xref: /freebsd/libexec/rtld-elf/rtld.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_remove(Objlist *, Obj_Entry *);
120 static void *path_enumerate(const char *, path_enum_proc, void *);
121 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
122     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
123 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
124     int flags, RtldLockState *lockstate);
125 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
126     RtldLockState *);
127 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
128     int flags, RtldLockState *lockstate);
129 static int rtld_dirname(const char *, char *);
130 static int rtld_dirname_abs(const char *, char *);
131 static void *rtld_dlopen(const char *name, int fd, int mode);
132 static void rtld_exit(void);
133 static char *search_library_path(const char *, const char *);
134 static const void **get_program_var_addr(const char *, RtldLockState *);
135 static void set_program_var(const char *, const void *);
136 static int symlook_default(SymLook *, const Obj_Entry *refobj);
137 static int symlook_global(SymLook *, DoneList *);
138 static void symlook_init_from_req(SymLook *, const SymLook *);
139 static int symlook_list(SymLook *, const Objlist *, DoneList *);
140 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
141 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
142 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
143 static void trace_loaded_objects(Obj_Entry *);
144 static void unlink_object(Obj_Entry *);
145 static void unload_object(Obj_Entry *);
146 static void unref_dag(Obj_Entry *);
147 static void ref_dag(Obj_Entry *);
148 static int origin_subst_one(char **, const char *, const char *,
149   const char *, char *);
150 static char *origin_subst(const char *, const char *);
151 static void preinit_main(void);
152 static int  rtld_verify_versions(const Objlist *);
153 static int  rtld_verify_object_versions(Obj_Entry *);
154 static void object_add_name(Obj_Entry *, const char *);
155 static int  object_match_name(const Obj_Entry *, const char *);
156 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158     struct dl_phdr_info *phdr_info);
159 static uint32_t gnu_hash(const char *);
160 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161     const unsigned long);
162 
163 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164 
165 /*
166  * Data declarations.
167  */
168 static char *error_message;	/* Message for dlerror(), or NULL */
169 struct r_debug r_debug;		/* for GDB; */
170 static bool libmap_disable;	/* Disable libmap */
171 static bool ld_loadfltr;	/* Immediate filters processing */
172 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173 static bool trust;		/* False for setuid and setgid programs */
174 static bool dangerous_ld_env;	/* True if environment variables have been
175 				   used to affect the libraries loaded */
176 static char *ld_bind_now;	/* Environment variable for immediate binding */
177 static char *ld_debug;		/* Environment variable for debugging */
178 static char *ld_library_path;	/* Environment variable for search path */
179 static char *ld_preload;	/* Environment variable for libraries to
180 				   load first */
181 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182 static char *ld_tracing;	/* Called from ldd to print libs */
183 static char *ld_utrace;		/* Use utrace() to log events. */
184 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
185 static Obj_Entry **obj_tail;	/* Link field of last object in list */
186 static Obj_Entry *obj_main;	/* The main program shared object */
187 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
188 static unsigned int obj_count;	/* Number of objects in obj_list */
189 static unsigned int obj_loads;	/* Number of objects in obj_list */
190 
191 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
192   STAILQ_HEAD_INITIALIZER(list_global);
193 static Objlist list_main =	/* Objects loaded at program startup */
194   STAILQ_HEAD_INITIALIZER(list_main);
195 static Objlist list_fini =	/* Objects needing fini() calls */
196   STAILQ_HEAD_INITIALIZER(list_fini);
197 
198 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
199 
200 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
201 
202 extern Elf_Dyn _DYNAMIC;
203 #pragma weak _DYNAMIC
204 #ifndef RTLD_IS_DYNAMIC
205 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
206 #endif
207 
208 int osreldate, pagesize;
209 
210 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
211 
212 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
213 static int max_stack_flags;
214 
215 /*
216  * Global declarations normally provided by crt1.  The dynamic linker is
217  * not built with crt1, so we have to provide them ourselves.
218  */
219 char *__progname;
220 char **environ;
221 
222 /*
223  * Used to pass argc, argv to init functions.
224  */
225 int main_argc;
226 char **main_argv;
227 
228 /*
229  * Globals to control TLS allocation.
230  */
231 size_t tls_last_offset;		/* Static TLS offset of last module */
232 size_t tls_last_size;		/* Static TLS size of last module */
233 size_t tls_static_space;	/* Static TLS space allocated */
234 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
235 int tls_max_index = 1;		/* Largest module index allocated */
236 
237 bool ld_library_path_rpath = false;
238 
239 /*
240  * Fill in a DoneList with an allocation large enough to hold all of
241  * the currently-loaded objects.  Keep this as a macro since it calls
242  * alloca and we want that to occur within the scope of the caller.
243  */
244 #define donelist_init(dlp)					\
245     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
246     assert((dlp)->objs != NULL),				\
247     (dlp)->num_alloc = obj_count,				\
248     (dlp)->num_used = 0)
249 
250 #define	UTRACE_DLOPEN_START		1
251 #define	UTRACE_DLOPEN_STOP		2
252 #define	UTRACE_DLCLOSE_START		3
253 #define	UTRACE_DLCLOSE_STOP		4
254 #define	UTRACE_LOAD_OBJECT		5
255 #define	UTRACE_UNLOAD_OBJECT		6
256 #define	UTRACE_ADD_RUNDEP		7
257 #define	UTRACE_PRELOAD_FINISHED		8
258 #define	UTRACE_INIT_CALL		9
259 #define	UTRACE_FINI_CALL		10
260 
261 struct utrace_rtld {
262 	char sig[4];			/* 'RTLD' */
263 	int event;
264 	void *handle;
265 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
266 	size_t mapsize;
267 	int refcnt;			/* Used for 'mode' */
268 	char name[MAXPATHLEN];
269 };
270 
271 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
272 	if (ld_utrace != NULL)					\
273 		ld_utrace_log(e, h, mb, ms, r, n);		\
274 } while (0)
275 
276 static void
277 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
278     int refcnt, const char *name)
279 {
280 	struct utrace_rtld ut;
281 
282 	ut.sig[0] = 'R';
283 	ut.sig[1] = 'T';
284 	ut.sig[2] = 'L';
285 	ut.sig[3] = 'D';
286 	ut.event = event;
287 	ut.handle = handle;
288 	ut.mapbase = mapbase;
289 	ut.mapsize = mapsize;
290 	ut.refcnt = refcnt;
291 	bzero(ut.name, sizeof(ut.name));
292 	if (name)
293 		strlcpy(ut.name, name, sizeof(ut.name));
294 	utrace(&ut, sizeof(ut));
295 }
296 
297 /*
298  * Main entry point for dynamic linking.  The first argument is the
299  * stack pointer.  The stack is expected to be laid out as described
300  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
301  * Specifically, the stack pointer points to a word containing
302  * ARGC.  Following that in the stack is a null-terminated sequence
303  * of pointers to argument strings.  Then comes a null-terminated
304  * sequence of pointers to environment strings.  Finally, there is a
305  * sequence of "auxiliary vector" entries.
306  *
307  * The second argument points to a place to store the dynamic linker's
308  * exit procedure pointer and the third to a place to store the main
309  * program's object.
310  *
311  * The return value is the main program's entry point.
312  */
313 func_ptr_type
314 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
315 {
316     Elf_Auxinfo *aux_info[AT_COUNT];
317     int i;
318     int argc;
319     char **argv;
320     char **env;
321     Elf_Auxinfo *aux;
322     Elf_Auxinfo *auxp;
323     const char *argv0;
324     Objlist_Entry *entry;
325     Obj_Entry *obj;
326     Obj_Entry **preload_tail;
327     Objlist initlist;
328     RtldLockState lockstate;
329     char *library_path_rpath;
330     int mib[2];
331     size_t len;
332 
333     /*
334      * On entry, the dynamic linker itself has not been relocated yet.
335      * Be very careful not to reference any global data until after
336      * init_rtld has returned.  It is OK to reference file-scope statics
337      * and string constants, and to call static and global functions.
338      */
339 
340     /* Find the auxiliary vector on the stack. */
341     argc = *sp++;
342     argv = (char **) sp;
343     sp += argc + 1;	/* Skip over arguments and NULL terminator */
344     env = (char **) sp;
345     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
346 	;
347     aux = (Elf_Auxinfo *) sp;
348 
349     /* Digest the auxiliary vector. */
350     for (i = 0;  i < AT_COUNT;  i++)
351 	aux_info[i] = NULL;
352     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
353 	if (auxp->a_type < AT_COUNT)
354 	    aux_info[auxp->a_type] = auxp;
355     }
356 
357     /* Initialize and relocate ourselves. */
358     assert(aux_info[AT_BASE] != NULL);
359     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
360 
361     __progname = obj_rtld.path;
362     argv0 = argv[0] != NULL ? argv[0] : "(null)";
363     environ = env;
364     main_argc = argc;
365     main_argv = argv;
366 
367     if (aux_info[AT_CANARY] != NULL &&
368 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
369 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
370 	    if (i > sizeof(__stack_chk_guard))
371 		    i = sizeof(__stack_chk_guard);
372 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
373     } else {
374 	mib[0] = CTL_KERN;
375 	mib[1] = KERN_ARND;
376 
377 	len = sizeof(__stack_chk_guard);
378 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
379 	    len != sizeof(__stack_chk_guard)) {
380 		/* If sysctl was unsuccessful, use the "terminator canary". */
381 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
382 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
383 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
384 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
385 	}
386     }
387 
388     trust = !issetugid();
389 
390     ld_bind_now = getenv(LD_ "BIND_NOW");
391     /*
392      * If the process is tainted, then we un-set the dangerous environment
393      * variables.  The process will be marked as tainted until setuid(2)
394      * is called.  If any child process calls setuid(2) we do not want any
395      * future processes to honor the potentially un-safe variables.
396      */
397     if (!trust) {
398         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
399 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
400 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
401 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
402 		_rtld_error("environment corrupt; aborting");
403 		die();
404 	}
405     }
406     ld_debug = getenv(LD_ "DEBUG");
407     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
408     libmap_override = getenv(LD_ "LIBMAP");
409     ld_library_path = getenv(LD_ "LIBRARY_PATH");
410     ld_preload = getenv(LD_ "PRELOAD");
411     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
412     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
413     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
414     if (library_path_rpath != NULL) {
415 	    if (library_path_rpath[0] == 'y' ||
416 		library_path_rpath[0] == 'Y' ||
417 		library_path_rpath[0] == '1')
418 		    ld_library_path_rpath = true;
419 	    else
420 		    ld_library_path_rpath = false;
421     }
422     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
423 	(ld_library_path != NULL) || (ld_preload != NULL) ||
424 	(ld_elf_hints_path != NULL) || ld_loadfltr;
425     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
426     ld_utrace = getenv(LD_ "UTRACE");
427 
428     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
429 	ld_elf_hints_path = _PATH_ELF_HINTS;
430 
431     if (ld_debug != NULL && *ld_debug != '\0')
432 	debug = 1;
433     dbg("%s is initialized, base address = %p", __progname,
434 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
435     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
436     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
437 
438     dbg("initializing thread locks");
439     lockdflt_init();
440 
441     /*
442      * Load the main program, or process its program header if it is
443      * already loaded.
444      */
445     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
446 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
447 	dbg("loading main program");
448 	obj_main = map_object(fd, argv0, NULL);
449 	close(fd);
450 	if (obj_main == NULL)
451 	    die();
452 	max_stack_flags = obj->stack_flags;
453     } else {				/* Main program already loaded. */
454 	const Elf_Phdr *phdr;
455 	int phnum;
456 	caddr_t entry;
457 
458 	dbg("processing main program's program header");
459 	assert(aux_info[AT_PHDR] != NULL);
460 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
461 	assert(aux_info[AT_PHNUM] != NULL);
462 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
463 	assert(aux_info[AT_PHENT] != NULL);
464 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
465 	assert(aux_info[AT_ENTRY] != NULL);
466 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
467 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
468 	    die();
469     }
470 
471     if (aux_info[AT_EXECPATH] != 0) {
472 	    char *kexecpath;
473 	    char buf[MAXPATHLEN];
474 
475 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
476 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
477 	    if (kexecpath[0] == '/')
478 		    obj_main->path = kexecpath;
479 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
480 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
481 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
482 		    obj_main->path = xstrdup(argv0);
483 	    else
484 		    obj_main->path = xstrdup(buf);
485     } else {
486 	    dbg("No AT_EXECPATH");
487 	    obj_main->path = xstrdup(argv0);
488     }
489     dbg("obj_main path %s", obj_main->path);
490     obj_main->mainprog = true;
491 
492     if (aux_info[AT_STACKPROT] != NULL &&
493       aux_info[AT_STACKPROT]->a_un.a_val != 0)
494 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
495 
496     /*
497      * Get the actual dynamic linker pathname from the executable if
498      * possible.  (It should always be possible.)  That ensures that
499      * gdb will find the right dynamic linker even if a non-standard
500      * one is being used.
501      */
502     if (obj_main->interp != NULL &&
503       strcmp(obj_main->interp, obj_rtld.path) != 0) {
504 	free(obj_rtld.path);
505 	obj_rtld.path = xstrdup(obj_main->interp);
506         __progname = obj_rtld.path;
507     }
508 
509     digest_dynamic(obj_main, 0);
510     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
511 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
512 	obj_main->dynsymcount);
513 
514     linkmap_add(obj_main);
515     linkmap_add(&obj_rtld);
516 
517     /* Link the main program into the list of objects. */
518     *obj_tail = obj_main;
519     obj_tail = &obj_main->next;
520     obj_count++;
521     obj_loads++;
522 
523     /* Initialize a fake symbol for resolving undefined weak references. */
524     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
525     sym_zero.st_shndx = SHN_UNDEF;
526     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
527 
528     if (!libmap_disable)
529         libmap_disable = (bool)lm_init(libmap_override);
530 
531     dbg("loading LD_PRELOAD libraries");
532     if (load_preload_objects() == -1)
533 	die();
534     preload_tail = obj_tail;
535 
536     dbg("loading needed objects");
537     if (load_needed_objects(obj_main, 0) == -1)
538 	die();
539 
540     /* Make a list of all objects loaded at startup. */
541     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
542 	objlist_push_tail(&list_main, obj);
543     	obj->refcount++;
544     }
545 
546     dbg("checking for required versions");
547     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
548 	die();
549 
550     if (ld_tracing) {		/* We're done */
551 	trace_loaded_objects(obj_main);
552 	exit(0);
553     }
554 
555     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
556        dump_relocations(obj_main);
557        exit (0);
558     }
559 
560     /*
561      * Processing tls relocations requires having the tls offsets
562      * initialized.  Prepare offsets before starting initial
563      * relocation processing.
564      */
565     dbg("initializing initial thread local storage offsets");
566     STAILQ_FOREACH(entry, &list_main, link) {
567 	/*
568 	 * Allocate all the initial objects out of the static TLS
569 	 * block even if they didn't ask for it.
570 	 */
571 	allocate_tls_offset(entry->obj);
572     }
573 
574     if (relocate_objects(obj_main,
575       ld_bind_now != NULL && *ld_bind_now != '\0',
576       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
577 	die();
578 
579     dbg("doing copy relocations");
580     if (do_copy_relocations(obj_main) == -1)
581 	die();
582 
583     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
584        dump_relocations(obj_main);
585        exit (0);
586     }
587 
588     /*
589      * Setup TLS for main thread.  This must be done after the
590      * relocations are processed, since tls initialization section
591      * might be the subject for relocations.
592      */
593     dbg("initializing initial thread local storage");
594     allocate_initial_tls(obj_list);
595 
596     dbg("initializing key program variables");
597     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
598     set_program_var("environ", env);
599     set_program_var("__elf_aux_vector", aux);
600 
601     /* Make a list of init functions to call. */
602     objlist_init(&initlist);
603     initlist_add_objects(obj_list, preload_tail, &initlist);
604 
605     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
606 
607     map_stacks_exec(NULL);
608 
609     dbg("resolving ifuncs");
610     if (resolve_objects_ifunc(obj_main,
611       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
612       NULL) == -1)
613 	die();
614 
615     if (!obj_main->crt_no_init) {
616 	/*
617 	 * Make sure we don't call the main program's init and fini
618 	 * functions for binaries linked with old crt1 which calls
619 	 * _init itself.
620 	 */
621 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
622 	obj_main->preinit_array = obj_main->init_array =
623 	    obj_main->fini_array = (Elf_Addr)NULL;
624     }
625 
626     wlock_acquire(rtld_bind_lock, &lockstate);
627     if (obj_main->crt_no_init)
628 	preinit_main();
629     objlist_call_init(&initlist, &lockstate);
630     objlist_clear(&initlist);
631     dbg("loading filtees");
632     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
633 	if (ld_loadfltr || obj->z_loadfltr)
634 	    load_filtees(obj, 0, &lockstate);
635     }
636     lock_release(rtld_bind_lock, &lockstate);
637 
638     dbg("transferring control to program entry point = %p", obj_main->entry);
639 
640     /* Return the exit procedure and the program entry point. */
641     *exit_proc = rtld_exit;
642     *objp = obj_main;
643     return (func_ptr_type) obj_main->entry;
644 }
645 
646 void *
647 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
648 {
649 	void *ptr;
650 	Elf_Addr target;
651 
652 	ptr = (void *)make_function_pointer(def, obj);
653 	target = ((Elf_Addr (*)(void))ptr)();
654 	return ((void *)target);
655 }
656 
657 Elf_Addr
658 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
659 {
660     const Elf_Rel *rel;
661     const Elf_Sym *def;
662     const Obj_Entry *defobj;
663     Elf_Addr *where;
664     Elf_Addr target;
665     RtldLockState lockstate;
666 
667     rlock_acquire(rtld_bind_lock, &lockstate);
668     if (sigsetjmp(lockstate.env, 0) != 0)
669 	    lock_upgrade(rtld_bind_lock, &lockstate);
670     if (obj->pltrel)
671 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
672     else
673 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
674 
675     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
676     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
677 	&lockstate);
678     if (def == NULL)
679 	die();
680     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
681 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
682     else
683 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
684 
685     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
686       defobj->strtab + def->st_name, basename(obj->path),
687       (void *)target, basename(defobj->path));
688 
689     /*
690      * Write the new contents for the jmpslot. Note that depending on
691      * architecture, the value which we need to return back to the
692      * lazy binding trampoline may or may not be the target
693      * address. The value returned from reloc_jmpslot() is the value
694      * that the trampoline needs.
695      */
696     target = reloc_jmpslot(where, target, defobj, obj, rel);
697     lock_release(rtld_bind_lock, &lockstate);
698     return target;
699 }
700 
701 /*
702  * Error reporting function.  Use it like printf.  If formats the message
703  * into a buffer, and sets things up so that the next call to dlerror()
704  * will return the message.
705  */
706 void
707 _rtld_error(const char *fmt, ...)
708 {
709     static char buf[512];
710     va_list ap;
711 
712     va_start(ap, fmt);
713     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
714     error_message = buf;
715     va_end(ap);
716 }
717 
718 /*
719  * Return a dynamically-allocated copy of the current error message, if any.
720  */
721 static char *
722 errmsg_save(void)
723 {
724     return error_message == NULL ? NULL : xstrdup(error_message);
725 }
726 
727 /*
728  * Restore the current error message from a copy which was previously saved
729  * by errmsg_save().  The copy is freed.
730  */
731 static void
732 errmsg_restore(char *saved_msg)
733 {
734     if (saved_msg == NULL)
735 	error_message = NULL;
736     else {
737 	_rtld_error("%s", saved_msg);
738 	free(saved_msg);
739     }
740 }
741 
742 static const char *
743 basename(const char *name)
744 {
745     const char *p = strrchr(name, '/');
746     return p != NULL ? p + 1 : name;
747 }
748 
749 static struct utsname uts;
750 
751 static int
752 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
753     char *may_free)
754 {
755     const char *p, *p1;
756     char *res1;
757     int subst_len;
758     int kw_len;
759 
760     res1 = *res = NULL;
761     p = real;
762     subst_len = kw_len = 0;
763     for (;;) {
764 	 p1 = strstr(p, kw);
765 	 if (p1 != NULL) {
766 	     if (subst_len == 0) {
767 		 subst_len = strlen(subst);
768 		 kw_len = strlen(kw);
769 	     }
770 	     if (*res == NULL) {
771 		 *res = xmalloc(PATH_MAX);
772 		 res1 = *res;
773 	     }
774 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
775 		 _rtld_error("Substitution of %s in %s cannot be performed",
776 		     kw, real);
777 		 if (may_free != NULL)
778 		     free(may_free);
779 		 free(res);
780 		 return (false);
781 	     }
782 	     memcpy(res1, p, p1 - p);
783 	     res1 += p1 - p;
784 	     memcpy(res1, subst, subst_len);
785 	     res1 += subst_len;
786 	     p = p1 + kw_len;
787 	 } else {
788 	    if (*res == NULL) {
789 		if (may_free != NULL)
790 		    *res = may_free;
791 		else
792 		    *res = xstrdup(real);
793 		return (true);
794 	    }
795 	    *res1 = '\0';
796 	    if (may_free != NULL)
797 		free(may_free);
798 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
799 		free(res);
800 		return (false);
801 	    }
802 	    return (true);
803 	 }
804     }
805 }
806 
807 static char *
808 origin_subst(const char *real, const char *origin_path)
809 {
810     char *res1, *res2, *res3, *res4;
811 
812     if (uts.sysname[0] == '\0') {
813 	if (uname(&uts) != 0) {
814 	    _rtld_error("utsname failed: %d", errno);
815 	    return (NULL);
816 	}
817     }
818     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
819 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
820 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
821 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
822 	    return (NULL);
823     return (res4);
824 }
825 
826 static void
827 die(void)
828 {
829     const char *msg = dlerror();
830 
831     if (msg == NULL)
832 	msg = "Fatal error";
833     rtld_fdputstr(STDERR_FILENO, msg);
834     rtld_fdputchar(STDERR_FILENO, '\n');
835     _exit(1);
836 }
837 
838 /*
839  * Process a shared object's DYNAMIC section, and save the important
840  * information in its Obj_Entry structure.
841  */
842 static void
843 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
844     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
845 {
846     const Elf_Dyn *dynp;
847     Needed_Entry **needed_tail = &obj->needed;
848     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
849     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
850     const Elf_Hashelt *hashtab;
851     const Elf32_Word *hashval;
852     Elf32_Word bkt, nmaskwords;
853     int bloom_size32;
854     bool nmw_power2;
855     int plttype = DT_REL;
856 
857     *dyn_rpath = NULL;
858     *dyn_soname = NULL;
859     *dyn_runpath = NULL;
860 
861     obj->bind_now = false;
862     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
863 	switch (dynp->d_tag) {
864 
865 	case DT_REL:
866 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
867 	    break;
868 
869 	case DT_RELSZ:
870 	    obj->relsize = dynp->d_un.d_val;
871 	    break;
872 
873 	case DT_RELENT:
874 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
875 	    break;
876 
877 	case DT_JMPREL:
878 	    obj->pltrel = (const Elf_Rel *)
879 	      (obj->relocbase + dynp->d_un.d_ptr);
880 	    break;
881 
882 	case DT_PLTRELSZ:
883 	    obj->pltrelsize = dynp->d_un.d_val;
884 	    break;
885 
886 	case DT_RELA:
887 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
888 	    break;
889 
890 	case DT_RELASZ:
891 	    obj->relasize = dynp->d_un.d_val;
892 	    break;
893 
894 	case DT_RELAENT:
895 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
896 	    break;
897 
898 	case DT_PLTREL:
899 	    plttype = dynp->d_un.d_val;
900 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
901 	    break;
902 
903 	case DT_SYMTAB:
904 	    obj->symtab = (const Elf_Sym *)
905 	      (obj->relocbase + dynp->d_un.d_ptr);
906 	    break;
907 
908 	case DT_SYMENT:
909 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
910 	    break;
911 
912 	case DT_STRTAB:
913 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
914 	    break;
915 
916 	case DT_STRSZ:
917 	    obj->strsize = dynp->d_un.d_val;
918 	    break;
919 
920 	case DT_VERNEED:
921 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
922 		dynp->d_un.d_val);
923 	    break;
924 
925 	case DT_VERNEEDNUM:
926 	    obj->verneednum = dynp->d_un.d_val;
927 	    break;
928 
929 	case DT_VERDEF:
930 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
931 		dynp->d_un.d_val);
932 	    break;
933 
934 	case DT_VERDEFNUM:
935 	    obj->verdefnum = dynp->d_un.d_val;
936 	    break;
937 
938 	case DT_VERSYM:
939 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
940 		dynp->d_un.d_val);
941 	    break;
942 
943 	case DT_HASH:
944 	    {
945 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
946 		    dynp->d_un.d_ptr);
947 		obj->nbuckets = hashtab[0];
948 		obj->nchains = hashtab[1];
949 		obj->buckets = hashtab + 2;
950 		obj->chains = obj->buckets + obj->nbuckets;
951 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
952 		  obj->buckets != NULL;
953 	    }
954 	    break;
955 
956 	case DT_GNU_HASH:
957 	    {
958 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
959 		    dynp->d_un.d_ptr);
960 		obj->nbuckets_gnu = hashtab[0];
961 		obj->symndx_gnu = hashtab[1];
962 		nmaskwords = hashtab[2];
963 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
964 		/* Number of bitmask words is required to be power of 2 */
965 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
966 		obj->maskwords_bm_gnu = nmaskwords - 1;
967 		obj->shift2_gnu = hashtab[3];
968 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
969 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
970 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
971 		  obj->symndx_gnu;
972 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
973 		  obj->buckets_gnu != NULL;
974 	    }
975 	    break;
976 
977 	case DT_NEEDED:
978 	    if (!obj->rtld) {
979 		Needed_Entry *nep = NEW(Needed_Entry);
980 		nep->name = dynp->d_un.d_val;
981 		nep->obj = NULL;
982 		nep->next = NULL;
983 
984 		*needed_tail = nep;
985 		needed_tail = &nep->next;
986 	    }
987 	    break;
988 
989 	case DT_FILTER:
990 	    if (!obj->rtld) {
991 		Needed_Entry *nep = NEW(Needed_Entry);
992 		nep->name = dynp->d_un.d_val;
993 		nep->obj = NULL;
994 		nep->next = NULL;
995 
996 		*needed_filtees_tail = nep;
997 		needed_filtees_tail = &nep->next;
998 	    }
999 	    break;
1000 
1001 	case DT_AUXILIARY:
1002 	    if (!obj->rtld) {
1003 		Needed_Entry *nep = NEW(Needed_Entry);
1004 		nep->name = dynp->d_un.d_val;
1005 		nep->obj = NULL;
1006 		nep->next = NULL;
1007 
1008 		*needed_aux_filtees_tail = nep;
1009 		needed_aux_filtees_tail = &nep->next;
1010 	    }
1011 	    break;
1012 
1013 	case DT_PLTGOT:
1014 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1015 	    break;
1016 
1017 	case DT_TEXTREL:
1018 	    obj->textrel = true;
1019 	    break;
1020 
1021 	case DT_SYMBOLIC:
1022 	    obj->symbolic = true;
1023 	    break;
1024 
1025 	case DT_RPATH:
1026 	    /*
1027 	     * We have to wait until later to process this, because we
1028 	     * might not have gotten the address of the string table yet.
1029 	     */
1030 	    *dyn_rpath = dynp;
1031 	    break;
1032 
1033 	case DT_SONAME:
1034 	    *dyn_soname = dynp;
1035 	    break;
1036 
1037 	case DT_RUNPATH:
1038 	    *dyn_runpath = dynp;
1039 	    break;
1040 
1041 	case DT_INIT:
1042 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1043 	    break;
1044 
1045 	case DT_PREINIT_ARRAY:
1046 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1047 	    break;
1048 
1049 	case DT_PREINIT_ARRAYSZ:
1050 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1051 	    break;
1052 
1053 	case DT_INIT_ARRAY:
1054 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1055 	    break;
1056 
1057 	case DT_INIT_ARRAYSZ:
1058 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1059 	    break;
1060 
1061 	case DT_FINI:
1062 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1063 	    break;
1064 
1065 	case DT_FINI_ARRAY:
1066 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1067 	    break;
1068 
1069 	case DT_FINI_ARRAYSZ:
1070 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1071 	    break;
1072 
1073 	/*
1074 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1075 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1076 	 */
1077 
1078 #ifndef __mips__
1079 	case DT_DEBUG:
1080 	    /* XXX - not implemented yet */
1081 	    if (!early)
1082 		dbg("Filling in DT_DEBUG entry");
1083 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1084 	    break;
1085 #endif
1086 
1087 	case DT_FLAGS:
1088 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1089 		    obj->z_origin = true;
1090 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1091 		    obj->symbolic = true;
1092 		if (dynp->d_un.d_val & DF_TEXTREL)
1093 		    obj->textrel = true;
1094 		if (dynp->d_un.d_val & DF_BIND_NOW)
1095 		    obj->bind_now = true;
1096 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1097 		    ;*/
1098 	    break;
1099 #ifdef __mips__
1100 	case DT_MIPS_LOCAL_GOTNO:
1101 		obj->local_gotno = dynp->d_un.d_val;
1102 	    break;
1103 
1104 	case DT_MIPS_SYMTABNO:
1105 		obj->symtabno = dynp->d_un.d_val;
1106 		break;
1107 
1108 	case DT_MIPS_GOTSYM:
1109 		obj->gotsym = dynp->d_un.d_val;
1110 		break;
1111 
1112 	case DT_MIPS_RLD_MAP:
1113 #ifdef notyet
1114 		if (!early)
1115 			dbg("Filling in DT_DEBUG entry");
1116 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1117 #endif
1118 		break;
1119 #endif
1120 
1121 	case DT_FLAGS_1:
1122 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1123 		    obj->z_noopen = true;
1124 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1125 		    obj->z_origin = true;
1126 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1127 		    XXX ;*/
1128 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1129 		    obj->bind_now = true;
1130 		if (dynp->d_un.d_val & DF_1_NODELETE)
1131 		    obj->z_nodelete = true;
1132 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1133 		    obj->z_loadfltr = true;
1134 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1135 		    obj->z_nodeflib = true;
1136 	    break;
1137 
1138 	default:
1139 	    if (!early) {
1140 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1141 		    (long)dynp->d_tag);
1142 	    }
1143 	    break;
1144 	}
1145     }
1146 
1147     obj->traced = false;
1148 
1149     if (plttype == DT_RELA) {
1150 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1151 	obj->pltrel = NULL;
1152 	obj->pltrelasize = obj->pltrelsize;
1153 	obj->pltrelsize = 0;
1154     }
1155 
1156     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1157     if (obj->valid_hash_sysv)
1158 	obj->dynsymcount = obj->nchains;
1159     else if (obj->valid_hash_gnu) {
1160 	obj->dynsymcount = 0;
1161 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1162 	    if (obj->buckets_gnu[bkt] == 0)
1163 		continue;
1164 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1165 	    do
1166 		obj->dynsymcount++;
1167 	    while ((*hashval++ & 1u) == 0);
1168 	}
1169 	obj->dynsymcount += obj->symndx_gnu;
1170     }
1171 }
1172 
1173 static void
1174 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1175     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1176 {
1177 
1178     if (obj->z_origin && obj->origin_path == NULL) {
1179 	obj->origin_path = xmalloc(PATH_MAX);
1180 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1181 	    die();
1182     }
1183 
1184     if (dyn_runpath != NULL) {
1185 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1186 	if (obj->z_origin)
1187 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1188     }
1189     else if (dyn_rpath != NULL) {
1190 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1191 	if (obj->z_origin)
1192 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1193     }
1194 
1195     if (dyn_soname != NULL)
1196 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1197 }
1198 
1199 static void
1200 digest_dynamic(Obj_Entry *obj, int early)
1201 {
1202 	const Elf_Dyn *dyn_rpath;
1203 	const Elf_Dyn *dyn_soname;
1204 	const Elf_Dyn *dyn_runpath;
1205 
1206 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1207 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1208 }
1209 
1210 /*
1211  * Process a shared object's program header.  This is used only for the
1212  * main program, when the kernel has already loaded the main program
1213  * into memory before calling the dynamic linker.  It creates and
1214  * returns an Obj_Entry structure.
1215  */
1216 static Obj_Entry *
1217 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1218 {
1219     Obj_Entry *obj;
1220     const Elf_Phdr *phlimit = phdr + phnum;
1221     const Elf_Phdr *ph;
1222     Elf_Addr note_start, note_end;
1223     int nsegs = 0;
1224 
1225     obj = obj_new();
1226     for (ph = phdr;  ph < phlimit;  ph++) {
1227 	if (ph->p_type != PT_PHDR)
1228 	    continue;
1229 
1230 	obj->phdr = phdr;
1231 	obj->phsize = ph->p_memsz;
1232 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1233 	break;
1234     }
1235 
1236     obj->stack_flags = PF_X | PF_R | PF_W;
1237 
1238     for (ph = phdr;  ph < phlimit;  ph++) {
1239 	switch (ph->p_type) {
1240 
1241 	case PT_INTERP:
1242 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1243 	    break;
1244 
1245 	case PT_LOAD:
1246 	    if (nsegs == 0) {	/* First load segment */
1247 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1248 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1249 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1250 		  obj->vaddrbase;
1251 	    } else {		/* Last load segment */
1252 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1253 		  obj->vaddrbase;
1254 	    }
1255 	    nsegs++;
1256 	    break;
1257 
1258 	case PT_DYNAMIC:
1259 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1260 	    break;
1261 
1262 	case PT_TLS:
1263 	    obj->tlsindex = 1;
1264 	    obj->tlssize = ph->p_memsz;
1265 	    obj->tlsalign = ph->p_align;
1266 	    obj->tlsinitsize = ph->p_filesz;
1267 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1268 	    break;
1269 
1270 	case PT_GNU_STACK:
1271 	    obj->stack_flags = ph->p_flags;
1272 	    break;
1273 
1274 	case PT_GNU_RELRO:
1275 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1276 	    obj->relro_size = round_page(ph->p_memsz);
1277 	    break;
1278 
1279 	case PT_NOTE:
1280 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1281 	    note_end = note_start + ph->p_filesz;
1282 	    digest_notes(obj, note_start, note_end);
1283 	    break;
1284 	}
1285     }
1286     if (nsegs < 1) {
1287 	_rtld_error("%s: too few PT_LOAD segments", path);
1288 	return NULL;
1289     }
1290 
1291     obj->entry = entry;
1292     return obj;
1293 }
1294 
1295 void
1296 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1297 {
1298 	const Elf_Note *note;
1299 	const char *note_name;
1300 	uintptr_t p;
1301 
1302 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1303 	    note = (const Elf_Note *)((const char *)(note + 1) +
1304 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1305 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1306 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1307 		    note->n_descsz != sizeof(int32_t))
1308 			continue;
1309 		if (note->n_type != ABI_NOTETYPE &&
1310 		    note->n_type != CRT_NOINIT_NOTETYPE)
1311 			continue;
1312 		note_name = (const char *)(note + 1);
1313 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1314 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1315 			continue;
1316 		switch (note->n_type) {
1317 		case ABI_NOTETYPE:
1318 			/* FreeBSD osrel note */
1319 			p = (uintptr_t)(note + 1);
1320 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1321 			obj->osrel = *(const int32_t *)(p);
1322 			dbg("note osrel %d", obj->osrel);
1323 			break;
1324 		case CRT_NOINIT_NOTETYPE:
1325 			/* FreeBSD 'crt does not call init' note */
1326 			obj->crt_no_init = true;
1327 			dbg("note crt_no_init");
1328 			break;
1329 		}
1330 	}
1331 }
1332 
1333 static Obj_Entry *
1334 dlcheck(void *handle)
1335 {
1336     Obj_Entry *obj;
1337 
1338     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1339 	if (obj == (Obj_Entry *) handle)
1340 	    break;
1341 
1342     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1343 	_rtld_error("Invalid shared object handle %p", handle);
1344 	return NULL;
1345     }
1346     return obj;
1347 }
1348 
1349 /*
1350  * If the given object is already in the donelist, return true.  Otherwise
1351  * add the object to the list and return false.
1352  */
1353 static bool
1354 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1355 {
1356     unsigned int i;
1357 
1358     for (i = 0;  i < dlp->num_used;  i++)
1359 	if (dlp->objs[i] == obj)
1360 	    return true;
1361     /*
1362      * Our donelist allocation should always be sufficient.  But if
1363      * our threads locking isn't working properly, more shared objects
1364      * could have been loaded since we allocated the list.  That should
1365      * never happen, but we'll handle it properly just in case it does.
1366      */
1367     if (dlp->num_used < dlp->num_alloc)
1368 	dlp->objs[dlp->num_used++] = obj;
1369     return false;
1370 }
1371 
1372 /*
1373  * Hash function for symbol table lookup.  Don't even think about changing
1374  * this.  It is specified by the System V ABI.
1375  */
1376 unsigned long
1377 elf_hash(const char *name)
1378 {
1379     const unsigned char *p = (const unsigned char *) name;
1380     unsigned long h = 0;
1381     unsigned long g;
1382 
1383     while (*p != '\0') {
1384 	h = (h << 4) + *p++;
1385 	if ((g = h & 0xf0000000) != 0)
1386 	    h ^= g >> 24;
1387 	h &= ~g;
1388     }
1389     return h;
1390 }
1391 
1392 /*
1393  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1394  * unsigned in case it's implemented with a wider type.
1395  */
1396 static uint32_t
1397 gnu_hash(const char *s)
1398 {
1399 	uint32_t h;
1400 	unsigned char c;
1401 
1402 	h = 5381;
1403 	for (c = *s; c != '\0'; c = *++s)
1404 		h = h * 33 + c;
1405 	return (h & 0xffffffff);
1406 }
1407 
1408 /*
1409  * Find the library with the given name, and return its full pathname.
1410  * The returned string is dynamically allocated.  Generates an error
1411  * message and returns NULL if the library cannot be found.
1412  *
1413  * If the second argument is non-NULL, then it refers to an already-
1414  * loaded shared object, whose library search path will be searched.
1415  *
1416  * The search order is:
1417  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1418  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1419  *   LD_LIBRARY_PATH
1420  *   DT_RUNPATH in the referencing file
1421  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1422  *	 from list)
1423  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1424  *
1425  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1426  */
1427 static char *
1428 find_library(const char *xname, const Obj_Entry *refobj)
1429 {
1430     char *pathname;
1431     char *name;
1432     bool nodeflib, objgiven;
1433 
1434     objgiven = refobj != NULL;
1435     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1436 	if (xname[0] != '/' && !trust) {
1437 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1438 	      xname);
1439 	    return NULL;
1440 	}
1441 	if (objgiven && refobj->z_origin)
1442 	    return origin_subst(xname, refobj->origin_path);
1443 	else
1444 	    return xstrdup(xname);
1445     }
1446 
1447     if (libmap_disable || !objgiven ||
1448 	(name = lm_find(refobj->path, xname)) == NULL)
1449 	name = (char *)xname;
1450 
1451     dbg(" Searching for \"%s\"", name);
1452 
1453     /*
1454      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1455      * back to pre-conforming behaviour if user requested so with
1456      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1457      * nodeflib.
1458      */
1459     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1460 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1461 	  (refobj != NULL &&
1462 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1463           (pathname = search_library_path(name, gethints(false))) != NULL ||
1464 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1465 	    return (pathname);
1466     } else {
1467 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1468 	if ((objgiven &&
1469 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1470 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1471 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1472 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1473 	  (objgiven &&
1474 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1475 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1476 	  (objgiven && !nodeflib &&
1477 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1478 	    return (pathname);
1479     }
1480 
1481     if (objgiven && refobj->path != NULL) {
1482 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1483 	  name, basename(refobj->path));
1484     } else {
1485 	_rtld_error("Shared object \"%s\" not found", name);
1486     }
1487     return NULL;
1488 }
1489 
1490 /*
1491  * Given a symbol number in a referencing object, find the corresponding
1492  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1493  * no definition was found.  Returns a pointer to the Obj_Entry of the
1494  * defining object via the reference parameter DEFOBJ_OUT.
1495  */
1496 const Elf_Sym *
1497 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1498     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1499     RtldLockState *lockstate)
1500 {
1501     const Elf_Sym *ref;
1502     const Elf_Sym *def;
1503     const Obj_Entry *defobj;
1504     SymLook req;
1505     const char *name;
1506     int res;
1507 
1508     /*
1509      * If we have already found this symbol, get the information from
1510      * the cache.
1511      */
1512     if (symnum >= refobj->dynsymcount)
1513 	return NULL;	/* Bad object */
1514     if (cache != NULL && cache[symnum].sym != NULL) {
1515 	*defobj_out = cache[symnum].obj;
1516 	return cache[symnum].sym;
1517     }
1518 
1519     ref = refobj->symtab + symnum;
1520     name = refobj->strtab + ref->st_name;
1521     def = NULL;
1522     defobj = NULL;
1523 
1524     /*
1525      * We don't have to do a full scale lookup if the symbol is local.
1526      * We know it will bind to the instance in this load module; to
1527      * which we already have a pointer (ie ref). By not doing a lookup,
1528      * we not only improve performance, but it also avoids unresolvable
1529      * symbols when local symbols are not in the hash table. This has
1530      * been seen with the ia64 toolchain.
1531      */
1532     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1533 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1534 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1535 		symnum);
1536 	}
1537 	symlook_init(&req, name);
1538 	req.flags = flags;
1539 	req.ventry = fetch_ventry(refobj, symnum);
1540 	req.lockstate = lockstate;
1541 	res = symlook_default(&req, refobj);
1542 	if (res == 0) {
1543 	    def = req.sym_out;
1544 	    defobj = req.defobj_out;
1545 	}
1546     } else {
1547 	def = ref;
1548 	defobj = refobj;
1549     }
1550 
1551     /*
1552      * If we found no definition and the reference is weak, treat the
1553      * symbol as having the value zero.
1554      */
1555     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1556 	def = &sym_zero;
1557 	defobj = obj_main;
1558     }
1559 
1560     if (def != NULL) {
1561 	*defobj_out = defobj;
1562 	/* Record the information in the cache to avoid subsequent lookups. */
1563 	if (cache != NULL) {
1564 	    cache[symnum].sym = def;
1565 	    cache[symnum].obj = defobj;
1566 	}
1567     } else {
1568 	if (refobj != &obj_rtld)
1569 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1570     }
1571     return def;
1572 }
1573 
1574 /*
1575  * Return the search path from the ldconfig hints file, reading it if
1576  * necessary.  If nostdlib is true, then the default search paths are
1577  * not added to result.
1578  *
1579  * Returns NULL if there are problems with the hints file,
1580  * or if the search path there is empty.
1581  */
1582 static const char *
1583 gethints(bool nostdlib)
1584 {
1585 	static char *hints, *filtered_path;
1586 	struct elfhints_hdr hdr;
1587 	struct fill_search_info_args sargs, hargs;
1588 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1589 	struct dl_serpath *SLPpath, *hintpath;
1590 	char *p;
1591 	unsigned int SLPndx, hintndx, fndx, fcount;
1592 	int fd;
1593 	size_t flen;
1594 	bool skip;
1595 
1596 	/* First call, read the hints file */
1597 	if (hints == NULL) {
1598 		/* Keep from trying again in case the hints file is bad. */
1599 		hints = "";
1600 
1601 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1602 			return (NULL);
1603 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1604 		    hdr.magic != ELFHINTS_MAGIC ||
1605 		    hdr.version != 1) {
1606 			close(fd);
1607 			return (NULL);
1608 		}
1609 		p = xmalloc(hdr.dirlistlen + 1);
1610 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1611 		    read(fd, p, hdr.dirlistlen + 1) !=
1612 		    (ssize_t)hdr.dirlistlen + 1) {
1613 			free(p);
1614 			close(fd);
1615 			return (NULL);
1616 		}
1617 		hints = p;
1618 		close(fd);
1619 	}
1620 
1621 	/*
1622 	 * If caller agreed to receive list which includes the default
1623 	 * paths, we are done. Otherwise, if we still did not
1624 	 * calculated filtered result, do it now.
1625 	 */
1626 	if (!nostdlib)
1627 		return (hints[0] != '\0' ? hints : NULL);
1628 	if (filtered_path != NULL)
1629 		goto filt_ret;
1630 
1631 	/*
1632 	 * Obtain the list of all configured search paths, and the
1633 	 * list of the default paths.
1634 	 *
1635 	 * First estimate the size of the results.
1636 	 */
1637 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1638 	smeta.dls_cnt = 0;
1639 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1640 	hmeta.dls_cnt = 0;
1641 
1642 	sargs.request = RTLD_DI_SERINFOSIZE;
1643 	sargs.serinfo = &smeta;
1644 	hargs.request = RTLD_DI_SERINFOSIZE;
1645 	hargs.serinfo = &hmeta;
1646 
1647 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1648 	path_enumerate(p, fill_search_info, &hargs);
1649 
1650 	SLPinfo = xmalloc(smeta.dls_size);
1651 	hintinfo = xmalloc(hmeta.dls_size);
1652 
1653 	/*
1654 	 * Next fetch both sets of paths.
1655 	 */
1656 	sargs.request = RTLD_DI_SERINFO;
1657 	sargs.serinfo = SLPinfo;
1658 	sargs.serpath = &SLPinfo->dls_serpath[0];
1659 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1660 
1661 	hargs.request = RTLD_DI_SERINFO;
1662 	hargs.serinfo = hintinfo;
1663 	hargs.serpath = &hintinfo->dls_serpath[0];
1664 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1665 
1666 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1667 	path_enumerate(p, fill_search_info, &hargs);
1668 
1669 	/*
1670 	 * Now calculate the difference between two sets, by excluding
1671 	 * standard paths from the full set.
1672 	 */
1673 	fndx = 0;
1674 	fcount = 0;
1675 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1676 	hintpath = &hintinfo->dls_serpath[0];
1677 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1678 		skip = false;
1679 		SLPpath = &SLPinfo->dls_serpath[0];
1680 		/*
1681 		 * Check each standard path against current.
1682 		 */
1683 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1684 			/* matched, skip the path */
1685 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1686 				skip = true;
1687 				break;
1688 			}
1689 		}
1690 		if (skip)
1691 			continue;
1692 		/*
1693 		 * Not matched against any standard path, add the path
1694 		 * to result. Separate consequtive paths with ':'.
1695 		 */
1696 		if (fcount > 0) {
1697 			filtered_path[fndx] = ':';
1698 			fndx++;
1699 		}
1700 		fcount++;
1701 		flen = strlen(hintpath->dls_name);
1702 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1703 		fndx += flen;
1704 	}
1705 	filtered_path[fndx] = '\0';
1706 
1707 	free(SLPinfo);
1708 	free(hintinfo);
1709 
1710 filt_ret:
1711 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1712 }
1713 
1714 static void
1715 init_dag(Obj_Entry *root)
1716 {
1717     const Needed_Entry *needed;
1718     const Objlist_Entry *elm;
1719     DoneList donelist;
1720 
1721     if (root->dag_inited)
1722 	return;
1723     donelist_init(&donelist);
1724 
1725     /* Root object belongs to own DAG. */
1726     objlist_push_tail(&root->dldags, root);
1727     objlist_push_tail(&root->dagmembers, root);
1728     donelist_check(&donelist, root);
1729 
1730     /*
1731      * Add dependencies of root object to DAG in breadth order
1732      * by exploiting the fact that each new object get added
1733      * to the tail of the dagmembers list.
1734      */
1735     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1736 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1737 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1738 		continue;
1739 	    objlist_push_tail(&needed->obj->dldags, root);
1740 	    objlist_push_tail(&root->dagmembers, needed->obj);
1741 	}
1742     }
1743     root->dag_inited = true;
1744 }
1745 
1746 static void
1747 process_nodelete(Obj_Entry *root)
1748 {
1749 	const Objlist_Entry *elm;
1750 
1751 	/*
1752 	 * Walk over object DAG and process every dependent object that
1753 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1754 	 * which then should have its reference upped separately.
1755 	 */
1756 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1757 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1758 		    !elm->obj->ref_nodel) {
1759 			dbg("obj %s nodelete", elm->obj->path);
1760 			init_dag(elm->obj);
1761 			ref_dag(elm->obj);
1762 			elm->obj->ref_nodel = true;
1763 		}
1764 	}
1765 }
1766 /*
1767  * Initialize the dynamic linker.  The argument is the address at which
1768  * the dynamic linker has been mapped into memory.  The primary task of
1769  * this function is to relocate the dynamic linker.
1770  */
1771 static void
1772 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1773 {
1774     Obj_Entry objtmp;	/* Temporary rtld object */
1775     const Elf_Dyn *dyn_rpath;
1776     const Elf_Dyn *dyn_soname;
1777     const Elf_Dyn *dyn_runpath;
1778 
1779     /*
1780      * Conjure up an Obj_Entry structure for the dynamic linker.
1781      *
1782      * The "path" member can't be initialized yet because string constants
1783      * cannot yet be accessed. Below we will set it correctly.
1784      */
1785     memset(&objtmp, 0, sizeof(objtmp));
1786     objtmp.path = NULL;
1787     objtmp.rtld = true;
1788     objtmp.mapbase = mapbase;
1789 #ifdef PIC
1790     objtmp.relocbase = mapbase;
1791 #endif
1792     if (RTLD_IS_DYNAMIC()) {
1793 	objtmp.dynamic = rtld_dynamic(&objtmp);
1794 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1795 	assert(objtmp.needed == NULL);
1796 #if !defined(__mips__)
1797 	/* MIPS has a bogus DT_TEXTREL. */
1798 	assert(!objtmp.textrel);
1799 #endif
1800 
1801 	/*
1802 	 * Temporarily put the dynamic linker entry into the object list, so
1803 	 * that symbols can be found.
1804 	 */
1805 
1806 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1807     }
1808 
1809     /* Initialize the object list. */
1810     obj_tail = &obj_list;
1811 
1812     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1813     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1814 
1815     if (aux_info[AT_PAGESZ] != NULL)
1816 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1817     if (aux_info[AT_OSRELDATE] != NULL)
1818 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1819 
1820     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1821 
1822     /* Replace the path with a dynamically allocated copy. */
1823     obj_rtld.path = xstrdup(PATH_RTLD);
1824 
1825     r_debug.r_brk = r_debug_state;
1826     r_debug.r_state = RT_CONSISTENT;
1827 }
1828 
1829 /*
1830  * Add the init functions from a needed object list (and its recursive
1831  * needed objects) to "list".  This is not used directly; it is a helper
1832  * function for initlist_add_objects().  The write lock must be held
1833  * when this function is called.
1834  */
1835 static void
1836 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1837 {
1838     /* Recursively process the successor needed objects. */
1839     if (needed->next != NULL)
1840 	initlist_add_neededs(needed->next, list);
1841 
1842     /* Process the current needed object. */
1843     if (needed->obj != NULL)
1844 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1845 }
1846 
1847 /*
1848  * Scan all of the DAGs rooted in the range of objects from "obj" to
1849  * "tail" and add their init functions to "list".  This recurses over
1850  * the DAGs and ensure the proper init ordering such that each object's
1851  * needed libraries are initialized before the object itself.  At the
1852  * same time, this function adds the objects to the global finalization
1853  * list "list_fini" in the opposite order.  The write lock must be
1854  * held when this function is called.
1855  */
1856 static void
1857 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1858 {
1859 
1860     if (obj->init_scanned || obj->init_done)
1861 	return;
1862     obj->init_scanned = true;
1863 
1864     /* Recursively process the successor objects. */
1865     if (&obj->next != tail)
1866 	initlist_add_objects(obj->next, tail, list);
1867 
1868     /* Recursively process the needed objects. */
1869     if (obj->needed != NULL)
1870 	initlist_add_neededs(obj->needed, list);
1871     if (obj->needed_filtees != NULL)
1872 	initlist_add_neededs(obj->needed_filtees, list);
1873     if (obj->needed_aux_filtees != NULL)
1874 	initlist_add_neededs(obj->needed_aux_filtees, list);
1875 
1876     /* Add the object to the init list. */
1877     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1878       obj->init_array != (Elf_Addr)NULL)
1879 	objlist_push_tail(list, obj);
1880 
1881     /* Add the object to the global fini list in the reverse order. */
1882     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1883       && !obj->on_fini_list) {
1884 	objlist_push_head(&list_fini, obj);
1885 	obj->on_fini_list = true;
1886     }
1887 }
1888 
1889 #ifndef FPTR_TARGET
1890 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1891 #endif
1892 
1893 static void
1894 free_needed_filtees(Needed_Entry *n)
1895 {
1896     Needed_Entry *needed, *needed1;
1897 
1898     for (needed = n; needed != NULL; needed = needed->next) {
1899 	if (needed->obj != NULL) {
1900 	    dlclose(needed->obj);
1901 	    needed->obj = NULL;
1902 	}
1903     }
1904     for (needed = n; needed != NULL; needed = needed1) {
1905 	needed1 = needed->next;
1906 	free(needed);
1907     }
1908 }
1909 
1910 static void
1911 unload_filtees(Obj_Entry *obj)
1912 {
1913 
1914     free_needed_filtees(obj->needed_filtees);
1915     obj->needed_filtees = NULL;
1916     free_needed_filtees(obj->needed_aux_filtees);
1917     obj->needed_aux_filtees = NULL;
1918     obj->filtees_loaded = false;
1919 }
1920 
1921 static void
1922 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1923     RtldLockState *lockstate)
1924 {
1925 
1926     for (; needed != NULL; needed = needed->next) {
1927 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1928 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1929 	  RTLD_LOCAL, lockstate);
1930     }
1931 }
1932 
1933 static void
1934 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1935 {
1936 
1937     lock_restart_for_upgrade(lockstate);
1938     if (!obj->filtees_loaded) {
1939 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1940 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1941 	obj->filtees_loaded = true;
1942     }
1943 }
1944 
1945 static int
1946 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1947 {
1948     Obj_Entry *obj1;
1949 
1950     for (; needed != NULL; needed = needed->next) {
1951 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1952 	  flags & ~RTLD_LO_NOLOAD);
1953 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1954 	    return (-1);
1955     }
1956     return (0);
1957 }
1958 
1959 /*
1960  * Given a shared object, traverse its list of needed objects, and load
1961  * each of them.  Returns 0 on success.  Generates an error message and
1962  * returns -1 on failure.
1963  */
1964 static int
1965 load_needed_objects(Obj_Entry *first, int flags)
1966 {
1967     Obj_Entry *obj;
1968 
1969     for (obj = first;  obj != NULL;  obj = obj->next) {
1970 	if (process_needed(obj, obj->needed, flags) == -1)
1971 	    return (-1);
1972     }
1973     return (0);
1974 }
1975 
1976 static int
1977 load_preload_objects(void)
1978 {
1979     char *p = ld_preload;
1980     static const char delim[] = " \t:;";
1981 
1982     if (p == NULL)
1983 	return 0;
1984 
1985     p += strspn(p, delim);
1986     while (*p != '\0') {
1987 	size_t len = strcspn(p, delim);
1988 	char savech;
1989 
1990 	savech = p[len];
1991 	p[len] = '\0';
1992 	if (load_object(p, -1, NULL, 0) == NULL)
1993 	    return -1;	/* XXX - cleanup */
1994 	p[len] = savech;
1995 	p += len;
1996 	p += strspn(p, delim);
1997     }
1998     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1999     return 0;
2000 }
2001 
2002 static const char *
2003 printable_path(const char *path)
2004 {
2005 
2006 	return (path == NULL ? "<unknown>" : path);
2007 }
2008 
2009 /*
2010  * Load a shared object into memory, if it is not already loaded.  The
2011  * object may be specified by name or by user-supplied file descriptor
2012  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2013  * duplicate is.
2014  *
2015  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2016  * on failure.
2017  */
2018 static Obj_Entry *
2019 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2020 {
2021     Obj_Entry *obj;
2022     int fd;
2023     struct stat sb;
2024     char *path;
2025 
2026     if (name != NULL) {
2027 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2028 	    if (object_match_name(obj, name))
2029 		return (obj);
2030 	}
2031 
2032 	path = find_library(name, refobj);
2033 	if (path == NULL)
2034 	    return (NULL);
2035     } else
2036 	path = NULL;
2037 
2038     /*
2039      * If we didn't find a match by pathname, or the name is not
2040      * supplied, open the file and check again by device and inode.
2041      * This avoids false mismatches caused by multiple links or ".."
2042      * in pathnames.
2043      *
2044      * To avoid a race, we open the file and use fstat() rather than
2045      * using stat().
2046      */
2047     fd = -1;
2048     if (fd_u == -1) {
2049 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2050 	    _rtld_error("Cannot open \"%s\"", path);
2051 	    free(path);
2052 	    return (NULL);
2053 	}
2054     } else {
2055 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2056 	if (fd == -1) {
2057 	    _rtld_error("Cannot dup fd");
2058 	    free(path);
2059 	    return (NULL);
2060 	}
2061     }
2062     if (fstat(fd, &sb) == -1) {
2063 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2064 	close(fd);
2065 	free(path);
2066 	return NULL;
2067     }
2068     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2069 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2070 	    break;
2071     if (obj != NULL && name != NULL) {
2072 	object_add_name(obj, name);
2073 	free(path);
2074 	close(fd);
2075 	return obj;
2076     }
2077     if (flags & RTLD_LO_NOLOAD) {
2078 	free(path);
2079 	close(fd);
2080 	return (NULL);
2081     }
2082 
2083     /* First use of this object, so we must map it in */
2084     obj = do_load_object(fd, name, path, &sb, flags);
2085     if (obj == NULL)
2086 	free(path);
2087     close(fd);
2088 
2089     return obj;
2090 }
2091 
2092 static Obj_Entry *
2093 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2094   int flags)
2095 {
2096     Obj_Entry *obj;
2097     struct statfs fs;
2098 
2099     /*
2100      * but first, make sure that environment variables haven't been
2101      * used to circumvent the noexec flag on a filesystem.
2102      */
2103     if (dangerous_ld_env) {
2104 	if (fstatfs(fd, &fs) != 0) {
2105 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2106 	    return NULL;
2107 	}
2108 	if (fs.f_flags & MNT_NOEXEC) {
2109 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2110 	    return NULL;
2111 	}
2112     }
2113     dbg("loading \"%s\"", printable_path(path));
2114     obj = map_object(fd, printable_path(path), sbp);
2115     if (obj == NULL)
2116         return NULL;
2117 
2118     /*
2119      * If DT_SONAME is present in the object, digest_dynamic2 already
2120      * added it to the object names.
2121      */
2122     if (name != NULL)
2123 	object_add_name(obj, name);
2124     obj->path = path;
2125     digest_dynamic(obj, 0);
2126     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2127 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2128     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2129       RTLD_LO_DLOPEN) {
2130 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2131 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2132 	munmap(obj->mapbase, obj->mapsize);
2133 	obj_free(obj);
2134 	return (NULL);
2135     }
2136 
2137     *obj_tail = obj;
2138     obj_tail = &obj->next;
2139     obj_count++;
2140     obj_loads++;
2141     linkmap_add(obj);	/* for GDB & dlinfo() */
2142     max_stack_flags |= obj->stack_flags;
2143 
2144     dbg("  %p .. %p: %s", obj->mapbase,
2145          obj->mapbase + obj->mapsize - 1, obj->path);
2146     if (obj->textrel)
2147 	dbg("  WARNING: %s has impure text", obj->path);
2148     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2149 	obj->path);
2150 
2151     return obj;
2152 }
2153 
2154 static Obj_Entry *
2155 obj_from_addr(const void *addr)
2156 {
2157     Obj_Entry *obj;
2158 
2159     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2160 	if (addr < (void *) obj->mapbase)
2161 	    continue;
2162 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2163 	    return obj;
2164     }
2165     return NULL;
2166 }
2167 
2168 static void
2169 preinit_main(void)
2170 {
2171     Elf_Addr *preinit_addr;
2172     int index;
2173 
2174     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2175     if (preinit_addr == NULL)
2176 	return;
2177 
2178     for (index = 0; index < obj_main->preinit_array_num; index++) {
2179 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2180 	    dbg("calling preinit function for %s at %p", obj_main->path,
2181 	      (void *)preinit_addr[index]);
2182 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2183 	      0, 0, obj_main->path);
2184 	    call_init_pointer(obj_main, preinit_addr[index]);
2185 	}
2186     }
2187 }
2188 
2189 /*
2190  * Call the finalization functions for each of the objects in "list"
2191  * belonging to the DAG of "root" and referenced once. If NULL "root"
2192  * is specified, every finalization function will be called regardless
2193  * of the reference count and the list elements won't be freed. All of
2194  * the objects are expected to have non-NULL fini functions.
2195  */
2196 static void
2197 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2198 {
2199     Objlist_Entry *elm;
2200     char *saved_msg;
2201     Elf_Addr *fini_addr;
2202     int index;
2203 
2204     assert(root == NULL || root->refcount == 1);
2205 
2206     /*
2207      * Preserve the current error message since a fini function might
2208      * call into the dynamic linker and overwrite it.
2209      */
2210     saved_msg = errmsg_save();
2211     do {
2212 	STAILQ_FOREACH(elm, list, link) {
2213 	    if (root != NULL && (elm->obj->refcount != 1 ||
2214 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2215 		continue;
2216 	    /* Remove object from fini list to prevent recursive invocation. */
2217 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2218 	    /*
2219 	     * XXX: If a dlopen() call references an object while the
2220 	     * fini function is in progress, we might end up trying to
2221 	     * unload the referenced object in dlclose() or the object
2222 	     * won't be unloaded although its fini function has been
2223 	     * called.
2224 	     */
2225 	    lock_release(rtld_bind_lock, lockstate);
2226 
2227 	    /*
2228 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2229 	     * When this happens, DT_FINI_ARRAY is processed first.
2230 	     */
2231 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2232 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2233 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2234 		  index--) {
2235 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2236 			dbg("calling fini function for %s at %p",
2237 			    elm->obj->path, (void *)fini_addr[index]);
2238 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2239 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2240 			call_initfini_pointer(elm->obj, fini_addr[index]);
2241 		    }
2242 		}
2243 	    }
2244 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2245 		dbg("calling fini function for %s at %p", elm->obj->path,
2246 		    (void *)elm->obj->fini);
2247 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2248 		    0, 0, elm->obj->path);
2249 		call_initfini_pointer(elm->obj, elm->obj->fini);
2250 	    }
2251 	    wlock_acquire(rtld_bind_lock, lockstate);
2252 	    /* No need to free anything if process is going down. */
2253 	    if (root != NULL)
2254 	    	free(elm);
2255 	    /*
2256 	     * We must restart the list traversal after every fini call
2257 	     * because a dlclose() call from the fini function or from
2258 	     * another thread might have modified the reference counts.
2259 	     */
2260 	    break;
2261 	}
2262     } while (elm != NULL);
2263     errmsg_restore(saved_msg);
2264 }
2265 
2266 /*
2267  * Call the initialization functions for each of the objects in
2268  * "list".  All of the objects are expected to have non-NULL init
2269  * functions.
2270  */
2271 static void
2272 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2273 {
2274     Objlist_Entry *elm;
2275     Obj_Entry *obj;
2276     char *saved_msg;
2277     Elf_Addr *init_addr;
2278     int index;
2279 
2280     /*
2281      * Clean init_scanned flag so that objects can be rechecked and
2282      * possibly initialized earlier if any of vectors called below
2283      * cause the change by using dlopen.
2284      */
2285     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2286 	obj->init_scanned = false;
2287 
2288     /*
2289      * Preserve the current error message since an init function might
2290      * call into the dynamic linker and overwrite it.
2291      */
2292     saved_msg = errmsg_save();
2293     STAILQ_FOREACH(elm, list, link) {
2294 	if (elm->obj->init_done) /* Initialized early. */
2295 	    continue;
2296 	/*
2297 	 * Race: other thread might try to use this object before current
2298 	 * one completes the initilization. Not much can be done here
2299 	 * without better locking.
2300 	 */
2301 	elm->obj->init_done = true;
2302 	lock_release(rtld_bind_lock, lockstate);
2303 
2304         /*
2305          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2306          * When this happens, DT_INIT is processed first.
2307          */
2308 	if (elm->obj->init != (Elf_Addr)NULL) {
2309 	    dbg("calling init function for %s at %p", elm->obj->path,
2310 	        (void *)elm->obj->init);
2311 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2312 	        0, 0, elm->obj->path);
2313 	    call_initfini_pointer(elm->obj, elm->obj->init);
2314 	}
2315 	init_addr = (Elf_Addr *)elm->obj->init_array;
2316 	if (init_addr != NULL) {
2317 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2318 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2319 		    dbg("calling init function for %s at %p", elm->obj->path,
2320 			(void *)init_addr[index]);
2321 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2322 			(void *)init_addr[index], 0, 0, elm->obj->path);
2323 		    call_init_pointer(elm->obj, init_addr[index]);
2324 		}
2325 	    }
2326 	}
2327 	wlock_acquire(rtld_bind_lock, lockstate);
2328     }
2329     errmsg_restore(saved_msg);
2330 }
2331 
2332 static void
2333 objlist_clear(Objlist *list)
2334 {
2335     Objlist_Entry *elm;
2336 
2337     while (!STAILQ_EMPTY(list)) {
2338 	elm = STAILQ_FIRST(list);
2339 	STAILQ_REMOVE_HEAD(list, link);
2340 	free(elm);
2341     }
2342 }
2343 
2344 static Objlist_Entry *
2345 objlist_find(Objlist *list, const Obj_Entry *obj)
2346 {
2347     Objlist_Entry *elm;
2348 
2349     STAILQ_FOREACH(elm, list, link)
2350 	if (elm->obj == obj)
2351 	    return elm;
2352     return NULL;
2353 }
2354 
2355 static void
2356 objlist_init(Objlist *list)
2357 {
2358     STAILQ_INIT(list);
2359 }
2360 
2361 static void
2362 objlist_push_head(Objlist *list, Obj_Entry *obj)
2363 {
2364     Objlist_Entry *elm;
2365 
2366     elm = NEW(Objlist_Entry);
2367     elm->obj = obj;
2368     STAILQ_INSERT_HEAD(list, elm, link);
2369 }
2370 
2371 static void
2372 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2373 {
2374     Objlist_Entry *elm;
2375 
2376     elm = NEW(Objlist_Entry);
2377     elm->obj = obj;
2378     STAILQ_INSERT_TAIL(list, elm, link);
2379 }
2380 
2381 static void
2382 objlist_remove(Objlist *list, Obj_Entry *obj)
2383 {
2384     Objlist_Entry *elm;
2385 
2386     if ((elm = objlist_find(list, obj)) != NULL) {
2387 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2388 	free(elm);
2389     }
2390 }
2391 
2392 /*
2393  * Relocate dag rooted in the specified object.
2394  * Returns 0 on success, or -1 on failure.
2395  */
2396 
2397 static int
2398 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2399     int flags, RtldLockState *lockstate)
2400 {
2401 	Objlist_Entry *elm;
2402 	int error;
2403 
2404 	error = 0;
2405 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2406 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2407 		    lockstate);
2408 		if (error == -1)
2409 			break;
2410 	}
2411 	return (error);
2412 }
2413 
2414 /*
2415  * Relocate single object.
2416  * Returns 0 on success, or -1 on failure.
2417  */
2418 static int
2419 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2420     int flags, RtldLockState *lockstate)
2421 {
2422 
2423 	if (obj->relocated)
2424 		return (0);
2425 	obj->relocated = true;
2426 	if (obj != rtldobj)
2427 		dbg("relocating \"%s\"", obj->path);
2428 
2429 	if (obj->symtab == NULL || obj->strtab == NULL ||
2430 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2431 		_rtld_error("%s: Shared object has no run-time symbol table",
2432 			    obj->path);
2433 		return (-1);
2434 	}
2435 
2436 	if (obj->textrel) {
2437 		/* There are relocations to the write-protected text segment. */
2438 		if (mprotect(obj->mapbase, obj->textsize,
2439 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2440 			_rtld_error("%s: Cannot write-enable text segment: %s",
2441 			    obj->path, rtld_strerror(errno));
2442 			return (-1);
2443 		}
2444 	}
2445 
2446 	/* Process the non-PLT relocations. */
2447 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2448 		return (-1);
2449 
2450 	if (obj->textrel) {	/* Re-protected the text segment. */
2451 		if (mprotect(obj->mapbase, obj->textsize,
2452 		    PROT_READ|PROT_EXEC) == -1) {
2453 			_rtld_error("%s: Cannot write-protect text segment: %s",
2454 			    obj->path, rtld_strerror(errno));
2455 			return (-1);
2456 		}
2457 	}
2458 
2459 
2460 	/* Set the special PLT or GOT entries. */
2461 	init_pltgot(obj);
2462 
2463 	/* Process the PLT relocations. */
2464 	if (reloc_plt(obj) == -1)
2465 		return (-1);
2466 	/* Relocate the jump slots if we are doing immediate binding. */
2467 	if (obj->bind_now || bind_now)
2468 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2469 			return (-1);
2470 
2471 	if (obj->relro_size > 0) {
2472 		if (mprotect(obj->relro_page, obj->relro_size,
2473 		    PROT_READ) == -1) {
2474 			_rtld_error("%s: Cannot enforce relro protection: %s",
2475 			    obj->path, rtld_strerror(errno));
2476 			return (-1);
2477 		}
2478 	}
2479 
2480 	/*
2481 	 * Set up the magic number and version in the Obj_Entry.  These
2482 	 * were checked in the crt1.o from the original ElfKit, so we
2483 	 * set them for backward compatibility.
2484 	 */
2485 	obj->magic = RTLD_MAGIC;
2486 	obj->version = RTLD_VERSION;
2487 
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Relocate newly-loaded shared objects.  The argument is a pointer to
2493  * the Obj_Entry for the first such object.  All objects from the first
2494  * to the end of the list of objects are relocated.  Returns 0 on success,
2495  * or -1 on failure.
2496  */
2497 static int
2498 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2499     int flags, RtldLockState *lockstate)
2500 {
2501 	Obj_Entry *obj;
2502 	int error;
2503 
2504 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2505 		error = relocate_object(obj, bind_now, rtldobj, flags,
2506 		    lockstate);
2507 		if (error == -1)
2508 			break;
2509 	}
2510 	return (error);
2511 }
2512 
2513 /*
2514  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2515  * referencing STT_GNU_IFUNC symbols is postponed till the other
2516  * relocations are done.  The indirect functions specified as
2517  * ifunc are allowed to call other symbols, so we need to have
2518  * objects relocated before asking for resolution from indirects.
2519  *
2520  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2521  * instead of the usual lazy handling of PLT slots.  It is
2522  * consistent with how GNU does it.
2523  */
2524 static int
2525 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2526     RtldLockState *lockstate)
2527 {
2528 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2529 		return (-1);
2530 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2531 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2532 		return (-1);
2533 	return (0);
2534 }
2535 
2536 static int
2537 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2538     RtldLockState *lockstate)
2539 {
2540 	Obj_Entry *obj;
2541 
2542 	for (obj = first;  obj != NULL;  obj = obj->next) {
2543 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2544 			return (-1);
2545 	}
2546 	return (0);
2547 }
2548 
2549 static int
2550 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2551     RtldLockState *lockstate)
2552 {
2553 	Objlist_Entry *elm;
2554 
2555 	STAILQ_FOREACH(elm, list, link) {
2556 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2557 		    lockstate) == -1)
2558 			return (-1);
2559 	}
2560 	return (0);
2561 }
2562 
2563 /*
2564  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2565  * before the process exits.
2566  */
2567 static void
2568 rtld_exit(void)
2569 {
2570     RtldLockState lockstate;
2571 
2572     wlock_acquire(rtld_bind_lock, &lockstate);
2573     dbg("rtld_exit()");
2574     objlist_call_fini(&list_fini, NULL, &lockstate);
2575     /* No need to remove the items from the list, since we are exiting. */
2576     if (!libmap_disable)
2577         lm_fini();
2578     lock_release(rtld_bind_lock, &lockstate);
2579 }
2580 
2581 static void *
2582 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2583 {
2584 #ifdef COMPAT_32BIT
2585     const char *trans;
2586 #endif
2587     if (path == NULL)
2588 	return (NULL);
2589 
2590     path += strspn(path, ":;");
2591     while (*path != '\0') {
2592 	size_t len;
2593 	char  *res;
2594 
2595 	len = strcspn(path, ":;");
2596 #ifdef COMPAT_32BIT
2597 	trans = lm_findn(NULL, path, len);
2598 	if (trans)
2599 	    res = callback(trans, strlen(trans), arg);
2600 	else
2601 #endif
2602 	res = callback(path, len, arg);
2603 
2604 	if (res != NULL)
2605 	    return (res);
2606 
2607 	path += len;
2608 	path += strspn(path, ":;");
2609     }
2610 
2611     return (NULL);
2612 }
2613 
2614 struct try_library_args {
2615     const char	*name;
2616     size_t	 namelen;
2617     char	*buffer;
2618     size_t	 buflen;
2619 };
2620 
2621 static void *
2622 try_library_path(const char *dir, size_t dirlen, void *param)
2623 {
2624     struct try_library_args *arg;
2625 
2626     arg = param;
2627     if (*dir == '/' || trust) {
2628 	char *pathname;
2629 
2630 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2631 		return (NULL);
2632 
2633 	pathname = arg->buffer;
2634 	strncpy(pathname, dir, dirlen);
2635 	pathname[dirlen] = '/';
2636 	strcpy(pathname + dirlen + 1, arg->name);
2637 
2638 	dbg("  Trying \"%s\"", pathname);
2639 	if (access(pathname, F_OK) == 0) {		/* We found it */
2640 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2641 	    strcpy(pathname, arg->buffer);
2642 	    return (pathname);
2643 	}
2644     }
2645     return (NULL);
2646 }
2647 
2648 static char *
2649 search_library_path(const char *name, const char *path)
2650 {
2651     char *p;
2652     struct try_library_args arg;
2653 
2654     if (path == NULL)
2655 	return NULL;
2656 
2657     arg.name = name;
2658     arg.namelen = strlen(name);
2659     arg.buffer = xmalloc(PATH_MAX);
2660     arg.buflen = PATH_MAX;
2661 
2662     p = path_enumerate(path, try_library_path, &arg);
2663 
2664     free(arg.buffer);
2665 
2666     return (p);
2667 }
2668 
2669 int
2670 dlclose(void *handle)
2671 {
2672     Obj_Entry *root;
2673     RtldLockState lockstate;
2674 
2675     wlock_acquire(rtld_bind_lock, &lockstate);
2676     root = dlcheck(handle);
2677     if (root == NULL) {
2678 	lock_release(rtld_bind_lock, &lockstate);
2679 	return -1;
2680     }
2681     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2682 	root->path);
2683 
2684     /* Unreference the object and its dependencies. */
2685     root->dl_refcount--;
2686 
2687     if (root->refcount == 1) {
2688 	/*
2689 	 * The object will be no longer referenced, so we must unload it.
2690 	 * First, call the fini functions.
2691 	 */
2692 	objlist_call_fini(&list_fini, root, &lockstate);
2693 
2694 	unref_dag(root);
2695 
2696 	/* Finish cleaning up the newly-unreferenced objects. */
2697 	GDB_STATE(RT_DELETE,&root->linkmap);
2698 	unload_object(root);
2699 	GDB_STATE(RT_CONSISTENT,NULL);
2700     } else
2701 	unref_dag(root);
2702 
2703     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2704     lock_release(rtld_bind_lock, &lockstate);
2705     return 0;
2706 }
2707 
2708 char *
2709 dlerror(void)
2710 {
2711     char *msg = error_message;
2712     error_message = NULL;
2713     return msg;
2714 }
2715 
2716 /*
2717  * This function is deprecated and has no effect.
2718  */
2719 void
2720 dllockinit(void *context,
2721 	   void *(*lock_create)(void *context),
2722            void (*rlock_acquire)(void *lock),
2723            void (*wlock_acquire)(void *lock),
2724            void (*lock_release)(void *lock),
2725            void (*lock_destroy)(void *lock),
2726 	   void (*context_destroy)(void *context))
2727 {
2728     static void *cur_context;
2729     static void (*cur_context_destroy)(void *);
2730 
2731     /* Just destroy the context from the previous call, if necessary. */
2732     if (cur_context_destroy != NULL)
2733 	cur_context_destroy(cur_context);
2734     cur_context = context;
2735     cur_context_destroy = context_destroy;
2736 }
2737 
2738 void *
2739 dlopen(const char *name, int mode)
2740 {
2741 
2742 	return (rtld_dlopen(name, -1, mode));
2743 }
2744 
2745 void *
2746 fdlopen(int fd, int mode)
2747 {
2748 
2749 	return (rtld_dlopen(NULL, fd, mode));
2750 }
2751 
2752 static void *
2753 rtld_dlopen(const char *name, int fd, int mode)
2754 {
2755     RtldLockState lockstate;
2756     int lo_flags;
2757 
2758     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2759     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2760     if (ld_tracing != NULL) {
2761 	rlock_acquire(rtld_bind_lock, &lockstate);
2762 	if (sigsetjmp(lockstate.env, 0) != 0)
2763 	    lock_upgrade(rtld_bind_lock, &lockstate);
2764 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2765 	lock_release(rtld_bind_lock, &lockstate);
2766     }
2767     lo_flags = RTLD_LO_DLOPEN;
2768     if (mode & RTLD_NODELETE)
2769 	    lo_flags |= RTLD_LO_NODELETE;
2770     if (mode & RTLD_NOLOAD)
2771 	    lo_flags |= RTLD_LO_NOLOAD;
2772     if (ld_tracing != NULL)
2773 	    lo_flags |= RTLD_LO_TRACE;
2774 
2775     return (dlopen_object(name, fd, obj_main, lo_flags,
2776       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2777 }
2778 
2779 static void
2780 dlopen_cleanup(Obj_Entry *obj)
2781 {
2782 
2783 	obj->dl_refcount--;
2784 	unref_dag(obj);
2785 	if (obj->refcount == 0)
2786 		unload_object(obj);
2787 }
2788 
2789 static Obj_Entry *
2790 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2791     int mode, RtldLockState *lockstate)
2792 {
2793     Obj_Entry **old_obj_tail;
2794     Obj_Entry *obj;
2795     Objlist initlist;
2796     RtldLockState mlockstate;
2797     int result;
2798 
2799     objlist_init(&initlist);
2800 
2801     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2802 	wlock_acquire(rtld_bind_lock, &mlockstate);
2803 	lockstate = &mlockstate;
2804     }
2805     GDB_STATE(RT_ADD,NULL);
2806 
2807     old_obj_tail = obj_tail;
2808     obj = NULL;
2809     if (name == NULL && fd == -1) {
2810 	obj = obj_main;
2811 	obj->refcount++;
2812     } else {
2813 	obj = load_object(name, fd, refobj, lo_flags);
2814     }
2815 
2816     if (obj) {
2817 	obj->dl_refcount++;
2818 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2819 	    objlist_push_tail(&list_global, obj);
2820 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2821 	    assert(*old_obj_tail == obj);
2822 	    result = load_needed_objects(obj,
2823 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2824 	    init_dag(obj);
2825 	    ref_dag(obj);
2826 	    if (result != -1)
2827 		result = rtld_verify_versions(&obj->dagmembers);
2828 	    if (result != -1 && ld_tracing)
2829 		goto trace;
2830 	    if (result == -1 || relocate_object_dag(obj,
2831 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2832 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2833 	      lockstate) == -1) {
2834 		dlopen_cleanup(obj);
2835 		obj = NULL;
2836 	    } else if (lo_flags & RTLD_LO_EARLY) {
2837 		/*
2838 		 * Do not call the init functions for early loaded
2839 		 * filtees.  The image is still not initialized enough
2840 		 * for them to work.
2841 		 *
2842 		 * Our object is found by the global object list and
2843 		 * will be ordered among all init calls done right
2844 		 * before transferring control to main.
2845 		 */
2846 	    } else {
2847 		/* Make list of init functions to call. */
2848 		initlist_add_objects(obj, &obj->next, &initlist);
2849 	    }
2850 	    /*
2851 	     * Process all no_delete objects here, given them own
2852 	     * DAGs to prevent their dependencies from being unloaded.
2853 	     * This has to be done after we have loaded all of the
2854 	     * dependencies, so that we do not miss any.
2855 	     */
2856 	    if (obj != NULL)
2857 		process_nodelete(obj);
2858 	} else {
2859 	    /*
2860 	     * Bump the reference counts for objects on this DAG.  If
2861 	     * this is the first dlopen() call for the object that was
2862 	     * already loaded as a dependency, initialize the dag
2863 	     * starting at it.
2864 	     */
2865 	    init_dag(obj);
2866 	    ref_dag(obj);
2867 
2868 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2869 		goto trace;
2870 	}
2871 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2872 	  obj->z_nodelete) && !obj->ref_nodel) {
2873 	    dbg("obj %s nodelete", obj->path);
2874 	    ref_dag(obj);
2875 	    obj->z_nodelete = obj->ref_nodel = true;
2876 	}
2877     }
2878 
2879     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2880 	name);
2881     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2882 
2883     if (!(lo_flags & RTLD_LO_EARLY)) {
2884 	map_stacks_exec(lockstate);
2885     }
2886 
2887     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2888       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2889       lockstate) == -1) {
2890 	objlist_clear(&initlist);
2891 	dlopen_cleanup(obj);
2892 	if (lockstate == &mlockstate)
2893 	    lock_release(rtld_bind_lock, lockstate);
2894 	return (NULL);
2895     }
2896 
2897     if (!(lo_flags & RTLD_LO_EARLY)) {
2898 	/* Call the init functions. */
2899 	objlist_call_init(&initlist, lockstate);
2900     }
2901     objlist_clear(&initlist);
2902     if (lockstate == &mlockstate)
2903 	lock_release(rtld_bind_lock, lockstate);
2904     return obj;
2905 trace:
2906     trace_loaded_objects(obj);
2907     if (lockstate == &mlockstate)
2908 	lock_release(rtld_bind_lock, lockstate);
2909     exit(0);
2910 }
2911 
2912 static void *
2913 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2914     int flags)
2915 {
2916     DoneList donelist;
2917     const Obj_Entry *obj, *defobj;
2918     const Elf_Sym *def;
2919     SymLook req;
2920     RtldLockState lockstate;
2921 #ifndef __ia64__
2922     tls_index ti;
2923 #endif
2924     int res;
2925 
2926     def = NULL;
2927     defobj = NULL;
2928     symlook_init(&req, name);
2929     req.ventry = ve;
2930     req.flags = flags | SYMLOOK_IN_PLT;
2931     req.lockstate = &lockstate;
2932 
2933     rlock_acquire(rtld_bind_lock, &lockstate);
2934     if (sigsetjmp(lockstate.env, 0) != 0)
2935 	    lock_upgrade(rtld_bind_lock, &lockstate);
2936     if (handle == NULL || handle == RTLD_NEXT ||
2937 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2938 
2939 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2940 	    _rtld_error("Cannot determine caller's shared object");
2941 	    lock_release(rtld_bind_lock, &lockstate);
2942 	    return NULL;
2943 	}
2944 	if (handle == NULL) {	/* Just the caller's shared object. */
2945 	    res = symlook_obj(&req, obj);
2946 	    if (res == 0) {
2947 		def = req.sym_out;
2948 		defobj = req.defobj_out;
2949 	    }
2950 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2951 		   handle == RTLD_SELF) { /* ... caller included */
2952 	    if (handle == RTLD_NEXT)
2953 		obj = obj->next;
2954 	    for (; obj != NULL; obj = obj->next) {
2955 		res = symlook_obj(&req, obj);
2956 		if (res == 0) {
2957 		    if (def == NULL ||
2958 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2959 			def = req.sym_out;
2960 			defobj = req.defobj_out;
2961 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2962 			    break;
2963 		    }
2964 		}
2965 	    }
2966 	    /*
2967 	     * Search the dynamic linker itself, and possibly resolve the
2968 	     * symbol from there.  This is how the application links to
2969 	     * dynamic linker services such as dlopen.
2970 	     */
2971 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2972 		res = symlook_obj(&req, &obj_rtld);
2973 		if (res == 0) {
2974 		    def = req.sym_out;
2975 		    defobj = req.defobj_out;
2976 		}
2977 	    }
2978 	} else {
2979 	    assert(handle == RTLD_DEFAULT);
2980 	    res = symlook_default(&req, obj);
2981 	    if (res == 0) {
2982 		defobj = req.defobj_out;
2983 		def = req.sym_out;
2984 	    }
2985 	}
2986     } else {
2987 	if ((obj = dlcheck(handle)) == NULL) {
2988 	    lock_release(rtld_bind_lock, &lockstate);
2989 	    return NULL;
2990 	}
2991 
2992 	donelist_init(&donelist);
2993 	if (obj->mainprog) {
2994             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2995 	    res = symlook_global(&req, &donelist);
2996 	    if (res == 0) {
2997 		def = req.sym_out;
2998 		defobj = req.defobj_out;
2999 	    }
3000 	    /*
3001 	     * Search the dynamic linker itself, and possibly resolve the
3002 	     * symbol from there.  This is how the application links to
3003 	     * dynamic linker services such as dlopen.
3004 	     */
3005 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3006 		res = symlook_obj(&req, &obj_rtld);
3007 		if (res == 0) {
3008 		    def = req.sym_out;
3009 		    defobj = req.defobj_out;
3010 		}
3011 	    }
3012 	}
3013 	else {
3014 	    /* Search the whole DAG rooted at the given object. */
3015 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3016 	    if (res == 0) {
3017 		def = req.sym_out;
3018 		defobj = req.defobj_out;
3019 	    }
3020 	}
3021     }
3022 
3023     if (def != NULL) {
3024 	lock_release(rtld_bind_lock, &lockstate);
3025 
3026 	/*
3027 	 * The value required by the caller is derived from the value
3028 	 * of the symbol. For the ia64 architecture, we need to
3029 	 * construct a function descriptor which the caller can use to
3030 	 * call the function with the right 'gp' value. For other
3031 	 * architectures and for non-functions, the value is simply
3032 	 * the relocated value of the symbol.
3033 	 */
3034 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3035 	    return (make_function_pointer(def, defobj));
3036 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3037 	    return (rtld_resolve_ifunc(defobj, def));
3038 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3039 #ifdef __ia64__
3040 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3041 #else
3042 	    ti.ti_module = defobj->tlsindex;
3043 	    ti.ti_offset = def->st_value;
3044 	    return (__tls_get_addr(&ti));
3045 #endif
3046 	} else
3047 	    return (defobj->relocbase + def->st_value);
3048     }
3049 
3050     _rtld_error("Undefined symbol \"%s\"", name);
3051     lock_release(rtld_bind_lock, &lockstate);
3052     return NULL;
3053 }
3054 
3055 void *
3056 dlsym(void *handle, const char *name)
3057 {
3058 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3059 	    SYMLOOK_DLSYM);
3060 }
3061 
3062 dlfunc_t
3063 dlfunc(void *handle, const char *name)
3064 {
3065 	union {
3066 		void *d;
3067 		dlfunc_t f;
3068 	} rv;
3069 
3070 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3071 	    SYMLOOK_DLSYM);
3072 	return (rv.f);
3073 }
3074 
3075 void *
3076 dlvsym(void *handle, const char *name, const char *version)
3077 {
3078 	Ver_Entry ventry;
3079 
3080 	ventry.name = version;
3081 	ventry.file = NULL;
3082 	ventry.hash = elf_hash(version);
3083 	ventry.flags= 0;
3084 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3085 	    SYMLOOK_DLSYM);
3086 }
3087 
3088 int
3089 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3090 {
3091     const Obj_Entry *obj;
3092     RtldLockState lockstate;
3093 
3094     rlock_acquire(rtld_bind_lock, &lockstate);
3095     obj = obj_from_addr(addr);
3096     if (obj == NULL) {
3097         _rtld_error("No shared object contains address");
3098 	lock_release(rtld_bind_lock, &lockstate);
3099         return (0);
3100     }
3101     rtld_fill_dl_phdr_info(obj, phdr_info);
3102     lock_release(rtld_bind_lock, &lockstate);
3103     return (1);
3104 }
3105 
3106 int
3107 dladdr(const void *addr, Dl_info *info)
3108 {
3109     const Obj_Entry *obj;
3110     const Elf_Sym *def;
3111     void *symbol_addr;
3112     unsigned long symoffset;
3113     RtldLockState lockstate;
3114 
3115     rlock_acquire(rtld_bind_lock, &lockstate);
3116     obj = obj_from_addr(addr);
3117     if (obj == NULL) {
3118         _rtld_error("No shared object contains address");
3119 	lock_release(rtld_bind_lock, &lockstate);
3120         return 0;
3121     }
3122     info->dli_fname = obj->path;
3123     info->dli_fbase = obj->mapbase;
3124     info->dli_saddr = (void *)0;
3125     info->dli_sname = NULL;
3126 
3127     /*
3128      * Walk the symbol list looking for the symbol whose address is
3129      * closest to the address sent in.
3130      */
3131     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3132         def = obj->symtab + symoffset;
3133 
3134         /*
3135          * For skip the symbol if st_shndx is either SHN_UNDEF or
3136          * SHN_COMMON.
3137          */
3138         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3139             continue;
3140 
3141         /*
3142          * If the symbol is greater than the specified address, or if it
3143          * is further away from addr than the current nearest symbol,
3144          * then reject it.
3145          */
3146         symbol_addr = obj->relocbase + def->st_value;
3147         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3148             continue;
3149 
3150         /* Update our idea of the nearest symbol. */
3151         info->dli_sname = obj->strtab + def->st_name;
3152         info->dli_saddr = symbol_addr;
3153 
3154         /* Exact match? */
3155         if (info->dli_saddr == addr)
3156             break;
3157     }
3158     lock_release(rtld_bind_lock, &lockstate);
3159     return 1;
3160 }
3161 
3162 int
3163 dlinfo(void *handle, int request, void *p)
3164 {
3165     const Obj_Entry *obj;
3166     RtldLockState lockstate;
3167     int error;
3168 
3169     rlock_acquire(rtld_bind_lock, &lockstate);
3170 
3171     if (handle == NULL || handle == RTLD_SELF) {
3172 	void *retaddr;
3173 
3174 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3175 	if ((obj = obj_from_addr(retaddr)) == NULL)
3176 	    _rtld_error("Cannot determine caller's shared object");
3177     } else
3178 	obj = dlcheck(handle);
3179 
3180     if (obj == NULL) {
3181 	lock_release(rtld_bind_lock, &lockstate);
3182 	return (-1);
3183     }
3184 
3185     error = 0;
3186     switch (request) {
3187     case RTLD_DI_LINKMAP:
3188 	*((struct link_map const **)p) = &obj->linkmap;
3189 	break;
3190     case RTLD_DI_ORIGIN:
3191 	error = rtld_dirname(obj->path, p);
3192 	break;
3193 
3194     case RTLD_DI_SERINFOSIZE:
3195     case RTLD_DI_SERINFO:
3196 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3197 	break;
3198 
3199     default:
3200 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3201 	error = -1;
3202     }
3203 
3204     lock_release(rtld_bind_lock, &lockstate);
3205 
3206     return (error);
3207 }
3208 
3209 static void
3210 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3211 {
3212 
3213 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3214 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3215 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3216 	phdr_info->dlpi_phdr = obj->phdr;
3217 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3218 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3219 	phdr_info->dlpi_tls_data = obj->tlsinit;
3220 	phdr_info->dlpi_adds = obj_loads;
3221 	phdr_info->dlpi_subs = obj_loads - obj_count;
3222 }
3223 
3224 int
3225 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3226 {
3227     struct dl_phdr_info phdr_info;
3228     const Obj_Entry *obj;
3229     RtldLockState bind_lockstate, phdr_lockstate;
3230     int error;
3231 
3232     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3233     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3234 
3235     error = 0;
3236 
3237     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3238 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3239 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3240 		break;
3241 
3242     }
3243     lock_release(rtld_bind_lock, &bind_lockstate);
3244     lock_release(rtld_phdr_lock, &phdr_lockstate);
3245 
3246     return (error);
3247 }
3248 
3249 static void *
3250 fill_search_info(const char *dir, size_t dirlen, void *param)
3251 {
3252     struct fill_search_info_args *arg;
3253 
3254     arg = param;
3255 
3256     if (arg->request == RTLD_DI_SERINFOSIZE) {
3257 	arg->serinfo->dls_cnt ++;
3258 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3259     } else {
3260 	struct dl_serpath *s_entry;
3261 
3262 	s_entry = arg->serpath;
3263 	s_entry->dls_name  = arg->strspace;
3264 	s_entry->dls_flags = arg->flags;
3265 
3266 	strncpy(arg->strspace, dir, dirlen);
3267 	arg->strspace[dirlen] = '\0';
3268 
3269 	arg->strspace += dirlen + 1;
3270 	arg->serpath++;
3271     }
3272 
3273     return (NULL);
3274 }
3275 
3276 static int
3277 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3278 {
3279     struct dl_serinfo _info;
3280     struct fill_search_info_args args;
3281 
3282     args.request = RTLD_DI_SERINFOSIZE;
3283     args.serinfo = &_info;
3284 
3285     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3286     _info.dls_cnt  = 0;
3287 
3288     path_enumerate(obj->rpath, fill_search_info, &args);
3289     path_enumerate(ld_library_path, fill_search_info, &args);
3290     path_enumerate(obj->runpath, fill_search_info, &args);
3291     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3292     if (!obj->z_nodeflib)
3293       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3294 
3295 
3296     if (request == RTLD_DI_SERINFOSIZE) {
3297 	info->dls_size = _info.dls_size;
3298 	info->dls_cnt = _info.dls_cnt;
3299 	return (0);
3300     }
3301 
3302     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3303 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3304 	return (-1);
3305     }
3306 
3307     args.request  = RTLD_DI_SERINFO;
3308     args.serinfo  = info;
3309     args.serpath  = &info->dls_serpath[0];
3310     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3311 
3312     args.flags = LA_SER_RUNPATH;
3313     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3314 	return (-1);
3315 
3316     args.flags = LA_SER_LIBPATH;
3317     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3318 	return (-1);
3319 
3320     args.flags = LA_SER_RUNPATH;
3321     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3322 	return (-1);
3323 
3324     args.flags = LA_SER_CONFIG;
3325     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3326       != NULL)
3327 	return (-1);
3328 
3329     args.flags = LA_SER_DEFAULT;
3330     if (!obj->z_nodeflib &&
3331       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3332 	return (-1);
3333     return (0);
3334 }
3335 
3336 static int
3337 rtld_dirname(const char *path, char *bname)
3338 {
3339     const char *endp;
3340 
3341     /* Empty or NULL string gets treated as "." */
3342     if (path == NULL || *path == '\0') {
3343 	bname[0] = '.';
3344 	bname[1] = '\0';
3345 	return (0);
3346     }
3347 
3348     /* Strip trailing slashes */
3349     endp = path + strlen(path) - 1;
3350     while (endp > path && *endp == '/')
3351 	endp--;
3352 
3353     /* Find the start of the dir */
3354     while (endp > path && *endp != '/')
3355 	endp--;
3356 
3357     /* Either the dir is "/" or there are no slashes */
3358     if (endp == path) {
3359 	bname[0] = *endp == '/' ? '/' : '.';
3360 	bname[1] = '\0';
3361 	return (0);
3362     } else {
3363 	do {
3364 	    endp--;
3365 	} while (endp > path && *endp == '/');
3366     }
3367 
3368     if (endp - path + 2 > PATH_MAX)
3369     {
3370 	_rtld_error("Filename is too long: %s", path);
3371 	return(-1);
3372     }
3373 
3374     strncpy(bname, path, endp - path + 1);
3375     bname[endp - path + 1] = '\0';
3376     return (0);
3377 }
3378 
3379 static int
3380 rtld_dirname_abs(const char *path, char *base)
3381 {
3382 	char base_rel[PATH_MAX];
3383 
3384 	if (rtld_dirname(path, base) == -1)
3385 		return (-1);
3386 	if (base[0] == '/')
3387 		return (0);
3388 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3389 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3390 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3391 		return (-1);
3392 	strcpy(base, base_rel);
3393 	return (0);
3394 }
3395 
3396 static void
3397 linkmap_add(Obj_Entry *obj)
3398 {
3399     struct link_map *l = &obj->linkmap;
3400     struct link_map *prev;
3401 
3402     obj->linkmap.l_name = obj->path;
3403     obj->linkmap.l_addr = obj->mapbase;
3404     obj->linkmap.l_ld = obj->dynamic;
3405 #ifdef __mips__
3406     /* GDB needs load offset on MIPS to use the symbols */
3407     obj->linkmap.l_offs = obj->relocbase;
3408 #endif
3409 
3410     if (r_debug.r_map == NULL) {
3411 	r_debug.r_map = l;
3412 	return;
3413     }
3414 
3415     /*
3416      * Scan to the end of the list, but not past the entry for the
3417      * dynamic linker, which we want to keep at the very end.
3418      */
3419     for (prev = r_debug.r_map;
3420       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3421       prev = prev->l_next)
3422 	;
3423 
3424     /* Link in the new entry. */
3425     l->l_prev = prev;
3426     l->l_next = prev->l_next;
3427     if (l->l_next != NULL)
3428 	l->l_next->l_prev = l;
3429     prev->l_next = l;
3430 }
3431 
3432 static void
3433 linkmap_delete(Obj_Entry *obj)
3434 {
3435     struct link_map *l = &obj->linkmap;
3436 
3437     if (l->l_prev == NULL) {
3438 	if ((r_debug.r_map = l->l_next) != NULL)
3439 	    l->l_next->l_prev = NULL;
3440 	return;
3441     }
3442 
3443     if ((l->l_prev->l_next = l->l_next) != NULL)
3444 	l->l_next->l_prev = l->l_prev;
3445 }
3446 
3447 /*
3448  * Function for the debugger to set a breakpoint on to gain control.
3449  *
3450  * The two parameters allow the debugger to easily find and determine
3451  * what the runtime loader is doing and to whom it is doing it.
3452  *
3453  * When the loadhook trap is hit (r_debug_state, set at program
3454  * initialization), the arguments can be found on the stack:
3455  *
3456  *  +8   struct link_map *m
3457  *  +4   struct r_debug  *rd
3458  *  +0   RetAddr
3459  */
3460 void
3461 r_debug_state(struct r_debug* rd, struct link_map *m)
3462 {
3463     /*
3464      * The following is a hack to force the compiler to emit calls to
3465      * this function, even when optimizing.  If the function is empty,
3466      * the compiler is not obliged to emit any code for calls to it,
3467      * even when marked __noinline.  However, gdb depends on those
3468      * calls being made.
3469      */
3470     __asm __volatile("" : : : "memory");
3471 }
3472 
3473 /*
3474  * Get address of the pointer variable in the main program.
3475  * Prefer non-weak symbol over the weak one.
3476  */
3477 static const void **
3478 get_program_var_addr(const char *name, RtldLockState *lockstate)
3479 {
3480     SymLook req;
3481     DoneList donelist;
3482 
3483     symlook_init(&req, name);
3484     req.lockstate = lockstate;
3485     donelist_init(&donelist);
3486     if (symlook_global(&req, &donelist) != 0)
3487 	return (NULL);
3488     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3489 	return ((const void **)make_function_pointer(req.sym_out,
3490 	  req.defobj_out));
3491     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3492 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3493     else
3494 	return ((const void **)(req.defobj_out->relocbase +
3495 	  req.sym_out->st_value));
3496 }
3497 
3498 /*
3499  * Set a pointer variable in the main program to the given value.  This
3500  * is used to set key variables such as "environ" before any of the
3501  * init functions are called.
3502  */
3503 static void
3504 set_program_var(const char *name, const void *value)
3505 {
3506     const void **addr;
3507 
3508     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3509 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3510 	*addr = value;
3511     }
3512 }
3513 
3514 /*
3515  * Search the global objects, including dependencies and main object,
3516  * for the given symbol.
3517  */
3518 static int
3519 symlook_global(SymLook *req, DoneList *donelist)
3520 {
3521     SymLook req1;
3522     const Objlist_Entry *elm;
3523     int res;
3524 
3525     symlook_init_from_req(&req1, req);
3526 
3527     /* Search all objects loaded at program start up. */
3528     if (req->defobj_out == NULL ||
3529       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3530 	res = symlook_list(&req1, &list_main, donelist);
3531 	if (res == 0 && (req->defobj_out == NULL ||
3532 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3533 	    req->sym_out = req1.sym_out;
3534 	    req->defobj_out = req1.defobj_out;
3535 	    assert(req->defobj_out != NULL);
3536 	}
3537     }
3538 
3539     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3540     STAILQ_FOREACH(elm, &list_global, link) {
3541 	if (req->defobj_out != NULL &&
3542 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3543 	    break;
3544 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3545 	if (res == 0 && (req->defobj_out == NULL ||
3546 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3547 	    req->sym_out = req1.sym_out;
3548 	    req->defobj_out = req1.defobj_out;
3549 	    assert(req->defobj_out != NULL);
3550 	}
3551     }
3552 
3553     return (req->sym_out != NULL ? 0 : ESRCH);
3554 }
3555 
3556 /*
3557  * Given a symbol name in a referencing object, find the corresponding
3558  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3559  * no definition was found.  Returns a pointer to the Obj_Entry of the
3560  * defining object via the reference parameter DEFOBJ_OUT.
3561  */
3562 static int
3563 symlook_default(SymLook *req, const Obj_Entry *refobj)
3564 {
3565     DoneList donelist;
3566     const Objlist_Entry *elm;
3567     SymLook req1;
3568     int res;
3569 
3570     donelist_init(&donelist);
3571     symlook_init_from_req(&req1, req);
3572 
3573     /* Look first in the referencing object if linked symbolically. */
3574     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3575 	res = symlook_obj(&req1, refobj);
3576 	if (res == 0) {
3577 	    req->sym_out = req1.sym_out;
3578 	    req->defobj_out = req1.defobj_out;
3579 	    assert(req->defobj_out != NULL);
3580 	}
3581     }
3582 
3583     symlook_global(req, &donelist);
3584 
3585     /* Search all dlopened DAGs containing the referencing object. */
3586     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3587 	if (req->sym_out != NULL &&
3588 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3589 	    break;
3590 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3591 	if (res == 0 && (req->sym_out == NULL ||
3592 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3593 	    req->sym_out = req1.sym_out;
3594 	    req->defobj_out = req1.defobj_out;
3595 	    assert(req->defobj_out != NULL);
3596 	}
3597     }
3598 
3599     /*
3600      * Search the dynamic linker itself, and possibly resolve the
3601      * symbol from there.  This is how the application links to
3602      * dynamic linker services such as dlopen.
3603      */
3604     if (req->sym_out == NULL ||
3605       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3606 	res = symlook_obj(&req1, &obj_rtld);
3607 	if (res == 0) {
3608 	    req->sym_out = req1.sym_out;
3609 	    req->defobj_out = req1.defobj_out;
3610 	    assert(req->defobj_out != NULL);
3611 	}
3612     }
3613 
3614     return (req->sym_out != NULL ? 0 : ESRCH);
3615 }
3616 
3617 static int
3618 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3619 {
3620     const Elf_Sym *def;
3621     const Obj_Entry *defobj;
3622     const Objlist_Entry *elm;
3623     SymLook req1;
3624     int res;
3625 
3626     def = NULL;
3627     defobj = NULL;
3628     STAILQ_FOREACH(elm, objlist, link) {
3629 	if (donelist_check(dlp, elm->obj))
3630 	    continue;
3631 	symlook_init_from_req(&req1, req);
3632 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3633 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3634 		def = req1.sym_out;
3635 		defobj = req1.defobj_out;
3636 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3637 		    break;
3638 	    }
3639 	}
3640     }
3641     if (def != NULL) {
3642 	req->sym_out = def;
3643 	req->defobj_out = defobj;
3644 	return (0);
3645     }
3646     return (ESRCH);
3647 }
3648 
3649 /*
3650  * Search the chain of DAGS cointed to by the given Needed_Entry
3651  * for a symbol of the given name.  Each DAG is scanned completely
3652  * before advancing to the next one.  Returns a pointer to the symbol,
3653  * or NULL if no definition was found.
3654  */
3655 static int
3656 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3657 {
3658     const Elf_Sym *def;
3659     const Needed_Entry *n;
3660     const Obj_Entry *defobj;
3661     SymLook req1;
3662     int res;
3663 
3664     def = NULL;
3665     defobj = NULL;
3666     symlook_init_from_req(&req1, req);
3667     for (n = needed; n != NULL; n = n->next) {
3668 	if (n->obj == NULL ||
3669 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3670 	    continue;
3671 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3672 	    def = req1.sym_out;
3673 	    defobj = req1.defobj_out;
3674 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3675 		break;
3676 	}
3677     }
3678     if (def != NULL) {
3679 	req->sym_out = def;
3680 	req->defobj_out = defobj;
3681 	return (0);
3682     }
3683     return (ESRCH);
3684 }
3685 
3686 /*
3687  * Search the symbol table of a single shared object for a symbol of
3688  * the given name and version, if requested.  Returns a pointer to the
3689  * symbol, or NULL if no definition was found.  If the object is
3690  * filter, return filtered symbol from filtee.
3691  *
3692  * The symbol's hash value is passed in for efficiency reasons; that
3693  * eliminates many recomputations of the hash value.
3694  */
3695 int
3696 symlook_obj(SymLook *req, const Obj_Entry *obj)
3697 {
3698     DoneList donelist;
3699     SymLook req1;
3700     int flags, res, mres;
3701 
3702     /*
3703      * If there is at least one valid hash at this point, we prefer to
3704      * use the faster GNU version if available.
3705      */
3706     if (obj->valid_hash_gnu)
3707 	mres = symlook_obj1_gnu(req, obj);
3708     else if (obj->valid_hash_sysv)
3709 	mres = symlook_obj1_sysv(req, obj);
3710     else
3711 	return (EINVAL);
3712 
3713     if (mres == 0) {
3714 	if (obj->needed_filtees != NULL) {
3715 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3716 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3717 	    donelist_init(&donelist);
3718 	    symlook_init_from_req(&req1, req);
3719 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3720 	    if (res == 0) {
3721 		req->sym_out = req1.sym_out;
3722 		req->defobj_out = req1.defobj_out;
3723 	    }
3724 	    return (res);
3725 	}
3726 	if (obj->needed_aux_filtees != NULL) {
3727 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3728 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3729 	    donelist_init(&donelist);
3730 	    symlook_init_from_req(&req1, req);
3731 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3732 	    if (res == 0) {
3733 		req->sym_out = req1.sym_out;
3734 		req->defobj_out = req1.defobj_out;
3735 		return (res);
3736 	    }
3737 	}
3738     }
3739     return (mres);
3740 }
3741 
3742 /* Symbol match routine common to both hash functions */
3743 static bool
3744 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3745     const unsigned long symnum)
3746 {
3747 	Elf_Versym verndx;
3748 	const Elf_Sym *symp;
3749 	const char *strp;
3750 
3751 	symp = obj->symtab + symnum;
3752 	strp = obj->strtab + symp->st_name;
3753 
3754 	switch (ELF_ST_TYPE(symp->st_info)) {
3755 	case STT_FUNC:
3756 	case STT_NOTYPE:
3757 	case STT_OBJECT:
3758 	case STT_COMMON:
3759 	case STT_GNU_IFUNC:
3760 		if (symp->st_value == 0)
3761 			return (false);
3762 		/* fallthrough */
3763 	case STT_TLS:
3764 		if (symp->st_shndx != SHN_UNDEF)
3765 			break;
3766 #ifndef __mips__
3767 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3768 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3769 			break;
3770 		/* fallthrough */
3771 #endif
3772 	default:
3773 		return (false);
3774 	}
3775 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3776 		return (false);
3777 
3778 	if (req->ventry == NULL) {
3779 		if (obj->versyms != NULL) {
3780 			verndx = VER_NDX(obj->versyms[symnum]);
3781 			if (verndx > obj->vernum) {
3782 				_rtld_error(
3783 				    "%s: symbol %s references wrong version %d",
3784 				    obj->path, obj->strtab + symnum, verndx);
3785 				return (false);
3786 			}
3787 			/*
3788 			 * If we are not called from dlsym (i.e. this
3789 			 * is a normal relocation from unversioned
3790 			 * binary), accept the symbol immediately if
3791 			 * it happens to have first version after this
3792 			 * shared object became versioned.  Otherwise,
3793 			 * if symbol is versioned and not hidden,
3794 			 * remember it. If it is the only symbol with
3795 			 * this name exported by the shared object, it
3796 			 * will be returned as a match by the calling
3797 			 * function. If symbol is global (verndx < 2)
3798 			 * accept it unconditionally.
3799 			 */
3800 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3801 			    verndx == VER_NDX_GIVEN) {
3802 				result->sym_out = symp;
3803 				return (true);
3804 			}
3805 			else if (verndx >= VER_NDX_GIVEN) {
3806 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3807 				    == 0) {
3808 					if (result->vsymp == NULL)
3809 						result->vsymp = symp;
3810 					result->vcount++;
3811 				}
3812 				return (false);
3813 			}
3814 		}
3815 		result->sym_out = symp;
3816 		return (true);
3817 	}
3818 	if (obj->versyms == NULL) {
3819 		if (object_match_name(obj, req->ventry->name)) {
3820 			_rtld_error("%s: object %s should provide version %s "
3821 			    "for symbol %s", obj_rtld.path, obj->path,
3822 			    req->ventry->name, obj->strtab + symnum);
3823 			return (false);
3824 		}
3825 	} else {
3826 		verndx = VER_NDX(obj->versyms[symnum]);
3827 		if (verndx > obj->vernum) {
3828 			_rtld_error("%s: symbol %s references wrong version %d",
3829 			    obj->path, obj->strtab + symnum, verndx);
3830 			return (false);
3831 		}
3832 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3833 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3834 			/*
3835 			 * Version does not match. Look if this is a
3836 			 * global symbol and if it is not hidden. If
3837 			 * global symbol (verndx < 2) is available,
3838 			 * use it. Do not return symbol if we are
3839 			 * called by dlvsym, because dlvsym looks for
3840 			 * a specific version and default one is not
3841 			 * what dlvsym wants.
3842 			 */
3843 			if ((req->flags & SYMLOOK_DLSYM) ||
3844 			    (verndx >= VER_NDX_GIVEN) ||
3845 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3846 				return (false);
3847 		}
3848 	}
3849 	result->sym_out = symp;
3850 	return (true);
3851 }
3852 
3853 /*
3854  * Search for symbol using SysV hash function.
3855  * obj->buckets is known not to be NULL at this point; the test for this was
3856  * performed with the obj->valid_hash_sysv assignment.
3857  */
3858 static int
3859 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3860 {
3861 	unsigned long symnum;
3862 	Sym_Match_Result matchres;
3863 
3864 	matchres.sym_out = NULL;
3865 	matchres.vsymp = NULL;
3866 	matchres.vcount = 0;
3867 
3868 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3869 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3870 		if (symnum >= obj->nchains)
3871 			return (ESRCH);	/* Bad object */
3872 
3873 		if (matched_symbol(req, obj, &matchres, symnum)) {
3874 			req->sym_out = matchres.sym_out;
3875 			req->defobj_out = obj;
3876 			return (0);
3877 		}
3878 	}
3879 	if (matchres.vcount == 1) {
3880 		req->sym_out = matchres.vsymp;
3881 		req->defobj_out = obj;
3882 		return (0);
3883 	}
3884 	return (ESRCH);
3885 }
3886 
3887 /* Search for symbol using GNU hash function */
3888 static int
3889 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3890 {
3891 	Elf_Addr bloom_word;
3892 	const Elf32_Word *hashval;
3893 	Elf32_Word bucket;
3894 	Sym_Match_Result matchres;
3895 	unsigned int h1, h2;
3896 	unsigned long symnum;
3897 
3898 	matchres.sym_out = NULL;
3899 	matchres.vsymp = NULL;
3900 	matchres.vcount = 0;
3901 
3902 	/* Pick right bitmask word from Bloom filter array */
3903 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3904 	    obj->maskwords_bm_gnu];
3905 
3906 	/* Calculate modulus word size of gnu hash and its derivative */
3907 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3908 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3909 
3910 	/* Filter out the "definitely not in set" queries */
3911 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3912 		return (ESRCH);
3913 
3914 	/* Locate hash chain and corresponding value element*/
3915 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3916 	if (bucket == 0)
3917 		return (ESRCH);
3918 	hashval = &obj->chain_zero_gnu[bucket];
3919 	do {
3920 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3921 			symnum = hashval - obj->chain_zero_gnu;
3922 			if (matched_symbol(req, obj, &matchres, symnum)) {
3923 				req->sym_out = matchres.sym_out;
3924 				req->defobj_out = obj;
3925 				return (0);
3926 			}
3927 		}
3928 	} while ((*hashval++ & 1) == 0);
3929 	if (matchres.vcount == 1) {
3930 		req->sym_out = matchres.vsymp;
3931 		req->defobj_out = obj;
3932 		return (0);
3933 	}
3934 	return (ESRCH);
3935 }
3936 
3937 static void
3938 trace_loaded_objects(Obj_Entry *obj)
3939 {
3940     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3941     int		c;
3942 
3943     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3944 	main_local = "";
3945 
3946     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3947 	fmt1 = "\t%o => %p (%x)\n";
3948 
3949     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3950 	fmt2 = "\t%o (%x)\n";
3951 
3952     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3953 
3954     for (; obj; obj = obj->next) {
3955 	Needed_Entry		*needed;
3956 	char			*name, *path;
3957 	bool			is_lib;
3958 
3959 	if (list_containers && obj->needed != NULL)
3960 	    rtld_printf("%s:\n", obj->path);
3961 	for (needed = obj->needed; needed; needed = needed->next) {
3962 	    if (needed->obj != NULL) {
3963 		if (needed->obj->traced && !list_containers)
3964 		    continue;
3965 		needed->obj->traced = true;
3966 		path = needed->obj->path;
3967 	    } else
3968 		path = "not found";
3969 
3970 	    name = (char *)obj->strtab + needed->name;
3971 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3972 
3973 	    fmt = is_lib ? fmt1 : fmt2;
3974 	    while ((c = *fmt++) != '\0') {
3975 		switch (c) {
3976 		default:
3977 		    rtld_putchar(c);
3978 		    continue;
3979 		case '\\':
3980 		    switch (c = *fmt) {
3981 		    case '\0':
3982 			continue;
3983 		    case 'n':
3984 			rtld_putchar('\n');
3985 			break;
3986 		    case 't':
3987 			rtld_putchar('\t');
3988 			break;
3989 		    }
3990 		    break;
3991 		case '%':
3992 		    switch (c = *fmt) {
3993 		    case '\0':
3994 			continue;
3995 		    case '%':
3996 		    default:
3997 			rtld_putchar(c);
3998 			break;
3999 		    case 'A':
4000 			rtld_putstr(main_local);
4001 			break;
4002 		    case 'a':
4003 			rtld_putstr(obj_main->path);
4004 			break;
4005 		    case 'o':
4006 			rtld_putstr(name);
4007 			break;
4008 #if 0
4009 		    case 'm':
4010 			rtld_printf("%d", sodp->sod_major);
4011 			break;
4012 		    case 'n':
4013 			rtld_printf("%d", sodp->sod_minor);
4014 			break;
4015 #endif
4016 		    case 'p':
4017 			rtld_putstr(path);
4018 			break;
4019 		    case 'x':
4020 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4021 			  0);
4022 			break;
4023 		    }
4024 		    break;
4025 		}
4026 		++fmt;
4027 	    }
4028 	}
4029     }
4030 }
4031 
4032 /*
4033  * Unload a dlopened object and its dependencies from memory and from
4034  * our data structures.  It is assumed that the DAG rooted in the
4035  * object has already been unreferenced, and that the object has a
4036  * reference count of 0.
4037  */
4038 static void
4039 unload_object(Obj_Entry *root)
4040 {
4041     Obj_Entry *obj;
4042     Obj_Entry **linkp;
4043 
4044     assert(root->refcount == 0);
4045 
4046     /*
4047      * Pass over the DAG removing unreferenced objects from
4048      * appropriate lists.
4049      */
4050     unlink_object(root);
4051 
4052     /* Unmap all objects that are no longer referenced. */
4053     linkp = &obj_list->next;
4054     while ((obj = *linkp) != NULL) {
4055 	if (obj->refcount == 0) {
4056 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4057 		obj->path);
4058 	    dbg("unloading \"%s\"", obj->path);
4059 	    unload_filtees(root);
4060 	    munmap(obj->mapbase, obj->mapsize);
4061 	    linkmap_delete(obj);
4062 	    *linkp = obj->next;
4063 	    obj_count--;
4064 	    obj_free(obj);
4065 	} else
4066 	    linkp = &obj->next;
4067     }
4068     obj_tail = linkp;
4069 }
4070 
4071 static void
4072 unlink_object(Obj_Entry *root)
4073 {
4074     Objlist_Entry *elm;
4075 
4076     if (root->refcount == 0) {
4077 	/* Remove the object from the RTLD_GLOBAL list. */
4078 	objlist_remove(&list_global, root);
4079 
4080     	/* Remove the object from all objects' DAG lists. */
4081     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4082 	    objlist_remove(&elm->obj->dldags, root);
4083 	    if (elm->obj != root)
4084 		unlink_object(elm->obj);
4085 	}
4086     }
4087 }
4088 
4089 static void
4090 ref_dag(Obj_Entry *root)
4091 {
4092     Objlist_Entry *elm;
4093 
4094     assert(root->dag_inited);
4095     STAILQ_FOREACH(elm, &root->dagmembers, link)
4096 	elm->obj->refcount++;
4097 }
4098 
4099 static void
4100 unref_dag(Obj_Entry *root)
4101 {
4102     Objlist_Entry *elm;
4103 
4104     assert(root->dag_inited);
4105     STAILQ_FOREACH(elm, &root->dagmembers, link)
4106 	elm->obj->refcount--;
4107 }
4108 
4109 /*
4110  * Common code for MD __tls_get_addr().
4111  */
4112 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4113 static void *
4114 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4115 {
4116     Elf_Addr *newdtv, *dtv;
4117     RtldLockState lockstate;
4118     int to_copy;
4119 
4120     dtv = *dtvp;
4121     /* Check dtv generation in case new modules have arrived */
4122     if (dtv[0] != tls_dtv_generation) {
4123 	wlock_acquire(rtld_bind_lock, &lockstate);
4124 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4125 	to_copy = dtv[1];
4126 	if (to_copy > tls_max_index)
4127 	    to_copy = tls_max_index;
4128 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4129 	newdtv[0] = tls_dtv_generation;
4130 	newdtv[1] = tls_max_index;
4131 	free(dtv);
4132 	lock_release(rtld_bind_lock, &lockstate);
4133 	dtv = *dtvp = newdtv;
4134     }
4135 
4136     /* Dynamically allocate module TLS if necessary */
4137     if (dtv[index + 1] == 0) {
4138 	/* Signal safe, wlock will block out signals. */
4139 	wlock_acquire(rtld_bind_lock, &lockstate);
4140 	if (!dtv[index + 1])
4141 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4142 	lock_release(rtld_bind_lock, &lockstate);
4143     }
4144     return ((void *)(dtv[index + 1] + offset));
4145 }
4146 
4147 void *
4148 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4149 {
4150 	Elf_Addr *dtv;
4151 
4152 	dtv = *dtvp;
4153 	/* Check dtv generation in case new modules have arrived */
4154 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4155 	    dtv[index + 1] != 0))
4156 		return ((void *)(dtv[index + 1] + offset));
4157 	return (tls_get_addr_slow(dtvp, index, offset));
4158 }
4159 
4160 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4161 
4162 /*
4163  * Allocate Static TLS using the Variant I method.
4164  */
4165 void *
4166 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4167 {
4168     Obj_Entry *obj;
4169     char *tcb;
4170     Elf_Addr **tls;
4171     Elf_Addr *dtv;
4172     Elf_Addr addr;
4173     int i;
4174 
4175     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4176 	return (oldtcb);
4177 
4178     assert(tcbsize >= TLS_TCB_SIZE);
4179     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4180     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4181 
4182     if (oldtcb != NULL) {
4183 	memcpy(tls, oldtcb, tls_static_space);
4184 	free(oldtcb);
4185 
4186 	/* Adjust the DTV. */
4187 	dtv = tls[0];
4188 	for (i = 0; i < dtv[1]; i++) {
4189 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4190 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4191 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4192 	    }
4193 	}
4194     } else {
4195 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4196 	tls[0] = dtv;
4197 	dtv[0] = tls_dtv_generation;
4198 	dtv[1] = tls_max_index;
4199 
4200 	for (obj = objs; obj; obj = obj->next) {
4201 	    if (obj->tlsoffset > 0) {
4202 		addr = (Elf_Addr)tls + obj->tlsoffset;
4203 		if (obj->tlsinitsize > 0)
4204 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4205 		if (obj->tlssize > obj->tlsinitsize)
4206 		    memset((void*) (addr + obj->tlsinitsize), 0,
4207 			   obj->tlssize - obj->tlsinitsize);
4208 		dtv[obj->tlsindex + 1] = addr;
4209 	    }
4210 	}
4211     }
4212 
4213     return (tcb);
4214 }
4215 
4216 void
4217 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4218 {
4219     Elf_Addr *dtv;
4220     Elf_Addr tlsstart, tlsend;
4221     int dtvsize, i;
4222 
4223     assert(tcbsize >= TLS_TCB_SIZE);
4224 
4225     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4226     tlsend = tlsstart + tls_static_space;
4227 
4228     dtv = *(Elf_Addr **)tlsstart;
4229     dtvsize = dtv[1];
4230     for (i = 0; i < dtvsize; i++) {
4231 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4232 	    free((void*)dtv[i+2]);
4233 	}
4234     }
4235     free(dtv);
4236     free(tcb);
4237 }
4238 
4239 #endif
4240 
4241 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4242 
4243 /*
4244  * Allocate Static TLS using the Variant II method.
4245  */
4246 void *
4247 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4248 {
4249     Obj_Entry *obj;
4250     size_t size;
4251     char *tls;
4252     Elf_Addr *dtv, *olddtv;
4253     Elf_Addr segbase, oldsegbase, addr;
4254     int i;
4255 
4256     size = round(tls_static_space, tcbalign);
4257 
4258     assert(tcbsize >= 2*sizeof(Elf_Addr));
4259     tls = xcalloc(1, size + tcbsize);
4260     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4261 
4262     segbase = (Elf_Addr)(tls + size);
4263     ((Elf_Addr*)segbase)[0] = segbase;
4264     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4265 
4266     dtv[0] = tls_dtv_generation;
4267     dtv[1] = tls_max_index;
4268 
4269     if (oldtls) {
4270 	/*
4271 	 * Copy the static TLS block over whole.
4272 	 */
4273 	oldsegbase = (Elf_Addr) oldtls;
4274 	memcpy((void *)(segbase - tls_static_space),
4275 	       (const void *)(oldsegbase - tls_static_space),
4276 	       tls_static_space);
4277 
4278 	/*
4279 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4280 	 * move them over.
4281 	 */
4282 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4283 	for (i = 0; i < olddtv[1]; i++) {
4284 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4285 		dtv[i+2] = olddtv[i+2];
4286 		olddtv[i+2] = 0;
4287 	    }
4288 	}
4289 
4290 	/*
4291 	 * We assume that this block was the one we created with
4292 	 * allocate_initial_tls().
4293 	 */
4294 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4295     } else {
4296 	for (obj = objs; obj; obj = obj->next) {
4297 	    if (obj->tlsoffset) {
4298 		addr = segbase - obj->tlsoffset;
4299 		memset((void*) (addr + obj->tlsinitsize),
4300 		       0, obj->tlssize - obj->tlsinitsize);
4301 		if (obj->tlsinit)
4302 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4303 		dtv[obj->tlsindex + 1] = addr;
4304 	    }
4305 	}
4306     }
4307 
4308     return (void*) segbase;
4309 }
4310 
4311 void
4312 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4313 {
4314     size_t size;
4315     Elf_Addr* dtv;
4316     int dtvsize, i;
4317     Elf_Addr tlsstart, tlsend;
4318 
4319     /*
4320      * Figure out the size of the initial TLS block so that we can
4321      * find stuff which ___tls_get_addr() allocated dynamically.
4322      */
4323     size = round(tls_static_space, tcbalign);
4324 
4325     dtv = ((Elf_Addr**)tls)[1];
4326     dtvsize = dtv[1];
4327     tlsend = (Elf_Addr) tls;
4328     tlsstart = tlsend - size;
4329     for (i = 0; i < dtvsize; i++) {
4330 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
4331 	    free((void*) dtv[i+2]);
4332 	}
4333     }
4334 
4335     free((void*) tlsstart);
4336     free((void*) dtv);
4337 }
4338 
4339 #endif
4340 
4341 /*
4342  * Allocate TLS block for module with given index.
4343  */
4344 void *
4345 allocate_module_tls(int index)
4346 {
4347     Obj_Entry* obj;
4348     char* p;
4349 
4350     for (obj = obj_list; obj; obj = obj->next) {
4351 	if (obj->tlsindex == index)
4352 	    break;
4353     }
4354     if (!obj) {
4355 	_rtld_error("Can't find module with TLS index %d", index);
4356 	die();
4357     }
4358 
4359     p = malloc(obj->tlssize);
4360     if (p == NULL) {
4361 	_rtld_error("Cannot allocate TLS block for index %d", index);
4362 	die();
4363     }
4364     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4365     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4366 
4367     return p;
4368 }
4369 
4370 bool
4371 allocate_tls_offset(Obj_Entry *obj)
4372 {
4373     size_t off;
4374 
4375     if (obj->tls_done)
4376 	return true;
4377 
4378     if (obj->tlssize == 0) {
4379 	obj->tls_done = true;
4380 	return true;
4381     }
4382 
4383     if (obj->tlsindex == 1)
4384 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4385     else
4386 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4387 				   obj->tlssize, obj->tlsalign);
4388 
4389     /*
4390      * If we have already fixed the size of the static TLS block, we
4391      * must stay within that size. When allocating the static TLS, we
4392      * leave a small amount of space spare to be used for dynamically
4393      * loading modules which use static TLS.
4394      */
4395     if (tls_static_space) {
4396 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4397 	    return false;
4398     }
4399 
4400     tls_last_offset = obj->tlsoffset = off;
4401     tls_last_size = obj->tlssize;
4402     obj->tls_done = true;
4403 
4404     return true;
4405 }
4406 
4407 void
4408 free_tls_offset(Obj_Entry *obj)
4409 {
4410 
4411     /*
4412      * If we were the last thing to allocate out of the static TLS
4413      * block, we give our space back to the 'allocator'. This is a
4414      * simplistic workaround to allow libGL.so.1 to be loaded and
4415      * unloaded multiple times.
4416      */
4417     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4418 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4419 	tls_last_offset -= obj->tlssize;
4420 	tls_last_size = 0;
4421     }
4422 }
4423 
4424 void *
4425 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4426 {
4427     void *ret;
4428     RtldLockState lockstate;
4429 
4430     wlock_acquire(rtld_bind_lock, &lockstate);
4431     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4432     lock_release(rtld_bind_lock, &lockstate);
4433     return (ret);
4434 }
4435 
4436 void
4437 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4438 {
4439     RtldLockState lockstate;
4440 
4441     wlock_acquire(rtld_bind_lock, &lockstate);
4442     free_tls(tcb, tcbsize, tcbalign);
4443     lock_release(rtld_bind_lock, &lockstate);
4444 }
4445 
4446 static void
4447 object_add_name(Obj_Entry *obj, const char *name)
4448 {
4449     Name_Entry *entry;
4450     size_t len;
4451 
4452     len = strlen(name);
4453     entry = malloc(sizeof(Name_Entry) + len);
4454 
4455     if (entry != NULL) {
4456 	strcpy(entry->name, name);
4457 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4458     }
4459 }
4460 
4461 static int
4462 object_match_name(const Obj_Entry *obj, const char *name)
4463 {
4464     Name_Entry *entry;
4465 
4466     STAILQ_FOREACH(entry, &obj->names, link) {
4467 	if (strcmp(name, entry->name) == 0)
4468 	    return (1);
4469     }
4470     return (0);
4471 }
4472 
4473 static Obj_Entry *
4474 locate_dependency(const Obj_Entry *obj, const char *name)
4475 {
4476     const Objlist_Entry *entry;
4477     const Needed_Entry *needed;
4478 
4479     STAILQ_FOREACH(entry, &list_main, link) {
4480 	if (object_match_name(entry->obj, name))
4481 	    return entry->obj;
4482     }
4483 
4484     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4485 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4486 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4487 	    /*
4488 	     * If there is DT_NEEDED for the name we are looking for,
4489 	     * we are all set.  Note that object might not be found if
4490 	     * dependency was not loaded yet, so the function can
4491 	     * return NULL here.  This is expected and handled
4492 	     * properly by the caller.
4493 	     */
4494 	    return (needed->obj);
4495 	}
4496     }
4497     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4498 	obj->path, name);
4499     die();
4500 }
4501 
4502 static int
4503 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4504     const Elf_Vernaux *vna)
4505 {
4506     const Elf_Verdef *vd;
4507     const char *vername;
4508 
4509     vername = refobj->strtab + vna->vna_name;
4510     vd = depobj->verdef;
4511     if (vd == NULL) {
4512 	_rtld_error("%s: version %s required by %s not defined",
4513 	    depobj->path, vername, refobj->path);
4514 	return (-1);
4515     }
4516     for (;;) {
4517 	if (vd->vd_version != VER_DEF_CURRENT) {
4518 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4519 		depobj->path, vd->vd_version);
4520 	    return (-1);
4521 	}
4522 	if (vna->vna_hash == vd->vd_hash) {
4523 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4524 		((char *)vd + vd->vd_aux);
4525 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4526 		return (0);
4527 	}
4528 	if (vd->vd_next == 0)
4529 	    break;
4530 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4531     }
4532     if (vna->vna_flags & VER_FLG_WEAK)
4533 	return (0);
4534     _rtld_error("%s: version %s required by %s not found",
4535 	depobj->path, vername, refobj->path);
4536     return (-1);
4537 }
4538 
4539 static int
4540 rtld_verify_object_versions(Obj_Entry *obj)
4541 {
4542     const Elf_Verneed *vn;
4543     const Elf_Verdef  *vd;
4544     const Elf_Verdaux *vda;
4545     const Elf_Vernaux *vna;
4546     const Obj_Entry *depobj;
4547     int maxvernum, vernum;
4548 
4549     if (obj->ver_checked)
4550 	return (0);
4551     obj->ver_checked = true;
4552 
4553     maxvernum = 0;
4554     /*
4555      * Walk over defined and required version records and figure out
4556      * max index used by any of them. Do very basic sanity checking
4557      * while there.
4558      */
4559     vn = obj->verneed;
4560     while (vn != NULL) {
4561 	if (vn->vn_version != VER_NEED_CURRENT) {
4562 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4563 		obj->path, vn->vn_version);
4564 	    return (-1);
4565 	}
4566 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4567 	for (;;) {
4568 	    vernum = VER_NEED_IDX(vna->vna_other);
4569 	    if (vernum > maxvernum)
4570 		maxvernum = vernum;
4571 	    if (vna->vna_next == 0)
4572 		 break;
4573 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4574 	}
4575 	if (vn->vn_next == 0)
4576 	    break;
4577 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4578     }
4579 
4580     vd = obj->verdef;
4581     while (vd != NULL) {
4582 	if (vd->vd_version != VER_DEF_CURRENT) {
4583 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4584 		obj->path, vd->vd_version);
4585 	    return (-1);
4586 	}
4587 	vernum = VER_DEF_IDX(vd->vd_ndx);
4588 	if (vernum > maxvernum)
4589 		maxvernum = vernum;
4590 	if (vd->vd_next == 0)
4591 	    break;
4592 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4593     }
4594 
4595     if (maxvernum == 0)
4596 	return (0);
4597 
4598     /*
4599      * Store version information in array indexable by version index.
4600      * Verify that object version requirements are satisfied along the
4601      * way.
4602      */
4603     obj->vernum = maxvernum + 1;
4604     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4605 
4606     vd = obj->verdef;
4607     while (vd != NULL) {
4608 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4609 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4610 	    assert(vernum <= maxvernum);
4611 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4612 	    obj->vertab[vernum].hash = vd->vd_hash;
4613 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4614 	    obj->vertab[vernum].file = NULL;
4615 	    obj->vertab[vernum].flags = 0;
4616 	}
4617 	if (vd->vd_next == 0)
4618 	    break;
4619 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4620     }
4621 
4622     vn = obj->verneed;
4623     while (vn != NULL) {
4624 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4625 	if (depobj == NULL)
4626 	    return (-1);
4627 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4628 	for (;;) {
4629 	    if (check_object_provided_version(obj, depobj, vna))
4630 		return (-1);
4631 	    vernum = VER_NEED_IDX(vna->vna_other);
4632 	    assert(vernum <= maxvernum);
4633 	    obj->vertab[vernum].hash = vna->vna_hash;
4634 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4635 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4636 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4637 		VER_INFO_HIDDEN : 0;
4638 	    if (vna->vna_next == 0)
4639 		 break;
4640 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4641 	}
4642 	if (vn->vn_next == 0)
4643 	    break;
4644 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4645     }
4646     return 0;
4647 }
4648 
4649 static int
4650 rtld_verify_versions(const Objlist *objlist)
4651 {
4652     Objlist_Entry *entry;
4653     int rc;
4654 
4655     rc = 0;
4656     STAILQ_FOREACH(entry, objlist, link) {
4657 	/*
4658 	 * Skip dummy objects or objects that have their version requirements
4659 	 * already checked.
4660 	 */
4661 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4662 	    continue;
4663 	if (rtld_verify_object_versions(entry->obj) == -1) {
4664 	    rc = -1;
4665 	    if (ld_tracing == NULL)
4666 		break;
4667 	}
4668     }
4669     if (rc == 0 || ld_tracing != NULL)
4670     	rc = rtld_verify_object_versions(&obj_rtld);
4671     return rc;
4672 }
4673 
4674 const Ver_Entry *
4675 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4676 {
4677     Elf_Versym vernum;
4678 
4679     if (obj->vertab) {
4680 	vernum = VER_NDX(obj->versyms[symnum]);
4681 	if (vernum >= obj->vernum) {
4682 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4683 		obj->path, obj->strtab + symnum, vernum);
4684 	} else if (obj->vertab[vernum].hash != 0) {
4685 	    return &obj->vertab[vernum];
4686 	}
4687     }
4688     return NULL;
4689 }
4690 
4691 int
4692 _rtld_get_stack_prot(void)
4693 {
4694 
4695 	return (stack_prot);
4696 }
4697 
4698 static void
4699 map_stacks_exec(RtldLockState *lockstate)
4700 {
4701 	void (*thr_map_stacks_exec)(void);
4702 
4703 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4704 		return;
4705 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4706 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4707 	if (thr_map_stacks_exec != NULL) {
4708 		stack_prot |= PROT_EXEC;
4709 		thr_map_stacks_exec();
4710 	}
4711 }
4712 
4713 void
4714 symlook_init(SymLook *dst, const char *name)
4715 {
4716 
4717 	bzero(dst, sizeof(*dst));
4718 	dst->name = name;
4719 	dst->hash = elf_hash(name);
4720 	dst->hash_gnu = gnu_hash(name);
4721 }
4722 
4723 static void
4724 symlook_init_from_req(SymLook *dst, const SymLook *src)
4725 {
4726 
4727 	dst->name = src->name;
4728 	dst->hash = src->hash;
4729 	dst->hash_gnu = src->hash_gnu;
4730 	dst->ventry = src->ventry;
4731 	dst->flags = src->flags;
4732 	dst->defobj_out = NULL;
4733 	dst->sym_out = NULL;
4734 	dst->lockstate = src->lockstate;
4735 }
4736 
4737 /*
4738  * Overrides for libc_pic-provided functions.
4739  */
4740 
4741 int
4742 __getosreldate(void)
4743 {
4744 	size_t len;
4745 	int oid[2];
4746 	int error, osrel;
4747 
4748 	if (osreldate != 0)
4749 		return (osreldate);
4750 
4751 	oid[0] = CTL_KERN;
4752 	oid[1] = KERN_OSRELDATE;
4753 	osrel = 0;
4754 	len = sizeof(osrel);
4755 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4756 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4757 		osreldate = osrel;
4758 	return (osreldate);
4759 }
4760 
4761 void
4762 exit(int status)
4763 {
4764 
4765 	_exit(status);
4766 }
4767 
4768 void (*__cleanup)(void);
4769 int __isthreaded = 0;
4770 int _thread_autoinit_dummy_decl = 1;
4771 
4772 /*
4773  * No unresolved symbols for rtld.
4774  */
4775 void
4776 __pthread_cxa_finalize(struct dl_phdr_info *a)
4777 {
4778 }
4779 
4780 void
4781 __stack_chk_fail(void)
4782 {
4783 
4784 	_rtld_error("stack overflow detected; terminated");
4785 	die();
4786 }
4787 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4788 
4789 void
4790 __chk_fail(void)
4791 {
4792 
4793 	_rtld_error("buffer overflow detected; terminated");
4794 	die();
4795 }
4796 
4797 const char *
4798 rtld_strerror(int errnum)
4799 {
4800 
4801 	if (errnum < 0 || errnum >= sys_nerr)
4802 		return ("Unknown error");
4803 	return (sys_errlist[errnum]);
4804 }
4805