xref: /freebsd/libexec/rtld-elf/rtld.c (revision f391d6bc1d0464f62f1b8264666c897a680156b1)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "rtld_utrace.h"
63 #include "notes.h"
64 
65 /* Types. */
66 typedef void (*func_ptr_type)();
67 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
68 
69 /*
70  * Function declarations.
71  */
72 static const char *basename(const char *);
73 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
74     const Elf_Dyn **, const Elf_Dyn **);
75 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
76     const Elf_Dyn *);
77 static void digest_dynamic(Obj_Entry *, int);
78 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
79 static Obj_Entry *dlcheck(void *);
80 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
81     int lo_flags, int mode, RtldLockState *lockstate);
82 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
83 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
84 static bool donelist_check(DoneList *, const Obj_Entry *);
85 static void errmsg_restore(char *);
86 static char *errmsg_save(void);
87 static void *fill_search_info(const char *, size_t, void *);
88 static char *find_library(const char *, const Obj_Entry *, int *);
89 static const char *gethints(bool);
90 static void init_dag(Obj_Entry *);
91 static void init_pagesizes(Elf_Auxinfo **aux_info);
92 static void init_rtld(caddr_t, Elf_Auxinfo **);
93 static void initlist_add_neededs(Needed_Entry *, Objlist *);
94 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
95 static void linkmap_add(Obj_Entry *);
96 static void linkmap_delete(Obj_Entry *);
97 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
98 static void unload_filtees(Obj_Entry *);
99 static int load_needed_objects(Obj_Entry *, int);
100 static int load_preload_objects(void);
101 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
102 static void map_stacks_exec(RtldLockState *);
103 static Obj_Entry *obj_from_addr(const void *);
104 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
105 static void objlist_call_init(Objlist *, RtldLockState *);
106 static void objlist_clear(Objlist *);
107 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
108 static void objlist_init(Objlist *);
109 static void objlist_push_head(Objlist *, Obj_Entry *);
110 static void objlist_push_tail(Objlist *, Obj_Entry *);
111 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
112 static void objlist_remove(Objlist *, Obj_Entry *);
113 static int parse_libdir(const char *);
114 static void *path_enumerate(const char *, path_enum_proc, void *);
115 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
116     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
117 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
118     int flags, RtldLockState *lockstate);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
120     RtldLockState *);
121 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
122     int flags, RtldLockState *lockstate);
123 static int rtld_dirname(const char *, char *);
124 static int rtld_dirname_abs(const char *, char *);
125 static void *rtld_dlopen(const char *name, int fd, int mode);
126 static void rtld_exit(void);
127 static char *search_library_path(const char *, const char *);
128 static char *search_library_pathfds(const char *, const char *, int *);
129 static const void **get_program_var_addr(const char *, RtldLockState *);
130 static void set_program_var(const char *, const void *);
131 static int symlook_default(SymLook *, const Obj_Entry *refobj);
132 static int symlook_global(SymLook *, DoneList *);
133 static void symlook_init_from_req(SymLook *, const SymLook *);
134 static int symlook_list(SymLook *, const Objlist *, DoneList *);
135 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
136 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
137 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
138 static void trace_loaded_objects(Obj_Entry *);
139 static void unlink_object(Obj_Entry *);
140 static void unload_object(Obj_Entry *);
141 static void unref_dag(Obj_Entry *);
142 static void ref_dag(Obj_Entry *);
143 static char *origin_subst_one(Obj_Entry *, char *, const char *,
144     const char *, bool);
145 static char *origin_subst(Obj_Entry *, char *);
146 static bool obj_resolve_origin(Obj_Entry *obj);
147 static void preinit_main(void);
148 static int  rtld_verify_versions(const Objlist *);
149 static int  rtld_verify_object_versions(Obj_Entry *);
150 static void object_add_name(Obj_Entry *, const char *);
151 static int  object_match_name(const Obj_Entry *, const char *);
152 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
153 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
154     struct dl_phdr_info *phdr_info);
155 static uint32_t gnu_hash(const char *);
156 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
157     const unsigned long);
158 
159 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
160 void _r_debug_postinit(struct link_map *) __noinline __exported;
161 
162 int __sys_openat(int, const char *, int, ...);
163 
164 /*
165  * Data declarations.
166  */
167 static char *error_message;	/* Message for dlerror(), or NULL */
168 struct r_debug r_debug __exported;	/* for GDB; */
169 static bool libmap_disable;	/* Disable libmap */
170 static bool ld_loadfltr;	/* Immediate filters processing */
171 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
172 static bool trust;		/* False for setuid and setgid programs */
173 static bool dangerous_ld_env;	/* True if environment variables have been
174 				   used to affect the libraries loaded */
175 static char *ld_bind_now;	/* Environment variable for immediate binding */
176 static char *ld_debug;		/* Environment variable for debugging */
177 static char *ld_library_path;	/* Environment variable for search path */
178 static char *ld_library_dirs;	/* Environment variable for library descriptors */
179 static char *ld_preload;	/* Environment variable for libraries to
180 				   load first */
181 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182 static char *ld_tracing;	/* Called from ldd to print libs */
183 static char *ld_utrace;		/* Use utrace() to log events. */
184 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
185 static Obj_Entry *obj_main;	/* The main program shared object */
186 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187 static unsigned int obj_count;	/* Number of objects in obj_list */
188 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 int dlclose(void *) __exported;
208 char *dlerror(void) __exported;
209 void *dlopen(const char *, int) __exported;
210 void *fdlopen(int, int) __exported;
211 void *dlsym(void *, const char *) __exported;
212 dlfunc_t dlfunc(void *, const char *) __exported;
213 void *dlvsym(void *, const char *, const char *) __exported;
214 int dladdr(const void *, Dl_info *) __exported;
215 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217 int dlinfo(void *, int , void *) __exported;
218 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220 int _rtld_get_stack_prot(void) __exported;
221 int _rtld_is_dlopened(void *) __exported;
222 void _rtld_error(const char *, ...) __exported;
223 
224 int npagesizes, osreldate;
225 size_t *pagesizes;
226 
227 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228 
229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230 static int max_stack_flags;
231 
232 /*
233  * Global declarations normally provided by crt1.  The dynamic linker is
234  * not built with crt1, so we have to provide them ourselves.
235  */
236 char *__progname;
237 char **environ;
238 
239 /*
240  * Used to pass argc, argv to init functions.
241  */
242 int main_argc;
243 char **main_argv;
244 
245 /*
246  * Globals to control TLS allocation.
247  */
248 size_t tls_last_offset;		/* Static TLS offset of last module */
249 size_t tls_last_size;		/* Static TLS size of last module */
250 size_t tls_static_space;	/* Static TLS space allocated */
251 size_t tls_static_max_align;
252 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253 int tls_max_index = 1;		/* Largest module index allocated */
254 
255 bool ld_library_path_rpath = false;
256 
257 /*
258  * Globals for path names, and such
259  */
260 char *ld_elf_hints_default = _PATH_ELF_HINTS;
261 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
262 char *ld_path_rtld = _PATH_RTLD;
263 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
264 char *ld_env_prefix = LD_;
265 
266 /*
267  * Fill in a DoneList with an allocation large enough to hold all of
268  * the currently-loaded objects.  Keep this as a macro since it calls
269  * alloca and we want that to occur within the scope of the caller.
270  */
271 #define donelist_init(dlp)					\
272     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
273     assert((dlp)->objs != NULL),				\
274     (dlp)->num_alloc = obj_count,				\
275     (dlp)->num_used = 0)
276 
277 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
278 	if (ld_utrace != NULL)					\
279 		ld_utrace_log(e, h, mb, ms, r, n);		\
280 } while (0)
281 
282 static void
283 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
284     int refcnt, const char *name)
285 {
286 	struct utrace_rtld ut;
287 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
288 
289 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
290 	ut.event = event;
291 	ut.handle = handle;
292 	ut.mapbase = mapbase;
293 	ut.mapsize = mapsize;
294 	ut.refcnt = refcnt;
295 	bzero(ut.name, sizeof(ut.name));
296 	if (name)
297 		strlcpy(ut.name, name, sizeof(ut.name));
298 	utrace(&ut, sizeof(ut));
299 }
300 
301 #ifdef RTLD_VARIANT_ENV_NAMES
302 /*
303  * construct the env variable based on the type of binary that's
304  * running.
305  */
306 static inline const char *
307 _LD(const char *var)
308 {
309 	static char buffer[128];
310 
311 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
312 	strlcat(buffer, var, sizeof(buffer));
313 	return (buffer);
314 }
315 #else
316 #define _LD(x)	LD_ x
317 #endif
318 
319 /*
320  * Main entry point for dynamic linking.  The first argument is the
321  * stack pointer.  The stack is expected to be laid out as described
322  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
323  * Specifically, the stack pointer points to a word containing
324  * ARGC.  Following that in the stack is a null-terminated sequence
325  * of pointers to argument strings.  Then comes a null-terminated
326  * sequence of pointers to environment strings.  Finally, there is a
327  * sequence of "auxiliary vector" entries.
328  *
329  * The second argument points to a place to store the dynamic linker's
330  * exit procedure pointer and the third to a place to store the main
331  * program's object.
332  *
333  * The return value is the main program's entry point.
334  */
335 func_ptr_type
336 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
337 {
338     Elf_Auxinfo *aux_info[AT_COUNT];
339     int i;
340     int argc;
341     char **argv;
342     char **env;
343     Elf_Auxinfo *aux;
344     Elf_Auxinfo *auxp;
345     const char *argv0;
346     Objlist_Entry *entry;
347     Obj_Entry *obj;
348     Obj_Entry *preload_tail;
349     Obj_Entry *last_interposer;
350     Objlist initlist;
351     RtldLockState lockstate;
352     char *library_path_rpath;
353     int mib[2];
354     size_t len;
355 
356     /*
357      * On entry, the dynamic linker itself has not been relocated yet.
358      * Be very careful not to reference any global data until after
359      * init_rtld has returned.  It is OK to reference file-scope statics
360      * and string constants, and to call static and global functions.
361      */
362 
363     /* Find the auxiliary vector on the stack. */
364     argc = *sp++;
365     argv = (char **) sp;
366     sp += argc + 1;	/* Skip over arguments and NULL terminator */
367     env = (char **) sp;
368     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
369 	;
370     aux = (Elf_Auxinfo *) sp;
371 
372     /* Digest the auxiliary vector. */
373     for (i = 0;  i < AT_COUNT;  i++)
374 	aux_info[i] = NULL;
375     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
376 	if (auxp->a_type < AT_COUNT)
377 	    aux_info[auxp->a_type] = auxp;
378     }
379 
380     /* Initialize and relocate ourselves. */
381     assert(aux_info[AT_BASE] != NULL);
382     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
383 
384     __progname = obj_rtld.path;
385     argv0 = argv[0] != NULL ? argv[0] : "(null)";
386     environ = env;
387     main_argc = argc;
388     main_argv = argv;
389 
390     if (aux_info[AT_CANARY] != NULL &&
391 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
392 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
393 	    if (i > sizeof(__stack_chk_guard))
394 		    i = sizeof(__stack_chk_guard);
395 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
396     } else {
397 	mib[0] = CTL_KERN;
398 	mib[1] = KERN_ARND;
399 
400 	len = sizeof(__stack_chk_guard);
401 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
402 	    len != sizeof(__stack_chk_guard)) {
403 		/* If sysctl was unsuccessful, use the "terminator canary". */
404 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
405 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
406 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
407 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
408 	}
409     }
410 
411     trust = !issetugid();
412 
413     md_abi_variant_hook(aux_info);
414 
415     ld_bind_now = getenv(_LD("BIND_NOW"));
416     /*
417      * If the process is tainted, then we un-set the dangerous environment
418      * variables.  The process will be marked as tainted until setuid(2)
419      * is called.  If any child process calls setuid(2) we do not want any
420      * future processes to honor the potentially un-safe variables.
421      */
422     if (!trust) {
423 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
424 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
425 	    unsetenv(_LD("LIBMAP_DISABLE")) ||
426 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
427 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
428 		_rtld_error("environment corrupt; aborting");
429 		rtld_die();
430 	}
431     }
432     ld_debug = getenv(_LD("DEBUG"));
433     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
434     libmap_override = getenv(_LD("LIBMAP"));
435     ld_library_path = getenv(_LD("LIBRARY_PATH"));
436     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
437     ld_preload = getenv(_LD("PRELOAD"));
438     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
439     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
440     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
441     if (library_path_rpath != NULL) {
442 	    if (library_path_rpath[0] == 'y' ||
443 		library_path_rpath[0] == 'Y' ||
444 		library_path_rpath[0] == '1')
445 		    ld_library_path_rpath = true;
446 	    else
447 		    ld_library_path_rpath = false;
448     }
449     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
450 	(ld_library_path != NULL) || (ld_preload != NULL) ||
451 	(ld_elf_hints_path != NULL) || ld_loadfltr;
452     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
453     ld_utrace = getenv(_LD("UTRACE"));
454 
455     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
456 	ld_elf_hints_path = ld_elf_hints_default;
457 
458     if (ld_debug != NULL && *ld_debug != '\0')
459 	debug = 1;
460     dbg("%s is initialized, base address = %p", __progname,
461 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
462     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
463     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
464 
465     dbg("initializing thread locks");
466     lockdflt_init();
467 
468     /*
469      * Load the main program, or process its program header if it is
470      * already loaded.
471      */
472     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
473 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
474 	dbg("loading main program");
475 	obj_main = map_object(fd, argv0, NULL);
476 	close(fd);
477 	if (obj_main == NULL)
478 	    rtld_die();
479 	max_stack_flags = obj->stack_flags;
480     } else {				/* Main program already loaded. */
481 	const Elf_Phdr *phdr;
482 	int phnum;
483 	caddr_t entry;
484 
485 	dbg("processing main program's program header");
486 	assert(aux_info[AT_PHDR] != NULL);
487 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
488 	assert(aux_info[AT_PHNUM] != NULL);
489 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
490 	assert(aux_info[AT_PHENT] != NULL);
491 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
492 	assert(aux_info[AT_ENTRY] != NULL);
493 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
494 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
495 	    rtld_die();
496     }
497 
498     if (aux_info[AT_EXECPATH] != NULL) {
499 	    char *kexecpath;
500 	    char buf[MAXPATHLEN];
501 
502 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
503 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
504 	    if (kexecpath[0] == '/')
505 		    obj_main->path = kexecpath;
506 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
507 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
508 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
509 		    obj_main->path = xstrdup(argv0);
510 	    else
511 		    obj_main->path = xstrdup(buf);
512     } else {
513 	    dbg("No AT_EXECPATH");
514 	    obj_main->path = xstrdup(argv0);
515     }
516     dbg("obj_main path %s", obj_main->path);
517     obj_main->mainprog = true;
518 
519     if (aux_info[AT_STACKPROT] != NULL &&
520       aux_info[AT_STACKPROT]->a_un.a_val != 0)
521 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
522 
523 #ifndef COMPAT_32BIT
524     /*
525      * Get the actual dynamic linker pathname from the executable if
526      * possible.  (It should always be possible.)  That ensures that
527      * gdb will find the right dynamic linker even if a non-standard
528      * one is being used.
529      */
530     if (obj_main->interp != NULL &&
531       strcmp(obj_main->interp, obj_rtld.path) != 0) {
532 	free(obj_rtld.path);
533 	obj_rtld.path = xstrdup(obj_main->interp);
534         __progname = obj_rtld.path;
535     }
536 #endif
537 
538     digest_dynamic(obj_main, 0);
539     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
540 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
541 	obj_main->dynsymcount);
542 
543     linkmap_add(obj_main);
544     linkmap_add(&obj_rtld);
545 
546     /* Link the main program into the list of objects. */
547     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
548     obj_count++;
549     obj_loads++;
550 
551     /* Initialize a fake symbol for resolving undefined weak references. */
552     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
553     sym_zero.st_shndx = SHN_UNDEF;
554     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
555 
556     if (!libmap_disable)
557         libmap_disable = (bool)lm_init(libmap_override);
558 
559     dbg("loading LD_PRELOAD libraries");
560     if (load_preload_objects() == -1)
561 	rtld_die();
562     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
563 
564     dbg("loading needed objects");
565     if (load_needed_objects(obj_main, 0) == -1)
566 	rtld_die();
567 
568     /* Make a list of all objects loaded at startup. */
569     last_interposer = obj_main;
570     TAILQ_FOREACH(obj, &obj_list, next) {
571 	if (obj->marker)
572 	    continue;
573 	if (obj->z_interpose && obj != obj_main) {
574 	    objlist_put_after(&list_main, last_interposer, obj);
575 	    last_interposer = obj;
576 	} else {
577 	    objlist_push_tail(&list_main, obj);
578 	}
579     	obj->refcount++;
580     }
581 
582     dbg("checking for required versions");
583     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
584 	rtld_die();
585 
586     if (ld_tracing) {		/* We're done */
587 	trace_loaded_objects(obj_main);
588 	exit(0);
589     }
590 
591     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
592        dump_relocations(obj_main);
593        exit (0);
594     }
595 
596     /*
597      * Processing tls relocations requires having the tls offsets
598      * initialized.  Prepare offsets before starting initial
599      * relocation processing.
600      */
601     dbg("initializing initial thread local storage offsets");
602     STAILQ_FOREACH(entry, &list_main, link) {
603 	/*
604 	 * Allocate all the initial objects out of the static TLS
605 	 * block even if they didn't ask for it.
606 	 */
607 	allocate_tls_offset(entry->obj);
608     }
609 
610     if (relocate_objects(obj_main,
611       ld_bind_now != NULL && *ld_bind_now != '\0',
612       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
613 	rtld_die();
614 
615     dbg("doing copy relocations");
616     if (do_copy_relocations(obj_main) == -1)
617 	rtld_die();
618 
619     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
620        dump_relocations(obj_main);
621        exit (0);
622     }
623 
624     /*
625      * Setup TLS for main thread.  This must be done after the
626      * relocations are processed, since tls initialization section
627      * might be the subject for relocations.
628      */
629     dbg("initializing initial thread local storage");
630     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
631 
632     dbg("initializing key program variables");
633     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
634     set_program_var("environ", env);
635     set_program_var("__elf_aux_vector", aux);
636 
637     /* Make a list of init functions to call. */
638     objlist_init(&initlist);
639     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
640       preload_tail, &initlist);
641 
642     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
643 
644     map_stacks_exec(NULL);
645     ifunc_init(aux);
646 
647     dbg("resolving ifuncs");
648     if (resolve_objects_ifunc(obj_main,
649       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
650       NULL) == -1)
651 	rtld_die();
652 
653     if (!obj_main->crt_no_init) {
654 	/*
655 	 * Make sure we don't call the main program's init and fini
656 	 * functions for binaries linked with old crt1 which calls
657 	 * _init itself.
658 	 */
659 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
660 	obj_main->preinit_array = obj_main->init_array =
661 	    obj_main->fini_array = (Elf_Addr)NULL;
662     }
663 
664     wlock_acquire(rtld_bind_lock, &lockstate);
665     if (obj_main->crt_no_init)
666 	preinit_main();
667     objlist_call_init(&initlist, &lockstate);
668     _r_debug_postinit(&obj_main->linkmap);
669     objlist_clear(&initlist);
670     dbg("loading filtees");
671     TAILQ_FOREACH(obj, &obj_list, next) {
672 	if (obj->marker)
673 	    continue;
674 	if (ld_loadfltr || obj->z_loadfltr)
675 	    load_filtees(obj, 0, &lockstate);
676     }
677     lock_release(rtld_bind_lock, &lockstate);
678 
679     dbg("transferring control to program entry point = %p", obj_main->entry);
680 
681     /* Return the exit procedure and the program entry point. */
682     *exit_proc = rtld_exit;
683     *objp = obj_main;
684     return (func_ptr_type) obj_main->entry;
685 }
686 
687 void *
688 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
689 {
690 	void *ptr;
691 	Elf_Addr target;
692 
693 	ptr = (void *)make_function_pointer(def, obj);
694 	target = call_ifunc_resolver(ptr);
695 	return ((void *)target);
696 }
697 
698 Elf_Addr
699 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
700 {
701     const Elf_Rel *rel;
702     const Elf_Sym *def;
703     const Obj_Entry *defobj;
704     Elf_Addr *where;
705     Elf_Addr target;
706     RtldLockState lockstate;
707 
708     rlock_acquire(rtld_bind_lock, &lockstate);
709     if (sigsetjmp(lockstate.env, 0) != 0)
710 	    lock_upgrade(rtld_bind_lock, &lockstate);
711     if (obj->pltrel)
712 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
713     else
714 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
715 
716     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
717     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
718 	NULL, &lockstate);
719     if (def == NULL)
720 	rtld_die();
721     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
722 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
723     else
724 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
725 
726     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
727       defobj->strtab + def->st_name, basename(obj->path),
728       (void *)target, basename(defobj->path));
729 
730     /*
731      * Write the new contents for the jmpslot. Note that depending on
732      * architecture, the value which we need to return back to the
733      * lazy binding trampoline may or may not be the target
734      * address. The value returned from reloc_jmpslot() is the value
735      * that the trampoline needs.
736      */
737     target = reloc_jmpslot(where, target, defobj, obj, rel);
738     lock_release(rtld_bind_lock, &lockstate);
739     return target;
740 }
741 
742 /*
743  * Error reporting function.  Use it like printf.  If formats the message
744  * into a buffer, and sets things up so that the next call to dlerror()
745  * will return the message.
746  */
747 void
748 _rtld_error(const char *fmt, ...)
749 {
750     static char buf[512];
751     va_list ap;
752 
753     va_start(ap, fmt);
754     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
755     error_message = buf;
756     va_end(ap);
757 }
758 
759 /*
760  * Return a dynamically-allocated copy of the current error message, if any.
761  */
762 static char *
763 errmsg_save(void)
764 {
765     return error_message == NULL ? NULL : xstrdup(error_message);
766 }
767 
768 /*
769  * Restore the current error message from a copy which was previously saved
770  * by errmsg_save().  The copy is freed.
771  */
772 static void
773 errmsg_restore(char *saved_msg)
774 {
775     if (saved_msg == NULL)
776 	error_message = NULL;
777     else {
778 	_rtld_error("%s", saved_msg);
779 	free(saved_msg);
780     }
781 }
782 
783 static const char *
784 basename(const char *name)
785 {
786     const char *p = strrchr(name, '/');
787     return p != NULL ? p + 1 : name;
788 }
789 
790 static struct utsname uts;
791 
792 static char *
793 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
794     const char *subst, bool may_free)
795 {
796 	char *p, *p1, *res, *resp;
797 	int subst_len, kw_len, subst_count, old_len, new_len;
798 
799 	kw_len = strlen(kw);
800 
801 	/*
802 	 * First, count the number of the keyword occurrences, to
803 	 * preallocate the final string.
804 	 */
805 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
806 		p1 = strstr(p, kw);
807 		if (p1 == NULL)
808 			break;
809 	}
810 
811 	/*
812 	 * If the keyword is not found, just return.
813 	 *
814 	 * Return non-substituted string if resolution failed.  We
815 	 * cannot do anything more reasonable, the failure mode of the
816 	 * caller is unresolved library anyway.
817 	 */
818 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
819 		return (may_free ? real : xstrdup(real));
820 	if (obj != NULL)
821 		subst = obj->origin_path;
822 
823 	/*
824 	 * There is indeed something to substitute.  Calculate the
825 	 * length of the resulting string, and allocate it.
826 	 */
827 	subst_len = strlen(subst);
828 	old_len = strlen(real);
829 	new_len = old_len + (subst_len - kw_len) * subst_count;
830 	res = xmalloc(new_len + 1);
831 
832 	/*
833 	 * Now, execute the substitution loop.
834 	 */
835 	for (p = real, resp = res, *resp = '\0';;) {
836 		p1 = strstr(p, kw);
837 		if (p1 != NULL) {
838 			/* Copy the prefix before keyword. */
839 			memcpy(resp, p, p1 - p);
840 			resp += p1 - p;
841 			/* Keyword replacement. */
842 			memcpy(resp, subst, subst_len);
843 			resp += subst_len;
844 			*resp = '\0';
845 			p = p1 + kw_len;
846 		} else
847 			break;
848 	}
849 
850 	/* Copy to the end of string and finish. */
851 	strcat(resp, p);
852 	if (may_free)
853 		free(real);
854 	return (res);
855 }
856 
857 static char *
858 origin_subst(Obj_Entry *obj, char *real)
859 {
860 	char *res1, *res2, *res3, *res4;
861 
862 	if (obj == NULL || !trust)
863 		return (xstrdup(real));
864 	if (uts.sysname[0] == '\0') {
865 		if (uname(&uts) != 0) {
866 			_rtld_error("utsname failed: %d", errno);
867 			return (NULL);
868 		}
869 	}
870 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
871 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
872 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
873 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
874 	return (res4);
875 }
876 
877 void
878 rtld_die(void)
879 {
880     const char *msg = dlerror();
881 
882     if (msg == NULL)
883 	msg = "Fatal error";
884     rtld_fdputstr(STDERR_FILENO, msg);
885     rtld_fdputchar(STDERR_FILENO, '\n');
886     _exit(1);
887 }
888 
889 /*
890  * Process a shared object's DYNAMIC section, and save the important
891  * information in its Obj_Entry structure.
892  */
893 static void
894 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
895     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
896 {
897     const Elf_Dyn *dynp;
898     Needed_Entry **needed_tail = &obj->needed;
899     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
900     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
901     const Elf_Hashelt *hashtab;
902     const Elf32_Word *hashval;
903     Elf32_Word bkt, nmaskwords;
904     int bloom_size32;
905     int plttype = DT_REL;
906 
907     *dyn_rpath = NULL;
908     *dyn_soname = NULL;
909     *dyn_runpath = NULL;
910 
911     obj->bind_now = false;
912     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
913 	switch (dynp->d_tag) {
914 
915 	case DT_REL:
916 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
917 	    break;
918 
919 	case DT_RELSZ:
920 	    obj->relsize = dynp->d_un.d_val;
921 	    break;
922 
923 	case DT_RELENT:
924 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
925 	    break;
926 
927 	case DT_JMPREL:
928 	    obj->pltrel = (const Elf_Rel *)
929 	      (obj->relocbase + dynp->d_un.d_ptr);
930 	    break;
931 
932 	case DT_PLTRELSZ:
933 	    obj->pltrelsize = dynp->d_un.d_val;
934 	    break;
935 
936 	case DT_RELA:
937 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
938 	    break;
939 
940 	case DT_RELASZ:
941 	    obj->relasize = dynp->d_un.d_val;
942 	    break;
943 
944 	case DT_RELAENT:
945 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
946 	    break;
947 
948 	case DT_PLTREL:
949 	    plttype = dynp->d_un.d_val;
950 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
951 	    break;
952 
953 	case DT_SYMTAB:
954 	    obj->symtab = (const Elf_Sym *)
955 	      (obj->relocbase + dynp->d_un.d_ptr);
956 	    break;
957 
958 	case DT_SYMENT:
959 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
960 	    break;
961 
962 	case DT_STRTAB:
963 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
964 	    break;
965 
966 	case DT_STRSZ:
967 	    obj->strsize = dynp->d_un.d_val;
968 	    break;
969 
970 	case DT_VERNEED:
971 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
972 		dynp->d_un.d_val);
973 	    break;
974 
975 	case DT_VERNEEDNUM:
976 	    obj->verneednum = dynp->d_un.d_val;
977 	    break;
978 
979 	case DT_VERDEF:
980 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
981 		dynp->d_un.d_val);
982 	    break;
983 
984 	case DT_VERDEFNUM:
985 	    obj->verdefnum = dynp->d_un.d_val;
986 	    break;
987 
988 	case DT_VERSYM:
989 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
990 		dynp->d_un.d_val);
991 	    break;
992 
993 	case DT_HASH:
994 	    {
995 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
996 		    dynp->d_un.d_ptr);
997 		obj->nbuckets = hashtab[0];
998 		obj->nchains = hashtab[1];
999 		obj->buckets = hashtab + 2;
1000 		obj->chains = obj->buckets + obj->nbuckets;
1001 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1002 		  obj->buckets != NULL;
1003 	    }
1004 	    break;
1005 
1006 	case DT_GNU_HASH:
1007 	    {
1008 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1009 		    dynp->d_un.d_ptr);
1010 		obj->nbuckets_gnu = hashtab[0];
1011 		obj->symndx_gnu = hashtab[1];
1012 		nmaskwords = hashtab[2];
1013 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1014 		obj->maskwords_bm_gnu = nmaskwords - 1;
1015 		obj->shift2_gnu = hashtab[3];
1016 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1017 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1018 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1019 		  obj->symndx_gnu;
1020 		/* Number of bitmask words is required to be power of 2 */
1021 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1022 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1023 	    }
1024 	    break;
1025 
1026 	case DT_NEEDED:
1027 	    if (!obj->rtld) {
1028 		Needed_Entry *nep = NEW(Needed_Entry);
1029 		nep->name = dynp->d_un.d_val;
1030 		nep->obj = NULL;
1031 		nep->next = NULL;
1032 
1033 		*needed_tail = nep;
1034 		needed_tail = &nep->next;
1035 	    }
1036 	    break;
1037 
1038 	case DT_FILTER:
1039 	    if (!obj->rtld) {
1040 		Needed_Entry *nep = NEW(Needed_Entry);
1041 		nep->name = dynp->d_un.d_val;
1042 		nep->obj = NULL;
1043 		nep->next = NULL;
1044 
1045 		*needed_filtees_tail = nep;
1046 		needed_filtees_tail = &nep->next;
1047 	    }
1048 	    break;
1049 
1050 	case DT_AUXILIARY:
1051 	    if (!obj->rtld) {
1052 		Needed_Entry *nep = NEW(Needed_Entry);
1053 		nep->name = dynp->d_un.d_val;
1054 		nep->obj = NULL;
1055 		nep->next = NULL;
1056 
1057 		*needed_aux_filtees_tail = nep;
1058 		needed_aux_filtees_tail = &nep->next;
1059 	    }
1060 	    break;
1061 
1062 	case DT_PLTGOT:
1063 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1064 	    break;
1065 
1066 	case DT_TEXTREL:
1067 	    obj->textrel = true;
1068 	    break;
1069 
1070 	case DT_SYMBOLIC:
1071 	    obj->symbolic = true;
1072 	    break;
1073 
1074 	case DT_RPATH:
1075 	    /*
1076 	     * We have to wait until later to process this, because we
1077 	     * might not have gotten the address of the string table yet.
1078 	     */
1079 	    *dyn_rpath = dynp;
1080 	    break;
1081 
1082 	case DT_SONAME:
1083 	    *dyn_soname = dynp;
1084 	    break;
1085 
1086 	case DT_RUNPATH:
1087 	    *dyn_runpath = dynp;
1088 	    break;
1089 
1090 	case DT_INIT:
1091 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1092 	    break;
1093 
1094 	case DT_PREINIT_ARRAY:
1095 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1096 	    break;
1097 
1098 	case DT_PREINIT_ARRAYSZ:
1099 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1100 	    break;
1101 
1102 	case DT_INIT_ARRAY:
1103 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1104 	    break;
1105 
1106 	case DT_INIT_ARRAYSZ:
1107 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1108 	    break;
1109 
1110 	case DT_FINI:
1111 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1112 	    break;
1113 
1114 	case DT_FINI_ARRAY:
1115 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1116 	    break;
1117 
1118 	case DT_FINI_ARRAYSZ:
1119 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1120 	    break;
1121 
1122 	/*
1123 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1124 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1125 	 */
1126 
1127 #ifndef __mips__
1128 	case DT_DEBUG:
1129 	    if (!early)
1130 		dbg("Filling in DT_DEBUG entry");
1131 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1132 	    break;
1133 #endif
1134 
1135 	case DT_FLAGS:
1136 		if (dynp->d_un.d_val & DF_ORIGIN)
1137 		    obj->z_origin = true;
1138 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1139 		    obj->symbolic = true;
1140 		if (dynp->d_un.d_val & DF_TEXTREL)
1141 		    obj->textrel = true;
1142 		if (dynp->d_un.d_val & DF_BIND_NOW)
1143 		    obj->bind_now = true;
1144 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1145 		    ;*/
1146 	    break;
1147 #ifdef __mips__
1148 	case DT_MIPS_LOCAL_GOTNO:
1149 		obj->local_gotno = dynp->d_un.d_val;
1150 		break;
1151 
1152 	case DT_MIPS_SYMTABNO:
1153 		obj->symtabno = dynp->d_un.d_val;
1154 		break;
1155 
1156 	case DT_MIPS_GOTSYM:
1157 		obj->gotsym = dynp->d_un.d_val;
1158 		break;
1159 
1160 	case DT_MIPS_RLD_MAP:
1161 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1162 		break;
1163 #endif
1164 
1165 #ifdef __powerpc64__
1166 	case DT_PPC64_GLINK:
1167 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1168 		break;
1169 #endif
1170 
1171 	case DT_FLAGS_1:
1172 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1173 		    obj->z_noopen = true;
1174 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1175 		    obj->z_origin = true;
1176 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1177 		    obj->z_global = true;
1178 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1179 		    obj->bind_now = true;
1180 		if (dynp->d_un.d_val & DF_1_NODELETE)
1181 		    obj->z_nodelete = true;
1182 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1183 		    obj->z_loadfltr = true;
1184 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1185 		    obj->z_interpose = true;
1186 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1187 		    obj->z_nodeflib = true;
1188 	    break;
1189 
1190 	default:
1191 	    if (!early) {
1192 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1193 		    (long)dynp->d_tag);
1194 	    }
1195 	    break;
1196 	}
1197     }
1198 
1199     obj->traced = false;
1200 
1201     if (plttype == DT_RELA) {
1202 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1203 	obj->pltrel = NULL;
1204 	obj->pltrelasize = obj->pltrelsize;
1205 	obj->pltrelsize = 0;
1206     }
1207 
1208     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1209     if (obj->valid_hash_sysv)
1210 	obj->dynsymcount = obj->nchains;
1211     else if (obj->valid_hash_gnu) {
1212 	obj->dynsymcount = 0;
1213 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1214 	    if (obj->buckets_gnu[bkt] == 0)
1215 		continue;
1216 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1217 	    do
1218 		obj->dynsymcount++;
1219 	    while ((*hashval++ & 1u) == 0);
1220 	}
1221 	obj->dynsymcount += obj->symndx_gnu;
1222     }
1223 }
1224 
1225 static bool
1226 obj_resolve_origin(Obj_Entry *obj)
1227 {
1228 
1229 	if (obj->origin_path != NULL)
1230 		return (true);
1231 	obj->origin_path = xmalloc(PATH_MAX);
1232 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1233 }
1234 
1235 static void
1236 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1237     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1238 {
1239 
1240 	if (obj->z_origin && !obj_resolve_origin(obj))
1241 		rtld_die();
1242 
1243 	if (dyn_runpath != NULL) {
1244 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1245 		obj->runpath = origin_subst(obj, obj->runpath);
1246 	} else if (dyn_rpath != NULL) {
1247 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1248 		obj->rpath = origin_subst(obj, obj->rpath);
1249 	}
1250 	if (dyn_soname != NULL)
1251 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1252 }
1253 
1254 static void
1255 digest_dynamic(Obj_Entry *obj, int early)
1256 {
1257 	const Elf_Dyn *dyn_rpath;
1258 	const Elf_Dyn *dyn_soname;
1259 	const Elf_Dyn *dyn_runpath;
1260 
1261 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1262 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1263 }
1264 
1265 /*
1266  * Process a shared object's program header.  This is used only for the
1267  * main program, when the kernel has already loaded the main program
1268  * into memory before calling the dynamic linker.  It creates and
1269  * returns an Obj_Entry structure.
1270  */
1271 static Obj_Entry *
1272 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1273 {
1274     Obj_Entry *obj;
1275     const Elf_Phdr *phlimit = phdr + phnum;
1276     const Elf_Phdr *ph;
1277     Elf_Addr note_start, note_end;
1278     int nsegs = 0;
1279 
1280     obj = obj_new();
1281     for (ph = phdr;  ph < phlimit;  ph++) {
1282 	if (ph->p_type != PT_PHDR)
1283 	    continue;
1284 
1285 	obj->phdr = phdr;
1286 	obj->phsize = ph->p_memsz;
1287 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1288 	break;
1289     }
1290 
1291     obj->stack_flags = PF_X | PF_R | PF_W;
1292 
1293     for (ph = phdr;  ph < phlimit;  ph++) {
1294 	switch (ph->p_type) {
1295 
1296 	case PT_INTERP:
1297 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1298 	    break;
1299 
1300 	case PT_LOAD:
1301 	    if (nsegs == 0) {	/* First load segment */
1302 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1303 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1304 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1305 		  obj->vaddrbase;
1306 	    } else {		/* Last load segment */
1307 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1308 		  obj->vaddrbase;
1309 	    }
1310 	    nsegs++;
1311 	    break;
1312 
1313 	case PT_DYNAMIC:
1314 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1315 	    break;
1316 
1317 	case PT_TLS:
1318 	    obj->tlsindex = 1;
1319 	    obj->tlssize = ph->p_memsz;
1320 	    obj->tlsalign = ph->p_align;
1321 	    obj->tlsinitsize = ph->p_filesz;
1322 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1323 	    break;
1324 
1325 	case PT_GNU_STACK:
1326 	    obj->stack_flags = ph->p_flags;
1327 	    break;
1328 
1329 	case PT_GNU_RELRO:
1330 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1331 	    obj->relro_size = round_page(ph->p_memsz);
1332 	    break;
1333 
1334 	case PT_NOTE:
1335 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1336 	    note_end = note_start + ph->p_filesz;
1337 	    digest_notes(obj, note_start, note_end);
1338 	    break;
1339 	}
1340     }
1341     if (nsegs < 1) {
1342 	_rtld_error("%s: too few PT_LOAD segments", path);
1343 	return NULL;
1344     }
1345 
1346     obj->entry = entry;
1347     return obj;
1348 }
1349 
1350 void
1351 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1352 {
1353 	const Elf_Note *note;
1354 	const char *note_name;
1355 	uintptr_t p;
1356 
1357 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1358 	    note = (const Elf_Note *)((const char *)(note + 1) +
1359 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1360 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1361 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1362 		    note->n_descsz != sizeof(int32_t))
1363 			continue;
1364 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1365 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1366 			continue;
1367 		note_name = (const char *)(note + 1);
1368 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1369 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1370 			continue;
1371 		switch (note->n_type) {
1372 		case NT_FREEBSD_ABI_TAG:
1373 			/* FreeBSD osrel note */
1374 			p = (uintptr_t)(note + 1);
1375 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1376 			obj->osrel = *(const int32_t *)(p);
1377 			dbg("note osrel %d", obj->osrel);
1378 			break;
1379 		case NT_FREEBSD_NOINIT_TAG:
1380 			/* FreeBSD 'crt does not call init' note */
1381 			obj->crt_no_init = true;
1382 			dbg("note crt_no_init");
1383 			break;
1384 		}
1385 	}
1386 }
1387 
1388 static Obj_Entry *
1389 dlcheck(void *handle)
1390 {
1391     Obj_Entry *obj;
1392 
1393     TAILQ_FOREACH(obj, &obj_list, next) {
1394 	if (obj == (Obj_Entry *) handle)
1395 	    break;
1396     }
1397 
1398     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1399 	_rtld_error("Invalid shared object handle %p", handle);
1400 	return NULL;
1401     }
1402     return obj;
1403 }
1404 
1405 /*
1406  * If the given object is already in the donelist, return true.  Otherwise
1407  * add the object to the list and return false.
1408  */
1409 static bool
1410 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1411 {
1412     unsigned int i;
1413 
1414     for (i = 0;  i < dlp->num_used;  i++)
1415 	if (dlp->objs[i] == obj)
1416 	    return true;
1417     /*
1418      * Our donelist allocation should always be sufficient.  But if
1419      * our threads locking isn't working properly, more shared objects
1420      * could have been loaded since we allocated the list.  That should
1421      * never happen, but we'll handle it properly just in case it does.
1422      */
1423     if (dlp->num_used < dlp->num_alloc)
1424 	dlp->objs[dlp->num_used++] = obj;
1425     return false;
1426 }
1427 
1428 /*
1429  * Hash function for symbol table lookup.  Don't even think about changing
1430  * this.  It is specified by the System V ABI.
1431  */
1432 unsigned long
1433 elf_hash(const char *name)
1434 {
1435     const unsigned char *p = (const unsigned char *) name;
1436     unsigned long h = 0;
1437     unsigned long g;
1438 
1439     while (*p != '\0') {
1440 	h = (h << 4) + *p++;
1441 	if ((g = h & 0xf0000000) != 0)
1442 	    h ^= g >> 24;
1443 	h &= ~g;
1444     }
1445     return h;
1446 }
1447 
1448 /*
1449  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1450  * unsigned in case it's implemented with a wider type.
1451  */
1452 static uint32_t
1453 gnu_hash(const char *s)
1454 {
1455 	uint32_t h;
1456 	unsigned char c;
1457 
1458 	h = 5381;
1459 	for (c = *s; c != '\0'; c = *++s)
1460 		h = h * 33 + c;
1461 	return (h & 0xffffffff);
1462 }
1463 
1464 
1465 /*
1466  * Find the library with the given name, and return its full pathname.
1467  * The returned string is dynamically allocated.  Generates an error
1468  * message and returns NULL if the library cannot be found.
1469  *
1470  * If the second argument is non-NULL, then it refers to an already-
1471  * loaded shared object, whose library search path will be searched.
1472  *
1473  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1474  * descriptor (which is close-on-exec) will be passed out via the third
1475  * argument.
1476  *
1477  * The search order is:
1478  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1479  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1480  *   LD_LIBRARY_PATH
1481  *   DT_RUNPATH in the referencing file
1482  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1483  *	 from list)
1484  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1485  *
1486  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1487  */
1488 static char *
1489 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1490 {
1491     char *pathname;
1492     char *name;
1493     bool nodeflib, objgiven;
1494 
1495     objgiven = refobj != NULL;
1496     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1497 	if (xname[0] != '/' && !trust) {
1498 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1499 	      xname);
1500 	    return NULL;
1501 	}
1502 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1503 	  __DECONST(char *, xname)));
1504     }
1505 
1506     if (libmap_disable || !objgiven ||
1507 	(name = lm_find(refobj->path, xname)) == NULL)
1508 	name = (char *)xname;
1509 
1510     dbg(" Searching for \"%s\"", name);
1511 
1512     /*
1513      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1514      * back to pre-conforming behaviour if user requested so with
1515      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1516      * nodeflib.
1517      */
1518     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1519 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1520 	  (refobj != NULL &&
1521 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1522 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1523           (pathname = search_library_path(name, gethints(false))) != NULL ||
1524 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1525 	    return (pathname);
1526     } else {
1527 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1528 	if ((objgiven &&
1529 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1530 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1531 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1532 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1533 	  (objgiven &&
1534 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1535 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1536 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1537 	  (objgiven && !nodeflib &&
1538 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1539 	    return (pathname);
1540     }
1541 
1542     if (objgiven && refobj->path != NULL) {
1543 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1544 	  name, basename(refobj->path));
1545     } else {
1546 	_rtld_error("Shared object \"%s\" not found", name);
1547     }
1548     return NULL;
1549 }
1550 
1551 /*
1552  * Given a symbol number in a referencing object, find the corresponding
1553  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1554  * no definition was found.  Returns a pointer to the Obj_Entry of the
1555  * defining object via the reference parameter DEFOBJ_OUT.
1556  */
1557 const Elf_Sym *
1558 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1559     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1560     RtldLockState *lockstate)
1561 {
1562     const Elf_Sym *ref;
1563     const Elf_Sym *def;
1564     const Obj_Entry *defobj;
1565     SymLook req;
1566     const char *name;
1567     int res;
1568 
1569     /*
1570      * If we have already found this symbol, get the information from
1571      * the cache.
1572      */
1573     if (symnum >= refobj->dynsymcount)
1574 	return NULL;	/* Bad object */
1575     if (cache != NULL && cache[symnum].sym != NULL) {
1576 	*defobj_out = cache[symnum].obj;
1577 	return cache[symnum].sym;
1578     }
1579 
1580     ref = refobj->symtab + symnum;
1581     name = refobj->strtab + ref->st_name;
1582     def = NULL;
1583     defobj = NULL;
1584 
1585     /*
1586      * We don't have to do a full scale lookup if the symbol is local.
1587      * We know it will bind to the instance in this load module; to
1588      * which we already have a pointer (ie ref). By not doing a lookup,
1589      * we not only improve performance, but it also avoids unresolvable
1590      * symbols when local symbols are not in the hash table. This has
1591      * been seen with the ia64 toolchain.
1592      */
1593     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1594 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1595 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1596 		symnum);
1597 	}
1598 	symlook_init(&req, name);
1599 	req.flags = flags;
1600 	req.ventry = fetch_ventry(refobj, symnum);
1601 	req.lockstate = lockstate;
1602 	res = symlook_default(&req, refobj);
1603 	if (res == 0) {
1604 	    def = req.sym_out;
1605 	    defobj = req.defobj_out;
1606 	}
1607     } else {
1608 	def = ref;
1609 	defobj = refobj;
1610     }
1611 
1612     /*
1613      * If we found no definition and the reference is weak, treat the
1614      * symbol as having the value zero.
1615      */
1616     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1617 	def = &sym_zero;
1618 	defobj = obj_main;
1619     }
1620 
1621     if (def != NULL) {
1622 	*defobj_out = defobj;
1623 	/* Record the information in the cache to avoid subsequent lookups. */
1624 	if (cache != NULL) {
1625 	    cache[symnum].sym = def;
1626 	    cache[symnum].obj = defobj;
1627 	}
1628     } else {
1629 	if (refobj != &obj_rtld)
1630 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1631     }
1632     return def;
1633 }
1634 
1635 /*
1636  * Return the search path from the ldconfig hints file, reading it if
1637  * necessary.  If nostdlib is true, then the default search paths are
1638  * not added to result.
1639  *
1640  * Returns NULL if there are problems with the hints file,
1641  * or if the search path there is empty.
1642  */
1643 static const char *
1644 gethints(bool nostdlib)
1645 {
1646 	static char *hints, *filtered_path;
1647 	static struct elfhints_hdr hdr;
1648 	struct fill_search_info_args sargs, hargs;
1649 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1650 	struct dl_serpath *SLPpath, *hintpath;
1651 	char *p;
1652 	struct stat hint_stat;
1653 	unsigned int SLPndx, hintndx, fndx, fcount;
1654 	int fd;
1655 	size_t flen;
1656 	uint32_t dl;
1657 	bool skip;
1658 
1659 	/* First call, read the hints file */
1660 	if (hints == NULL) {
1661 		/* Keep from trying again in case the hints file is bad. */
1662 		hints = "";
1663 
1664 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1665 			return (NULL);
1666 
1667 		/*
1668 		 * Check of hdr.dirlistlen value against type limit
1669 		 * intends to pacify static analyzers.  Further
1670 		 * paranoia leads to checks that dirlist is fully
1671 		 * contained in the file range.
1672 		 */
1673 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1674 		    hdr.magic != ELFHINTS_MAGIC ||
1675 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1676 		    fstat(fd, &hint_stat) == -1) {
1677 cleanup1:
1678 			close(fd);
1679 			hdr.dirlistlen = 0;
1680 			return (NULL);
1681 		}
1682 		dl = hdr.strtab;
1683 		if (dl + hdr.dirlist < dl)
1684 			goto cleanup1;
1685 		dl += hdr.dirlist;
1686 		if (dl + hdr.dirlistlen < dl)
1687 			goto cleanup1;
1688 		dl += hdr.dirlistlen;
1689 		if (dl > hint_stat.st_size)
1690 			goto cleanup1;
1691 		p = xmalloc(hdr.dirlistlen + 1);
1692 
1693 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1694 		    read(fd, p, hdr.dirlistlen + 1) !=
1695 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1696 			free(p);
1697 			goto cleanup1;
1698 		}
1699 		hints = p;
1700 		close(fd);
1701 	}
1702 
1703 	/*
1704 	 * If caller agreed to receive list which includes the default
1705 	 * paths, we are done. Otherwise, if we still did not
1706 	 * calculated filtered result, do it now.
1707 	 */
1708 	if (!nostdlib)
1709 		return (hints[0] != '\0' ? hints : NULL);
1710 	if (filtered_path != NULL)
1711 		goto filt_ret;
1712 
1713 	/*
1714 	 * Obtain the list of all configured search paths, and the
1715 	 * list of the default paths.
1716 	 *
1717 	 * First estimate the size of the results.
1718 	 */
1719 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1720 	smeta.dls_cnt = 0;
1721 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1722 	hmeta.dls_cnt = 0;
1723 
1724 	sargs.request = RTLD_DI_SERINFOSIZE;
1725 	sargs.serinfo = &smeta;
1726 	hargs.request = RTLD_DI_SERINFOSIZE;
1727 	hargs.serinfo = &hmeta;
1728 
1729 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1730 	path_enumerate(hints, fill_search_info, &hargs);
1731 
1732 	SLPinfo = xmalloc(smeta.dls_size);
1733 	hintinfo = xmalloc(hmeta.dls_size);
1734 
1735 	/*
1736 	 * Next fetch both sets of paths.
1737 	 */
1738 	sargs.request = RTLD_DI_SERINFO;
1739 	sargs.serinfo = SLPinfo;
1740 	sargs.serpath = &SLPinfo->dls_serpath[0];
1741 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1742 
1743 	hargs.request = RTLD_DI_SERINFO;
1744 	hargs.serinfo = hintinfo;
1745 	hargs.serpath = &hintinfo->dls_serpath[0];
1746 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1747 
1748 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1749 	path_enumerate(hints, fill_search_info, &hargs);
1750 
1751 	/*
1752 	 * Now calculate the difference between two sets, by excluding
1753 	 * standard paths from the full set.
1754 	 */
1755 	fndx = 0;
1756 	fcount = 0;
1757 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1758 	hintpath = &hintinfo->dls_serpath[0];
1759 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1760 		skip = false;
1761 		SLPpath = &SLPinfo->dls_serpath[0];
1762 		/*
1763 		 * Check each standard path against current.
1764 		 */
1765 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1766 			/* matched, skip the path */
1767 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1768 				skip = true;
1769 				break;
1770 			}
1771 		}
1772 		if (skip)
1773 			continue;
1774 		/*
1775 		 * Not matched against any standard path, add the path
1776 		 * to result. Separate consequtive paths with ':'.
1777 		 */
1778 		if (fcount > 0) {
1779 			filtered_path[fndx] = ':';
1780 			fndx++;
1781 		}
1782 		fcount++;
1783 		flen = strlen(hintpath->dls_name);
1784 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1785 		fndx += flen;
1786 	}
1787 	filtered_path[fndx] = '\0';
1788 
1789 	free(SLPinfo);
1790 	free(hintinfo);
1791 
1792 filt_ret:
1793 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1794 }
1795 
1796 static void
1797 init_dag(Obj_Entry *root)
1798 {
1799     const Needed_Entry *needed;
1800     const Objlist_Entry *elm;
1801     DoneList donelist;
1802 
1803     if (root->dag_inited)
1804 	return;
1805     donelist_init(&donelist);
1806 
1807     /* Root object belongs to own DAG. */
1808     objlist_push_tail(&root->dldags, root);
1809     objlist_push_tail(&root->dagmembers, root);
1810     donelist_check(&donelist, root);
1811 
1812     /*
1813      * Add dependencies of root object to DAG in breadth order
1814      * by exploiting the fact that each new object get added
1815      * to the tail of the dagmembers list.
1816      */
1817     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1818 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1819 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1820 		continue;
1821 	    objlist_push_tail(&needed->obj->dldags, root);
1822 	    objlist_push_tail(&root->dagmembers, needed->obj);
1823 	}
1824     }
1825     root->dag_inited = true;
1826 }
1827 
1828 Obj_Entry *
1829 globallist_curr(const Obj_Entry *obj)
1830 {
1831 
1832 	for (;;) {
1833 		if (obj == NULL)
1834 			return (NULL);
1835 		if (!obj->marker)
1836 			return (__DECONST(Obj_Entry *, obj));
1837 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1838 	}
1839 }
1840 
1841 Obj_Entry *
1842 globallist_next(const Obj_Entry *obj)
1843 {
1844 
1845 	for (;;) {
1846 		obj = TAILQ_NEXT(obj, next);
1847 		if (obj == NULL)
1848 			return (NULL);
1849 		if (!obj->marker)
1850 			return (__DECONST(Obj_Entry *, obj));
1851 	}
1852 }
1853 
1854 static void
1855 process_z(Obj_Entry *root)
1856 {
1857 	const Objlist_Entry *elm;
1858 	Obj_Entry *obj;
1859 
1860 	/*
1861 	 * Walk over object DAG and process every dependent object
1862 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1863 	 * to grow their own DAG.
1864 	 *
1865 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1866 	 * symlook_global() to work.
1867 	 *
1868 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1869 	 */
1870 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1871 		obj = elm->obj;
1872 		if (obj == NULL)
1873 			continue;
1874 		if (obj->z_nodelete && !obj->ref_nodel) {
1875 			dbg("obj %s -z nodelete", obj->path);
1876 			init_dag(obj);
1877 			ref_dag(obj);
1878 			obj->ref_nodel = true;
1879 		}
1880 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1881 			dbg("obj %s -z global", obj->path);
1882 			objlist_push_tail(&list_global, obj);
1883 			init_dag(obj);
1884 		}
1885 	}
1886 }
1887 /*
1888  * Initialize the dynamic linker.  The argument is the address at which
1889  * the dynamic linker has been mapped into memory.  The primary task of
1890  * this function is to relocate the dynamic linker.
1891  */
1892 static void
1893 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1894 {
1895     Obj_Entry objtmp;	/* Temporary rtld object */
1896     const Elf_Ehdr *ehdr;
1897     const Elf_Dyn *dyn_rpath;
1898     const Elf_Dyn *dyn_soname;
1899     const Elf_Dyn *dyn_runpath;
1900 
1901 #ifdef RTLD_INIT_PAGESIZES_EARLY
1902     /* The page size is required by the dynamic memory allocator. */
1903     init_pagesizes(aux_info);
1904 #endif
1905 
1906     /*
1907      * Conjure up an Obj_Entry structure for the dynamic linker.
1908      *
1909      * The "path" member can't be initialized yet because string constants
1910      * cannot yet be accessed. Below we will set it correctly.
1911      */
1912     memset(&objtmp, 0, sizeof(objtmp));
1913     objtmp.path = NULL;
1914     objtmp.rtld = true;
1915     objtmp.mapbase = mapbase;
1916 #ifdef PIC
1917     objtmp.relocbase = mapbase;
1918 #endif
1919     if (RTLD_IS_DYNAMIC()) {
1920 	objtmp.dynamic = rtld_dynamic(&objtmp);
1921 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1922 	assert(objtmp.needed == NULL);
1923 #if !defined(__mips__)
1924 	/* MIPS has a bogus DT_TEXTREL. */
1925 	assert(!objtmp.textrel);
1926 #endif
1927 
1928 	/*
1929 	 * Temporarily put the dynamic linker entry into the object list, so
1930 	 * that symbols can be found.
1931 	 */
1932 
1933 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1934     }
1935     ehdr = (Elf_Ehdr *)mapbase;
1936     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1937     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1938 
1939     /* Initialize the object list. */
1940     TAILQ_INIT(&obj_list);
1941 
1942     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1943     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1944 
1945 #ifndef RTLD_INIT_PAGESIZES_EARLY
1946     /* The page size is required by the dynamic memory allocator. */
1947     init_pagesizes(aux_info);
1948 #endif
1949 
1950     if (aux_info[AT_OSRELDATE] != NULL)
1951 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1952 
1953     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1954 
1955     /* Replace the path with a dynamically allocated copy. */
1956     obj_rtld.path = xstrdup(ld_path_rtld);
1957 
1958     r_debug.r_brk = r_debug_state;
1959     r_debug.r_state = RT_CONSISTENT;
1960 }
1961 
1962 /*
1963  * Retrieve the array of supported page sizes.  The kernel provides the page
1964  * sizes in increasing order.
1965  */
1966 static void
1967 init_pagesizes(Elf_Auxinfo **aux_info)
1968 {
1969 	static size_t psa[MAXPAGESIZES];
1970 	int mib[2];
1971 	size_t len, size;
1972 
1973 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1974 	    NULL) {
1975 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1976 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1977 	} else {
1978 		len = 2;
1979 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1980 			size = sizeof(psa);
1981 		else {
1982 			/* As a fallback, retrieve the base page size. */
1983 			size = sizeof(psa[0]);
1984 			if (aux_info[AT_PAGESZ] != NULL) {
1985 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1986 				goto psa_filled;
1987 			} else {
1988 				mib[0] = CTL_HW;
1989 				mib[1] = HW_PAGESIZE;
1990 				len = 2;
1991 			}
1992 		}
1993 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1994 			_rtld_error("sysctl for hw.pagesize(s) failed");
1995 			rtld_die();
1996 		}
1997 psa_filled:
1998 		pagesizes = psa;
1999 	}
2000 	npagesizes = size / sizeof(pagesizes[0]);
2001 	/* Discard any invalid entries at the end of the array. */
2002 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2003 		npagesizes--;
2004 }
2005 
2006 /*
2007  * Add the init functions from a needed object list (and its recursive
2008  * needed objects) to "list".  This is not used directly; it is a helper
2009  * function for initlist_add_objects().  The write lock must be held
2010  * when this function is called.
2011  */
2012 static void
2013 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2014 {
2015     /* Recursively process the successor needed objects. */
2016     if (needed->next != NULL)
2017 	initlist_add_neededs(needed->next, list);
2018 
2019     /* Process the current needed object. */
2020     if (needed->obj != NULL)
2021 	initlist_add_objects(needed->obj, needed->obj, list);
2022 }
2023 
2024 /*
2025  * Scan all of the DAGs rooted in the range of objects from "obj" to
2026  * "tail" and add their init functions to "list".  This recurses over
2027  * the DAGs and ensure the proper init ordering such that each object's
2028  * needed libraries are initialized before the object itself.  At the
2029  * same time, this function adds the objects to the global finalization
2030  * list "list_fini" in the opposite order.  The write lock must be
2031  * held when this function is called.
2032  */
2033 static void
2034 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2035 {
2036     Obj_Entry *nobj;
2037 
2038     if (obj->init_scanned || obj->init_done)
2039 	return;
2040     obj->init_scanned = true;
2041 
2042     /* Recursively process the successor objects. */
2043     nobj = globallist_next(obj);
2044     if (nobj != NULL && obj != tail)
2045 	initlist_add_objects(nobj, tail, list);
2046 
2047     /* Recursively process the needed objects. */
2048     if (obj->needed != NULL)
2049 	initlist_add_neededs(obj->needed, list);
2050     if (obj->needed_filtees != NULL)
2051 	initlist_add_neededs(obj->needed_filtees, list);
2052     if (obj->needed_aux_filtees != NULL)
2053 	initlist_add_neededs(obj->needed_aux_filtees, list);
2054 
2055     /* Add the object to the init list. */
2056     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2057       obj->init_array != (Elf_Addr)NULL)
2058 	objlist_push_tail(list, obj);
2059 
2060     /* Add the object to the global fini list in the reverse order. */
2061     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2062       && !obj->on_fini_list) {
2063 	objlist_push_head(&list_fini, obj);
2064 	obj->on_fini_list = true;
2065     }
2066 }
2067 
2068 #ifndef FPTR_TARGET
2069 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2070 #endif
2071 
2072 static void
2073 free_needed_filtees(Needed_Entry *n)
2074 {
2075     Needed_Entry *needed, *needed1;
2076 
2077     for (needed = n; needed != NULL; needed = needed->next) {
2078 	if (needed->obj != NULL) {
2079 	    dlclose(needed->obj);
2080 	    needed->obj = NULL;
2081 	}
2082     }
2083     for (needed = n; needed != NULL; needed = needed1) {
2084 	needed1 = needed->next;
2085 	free(needed);
2086     }
2087 }
2088 
2089 static void
2090 unload_filtees(Obj_Entry *obj)
2091 {
2092 
2093     free_needed_filtees(obj->needed_filtees);
2094     obj->needed_filtees = NULL;
2095     free_needed_filtees(obj->needed_aux_filtees);
2096     obj->needed_aux_filtees = NULL;
2097     obj->filtees_loaded = false;
2098 }
2099 
2100 static void
2101 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2102     RtldLockState *lockstate)
2103 {
2104 
2105     for (; needed != NULL; needed = needed->next) {
2106 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2107 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2108 	  RTLD_LOCAL, lockstate);
2109     }
2110 }
2111 
2112 static void
2113 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2114 {
2115 
2116     lock_restart_for_upgrade(lockstate);
2117     if (!obj->filtees_loaded) {
2118 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2119 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2120 	obj->filtees_loaded = true;
2121     }
2122 }
2123 
2124 static int
2125 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2126 {
2127     Obj_Entry *obj1;
2128 
2129     for (; needed != NULL; needed = needed->next) {
2130 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2131 	  flags & ~RTLD_LO_NOLOAD);
2132 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2133 	    return (-1);
2134     }
2135     return (0);
2136 }
2137 
2138 /*
2139  * Given a shared object, traverse its list of needed objects, and load
2140  * each of them.  Returns 0 on success.  Generates an error message and
2141  * returns -1 on failure.
2142  */
2143 static int
2144 load_needed_objects(Obj_Entry *first, int flags)
2145 {
2146     Obj_Entry *obj;
2147 
2148     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2149 	if (obj->marker)
2150 	    continue;
2151 	if (process_needed(obj, obj->needed, flags) == -1)
2152 	    return (-1);
2153     }
2154     return (0);
2155 }
2156 
2157 static int
2158 load_preload_objects(void)
2159 {
2160     char *p = ld_preload;
2161     Obj_Entry *obj;
2162     static const char delim[] = " \t:;";
2163 
2164     if (p == NULL)
2165 	return 0;
2166 
2167     p += strspn(p, delim);
2168     while (*p != '\0') {
2169 	size_t len = strcspn(p, delim);
2170 	char savech;
2171 
2172 	savech = p[len];
2173 	p[len] = '\0';
2174 	obj = load_object(p, -1, NULL, 0);
2175 	if (obj == NULL)
2176 	    return -1;	/* XXX - cleanup */
2177 	obj->z_interpose = true;
2178 	p[len] = savech;
2179 	p += len;
2180 	p += strspn(p, delim);
2181     }
2182     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2183     return 0;
2184 }
2185 
2186 static const char *
2187 printable_path(const char *path)
2188 {
2189 
2190 	return (path == NULL ? "<unknown>" : path);
2191 }
2192 
2193 /*
2194  * Load a shared object into memory, if it is not already loaded.  The
2195  * object may be specified by name or by user-supplied file descriptor
2196  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2197  * duplicate is.
2198  *
2199  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2200  * on failure.
2201  */
2202 static Obj_Entry *
2203 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2204 {
2205     Obj_Entry *obj;
2206     int fd;
2207     struct stat sb;
2208     char *path;
2209 
2210     fd = -1;
2211     if (name != NULL) {
2212 	TAILQ_FOREACH(obj, &obj_list, next) {
2213 	    if (obj->marker)
2214 		continue;
2215 	    if (object_match_name(obj, name))
2216 		return (obj);
2217 	}
2218 
2219 	path = find_library(name, refobj, &fd);
2220 	if (path == NULL)
2221 	    return (NULL);
2222     } else
2223 	path = NULL;
2224 
2225     if (fd >= 0) {
2226 	/*
2227 	 * search_library_pathfds() opens a fresh file descriptor for the
2228 	 * library, so there is no need to dup().
2229 	 */
2230     } else if (fd_u == -1) {
2231 	/*
2232 	 * If we didn't find a match by pathname, or the name is not
2233 	 * supplied, open the file and check again by device and inode.
2234 	 * This avoids false mismatches caused by multiple links or ".."
2235 	 * in pathnames.
2236 	 *
2237 	 * To avoid a race, we open the file and use fstat() rather than
2238 	 * using stat().
2239 	 */
2240 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2241 	    _rtld_error("Cannot open \"%s\"", path);
2242 	    free(path);
2243 	    return (NULL);
2244 	}
2245     } else {
2246 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2247 	if (fd == -1) {
2248 	    _rtld_error("Cannot dup fd");
2249 	    free(path);
2250 	    return (NULL);
2251 	}
2252     }
2253     if (fstat(fd, &sb) == -1) {
2254 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2255 	close(fd);
2256 	free(path);
2257 	return NULL;
2258     }
2259     TAILQ_FOREACH(obj, &obj_list, next) {
2260 	if (obj->marker)
2261 	    continue;
2262 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2263 	    break;
2264     }
2265     if (obj != NULL && name != NULL) {
2266 	object_add_name(obj, name);
2267 	free(path);
2268 	close(fd);
2269 	return obj;
2270     }
2271     if (flags & RTLD_LO_NOLOAD) {
2272 	free(path);
2273 	close(fd);
2274 	return (NULL);
2275     }
2276 
2277     /* First use of this object, so we must map it in */
2278     obj = do_load_object(fd, name, path, &sb, flags);
2279     if (obj == NULL)
2280 	free(path);
2281     close(fd);
2282 
2283     return obj;
2284 }
2285 
2286 static Obj_Entry *
2287 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2288   int flags)
2289 {
2290     Obj_Entry *obj;
2291     struct statfs fs;
2292 
2293     /*
2294      * but first, make sure that environment variables haven't been
2295      * used to circumvent the noexec flag on a filesystem.
2296      */
2297     if (dangerous_ld_env) {
2298 	if (fstatfs(fd, &fs) != 0) {
2299 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2300 	    return NULL;
2301 	}
2302 	if (fs.f_flags & MNT_NOEXEC) {
2303 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2304 	    return NULL;
2305 	}
2306     }
2307     dbg("loading \"%s\"", printable_path(path));
2308     obj = map_object(fd, printable_path(path), sbp);
2309     if (obj == NULL)
2310         return NULL;
2311 
2312     /*
2313      * If DT_SONAME is present in the object, digest_dynamic2 already
2314      * added it to the object names.
2315      */
2316     if (name != NULL)
2317 	object_add_name(obj, name);
2318     obj->path = path;
2319     digest_dynamic(obj, 0);
2320     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2321 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2322     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2323       RTLD_LO_DLOPEN) {
2324 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2325 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2326 	munmap(obj->mapbase, obj->mapsize);
2327 	obj_free(obj);
2328 	return (NULL);
2329     }
2330 
2331     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2332     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2333     obj_count++;
2334     obj_loads++;
2335     linkmap_add(obj);	/* for GDB & dlinfo() */
2336     max_stack_flags |= obj->stack_flags;
2337 
2338     dbg("  %p .. %p: %s", obj->mapbase,
2339          obj->mapbase + obj->mapsize - 1, obj->path);
2340     if (obj->textrel)
2341 	dbg("  WARNING: %s has impure text", obj->path);
2342     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2343 	obj->path);
2344 
2345     return obj;
2346 }
2347 
2348 static Obj_Entry *
2349 obj_from_addr(const void *addr)
2350 {
2351     Obj_Entry *obj;
2352 
2353     TAILQ_FOREACH(obj, &obj_list, next) {
2354 	if (obj->marker)
2355 	    continue;
2356 	if (addr < (void *) obj->mapbase)
2357 	    continue;
2358 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2359 	    return obj;
2360     }
2361     return NULL;
2362 }
2363 
2364 static void
2365 preinit_main(void)
2366 {
2367     Elf_Addr *preinit_addr;
2368     int index;
2369 
2370     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2371     if (preinit_addr == NULL)
2372 	return;
2373 
2374     for (index = 0; index < obj_main->preinit_array_num; index++) {
2375 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2376 	    dbg("calling preinit function for %s at %p", obj_main->path,
2377 	      (void *)preinit_addr[index]);
2378 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2379 	      0, 0, obj_main->path);
2380 	    call_init_pointer(obj_main, preinit_addr[index]);
2381 	}
2382     }
2383 }
2384 
2385 /*
2386  * Call the finalization functions for each of the objects in "list"
2387  * belonging to the DAG of "root" and referenced once. If NULL "root"
2388  * is specified, every finalization function will be called regardless
2389  * of the reference count and the list elements won't be freed. All of
2390  * the objects are expected to have non-NULL fini functions.
2391  */
2392 static void
2393 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2394 {
2395     Objlist_Entry *elm;
2396     char *saved_msg;
2397     Elf_Addr *fini_addr;
2398     int index;
2399 
2400     assert(root == NULL || root->refcount == 1);
2401 
2402     /*
2403      * Preserve the current error message since a fini function might
2404      * call into the dynamic linker and overwrite it.
2405      */
2406     saved_msg = errmsg_save();
2407     do {
2408 	STAILQ_FOREACH(elm, list, link) {
2409 	    if (root != NULL && (elm->obj->refcount != 1 ||
2410 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2411 		continue;
2412 	    /* Remove object from fini list to prevent recursive invocation. */
2413 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2414 	    /*
2415 	     * XXX: If a dlopen() call references an object while the
2416 	     * fini function is in progress, we might end up trying to
2417 	     * unload the referenced object in dlclose() or the object
2418 	     * won't be unloaded although its fini function has been
2419 	     * called.
2420 	     */
2421 	    lock_release(rtld_bind_lock, lockstate);
2422 
2423 	    /*
2424 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2425 	     * When this happens, DT_FINI_ARRAY is processed first.
2426 	     */
2427 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2428 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2429 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2430 		  index--) {
2431 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2432 			dbg("calling fini function for %s at %p",
2433 			    elm->obj->path, (void *)fini_addr[index]);
2434 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2435 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2436 			call_initfini_pointer(elm->obj, fini_addr[index]);
2437 		    }
2438 		}
2439 	    }
2440 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2441 		dbg("calling fini function for %s at %p", elm->obj->path,
2442 		    (void *)elm->obj->fini);
2443 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2444 		    0, 0, elm->obj->path);
2445 		call_initfini_pointer(elm->obj, elm->obj->fini);
2446 	    }
2447 	    wlock_acquire(rtld_bind_lock, lockstate);
2448 	    /* No need to free anything if process is going down. */
2449 	    if (root != NULL)
2450 	    	free(elm);
2451 	    /*
2452 	     * We must restart the list traversal after every fini call
2453 	     * because a dlclose() call from the fini function or from
2454 	     * another thread might have modified the reference counts.
2455 	     */
2456 	    break;
2457 	}
2458     } while (elm != NULL);
2459     errmsg_restore(saved_msg);
2460 }
2461 
2462 /*
2463  * Call the initialization functions for each of the objects in
2464  * "list".  All of the objects are expected to have non-NULL init
2465  * functions.
2466  */
2467 static void
2468 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2469 {
2470     Objlist_Entry *elm;
2471     Obj_Entry *obj;
2472     char *saved_msg;
2473     Elf_Addr *init_addr;
2474     int index;
2475 
2476     /*
2477      * Clean init_scanned flag so that objects can be rechecked and
2478      * possibly initialized earlier if any of vectors called below
2479      * cause the change by using dlopen.
2480      */
2481     TAILQ_FOREACH(obj, &obj_list, next) {
2482 	if (obj->marker)
2483 	    continue;
2484 	obj->init_scanned = false;
2485     }
2486 
2487     /*
2488      * Preserve the current error message since an init function might
2489      * call into the dynamic linker and overwrite it.
2490      */
2491     saved_msg = errmsg_save();
2492     STAILQ_FOREACH(elm, list, link) {
2493 	if (elm->obj->init_done) /* Initialized early. */
2494 	    continue;
2495 	/*
2496 	 * Race: other thread might try to use this object before current
2497 	 * one completes the initilization. Not much can be done here
2498 	 * without better locking.
2499 	 */
2500 	elm->obj->init_done = true;
2501 	lock_release(rtld_bind_lock, lockstate);
2502 
2503         /*
2504          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2505          * When this happens, DT_INIT is processed first.
2506          */
2507 	if (elm->obj->init != (Elf_Addr)NULL) {
2508 	    dbg("calling init function for %s at %p", elm->obj->path,
2509 	        (void *)elm->obj->init);
2510 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2511 	        0, 0, elm->obj->path);
2512 	    call_initfini_pointer(elm->obj, elm->obj->init);
2513 	}
2514 	init_addr = (Elf_Addr *)elm->obj->init_array;
2515 	if (init_addr != NULL) {
2516 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2517 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2518 		    dbg("calling init function for %s at %p", elm->obj->path,
2519 			(void *)init_addr[index]);
2520 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2521 			(void *)init_addr[index], 0, 0, elm->obj->path);
2522 		    call_init_pointer(elm->obj, init_addr[index]);
2523 		}
2524 	    }
2525 	}
2526 	wlock_acquire(rtld_bind_lock, lockstate);
2527     }
2528     errmsg_restore(saved_msg);
2529 }
2530 
2531 static void
2532 objlist_clear(Objlist *list)
2533 {
2534     Objlist_Entry *elm;
2535 
2536     while (!STAILQ_EMPTY(list)) {
2537 	elm = STAILQ_FIRST(list);
2538 	STAILQ_REMOVE_HEAD(list, link);
2539 	free(elm);
2540     }
2541 }
2542 
2543 static Objlist_Entry *
2544 objlist_find(Objlist *list, const Obj_Entry *obj)
2545 {
2546     Objlist_Entry *elm;
2547 
2548     STAILQ_FOREACH(elm, list, link)
2549 	if (elm->obj == obj)
2550 	    return elm;
2551     return NULL;
2552 }
2553 
2554 static void
2555 objlist_init(Objlist *list)
2556 {
2557     STAILQ_INIT(list);
2558 }
2559 
2560 static void
2561 objlist_push_head(Objlist *list, Obj_Entry *obj)
2562 {
2563     Objlist_Entry *elm;
2564 
2565     elm = NEW(Objlist_Entry);
2566     elm->obj = obj;
2567     STAILQ_INSERT_HEAD(list, elm, link);
2568 }
2569 
2570 static void
2571 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2572 {
2573     Objlist_Entry *elm;
2574 
2575     elm = NEW(Objlist_Entry);
2576     elm->obj = obj;
2577     STAILQ_INSERT_TAIL(list, elm, link);
2578 }
2579 
2580 static void
2581 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2582 {
2583 	Objlist_Entry *elm, *listelm;
2584 
2585 	STAILQ_FOREACH(listelm, list, link) {
2586 		if (listelm->obj == listobj)
2587 			break;
2588 	}
2589 	elm = NEW(Objlist_Entry);
2590 	elm->obj = obj;
2591 	if (listelm != NULL)
2592 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2593 	else
2594 		STAILQ_INSERT_TAIL(list, elm, link);
2595 }
2596 
2597 static void
2598 objlist_remove(Objlist *list, Obj_Entry *obj)
2599 {
2600     Objlist_Entry *elm;
2601 
2602     if ((elm = objlist_find(list, obj)) != NULL) {
2603 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2604 	free(elm);
2605     }
2606 }
2607 
2608 /*
2609  * Relocate dag rooted in the specified object.
2610  * Returns 0 on success, or -1 on failure.
2611  */
2612 
2613 static int
2614 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2615     int flags, RtldLockState *lockstate)
2616 {
2617 	Objlist_Entry *elm;
2618 	int error;
2619 
2620 	error = 0;
2621 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2622 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2623 		    lockstate);
2624 		if (error == -1)
2625 			break;
2626 	}
2627 	return (error);
2628 }
2629 
2630 /*
2631  * Prepare for, or clean after, relocating an object marked with
2632  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2633  * segments are remapped read-write.  After relocations are done, the
2634  * segment's permissions are returned back to the modes specified in
2635  * the phdrs.  If any relocation happened, or always for wired
2636  * program, COW is triggered.
2637  */
2638 static int
2639 reloc_textrel_prot(Obj_Entry *obj, bool before)
2640 {
2641 	const Elf_Phdr *ph;
2642 	void *base;
2643 	size_t l, sz;
2644 	int prot;
2645 
2646 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2647 	    l--, ph++) {
2648 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2649 			continue;
2650 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2651 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2652 		    trunc_page(ph->p_vaddr);
2653 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2654 		if (mprotect(base, sz, prot) == -1) {
2655 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2656 			    obj->path, before ? "en" : "dis",
2657 			    rtld_strerror(errno));
2658 			return (-1);
2659 		}
2660 	}
2661 	return (0);
2662 }
2663 
2664 /*
2665  * Relocate single object.
2666  * Returns 0 on success, or -1 on failure.
2667  */
2668 static int
2669 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2670     int flags, RtldLockState *lockstate)
2671 {
2672 
2673 	if (obj->relocated)
2674 		return (0);
2675 	obj->relocated = true;
2676 	if (obj != rtldobj)
2677 		dbg("relocating \"%s\"", obj->path);
2678 
2679 	if (obj->symtab == NULL || obj->strtab == NULL ||
2680 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2681 		_rtld_error("%s: Shared object has no run-time symbol table",
2682 			    obj->path);
2683 		return (-1);
2684 	}
2685 
2686 	/* There are relocations to the write-protected text segment. */
2687 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2688 		return (-1);
2689 
2690 	/* Process the non-PLT non-IFUNC relocations. */
2691 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2692 		return (-1);
2693 
2694 	/* Re-protected the text segment. */
2695 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2696 		return (-1);
2697 
2698 	/* Set the special PLT or GOT entries. */
2699 	init_pltgot(obj);
2700 
2701 	/* Process the PLT relocations. */
2702 	if (reloc_plt(obj) == -1)
2703 		return (-1);
2704 	/* Relocate the jump slots if we are doing immediate binding. */
2705 	if (obj->bind_now || bind_now)
2706 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2707 			return (-1);
2708 
2709 	/*
2710 	 * Process the non-PLT IFUNC relocations.  The relocations are
2711 	 * processed in two phases, because IFUNC resolvers may
2712 	 * reference other symbols, which must be readily processed
2713 	 * before resolvers are called.
2714 	 */
2715 	if (obj->non_plt_gnu_ifunc &&
2716 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2717 		return (-1);
2718 
2719 	if (obj->relro_size > 0) {
2720 		if (mprotect(obj->relro_page, obj->relro_size,
2721 		    PROT_READ) == -1) {
2722 			_rtld_error("%s: Cannot enforce relro protection: %s",
2723 			    obj->path, rtld_strerror(errno));
2724 			return (-1);
2725 		}
2726 	}
2727 
2728 	/*
2729 	 * Set up the magic number and version in the Obj_Entry.  These
2730 	 * were checked in the crt1.o from the original ElfKit, so we
2731 	 * set them for backward compatibility.
2732 	 */
2733 	obj->magic = RTLD_MAGIC;
2734 	obj->version = RTLD_VERSION;
2735 
2736 	return (0);
2737 }
2738 
2739 /*
2740  * Relocate newly-loaded shared objects.  The argument is a pointer to
2741  * the Obj_Entry for the first such object.  All objects from the first
2742  * to the end of the list of objects are relocated.  Returns 0 on success,
2743  * or -1 on failure.
2744  */
2745 static int
2746 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2747     int flags, RtldLockState *lockstate)
2748 {
2749 	Obj_Entry *obj;
2750 	int error;
2751 
2752 	for (error = 0, obj = first;  obj != NULL;
2753 	    obj = TAILQ_NEXT(obj, next)) {
2754 		if (obj->marker)
2755 			continue;
2756 		error = relocate_object(obj, bind_now, rtldobj, flags,
2757 		    lockstate);
2758 		if (error == -1)
2759 			break;
2760 	}
2761 	return (error);
2762 }
2763 
2764 /*
2765  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2766  * referencing STT_GNU_IFUNC symbols is postponed till the other
2767  * relocations are done.  The indirect functions specified as
2768  * ifunc are allowed to call other symbols, so we need to have
2769  * objects relocated before asking for resolution from indirects.
2770  *
2771  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2772  * instead of the usual lazy handling of PLT slots.  It is
2773  * consistent with how GNU does it.
2774  */
2775 static int
2776 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2777     RtldLockState *lockstate)
2778 {
2779 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2780 		return (-1);
2781 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2782 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2783 		return (-1);
2784 	return (0);
2785 }
2786 
2787 static int
2788 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2789     RtldLockState *lockstate)
2790 {
2791 	Obj_Entry *obj;
2792 
2793 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2794 		if (obj->marker)
2795 			continue;
2796 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2797 			return (-1);
2798 	}
2799 	return (0);
2800 }
2801 
2802 static int
2803 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2804     RtldLockState *lockstate)
2805 {
2806 	Objlist_Entry *elm;
2807 
2808 	STAILQ_FOREACH(elm, list, link) {
2809 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2810 		    lockstate) == -1)
2811 			return (-1);
2812 	}
2813 	return (0);
2814 }
2815 
2816 /*
2817  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2818  * before the process exits.
2819  */
2820 static void
2821 rtld_exit(void)
2822 {
2823     RtldLockState lockstate;
2824 
2825     wlock_acquire(rtld_bind_lock, &lockstate);
2826     dbg("rtld_exit()");
2827     objlist_call_fini(&list_fini, NULL, &lockstate);
2828     /* No need to remove the items from the list, since we are exiting. */
2829     if (!libmap_disable)
2830         lm_fini();
2831     lock_release(rtld_bind_lock, &lockstate);
2832 }
2833 
2834 /*
2835  * Iterate over a search path, translate each element, and invoke the
2836  * callback on the result.
2837  */
2838 static void *
2839 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2840 {
2841     const char *trans;
2842     if (path == NULL)
2843 	return (NULL);
2844 
2845     path += strspn(path, ":;");
2846     while (*path != '\0') {
2847 	size_t len;
2848 	char  *res;
2849 
2850 	len = strcspn(path, ":;");
2851 	trans = lm_findn(NULL, path, len);
2852 	if (trans)
2853 	    res = callback(trans, strlen(trans), arg);
2854 	else
2855 	    res = callback(path, len, arg);
2856 
2857 	if (res != NULL)
2858 	    return (res);
2859 
2860 	path += len;
2861 	path += strspn(path, ":;");
2862     }
2863 
2864     return (NULL);
2865 }
2866 
2867 struct try_library_args {
2868     const char	*name;
2869     size_t	 namelen;
2870     char	*buffer;
2871     size_t	 buflen;
2872 };
2873 
2874 static void *
2875 try_library_path(const char *dir, size_t dirlen, void *param)
2876 {
2877     struct try_library_args *arg;
2878 
2879     arg = param;
2880     if (*dir == '/' || trust) {
2881 	char *pathname;
2882 
2883 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2884 		return (NULL);
2885 
2886 	pathname = arg->buffer;
2887 	strncpy(pathname, dir, dirlen);
2888 	pathname[dirlen] = '/';
2889 	strcpy(pathname + dirlen + 1, arg->name);
2890 
2891 	dbg("  Trying \"%s\"", pathname);
2892 	if (access(pathname, F_OK) == 0) {		/* We found it */
2893 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2894 	    strcpy(pathname, arg->buffer);
2895 	    return (pathname);
2896 	}
2897     }
2898     return (NULL);
2899 }
2900 
2901 static char *
2902 search_library_path(const char *name, const char *path)
2903 {
2904     char *p;
2905     struct try_library_args arg;
2906 
2907     if (path == NULL)
2908 	return NULL;
2909 
2910     arg.name = name;
2911     arg.namelen = strlen(name);
2912     arg.buffer = xmalloc(PATH_MAX);
2913     arg.buflen = PATH_MAX;
2914 
2915     p = path_enumerate(path, try_library_path, &arg);
2916 
2917     free(arg.buffer);
2918 
2919     return (p);
2920 }
2921 
2922 
2923 /*
2924  * Finds the library with the given name using the directory descriptors
2925  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2926  *
2927  * Returns a freshly-opened close-on-exec file descriptor for the library,
2928  * or -1 if the library cannot be found.
2929  */
2930 static char *
2931 search_library_pathfds(const char *name, const char *path, int *fdp)
2932 {
2933 	char *envcopy, *fdstr, *found, *last_token;
2934 	size_t len;
2935 	int dirfd, fd;
2936 
2937 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2938 
2939 	/* Don't load from user-specified libdirs into setuid binaries. */
2940 	if (!trust)
2941 		return (NULL);
2942 
2943 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2944 	if (path == NULL)
2945 		return (NULL);
2946 
2947 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2948 	if (name[0] == '/') {
2949 		dbg("Absolute path (%s) passed to %s", name, __func__);
2950 		return (NULL);
2951 	}
2952 
2953 	/*
2954 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2955 	 * copy of the path, as strtok_r rewrites separator tokens
2956 	 * with '\0'.
2957 	 */
2958 	found = NULL;
2959 	envcopy = xstrdup(path);
2960 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2961 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2962 		dirfd = parse_libdir(fdstr);
2963 		if (dirfd < 0)
2964 			break;
2965 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2966 		if (fd >= 0) {
2967 			*fdp = fd;
2968 			len = strlen(fdstr) + strlen(name) + 3;
2969 			found = xmalloc(len);
2970 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2971 				_rtld_error("error generating '%d/%s'",
2972 				    dirfd, name);
2973 				rtld_die();
2974 			}
2975 			dbg("open('%s') => %d", found, fd);
2976 			break;
2977 		}
2978 	}
2979 	free(envcopy);
2980 
2981 	return (found);
2982 }
2983 
2984 
2985 int
2986 dlclose(void *handle)
2987 {
2988     Obj_Entry *root;
2989     RtldLockState lockstate;
2990 
2991     wlock_acquire(rtld_bind_lock, &lockstate);
2992     root = dlcheck(handle);
2993     if (root == NULL) {
2994 	lock_release(rtld_bind_lock, &lockstate);
2995 	return -1;
2996     }
2997     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2998 	root->path);
2999 
3000     /* Unreference the object and its dependencies. */
3001     root->dl_refcount--;
3002 
3003     if (root->refcount == 1) {
3004 	/*
3005 	 * The object will be no longer referenced, so we must unload it.
3006 	 * First, call the fini functions.
3007 	 */
3008 	objlist_call_fini(&list_fini, root, &lockstate);
3009 
3010 	unref_dag(root);
3011 
3012 	/* Finish cleaning up the newly-unreferenced objects. */
3013 	GDB_STATE(RT_DELETE,&root->linkmap);
3014 	unload_object(root);
3015 	GDB_STATE(RT_CONSISTENT,NULL);
3016     } else
3017 	unref_dag(root);
3018 
3019     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3020     lock_release(rtld_bind_lock, &lockstate);
3021     return 0;
3022 }
3023 
3024 char *
3025 dlerror(void)
3026 {
3027     char *msg = error_message;
3028     error_message = NULL;
3029     return msg;
3030 }
3031 
3032 /*
3033  * This function is deprecated and has no effect.
3034  */
3035 void
3036 dllockinit(void *context,
3037 	   void *(*lock_create)(void *context),
3038            void (*rlock_acquire)(void *lock),
3039            void (*wlock_acquire)(void *lock),
3040            void (*lock_release)(void *lock),
3041            void (*lock_destroy)(void *lock),
3042 	   void (*context_destroy)(void *context))
3043 {
3044     static void *cur_context;
3045     static void (*cur_context_destroy)(void *);
3046 
3047     /* Just destroy the context from the previous call, if necessary. */
3048     if (cur_context_destroy != NULL)
3049 	cur_context_destroy(cur_context);
3050     cur_context = context;
3051     cur_context_destroy = context_destroy;
3052 }
3053 
3054 void *
3055 dlopen(const char *name, int mode)
3056 {
3057 
3058 	return (rtld_dlopen(name, -1, mode));
3059 }
3060 
3061 void *
3062 fdlopen(int fd, int mode)
3063 {
3064 
3065 	return (rtld_dlopen(NULL, fd, mode));
3066 }
3067 
3068 static void *
3069 rtld_dlopen(const char *name, int fd, int mode)
3070 {
3071     RtldLockState lockstate;
3072     int lo_flags;
3073 
3074     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3075     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3076     if (ld_tracing != NULL) {
3077 	rlock_acquire(rtld_bind_lock, &lockstate);
3078 	if (sigsetjmp(lockstate.env, 0) != 0)
3079 	    lock_upgrade(rtld_bind_lock, &lockstate);
3080 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3081 	lock_release(rtld_bind_lock, &lockstate);
3082     }
3083     lo_flags = RTLD_LO_DLOPEN;
3084     if (mode & RTLD_NODELETE)
3085 	    lo_flags |= RTLD_LO_NODELETE;
3086     if (mode & RTLD_NOLOAD)
3087 	    lo_flags |= RTLD_LO_NOLOAD;
3088     if (ld_tracing != NULL)
3089 	    lo_flags |= RTLD_LO_TRACE;
3090 
3091     return (dlopen_object(name, fd, obj_main, lo_flags,
3092       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3093 }
3094 
3095 static void
3096 dlopen_cleanup(Obj_Entry *obj)
3097 {
3098 
3099 	obj->dl_refcount--;
3100 	unref_dag(obj);
3101 	if (obj->refcount == 0)
3102 		unload_object(obj);
3103 }
3104 
3105 static Obj_Entry *
3106 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3107     int mode, RtldLockState *lockstate)
3108 {
3109     Obj_Entry *old_obj_tail;
3110     Obj_Entry *obj;
3111     Objlist initlist;
3112     RtldLockState mlockstate;
3113     int result;
3114 
3115     objlist_init(&initlist);
3116 
3117     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3118 	wlock_acquire(rtld_bind_lock, &mlockstate);
3119 	lockstate = &mlockstate;
3120     }
3121     GDB_STATE(RT_ADD,NULL);
3122 
3123     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3124     obj = NULL;
3125     if (name == NULL && fd == -1) {
3126 	obj = obj_main;
3127 	obj->refcount++;
3128     } else {
3129 	obj = load_object(name, fd, refobj, lo_flags);
3130     }
3131 
3132     if (obj) {
3133 	obj->dl_refcount++;
3134 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3135 	    objlist_push_tail(&list_global, obj);
3136 	if (globallist_next(old_obj_tail) != NULL) {
3137 	    /* We loaded something new. */
3138 	    assert(globallist_next(old_obj_tail) == obj);
3139 	    result = load_needed_objects(obj,
3140 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3141 	    init_dag(obj);
3142 	    ref_dag(obj);
3143 	    if (result != -1)
3144 		result = rtld_verify_versions(&obj->dagmembers);
3145 	    if (result != -1 && ld_tracing)
3146 		goto trace;
3147 	    if (result == -1 || relocate_object_dag(obj,
3148 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3149 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3150 	      lockstate) == -1) {
3151 		dlopen_cleanup(obj);
3152 		obj = NULL;
3153 	    } else if (lo_flags & RTLD_LO_EARLY) {
3154 		/*
3155 		 * Do not call the init functions for early loaded
3156 		 * filtees.  The image is still not initialized enough
3157 		 * for them to work.
3158 		 *
3159 		 * Our object is found by the global object list and
3160 		 * will be ordered among all init calls done right
3161 		 * before transferring control to main.
3162 		 */
3163 	    } else {
3164 		/* Make list of init functions to call. */
3165 		initlist_add_objects(obj, obj, &initlist);
3166 	    }
3167 	    /*
3168 	     * Process all no_delete or global objects here, given
3169 	     * them own DAGs to prevent their dependencies from being
3170 	     * unloaded.  This has to be done after we have loaded all
3171 	     * of the dependencies, so that we do not miss any.
3172 	     */
3173 	    if (obj != NULL)
3174 		process_z(obj);
3175 	} else {
3176 	    /*
3177 	     * Bump the reference counts for objects on this DAG.  If
3178 	     * this is the first dlopen() call for the object that was
3179 	     * already loaded as a dependency, initialize the dag
3180 	     * starting at it.
3181 	     */
3182 	    init_dag(obj);
3183 	    ref_dag(obj);
3184 
3185 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3186 		goto trace;
3187 	}
3188 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3189 	  obj->z_nodelete) && !obj->ref_nodel) {
3190 	    dbg("obj %s nodelete", obj->path);
3191 	    ref_dag(obj);
3192 	    obj->z_nodelete = obj->ref_nodel = true;
3193 	}
3194     }
3195 
3196     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3197 	name);
3198     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3199 
3200     if (!(lo_flags & RTLD_LO_EARLY)) {
3201 	map_stacks_exec(lockstate);
3202     }
3203 
3204     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3205       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3206       lockstate) == -1) {
3207 	objlist_clear(&initlist);
3208 	dlopen_cleanup(obj);
3209 	if (lockstate == &mlockstate)
3210 	    lock_release(rtld_bind_lock, lockstate);
3211 	return (NULL);
3212     }
3213 
3214     if (!(lo_flags & RTLD_LO_EARLY)) {
3215 	/* Call the init functions. */
3216 	objlist_call_init(&initlist, lockstate);
3217     }
3218     objlist_clear(&initlist);
3219     if (lockstate == &mlockstate)
3220 	lock_release(rtld_bind_lock, lockstate);
3221     return obj;
3222 trace:
3223     trace_loaded_objects(obj);
3224     if (lockstate == &mlockstate)
3225 	lock_release(rtld_bind_lock, lockstate);
3226     exit(0);
3227 }
3228 
3229 static void *
3230 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3231     int flags)
3232 {
3233     DoneList donelist;
3234     const Obj_Entry *obj, *defobj;
3235     const Elf_Sym *def;
3236     SymLook req;
3237     RtldLockState lockstate;
3238     tls_index ti;
3239     void *sym;
3240     int res;
3241 
3242     def = NULL;
3243     defobj = NULL;
3244     symlook_init(&req, name);
3245     req.ventry = ve;
3246     req.flags = flags | SYMLOOK_IN_PLT;
3247     req.lockstate = &lockstate;
3248 
3249     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3250     rlock_acquire(rtld_bind_lock, &lockstate);
3251     if (sigsetjmp(lockstate.env, 0) != 0)
3252 	    lock_upgrade(rtld_bind_lock, &lockstate);
3253     if (handle == NULL || handle == RTLD_NEXT ||
3254 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3255 
3256 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3257 	    _rtld_error("Cannot determine caller's shared object");
3258 	    lock_release(rtld_bind_lock, &lockstate);
3259 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3260 	    return NULL;
3261 	}
3262 	if (handle == NULL) {	/* Just the caller's shared object. */
3263 	    res = symlook_obj(&req, obj);
3264 	    if (res == 0) {
3265 		def = req.sym_out;
3266 		defobj = req.defobj_out;
3267 	    }
3268 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3269 		   handle == RTLD_SELF) { /* ... caller included */
3270 	    if (handle == RTLD_NEXT)
3271 		obj = globallist_next(obj);
3272 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3273 		if (obj->marker)
3274 		    continue;
3275 		res = symlook_obj(&req, obj);
3276 		if (res == 0) {
3277 		    if (def == NULL ||
3278 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3279 			def = req.sym_out;
3280 			defobj = req.defobj_out;
3281 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3282 			    break;
3283 		    }
3284 		}
3285 	    }
3286 	    /*
3287 	     * Search the dynamic linker itself, and possibly resolve the
3288 	     * symbol from there.  This is how the application links to
3289 	     * dynamic linker services such as dlopen.
3290 	     */
3291 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3292 		res = symlook_obj(&req, &obj_rtld);
3293 		if (res == 0) {
3294 		    def = req.sym_out;
3295 		    defobj = req.defobj_out;
3296 		}
3297 	    }
3298 	} else {
3299 	    assert(handle == RTLD_DEFAULT);
3300 	    res = symlook_default(&req, obj);
3301 	    if (res == 0) {
3302 		defobj = req.defobj_out;
3303 		def = req.sym_out;
3304 	    }
3305 	}
3306     } else {
3307 	if ((obj = dlcheck(handle)) == NULL) {
3308 	    lock_release(rtld_bind_lock, &lockstate);
3309 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3310 	    return NULL;
3311 	}
3312 
3313 	donelist_init(&donelist);
3314 	if (obj->mainprog) {
3315             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3316 	    res = symlook_global(&req, &donelist);
3317 	    if (res == 0) {
3318 		def = req.sym_out;
3319 		defobj = req.defobj_out;
3320 	    }
3321 	    /*
3322 	     * Search the dynamic linker itself, and possibly resolve the
3323 	     * symbol from there.  This is how the application links to
3324 	     * dynamic linker services such as dlopen.
3325 	     */
3326 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3327 		res = symlook_obj(&req, &obj_rtld);
3328 		if (res == 0) {
3329 		    def = req.sym_out;
3330 		    defobj = req.defobj_out;
3331 		}
3332 	    }
3333 	}
3334 	else {
3335 	    /* Search the whole DAG rooted at the given object. */
3336 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3337 	    if (res == 0) {
3338 		def = req.sym_out;
3339 		defobj = req.defobj_out;
3340 	    }
3341 	}
3342     }
3343 
3344     if (def != NULL) {
3345 	lock_release(rtld_bind_lock, &lockstate);
3346 
3347 	/*
3348 	 * The value required by the caller is derived from the value
3349 	 * of the symbol. this is simply the relocated value of the
3350 	 * symbol.
3351 	 */
3352 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3353 	    sym = make_function_pointer(def, defobj);
3354 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3355 	    sym = rtld_resolve_ifunc(defobj, def);
3356 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3357 	    ti.ti_module = defobj->tlsindex;
3358 	    ti.ti_offset = def->st_value;
3359 	    sym = __tls_get_addr(&ti);
3360 	} else
3361 	    sym = defobj->relocbase + def->st_value;
3362 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3363 	return (sym);
3364     }
3365 
3366     _rtld_error("Undefined symbol \"%s\"", name);
3367     lock_release(rtld_bind_lock, &lockstate);
3368     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3369     return NULL;
3370 }
3371 
3372 void *
3373 dlsym(void *handle, const char *name)
3374 {
3375 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3376 	    SYMLOOK_DLSYM);
3377 }
3378 
3379 dlfunc_t
3380 dlfunc(void *handle, const char *name)
3381 {
3382 	union {
3383 		void *d;
3384 		dlfunc_t f;
3385 	} rv;
3386 
3387 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3388 	    SYMLOOK_DLSYM);
3389 	return (rv.f);
3390 }
3391 
3392 void *
3393 dlvsym(void *handle, const char *name, const char *version)
3394 {
3395 	Ver_Entry ventry;
3396 
3397 	ventry.name = version;
3398 	ventry.file = NULL;
3399 	ventry.hash = elf_hash(version);
3400 	ventry.flags= 0;
3401 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3402 	    SYMLOOK_DLSYM);
3403 }
3404 
3405 int
3406 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3407 {
3408     const Obj_Entry *obj;
3409     RtldLockState lockstate;
3410 
3411     rlock_acquire(rtld_bind_lock, &lockstate);
3412     obj = obj_from_addr(addr);
3413     if (obj == NULL) {
3414         _rtld_error("No shared object contains address");
3415 	lock_release(rtld_bind_lock, &lockstate);
3416         return (0);
3417     }
3418     rtld_fill_dl_phdr_info(obj, phdr_info);
3419     lock_release(rtld_bind_lock, &lockstate);
3420     return (1);
3421 }
3422 
3423 int
3424 dladdr(const void *addr, Dl_info *info)
3425 {
3426     const Obj_Entry *obj;
3427     const Elf_Sym *def;
3428     void *symbol_addr;
3429     unsigned long symoffset;
3430     RtldLockState lockstate;
3431 
3432     rlock_acquire(rtld_bind_lock, &lockstate);
3433     obj = obj_from_addr(addr);
3434     if (obj == NULL) {
3435         _rtld_error("No shared object contains address");
3436 	lock_release(rtld_bind_lock, &lockstate);
3437         return 0;
3438     }
3439     info->dli_fname = obj->path;
3440     info->dli_fbase = obj->mapbase;
3441     info->dli_saddr = (void *)0;
3442     info->dli_sname = NULL;
3443 
3444     /*
3445      * Walk the symbol list looking for the symbol whose address is
3446      * closest to the address sent in.
3447      */
3448     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3449         def = obj->symtab + symoffset;
3450 
3451         /*
3452          * For skip the symbol if st_shndx is either SHN_UNDEF or
3453          * SHN_COMMON.
3454          */
3455         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3456             continue;
3457 
3458         /*
3459          * If the symbol is greater than the specified address, or if it
3460          * is further away from addr than the current nearest symbol,
3461          * then reject it.
3462          */
3463         symbol_addr = obj->relocbase + def->st_value;
3464         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3465             continue;
3466 
3467         /* Update our idea of the nearest symbol. */
3468         info->dli_sname = obj->strtab + def->st_name;
3469         info->dli_saddr = symbol_addr;
3470 
3471         /* Exact match? */
3472         if (info->dli_saddr == addr)
3473             break;
3474     }
3475     lock_release(rtld_bind_lock, &lockstate);
3476     return 1;
3477 }
3478 
3479 int
3480 dlinfo(void *handle, int request, void *p)
3481 {
3482     const Obj_Entry *obj;
3483     RtldLockState lockstate;
3484     int error;
3485 
3486     rlock_acquire(rtld_bind_lock, &lockstate);
3487 
3488     if (handle == NULL || handle == RTLD_SELF) {
3489 	void *retaddr;
3490 
3491 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3492 	if ((obj = obj_from_addr(retaddr)) == NULL)
3493 	    _rtld_error("Cannot determine caller's shared object");
3494     } else
3495 	obj = dlcheck(handle);
3496 
3497     if (obj == NULL) {
3498 	lock_release(rtld_bind_lock, &lockstate);
3499 	return (-1);
3500     }
3501 
3502     error = 0;
3503     switch (request) {
3504     case RTLD_DI_LINKMAP:
3505 	*((struct link_map const **)p) = &obj->linkmap;
3506 	break;
3507     case RTLD_DI_ORIGIN:
3508 	error = rtld_dirname(obj->path, p);
3509 	break;
3510 
3511     case RTLD_DI_SERINFOSIZE:
3512     case RTLD_DI_SERINFO:
3513 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3514 	break;
3515 
3516     default:
3517 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3518 	error = -1;
3519     }
3520 
3521     lock_release(rtld_bind_lock, &lockstate);
3522 
3523     return (error);
3524 }
3525 
3526 static void
3527 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3528 {
3529 
3530 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3531 	phdr_info->dlpi_name = obj->path;
3532 	phdr_info->dlpi_phdr = obj->phdr;
3533 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3534 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3535 	phdr_info->dlpi_tls_data = obj->tlsinit;
3536 	phdr_info->dlpi_adds = obj_loads;
3537 	phdr_info->dlpi_subs = obj_loads - obj_count;
3538 }
3539 
3540 int
3541 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3542 {
3543 	struct dl_phdr_info phdr_info;
3544 	Obj_Entry *obj, marker;
3545 	RtldLockState bind_lockstate, phdr_lockstate;
3546 	int error;
3547 
3548 	bzero(&marker, sizeof(marker));
3549 	marker.marker = true;
3550 	error = 0;
3551 
3552 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3553 	rlock_acquire(rtld_bind_lock, &bind_lockstate);
3554 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3555 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3556 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3557 		lock_release(rtld_bind_lock, &bind_lockstate);
3558 
3559 		error = callback(&phdr_info, sizeof phdr_info, param);
3560 
3561 		rlock_acquire(rtld_bind_lock, &bind_lockstate);
3562 		obj = globallist_next(&marker);
3563 		TAILQ_REMOVE(&obj_list, &marker, next);
3564 		if (error != 0) {
3565 			lock_release(rtld_bind_lock, &bind_lockstate);
3566 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3567 			return (error);
3568 		}
3569 	}
3570 
3571 	if (error == 0) {
3572 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3573 		lock_release(rtld_bind_lock, &bind_lockstate);
3574 		error = callback(&phdr_info, sizeof(phdr_info), param);
3575 	}
3576 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3577 	return (error);
3578 }
3579 
3580 static void *
3581 fill_search_info(const char *dir, size_t dirlen, void *param)
3582 {
3583     struct fill_search_info_args *arg;
3584 
3585     arg = param;
3586 
3587     if (arg->request == RTLD_DI_SERINFOSIZE) {
3588 	arg->serinfo->dls_cnt ++;
3589 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3590     } else {
3591 	struct dl_serpath *s_entry;
3592 
3593 	s_entry = arg->serpath;
3594 	s_entry->dls_name  = arg->strspace;
3595 	s_entry->dls_flags = arg->flags;
3596 
3597 	strncpy(arg->strspace, dir, dirlen);
3598 	arg->strspace[dirlen] = '\0';
3599 
3600 	arg->strspace += dirlen + 1;
3601 	arg->serpath++;
3602     }
3603 
3604     return (NULL);
3605 }
3606 
3607 static int
3608 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3609 {
3610     struct dl_serinfo _info;
3611     struct fill_search_info_args args;
3612 
3613     args.request = RTLD_DI_SERINFOSIZE;
3614     args.serinfo = &_info;
3615 
3616     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3617     _info.dls_cnt  = 0;
3618 
3619     path_enumerate(obj->rpath, fill_search_info, &args);
3620     path_enumerate(ld_library_path, fill_search_info, &args);
3621     path_enumerate(obj->runpath, fill_search_info, &args);
3622     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3623     if (!obj->z_nodeflib)
3624       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3625 
3626 
3627     if (request == RTLD_DI_SERINFOSIZE) {
3628 	info->dls_size = _info.dls_size;
3629 	info->dls_cnt = _info.dls_cnt;
3630 	return (0);
3631     }
3632 
3633     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3634 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3635 	return (-1);
3636     }
3637 
3638     args.request  = RTLD_DI_SERINFO;
3639     args.serinfo  = info;
3640     args.serpath  = &info->dls_serpath[0];
3641     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3642 
3643     args.flags = LA_SER_RUNPATH;
3644     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3645 	return (-1);
3646 
3647     args.flags = LA_SER_LIBPATH;
3648     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3649 	return (-1);
3650 
3651     args.flags = LA_SER_RUNPATH;
3652     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3653 	return (-1);
3654 
3655     args.flags = LA_SER_CONFIG;
3656     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3657       != NULL)
3658 	return (-1);
3659 
3660     args.flags = LA_SER_DEFAULT;
3661     if (!obj->z_nodeflib &&
3662       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3663 	return (-1);
3664     return (0);
3665 }
3666 
3667 static int
3668 rtld_dirname(const char *path, char *bname)
3669 {
3670     const char *endp;
3671 
3672     /* Empty or NULL string gets treated as "." */
3673     if (path == NULL || *path == '\0') {
3674 	bname[0] = '.';
3675 	bname[1] = '\0';
3676 	return (0);
3677     }
3678 
3679     /* Strip trailing slashes */
3680     endp = path + strlen(path) - 1;
3681     while (endp > path && *endp == '/')
3682 	endp--;
3683 
3684     /* Find the start of the dir */
3685     while (endp > path && *endp != '/')
3686 	endp--;
3687 
3688     /* Either the dir is "/" or there are no slashes */
3689     if (endp == path) {
3690 	bname[0] = *endp == '/' ? '/' : '.';
3691 	bname[1] = '\0';
3692 	return (0);
3693     } else {
3694 	do {
3695 	    endp--;
3696 	} while (endp > path && *endp == '/');
3697     }
3698 
3699     if (endp - path + 2 > PATH_MAX)
3700     {
3701 	_rtld_error("Filename is too long: %s", path);
3702 	return(-1);
3703     }
3704 
3705     strncpy(bname, path, endp - path + 1);
3706     bname[endp - path + 1] = '\0';
3707     return (0);
3708 }
3709 
3710 static int
3711 rtld_dirname_abs(const char *path, char *base)
3712 {
3713 	char *last;
3714 
3715 	if (realpath(path, base) == NULL)
3716 		return (-1);
3717 	dbg("%s -> %s", path, base);
3718 	last = strrchr(base, '/');
3719 	if (last == NULL)
3720 		return (-1);
3721 	if (last != base)
3722 		*last = '\0';
3723 	return (0);
3724 }
3725 
3726 static void
3727 linkmap_add(Obj_Entry *obj)
3728 {
3729     struct link_map *l = &obj->linkmap;
3730     struct link_map *prev;
3731 
3732     obj->linkmap.l_name = obj->path;
3733     obj->linkmap.l_addr = obj->mapbase;
3734     obj->linkmap.l_ld = obj->dynamic;
3735 #ifdef __mips__
3736     /* GDB needs load offset on MIPS to use the symbols */
3737     obj->linkmap.l_offs = obj->relocbase;
3738 #endif
3739 
3740     if (r_debug.r_map == NULL) {
3741 	r_debug.r_map = l;
3742 	return;
3743     }
3744 
3745     /*
3746      * Scan to the end of the list, but not past the entry for the
3747      * dynamic linker, which we want to keep at the very end.
3748      */
3749     for (prev = r_debug.r_map;
3750       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3751       prev = prev->l_next)
3752 	;
3753 
3754     /* Link in the new entry. */
3755     l->l_prev = prev;
3756     l->l_next = prev->l_next;
3757     if (l->l_next != NULL)
3758 	l->l_next->l_prev = l;
3759     prev->l_next = l;
3760 }
3761 
3762 static void
3763 linkmap_delete(Obj_Entry *obj)
3764 {
3765     struct link_map *l = &obj->linkmap;
3766 
3767     if (l->l_prev == NULL) {
3768 	if ((r_debug.r_map = l->l_next) != NULL)
3769 	    l->l_next->l_prev = NULL;
3770 	return;
3771     }
3772 
3773     if ((l->l_prev->l_next = l->l_next) != NULL)
3774 	l->l_next->l_prev = l->l_prev;
3775 }
3776 
3777 /*
3778  * Function for the debugger to set a breakpoint on to gain control.
3779  *
3780  * The two parameters allow the debugger to easily find and determine
3781  * what the runtime loader is doing and to whom it is doing it.
3782  *
3783  * When the loadhook trap is hit (r_debug_state, set at program
3784  * initialization), the arguments can be found on the stack:
3785  *
3786  *  +8   struct link_map *m
3787  *  +4   struct r_debug  *rd
3788  *  +0   RetAddr
3789  */
3790 void
3791 r_debug_state(struct r_debug* rd, struct link_map *m)
3792 {
3793     /*
3794      * The following is a hack to force the compiler to emit calls to
3795      * this function, even when optimizing.  If the function is empty,
3796      * the compiler is not obliged to emit any code for calls to it,
3797      * even when marked __noinline.  However, gdb depends on those
3798      * calls being made.
3799      */
3800     __compiler_membar();
3801 }
3802 
3803 /*
3804  * A function called after init routines have completed. This can be used to
3805  * break before a program's entry routine is called, and can be used when
3806  * main is not available in the symbol table.
3807  */
3808 void
3809 _r_debug_postinit(struct link_map *m)
3810 {
3811 
3812 	/* See r_debug_state(). */
3813 	__compiler_membar();
3814 }
3815 
3816 /*
3817  * Get address of the pointer variable in the main program.
3818  * Prefer non-weak symbol over the weak one.
3819  */
3820 static const void **
3821 get_program_var_addr(const char *name, RtldLockState *lockstate)
3822 {
3823     SymLook req;
3824     DoneList donelist;
3825 
3826     symlook_init(&req, name);
3827     req.lockstate = lockstate;
3828     donelist_init(&donelist);
3829     if (symlook_global(&req, &donelist) != 0)
3830 	return (NULL);
3831     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3832 	return ((const void **)make_function_pointer(req.sym_out,
3833 	  req.defobj_out));
3834     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3835 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3836     else
3837 	return ((const void **)(req.defobj_out->relocbase +
3838 	  req.sym_out->st_value));
3839 }
3840 
3841 /*
3842  * Set a pointer variable in the main program to the given value.  This
3843  * is used to set key variables such as "environ" before any of the
3844  * init functions are called.
3845  */
3846 static void
3847 set_program_var(const char *name, const void *value)
3848 {
3849     const void **addr;
3850 
3851     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3852 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3853 	*addr = value;
3854     }
3855 }
3856 
3857 /*
3858  * Search the global objects, including dependencies and main object,
3859  * for the given symbol.
3860  */
3861 static int
3862 symlook_global(SymLook *req, DoneList *donelist)
3863 {
3864     SymLook req1;
3865     const Objlist_Entry *elm;
3866     int res;
3867 
3868     symlook_init_from_req(&req1, req);
3869 
3870     /* Search all objects loaded at program start up. */
3871     if (req->defobj_out == NULL ||
3872       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3873 	res = symlook_list(&req1, &list_main, donelist);
3874 	if (res == 0 && (req->defobj_out == NULL ||
3875 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3876 	    req->sym_out = req1.sym_out;
3877 	    req->defobj_out = req1.defobj_out;
3878 	    assert(req->defobj_out != NULL);
3879 	}
3880     }
3881 
3882     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3883     STAILQ_FOREACH(elm, &list_global, link) {
3884 	if (req->defobj_out != NULL &&
3885 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3886 	    break;
3887 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3888 	if (res == 0 && (req->defobj_out == NULL ||
3889 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3890 	    req->sym_out = req1.sym_out;
3891 	    req->defobj_out = req1.defobj_out;
3892 	    assert(req->defobj_out != NULL);
3893 	}
3894     }
3895 
3896     return (req->sym_out != NULL ? 0 : ESRCH);
3897 }
3898 
3899 /*
3900  * Given a symbol name in a referencing object, find the corresponding
3901  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3902  * no definition was found.  Returns a pointer to the Obj_Entry of the
3903  * defining object via the reference parameter DEFOBJ_OUT.
3904  */
3905 static int
3906 symlook_default(SymLook *req, const Obj_Entry *refobj)
3907 {
3908     DoneList donelist;
3909     const Objlist_Entry *elm;
3910     SymLook req1;
3911     int res;
3912 
3913     donelist_init(&donelist);
3914     symlook_init_from_req(&req1, req);
3915 
3916     /* Look first in the referencing object if linked symbolically. */
3917     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3918 	res = symlook_obj(&req1, refobj);
3919 	if (res == 0) {
3920 	    req->sym_out = req1.sym_out;
3921 	    req->defobj_out = req1.defobj_out;
3922 	    assert(req->defobj_out != NULL);
3923 	}
3924     }
3925 
3926     symlook_global(req, &donelist);
3927 
3928     /* Search all dlopened DAGs containing the referencing object. */
3929     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3930 	if (req->sym_out != NULL &&
3931 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3932 	    break;
3933 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3934 	if (res == 0 && (req->sym_out == NULL ||
3935 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3936 	    req->sym_out = req1.sym_out;
3937 	    req->defobj_out = req1.defobj_out;
3938 	    assert(req->defobj_out != NULL);
3939 	}
3940     }
3941 
3942     /*
3943      * Search the dynamic linker itself, and possibly resolve the
3944      * symbol from there.  This is how the application links to
3945      * dynamic linker services such as dlopen.
3946      */
3947     if (req->sym_out == NULL ||
3948       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3949 	res = symlook_obj(&req1, &obj_rtld);
3950 	if (res == 0) {
3951 	    req->sym_out = req1.sym_out;
3952 	    req->defobj_out = req1.defobj_out;
3953 	    assert(req->defobj_out != NULL);
3954 	}
3955     }
3956 
3957     return (req->sym_out != NULL ? 0 : ESRCH);
3958 }
3959 
3960 static int
3961 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3962 {
3963     const Elf_Sym *def;
3964     const Obj_Entry *defobj;
3965     const Objlist_Entry *elm;
3966     SymLook req1;
3967     int res;
3968 
3969     def = NULL;
3970     defobj = NULL;
3971     STAILQ_FOREACH(elm, objlist, link) {
3972 	if (donelist_check(dlp, elm->obj))
3973 	    continue;
3974 	symlook_init_from_req(&req1, req);
3975 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3976 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3977 		def = req1.sym_out;
3978 		defobj = req1.defobj_out;
3979 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3980 		    break;
3981 	    }
3982 	}
3983     }
3984     if (def != NULL) {
3985 	req->sym_out = def;
3986 	req->defobj_out = defobj;
3987 	return (0);
3988     }
3989     return (ESRCH);
3990 }
3991 
3992 /*
3993  * Search the chain of DAGS cointed to by the given Needed_Entry
3994  * for a symbol of the given name.  Each DAG is scanned completely
3995  * before advancing to the next one.  Returns a pointer to the symbol,
3996  * or NULL if no definition was found.
3997  */
3998 static int
3999 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4000 {
4001     const Elf_Sym *def;
4002     const Needed_Entry *n;
4003     const Obj_Entry *defobj;
4004     SymLook req1;
4005     int res;
4006 
4007     def = NULL;
4008     defobj = NULL;
4009     symlook_init_from_req(&req1, req);
4010     for (n = needed; n != NULL; n = n->next) {
4011 	if (n->obj == NULL ||
4012 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4013 	    continue;
4014 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4015 	    def = req1.sym_out;
4016 	    defobj = req1.defobj_out;
4017 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4018 		break;
4019 	}
4020     }
4021     if (def != NULL) {
4022 	req->sym_out = def;
4023 	req->defobj_out = defobj;
4024 	return (0);
4025     }
4026     return (ESRCH);
4027 }
4028 
4029 /*
4030  * Search the symbol table of a single shared object for a symbol of
4031  * the given name and version, if requested.  Returns a pointer to the
4032  * symbol, or NULL if no definition was found.  If the object is
4033  * filter, return filtered symbol from filtee.
4034  *
4035  * The symbol's hash value is passed in for efficiency reasons; that
4036  * eliminates many recomputations of the hash value.
4037  */
4038 int
4039 symlook_obj(SymLook *req, const Obj_Entry *obj)
4040 {
4041     DoneList donelist;
4042     SymLook req1;
4043     int flags, res, mres;
4044 
4045     /*
4046      * If there is at least one valid hash at this point, we prefer to
4047      * use the faster GNU version if available.
4048      */
4049     if (obj->valid_hash_gnu)
4050 	mres = symlook_obj1_gnu(req, obj);
4051     else if (obj->valid_hash_sysv)
4052 	mres = symlook_obj1_sysv(req, obj);
4053     else
4054 	return (EINVAL);
4055 
4056     if (mres == 0) {
4057 	if (obj->needed_filtees != NULL) {
4058 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4059 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4060 	    donelist_init(&donelist);
4061 	    symlook_init_from_req(&req1, req);
4062 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4063 	    if (res == 0) {
4064 		req->sym_out = req1.sym_out;
4065 		req->defobj_out = req1.defobj_out;
4066 	    }
4067 	    return (res);
4068 	}
4069 	if (obj->needed_aux_filtees != NULL) {
4070 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4071 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4072 	    donelist_init(&donelist);
4073 	    symlook_init_from_req(&req1, req);
4074 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4075 	    if (res == 0) {
4076 		req->sym_out = req1.sym_out;
4077 		req->defobj_out = req1.defobj_out;
4078 		return (res);
4079 	    }
4080 	}
4081     }
4082     return (mres);
4083 }
4084 
4085 /* Symbol match routine common to both hash functions */
4086 static bool
4087 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4088     const unsigned long symnum)
4089 {
4090 	Elf_Versym verndx;
4091 	const Elf_Sym *symp;
4092 	const char *strp;
4093 
4094 	symp = obj->symtab + symnum;
4095 	strp = obj->strtab + symp->st_name;
4096 
4097 	switch (ELF_ST_TYPE(symp->st_info)) {
4098 	case STT_FUNC:
4099 	case STT_NOTYPE:
4100 	case STT_OBJECT:
4101 	case STT_COMMON:
4102 	case STT_GNU_IFUNC:
4103 		if (symp->st_value == 0)
4104 			return (false);
4105 		/* fallthrough */
4106 	case STT_TLS:
4107 		if (symp->st_shndx != SHN_UNDEF)
4108 			break;
4109 #ifndef __mips__
4110 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4111 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4112 			break;
4113 		/* fallthrough */
4114 #endif
4115 	default:
4116 		return (false);
4117 	}
4118 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4119 		return (false);
4120 
4121 	if (req->ventry == NULL) {
4122 		if (obj->versyms != NULL) {
4123 			verndx = VER_NDX(obj->versyms[symnum]);
4124 			if (verndx > obj->vernum) {
4125 				_rtld_error(
4126 				    "%s: symbol %s references wrong version %d",
4127 				    obj->path, obj->strtab + symnum, verndx);
4128 				return (false);
4129 			}
4130 			/*
4131 			 * If we are not called from dlsym (i.e. this
4132 			 * is a normal relocation from unversioned
4133 			 * binary), accept the symbol immediately if
4134 			 * it happens to have first version after this
4135 			 * shared object became versioned.  Otherwise,
4136 			 * if symbol is versioned and not hidden,
4137 			 * remember it. If it is the only symbol with
4138 			 * this name exported by the shared object, it
4139 			 * will be returned as a match by the calling
4140 			 * function. If symbol is global (verndx < 2)
4141 			 * accept it unconditionally.
4142 			 */
4143 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4144 			    verndx == VER_NDX_GIVEN) {
4145 				result->sym_out = symp;
4146 				return (true);
4147 			}
4148 			else if (verndx >= VER_NDX_GIVEN) {
4149 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4150 				    == 0) {
4151 					if (result->vsymp == NULL)
4152 						result->vsymp = symp;
4153 					result->vcount++;
4154 				}
4155 				return (false);
4156 			}
4157 		}
4158 		result->sym_out = symp;
4159 		return (true);
4160 	}
4161 	if (obj->versyms == NULL) {
4162 		if (object_match_name(obj, req->ventry->name)) {
4163 			_rtld_error("%s: object %s should provide version %s "
4164 			    "for symbol %s", obj_rtld.path, obj->path,
4165 			    req->ventry->name, obj->strtab + symnum);
4166 			return (false);
4167 		}
4168 	} else {
4169 		verndx = VER_NDX(obj->versyms[symnum]);
4170 		if (verndx > obj->vernum) {
4171 			_rtld_error("%s: symbol %s references wrong version %d",
4172 			    obj->path, obj->strtab + symnum, verndx);
4173 			return (false);
4174 		}
4175 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4176 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4177 			/*
4178 			 * Version does not match. Look if this is a
4179 			 * global symbol and if it is not hidden. If
4180 			 * global symbol (verndx < 2) is available,
4181 			 * use it. Do not return symbol if we are
4182 			 * called by dlvsym, because dlvsym looks for
4183 			 * a specific version and default one is not
4184 			 * what dlvsym wants.
4185 			 */
4186 			if ((req->flags & SYMLOOK_DLSYM) ||
4187 			    (verndx >= VER_NDX_GIVEN) ||
4188 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4189 				return (false);
4190 		}
4191 	}
4192 	result->sym_out = symp;
4193 	return (true);
4194 }
4195 
4196 /*
4197  * Search for symbol using SysV hash function.
4198  * obj->buckets is known not to be NULL at this point; the test for this was
4199  * performed with the obj->valid_hash_sysv assignment.
4200  */
4201 static int
4202 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4203 {
4204 	unsigned long symnum;
4205 	Sym_Match_Result matchres;
4206 
4207 	matchres.sym_out = NULL;
4208 	matchres.vsymp = NULL;
4209 	matchres.vcount = 0;
4210 
4211 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4212 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4213 		if (symnum >= obj->nchains)
4214 			return (ESRCH);	/* Bad object */
4215 
4216 		if (matched_symbol(req, obj, &matchres, symnum)) {
4217 			req->sym_out = matchres.sym_out;
4218 			req->defobj_out = obj;
4219 			return (0);
4220 		}
4221 	}
4222 	if (matchres.vcount == 1) {
4223 		req->sym_out = matchres.vsymp;
4224 		req->defobj_out = obj;
4225 		return (0);
4226 	}
4227 	return (ESRCH);
4228 }
4229 
4230 /* Search for symbol using GNU hash function */
4231 static int
4232 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4233 {
4234 	Elf_Addr bloom_word;
4235 	const Elf32_Word *hashval;
4236 	Elf32_Word bucket;
4237 	Sym_Match_Result matchres;
4238 	unsigned int h1, h2;
4239 	unsigned long symnum;
4240 
4241 	matchres.sym_out = NULL;
4242 	matchres.vsymp = NULL;
4243 	matchres.vcount = 0;
4244 
4245 	/* Pick right bitmask word from Bloom filter array */
4246 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4247 	    obj->maskwords_bm_gnu];
4248 
4249 	/* Calculate modulus word size of gnu hash and its derivative */
4250 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4251 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4252 
4253 	/* Filter out the "definitely not in set" queries */
4254 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4255 		return (ESRCH);
4256 
4257 	/* Locate hash chain and corresponding value element*/
4258 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4259 	if (bucket == 0)
4260 		return (ESRCH);
4261 	hashval = &obj->chain_zero_gnu[bucket];
4262 	do {
4263 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4264 			symnum = hashval - obj->chain_zero_gnu;
4265 			if (matched_symbol(req, obj, &matchres, symnum)) {
4266 				req->sym_out = matchres.sym_out;
4267 				req->defobj_out = obj;
4268 				return (0);
4269 			}
4270 		}
4271 	} while ((*hashval++ & 1) == 0);
4272 	if (matchres.vcount == 1) {
4273 		req->sym_out = matchres.vsymp;
4274 		req->defobj_out = obj;
4275 		return (0);
4276 	}
4277 	return (ESRCH);
4278 }
4279 
4280 static void
4281 trace_loaded_objects(Obj_Entry *obj)
4282 {
4283     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4284     int		c;
4285 
4286     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4287 	main_local = "";
4288 
4289     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4290 	fmt1 = "\t%o => %p (%x)\n";
4291 
4292     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4293 	fmt2 = "\t%o (%x)\n";
4294 
4295     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4296 
4297     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4298 	Needed_Entry		*needed;
4299 	char			*name, *path;
4300 	bool			is_lib;
4301 
4302 	if (obj->marker)
4303 	    continue;
4304 	if (list_containers && obj->needed != NULL)
4305 	    rtld_printf("%s:\n", obj->path);
4306 	for (needed = obj->needed; needed; needed = needed->next) {
4307 	    if (needed->obj != NULL) {
4308 		if (needed->obj->traced && !list_containers)
4309 		    continue;
4310 		needed->obj->traced = true;
4311 		path = needed->obj->path;
4312 	    } else
4313 		path = "not found";
4314 
4315 	    name = (char *)obj->strtab + needed->name;
4316 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4317 
4318 	    fmt = is_lib ? fmt1 : fmt2;
4319 	    while ((c = *fmt++) != '\0') {
4320 		switch (c) {
4321 		default:
4322 		    rtld_putchar(c);
4323 		    continue;
4324 		case '\\':
4325 		    switch (c = *fmt) {
4326 		    case '\0':
4327 			continue;
4328 		    case 'n':
4329 			rtld_putchar('\n');
4330 			break;
4331 		    case 't':
4332 			rtld_putchar('\t');
4333 			break;
4334 		    }
4335 		    break;
4336 		case '%':
4337 		    switch (c = *fmt) {
4338 		    case '\0':
4339 			continue;
4340 		    case '%':
4341 		    default:
4342 			rtld_putchar(c);
4343 			break;
4344 		    case 'A':
4345 			rtld_putstr(main_local);
4346 			break;
4347 		    case 'a':
4348 			rtld_putstr(obj_main->path);
4349 			break;
4350 		    case 'o':
4351 			rtld_putstr(name);
4352 			break;
4353 #if 0
4354 		    case 'm':
4355 			rtld_printf("%d", sodp->sod_major);
4356 			break;
4357 		    case 'n':
4358 			rtld_printf("%d", sodp->sod_minor);
4359 			break;
4360 #endif
4361 		    case 'p':
4362 			rtld_putstr(path);
4363 			break;
4364 		    case 'x':
4365 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4366 			  0);
4367 			break;
4368 		    }
4369 		    break;
4370 		}
4371 		++fmt;
4372 	    }
4373 	}
4374     }
4375 }
4376 
4377 /*
4378  * Unload a dlopened object and its dependencies from memory and from
4379  * our data structures.  It is assumed that the DAG rooted in the
4380  * object has already been unreferenced, and that the object has a
4381  * reference count of 0.
4382  */
4383 static void
4384 unload_object(Obj_Entry *root)
4385 {
4386 	Obj_Entry *obj, *obj1;
4387 
4388 	assert(root->refcount == 0);
4389 
4390 	/*
4391 	 * Pass over the DAG removing unreferenced objects from
4392 	 * appropriate lists.
4393 	 */
4394 	unlink_object(root);
4395 
4396 	/* Unmap all objects that are no longer referenced. */
4397 	TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) {
4398 		if (obj->marker || obj->refcount != 0)
4399 			continue;
4400 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4401 		    obj->mapsize, 0, obj->path);
4402 		dbg("unloading \"%s\"", obj->path);
4403 		unload_filtees(root);
4404 		munmap(obj->mapbase, obj->mapsize);
4405 		linkmap_delete(obj);
4406 		TAILQ_REMOVE(&obj_list, obj, next);
4407 		obj_count--;
4408 		obj_free(obj);
4409 	}
4410 }
4411 
4412 static void
4413 unlink_object(Obj_Entry *root)
4414 {
4415     Objlist_Entry *elm;
4416 
4417     if (root->refcount == 0) {
4418 	/* Remove the object from the RTLD_GLOBAL list. */
4419 	objlist_remove(&list_global, root);
4420 
4421     	/* Remove the object from all objects' DAG lists. */
4422     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4423 	    objlist_remove(&elm->obj->dldags, root);
4424 	    if (elm->obj != root)
4425 		unlink_object(elm->obj);
4426 	}
4427     }
4428 }
4429 
4430 static void
4431 ref_dag(Obj_Entry *root)
4432 {
4433     Objlist_Entry *elm;
4434 
4435     assert(root->dag_inited);
4436     STAILQ_FOREACH(elm, &root->dagmembers, link)
4437 	elm->obj->refcount++;
4438 }
4439 
4440 static void
4441 unref_dag(Obj_Entry *root)
4442 {
4443     Objlist_Entry *elm;
4444 
4445     assert(root->dag_inited);
4446     STAILQ_FOREACH(elm, &root->dagmembers, link)
4447 	elm->obj->refcount--;
4448 }
4449 
4450 /*
4451  * Common code for MD __tls_get_addr().
4452  */
4453 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4454 static void *
4455 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4456 {
4457     Elf_Addr *newdtv, *dtv;
4458     RtldLockState lockstate;
4459     int to_copy;
4460 
4461     dtv = *dtvp;
4462     /* Check dtv generation in case new modules have arrived */
4463     if (dtv[0] != tls_dtv_generation) {
4464 	wlock_acquire(rtld_bind_lock, &lockstate);
4465 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4466 	to_copy = dtv[1];
4467 	if (to_copy > tls_max_index)
4468 	    to_copy = tls_max_index;
4469 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4470 	newdtv[0] = tls_dtv_generation;
4471 	newdtv[1] = tls_max_index;
4472 	free(dtv);
4473 	lock_release(rtld_bind_lock, &lockstate);
4474 	dtv = *dtvp = newdtv;
4475     }
4476 
4477     /* Dynamically allocate module TLS if necessary */
4478     if (dtv[index + 1] == 0) {
4479 	/* Signal safe, wlock will block out signals. */
4480 	wlock_acquire(rtld_bind_lock, &lockstate);
4481 	if (!dtv[index + 1])
4482 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4483 	lock_release(rtld_bind_lock, &lockstate);
4484     }
4485     return ((void *)(dtv[index + 1] + offset));
4486 }
4487 
4488 void *
4489 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4490 {
4491 	Elf_Addr *dtv;
4492 
4493 	dtv = *dtvp;
4494 	/* Check dtv generation in case new modules have arrived */
4495 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4496 	    dtv[index + 1] != 0))
4497 		return ((void *)(dtv[index + 1] + offset));
4498 	return (tls_get_addr_slow(dtvp, index, offset));
4499 }
4500 
4501 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4502     defined(__powerpc__) || defined(__riscv__)
4503 
4504 /*
4505  * Allocate Static TLS using the Variant I method.
4506  */
4507 void *
4508 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4509 {
4510     Obj_Entry *obj;
4511     char *tcb;
4512     Elf_Addr **tls;
4513     Elf_Addr *dtv;
4514     Elf_Addr addr;
4515     int i;
4516 
4517     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4518 	return (oldtcb);
4519 
4520     assert(tcbsize >= TLS_TCB_SIZE);
4521     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4522     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4523 
4524     if (oldtcb != NULL) {
4525 	memcpy(tls, oldtcb, tls_static_space);
4526 	free(oldtcb);
4527 
4528 	/* Adjust the DTV. */
4529 	dtv = tls[0];
4530 	for (i = 0; i < dtv[1]; i++) {
4531 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4532 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4533 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4534 	    }
4535 	}
4536     } else {
4537 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4538 	tls[0] = dtv;
4539 	dtv[0] = tls_dtv_generation;
4540 	dtv[1] = tls_max_index;
4541 
4542 	for (obj = globallist_curr(objs); obj != NULL;
4543 	  obj = globallist_next(obj)) {
4544 	    if (obj->tlsoffset > 0) {
4545 		addr = (Elf_Addr)tls + obj->tlsoffset;
4546 		if (obj->tlsinitsize > 0)
4547 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4548 		if (obj->tlssize > obj->tlsinitsize)
4549 		    memset((void*) (addr + obj->tlsinitsize), 0,
4550 			   obj->tlssize - obj->tlsinitsize);
4551 		dtv[obj->tlsindex + 1] = addr;
4552 	    }
4553 	}
4554     }
4555 
4556     return (tcb);
4557 }
4558 
4559 void
4560 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4561 {
4562     Elf_Addr *dtv;
4563     Elf_Addr tlsstart, tlsend;
4564     int dtvsize, i;
4565 
4566     assert(tcbsize >= TLS_TCB_SIZE);
4567 
4568     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4569     tlsend = tlsstart + tls_static_space;
4570 
4571     dtv = *(Elf_Addr **)tlsstart;
4572     dtvsize = dtv[1];
4573     for (i = 0; i < dtvsize; i++) {
4574 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4575 	    free((void*)dtv[i+2]);
4576 	}
4577     }
4578     free(dtv);
4579     free(tcb);
4580 }
4581 
4582 #endif
4583 
4584 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4585 
4586 /*
4587  * Allocate Static TLS using the Variant II method.
4588  */
4589 void *
4590 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4591 {
4592     Obj_Entry *obj;
4593     size_t size, ralign;
4594     char *tls;
4595     Elf_Addr *dtv, *olddtv;
4596     Elf_Addr segbase, oldsegbase, addr;
4597     int i;
4598 
4599     ralign = tcbalign;
4600     if (tls_static_max_align > ralign)
4601 	    ralign = tls_static_max_align;
4602     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4603 
4604     assert(tcbsize >= 2*sizeof(Elf_Addr));
4605     tls = malloc_aligned(size, ralign);
4606     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4607 
4608     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4609     ((Elf_Addr*)segbase)[0] = segbase;
4610     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4611 
4612     dtv[0] = tls_dtv_generation;
4613     dtv[1] = tls_max_index;
4614 
4615     if (oldtls) {
4616 	/*
4617 	 * Copy the static TLS block over whole.
4618 	 */
4619 	oldsegbase = (Elf_Addr) oldtls;
4620 	memcpy((void *)(segbase - tls_static_space),
4621 	       (const void *)(oldsegbase - tls_static_space),
4622 	       tls_static_space);
4623 
4624 	/*
4625 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4626 	 * move them over.
4627 	 */
4628 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4629 	for (i = 0; i < olddtv[1]; i++) {
4630 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4631 		dtv[i+2] = olddtv[i+2];
4632 		olddtv[i+2] = 0;
4633 	    }
4634 	}
4635 
4636 	/*
4637 	 * We assume that this block was the one we created with
4638 	 * allocate_initial_tls().
4639 	 */
4640 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4641     } else {
4642 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4643 		if (obj->marker || obj->tlsoffset == 0)
4644 			continue;
4645 		addr = segbase - obj->tlsoffset;
4646 		memset((void*) (addr + obj->tlsinitsize),
4647 		       0, obj->tlssize - obj->tlsinitsize);
4648 		if (obj->tlsinit)
4649 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4650 		dtv[obj->tlsindex + 1] = addr;
4651 	}
4652     }
4653 
4654     return (void*) segbase;
4655 }
4656 
4657 void
4658 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4659 {
4660     Elf_Addr* dtv;
4661     size_t size, ralign;
4662     int dtvsize, i;
4663     Elf_Addr tlsstart, tlsend;
4664 
4665     /*
4666      * Figure out the size of the initial TLS block so that we can
4667      * find stuff which ___tls_get_addr() allocated dynamically.
4668      */
4669     ralign = tcbalign;
4670     if (tls_static_max_align > ralign)
4671 	    ralign = tls_static_max_align;
4672     size = round(tls_static_space, ralign);
4673 
4674     dtv = ((Elf_Addr**)tls)[1];
4675     dtvsize = dtv[1];
4676     tlsend = (Elf_Addr) tls;
4677     tlsstart = tlsend - size;
4678     for (i = 0; i < dtvsize; i++) {
4679 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4680 		free_aligned((void *)dtv[i + 2]);
4681 	}
4682     }
4683 
4684     free_aligned((void *)tlsstart);
4685     free((void*) dtv);
4686 }
4687 
4688 #endif
4689 
4690 /*
4691  * Allocate TLS block for module with given index.
4692  */
4693 void *
4694 allocate_module_tls(int index)
4695 {
4696     Obj_Entry* obj;
4697     char* p;
4698 
4699     TAILQ_FOREACH(obj, &obj_list, next) {
4700 	if (obj->marker)
4701 	    continue;
4702 	if (obj->tlsindex == index)
4703 	    break;
4704     }
4705     if (!obj) {
4706 	_rtld_error("Can't find module with TLS index %d", index);
4707 	rtld_die();
4708     }
4709 
4710     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4711     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4712     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4713 
4714     return p;
4715 }
4716 
4717 bool
4718 allocate_tls_offset(Obj_Entry *obj)
4719 {
4720     size_t off;
4721 
4722     if (obj->tls_done)
4723 	return true;
4724 
4725     if (obj->tlssize == 0) {
4726 	obj->tls_done = true;
4727 	return true;
4728     }
4729 
4730     if (tls_last_offset == 0)
4731 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4732     else
4733 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4734 				   obj->tlssize, obj->tlsalign);
4735 
4736     /*
4737      * If we have already fixed the size of the static TLS block, we
4738      * must stay within that size. When allocating the static TLS, we
4739      * leave a small amount of space spare to be used for dynamically
4740      * loading modules which use static TLS.
4741      */
4742     if (tls_static_space != 0) {
4743 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4744 	    return false;
4745     } else if (obj->tlsalign > tls_static_max_align) {
4746 	    tls_static_max_align = obj->tlsalign;
4747     }
4748 
4749     tls_last_offset = obj->tlsoffset = off;
4750     tls_last_size = obj->tlssize;
4751     obj->tls_done = true;
4752 
4753     return true;
4754 }
4755 
4756 void
4757 free_tls_offset(Obj_Entry *obj)
4758 {
4759 
4760     /*
4761      * If we were the last thing to allocate out of the static TLS
4762      * block, we give our space back to the 'allocator'. This is a
4763      * simplistic workaround to allow libGL.so.1 to be loaded and
4764      * unloaded multiple times.
4765      */
4766     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4767 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4768 	tls_last_offset -= obj->tlssize;
4769 	tls_last_size = 0;
4770     }
4771 }
4772 
4773 void *
4774 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4775 {
4776     void *ret;
4777     RtldLockState lockstate;
4778 
4779     wlock_acquire(rtld_bind_lock, &lockstate);
4780     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4781       tcbsize, tcbalign);
4782     lock_release(rtld_bind_lock, &lockstate);
4783     return (ret);
4784 }
4785 
4786 void
4787 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4788 {
4789     RtldLockState lockstate;
4790 
4791     wlock_acquire(rtld_bind_lock, &lockstate);
4792     free_tls(tcb, tcbsize, tcbalign);
4793     lock_release(rtld_bind_lock, &lockstate);
4794 }
4795 
4796 static void
4797 object_add_name(Obj_Entry *obj, const char *name)
4798 {
4799     Name_Entry *entry;
4800     size_t len;
4801 
4802     len = strlen(name);
4803     entry = malloc(sizeof(Name_Entry) + len);
4804 
4805     if (entry != NULL) {
4806 	strcpy(entry->name, name);
4807 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4808     }
4809 }
4810 
4811 static int
4812 object_match_name(const Obj_Entry *obj, const char *name)
4813 {
4814     Name_Entry *entry;
4815 
4816     STAILQ_FOREACH(entry, &obj->names, link) {
4817 	if (strcmp(name, entry->name) == 0)
4818 	    return (1);
4819     }
4820     return (0);
4821 }
4822 
4823 static Obj_Entry *
4824 locate_dependency(const Obj_Entry *obj, const char *name)
4825 {
4826     const Objlist_Entry *entry;
4827     const Needed_Entry *needed;
4828 
4829     STAILQ_FOREACH(entry, &list_main, link) {
4830 	if (object_match_name(entry->obj, name))
4831 	    return entry->obj;
4832     }
4833 
4834     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4835 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4836 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4837 	    /*
4838 	     * If there is DT_NEEDED for the name we are looking for,
4839 	     * we are all set.  Note that object might not be found if
4840 	     * dependency was not loaded yet, so the function can
4841 	     * return NULL here.  This is expected and handled
4842 	     * properly by the caller.
4843 	     */
4844 	    return (needed->obj);
4845 	}
4846     }
4847     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4848 	obj->path, name);
4849     rtld_die();
4850 }
4851 
4852 static int
4853 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4854     const Elf_Vernaux *vna)
4855 {
4856     const Elf_Verdef *vd;
4857     const char *vername;
4858 
4859     vername = refobj->strtab + vna->vna_name;
4860     vd = depobj->verdef;
4861     if (vd == NULL) {
4862 	_rtld_error("%s: version %s required by %s not defined",
4863 	    depobj->path, vername, refobj->path);
4864 	return (-1);
4865     }
4866     for (;;) {
4867 	if (vd->vd_version != VER_DEF_CURRENT) {
4868 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4869 		depobj->path, vd->vd_version);
4870 	    return (-1);
4871 	}
4872 	if (vna->vna_hash == vd->vd_hash) {
4873 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4874 		((char *)vd + vd->vd_aux);
4875 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4876 		return (0);
4877 	}
4878 	if (vd->vd_next == 0)
4879 	    break;
4880 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4881     }
4882     if (vna->vna_flags & VER_FLG_WEAK)
4883 	return (0);
4884     _rtld_error("%s: version %s required by %s not found",
4885 	depobj->path, vername, refobj->path);
4886     return (-1);
4887 }
4888 
4889 static int
4890 rtld_verify_object_versions(Obj_Entry *obj)
4891 {
4892     const Elf_Verneed *vn;
4893     const Elf_Verdef  *vd;
4894     const Elf_Verdaux *vda;
4895     const Elf_Vernaux *vna;
4896     const Obj_Entry *depobj;
4897     int maxvernum, vernum;
4898 
4899     if (obj->ver_checked)
4900 	return (0);
4901     obj->ver_checked = true;
4902 
4903     maxvernum = 0;
4904     /*
4905      * Walk over defined and required version records and figure out
4906      * max index used by any of them. Do very basic sanity checking
4907      * while there.
4908      */
4909     vn = obj->verneed;
4910     while (vn != NULL) {
4911 	if (vn->vn_version != VER_NEED_CURRENT) {
4912 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4913 		obj->path, vn->vn_version);
4914 	    return (-1);
4915 	}
4916 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4917 	for (;;) {
4918 	    vernum = VER_NEED_IDX(vna->vna_other);
4919 	    if (vernum > maxvernum)
4920 		maxvernum = vernum;
4921 	    if (vna->vna_next == 0)
4922 		 break;
4923 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4924 	}
4925 	if (vn->vn_next == 0)
4926 	    break;
4927 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4928     }
4929 
4930     vd = obj->verdef;
4931     while (vd != NULL) {
4932 	if (vd->vd_version != VER_DEF_CURRENT) {
4933 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4934 		obj->path, vd->vd_version);
4935 	    return (-1);
4936 	}
4937 	vernum = VER_DEF_IDX(vd->vd_ndx);
4938 	if (vernum > maxvernum)
4939 		maxvernum = vernum;
4940 	if (vd->vd_next == 0)
4941 	    break;
4942 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4943     }
4944 
4945     if (maxvernum == 0)
4946 	return (0);
4947 
4948     /*
4949      * Store version information in array indexable by version index.
4950      * Verify that object version requirements are satisfied along the
4951      * way.
4952      */
4953     obj->vernum = maxvernum + 1;
4954     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4955 
4956     vd = obj->verdef;
4957     while (vd != NULL) {
4958 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4959 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4960 	    assert(vernum <= maxvernum);
4961 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4962 	    obj->vertab[vernum].hash = vd->vd_hash;
4963 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4964 	    obj->vertab[vernum].file = NULL;
4965 	    obj->vertab[vernum].flags = 0;
4966 	}
4967 	if (vd->vd_next == 0)
4968 	    break;
4969 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4970     }
4971 
4972     vn = obj->verneed;
4973     while (vn != NULL) {
4974 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4975 	if (depobj == NULL)
4976 	    return (-1);
4977 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4978 	for (;;) {
4979 	    if (check_object_provided_version(obj, depobj, vna))
4980 		return (-1);
4981 	    vernum = VER_NEED_IDX(vna->vna_other);
4982 	    assert(vernum <= maxvernum);
4983 	    obj->vertab[vernum].hash = vna->vna_hash;
4984 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4985 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4986 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4987 		VER_INFO_HIDDEN : 0;
4988 	    if (vna->vna_next == 0)
4989 		 break;
4990 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4991 	}
4992 	if (vn->vn_next == 0)
4993 	    break;
4994 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4995     }
4996     return 0;
4997 }
4998 
4999 static int
5000 rtld_verify_versions(const Objlist *objlist)
5001 {
5002     Objlist_Entry *entry;
5003     int rc;
5004 
5005     rc = 0;
5006     STAILQ_FOREACH(entry, objlist, link) {
5007 	/*
5008 	 * Skip dummy objects or objects that have their version requirements
5009 	 * already checked.
5010 	 */
5011 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5012 	    continue;
5013 	if (rtld_verify_object_versions(entry->obj) == -1) {
5014 	    rc = -1;
5015 	    if (ld_tracing == NULL)
5016 		break;
5017 	}
5018     }
5019     if (rc == 0 || ld_tracing != NULL)
5020     	rc = rtld_verify_object_versions(&obj_rtld);
5021     return rc;
5022 }
5023 
5024 const Ver_Entry *
5025 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5026 {
5027     Elf_Versym vernum;
5028 
5029     if (obj->vertab) {
5030 	vernum = VER_NDX(obj->versyms[symnum]);
5031 	if (vernum >= obj->vernum) {
5032 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5033 		obj->path, obj->strtab + symnum, vernum);
5034 	} else if (obj->vertab[vernum].hash != 0) {
5035 	    return &obj->vertab[vernum];
5036 	}
5037     }
5038     return NULL;
5039 }
5040 
5041 int
5042 _rtld_get_stack_prot(void)
5043 {
5044 
5045 	return (stack_prot);
5046 }
5047 
5048 int
5049 _rtld_is_dlopened(void *arg)
5050 {
5051 	Obj_Entry *obj;
5052 	RtldLockState lockstate;
5053 	int res;
5054 
5055 	rlock_acquire(rtld_bind_lock, &lockstate);
5056 	obj = dlcheck(arg);
5057 	if (obj == NULL)
5058 		obj = obj_from_addr(arg);
5059 	if (obj == NULL) {
5060 		_rtld_error("No shared object contains address");
5061 		lock_release(rtld_bind_lock, &lockstate);
5062 		return (-1);
5063 	}
5064 	res = obj->dlopened ? 1 : 0;
5065 	lock_release(rtld_bind_lock, &lockstate);
5066 	return (res);
5067 }
5068 
5069 static void
5070 map_stacks_exec(RtldLockState *lockstate)
5071 {
5072 	void (*thr_map_stacks_exec)(void);
5073 
5074 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5075 		return;
5076 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5077 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5078 	if (thr_map_stacks_exec != NULL) {
5079 		stack_prot |= PROT_EXEC;
5080 		thr_map_stacks_exec();
5081 	}
5082 }
5083 
5084 void
5085 symlook_init(SymLook *dst, const char *name)
5086 {
5087 
5088 	bzero(dst, sizeof(*dst));
5089 	dst->name = name;
5090 	dst->hash = elf_hash(name);
5091 	dst->hash_gnu = gnu_hash(name);
5092 }
5093 
5094 static void
5095 symlook_init_from_req(SymLook *dst, const SymLook *src)
5096 {
5097 
5098 	dst->name = src->name;
5099 	dst->hash = src->hash;
5100 	dst->hash_gnu = src->hash_gnu;
5101 	dst->ventry = src->ventry;
5102 	dst->flags = src->flags;
5103 	dst->defobj_out = NULL;
5104 	dst->sym_out = NULL;
5105 	dst->lockstate = src->lockstate;
5106 }
5107 
5108 
5109 /*
5110  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5111  */
5112 static int
5113 parse_libdir(const char *str)
5114 {
5115 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5116 	const char *orig;
5117 	int fd;
5118 	char c;
5119 
5120 	orig = str;
5121 	fd = 0;
5122 	for (c = *str; c != '\0'; c = *++str) {
5123 		if (c < '0' || c > '9')
5124 			return (-1);
5125 
5126 		fd *= RADIX;
5127 		fd += c - '0';
5128 	}
5129 
5130 	/* Make sure we actually parsed something. */
5131 	if (str == orig) {
5132 		_rtld_error("failed to parse directory FD from '%s'", str);
5133 		return (-1);
5134 	}
5135 	return (fd);
5136 }
5137 
5138 /*
5139  * Overrides for libc_pic-provided functions.
5140  */
5141 
5142 int
5143 __getosreldate(void)
5144 {
5145 	size_t len;
5146 	int oid[2];
5147 	int error, osrel;
5148 
5149 	if (osreldate != 0)
5150 		return (osreldate);
5151 
5152 	oid[0] = CTL_KERN;
5153 	oid[1] = KERN_OSRELDATE;
5154 	osrel = 0;
5155 	len = sizeof(osrel);
5156 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5157 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5158 		osreldate = osrel;
5159 	return (osreldate);
5160 }
5161 
5162 void
5163 exit(int status)
5164 {
5165 
5166 	_exit(status);
5167 }
5168 
5169 void (*__cleanup)(void);
5170 int __isthreaded = 0;
5171 int _thread_autoinit_dummy_decl = 1;
5172 
5173 /*
5174  * No unresolved symbols for rtld.
5175  */
5176 void
5177 __pthread_cxa_finalize(struct dl_phdr_info *a)
5178 {
5179 }
5180 
5181 void
5182 __stack_chk_fail(void)
5183 {
5184 
5185 	_rtld_error("stack overflow detected; terminated");
5186 	rtld_die();
5187 }
5188 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5189 
5190 void
5191 __chk_fail(void)
5192 {
5193 
5194 	_rtld_error("buffer overflow detected; terminated");
5195 	rtld_die();
5196 }
5197 
5198 const char *
5199 rtld_strerror(int errnum)
5200 {
5201 
5202 	if (errnum < 0 || errnum >= sys_nerr)
5203 		return ("Unknown error");
5204 	return (sys_errlist[errnum]);
5205 }
5206