1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/disk.h> 31 #include <sys/disklabel.h> 32 #include <sys/mount.h> 33 #include <sys/stat.h> 34 35 #include <ufs/ufs/extattr.h> 36 #include <ufs/ufs/quota.h> 37 #include <ufs/ufs/ufsmount.h> 38 #include <ufs/ufs/dinode.h> 39 #include <ufs/ufs/dir.h> 40 #include <ufs/ffs/fs.h> 41 42 #include <assert.h> 43 #include <err.h> 44 #include <setjmp.h> 45 #include <stdarg.h> 46 #include <stdio.h> 47 #include <stdlib.h> 48 #include <stdint.h> 49 #include <string.h> 50 #include <strings.h> 51 #include <sysexits.h> 52 #include <time.h> 53 54 #include "fsck.h" 55 56 #define DOTDOT_OFFSET DIRECTSIZ(1) 57 58 struct suj_seg { 59 TAILQ_ENTRY(suj_seg) ss_next; 60 struct jsegrec ss_rec; 61 uint8_t *ss_blk; 62 }; 63 64 struct suj_rec { 65 TAILQ_ENTRY(suj_rec) sr_next; 66 union jrec *sr_rec; 67 }; 68 TAILQ_HEAD(srechd, suj_rec); 69 70 struct suj_ino { 71 LIST_ENTRY(suj_ino) si_next; 72 struct srechd si_recs; 73 struct srechd si_newrecs; 74 struct srechd si_movs; 75 struct jtrncrec *si_trunc; 76 ino_t si_ino; 77 char si_skipparent; 78 char si_hasrecs; 79 char si_blkadj; 80 char si_linkadj; 81 int si_mode; 82 nlink_t si_nlinkadj; 83 nlink_t si_nlink; 84 nlink_t si_dotlinks; 85 }; 86 LIST_HEAD(inohd, suj_ino); 87 88 struct suj_blk { 89 LIST_ENTRY(suj_blk) sb_next; 90 struct srechd sb_recs; 91 ufs2_daddr_t sb_blk; 92 }; 93 LIST_HEAD(blkhd, suj_blk); 94 95 struct suj_cg { 96 LIST_ENTRY(suj_cg) sc_next; 97 struct blkhd sc_blkhash[HASHSIZE]; 98 struct inohd sc_inohash[HASHSIZE]; 99 struct ino_blk *sc_lastiblk; 100 struct suj_ino *sc_lastino; 101 struct suj_blk *sc_lastblk; 102 struct bufarea *sc_cgbp; 103 struct cg *sc_cgp; 104 int sc_cgx; 105 }; 106 107 static LIST_HEAD(cghd, suj_cg) cghash[HASHSIZE]; 108 static struct suj_cg *lastcg; 109 110 static TAILQ_HEAD(seghd, suj_seg) allsegs; 111 static uint64_t oldseq; 112 static struct fs *fs = NULL; 113 static ino_t sujino; 114 static char *joptype[JOP_NUMJOPTYPES] = JOP_NAMES; 115 116 /* 117 * Summary statistics. 118 */ 119 static uint64_t freefrags; 120 static uint64_t freeblocks; 121 static uint64_t freeinos; 122 static uint64_t freedir; 123 static uint64_t jbytes; 124 static uint64_t jrecs; 125 126 static jmp_buf jmpbuf; 127 128 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 129 static void err_suj(const char *, ...) __dead2; 130 static void ino_trunc(ino_t, off_t); 131 static void ino_decr(ino_t); 132 static void ino_adjust(struct suj_ino *); 133 static void ino_build(struct suj_ino *); 134 static int blk_isfree(ufs2_daddr_t); 135 static void initsuj(void); 136 137 static void * 138 errmalloc(size_t n) 139 { 140 void *a; 141 142 a = Malloc(n); 143 if (a == NULL) 144 err(EX_OSERR, "malloc(%zu)", n); 145 return (a); 146 } 147 148 /* 149 * When hit a fatal error in journalling check, print out 150 * the error and then offer to fallback to normal fsck. 151 */ 152 static void 153 err_suj(const char * restrict fmt, ...) 154 { 155 va_list ap; 156 157 if (preen) 158 (void)fprintf(stdout, "%s: ", cdevname); 159 160 va_start(ap, fmt); 161 (void)vfprintf(stdout, fmt, ap); 162 va_end(ap); 163 164 longjmp(jmpbuf, -1); 165 } 166 167 /* 168 * Lookup a cg by number in the hash so we can keep track of which cgs 169 * need stats rebuilt. 170 */ 171 static struct suj_cg * 172 cg_lookup(int cgx) 173 { 174 struct cghd *hd; 175 struct suj_cg *sc; 176 struct bufarea *cgbp; 177 178 if (cgx < 0 || cgx >= fs->fs_ncg) 179 err_suj("Bad cg number %d\n", cgx); 180 if (lastcg && lastcg->sc_cgx == cgx) 181 return (lastcg); 182 cgbp = cglookup(cgx); 183 if (!check_cgmagic(cgx, cgbp)) 184 err_suj("UNABLE TO REBUILD CYLINDER GROUP %d", cgx); 185 hd = &cghash[HASH(cgx)]; 186 LIST_FOREACH(sc, hd, sc_next) 187 if (sc->sc_cgx == cgx) { 188 sc->sc_cgbp = cgbp; 189 sc->sc_cgp = sc->sc_cgbp->b_un.b_cg; 190 lastcg = sc; 191 return (sc); 192 } 193 sc = errmalloc(sizeof(*sc)); 194 bzero(sc, sizeof(*sc)); 195 sc->sc_cgbp = cgbp; 196 sc->sc_cgp = sc->sc_cgbp->b_un.b_cg; 197 sc->sc_cgx = cgx; 198 LIST_INSERT_HEAD(hd, sc, sc_next); 199 return (sc); 200 } 201 202 /* 203 * Lookup an inode number in the hash and allocate a suj_ino if it does 204 * not exist. 205 */ 206 static struct suj_ino * 207 ino_lookup(ino_t ino, int creat) 208 { 209 struct suj_ino *sino; 210 struct inohd *hd; 211 struct suj_cg *sc; 212 213 sc = cg_lookup(ino_to_cg(fs, ino)); 214 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 215 return (sc->sc_lastino); 216 hd = &sc->sc_inohash[HASH(ino)]; 217 LIST_FOREACH(sino, hd, si_next) 218 if (sino->si_ino == ino) 219 return (sino); 220 if (creat == 0) 221 return (NULL); 222 sino = errmalloc(sizeof(*sino)); 223 bzero(sino, sizeof(*sino)); 224 sino->si_ino = ino; 225 TAILQ_INIT(&sino->si_recs); 226 TAILQ_INIT(&sino->si_newrecs); 227 TAILQ_INIT(&sino->si_movs); 228 LIST_INSERT_HEAD(hd, sino, si_next); 229 230 return (sino); 231 } 232 233 /* 234 * Lookup a block number in the hash and allocate a suj_blk if it does 235 * not exist. 236 */ 237 static struct suj_blk * 238 blk_lookup(ufs2_daddr_t blk, int creat) 239 { 240 struct suj_blk *sblk; 241 struct suj_cg *sc; 242 struct blkhd *hd; 243 244 sc = cg_lookup(dtog(fs, blk)); 245 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 246 return (sc->sc_lastblk); 247 hd = &sc->sc_blkhash[HASH(fragstoblks(fs, blk))]; 248 LIST_FOREACH(sblk, hd, sb_next) 249 if (sblk->sb_blk == blk) 250 return (sblk); 251 if (creat == 0) 252 return (NULL); 253 sblk = errmalloc(sizeof(*sblk)); 254 bzero(sblk, sizeof(*sblk)); 255 sblk->sb_blk = blk; 256 TAILQ_INIT(&sblk->sb_recs); 257 LIST_INSERT_HEAD(hd, sblk, sb_next); 258 259 return (sblk); 260 } 261 262 static int 263 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 264 { 265 ufs2_daddr_t bstart; 266 ufs2_daddr_t bend; 267 ufs2_daddr_t end; 268 269 end = start + frags; 270 bstart = brec->jb_blkno + brec->jb_oldfrags; 271 bend = bstart + brec->jb_frags; 272 if (start < bend && end > bstart) 273 return (1); 274 return (0); 275 } 276 277 static int 278 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 279 int frags) 280 { 281 282 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 283 return (0); 284 if (brec->jb_blkno + brec->jb_oldfrags != start) 285 return (0); 286 if (brec->jb_frags < frags) 287 return (0); 288 return (1); 289 } 290 291 static void 292 blk_setmask(struct jblkrec *brec, int *mask) 293 { 294 int i; 295 296 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 297 *mask |= 1 << i; 298 } 299 300 /* 301 * Determine whether a given block has been reallocated to a new location. 302 * Returns a mask of overlapping bits if any frags have been reused or 303 * zero if the block has not been re-used and the contents can be trusted. 304 * 305 * This is used to ensure that an orphaned pointer due to truncate is safe 306 * to be freed. The mask value can be used to free partial blocks. 307 */ 308 static int 309 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 310 { 311 struct suj_blk *sblk; 312 struct suj_rec *srec; 313 struct jblkrec *brec; 314 int mask; 315 int off; 316 317 /* 318 * To be certain we're not freeing a reallocated block we lookup 319 * this block in the blk hash and see if there is an allocation 320 * journal record that overlaps with any fragments in the block 321 * we're concerned with. If any fragments have been reallocated 322 * the block has already been freed and re-used for another purpose. 323 */ 324 mask = 0; 325 sblk = blk_lookup(blknum(fs, blk), 0); 326 if (sblk == NULL) 327 return (0); 328 off = blk - sblk->sb_blk; 329 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 330 brec = (struct jblkrec *)srec->sr_rec; 331 /* 332 * If the block overlaps but does not match 333 * exactly this record refers to the current 334 * location. 335 */ 336 if (blk_overlaps(brec, blk, frags) == 0) 337 continue; 338 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 339 mask = 0; 340 else 341 blk_setmask(brec, &mask); 342 } 343 if (debug) 344 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 345 blk, sblk->sb_blk, off, mask); 346 return (mask >> off); 347 } 348 349 /* 350 * Determine whether it is safe to follow an indirect. It is not safe 351 * if any part of the indirect has been reallocated or the last journal 352 * entry was an allocation. Just allocated indirects may not have valid 353 * pointers yet and all of their children will have their own records. 354 * It is also not safe to follow an indirect if the cg bitmap has been 355 * cleared as a new allocation may write to the block prior to the journal 356 * being written. 357 * 358 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 359 */ 360 static int 361 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 362 { 363 struct suj_blk *sblk; 364 struct jblkrec *brec; 365 366 sblk = blk_lookup(blk, 0); 367 if (sblk == NULL) 368 return (1); 369 if (TAILQ_EMPTY(&sblk->sb_recs)) 370 return (1); 371 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 372 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 373 if (brec->jb_op == JOP_FREEBLK) 374 return (!blk_isfree(blk)); 375 return (0); 376 } 377 378 /* 379 * Check to see if the requested block is available. 380 * We can just check in the cylinder-group maps as 381 * they will only have usable blocks in them. 382 */ 383 ufs2_daddr_t 384 suj_checkblkavail(ufs2_daddr_t blkno, long frags) 385 { 386 struct bufarea *cgbp; 387 struct cg *cgp; 388 ufs2_daddr_t j, k, baseblk; 389 long cg; 390 391 if ((u_int64_t)blkno > sblock.fs_size) 392 return (0); 393 cg = dtog(&sblock, blkno); 394 cgbp = cglookup(cg); 395 cgp = cgbp->b_un.b_cg; 396 if (!check_cgmagic(cg, cgbp)) 397 return (-((cg + 1) * sblock.fs_fpg - sblock.fs_frag)); 398 baseblk = dtogd(&sblock, blkno); 399 for (j = 0; j <= sblock.fs_frag - frags; j++) { 400 if (!isset(cg_blksfree(cgp), baseblk + j)) 401 continue; 402 for (k = 1; k < frags; k++) 403 if (!isset(cg_blksfree(cgp), baseblk + j + k)) 404 break; 405 if (k < frags) { 406 j += k; 407 continue; 408 } 409 for (k = 0; k < frags; k++) 410 clrbit(cg_blksfree(cgp), baseblk + j + k); 411 n_blks += frags; 412 if (frags == sblock.fs_frag) 413 cgp->cg_cs.cs_nbfree--; 414 else 415 cgp->cg_cs.cs_nffree -= frags; 416 cgdirty(cgbp); 417 return ((cg * sblock.fs_fpg) + baseblk + j); 418 } 419 return (0); 420 } 421 422 /* 423 * Clear an inode from the cg bitmap. If the inode was already clear return 424 * 0 so the caller knows it does not have to check the inode contents. 425 */ 426 static int 427 ino_free(ino_t ino, int mode) 428 { 429 struct suj_cg *sc; 430 uint8_t *inosused; 431 struct cg *cgp; 432 int cg; 433 434 cg = ino_to_cg(fs, ino); 435 ino = ino % fs->fs_ipg; 436 sc = cg_lookup(cg); 437 cgp = sc->sc_cgp; 438 inosused = cg_inosused(cgp); 439 /* 440 * The bitmap may never have made it to the disk so we have to 441 * conditionally clear. We can avoid writing the cg in this case. 442 */ 443 if (isclr(inosused, ino)) 444 return (0); 445 freeinos++; 446 clrbit(inosused, ino); 447 if (ino < cgp->cg_irotor) 448 cgp->cg_irotor = ino; 449 cgp->cg_cs.cs_nifree++; 450 if ((mode & IFMT) == IFDIR) { 451 freedir++; 452 cgp->cg_cs.cs_ndir--; 453 } 454 cgdirty(sc->sc_cgbp); 455 456 return (1); 457 } 458 459 /* 460 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 461 * set in the mask. 462 */ 463 static void 464 blk_free(ino_t ino, ufs2_daddr_t bno, int mask, int frags) 465 { 466 ufs1_daddr_t fragno, cgbno; 467 struct suj_cg *sc; 468 struct cg *cgp; 469 int i, cg; 470 uint8_t *blksfree; 471 472 if (debug) 473 printf("Freeing %d frags at blk %jd mask 0x%x\n", 474 frags, bno, mask); 475 /* 476 * Check to see if the block needs to be claimed by a snapshot. 477 * If wanted, the snapshot references it. Otherwise we free it. 478 */ 479 if (snapblkfree(fs, bno, lfragtosize(fs, frags), ino, 480 suj_checkblkavail)) 481 return; 482 cg = dtog(fs, bno); 483 sc = cg_lookup(cg); 484 cgp = sc->sc_cgp; 485 cgbno = dtogd(fs, bno); 486 blksfree = cg_blksfree(cgp); 487 488 /* 489 * If it's not allocated we only wrote the journal entry 490 * and never the bitmaps. Here we unconditionally clear and 491 * resolve the cg summary later. 492 */ 493 if (frags == fs->fs_frag && mask == 0) { 494 fragno = fragstoblks(fs, cgbno); 495 ffs_setblock(fs, blksfree, fragno); 496 freeblocks++; 497 } else { 498 /* 499 * deallocate the fragment 500 */ 501 for (i = 0; i < frags; i++) 502 if ((mask & (1 << i)) == 0 && 503 isclr(blksfree, cgbno +i)) { 504 freefrags++; 505 setbit(blksfree, cgbno + i); 506 } 507 } 508 cgdirty(sc->sc_cgbp); 509 } 510 511 /* 512 * Returns 1 if the whole block starting at 'bno' is marked free and 0 513 * otherwise. 514 */ 515 static int 516 blk_isfree(ufs2_daddr_t bno) 517 { 518 struct suj_cg *sc; 519 520 sc = cg_lookup(dtog(fs, bno)); 521 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 522 } 523 524 /* 525 * Determine whether a block exists at a particular lbn in an inode. 526 * Returns 1 if found, 0 if not. lbn may be negative for indirects 527 * or ext blocks. 528 */ 529 static int 530 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 531 { 532 struct inode ip; 533 union dinode *dp; 534 ufs2_daddr_t nblk; 535 536 ginode(ino, &ip); 537 dp = ip.i_dp; 538 if (DIP(dp, di_nlink) == 0 || DIP(dp, di_mode) == 0) { 539 irelse(&ip); 540 return (0); 541 } 542 nblk = ino_blkatoff(dp, ino, lbn, frags, NULL); 543 irelse(&ip); 544 return (nblk == blk); 545 } 546 547 /* 548 * Clear the directory entry at diroff that should point to child. Minimal 549 * checking is done and it is assumed that this path was verified with isat. 550 */ 551 static void 552 ino_clrat(ino_t parent, off_t diroff, ino_t child) 553 { 554 union dinode *dip; 555 struct direct *dp; 556 struct inode ip; 557 ufs2_daddr_t blk; 558 struct bufarea *bp; 559 ufs_lbn_t lbn; 560 int blksize; 561 int frags; 562 int doff; 563 564 if (debug) 565 printf("Clearing inode %ju from parent %ju at offset %jd\n", 566 (uintmax_t)child, (uintmax_t)parent, diroff); 567 568 lbn = lblkno(fs, diroff); 569 doff = blkoff(fs, diroff); 570 ginode(parent, &ip); 571 dip = ip.i_dp; 572 blk = ino_blkatoff(dip, parent, lbn, &frags, NULL); 573 blksize = sblksize(fs, DIP(dip, di_size), lbn); 574 irelse(&ip); 575 bp = getdatablk(blk, blksize, BT_DIRDATA); 576 if (bp->b_errs != 0) 577 err_suj("ino_clrat: UNRECOVERABLE I/O ERROR"); 578 dp = (struct direct *)&bp->b_un.b_buf[doff]; 579 if (dp->d_ino != child) 580 errx(1, "Inode %ju does not exist in %ju at %jd", 581 (uintmax_t)child, (uintmax_t)parent, diroff); 582 dp->d_ino = 0; 583 dirty(bp); 584 brelse(bp); 585 /* 586 * The actual .. reference count will already have been removed 587 * from the parent by the .. remref record. 588 */ 589 } 590 591 /* 592 * Determines whether a pointer to an inode exists within a directory 593 * at a specified offset. Returns the mode of the found entry. 594 */ 595 static int 596 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 597 { 598 struct inode ip; 599 union dinode *dip; 600 struct bufarea *bp; 601 struct direct *dp; 602 ufs2_daddr_t blk; 603 ufs_lbn_t lbn; 604 int blksize; 605 int frags; 606 int dpoff; 607 int doff; 608 609 *isdot = 0; 610 ginode(parent, &ip); 611 dip = ip.i_dp; 612 *mode = DIP(dip, di_mode); 613 if ((*mode & IFMT) != IFDIR) { 614 if (debug) { 615 /* 616 * This can happen if the parent inode 617 * was reallocated. 618 */ 619 if (*mode != 0) 620 printf("Directory %ju has bad mode %o\n", 621 (uintmax_t)parent, *mode); 622 else 623 printf("Directory %ju has zero mode\n", 624 (uintmax_t)parent); 625 } 626 irelse(&ip); 627 return (0); 628 } 629 lbn = lblkno(fs, diroff); 630 doff = blkoff(fs, diroff); 631 blksize = sblksize(fs, DIP(dip, di_size), lbn); 632 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 633 if (debug) 634 printf("ino %ju absent from %ju due to offset %jd" 635 " exceeding size %jd\n", 636 (uintmax_t)child, (uintmax_t)parent, diroff, 637 DIP(dip, di_size)); 638 irelse(&ip); 639 return (0); 640 } 641 blk = ino_blkatoff(dip, parent, lbn, &frags, NULL); 642 irelse(&ip); 643 if (blk <= 0) { 644 if (debug) 645 printf("Sparse directory %ju", (uintmax_t)parent); 646 return (0); 647 } 648 bp = getdatablk(blk, blksize, BT_DIRDATA); 649 if (bp->b_errs != 0) 650 err_suj("ino_isat: UNRECOVERABLE I/O ERROR"); 651 /* 652 * Walk through the records from the start of the block to be 653 * certain we hit a valid record and not some junk in the middle 654 * of a file name. Stop when we reach or pass the expected offset. 655 */ 656 dpoff = rounddown(doff, DIRBLKSIZ); 657 do { 658 dp = (struct direct *)&bp->b_un.b_buf[dpoff]; 659 if (dpoff == doff) 660 break; 661 if (dp->d_reclen == 0) 662 break; 663 dpoff += dp->d_reclen; 664 } while (dpoff <= doff); 665 if (dpoff > fs->fs_bsize) 666 err_suj("Corrupt directory block in dir ino %ju\n", 667 (uintmax_t)parent); 668 /* Not found. */ 669 if (dpoff != doff) { 670 if (debug) 671 printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n", 672 (uintmax_t)child, (uintmax_t)parent, lbn, dpoff); 673 brelse(bp); 674 return (0); 675 } 676 /* 677 * We found the item in question. Record the mode and whether it's 678 * a . or .. link for the caller. 679 */ 680 if (dp->d_ino == child) { 681 if (child == parent) 682 *isdot = 1; 683 else if (dp->d_namlen == 2 && 684 dp->d_name[0] == '.' && dp->d_name[1] == '.') 685 *isdot = 1; 686 *mode = DTTOIF(dp->d_type); 687 brelse(bp); 688 return (1); 689 } 690 if (debug) 691 printf("ino %ju doesn't match dirent ino %ju in parent %ju\n", 692 (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent); 693 brelse(bp); 694 return (0); 695 } 696 697 #define VISIT_INDIR 0x0001 698 #define VISIT_EXT 0x0002 699 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 700 701 /* 702 * Read an indirect level which may or may not be linked into an inode. 703 */ 704 static void 705 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 706 ino_visitor visitor, int flags) 707 { 708 struct bufarea *bp; 709 ufs_lbn_t lbnadd; 710 ufs2_daddr_t nblk; 711 ufs_lbn_t nlbn; 712 int level; 713 int i; 714 715 /* 716 * Don't visit indirect blocks with contents we can't trust. This 717 * should only happen when indir_visit() is called to complete a 718 * truncate that never finished and not when a pointer is found via 719 * an inode. 720 */ 721 if (blk == 0) 722 return; 723 level = lbn_level(lbn); 724 if (level == -1) 725 err_suj("Invalid level for lbn %jd\n", lbn); 726 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 727 if (debug) 728 printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n", 729 blk, (uintmax_t)ino, lbn, level); 730 goto out; 731 } 732 lbnadd = 1; 733 for (i = level; i > 0; i--) 734 lbnadd *= NINDIR(fs); 735 bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level); 736 if (bp->b_errs != 0) 737 err_suj("indir_visit: UNRECOVERABLE I/O ERROR\n"); 738 for (i = 0; i < NINDIR(fs); i++) { 739 if ((nblk = IBLK(bp, i)) == 0) 740 continue; 741 if (level == 0) { 742 nlbn = -lbn + i * lbnadd; 743 (*frags) += fs->fs_frag; 744 visitor(ino, nlbn, nblk, fs->fs_frag); 745 } else { 746 nlbn = (lbn + 1) - (i * lbnadd); 747 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 748 } 749 } 750 brelse(bp); 751 out: 752 if (flags & VISIT_INDIR) { 753 (*frags) += fs->fs_frag; 754 visitor(ino, lbn, blk, fs->fs_frag); 755 } 756 } 757 758 /* 759 * Visit each block in an inode as specified by 'flags' and call a 760 * callback function. The callback may inspect or free blocks. The 761 * count of frags found according to the size in the file is returned. 762 * This is not valid for sparse files but may be used to determine 763 * the correct di_blocks for a file. 764 */ 765 static uint64_t 766 ino_visit(union dinode *dp, ino_t ino, ino_visitor visitor, int flags) 767 { 768 ufs_lbn_t nextlbn; 769 ufs_lbn_t tmpval; 770 ufs_lbn_t lbn; 771 uint64_t size; 772 uint64_t fragcnt; 773 int mode; 774 int frags; 775 int i; 776 777 size = DIP(dp, di_size); 778 mode = DIP(dp, di_mode) & IFMT; 779 fragcnt = 0; 780 if ((flags & VISIT_EXT) && 781 fs->fs_magic == FS_UFS2_MAGIC && dp->dp2.di_extsize) { 782 for (i = 0; i < UFS_NXADDR; i++) { 783 if (dp->dp2.di_extb[i] == 0) 784 continue; 785 frags = sblksize(fs, dp->dp2.di_extsize, i); 786 frags = numfrags(fs, frags); 787 fragcnt += frags; 788 visitor(ino, -1 - i, dp->dp2.di_extb[i], frags); 789 } 790 } 791 /* Skip datablocks for short links and devices. */ 792 if (mode == IFBLK || mode == IFCHR || 793 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 794 return (fragcnt); 795 for (i = 0; i < UFS_NDADDR; i++) { 796 if (DIP(dp, di_db[i]) == 0) 797 continue; 798 frags = sblksize(fs, size, i); 799 frags = numfrags(fs, frags); 800 fragcnt += frags; 801 visitor(ino, i, DIP(dp, di_db[i]), frags); 802 } 803 /* 804 * We know the following indirects are real as we're following 805 * real pointers to them. 806 */ 807 flags |= VISIT_ROOT; 808 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, 809 lbn = nextlbn) { 810 nextlbn = lbn + tmpval; 811 tmpval *= NINDIR(fs); 812 if (DIP(dp, di_ib[i]) == 0) 813 continue; 814 indir_visit(ino, -lbn - i, DIP(dp, di_ib[i]), &fragcnt, visitor, 815 flags); 816 } 817 return (fragcnt); 818 } 819 820 /* 821 * Null visitor function used when we just want to count blocks and 822 * record the lbn. 823 */ 824 ufs_lbn_t visitlbn; 825 static void 826 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 827 { 828 if (lbn > 0) 829 visitlbn = lbn; 830 } 831 832 /* 833 * Recalculate di_blocks when we discover that a block allocation or 834 * free was not successfully completed. The kernel does not roll this back 835 * because it would be too expensive to compute which indirects were 836 * reachable at the time the inode was written. 837 */ 838 static void 839 ino_adjblks(struct suj_ino *sino) 840 { 841 struct inode ip; 842 union dinode *dp; 843 uint64_t blocks; 844 uint64_t frags; 845 off_t isize; 846 off_t size; 847 ino_t ino; 848 849 ino = sino->si_ino; 850 ginode(ino, &ip); 851 dp = ip.i_dp; 852 /* No need to adjust zero'd inodes. */ 853 if (DIP(dp, di_mode) == 0) { 854 irelse(&ip); 855 return; 856 } 857 /* 858 * Visit all blocks and count them as well as recording the last 859 * valid lbn in the file. If the file size doesn't agree with the 860 * last lbn we need to truncate to fix it. Otherwise just adjust 861 * the blocks count. 862 */ 863 visitlbn = 0; 864 frags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT); 865 blocks = fsbtodb(fs, frags); 866 /* 867 * We assume the size and direct block list is kept coherent by 868 * softdep. For files that have extended into indirects we truncate 869 * to the size in the inode or the maximum size permitted by 870 * populated indirects. 871 */ 872 if (visitlbn >= UFS_NDADDR) { 873 isize = DIP(dp, di_size); 874 size = lblktosize(fs, visitlbn + 1); 875 if (isize > size) 876 isize = size; 877 /* Always truncate to free any unpopulated indirects. */ 878 ino_trunc(ino, isize); 879 irelse(&ip); 880 return; 881 } 882 if (blocks == DIP(dp, di_blocks)) { 883 irelse(&ip); 884 return; 885 } 886 if (debug) 887 printf("ino %ju adjusting block count from %jd to %jd\n", 888 (uintmax_t)ino, DIP(dp, di_blocks), blocks); 889 DIP_SET(dp, di_blocks, blocks); 890 inodirty(&ip); 891 irelse(&ip); 892 } 893 894 static void 895 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 896 { 897 898 blk_free(ino, blk, blk_freemask(blk, ino, lbn, frags), frags); 899 } 900 901 /* 902 * Free a block or tree of blocks that was previously rooted in ino at 903 * the given lbn. If the lbn is an indirect all children are freed 904 * recursively. 905 */ 906 static void 907 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 908 { 909 uint64_t resid; 910 int mask; 911 912 mask = blk_freemask(blk, ino, lbn, frags); 913 resid = 0; 914 if (lbn <= -UFS_NDADDR && follow && mask == 0) 915 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 916 else 917 blk_free(ino, blk, mask, frags); 918 } 919 920 static void 921 ino_setskip(struct suj_ino *sino, ino_t parent) 922 { 923 int isdot; 924 int mode; 925 926 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 927 sino->si_skipparent = 1; 928 } 929 930 static void 931 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) 932 { 933 struct suj_ino *sino; 934 struct suj_rec *srec; 935 struct jrefrec *rrec; 936 937 /* 938 * Lookup this inode to see if we have a record for it. 939 */ 940 sino = ino_lookup(child, 0); 941 /* 942 * Tell any child directories we've already removed their 943 * parent link cnt. Don't try to adjust our link down again. 944 */ 945 if (sino != NULL && isdotdot == 0) 946 ino_setskip(sino, parent); 947 /* 948 * No valid record for this inode. Just drop the on-disk 949 * link by one. 950 */ 951 if (sino == NULL || sino->si_hasrecs == 0) { 952 ino_decr(child); 953 return; 954 } 955 /* 956 * Use ino_adjust() if ino_check() has already processed this 957 * child. If we lose the last non-dot reference to a 958 * directory it will be discarded. 959 */ 960 if (sino->si_linkadj) { 961 if (sino->si_nlink == 0) 962 err_suj("ino_remref: ino %ld mode 0%o about to go " 963 "negative\n", sino->si_ino, sino->si_mode); 964 sino->si_nlink--; 965 if (isdotdot) 966 sino->si_dotlinks--; 967 ino_adjust(sino); 968 return; 969 } 970 /* 971 * If we haven't yet processed this inode we need to make 972 * sure we will successfully discover the lost path. If not 973 * use nlinkadj to remember. 974 */ 975 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 976 rrec = (struct jrefrec *)srec->sr_rec; 977 if (rrec->jr_parent == parent && 978 rrec->jr_diroff == diroff) 979 return; 980 } 981 sino->si_nlinkadj++; 982 } 983 984 /* 985 * Free the children of a directory when the directory is discarded. 986 */ 987 static void 988 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 989 { 990 struct suj_ino *sino; 991 struct bufarea *bp; 992 struct direct *dp; 993 off_t diroff; 994 int skipparent; 995 int isdotdot; 996 int dpoff; 997 int size; 998 999 sino = ino_lookup(ino, 0); 1000 if (sino) 1001 skipparent = sino->si_skipparent; 1002 else 1003 skipparent = 0; 1004 size = lfragtosize(fs, frags); 1005 bp = getdatablk(blk, size, BT_DIRDATA); 1006 if (bp->b_errs != 0) 1007 err_suj("ino_free_children: UNRECOVERABLE I/O ERROR"); 1008 dp = (struct direct *)&bp->b_un.b_buf[0]; 1009 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1010 dp = (struct direct *)&bp->b_un.b_buf[dpoff]; 1011 if (dp->d_ino == 0 || dp->d_ino == UFS_WINO) 1012 continue; 1013 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1014 continue; 1015 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1016 dp->d_name[1] == '.'; 1017 if (isdotdot && skipparent == 1) 1018 continue; 1019 if (debug) 1020 printf("Directory %ju removing ino %ju name %s\n", 1021 (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name); 1022 diroff = lblktosize(fs, lbn) + dpoff; 1023 ino_remref(ino, dp->d_ino, diroff, isdotdot); 1024 } 1025 brelse(bp); 1026 } 1027 1028 /* 1029 * Reclaim an inode, freeing all blocks and decrementing all children's 1030 * link counts. Free the inode back to the cg. 1031 */ 1032 static void 1033 ino_reclaim(struct inode *ip, ino_t ino, int mode) 1034 { 1035 union dinode *dp; 1036 uint32_t gen; 1037 1038 dp = ip->i_dp; 1039 if (ino == UFS_ROOTINO) 1040 err_suj("Attempting to free UFS_ROOTINO\n"); 1041 if (debug) 1042 printf("Truncating and freeing ino %ju, nlink %d, mode %o\n", 1043 (uintmax_t)ino, DIP(dp, di_nlink), DIP(dp, di_mode)); 1044 1045 /* We are freeing an inode or directory. */ 1046 if ((DIP(dp, di_mode) & IFMT) == IFDIR) 1047 ino_visit(dp, ino, ino_free_children, 0); 1048 DIP_SET(dp, di_nlink, 0); 1049 if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) 1050 snapremove(ino); 1051 ino_visit(dp, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1052 /* Here we have to clear the inode and release any blocks it holds. */ 1053 gen = DIP(dp, di_gen); 1054 if (fs->fs_magic == FS_UFS1_MAGIC) 1055 bzero(dp, sizeof(struct ufs1_dinode)); 1056 else 1057 bzero(dp, sizeof(struct ufs2_dinode)); 1058 DIP_SET(dp, di_gen, gen); 1059 inodirty(ip); 1060 ino_free(ino, mode); 1061 return; 1062 } 1063 1064 /* 1065 * Adjust an inode's link count down by one when a directory goes away. 1066 */ 1067 static void 1068 ino_decr(ino_t ino) 1069 { 1070 struct inode ip; 1071 union dinode *dp; 1072 int reqlink; 1073 int nlink; 1074 int mode; 1075 1076 ginode(ino, &ip); 1077 dp = ip.i_dp; 1078 nlink = DIP(dp, di_nlink); 1079 mode = DIP(dp, di_mode); 1080 if (nlink < 1) 1081 err_suj("Inode %d link count %d invalid\n", ino, nlink); 1082 if (mode == 0) 1083 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); 1084 nlink--; 1085 if ((mode & IFMT) == IFDIR) 1086 reqlink = 2; 1087 else 1088 reqlink = 1; 1089 if (nlink < reqlink) { 1090 if (debug) 1091 printf("ino %ju not enough links to live %d < %d\n", 1092 (uintmax_t)ino, nlink, reqlink); 1093 ino_reclaim(&ip, ino, mode); 1094 irelse(&ip); 1095 return; 1096 } 1097 DIP_SET(dp, di_nlink, nlink); 1098 inodirty(&ip); 1099 irelse(&ip); 1100 } 1101 1102 /* 1103 * Adjust the inode link count to 'nlink'. If the count reaches zero 1104 * free it. 1105 */ 1106 static void 1107 ino_adjust(struct suj_ino *sino) 1108 { 1109 struct jrefrec *rrec; 1110 struct suj_rec *srec; 1111 struct suj_ino *stmp; 1112 union dinode *dp; 1113 struct inode ip; 1114 nlink_t nlink; 1115 nlink_t reqlink; 1116 int recmode; 1117 int isdot; 1118 int mode; 1119 ino_t ino; 1120 1121 nlink = sino->si_nlink; 1122 ino = sino->si_ino; 1123 mode = sino->si_mode & IFMT; 1124 /* 1125 * If it's a directory with no dot links, it was truncated before 1126 * the name was cleared. We need to clear the dirent that 1127 * points at it. 1128 */ 1129 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { 1130 sino->si_nlink = nlink = 0; 1131 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1132 rrec = (struct jrefrec *)srec->sr_rec; 1133 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, 1134 &recmode, &isdot) == 0) 1135 continue; 1136 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); 1137 break; 1138 } 1139 if (srec == NULL) 1140 errx(1, "Directory %ju name not found", (uintmax_t)ino); 1141 } 1142 /* 1143 * If it's a directory with no real names pointing to it go ahead 1144 * and truncate it. This will free any children. 1145 */ 1146 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { 1147 sino->si_nlink = nlink = 0; 1148 /* 1149 * Mark any .. links so they know not to free this inode 1150 * when they are removed. 1151 */ 1152 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1153 rrec = (struct jrefrec *)srec->sr_rec; 1154 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1155 stmp = ino_lookup(rrec->jr_parent, 0); 1156 if (stmp) 1157 ino_setskip(stmp, ino); 1158 } 1159 } 1160 } 1161 ginode(ino, &ip); 1162 dp = ip.i_dp; 1163 mode = DIP(dp, di_mode) & IFMT; 1164 if (nlink > UFS_LINK_MAX) 1165 err_suj("ino %ju nlink manipulation error, new %ju, old %d\n", 1166 (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink)); 1167 if (debug) 1168 printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n", 1169 (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink), 1170 sino->si_mode); 1171 if (mode == 0) { 1172 if (debug) 1173 printf("ino %ju, zero inode freeing bitmap\n", 1174 (uintmax_t)ino); 1175 ino_free(ino, sino->si_mode); 1176 irelse(&ip); 1177 return; 1178 } 1179 /* XXX Should be an assert? */ 1180 if (mode != sino->si_mode && debug) 1181 printf("ino %ju, mode %o != %o\n", 1182 (uintmax_t)ino, mode, sino->si_mode); 1183 if ((mode & IFMT) == IFDIR) 1184 reqlink = 2; 1185 else 1186 reqlink = 1; 1187 /* If the inode doesn't have enough links to live, free it. */ 1188 if (nlink < reqlink) { 1189 if (debug) 1190 printf("ino %ju not enough links to live %ju < %ju\n", 1191 (uintmax_t)ino, (uintmax_t)nlink, 1192 (uintmax_t)reqlink); 1193 ino_reclaim(&ip, ino, mode); 1194 irelse(&ip); 1195 return; 1196 } 1197 /* If required write the updated link count. */ 1198 if (DIP(dp, di_nlink) == nlink) { 1199 if (debug) 1200 printf("ino %ju, link matches, skipping.\n", 1201 (uintmax_t)ino); 1202 irelse(&ip); 1203 return; 1204 } 1205 DIP_SET(dp, di_nlink, nlink); 1206 inodirty(&ip); 1207 irelse(&ip); 1208 } 1209 1210 /* 1211 * Truncate some or all blocks in an indirect, freeing any that are required 1212 * and zeroing the indirect. 1213 */ 1214 static void 1215 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn, 1216 union dinode *dp) 1217 { 1218 struct bufarea *bp; 1219 ufs_lbn_t lbnadd; 1220 ufs2_daddr_t nblk; 1221 ufs_lbn_t next; 1222 ufs_lbn_t nlbn; 1223 int isdirty; 1224 int level; 1225 int i; 1226 1227 if (blk == 0) 1228 return; 1229 isdirty = 0; 1230 level = lbn_level(lbn); 1231 if (level == -1) 1232 err_suj("Invalid level for lbn %jd\n", lbn); 1233 lbnadd = 1; 1234 for (i = level; i > 0; i--) 1235 lbnadd *= NINDIR(fs); 1236 bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level); 1237 if (bp->b_errs != 0) 1238 err_suj("indir_trunc: UNRECOVERABLE I/O ERROR"); 1239 for (i = 0; i < NINDIR(fs); i++) { 1240 if ((nblk = IBLK(bp, i)) == 0) 1241 continue; 1242 if (level != 0) { 1243 nlbn = (lbn + 1) - (i * lbnadd); 1244 /* 1245 * Calculate the lbn of the next indirect to 1246 * determine if any of this indirect must be 1247 * reclaimed. 1248 */ 1249 next = -(lbn + level) + ((i+1) * lbnadd); 1250 if (next <= lastlbn) 1251 continue; 1252 indir_trunc(ino, nlbn, nblk, lastlbn, dp); 1253 /* If all of this indirect was reclaimed, free it. */ 1254 nlbn = next - lbnadd; 1255 if (nlbn < lastlbn) 1256 continue; 1257 } else { 1258 nlbn = -lbn + i * lbnadd; 1259 if (nlbn < lastlbn) 1260 continue; 1261 } 1262 isdirty = 1; 1263 blk_free(ino, nblk, 0, fs->fs_frag); 1264 IBLK_SET(bp, i, 0); 1265 } 1266 if (isdirty) 1267 dirty(bp); 1268 brelse(bp); 1269 } 1270 1271 /* 1272 * Truncate an inode to the minimum of the given size or the last populated 1273 * block after any over size have been discarded. The kernel would allocate 1274 * the last block in the file but fsck does not and neither do we. This 1275 * code never extends files, only shrinks them. 1276 */ 1277 static void 1278 ino_trunc(ino_t ino, off_t size) 1279 { 1280 struct inode ip; 1281 union dinode *dp; 1282 struct bufarea *bp; 1283 ufs2_daddr_t bn; 1284 uint64_t totalfrags; 1285 ufs_lbn_t nextlbn; 1286 ufs_lbn_t lastlbn; 1287 ufs_lbn_t tmpval; 1288 ufs_lbn_t lbn; 1289 ufs_lbn_t i; 1290 int blksize, frags; 1291 off_t cursize; 1292 off_t off; 1293 int mode; 1294 1295 ginode(ino, &ip); 1296 dp = ip.i_dp; 1297 mode = DIP(dp, di_mode) & IFMT; 1298 cursize = DIP(dp, di_size); 1299 /* If no size change, nothing to do */ 1300 if (size == cursize) { 1301 irelse(&ip); 1302 return; 1303 } 1304 if (debug) 1305 printf("Truncating ino %ju, mode %o to size %jd from " 1306 "size %jd\n", (uintmax_t)ino, mode, size, cursize); 1307 1308 /* Skip datablocks for short links and devices. */ 1309 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1310 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) { 1311 irelse(&ip); 1312 return; 1313 } 1314 /* Don't extend. */ 1315 if (size > cursize) { 1316 irelse(&ip); 1317 return; 1318 } 1319 if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) { 1320 if (size > 0) 1321 err_suj("Partial truncation of ino %ju snapshot file\n", 1322 (uintmax_t)ino); 1323 snapremove(ino); 1324 } 1325 lastlbn = lblkno(fs, blkroundup(fs, size)); 1326 for (i = lastlbn; i < UFS_NDADDR; i++) { 1327 if ((bn = DIP(dp, di_db[i])) == 0) 1328 continue; 1329 blksize = sblksize(fs, cursize, i); 1330 blk_free(ino, bn, 0, numfrags(fs, blksize)); 1331 DIP_SET(dp, di_db[i], 0); 1332 } 1333 /* 1334 * Follow indirect blocks, freeing anything required. 1335 */ 1336 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, 1337 lbn = nextlbn) { 1338 nextlbn = lbn + tmpval; 1339 tmpval *= NINDIR(fs); 1340 /* If we're not freeing any in this indirect range skip it. */ 1341 if (lastlbn >= nextlbn) 1342 continue; 1343 if ((bn = DIP(dp, di_ib[i])) == 0) 1344 continue; 1345 indir_trunc(ino, -lbn - i, bn, lastlbn, dp); 1346 /* If we freed everything in this indirect free the indir. */ 1347 if (lastlbn > lbn) 1348 continue; 1349 blk_free(ino, bn, 0, fs->fs_frag); 1350 DIP_SET(dp, di_ib[i], 0); 1351 } 1352 /* 1353 * Now that we've freed any whole blocks that exceed the desired 1354 * truncation size, figure out how many blocks remain and what the 1355 * last populated lbn is. We will set the size to this last lbn 1356 * rather than worrying about allocating the final lbn as the kernel 1357 * would've done. This is consistent with normal fsck behavior. 1358 */ 1359 visitlbn = 0; 1360 totalfrags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1361 if (size > lblktosize(fs, visitlbn + 1)) 1362 size = lblktosize(fs, visitlbn + 1); 1363 /* 1364 * If we're truncating direct blocks we have to adjust frags 1365 * accordingly. 1366 */ 1367 if (visitlbn < UFS_NDADDR && totalfrags) { 1368 long oldspace, newspace; 1369 1370 bn = DIP(dp, di_db[visitlbn]); 1371 if (bn == 0) 1372 err_suj("Bad blk at ino %ju lbn %jd\n", 1373 (uintmax_t)ino, visitlbn); 1374 oldspace = sblksize(fs, cursize, visitlbn); 1375 newspace = sblksize(fs, size, visitlbn); 1376 if (oldspace != newspace) { 1377 bn += numfrags(fs, newspace); 1378 frags = numfrags(fs, oldspace - newspace); 1379 blk_free(ino, bn, 0, frags); 1380 totalfrags -= frags; 1381 } 1382 } 1383 DIP_SET(dp, di_blocks, fsbtodb(fs, totalfrags)); 1384 DIP_SET(dp, di_size, size); 1385 inodirty(&ip); 1386 /* 1387 * If we've truncated into the middle of a block or frag we have 1388 * to zero it here. Otherwise the file could extend into 1389 * uninitialized space later. 1390 */ 1391 off = blkoff(fs, size); 1392 if (off && DIP(dp, di_mode) != IFDIR) { 1393 long clrsize; 1394 1395 bn = ino_blkatoff(dp, ino, visitlbn, &frags, NULL); 1396 if (bn == 0) 1397 err_suj("Block missing from ino %ju at lbn %jd\n", 1398 (uintmax_t)ino, visitlbn); 1399 clrsize = frags * fs->fs_fsize; 1400 bp = getdatablk(bn, clrsize, BT_DATA); 1401 if (bp->b_errs != 0) 1402 err_suj("ino_trunc: UNRECOVERABLE I/O ERROR"); 1403 clrsize -= off; 1404 bzero(&bp->b_un.b_buf[off], clrsize); 1405 dirty(bp); 1406 brelse(bp); 1407 } 1408 irelse(&ip); 1409 return; 1410 } 1411 1412 /* 1413 * Process records available for one inode and determine whether the 1414 * link count is correct or needs adjusting. 1415 */ 1416 static void 1417 ino_check(struct suj_ino *sino) 1418 { 1419 struct suj_rec *srec; 1420 struct jrefrec *rrec; 1421 nlink_t dotlinks; 1422 nlink_t newlinks; 1423 nlink_t removes; 1424 nlink_t nlink; 1425 ino_t ino; 1426 int isdot; 1427 int isat; 1428 int mode; 1429 1430 if (sino->si_hasrecs == 0) 1431 return; 1432 ino = sino->si_ino; 1433 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1434 nlink = rrec->jr_nlink; 1435 newlinks = 0; 1436 dotlinks = 0; 1437 removes = sino->si_nlinkadj; 1438 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1439 rrec = (struct jrefrec *)srec->sr_rec; 1440 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1441 rrec->jr_ino, &mode, &isdot); 1442 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1443 err_suj("Inode mode/directory type mismatch %o != %o\n", 1444 mode, rrec->jr_mode); 1445 if (debug) 1446 printf("jrefrec: op %s ino %ju, nlink %ju, parent %ju, " 1447 "diroff %jd, mode %o, isat %d, isdot %d\n", 1448 JOP_OPTYPE(rrec->jr_op), (uintmax_t)rrec->jr_ino, 1449 (uintmax_t)rrec->jr_nlink, 1450 (uintmax_t)rrec->jr_parent, 1451 (uintmax_t)rrec->jr_diroff, 1452 rrec->jr_mode, isat, isdot); 1453 mode = rrec->jr_mode & IFMT; 1454 if (rrec->jr_op == JOP_REMREF) 1455 removes++; 1456 newlinks += isat; 1457 if (isdot) 1458 dotlinks += isat; 1459 } 1460 /* 1461 * The number of links that remain are the starting link count 1462 * subtracted by the total number of removes with the total 1463 * links discovered back in. An incomplete remove thus 1464 * makes no change to the link count but an add increases 1465 * by one. 1466 */ 1467 if (debug) 1468 printf( 1469 "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n", 1470 (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks, 1471 (uintmax_t)removes, (uintmax_t)dotlinks); 1472 nlink += newlinks; 1473 nlink -= removes; 1474 sino->si_linkadj = 1; 1475 sino->si_nlink = nlink; 1476 sino->si_dotlinks = dotlinks; 1477 sino->si_mode = mode; 1478 ino_adjust(sino); 1479 } 1480 1481 /* 1482 * Process records available for one block and determine whether it is 1483 * still allocated and whether the owning inode needs to be updated or 1484 * a free completed. 1485 */ 1486 static void 1487 blk_check(struct suj_blk *sblk) 1488 { 1489 struct suj_rec *srec; 1490 struct jblkrec *brec; 1491 struct suj_ino *sino; 1492 ufs2_daddr_t blk; 1493 int mask; 1494 int frags; 1495 int isat; 1496 1497 /* 1498 * Each suj_blk actually contains records for any fragments in that 1499 * block. As a result we must evaluate each record individually. 1500 */ 1501 sino = NULL; 1502 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1503 brec = (struct jblkrec *)srec->sr_rec; 1504 frags = brec->jb_frags; 1505 blk = brec->jb_blkno + brec->jb_oldfrags; 1506 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1507 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1508 sino = ino_lookup(brec->jb_ino, 1); 1509 sino->si_blkadj = 1; 1510 } 1511 if (debug) 1512 printf("op %s blk %jd ino %ju lbn %jd frags %d isat %d " 1513 "(%d)\n", JOP_OPTYPE(brec->jb_op), blk, 1514 (uintmax_t)brec->jb_ino, brec->jb_lbn, 1515 brec->jb_frags, isat, frags); 1516 /* 1517 * If we found the block at this address we still have to 1518 * determine if we need to free the tail end that was 1519 * added by adding contiguous fragments from the same block. 1520 */ 1521 if (isat == 1) { 1522 if (frags == brec->jb_frags) 1523 continue; 1524 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1525 brec->jb_frags); 1526 mask >>= frags; 1527 blk += frags; 1528 frags = brec->jb_frags - frags; 1529 blk_free(brec->jb_ino, blk, mask, frags); 1530 continue; 1531 } 1532 /* 1533 * The block wasn't found, attempt to free it. It won't be 1534 * freed if it was actually reallocated. If this was an 1535 * allocation we don't want to follow indirects as they 1536 * may not be written yet. Any children of the indirect will 1537 * have their own records. If it's a free we need to 1538 * recursively free children. 1539 */ 1540 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1541 brec->jb_op == JOP_FREEBLK); 1542 } 1543 } 1544 1545 /* 1546 * Walk the list of inode records for this cg and resolve moved and duplicate 1547 * inode references now that we have a complete picture. 1548 */ 1549 static void 1550 cg_build(struct suj_cg *sc) 1551 { 1552 struct suj_ino *sino; 1553 int i; 1554 1555 for (i = 0; i < HASHSIZE; i++) 1556 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1557 ino_build(sino); 1558 } 1559 1560 /* 1561 * Handle inodes requiring truncation. This must be done prior to 1562 * looking up any inodes in directories. 1563 */ 1564 static void 1565 cg_trunc(struct suj_cg *sc) 1566 { 1567 struct suj_ino *sino; 1568 int i; 1569 1570 for (i = 0; i < HASHSIZE; i++) { 1571 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1572 if (sino->si_trunc) { 1573 ino_trunc(sino->si_ino, 1574 sino->si_trunc->jt_size); 1575 sino->si_blkadj = 0; 1576 sino->si_trunc = NULL; 1577 } 1578 if (sino->si_blkadj) 1579 ino_adjblks(sino); 1580 } 1581 } 1582 } 1583 1584 static void 1585 cg_adj_blk(struct suj_cg *sc) 1586 { 1587 struct suj_ino *sino; 1588 int i; 1589 1590 for (i = 0; i < HASHSIZE; i++) { 1591 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1592 if (sino->si_blkadj) 1593 ino_adjblks(sino); 1594 } 1595 } 1596 } 1597 1598 /* 1599 * Free any partially allocated blocks and then resolve inode block 1600 * counts. 1601 */ 1602 static void 1603 cg_check_blk(struct suj_cg *sc) 1604 { 1605 struct suj_blk *sblk; 1606 int i; 1607 1608 1609 for (i = 0; i < HASHSIZE; i++) 1610 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1611 blk_check(sblk); 1612 } 1613 1614 /* 1615 * Walk the list of inode records for this cg, recovering any 1616 * changes which were not complete at the time of crash. 1617 */ 1618 static void 1619 cg_check_ino(struct suj_cg *sc) 1620 { 1621 struct suj_ino *sino; 1622 int i; 1623 1624 for (i = 0; i < HASHSIZE; i++) 1625 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1626 ino_check(sino); 1627 } 1628 1629 static void 1630 cg_apply(void (*apply)(struct suj_cg *)) 1631 { 1632 struct suj_cg *scg; 1633 int i; 1634 1635 for (i = 0; i < HASHSIZE; i++) 1636 LIST_FOREACH(scg, &cghash[i], sc_next) 1637 apply(scg); 1638 } 1639 1640 /* 1641 * Process the unlinked but referenced file list. Freeing all inodes. 1642 */ 1643 static void 1644 ino_unlinked(void) 1645 { 1646 struct inode ip; 1647 union dinode *dp; 1648 uint16_t mode; 1649 ino_t inon; 1650 ino_t ino; 1651 1652 ino = fs->fs_sujfree; 1653 fs->fs_sujfree = 0; 1654 while (ino != 0) { 1655 ginode(ino, &ip); 1656 dp = ip.i_dp; 1657 mode = DIP(dp, di_mode) & IFMT; 1658 inon = DIP(dp, di_freelink); 1659 DIP_SET(dp, di_freelink, 0); 1660 inodirty(&ip); 1661 /* 1662 * XXX Should this be an errx? 1663 */ 1664 if (DIP(dp, di_nlink) == 0) { 1665 if (debug) 1666 printf("Freeing unlinked ino %ju mode %o\n", 1667 (uintmax_t)ino, mode); 1668 ino_reclaim(&ip, ino, mode); 1669 } else if (debug) 1670 printf("Skipping ino %ju mode %o with link %d\n", 1671 (uintmax_t)ino, mode, DIP(dp, di_nlink)); 1672 ino = inon; 1673 irelse(&ip); 1674 } 1675 } 1676 1677 /* 1678 * Append a new record to the list of records requiring processing. 1679 */ 1680 static void 1681 ino_append(union jrec *rec) 1682 { 1683 struct jrefrec *refrec; 1684 struct jmvrec *mvrec; 1685 struct suj_ino *sino; 1686 struct suj_rec *srec; 1687 1688 mvrec = &rec->rec_jmvrec; 1689 refrec = &rec->rec_jrefrec; 1690 if (debug && mvrec->jm_op == JOP_MVREF) 1691 printf("ino move: ino %ju, parent %ju, " 1692 "diroff %jd, oldoff %jd\n", 1693 (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent, 1694 (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff); 1695 else if (debug && 1696 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1697 printf("ino ref: op %s, ino %ju, nlink %ju, " 1698 "parent %ju, diroff %jd\n", 1699 JOP_OPTYPE(refrec->jr_op), (uintmax_t)refrec->jr_ino, 1700 (uintmax_t)refrec->jr_nlink, 1701 (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff); 1702 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1703 sino->si_hasrecs = 1; 1704 srec = errmalloc(sizeof(*srec)); 1705 srec->sr_rec = rec; 1706 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1707 } 1708 1709 /* 1710 * Add a reference adjustment to the sino list and eliminate dups. The 1711 * primary loop in ino_build_ref() checks for dups but new ones may be 1712 * created as a result of offset adjustments. 1713 */ 1714 static void 1715 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1716 { 1717 struct jrefrec *refrec; 1718 struct suj_rec *srn; 1719 struct jrefrec *rrn; 1720 1721 refrec = (struct jrefrec *)srec->sr_rec; 1722 /* 1723 * We walk backwards so that the oldest link count is preserved. If 1724 * an add record conflicts with a remove keep the remove. Redundant 1725 * removes are eliminated in ino_build_ref. Otherwise we keep the 1726 * oldest record at a given location. 1727 */ 1728 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 1729 srn = TAILQ_PREV(srn, srechd, sr_next)) { 1730 rrn = (struct jrefrec *)srn->sr_rec; 1731 if (rrn->jr_parent != refrec->jr_parent || 1732 rrn->jr_diroff != refrec->jr_diroff) 1733 continue; 1734 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 1735 rrn->jr_mode = refrec->jr_mode; 1736 return; 1737 } 1738 /* 1739 * Adding a remove. 1740 * 1741 * Replace the record in place with the old nlink in case 1742 * we replace the head of the list. Abandon srec as a dup. 1743 */ 1744 refrec->jr_nlink = rrn->jr_nlink; 1745 srn->sr_rec = srec->sr_rec; 1746 return; 1747 } 1748 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 1749 } 1750 1751 /* 1752 * Create a duplicate of a reference at a previous location. 1753 */ 1754 static void 1755 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 1756 { 1757 struct jrefrec *rrn; 1758 struct suj_rec *srn; 1759 1760 rrn = errmalloc(sizeof(*refrec)); 1761 *rrn = *refrec; 1762 rrn->jr_op = JOP_ADDREF; 1763 rrn->jr_diroff = diroff; 1764 srn = errmalloc(sizeof(*srn)); 1765 srn->sr_rec = (union jrec *)rrn; 1766 ino_add_ref(sino, srn); 1767 } 1768 1769 /* 1770 * Add a reference to the list at all known locations. We follow the offset 1771 * changes for a single instance and create duplicate add refs at each so 1772 * that we can tolerate any version of the directory block. Eliminate 1773 * removes which collide with adds that are seen in the journal. They should 1774 * not adjust the link count down. 1775 */ 1776 static void 1777 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 1778 { 1779 struct jrefrec *refrec; 1780 struct jmvrec *mvrec; 1781 struct suj_rec *srp; 1782 struct suj_rec *srn; 1783 struct jrefrec *rrn; 1784 off_t diroff; 1785 1786 refrec = (struct jrefrec *)srec->sr_rec; 1787 /* 1788 * Search for a mvrec that matches this offset. Whether it's an add 1789 * or a remove we can delete the mvref after creating a dup record in 1790 * the old location. 1791 */ 1792 if (!TAILQ_EMPTY(&sino->si_movs)) { 1793 diroff = refrec->jr_diroff; 1794 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 1795 srp = TAILQ_PREV(srn, srechd, sr_next); 1796 mvrec = (struct jmvrec *)srn->sr_rec; 1797 if (mvrec->jm_parent != refrec->jr_parent || 1798 mvrec->jm_newoff != diroff) 1799 continue; 1800 diroff = mvrec->jm_oldoff; 1801 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 1802 free(srn); 1803 ino_dup_ref(sino, refrec, diroff); 1804 } 1805 } 1806 /* 1807 * If a remove wasn't eliminated by an earlier add just append it to 1808 * the list. 1809 */ 1810 if (refrec->jr_op == JOP_REMREF) { 1811 ino_add_ref(sino, srec); 1812 return; 1813 } 1814 /* 1815 * Walk the list of records waiting to be added to the list. We 1816 * must check for moves that apply to our current offset and remove 1817 * them from the list. Remove any duplicates to eliminate removes 1818 * with corresponding adds. 1819 */ 1820 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 1821 switch (srn->sr_rec->rec_jrefrec.jr_op) { 1822 case JOP_ADDREF: 1823 /* 1824 * This should actually be an error we should 1825 * have a remove for every add journaled. 1826 */ 1827 rrn = (struct jrefrec *)srn->sr_rec; 1828 if (rrn->jr_parent != refrec->jr_parent || 1829 rrn->jr_diroff != refrec->jr_diroff) 1830 break; 1831 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1832 break; 1833 case JOP_REMREF: 1834 /* 1835 * Once we remove the current iteration of the 1836 * record at this address we're done. 1837 */ 1838 rrn = (struct jrefrec *)srn->sr_rec; 1839 if (rrn->jr_parent != refrec->jr_parent || 1840 rrn->jr_diroff != refrec->jr_diroff) 1841 break; 1842 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1843 ino_add_ref(sino, srec); 1844 return; 1845 case JOP_MVREF: 1846 /* 1847 * Update our diroff based on any moves that match 1848 * and remove the move. 1849 */ 1850 mvrec = (struct jmvrec *)srn->sr_rec; 1851 if (mvrec->jm_parent != refrec->jr_parent || 1852 mvrec->jm_oldoff != refrec->jr_diroff) 1853 break; 1854 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 1855 refrec->jr_diroff = mvrec->jm_newoff; 1856 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1857 break; 1858 default: 1859 err_suj("ino_build_ref: Unknown op %s\n", 1860 JOP_OPTYPE(srn->sr_rec->rec_jrefrec.jr_op)); 1861 } 1862 } 1863 ino_add_ref(sino, srec); 1864 } 1865 1866 /* 1867 * Walk the list of new records and add them in-order resolving any 1868 * dups and adjusted offsets. 1869 */ 1870 static void 1871 ino_build(struct suj_ino *sino) 1872 { 1873 struct suj_rec *srec; 1874 1875 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 1876 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 1877 switch (srec->sr_rec->rec_jrefrec.jr_op) { 1878 case JOP_ADDREF: 1879 case JOP_REMREF: 1880 ino_build_ref(sino, srec); 1881 break; 1882 case JOP_MVREF: 1883 /* 1884 * Add this mvrec to the queue of pending mvs. 1885 */ 1886 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 1887 break; 1888 default: 1889 err_suj("ino_build: Unknown op %s\n", 1890 JOP_OPTYPE(srec->sr_rec->rec_jrefrec.jr_op)); 1891 } 1892 } 1893 if (TAILQ_EMPTY(&sino->si_recs)) 1894 sino->si_hasrecs = 0; 1895 } 1896 1897 /* 1898 * Modify journal records so they refer to the base block number 1899 * and a start and end frag range. This is to facilitate the discovery 1900 * of overlapping fragment allocations. 1901 */ 1902 static void 1903 blk_build(struct jblkrec *blkrec) 1904 { 1905 struct suj_rec *srec; 1906 struct suj_blk *sblk; 1907 struct jblkrec *blkrn; 1908 ufs2_daddr_t blk; 1909 int frag; 1910 1911 if (debug) 1912 printf("blk_build: op %s blkno %jd frags %d oldfrags %d " 1913 "ino %ju lbn %jd\n", 1914 JOP_OPTYPE(blkrec->jb_op), (uintmax_t)blkrec->jb_blkno, 1915 blkrec->jb_frags, blkrec->jb_oldfrags, 1916 (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn); 1917 1918 blk = blknum(fs, blkrec->jb_blkno); 1919 frag = fragnum(fs, blkrec->jb_blkno); 1920 if (blkrec->jb_blkno < 0 || blk + fs->fs_frag - frag > fs->fs_size) 1921 err_suj("Out-of-bounds journal block number %jd\n", 1922 blkrec->jb_blkno); 1923 sblk = blk_lookup(blk, 1); 1924 /* 1925 * Rewrite the record using oldfrags to indicate the offset into 1926 * the block. Leave jb_frags as the actual allocated count. 1927 */ 1928 blkrec->jb_blkno -= frag; 1929 blkrec->jb_oldfrags = frag; 1930 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 1931 err_suj("Invalid fragment count %d oldfrags %d\n", 1932 blkrec->jb_frags, frag); 1933 /* 1934 * Detect dups. If we detect a dup we always discard the oldest 1935 * record as it is superseded by the new record. This speeds up 1936 * later stages but also eliminates free records which are used 1937 * to indicate that the contents of indirects can be trusted. 1938 */ 1939 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1940 blkrn = (struct jblkrec *)srec->sr_rec; 1941 if (blkrn->jb_ino != blkrec->jb_ino || 1942 blkrn->jb_lbn != blkrec->jb_lbn || 1943 blkrn->jb_blkno != blkrec->jb_blkno || 1944 blkrn->jb_frags != blkrec->jb_frags || 1945 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 1946 continue; 1947 if (debug) 1948 printf("Removed dup.\n"); 1949 /* Discard the free which is a dup with an alloc. */ 1950 if (blkrec->jb_op == JOP_FREEBLK) 1951 return; 1952 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 1953 free(srec); 1954 break; 1955 } 1956 srec = errmalloc(sizeof(*srec)); 1957 srec->sr_rec = (union jrec *)blkrec; 1958 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 1959 } 1960 1961 static void 1962 ino_build_trunc(struct jtrncrec *rec) 1963 { 1964 struct suj_ino *sino; 1965 1966 if (debug) 1967 printf("ino_build_trunc: op %d ino %ju, size %jd\n", 1968 rec->jt_op, (uintmax_t)rec->jt_ino, 1969 (uintmax_t)rec->jt_size); 1970 if (chkfilesize(IFREG, rec->jt_size) == 0) 1971 err_suj("ino_build: truncation size too large %ju\n", 1972 (intmax_t)rec->jt_size); 1973 sino = ino_lookup(rec->jt_ino, 1); 1974 if (rec->jt_op == JOP_SYNC) { 1975 sino->si_trunc = NULL; 1976 return; 1977 } 1978 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size) 1979 sino->si_trunc = rec; 1980 } 1981 1982 /* 1983 * Build up tables of the operations we need to recover. 1984 */ 1985 static void 1986 suj_build(void) 1987 { 1988 struct suj_seg *seg; 1989 union jrec *rec; 1990 int off; 1991 int i; 1992 1993 TAILQ_FOREACH(seg, &allsegs, ss_next) { 1994 if (debug) 1995 printf("seg %jd has %d records, oldseq %jd.\n", 1996 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 1997 seg->ss_rec.jsr_oldest); 1998 off = 0; 1999 rec = (union jrec *)seg->ss_blk; 2000 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2001 /* skip the segrec. */ 2002 if ((off % real_dev_bsize) == 0) 2003 continue; 2004 switch (rec->rec_jrefrec.jr_op) { 2005 case JOP_ADDREF: 2006 case JOP_REMREF: 2007 case JOP_MVREF: 2008 ino_append(rec); 2009 break; 2010 case JOP_NEWBLK: 2011 case JOP_FREEBLK: 2012 blk_build((struct jblkrec *)rec); 2013 break; 2014 case JOP_TRUNC: 2015 case JOP_SYNC: 2016 ino_build_trunc((struct jtrncrec *)rec); 2017 break; 2018 default: 2019 err_suj("Unknown journal operation %s at %d\n", 2020 JOP_OPTYPE(rec->rec_jrefrec.jr_op), off); 2021 } 2022 i++; 2023 } 2024 } 2025 } 2026 2027 /* 2028 * Prune the journal segments to those we care about based on the 2029 * oldest sequence in the newest segment. Order the segment list 2030 * based on sequence number. 2031 */ 2032 static void 2033 suj_prune(void) 2034 { 2035 struct suj_seg *seg; 2036 struct suj_seg *segn; 2037 uint64_t newseq; 2038 int discard; 2039 2040 if (debug) 2041 printf("Pruning up to %jd\n", oldseq); 2042 /* First free the expired segments. */ 2043 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2044 if (seg->ss_rec.jsr_seq >= oldseq) 2045 continue; 2046 TAILQ_REMOVE(&allsegs, seg, ss_next); 2047 free(seg->ss_blk); 2048 free(seg); 2049 } 2050 /* Next ensure that segments are ordered properly. */ 2051 seg = TAILQ_FIRST(&allsegs); 2052 if (seg == NULL) { 2053 if (debug) 2054 printf("Empty journal\n"); 2055 return; 2056 } 2057 newseq = seg->ss_rec.jsr_seq; 2058 for (;;) { 2059 seg = TAILQ_LAST(&allsegs, seghd); 2060 if (seg->ss_rec.jsr_seq >= newseq) 2061 break; 2062 TAILQ_REMOVE(&allsegs, seg, ss_next); 2063 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2064 newseq = seg->ss_rec.jsr_seq; 2065 2066 } 2067 if (newseq != oldseq) { 2068 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2069 printf("%jd, ", seg->ss_rec.jsr_seq); 2070 } 2071 printf("\n"); 2072 err_suj("Journal file sequence mismatch %jd != %jd\n", 2073 newseq, oldseq); 2074 } 2075 /* 2076 * The kernel may asynchronously write segments which can create 2077 * gaps in the sequence space. Throw away any segments after the 2078 * gap as the kernel guarantees only those that are contiguously 2079 * reachable are marked as completed. 2080 */ 2081 discard = 0; 2082 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2083 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2084 jrecs += seg->ss_rec.jsr_cnt; 2085 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize; 2086 continue; 2087 } 2088 discard = 1; 2089 if (debug) 2090 printf("Journal order mismatch %jd != %jd pruning\n", 2091 newseq-1, seg->ss_rec.jsr_seq); 2092 TAILQ_REMOVE(&allsegs, seg, ss_next); 2093 free(seg->ss_blk); 2094 free(seg); 2095 } 2096 if (debug) 2097 printf("Processing journal segments from %jd to %jd\n", 2098 oldseq, newseq-1); 2099 } 2100 2101 /* 2102 * Verify the journal inode before attempting to read records. 2103 */ 2104 static int 2105 suj_verifyino(union dinode *dp) 2106 { 2107 2108 if (DIP(dp, di_nlink) != 1) { 2109 printf("Invalid link count %d for journal inode %ju\n", 2110 DIP(dp, di_nlink), (uintmax_t)sujino); 2111 return (-1); 2112 } 2113 2114 if ((DIP(dp, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2115 (SF_IMMUTABLE | SF_NOUNLINK)) { 2116 printf("Invalid flags 0x%X for journal inode %ju\n", 2117 DIP(dp, di_flags), (uintmax_t)sujino); 2118 return (-1); 2119 } 2120 2121 if (DIP(dp, di_mode) != (IFREG | IREAD)) { 2122 printf("Invalid mode %o for journal inode %ju\n", 2123 DIP(dp, di_mode), (uintmax_t)sujino); 2124 return (-1); 2125 } 2126 2127 if (DIP(dp, di_size) < SUJ_MIN) { 2128 printf("Invalid size %jd for journal inode %ju\n", 2129 DIP(dp, di_size), (uintmax_t)sujino); 2130 return (-1); 2131 } 2132 2133 if (DIP(dp, di_modrev) != fs->fs_mtime) { 2134 if (!bkgrdcheck || debug) 2135 printf("Journal timestamp does not match " 2136 "fs mount time\n"); 2137 return (-1); 2138 } 2139 2140 return (0); 2141 } 2142 2143 struct jblocks { 2144 struct jextent *jb_extent; /* Extent array. */ 2145 int jb_avail; /* Available extents. */ 2146 int jb_used; /* Last used extent. */ 2147 int jb_head; /* Allocator head. */ 2148 int jb_off; /* Allocator extent offset. */ 2149 }; 2150 struct jextent { 2151 ufs2_daddr_t je_daddr; /* Disk block address. */ 2152 int je_blocks; /* Disk block count. */ 2153 }; 2154 2155 static struct jblocks *suj_jblocks; 2156 2157 static struct jblocks * 2158 jblocks_create(void) 2159 { 2160 struct jblocks *jblocks; 2161 int size; 2162 2163 jblocks = errmalloc(sizeof(*jblocks)); 2164 jblocks->jb_avail = 10; 2165 jblocks->jb_used = 0; 2166 jblocks->jb_head = 0; 2167 jblocks->jb_off = 0; 2168 size = sizeof(struct jextent) * jblocks->jb_avail; 2169 jblocks->jb_extent = errmalloc(size); 2170 bzero(jblocks->jb_extent, size); 2171 2172 return (jblocks); 2173 } 2174 2175 /* 2176 * Return the next available disk block and the amount of contiguous 2177 * free space it contains. 2178 */ 2179 static ufs2_daddr_t 2180 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2181 { 2182 struct jextent *jext; 2183 ufs2_daddr_t daddr; 2184 int freecnt; 2185 int blocks; 2186 2187 blocks = btodb(bytes); 2188 jext = &jblocks->jb_extent[jblocks->jb_head]; 2189 freecnt = jext->je_blocks - jblocks->jb_off; 2190 if (freecnt == 0) { 2191 jblocks->jb_off = 0; 2192 if (++jblocks->jb_head > jblocks->jb_used) 2193 return (0); 2194 jext = &jblocks->jb_extent[jblocks->jb_head]; 2195 freecnt = jext->je_blocks; 2196 } 2197 if (freecnt > blocks) 2198 freecnt = blocks; 2199 *actual = dbtob(freecnt); 2200 daddr = jext->je_daddr + jblocks->jb_off; 2201 2202 return (daddr); 2203 } 2204 2205 /* 2206 * Advance the allocation head by a specified number of bytes, consuming 2207 * one journal segment. 2208 */ 2209 static void 2210 jblocks_advance(struct jblocks *jblocks, int bytes) 2211 { 2212 2213 jblocks->jb_off += btodb(bytes); 2214 } 2215 2216 static void 2217 jblocks_destroy(struct jblocks *jblocks) 2218 { 2219 2220 free(jblocks->jb_extent); 2221 free(jblocks); 2222 } 2223 2224 static void 2225 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2226 { 2227 struct jextent *jext; 2228 int size; 2229 2230 jext = &jblocks->jb_extent[jblocks->jb_used]; 2231 /* Adding the first block. */ 2232 if (jext->je_daddr == 0) { 2233 jext->je_daddr = daddr; 2234 jext->je_blocks = blocks; 2235 return; 2236 } 2237 /* Extending the last extent. */ 2238 if (jext->je_daddr + jext->je_blocks == daddr) { 2239 jext->je_blocks += blocks; 2240 return; 2241 } 2242 /* Adding a new extent. */ 2243 if (++jblocks->jb_used == jblocks->jb_avail) { 2244 jblocks->jb_avail *= 2; 2245 size = sizeof(struct jextent) * jblocks->jb_avail; 2246 jext = errmalloc(size); 2247 bzero(jext, size); 2248 bcopy(jblocks->jb_extent, jext, 2249 sizeof(struct jextent) * jblocks->jb_used); 2250 free(jblocks->jb_extent); 2251 jblocks->jb_extent = jext; 2252 } 2253 jext = &jblocks->jb_extent[jblocks->jb_used]; 2254 jext->je_daddr = daddr; 2255 jext->je_blocks = blocks; 2256 2257 return; 2258 } 2259 2260 /* 2261 * Add a file block from the journal to the extent map. We can't read 2262 * each file block individually because the kernel treats it as a circular 2263 * buffer and segments may span multiple contiguous blocks. 2264 */ 2265 static void 2266 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2267 { 2268 2269 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2270 } 2271 2272 static void 2273 suj_read(void) 2274 { 2275 uint8_t block[1 * 1024 * 1024] __aligned(LIBUFS_BUFALIGN); 2276 struct suj_seg *seg; 2277 struct jsegrec *recn; 2278 struct jsegrec *rec; 2279 ufs2_daddr_t blk; 2280 int readsize; 2281 int blocks; 2282 int recsize; 2283 int size; 2284 int i; 2285 2286 /* 2287 * Read records until we exhaust the journal space. If we find 2288 * an invalid record we start searching for a valid segment header 2289 * at the next block. This is because we don't have a head/tail 2290 * pointer and must recover the information indirectly. At the gap 2291 * between the head and tail we won't necessarily have a valid 2292 * segment. 2293 */ 2294 restart: 2295 for (;;) { 2296 size = sizeof(block); 2297 blk = jblocks_next(suj_jblocks, size, &readsize); 2298 if (blk == 0) 2299 return; 2300 size = readsize; 2301 /* 2302 * Read 1MB at a time and scan for records within this block. 2303 */ 2304 if (pread(fsreadfd, &block, size, dbtob(blk)) != size) { 2305 err_suj("Error reading journal block %jd\n", 2306 (intmax_t)blk); 2307 } 2308 for (rec = (void *)block; size; size -= recsize, 2309 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2310 recsize = real_dev_bsize; 2311 if (rec->jsr_time != fs->fs_mtime) { 2312 #ifdef notdef 2313 if (debug) 2314 printf("Rec time %jd != fs mtime %jd\n", 2315 rec->jsr_time, fs->fs_mtime); 2316 #endif 2317 jblocks_advance(suj_jblocks, recsize); 2318 continue; 2319 } 2320 if (rec->jsr_cnt == 0) { 2321 if (debug) 2322 printf("Found illegal count %d\n", 2323 rec->jsr_cnt); 2324 jblocks_advance(suj_jblocks, recsize); 2325 continue; 2326 } 2327 blocks = rec->jsr_blocks; 2328 recsize = blocks * real_dev_bsize; 2329 if (recsize > size) { 2330 /* 2331 * We may just have run out of buffer, restart 2332 * the loop to re-read from this spot. 2333 */ 2334 if (size < fs->fs_bsize && 2335 size != readsize && 2336 recsize <= fs->fs_bsize) 2337 goto restart; 2338 if (debug) 2339 printf("Found invalid segsize " 2340 "%d > %d\n", recsize, size); 2341 recsize = real_dev_bsize; 2342 jblocks_advance(suj_jblocks, recsize); 2343 continue; 2344 } 2345 /* 2346 * Verify that all blocks in the segment are present. 2347 */ 2348 for (i = 1; i < blocks; i++) { 2349 recn = (void *)((uintptr_t)rec) + i * 2350 real_dev_bsize; 2351 if (recn->jsr_seq == rec->jsr_seq && 2352 recn->jsr_time == rec->jsr_time) 2353 continue; 2354 if (debug) 2355 printf("Incomplete record %jd (%d)\n", 2356 rec->jsr_seq, i); 2357 recsize = i * real_dev_bsize; 2358 jblocks_advance(suj_jblocks, recsize); 2359 goto restart; 2360 } 2361 seg = errmalloc(sizeof(*seg)); 2362 seg->ss_blk = errmalloc(recsize); 2363 seg->ss_rec = *rec; 2364 bcopy((void *)rec, seg->ss_blk, recsize); 2365 if (rec->jsr_oldest > oldseq) 2366 oldseq = rec->jsr_oldest; 2367 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2368 jblocks_advance(suj_jblocks, recsize); 2369 } 2370 } 2371 } 2372 2373 /* 2374 * Orchestrate the verification of a filesystem via the softupdates journal. 2375 */ 2376 int 2377 suj_check(const char *filesys) 2378 { 2379 struct inodesc idesc; 2380 struct csum *cgsum; 2381 union dinode *dp, *jip; 2382 struct inode ip; 2383 uint64_t blocks; 2384 int i, retval; 2385 struct suj_seg *seg; 2386 struct suj_seg *segn; 2387 2388 initsuj(); 2389 fs = &sblock; 2390 if (real_dev_bsize == 0 && ioctl(fsreadfd, DIOCGSECTORSIZE, 2391 &real_dev_bsize) == -1) 2392 real_dev_bsize = secsize; 2393 if (debug) 2394 printf("dev_bsize %u\n", real_dev_bsize); 2395 2396 /* 2397 * Set an exit point when SUJ check failed 2398 */ 2399 retval = setjmp(jmpbuf); 2400 if (retval != 0) { 2401 pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); 2402 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2403 TAILQ_REMOVE(&allsegs, seg, ss_next); 2404 free(seg->ss_blk); 2405 free(seg); 2406 } 2407 if (reply("FALLBACK TO FULL FSCK") == 0) { 2408 ckfini(0); 2409 exit(EEXIT); 2410 } else 2411 return (-1); 2412 } 2413 2414 /* 2415 * Search the root directory for the SUJ_FILE. 2416 */ 2417 idesc.id_type = DATA; 2418 idesc.id_fix = IGNORE; 2419 idesc.id_number = UFS_ROOTINO; 2420 idesc.id_func = findino; 2421 idesc.id_name = SUJ_FILE; 2422 ginode(UFS_ROOTINO, &ip); 2423 dp = ip.i_dp; 2424 if ((DIP(dp, di_mode) & IFMT) != IFDIR) { 2425 irelse(&ip); 2426 err_suj("root inode is not a directory\n"); 2427 } 2428 if (DIP(dp, di_size) < 0 || DIP(dp, di_size) > MAXDIRSIZE) { 2429 irelse(&ip); 2430 err_suj("negative or oversized root directory %jd\n", 2431 (uintmax_t)DIP(dp, di_size)); 2432 } 2433 if ((ckinode(dp, &idesc) & FOUND) == FOUND) { 2434 sujino = idesc.id_parent; 2435 irelse(&ip); 2436 } else { 2437 if (!bkgrdcheck || debug) 2438 printf("Journal inode removed. " 2439 "Use tunefs to re-create.\n"); 2440 sblock.fs_flags &= ~FS_SUJ; 2441 sblock.fs_sujfree = 0; 2442 irelse(&ip); 2443 return (-1); 2444 } 2445 /* 2446 * Fetch the journal inode and verify it. 2447 */ 2448 ginode(sujino, &ip); 2449 jip = ip.i_dp; 2450 if (!bkgrdcheck || debug) 2451 printf("** SU+J Recovering %s\n", filesys); 2452 if (suj_verifyino(jip) != 0 || (!preen && !reply("USE JOURNAL"))) { 2453 irelse(&ip); 2454 return (-1); 2455 } 2456 /* 2457 * Build a list of journal blocks in jblocks before parsing the 2458 * available journal blocks in with suj_read(). 2459 */ 2460 if (!bkgrdcheck || debug) 2461 printf("** Reading %jd byte journal from inode %ju.\n", 2462 DIP(jip, di_size), (uintmax_t)sujino); 2463 suj_jblocks = jblocks_create(); 2464 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2465 if (blocks != numfrags(fs, DIP(jip, di_size))) { 2466 if (!bkgrdcheck || debug) 2467 printf("Sparse journal inode %ju.\n", 2468 (uintmax_t)sujino); 2469 irelse(&ip); 2470 return (-1); 2471 } 2472 /* If journal is valid then do journal check rather than background */ 2473 if (bkgrdcheck) { 2474 irelse(&ip); 2475 return (0); 2476 } 2477 irelse(&ip); 2478 suj_read(); 2479 jblocks_destroy(suj_jblocks); 2480 suj_jblocks = NULL; 2481 if (preen || reply("RECOVER")) { 2482 printf("** Building recovery table.\n"); 2483 suj_prune(); 2484 suj_build(); 2485 cg_apply(cg_build); 2486 printf("** Resolving unreferenced inode list.\n"); 2487 ino_unlinked(); 2488 printf("** Processing journal entries.\n"); 2489 cg_apply(cg_trunc); 2490 cg_apply(cg_check_blk); 2491 cg_apply(cg_adj_blk); 2492 cg_apply(cg_check_ino); 2493 } 2494 if (preen == 0 && (jrecs > 0 || jbytes > 0) && 2495 reply("WRITE CHANGES") == 0) 2496 return (0); 2497 /* 2498 * Check block counts of snapshot inodes and 2499 * make copies of any needed snapshot blocks. 2500 */ 2501 for (i = 0; i < snapcnt; i++) 2502 check_blkcnt(&snaplist[i]); 2503 snapflush(suj_checkblkavail); 2504 /* 2505 * Recompute the fs summary info from correct cs summaries. 2506 */ 2507 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 2508 for (i = 0; i < fs->fs_ncg; i++) { 2509 cgsum = &fs->fs_cs(fs, i); 2510 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 2511 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 2512 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 2513 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 2514 } 2515 fs->fs_pendinginodes = 0; 2516 fs->fs_pendingblocks = 0; 2517 fs->fs_clean = 1; 2518 fs->fs_time = time(NULL); 2519 fs->fs_mtime = time(NULL); 2520 sbdirty(); 2521 ckfini(1); 2522 if (jrecs > 0 || jbytes > 0) { 2523 printf("** %jd journal records in %jd bytes for %.2f%% " 2524 "utilization\n", jrecs, jbytes, 2525 ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2526 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd " 2527 "frags.\n", freeinos, freedir, freeblocks, freefrags); 2528 } 2529 2530 return (0); 2531 } 2532 2533 static void 2534 initsuj(void) 2535 { 2536 int i; 2537 2538 for (i = 0; i < HASHSIZE; i++) 2539 LIST_INIT(&cghash[i]); 2540 lastcg = NULL; 2541 TAILQ_INIT(&allsegs); 2542 oldseq = 0; 2543 fs = NULL; 2544 sujino = 0; 2545 freefrags = 0; 2546 freeblocks = 0; 2547 freeinos = 0; 2548 freedir = 0; 2549 jbytes = 0; 2550 jrecs = 0; 2551 suj_jblocks = NULL; 2552 } 2553