926 	 * the block.  Leave jb_frags as the actual allocated count.
1927 	 */
1928 	blkrec->jb_blkno -= frag;
1929 	blkrec->jb_oldfrags = frag;
1930 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
1931 		err_suj("Invalid fragment count %d oldfrags %d\n",
1932 		    blkrec->jb_frags, frag);
1933 	/*
1934 	 * Detect dups.  If we detect a dup we always discard the oldest
1935 	 * record as it is superseded by the new record.  This speeds up
1936 	 * later stages but also eliminates free records which are used
1937 	 * to indicate that the contents of indirects can be trusted.
1938 	 */
1939 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1940 		blkrn = (struct jblkrec *)srec->sr_rec;
1941 		if (blkrn->jb_ino != blkrec->jb_ino ||
1942 		    blkrn->jb_lbn != blkrec->jb_lbn ||
1943 		    blkrn->jb_blkno != blkrec->jb_blkno ||
1944 		    blkrn->jb_frags != blkrec->jb_frags ||
1945 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
1946 			continue;
1947 		if (debug)
1948 			printf("Removed dup.\n");
1949 		/* Discard the free which is a dup with an alloc. */
1950 		if (blkrec->jb_op == JOP_FREEBLK)
1951 			return;
1952 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
1953 		free(srec);
1954 		break;
1955 	}
1956 	srec = errmalloc(sizeof(*srec));
1957 	srec->sr_rec = (union jrec *)blkrec;
1958 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
1959 }
1960 
1961 static void
1962 ino_build_trunc(struct jtrncrec *rec)
1963 {
1964 	struct suj_ino *sino;
1965 
1966 	if (debug)
1967 		printf("ino_build_trunc: op %d ino %ju, size %jd\n",
1968 		    rec->jt_op, (uintmax_t)rec->jt_ino,
1969 		    (uintmax_t)rec->jt_size);
1970 	if (chkfilesize(IFREG, rec->jt_size) == 0)
1971 		err_suj("ino_build: truncation size too large %ju\n",
1972 		    (intmax_t)rec->jt_size);
1973 	sino = ino_lookup(rec->jt_ino, 1);
1974 	if (rec->jt_op == JOP_SYNC) {
1975 		sino->si_trunc = NULL;
1976 		return;
1977 	}
1978 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
1979 		sino->si_trunc = rec;
1980 }
1981 
1982 /*
1983  * Build up tables of the operations we need to recover.
1984  */
1985 static void
1986 suj_build(void)
1987 {
1988 	struct suj_seg *seg;
1989 	union jrec *rec;
1990 	int off;
1991 	int i;
1992 
1993 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
1994 		if (debug)
1995 			printf("seg %jd has %d records, oldseq %jd.\n",
1996 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
1997 			    seg->ss_rec.jsr_oldest);
1998 		off = 0;
1999 		rec = (union jrec *)seg->ss_blk;
2000 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2001 			/* skip the segrec. */
2002 			if ((off % real_dev_bsize) == 0)
2003 				continue;
2004 			switch (rec->rec_jrefrec.jr_op) {
2005 			case JOP_ADDREF:
2006 			case JOP_REMREF:
2007 			case JOP_MVREF:
2008 				ino_append(rec);
2009 				break;
2010 			case JOP_NEWBLK:
2011 			case JOP_FREEBLK:
2012 				blk_build((struct jblkrec *)rec);
2013 				break;
2014 			case JOP_TRUNC:
2015 			case JOP_SYNC:
2016 				ino_build_trunc((struct jtrncrec *)rec);
2017 				break;
2018 			default:
2019 				err_suj("Unknown journal operation %s at %d\n",
2020 				    JOP_OPTYPE(rec->rec_jrefrec.jr_op), off);
2021 			}
2022 			i++;
2023 		}
2024 	}
2025 }
2026 
2027 /*
2028  * Prune the journal segments to those we care about based on the
2029  * oldest sequence in the newest segment.  Order the segment list
2030  * based on sequence number.
2031  */
2032 static void
2033 suj_prune(void)
2034 {
2035 	struct suj_seg *seg;
2036 	struct suj_seg *segn;
2037 	uint64_t newseq;
2038 	int discard;
2039 
2040 	if (debug)
2041 		printf("Pruning up to %jd\n", oldseq);
2042 	/* First free the expired segments. */
2043 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2044 		if (seg->ss_rec.jsr_seq >= oldseq)
2045 			continue;
2046 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2047 		free(seg->ss_blk);
2048 		free(seg);
2049 	}
2050 	/* Next ensure that segments are ordered properly. */
2051 	seg = TAILQ_FIRST(&allsegs);
2052 	if (seg == NULL) {
2053 		if (debug)
2054 			printf("Empty journal\n");
2055 		return;
2056 	}
2057 	newseq = seg->ss_rec.jsr_seq;
2058 	for (;;) {
2059 		seg = TAILQ_LAST(&allsegs, seghd);
2060 		if (seg->ss_rec.jsr_seq >= newseq)
2061 			break;
2062 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2063 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2064 		newseq = seg->ss_rec.jsr_seq;
2065 
2066 	}
2067 	if (newseq != oldseq) {
2068 		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2069 			printf("%jd, ", seg->ss_rec.jsr_seq);
2070 		}
2071 		printf("\n");
2072 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2073 		    newseq, oldseq);
2074 	}
2075 	/*
2076 	 * The kernel may asynchronously write segments which can create
2077 	 * gaps in the sequence space.  Throw away any segments after the
2078 	 * gap as the kernel guarantees only those that are contiguously
2079 	 * reachable are marked as completed.
2080 	 */
2081 	discard = 0;
2082 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2083 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2084 			jrecs += seg->ss_rec.jsr_cnt;
2085 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2086 			continue;
2087 		}
2088 		discard = 1;
2089 		if (debug)
2090 			printf("Journal order mismatch %jd != %jd pruning\n",
2091 			    newseq-1, seg->ss_rec.jsr_seq);
2092 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2093 		free(seg->ss_blk);
2094 		free(seg);
2095 	}
2096 	if (debug)
2097 		printf("Processing journal segments from %jd to %jd\n",
2098 		    oldseq, newseq-1);
2099 }
2100 
2101 /*
2102  * Verify the journal inode before attempting to read records.
2103  */
2104 static int
2105 suj_verifyino(union dinode *dp)
2106 {
2107 
2108 	if (DIP(dp, di_nlink) != 1) {
2109 		printf("Invalid link count %d for journal inode %ju\n",
2110 		    DIP(dp, di_nlink), (uintmax_t)sujino);
2111 		return (-1);
2112 	}
2113 
2114 	if ((DIP(dp, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2115 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2116 		printf("Invalid flags 0x%X for journal inode %ju\n",
2117 		    DIP(dp, di_flags), (uintmax_t)sujino);
2118 		return (-1);
2119 	}
2120 
2121 	if (DIP(dp, di_mode) != (IFREG | IREAD)) {
2122 		printf("Invalid mode %o for journal inode %ju\n",
2123 		    DIP(dp, di_mode), (uintmax_t)sujino);
2124 		return (-1);
2125 	}
2126 
2127 	if (DIP(dp, di_size) < SUJ_MIN) {
2128 		printf("Invalid size %jd for journal inode %ju\n",
2129 		    DIP(dp, di_size), (uintmax_t)sujino);
2130 		return (-1);
2131 	}
2132 
2133 	if (DIP(dp, di_modrev) != fs->fs_mtime) {
2134 		if (!bkgrdcheck || debug)
2135 			printf("Journal timestamp does not match "
2136 			    "fs mount time\n");
2137 		return (-1);
2138 	}
2139 
2140 	return (0);
2141 }
2142 
2143 struct jblocks {
2144 	struct jextent *jb_extent;	/* Extent array. */
2145 	int		jb_avail;	/* Available extents. */
2146 	int		jb_used;	/* Last used extent. */
2147 	int		jb_head;	/* Allocator head. */
2148 	int		jb_off;		/* Allocator extent offset. */
2149 };
2150 struct jextent {
2151 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2152 	int		je_blocks;	/* Disk block count. */
2153 };
2154 
2155 static struct jblocks *suj_jblocks;
2156 
2157 static struct jblocks *
2158 jblocks_create(void)
2159 {
2160 	struct jblocks *jblocks;
2161 	int size;
2162 
2163 	jblocks = errmalloc(sizeof(*jblocks));
2164 	jblocks->jb_avail = 10;
2165 	jblocks->jb_used = 0;
2166 	jblocks->jb_head = 0;
2167 	jblocks->jb_off = 0;
2168 	size = sizeof(struct jextent) * jblocks->jb_avail;
2169 	jblocks->jb_extent = errmalloc(size);
2170 	bzero(jblocks->jb_extent, size);
2171 
2172 	return (jblocks);
2173 }
2174 
2175 /*
2176  * Return the next available disk block and the amount of contiguous
2177  * free space it contains.
2178  */
2179 static ufs2_daddr_t
2180 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2181 {
2182 	struct jextent *jext;
2183 	ufs2_daddr_t daddr;
2184 	int freecnt;
2185 	int blocks;
2186 
2187 	blocks = btodb(bytes);
2188 	jext = &jblocks->jb_extent[jblocks->jb_head];
2189 	freecnt = jext->je_blocks - jblocks->jb_off;
2190 	if (freecnt == 0) {
2191 		jblocks->jb_off = 0;
2192 		if (++jblocks->jb_head > jblocks->jb_used)
2193 			return (0);
2194 		jext = &jblocks->jb_extent[jblocks->jb_head];
2195 		freecnt = jext->je_blocks;
2196 	}
2197 	if (freecnt > blocks)
2198 		freecnt = blocks;
2199 	*actual = dbtob(freecnt);
2200 	daddr = jext->je_daddr + jblocks->jb_off;
2201 
2202 	return (daddr);
2203 }
2204 
2205 /*
2206  * Advance the allocation head by a specified number of bytes, consuming
2207  * one journal segment.
2208  */
2209 static void
2210 jblocks_advance(struct jblocks *jblocks, int bytes)
2211 {
2212 
2213 	jblocks->jb_off += btodb(bytes);
2214 }
2215 
2216 static void
2217 jblocks_destroy(struct jblocks *jblocks)
2218 {
2219 
2220 	free(jblocks->jb_extent);
2221 	free(jblocks);
2222 }
2223 
2224 static void
2225 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2226 {
2227 	struct jextent *jext;
2228 	int size;
2229 
2230 	jext = &jblocks->jb_extent[jblocks->jb_used];
2231 	/* Adding the first block. */
2232 	if (jext->je_daddr == 0) {
2233 		jext->je_daddr = daddr;
2234 		jext->je_blocks = blocks;
2235 		return;
2236 	}
2237 	/* Extending the last extent. */
2238 	if (jext->je_daddr + jext->je_blocks == daddr) {
2239 		jext->je_blocks += blocks;
2240 		return;
2241 	}
2242 	/* Adding a new extent. */
2243 	if (++jblocks->jb_used == jblocks->jb_avail) {
2244 		jblocks->jb_avail *= 2;
2245 		size = sizeof(struct jextent) * jblocks->jb_avail;
2246 		jext = errmalloc(size);
2247 		bzero(jext, size);
2248 		bcopy(jblocks->jb_extent, jext,
2249 		    sizeof(struct jextent) * jblocks->jb_used);
2250 		free(jblocks->jb_extent);
2251 		jblocks->jb_extent = jext;
2252 	}
2253 	jext = &jblocks->jb_extent[jblocks->jb_used];
2254 	jext->je_daddr = daddr;
2255 	jext->je_blocks = blocks;
2256 
2257 	return;
2258 }
2259 
2260 /*
2261  * Add a file block from the journal to the extent map.  We can't read
2262  * each file block individually because the kernel treats it as a circular
2263  * buffer and segments may span multiple contiguous blocks.
2264  */
2265 static void
2266 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2267 {
2268 
2269 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2270 }
2271 
2272 static void
2273 suj_read(void)
2274 {
2275 	uint8_t block[1 * 1024 * 1024] __aligned(LIBUFS_BUFALIGN);
2276 	struct suj_seg *seg;
2277 	struct jsegrec *recn;
2278 	struct jsegrec *rec;
2279 	ufs2_daddr_t blk;
2280 	int readsize;
2281 	int blocks;
2282 	int recsize;
2283 	int size;
2284 	int i;
2285 
2286 	/*
2287 	 * Read records until we exhaust the journal space.  If we find
2288 	 * an invalid record we start searching for a valid segment header
2289 	 * at the next block.  This is because we don't have a head/tail
2290 	 * pointer and must recover the information indirectly.  At the gap
2291 	 * between the head and tail we won't necessarily have a valid
2292 	 * segment.
2293 	 */
2294 restart:
2295 	for (;;) {
2296 		size = sizeof(block);
2297 		blk = jblocks_next(suj_jblocks, size, &readsize);
2298 		if (blk == 0)
2299 			return;
2300 		size = readsize;
2301 		/*
2302 		 * Read 1MB at a time and scan for records within this block.
2303 		 */
2304 		if (pread(fsreadfd, &block, size, dbtob(blk)) != size) {
2305 			err_suj("Error reading journal block %jd\n",
2306 			    (intmax_t)blk);
2307 		}
2308 		for (rec = (void *)block; size; size -= recsize,
2309 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2310 			recsize = real_dev_bsize;
2311 			if (rec->jsr_time != fs->fs_mtime) {
2312 #ifdef notdef
2313 				if (debug)
2314 					printf("Rec time %jd != fs mtime %jd\n",
2315 					    rec->jsr_time, fs->fs_mtime);
2316 #endif
2317 				jblocks_advance(suj_jblocks, recsize);
2318 				continue;
2319 			}
2320 			if (rec->jsr_cnt == 0) {
2321 				if (debug)
2322 					printf("Found illegal count %d\n",
2323 					    rec->jsr_cnt);
2324 				jblocks_advance(suj_jblocks, recsize);
2325 				continue;
2326 			}
2327 			blocks = rec->jsr_blocks;
2328 			recsize = blocks * real_dev_bsize;
2329 			if (recsize > size) {
2330 				/*
2331 				 * We may just have run out of buffer, restart
2332 				 * the loop to re-read from this spot.
2333 				 */
2334 				if (size < fs->fs_bsize &&
2335 				    size != readsize &&
2336 				    recsize <= fs->fs_bsize)
2337 					goto restart;
2338 				if (debug)
2339 					printf("Found invalid segsize "
2340 					    "%d > %d\n", recsize, size);
2341 				recsize = real_dev_bsize;
2342 				jblocks_advance(suj_jblocks, recsize);
2343 				continue;
2344 			}
2345 			/*
2346 			 * Verify that all blocks in the segment are present.
2347 			 */
2348 			for (i = 1; i < blocks; i++) {
2349 				recn = (void *)((uintptr_t)rec) + i *
2350 				    real_dev_bsize;
2351 				if (recn->jsr_seq == rec->jsr_seq &&
2352 				    recn->jsr_time == rec->jsr_time)
2353 					continue;
2354 				if (debug)
2355 					printf("Incomplete record %jd (%d)\n",
2356 					    rec->jsr_seq, i);
2357 				recsize = i * real_dev_bsize;
2358 				jblocks_advance(suj_jblocks, recsize);
2359 				goto restart;
2360 			}
2361 			seg = errmalloc(sizeof(*seg));
2362 			seg->ss_blk = errmalloc(recsize);
2363 			seg->ss_rec = *rec;
2364 			bcopy((void *)rec, seg->ss_blk, recsize);
2365 			if (rec->jsr_oldest > oldseq)
2366 				oldseq = rec->jsr_oldest;
2367 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2368 			jblocks_advance(suj_jblocks, recsize);
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * Orchestrate the verification of a filesystem via the softupdates journal.
2375  */
2376 int
2377 suj_check(const char *filesys)
2378 {
2379 	struct inodesc idesc;
2380 	struct csum *cgsum;
2381 	union dinode *dp, *jip;
2382 	struct inode ip;
2383 	uint64_t blocks;
2384 	int i, retval;
2385 	struct suj_seg *seg;
2386 	struct suj_seg *segn;
2387 
2388 	initsuj();
2389 	fs = &sblock;
2390 	if (real_dev_bsize == 0 && ioctl(fsreadfd, DIOCGSECTORSIZE,
2391 	    &real_dev_bsize) == -1)
2392 		real_dev_bsize = secsize;
2393 	if (debug)
2394 		printf("dev_bsize %u\n", real_dev_bsize);
2395 
2396 	/*
2397 	 * Set an exit point when SUJ check failed
2398 	 */
2399 	retval = setjmp(jmpbuf);
2400 	if (retval != 0) {
2401 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2402 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2403 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2404 				free(seg->ss_blk);
2405 				free(seg);
2406 		}
2407 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2408 			ckfini(0);
2409 			exit(EEXIT);
2410 		} else
2411 			return (-1);
2412 	}
2413 
2414 	/*
2415 	 * Search the root directory for the SUJ_FILE.
2416 	 */
2417 	idesc.id_type = DATA;
2418 	idesc.id_fix = IGNORE;
2419 	idesc.id_number = UFS_ROOTINO;
2420 	idesc.id_func = findino;
2421 	idesc.id_name = SUJ_FILE;
2422 	ginode(UFS_ROOTINO, &ip);
2423 	dp = ip.i_dp;
2424 	if ((DIP(dp, di_mode) & IFMT) != IFDIR) {
2425 		irelse(&ip);
2426 		err_suj("root inode is not a directory\n");
2427 	}
2428 	if (DIP(dp, di_size) < 0 || DIP(dp, di_size) > MAXDIRSIZE) {
2429 		irelse(&ip);
2430 		err_suj("negative or oversized root directory %jd\n",
2431 		    (uintmax_t)DIP(dp, di_size));
2432 	}
2433 	if ((ckinode(dp, &idesc) & FOUND) == FOUND) {
2434 		sujino = idesc.id_parent;
2435 		irelse(&ip);
2436 	} else {
2437 		if (!bkgrdcheck || debug)
2438 			printf("Journal inode removed.  "
2439 			    "Use tunefs to re-create.\n");
2440 		sblock.fs_flags &= ~FS_SUJ;
2441 		sblock.fs_sujfree = 0;
2442 		irelse(&ip);
2443 		return (-1);
2444 	}
2445 	/*
2446 	 * Fetch the journal inode and verify it.
2447 	 */
2448 	ginode(sujino, &ip);
2449 	jip = ip.i_dp;
2450 	if (!bkgrdcheck || debug)
2451 		printf("** SU+J Recovering %s\n", filesys);
2452 	if (suj_verifyino(jip) != 0 || (!preen && !reply("USE JOURNAL"))) {
2453 		irelse(&ip);
2454 		return (-1);
2455 	}
2456 	/*
2457 	 * Build a list of journal blocks in jblocks before parsing the
2458 	 * available journal blocks in with suj_read().
2459 	 */
2460 	if (!bkgrdcheck || debug)
2461 		printf("** Reading %jd byte journal from inode %ju.\n",
2462 		    DIP(jip, di_size), (uintmax_t)sujino);
2463 	suj_jblocks = jblocks_create();
2464 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2465 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2466 		if (!bkgrdcheck || debug)
2467 			printf("Sparse journal inode %ju.\n",
2468 			    (uintmax_t)sujino);
2469 		irelse(&ip);
2470 		return (-1);
2471 	}
2472 	/* If journal is valid then do journal check rather than background */
2473 	if (bkgrdcheck) {
2474 		irelse(&ip);
2475 		return (0);
2476 	}
2477 	irelse(&ip);
2478 	suj_read();
2479 	jblocks_destroy(suj_jblocks);
2480 	suj_jblocks = NULL;
2481 	if (preen || reply("RECOVER")) {
2482 		printf("** Building recovery table.\n");
2483 		suj_prune();
2484 		suj_build();
2485 		cg_apply(cg_build);
2486 		printf("** Resolving unreferenced inode list.\n");
2487 		ino_unlinked();
2488 		printf("** Processing journal entries.\n");
2489 		cg_apply(cg_trunc);
2490 		cg_apply(cg_check_blk);
2491 		cg_apply(cg_adj_blk);
2492 		cg_apply(cg_check_ino);
2493 	}
2494 	if (preen == 0 && (jrecs > 0 || jbytes > 0) &&
2495 	    reply("WRITE CHANGES") == 0)
2496 		return (0);
2497 	/*
2498 	 * Check block counts of snapshot inodes and
2499 	 * make copies of any needed snapshot blocks.
2500 	 */
2501 	for (i = 0; i < snapcnt; i++)
2502 		check_blkcnt(&snaplist[i]);
2503 	snapflush(suj_checkblkavail);
2504 	/*
2505 	 * Recompute the fs summary info from correct cs summaries.
2506 	 */
2507 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
2508 	for (i = 0; i < fs->fs_ncg; i++) {
2509 		cgsum = &fs->fs_cs(fs, i);
2510 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
2511 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
2512 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
2513 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
2514 	}
2515 	fs->fs_pendinginodes = 0;
2516 	fs->fs_pendingblocks = 0;
2517 	fs->fs_clean = 1;
2518 	fs->fs_time = time(NULL);
2519 	fs->fs_mtime = time(NULL);
2520 	sbdirty();
2521 	ckfini(1);
2522 	if (jrecs > 0 || jbytes > 0) {
2523 		printf("** %jd journal records in %jd bytes for %.2f%% "
2524 		    "utilization\n", jrecs, jbytes,
2525 		    ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2526 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd "
2527 		    "frags.\n", freeinos, freedir, freeblocks, freefrags);
2528 	}
2529 
2530 	return (0);
2531 }
2532 
2533 static void
2534 initsuj(void)
2535 {
2536 	int i;
2537 
2538 	for (i = 0; i < HASHSIZE; i++)
2539 		LIST_INIT(&cghash[i]);
2540 	lastcg = NULL;
2541 	TAILQ_INIT(&allsegs);
2542 	oldseq = 0;
2543 	fs = NULL;
2544 	sujino = 0;
2545 	freefrags = 0;
2546 	freeblocks = 0;
2547 	freeinos = 0;
2548 	freedir = 0;
2549 	jbytes = 0;
2550 	jrecs = 0;
2551 	suj_jblocks = NULL;
2552 }
2553