xref: /freebsd/libexec/rtld-elf/rtld.c (revision f11c7f63056671247335df83a3fe80b94c6616ac)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 
65 #ifndef COMPAT_32BIT
66 #define PATH_RTLD	"/libexec/ld-elf.so.1"
67 #else
68 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
69 #endif
70 
71 /* Types. */
72 typedef void (*func_ptr_type)();
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 /*
76  * Function declarations.
77  */
78 static const char *basename(const char *);
79 static void die(void) __dead2;
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
87     int lo_flags, int mode);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *);
95 static const char *gethints(void);
96 static void init_dag(Obj_Entry *);
97 static void init_rtld(caddr_t, Elf_Auxinfo **);
98 static void initlist_add_neededs(Needed_Entry *, Objlist *);
99 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
103 static void unload_filtees(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *, int);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
107 static void map_stacks_exec(RtldLockState *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110 static void objlist_call_init(Objlist *, RtldLockState *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void *path_enumerate(const char *, path_enum_proc, void *);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
119 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
120     RtldLockState *lockstate);
121 static int rtld_dirname(const char *, char *);
122 static int rtld_dirname_abs(const char *, char *);
123 static void *rtld_dlopen(const char *name, int fd, int mode);
124 static void rtld_exit(void);
125 static char *search_library_path(const char *, const char *);
126 static const void **get_program_var_addr(const char *, RtldLockState *);
127 static void set_program_var(const char *, const void *);
128 static int symlook_default(SymLook *, const Obj_Entry *refobj);
129 static int symlook_global(SymLook *, DoneList *);
130 static void symlook_init_from_req(SymLook *, const SymLook *);
131 static int symlook_list(SymLook *, const Objlist *, DoneList *);
132 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
133 static int symlook_obj1(SymLook *, const Obj_Entry *);
134 static void trace_loaded_objects(Obj_Entry *);
135 static void unlink_object(Obj_Entry *);
136 static void unload_object(Obj_Entry *);
137 static void unref_dag(Obj_Entry *);
138 static void ref_dag(Obj_Entry *);
139 static int origin_subst_one(char **, const char *, const char *,
140   const char *, char *);
141 static char *origin_subst(const char *, const char *);
142 static int  rtld_verify_versions(const Objlist *);
143 static int  rtld_verify_object_versions(Obj_Entry *);
144 static void object_add_name(Obj_Entry *, const char *);
145 static int  object_match_name(const Obj_Entry *, const char *);
146 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148     struct dl_phdr_info *phdr_info);
149 
150 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
151 
152 /*
153  * Data declarations.
154  */
155 static char *error_message;	/* Message for dlerror(), or NULL */
156 struct r_debug r_debug;		/* for GDB; */
157 static bool libmap_disable;	/* Disable libmap */
158 static bool ld_loadfltr;	/* Immediate filters processing */
159 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
160 static bool trust;		/* False for setuid and setgid programs */
161 static bool dangerous_ld_env;	/* True if environment variables have been
162 				   used to affect the libraries loaded */
163 static char *ld_bind_now;	/* Environment variable for immediate binding */
164 static char *ld_debug;		/* Environment variable for debugging */
165 static char *ld_library_path;	/* Environment variable for search path */
166 static char *ld_preload;	/* Environment variable for libraries to
167 				   load first */
168 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
169 static char *ld_tracing;	/* Called from ldd to print libs */
170 static char *ld_utrace;		/* Use utrace() to log events. */
171 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
172 static Obj_Entry **obj_tail;	/* Link field of last object in list */
173 static Obj_Entry *obj_main;	/* The main program shared object */
174 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
175 static unsigned int obj_count;	/* Number of objects in obj_list */
176 static unsigned int obj_loads;	/* Number of objects in obj_list */
177 
178 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
179   STAILQ_HEAD_INITIALIZER(list_global);
180 static Objlist list_main =	/* Objects loaded at program startup */
181   STAILQ_HEAD_INITIALIZER(list_main);
182 static Objlist list_fini =	/* Objects needing fini() calls */
183   STAILQ_HEAD_INITIALIZER(list_fini);
184 
185 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
186 
187 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
188 
189 extern Elf_Dyn _DYNAMIC;
190 #pragma weak _DYNAMIC
191 #ifndef RTLD_IS_DYNAMIC
192 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
193 #endif
194 
195 int osreldate, pagesize;
196 
197 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
198 static int max_stack_flags;
199 
200 /*
201  * Global declarations normally provided by crt1.  The dynamic linker is
202  * not built with crt1, so we have to provide them ourselves.
203  */
204 char *__progname;
205 char **environ;
206 
207 /*
208  * Globals to control TLS allocation.
209  */
210 size_t tls_last_offset;		/* Static TLS offset of last module */
211 size_t tls_last_size;		/* Static TLS size of last module */
212 size_t tls_static_space;	/* Static TLS space allocated */
213 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
214 int tls_max_index = 1;		/* Largest module index allocated */
215 
216 /*
217  * Fill in a DoneList with an allocation large enough to hold all of
218  * the currently-loaded objects.  Keep this as a macro since it calls
219  * alloca and we want that to occur within the scope of the caller.
220  */
221 #define donelist_init(dlp)					\
222     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
223     assert((dlp)->objs != NULL),				\
224     (dlp)->num_alloc = obj_count,				\
225     (dlp)->num_used = 0)
226 
227 #define	UTRACE_DLOPEN_START		1
228 #define	UTRACE_DLOPEN_STOP		2
229 #define	UTRACE_DLCLOSE_START		3
230 #define	UTRACE_DLCLOSE_STOP		4
231 #define	UTRACE_LOAD_OBJECT		5
232 #define	UTRACE_UNLOAD_OBJECT		6
233 #define	UTRACE_ADD_RUNDEP		7
234 #define	UTRACE_PRELOAD_FINISHED		8
235 #define	UTRACE_INIT_CALL		9
236 #define	UTRACE_FINI_CALL		10
237 
238 struct utrace_rtld {
239 	char sig[4];			/* 'RTLD' */
240 	int event;
241 	void *handle;
242 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
243 	size_t mapsize;
244 	int refcnt;			/* Used for 'mode' */
245 	char name[MAXPATHLEN];
246 };
247 
248 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
249 	if (ld_utrace != NULL)					\
250 		ld_utrace_log(e, h, mb, ms, r, n);		\
251 } while (0)
252 
253 static void
254 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
255     int refcnt, const char *name)
256 {
257 	struct utrace_rtld ut;
258 
259 	ut.sig[0] = 'R';
260 	ut.sig[1] = 'T';
261 	ut.sig[2] = 'L';
262 	ut.sig[3] = 'D';
263 	ut.event = event;
264 	ut.handle = handle;
265 	ut.mapbase = mapbase;
266 	ut.mapsize = mapsize;
267 	ut.refcnt = refcnt;
268 	bzero(ut.name, sizeof(ut.name));
269 	if (name)
270 		strlcpy(ut.name, name, sizeof(ut.name));
271 	utrace(&ut, sizeof(ut));
272 }
273 
274 /*
275  * Main entry point for dynamic linking.  The first argument is the
276  * stack pointer.  The stack is expected to be laid out as described
277  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
278  * Specifically, the stack pointer points to a word containing
279  * ARGC.  Following that in the stack is a null-terminated sequence
280  * of pointers to argument strings.  Then comes a null-terminated
281  * sequence of pointers to environment strings.  Finally, there is a
282  * sequence of "auxiliary vector" entries.
283  *
284  * The second argument points to a place to store the dynamic linker's
285  * exit procedure pointer and the third to a place to store the main
286  * program's object.
287  *
288  * The return value is the main program's entry point.
289  */
290 func_ptr_type
291 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
292 {
293     Elf_Auxinfo *aux_info[AT_COUNT];
294     int i;
295     int argc;
296     char **argv;
297     char **env;
298     Elf_Auxinfo *aux;
299     Elf_Auxinfo *auxp;
300     const char *argv0;
301     Objlist_Entry *entry;
302     Obj_Entry *obj;
303     Obj_Entry **preload_tail;
304     Objlist initlist;
305     RtldLockState lockstate;
306 
307     /*
308      * On entry, the dynamic linker itself has not been relocated yet.
309      * Be very careful not to reference any global data until after
310      * init_rtld has returned.  It is OK to reference file-scope statics
311      * and string constants, and to call static and global functions.
312      */
313 
314     /* Find the auxiliary vector on the stack. */
315     argc = *sp++;
316     argv = (char **) sp;
317     sp += argc + 1;	/* Skip over arguments and NULL terminator */
318     env = (char **) sp;
319     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
320 	;
321     aux = (Elf_Auxinfo *) sp;
322 
323     /* Digest the auxiliary vector. */
324     for (i = 0;  i < AT_COUNT;  i++)
325 	aux_info[i] = NULL;
326     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
327 	if (auxp->a_type < AT_COUNT)
328 	    aux_info[auxp->a_type] = auxp;
329     }
330 
331     /* Initialize and relocate ourselves. */
332     assert(aux_info[AT_BASE] != NULL);
333     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
334 
335     __progname = obj_rtld.path;
336     argv0 = argv[0] != NULL ? argv[0] : "(null)";
337     environ = env;
338 
339     trust = !issetugid();
340 
341     ld_bind_now = getenv(LD_ "BIND_NOW");
342     /*
343      * If the process is tainted, then we un-set the dangerous environment
344      * variables.  The process will be marked as tainted until setuid(2)
345      * is called.  If any child process calls setuid(2) we do not want any
346      * future processes to honor the potentially un-safe variables.
347      */
348     if (!trust) {
349         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
350 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
351 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
352 	    unsetenv(LD_ "LOADFLTR")) {
353 		_rtld_error("environment corrupt; aborting");
354 		die();
355 	}
356     }
357     ld_debug = getenv(LD_ "DEBUG");
358     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
359     libmap_override = getenv(LD_ "LIBMAP");
360     ld_library_path = getenv(LD_ "LIBRARY_PATH");
361     ld_preload = getenv(LD_ "PRELOAD");
362     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
363     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
364     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
365 	(ld_library_path != NULL) || (ld_preload != NULL) ||
366 	(ld_elf_hints_path != NULL) || ld_loadfltr;
367     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
368     ld_utrace = getenv(LD_ "UTRACE");
369 
370     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
371 	ld_elf_hints_path = _PATH_ELF_HINTS;
372 
373     if (ld_debug != NULL && *ld_debug != '\0')
374 	debug = 1;
375     dbg("%s is initialized, base address = %p", __progname,
376 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
377     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
378     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
379 
380     dbg("initializing thread locks");
381     lockdflt_init();
382 
383     /*
384      * Load the main program, or process its program header if it is
385      * already loaded.
386      */
387     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
388 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
389 	dbg("loading main program");
390 	obj_main = map_object(fd, argv0, NULL);
391 	close(fd);
392 	if (obj_main == NULL)
393 	    die();
394 	max_stack_flags = obj->stack_flags;
395     } else {				/* Main program already loaded. */
396 	const Elf_Phdr *phdr;
397 	int phnum;
398 	caddr_t entry;
399 
400 	dbg("processing main program's program header");
401 	assert(aux_info[AT_PHDR] != NULL);
402 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
403 	assert(aux_info[AT_PHNUM] != NULL);
404 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
405 	assert(aux_info[AT_PHENT] != NULL);
406 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
407 	assert(aux_info[AT_ENTRY] != NULL);
408 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
409 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
410 	    die();
411     }
412 
413     if (aux_info[AT_EXECPATH] != 0) {
414 	    char *kexecpath;
415 	    char buf[MAXPATHLEN];
416 
417 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
418 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
419 	    if (kexecpath[0] == '/')
420 		    obj_main->path = kexecpath;
421 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
422 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
423 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
424 		    obj_main->path = xstrdup(argv0);
425 	    else
426 		    obj_main->path = xstrdup(buf);
427     } else {
428 	    dbg("No AT_EXECPATH");
429 	    obj_main->path = xstrdup(argv0);
430     }
431     dbg("obj_main path %s", obj_main->path);
432     obj_main->mainprog = true;
433 
434     if (aux_info[AT_STACKPROT] != NULL &&
435       aux_info[AT_STACKPROT]->a_un.a_val != 0)
436 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
437 
438     /*
439      * Get the actual dynamic linker pathname from the executable if
440      * possible.  (It should always be possible.)  That ensures that
441      * gdb will find the right dynamic linker even if a non-standard
442      * one is being used.
443      */
444     if (obj_main->interp != NULL &&
445       strcmp(obj_main->interp, obj_rtld.path) != 0) {
446 	free(obj_rtld.path);
447 	obj_rtld.path = xstrdup(obj_main->interp);
448         __progname = obj_rtld.path;
449     }
450 
451     digest_dynamic(obj_main, 0);
452 
453     linkmap_add(obj_main);
454     linkmap_add(&obj_rtld);
455 
456     /* Link the main program into the list of objects. */
457     *obj_tail = obj_main;
458     obj_tail = &obj_main->next;
459     obj_count++;
460     obj_loads++;
461     /* Make sure we don't call the main program's init and fini functions. */
462     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
463 
464     /* Initialize a fake symbol for resolving undefined weak references. */
465     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
466     sym_zero.st_shndx = SHN_UNDEF;
467     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
468 
469     if (!libmap_disable)
470         libmap_disable = (bool)lm_init(libmap_override);
471 
472     dbg("loading LD_PRELOAD libraries");
473     if (load_preload_objects() == -1)
474 	die();
475     preload_tail = obj_tail;
476 
477     dbg("loading needed objects");
478     if (load_needed_objects(obj_main, 0) == -1)
479 	die();
480 
481     /* Make a list of all objects loaded at startup. */
482     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
483 	objlist_push_tail(&list_main, obj);
484     	obj->refcount++;
485     }
486 
487     dbg("checking for required versions");
488     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
489 	die();
490 
491     if (ld_tracing) {		/* We're done */
492 	trace_loaded_objects(obj_main);
493 	exit(0);
494     }
495 
496     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
497        dump_relocations(obj_main);
498        exit (0);
499     }
500 
501     /*
502      * Processing tls relocations requires having the tls offsets
503      * initialized.  Prepare offsets before starting initial
504      * relocation processing.
505      */
506     dbg("initializing initial thread local storage offsets");
507     STAILQ_FOREACH(entry, &list_main, link) {
508 	/*
509 	 * Allocate all the initial objects out of the static TLS
510 	 * block even if they didn't ask for it.
511 	 */
512 	allocate_tls_offset(entry->obj);
513     }
514 
515     if (relocate_objects(obj_main,
516       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
517 	die();
518 
519     dbg("doing copy relocations");
520     if (do_copy_relocations(obj_main) == -1)
521 	die();
522 
523     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
524        dump_relocations(obj_main);
525        exit (0);
526     }
527 
528     /*
529      * Setup TLS for main thread.  This must be done after the
530      * relocations are processed, since tls initialization section
531      * might be the subject for relocations.
532      */
533     dbg("initializing initial thread local storage");
534     allocate_initial_tls(obj_list);
535 
536     dbg("initializing key program variables");
537     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
538     set_program_var("environ", env);
539     set_program_var("__elf_aux_vector", aux);
540 
541     /* Make a list of init functions to call. */
542     objlist_init(&initlist);
543     initlist_add_objects(obj_list, preload_tail, &initlist);
544 
545     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
546 
547     map_stacks_exec(NULL);
548 
549     dbg("resolving ifuncs");
550     if (resolve_objects_ifunc(obj_main,
551       ld_bind_now != NULL && *ld_bind_now != '\0', NULL) == -1)
552 	die();
553 
554     wlock_acquire(rtld_bind_lock, &lockstate);
555     objlist_call_init(&initlist, &lockstate);
556     objlist_clear(&initlist);
557     dbg("loading filtees");
558     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
559 	if (ld_loadfltr || obj->z_loadfltr)
560 	    load_filtees(obj, 0, &lockstate);
561     }
562     lock_release(rtld_bind_lock, &lockstate);
563 
564     dbg("transferring control to program entry point = %p", obj_main->entry);
565 
566     /* Return the exit procedure and the program entry point. */
567     *exit_proc = rtld_exit;
568     *objp = obj_main;
569     return (func_ptr_type) obj_main->entry;
570 }
571 
572 void *
573 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
574 {
575 	void *ptr;
576 	Elf_Addr target;
577 
578 	ptr = (void *)make_function_pointer(def, obj);
579 	target = ((Elf_Addr (*)(void))ptr)();
580 	return ((void *)target);
581 }
582 
583 Elf_Addr
584 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
585 {
586     const Elf_Rel *rel;
587     const Elf_Sym *def;
588     const Obj_Entry *defobj;
589     Elf_Addr *where;
590     Elf_Addr target;
591     RtldLockState lockstate;
592 
593     rlock_acquire(rtld_bind_lock, &lockstate);
594     if (sigsetjmp(lockstate.env, 0) != 0)
595 	    lock_upgrade(rtld_bind_lock, &lockstate);
596     if (obj->pltrel)
597 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
598     else
599 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
600 
601     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
602     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
603 	&lockstate);
604     if (def == NULL)
605 	die();
606     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
607 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
608     else
609 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
610 
611     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
612       defobj->strtab + def->st_name, basename(obj->path),
613       (void *)target, basename(defobj->path));
614 
615     /*
616      * Write the new contents for the jmpslot. Note that depending on
617      * architecture, the value which we need to return back to the
618      * lazy binding trampoline may or may not be the target
619      * address. The value returned from reloc_jmpslot() is the value
620      * that the trampoline needs.
621      */
622     target = reloc_jmpslot(where, target, defobj, obj, rel);
623     lock_release(rtld_bind_lock, &lockstate);
624     return target;
625 }
626 
627 /*
628  * Error reporting function.  Use it like printf.  If formats the message
629  * into a buffer, and sets things up so that the next call to dlerror()
630  * will return the message.
631  */
632 void
633 _rtld_error(const char *fmt, ...)
634 {
635     static char buf[512];
636     va_list ap;
637 
638     va_start(ap, fmt);
639     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
640     error_message = buf;
641     va_end(ap);
642 }
643 
644 /*
645  * Return a dynamically-allocated copy of the current error message, if any.
646  */
647 static char *
648 errmsg_save(void)
649 {
650     return error_message == NULL ? NULL : xstrdup(error_message);
651 }
652 
653 /*
654  * Restore the current error message from a copy which was previously saved
655  * by errmsg_save().  The copy is freed.
656  */
657 static void
658 errmsg_restore(char *saved_msg)
659 {
660     if (saved_msg == NULL)
661 	error_message = NULL;
662     else {
663 	_rtld_error("%s", saved_msg);
664 	free(saved_msg);
665     }
666 }
667 
668 static const char *
669 basename(const char *name)
670 {
671     const char *p = strrchr(name, '/');
672     return p != NULL ? p + 1 : name;
673 }
674 
675 static struct utsname uts;
676 
677 static int
678 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
679     char *may_free)
680 {
681     const char *p, *p1;
682     char *res1;
683     int subst_len;
684     int kw_len;
685 
686     res1 = *res = NULL;
687     p = real;
688     subst_len = kw_len = 0;
689     for (;;) {
690 	 p1 = strstr(p, kw);
691 	 if (p1 != NULL) {
692 	     if (subst_len == 0) {
693 		 subst_len = strlen(subst);
694 		 kw_len = strlen(kw);
695 	     }
696 	     if (*res == NULL) {
697 		 *res = xmalloc(PATH_MAX);
698 		 res1 = *res;
699 	     }
700 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
701 		 _rtld_error("Substitution of %s in %s cannot be performed",
702 		     kw, real);
703 		 if (may_free != NULL)
704 		     free(may_free);
705 		 free(res);
706 		 return (false);
707 	     }
708 	     memcpy(res1, p, p1 - p);
709 	     res1 += p1 - p;
710 	     memcpy(res1, subst, subst_len);
711 	     res1 += subst_len;
712 	     p = p1 + kw_len;
713 	 } else {
714 	    if (*res == NULL) {
715 		if (may_free != NULL)
716 		    *res = may_free;
717 		else
718 		    *res = xstrdup(real);
719 		return (true);
720 	    }
721 	    *res1 = '\0';
722 	    if (may_free != NULL)
723 		free(may_free);
724 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
725 		free(res);
726 		return (false);
727 	    }
728 	    return (true);
729 	 }
730     }
731 }
732 
733 static char *
734 origin_subst(const char *real, const char *origin_path)
735 {
736     char *res1, *res2, *res3, *res4;
737 
738     if (uts.sysname[0] == '\0') {
739 	if (uname(&uts) != 0) {
740 	    _rtld_error("utsname failed: %d", errno);
741 	    return (NULL);
742 	}
743     }
744     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
745 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
746 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
747 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
748 	    return (NULL);
749     return (res4);
750 }
751 
752 static void
753 die(void)
754 {
755     const char *msg = dlerror();
756 
757     if (msg == NULL)
758 	msg = "Fatal error";
759     rtld_fdputstr(STDERR_FILENO, msg);
760     _exit(1);
761 }
762 
763 /*
764  * Process a shared object's DYNAMIC section, and save the important
765  * information in its Obj_Entry structure.
766  */
767 static void
768 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
769     const Elf_Dyn **dyn_soname)
770 {
771     const Elf_Dyn *dynp;
772     Needed_Entry **needed_tail = &obj->needed;
773     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
774     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
775     int plttype = DT_REL;
776 
777     *dyn_rpath = NULL;
778     *dyn_soname = NULL;
779 
780     obj->bind_now = false;
781     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
782 	switch (dynp->d_tag) {
783 
784 	case DT_REL:
785 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
786 	    break;
787 
788 	case DT_RELSZ:
789 	    obj->relsize = dynp->d_un.d_val;
790 	    break;
791 
792 	case DT_RELENT:
793 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
794 	    break;
795 
796 	case DT_JMPREL:
797 	    obj->pltrel = (const Elf_Rel *)
798 	      (obj->relocbase + dynp->d_un.d_ptr);
799 	    break;
800 
801 	case DT_PLTRELSZ:
802 	    obj->pltrelsize = dynp->d_un.d_val;
803 	    break;
804 
805 	case DT_RELA:
806 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
807 	    break;
808 
809 	case DT_RELASZ:
810 	    obj->relasize = dynp->d_un.d_val;
811 	    break;
812 
813 	case DT_RELAENT:
814 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
815 	    break;
816 
817 	case DT_PLTREL:
818 	    plttype = dynp->d_un.d_val;
819 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
820 	    break;
821 
822 	case DT_SYMTAB:
823 	    obj->symtab = (const Elf_Sym *)
824 	      (obj->relocbase + dynp->d_un.d_ptr);
825 	    break;
826 
827 	case DT_SYMENT:
828 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
829 	    break;
830 
831 	case DT_STRTAB:
832 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
833 	    break;
834 
835 	case DT_STRSZ:
836 	    obj->strsize = dynp->d_un.d_val;
837 	    break;
838 
839 	case DT_VERNEED:
840 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
841 		dynp->d_un.d_val);
842 	    break;
843 
844 	case DT_VERNEEDNUM:
845 	    obj->verneednum = dynp->d_un.d_val;
846 	    break;
847 
848 	case DT_VERDEF:
849 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
850 		dynp->d_un.d_val);
851 	    break;
852 
853 	case DT_VERDEFNUM:
854 	    obj->verdefnum = dynp->d_un.d_val;
855 	    break;
856 
857 	case DT_VERSYM:
858 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
859 		dynp->d_un.d_val);
860 	    break;
861 
862 	case DT_HASH:
863 	    {
864 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
865 		  (obj->relocbase + dynp->d_un.d_ptr);
866 		obj->nbuckets = hashtab[0];
867 		obj->nchains = hashtab[1];
868 		obj->buckets = hashtab + 2;
869 		obj->chains = obj->buckets + obj->nbuckets;
870 	    }
871 	    break;
872 
873 	case DT_NEEDED:
874 	    if (!obj->rtld) {
875 		Needed_Entry *nep = NEW(Needed_Entry);
876 		nep->name = dynp->d_un.d_val;
877 		nep->obj = NULL;
878 		nep->next = NULL;
879 
880 		*needed_tail = nep;
881 		needed_tail = &nep->next;
882 	    }
883 	    break;
884 
885 	case DT_FILTER:
886 	    if (!obj->rtld) {
887 		Needed_Entry *nep = NEW(Needed_Entry);
888 		nep->name = dynp->d_un.d_val;
889 		nep->obj = NULL;
890 		nep->next = NULL;
891 
892 		*needed_filtees_tail = nep;
893 		needed_filtees_tail = &nep->next;
894 	    }
895 	    break;
896 
897 	case DT_AUXILIARY:
898 	    if (!obj->rtld) {
899 		Needed_Entry *nep = NEW(Needed_Entry);
900 		nep->name = dynp->d_un.d_val;
901 		nep->obj = NULL;
902 		nep->next = NULL;
903 
904 		*needed_aux_filtees_tail = nep;
905 		needed_aux_filtees_tail = &nep->next;
906 	    }
907 	    break;
908 
909 	case DT_PLTGOT:
910 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
911 	    break;
912 
913 	case DT_TEXTREL:
914 	    obj->textrel = true;
915 	    break;
916 
917 	case DT_SYMBOLIC:
918 	    obj->symbolic = true;
919 	    break;
920 
921 	case DT_RPATH:
922 	case DT_RUNPATH:	/* XXX: process separately */
923 	    /*
924 	     * We have to wait until later to process this, because we
925 	     * might not have gotten the address of the string table yet.
926 	     */
927 	    *dyn_rpath = dynp;
928 	    break;
929 
930 	case DT_SONAME:
931 	    *dyn_soname = dynp;
932 	    break;
933 
934 	case DT_INIT:
935 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
936 	    break;
937 
938 	case DT_FINI:
939 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
940 	    break;
941 
942 	/*
943 	 * Don't process DT_DEBUG on MIPS as the dynamic section
944 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
945 	 */
946 
947 #ifndef __mips__
948 	case DT_DEBUG:
949 	    /* XXX - not implemented yet */
950 	    if (!early)
951 		dbg("Filling in DT_DEBUG entry");
952 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
953 	    break;
954 #endif
955 
956 	case DT_FLAGS:
957 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
958 		    obj->z_origin = true;
959 		if (dynp->d_un.d_val & DF_SYMBOLIC)
960 		    obj->symbolic = true;
961 		if (dynp->d_un.d_val & DF_TEXTREL)
962 		    obj->textrel = true;
963 		if (dynp->d_un.d_val & DF_BIND_NOW)
964 		    obj->bind_now = true;
965 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
966 		    ;*/
967 	    break;
968 #ifdef __mips__
969 	case DT_MIPS_LOCAL_GOTNO:
970 		obj->local_gotno = dynp->d_un.d_val;
971 	    break;
972 
973 	case DT_MIPS_SYMTABNO:
974 		obj->symtabno = dynp->d_un.d_val;
975 		break;
976 
977 	case DT_MIPS_GOTSYM:
978 		obj->gotsym = dynp->d_un.d_val;
979 		break;
980 
981 	case DT_MIPS_RLD_MAP:
982 #ifdef notyet
983 		if (!early)
984 			dbg("Filling in DT_DEBUG entry");
985 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
986 #endif
987 		break;
988 #endif
989 
990 	case DT_FLAGS_1:
991 		if (dynp->d_un.d_val & DF_1_NOOPEN)
992 		    obj->z_noopen = true;
993 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
994 		    obj->z_origin = true;
995 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
996 		    XXX ;*/
997 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
998 		    obj->bind_now = true;
999 		if (dynp->d_un.d_val & DF_1_NODELETE)
1000 		    obj->z_nodelete = true;
1001 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1002 		    obj->z_loadfltr = true;
1003 	    break;
1004 
1005 	default:
1006 	    if (!early) {
1007 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1008 		    (long)dynp->d_tag);
1009 	    }
1010 	    break;
1011 	}
1012     }
1013 
1014     obj->traced = false;
1015 
1016     if (plttype == DT_RELA) {
1017 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1018 	obj->pltrel = NULL;
1019 	obj->pltrelasize = obj->pltrelsize;
1020 	obj->pltrelsize = 0;
1021     }
1022 }
1023 
1024 static void
1025 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1026     const Elf_Dyn *dyn_soname)
1027 {
1028 
1029     if (obj->z_origin && obj->origin_path == NULL) {
1030 	obj->origin_path = xmalloc(PATH_MAX);
1031 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1032 	    die();
1033     }
1034 
1035     if (dyn_rpath != NULL) {
1036 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1037 	if (obj->z_origin)
1038 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1039     }
1040 
1041     if (dyn_soname != NULL)
1042 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1043 }
1044 
1045 static void
1046 digest_dynamic(Obj_Entry *obj, int early)
1047 {
1048 	const Elf_Dyn *dyn_rpath;
1049 	const Elf_Dyn *dyn_soname;
1050 
1051 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1052 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1053 }
1054 
1055 /*
1056  * Process a shared object's program header.  This is used only for the
1057  * main program, when the kernel has already loaded the main program
1058  * into memory before calling the dynamic linker.  It creates and
1059  * returns an Obj_Entry structure.
1060  */
1061 static Obj_Entry *
1062 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1063 {
1064     Obj_Entry *obj;
1065     const Elf_Phdr *phlimit = phdr + phnum;
1066     const Elf_Phdr *ph;
1067     int nsegs = 0;
1068 
1069     obj = obj_new();
1070     for (ph = phdr;  ph < phlimit;  ph++) {
1071 	if (ph->p_type != PT_PHDR)
1072 	    continue;
1073 
1074 	obj->phdr = phdr;
1075 	obj->phsize = ph->p_memsz;
1076 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1077 	break;
1078     }
1079 
1080     obj->stack_flags = PF_X | PF_R | PF_W;
1081 
1082     for (ph = phdr;  ph < phlimit;  ph++) {
1083 	switch (ph->p_type) {
1084 
1085 	case PT_INTERP:
1086 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1087 	    break;
1088 
1089 	case PT_LOAD:
1090 	    if (nsegs == 0) {	/* First load segment */
1091 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1092 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1093 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1094 		  obj->vaddrbase;
1095 	    } else {		/* Last load segment */
1096 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1097 		  obj->vaddrbase;
1098 	    }
1099 	    nsegs++;
1100 	    break;
1101 
1102 	case PT_DYNAMIC:
1103 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1104 	    break;
1105 
1106 	case PT_TLS:
1107 	    obj->tlsindex = 1;
1108 	    obj->tlssize = ph->p_memsz;
1109 	    obj->tlsalign = ph->p_align;
1110 	    obj->tlsinitsize = ph->p_filesz;
1111 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1112 	    break;
1113 
1114 	case PT_GNU_STACK:
1115 	    obj->stack_flags = ph->p_flags;
1116 	    break;
1117 
1118 	case PT_GNU_RELRO:
1119 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1120 	    obj->relro_size = round_page(ph->p_memsz);
1121 	    break;
1122 	}
1123     }
1124     if (nsegs < 1) {
1125 	_rtld_error("%s: too few PT_LOAD segments", path);
1126 	return NULL;
1127     }
1128 
1129     obj->entry = entry;
1130     return obj;
1131 }
1132 
1133 static Obj_Entry *
1134 dlcheck(void *handle)
1135 {
1136     Obj_Entry *obj;
1137 
1138     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1139 	if (obj == (Obj_Entry *) handle)
1140 	    break;
1141 
1142     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1143 	_rtld_error("Invalid shared object handle %p", handle);
1144 	return NULL;
1145     }
1146     return obj;
1147 }
1148 
1149 /*
1150  * If the given object is already in the donelist, return true.  Otherwise
1151  * add the object to the list and return false.
1152  */
1153 static bool
1154 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1155 {
1156     unsigned int i;
1157 
1158     for (i = 0;  i < dlp->num_used;  i++)
1159 	if (dlp->objs[i] == obj)
1160 	    return true;
1161     /*
1162      * Our donelist allocation should always be sufficient.  But if
1163      * our threads locking isn't working properly, more shared objects
1164      * could have been loaded since we allocated the list.  That should
1165      * never happen, but we'll handle it properly just in case it does.
1166      */
1167     if (dlp->num_used < dlp->num_alloc)
1168 	dlp->objs[dlp->num_used++] = obj;
1169     return false;
1170 }
1171 
1172 /*
1173  * Hash function for symbol table lookup.  Don't even think about changing
1174  * this.  It is specified by the System V ABI.
1175  */
1176 unsigned long
1177 elf_hash(const char *name)
1178 {
1179     const unsigned char *p = (const unsigned char *) name;
1180     unsigned long h = 0;
1181     unsigned long g;
1182 
1183     while (*p != '\0') {
1184 	h = (h << 4) + *p++;
1185 	if ((g = h & 0xf0000000) != 0)
1186 	    h ^= g >> 24;
1187 	h &= ~g;
1188     }
1189     return h;
1190 }
1191 
1192 /*
1193  * Find the library with the given name, and return its full pathname.
1194  * The returned string is dynamically allocated.  Generates an error
1195  * message and returns NULL if the library cannot be found.
1196  *
1197  * If the second argument is non-NULL, then it refers to an already-
1198  * loaded shared object, whose library search path will be searched.
1199  *
1200  * The search order is:
1201  *   LD_LIBRARY_PATH
1202  *   rpath in the referencing file
1203  *   ldconfig hints
1204  *   /lib:/usr/lib
1205  */
1206 static char *
1207 find_library(const char *xname, const Obj_Entry *refobj)
1208 {
1209     char *pathname;
1210     char *name;
1211 
1212     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1213 	if (xname[0] != '/' && !trust) {
1214 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1215 	      xname);
1216 	    return NULL;
1217 	}
1218 	if (refobj != NULL && refobj->z_origin)
1219 	    return origin_subst(xname, refobj->origin_path);
1220 	else
1221 	    return xstrdup(xname);
1222     }
1223 
1224     if (libmap_disable || (refobj == NULL) ||
1225 	(name = lm_find(refobj->path, xname)) == NULL)
1226 	name = (char *)xname;
1227 
1228     dbg(" Searching for \"%s\"", name);
1229 
1230     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1231       (refobj != NULL &&
1232       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1233       (pathname = search_library_path(name, gethints())) != NULL ||
1234       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1235 	return pathname;
1236 
1237     if(refobj != NULL && refobj->path != NULL) {
1238 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1239 	  name, basename(refobj->path));
1240     } else {
1241 	_rtld_error("Shared object \"%s\" not found", name);
1242     }
1243     return NULL;
1244 }
1245 
1246 /*
1247  * Given a symbol number in a referencing object, find the corresponding
1248  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1249  * no definition was found.  Returns a pointer to the Obj_Entry of the
1250  * defining object via the reference parameter DEFOBJ_OUT.
1251  */
1252 const Elf_Sym *
1253 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1254     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1255     RtldLockState *lockstate)
1256 {
1257     const Elf_Sym *ref;
1258     const Elf_Sym *def;
1259     const Obj_Entry *defobj;
1260     SymLook req;
1261     const char *name;
1262     int res;
1263 
1264     /*
1265      * If we have already found this symbol, get the information from
1266      * the cache.
1267      */
1268     if (symnum >= refobj->nchains)
1269 	return NULL;	/* Bad object */
1270     if (cache != NULL && cache[symnum].sym != NULL) {
1271 	*defobj_out = cache[symnum].obj;
1272 	return cache[symnum].sym;
1273     }
1274 
1275     ref = refobj->symtab + symnum;
1276     name = refobj->strtab + ref->st_name;
1277     def = NULL;
1278     defobj = NULL;
1279 
1280     /*
1281      * We don't have to do a full scale lookup if the symbol is local.
1282      * We know it will bind to the instance in this load module; to
1283      * which we already have a pointer (ie ref). By not doing a lookup,
1284      * we not only improve performance, but it also avoids unresolvable
1285      * symbols when local symbols are not in the hash table. This has
1286      * been seen with the ia64 toolchain.
1287      */
1288     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1289 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1290 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1291 		symnum);
1292 	}
1293 	symlook_init(&req, name);
1294 	req.flags = flags;
1295 	req.ventry = fetch_ventry(refobj, symnum);
1296 	req.lockstate = lockstate;
1297 	res = symlook_default(&req, refobj);
1298 	if (res == 0) {
1299 	    def = req.sym_out;
1300 	    defobj = req.defobj_out;
1301 	}
1302     } else {
1303 	def = ref;
1304 	defobj = refobj;
1305     }
1306 
1307     /*
1308      * If we found no definition and the reference is weak, treat the
1309      * symbol as having the value zero.
1310      */
1311     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1312 	def = &sym_zero;
1313 	defobj = obj_main;
1314     }
1315 
1316     if (def != NULL) {
1317 	*defobj_out = defobj;
1318 	/* Record the information in the cache to avoid subsequent lookups. */
1319 	if (cache != NULL) {
1320 	    cache[symnum].sym = def;
1321 	    cache[symnum].obj = defobj;
1322 	}
1323     } else {
1324 	if (refobj != &obj_rtld)
1325 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1326     }
1327     return def;
1328 }
1329 
1330 /*
1331  * Return the search path from the ldconfig hints file, reading it if
1332  * necessary.  Returns NULL if there are problems with the hints file,
1333  * or if the search path there is empty.
1334  */
1335 static const char *
1336 gethints(void)
1337 {
1338     static char *hints;
1339 
1340     if (hints == NULL) {
1341 	int fd;
1342 	struct elfhints_hdr hdr;
1343 	char *p;
1344 
1345 	/* Keep from trying again in case the hints file is bad. */
1346 	hints = "";
1347 
1348 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1349 	    return NULL;
1350 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1351 	  hdr.magic != ELFHINTS_MAGIC ||
1352 	  hdr.version != 1) {
1353 	    close(fd);
1354 	    return NULL;
1355 	}
1356 	p = xmalloc(hdr.dirlistlen + 1);
1357 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1358 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1359 	    free(p);
1360 	    close(fd);
1361 	    return NULL;
1362 	}
1363 	hints = p;
1364 	close(fd);
1365     }
1366     return hints[0] != '\0' ? hints : NULL;
1367 }
1368 
1369 static void
1370 init_dag(Obj_Entry *root)
1371 {
1372     const Needed_Entry *needed;
1373     const Objlist_Entry *elm;
1374     DoneList donelist;
1375 
1376     if (root->dag_inited)
1377 	return;
1378     donelist_init(&donelist);
1379 
1380     /* Root object belongs to own DAG. */
1381     objlist_push_tail(&root->dldags, root);
1382     objlist_push_tail(&root->dagmembers, root);
1383     donelist_check(&donelist, root);
1384 
1385     /*
1386      * Add dependencies of root object to DAG in breadth order
1387      * by exploiting the fact that each new object get added
1388      * to the tail of the dagmembers list.
1389      */
1390     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1391 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1392 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1393 		continue;
1394 	    objlist_push_tail(&needed->obj->dldags, root);
1395 	    objlist_push_tail(&root->dagmembers, needed->obj);
1396 	}
1397     }
1398     root->dag_inited = true;
1399 }
1400 
1401 /*
1402  * Initialize the dynamic linker.  The argument is the address at which
1403  * the dynamic linker has been mapped into memory.  The primary task of
1404  * this function is to relocate the dynamic linker.
1405  */
1406 static void
1407 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1408 {
1409     Obj_Entry objtmp;	/* Temporary rtld object */
1410     const Elf_Dyn *dyn_rpath;
1411     const Elf_Dyn *dyn_soname;
1412 
1413     /*
1414      * Conjure up an Obj_Entry structure for the dynamic linker.
1415      *
1416      * The "path" member can't be initialized yet because string constants
1417      * cannot yet be accessed. Below we will set it correctly.
1418      */
1419     memset(&objtmp, 0, sizeof(objtmp));
1420     objtmp.path = NULL;
1421     objtmp.rtld = true;
1422     objtmp.mapbase = mapbase;
1423 #ifdef PIC
1424     objtmp.relocbase = mapbase;
1425 #endif
1426     if (RTLD_IS_DYNAMIC()) {
1427 	objtmp.dynamic = rtld_dynamic(&objtmp);
1428 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1429 	assert(objtmp.needed == NULL);
1430 #if !defined(__mips__)
1431 	/* MIPS has a bogus DT_TEXTREL. */
1432 	assert(!objtmp.textrel);
1433 #endif
1434 
1435 	/*
1436 	 * Temporarily put the dynamic linker entry into the object list, so
1437 	 * that symbols can be found.
1438 	 */
1439 
1440 	relocate_objects(&objtmp, true, &objtmp, NULL);
1441     }
1442 
1443     /* Initialize the object list. */
1444     obj_tail = &obj_list;
1445 
1446     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1447     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1448 
1449     if (aux_info[AT_PAGESZ] != NULL)
1450 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1451     if (aux_info[AT_OSRELDATE] != NULL)
1452 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1453 
1454     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1455 
1456     /* Replace the path with a dynamically allocated copy. */
1457     obj_rtld.path = xstrdup(PATH_RTLD);
1458 
1459     r_debug.r_brk = r_debug_state;
1460     r_debug.r_state = RT_CONSISTENT;
1461 }
1462 
1463 /*
1464  * Add the init functions from a needed object list (and its recursive
1465  * needed objects) to "list".  This is not used directly; it is a helper
1466  * function for initlist_add_objects().  The write lock must be held
1467  * when this function is called.
1468  */
1469 static void
1470 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1471 {
1472     /* Recursively process the successor needed objects. */
1473     if (needed->next != NULL)
1474 	initlist_add_neededs(needed->next, list);
1475 
1476     /* Process the current needed object. */
1477     if (needed->obj != NULL)
1478 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1479 }
1480 
1481 /*
1482  * Scan all of the DAGs rooted in the range of objects from "obj" to
1483  * "tail" and add their init functions to "list".  This recurses over
1484  * the DAGs and ensure the proper init ordering such that each object's
1485  * needed libraries are initialized before the object itself.  At the
1486  * same time, this function adds the objects to the global finalization
1487  * list "list_fini" in the opposite order.  The write lock must be
1488  * held when this function is called.
1489  */
1490 static void
1491 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1492 {
1493     if (obj->init_scanned || obj->init_done)
1494 	return;
1495     obj->init_scanned = true;
1496 
1497     /* Recursively process the successor objects. */
1498     if (&obj->next != tail)
1499 	initlist_add_objects(obj->next, tail, list);
1500 
1501     /* Recursively process the needed objects. */
1502     if (obj->needed != NULL)
1503 	initlist_add_neededs(obj->needed, list);
1504 
1505     /* Add the object to the init list. */
1506     if (obj->init != (Elf_Addr)NULL)
1507 	objlist_push_tail(list, obj);
1508 
1509     /* Add the object to the global fini list in the reverse order. */
1510     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1511 	objlist_push_head(&list_fini, obj);
1512 	obj->on_fini_list = true;
1513     }
1514 }
1515 
1516 #ifndef FPTR_TARGET
1517 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1518 #endif
1519 
1520 static void
1521 free_needed_filtees(Needed_Entry *n)
1522 {
1523     Needed_Entry *needed, *needed1;
1524 
1525     for (needed = n; needed != NULL; needed = needed->next) {
1526 	if (needed->obj != NULL) {
1527 	    dlclose(needed->obj);
1528 	    needed->obj = NULL;
1529 	}
1530     }
1531     for (needed = n; needed != NULL; needed = needed1) {
1532 	needed1 = needed->next;
1533 	free(needed);
1534     }
1535 }
1536 
1537 static void
1538 unload_filtees(Obj_Entry *obj)
1539 {
1540 
1541     free_needed_filtees(obj->needed_filtees);
1542     obj->needed_filtees = NULL;
1543     free_needed_filtees(obj->needed_aux_filtees);
1544     obj->needed_aux_filtees = NULL;
1545     obj->filtees_loaded = false;
1546 }
1547 
1548 static void
1549 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1550 {
1551 
1552     for (; needed != NULL; needed = needed->next) {
1553 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1554 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1555 	  RTLD_LOCAL);
1556     }
1557 }
1558 
1559 static void
1560 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1561 {
1562 
1563     lock_restart_for_upgrade(lockstate);
1564     if (!obj->filtees_loaded) {
1565 	load_filtee1(obj, obj->needed_filtees, flags);
1566 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1567 	obj->filtees_loaded = true;
1568     }
1569 }
1570 
1571 static int
1572 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1573 {
1574     Obj_Entry *obj1;
1575 
1576     for (; needed != NULL; needed = needed->next) {
1577 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1578 	  flags & ~RTLD_LO_NOLOAD);
1579 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1580 	    return (-1);
1581 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1582 	    dbg("obj %s nodelete", obj1->path);
1583 	    init_dag(obj1);
1584 	    ref_dag(obj1);
1585 	    obj1->ref_nodel = true;
1586 	}
1587     }
1588     return (0);
1589 }
1590 
1591 /*
1592  * Given a shared object, traverse its list of needed objects, and load
1593  * each of them.  Returns 0 on success.  Generates an error message and
1594  * returns -1 on failure.
1595  */
1596 static int
1597 load_needed_objects(Obj_Entry *first, int flags)
1598 {
1599     Obj_Entry *obj;
1600 
1601     for (obj = first;  obj != NULL;  obj = obj->next) {
1602 	if (process_needed(obj, obj->needed, flags) == -1)
1603 	    return (-1);
1604     }
1605     return (0);
1606 }
1607 
1608 static int
1609 load_preload_objects(void)
1610 {
1611     char *p = ld_preload;
1612     static const char delim[] = " \t:;";
1613 
1614     if (p == NULL)
1615 	return 0;
1616 
1617     p += strspn(p, delim);
1618     while (*p != '\0') {
1619 	size_t len = strcspn(p, delim);
1620 	char savech;
1621 
1622 	savech = p[len];
1623 	p[len] = '\0';
1624 	if (load_object(p, -1, NULL, 0) == NULL)
1625 	    return -1;	/* XXX - cleanup */
1626 	p[len] = savech;
1627 	p += len;
1628 	p += strspn(p, delim);
1629     }
1630     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1631     return 0;
1632 }
1633 
1634 static const char *
1635 printable_path(const char *path)
1636 {
1637 
1638 	return (path == NULL ? "<unknown>" : path);
1639 }
1640 
1641 /*
1642  * Load a shared object into memory, if it is not already loaded.  The
1643  * object may be specified by name or by user-supplied file descriptor
1644  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1645  * duplicate is.
1646  *
1647  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1648  * on failure.
1649  */
1650 static Obj_Entry *
1651 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1652 {
1653     Obj_Entry *obj;
1654     int fd;
1655     struct stat sb;
1656     char *path;
1657 
1658     if (name != NULL) {
1659 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1660 	    if (object_match_name(obj, name))
1661 		return (obj);
1662 	}
1663 
1664 	path = find_library(name, refobj);
1665 	if (path == NULL)
1666 	    return (NULL);
1667     } else
1668 	path = NULL;
1669 
1670     /*
1671      * If we didn't find a match by pathname, or the name is not
1672      * supplied, open the file and check again by device and inode.
1673      * This avoids false mismatches caused by multiple links or ".."
1674      * in pathnames.
1675      *
1676      * To avoid a race, we open the file and use fstat() rather than
1677      * using stat().
1678      */
1679     fd = -1;
1680     if (fd_u == -1) {
1681 	if ((fd = open(path, O_RDONLY)) == -1) {
1682 	    _rtld_error("Cannot open \"%s\"", path);
1683 	    free(path);
1684 	    return (NULL);
1685 	}
1686     } else {
1687 	fd = dup(fd_u);
1688 	if (fd == -1) {
1689 	    _rtld_error("Cannot dup fd");
1690 	    free(path);
1691 	    return (NULL);
1692 	}
1693     }
1694     if (fstat(fd, &sb) == -1) {
1695 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1696 	close(fd);
1697 	free(path);
1698 	return NULL;
1699     }
1700     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1701 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1702 	    break;
1703     if (obj != NULL && name != NULL) {
1704 	object_add_name(obj, name);
1705 	free(path);
1706 	close(fd);
1707 	return obj;
1708     }
1709     if (flags & RTLD_LO_NOLOAD) {
1710 	free(path);
1711 	close(fd);
1712 	return (NULL);
1713     }
1714 
1715     /* First use of this object, so we must map it in */
1716     obj = do_load_object(fd, name, path, &sb, flags);
1717     if (obj == NULL)
1718 	free(path);
1719     close(fd);
1720 
1721     return obj;
1722 }
1723 
1724 static Obj_Entry *
1725 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1726   int flags)
1727 {
1728     Obj_Entry *obj;
1729     struct statfs fs;
1730 
1731     /*
1732      * but first, make sure that environment variables haven't been
1733      * used to circumvent the noexec flag on a filesystem.
1734      */
1735     if (dangerous_ld_env) {
1736 	if (fstatfs(fd, &fs) != 0) {
1737 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1738 	    return NULL;
1739 	}
1740 	if (fs.f_flags & MNT_NOEXEC) {
1741 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1742 	    return NULL;
1743 	}
1744     }
1745     dbg("loading \"%s\"", printable_path(path));
1746     obj = map_object(fd, printable_path(path), sbp);
1747     if (obj == NULL)
1748         return NULL;
1749 
1750     /*
1751      * If DT_SONAME is present in the object, digest_dynamic2 already
1752      * added it to the object names.
1753      */
1754     if (name != NULL)
1755 	object_add_name(obj, name);
1756     obj->path = path;
1757     digest_dynamic(obj, 0);
1758     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1759       RTLD_LO_DLOPEN) {
1760 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1761 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1762 	munmap(obj->mapbase, obj->mapsize);
1763 	obj_free(obj);
1764 	return (NULL);
1765     }
1766 
1767     *obj_tail = obj;
1768     obj_tail = &obj->next;
1769     obj_count++;
1770     obj_loads++;
1771     linkmap_add(obj);	/* for GDB & dlinfo() */
1772     max_stack_flags |= obj->stack_flags;
1773 
1774     dbg("  %p .. %p: %s", obj->mapbase,
1775          obj->mapbase + obj->mapsize - 1, obj->path);
1776     if (obj->textrel)
1777 	dbg("  WARNING: %s has impure text", obj->path);
1778     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1779 	obj->path);
1780 
1781     return obj;
1782 }
1783 
1784 static Obj_Entry *
1785 obj_from_addr(const void *addr)
1786 {
1787     Obj_Entry *obj;
1788 
1789     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1790 	if (addr < (void *) obj->mapbase)
1791 	    continue;
1792 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1793 	    return obj;
1794     }
1795     return NULL;
1796 }
1797 
1798 /*
1799  * Call the finalization functions for each of the objects in "list"
1800  * belonging to the DAG of "root" and referenced once. If NULL "root"
1801  * is specified, every finalization function will be called regardless
1802  * of the reference count and the list elements won't be freed. All of
1803  * the objects are expected to have non-NULL fini functions.
1804  */
1805 static void
1806 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1807 {
1808     Objlist_Entry *elm;
1809     char *saved_msg;
1810 
1811     assert(root == NULL || root->refcount == 1);
1812 
1813     /*
1814      * Preserve the current error message since a fini function might
1815      * call into the dynamic linker and overwrite it.
1816      */
1817     saved_msg = errmsg_save();
1818     do {
1819 	STAILQ_FOREACH(elm, list, link) {
1820 	    if (root != NULL && (elm->obj->refcount != 1 ||
1821 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1822 		continue;
1823 	    dbg("calling fini function for %s at %p", elm->obj->path,
1824 	        (void *)elm->obj->fini);
1825 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1826 		elm->obj->path);
1827 	    /* Remove object from fini list to prevent recursive invocation. */
1828 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1829 	    /*
1830 	     * XXX: If a dlopen() call references an object while the
1831 	     * fini function is in progress, we might end up trying to
1832 	     * unload the referenced object in dlclose() or the object
1833 	     * won't be unloaded although its fini function has been
1834 	     * called.
1835 	     */
1836 	    lock_release(rtld_bind_lock, lockstate);
1837 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1838 	    wlock_acquire(rtld_bind_lock, lockstate);
1839 	    /* No need to free anything if process is going down. */
1840 	    if (root != NULL)
1841 	    	free(elm);
1842 	    /*
1843 	     * We must restart the list traversal after every fini call
1844 	     * because a dlclose() call from the fini function or from
1845 	     * another thread might have modified the reference counts.
1846 	     */
1847 	    break;
1848 	}
1849     } while (elm != NULL);
1850     errmsg_restore(saved_msg);
1851 }
1852 
1853 /*
1854  * Call the initialization functions for each of the objects in
1855  * "list".  All of the objects are expected to have non-NULL init
1856  * functions.
1857  */
1858 static void
1859 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1860 {
1861     Objlist_Entry *elm;
1862     Obj_Entry *obj;
1863     char *saved_msg;
1864 
1865     /*
1866      * Clean init_scanned flag so that objects can be rechecked and
1867      * possibly initialized earlier if any of vectors called below
1868      * cause the change by using dlopen.
1869      */
1870     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1871 	obj->init_scanned = false;
1872 
1873     /*
1874      * Preserve the current error message since an init function might
1875      * call into the dynamic linker and overwrite it.
1876      */
1877     saved_msg = errmsg_save();
1878     STAILQ_FOREACH(elm, list, link) {
1879 	if (elm->obj->init_done) /* Initialized early. */
1880 	    continue;
1881 	dbg("calling init function for %s at %p", elm->obj->path,
1882 	    (void *)elm->obj->init);
1883 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1884 	    elm->obj->path);
1885 	/*
1886 	 * Race: other thread might try to use this object before current
1887 	 * one completes the initilization. Not much can be done here
1888 	 * without better locking.
1889 	 */
1890 	elm->obj->init_done = true;
1891 	lock_release(rtld_bind_lock, lockstate);
1892 	call_initfini_pointer(elm->obj, elm->obj->init);
1893 	wlock_acquire(rtld_bind_lock, lockstate);
1894     }
1895     errmsg_restore(saved_msg);
1896 }
1897 
1898 static void
1899 objlist_clear(Objlist *list)
1900 {
1901     Objlist_Entry *elm;
1902 
1903     while (!STAILQ_EMPTY(list)) {
1904 	elm = STAILQ_FIRST(list);
1905 	STAILQ_REMOVE_HEAD(list, link);
1906 	free(elm);
1907     }
1908 }
1909 
1910 static Objlist_Entry *
1911 objlist_find(Objlist *list, const Obj_Entry *obj)
1912 {
1913     Objlist_Entry *elm;
1914 
1915     STAILQ_FOREACH(elm, list, link)
1916 	if (elm->obj == obj)
1917 	    return elm;
1918     return NULL;
1919 }
1920 
1921 static void
1922 objlist_init(Objlist *list)
1923 {
1924     STAILQ_INIT(list);
1925 }
1926 
1927 static void
1928 objlist_push_head(Objlist *list, Obj_Entry *obj)
1929 {
1930     Objlist_Entry *elm;
1931 
1932     elm = NEW(Objlist_Entry);
1933     elm->obj = obj;
1934     STAILQ_INSERT_HEAD(list, elm, link);
1935 }
1936 
1937 static void
1938 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1939 {
1940     Objlist_Entry *elm;
1941 
1942     elm = NEW(Objlist_Entry);
1943     elm->obj = obj;
1944     STAILQ_INSERT_TAIL(list, elm, link);
1945 }
1946 
1947 static void
1948 objlist_remove(Objlist *list, Obj_Entry *obj)
1949 {
1950     Objlist_Entry *elm;
1951 
1952     if ((elm = objlist_find(list, obj)) != NULL) {
1953 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1954 	free(elm);
1955     }
1956 }
1957 
1958 /*
1959  * Relocate newly-loaded shared objects.  The argument is a pointer to
1960  * the Obj_Entry for the first such object.  All objects from the first
1961  * to the end of the list of objects are relocated.  Returns 0 on success,
1962  * or -1 on failure.
1963  */
1964 static int
1965 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
1966     RtldLockState *lockstate)
1967 {
1968     Obj_Entry *obj;
1969 
1970     for (obj = first;  obj != NULL;  obj = obj->next) {
1971 	if (obj != rtldobj)
1972 	    dbg("relocating \"%s\"", obj->path);
1973 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1974 	    obj->symtab == NULL || obj->strtab == NULL) {
1975 	    _rtld_error("%s: Shared object has no run-time symbol table",
1976 	      obj->path);
1977 	    return -1;
1978 	}
1979 
1980 	if (obj->textrel) {
1981 	    /* There are relocations to the write-protected text segment. */
1982 	    if (mprotect(obj->mapbase, obj->textsize,
1983 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1984 		_rtld_error("%s: Cannot write-enable text segment: %s",
1985 		  obj->path, strerror(errno));
1986 		return -1;
1987 	    }
1988 	}
1989 
1990 	/* Process the non-PLT relocations. */
1991 	if (reloc_non_plt(obj, rtldobj, lockstate))
1992 		return -1;
1993 
1994 	if (obj->textrel) {	/* Re-protected the text segment. */
1995 	    if (mprotect(obj->mapbase, obj->textsize,
1996 	      PROT_READ|PROT_EXEC) == -1) {
1997 		_rtld_error("%s: Cannot write-protect text segment: %s",
1998 		  obj->path, strerror(errno));
1999 		return -1;
2000 	    }
2001 	}
2002 
2003 
2004 	/* Set the special PLT or GOT entries. */
2005 	init_pltgot(obj);
2006 
2007 	/* Process the PLT relocations. */
2008 	if (reloc_plt(obj) == -1)
2009 	    return -1;
2010 	/* Relocate the jump slots if we are doing immediate binding. */
2011 	if (obj->bind_now || bind_now)
2012 	    if (reloc_jmpslots(obj, lockstate) == -1)
2013 		return -1;
2014 
2015 	if (obj->relro_size > 0) {
2016 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2017 		_rtld_error("%s: Cannot enforce relro protection: %s",
2018 		  obj->path, strerror(errno));
2019 		return -1;
2020 	    }
2021 	}
2022 
2023 	/*
2024 	 * Set up the magic number and version in the Obj_Entry.  These
2025 	 * were checked in the crt1.o from the original ElfKit, so we
2026 	 * set them for backward compatibility.
2027 	 */
2028 	obj->magic = RTLD_MAGIC;
2029 	obj->version = RTLD_VERSION;
2030     }
2031 
2032     return (0);
2033 }
2034 
2035 /*
2036  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2037  * referencing STT_GNU_IFUNC symbols is postponed till the other
2038  * relocations are done.  The indirect functions specified as
2039  * ifunc are allowed to call other symbols, so we need to have
2040  * objects relocated before asking for resolution from indirects.
2041  *
2042  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2043  * instead of the usual lazy handling of PLT slots.  It is
2044  * consistent with how GNU does it.
2045  */
2046 static int
2047 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, RtldLockState *lockstate)
2048 {
2049 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2050 		return (-1);
2051 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2052 	    reloc_gnu_ifunc(obj, lockstate) == -1)
2053 		return (-1);
2054 	return (0);
2055 }
2056 
2057 static int
2058 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, RtldLockState *lockstate)
2059 {
2060 	Obj_Entry *obj;
2061 
2062 	for (obj = first;  obj != NULL;  obj = obj->next) {
2063 		if (resolve_object_ifunc(obj, bind_now, lockstate) == -1)
2064 			return (-1);
2065 	}
2066 	return (0);
2067 }
2068 
2069 static int
2070 initlist_objects_ifunc(Objlist *list, bool bind_now, RtldLockState *lockstate)
2071 {
2072 	Objlist_Entry *elm;
2073 
2074 	STAILQ_FOREACH(elm, list, link) {
2075 		if (resolve_object_ifunc(elm->obj, bind_now, lockstate) == -1)
2076 			return (-1);
2077 	}
2078 	return (0);
2079 }
2080 
2081 /*
2082  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2083  * before the process exits.
2084  */
2085 static void
2086 rtld_exit(void)
2087 {
2088     RtldLockState lockstate;
2089 
2090     wlock_acquire(rtld_bind_lock, &lockstate);
2091     dbg("rtld_exit()");
2092     objlist_call_fini(&list_fini, NULL, &lockstate);
2093     /* No need to remove the items from the list, since we are exiting. */
2094     if (!libmap_disable)
2095         lm_fini();
2096     lock_release(rtld_bind_lock, &lockstate);
2097 }
2098 
2099 static void *
2100 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2101 {
2102 #ifdef COMPAT_32BIT
2103     const char *trans;
2104 #endif
2105     if (path == NULL)
2106 	return (NULL);
2107 
2108     path += strspn(path, ":;");
2109     while (*path != '\0') {
2110 	size_t len;
2111 	char  *res;
2112 
2113 	len = strcspn(path, ":;");
2114 #ifdef COMPAT_32BIT
2115 	trans = lm_findn(NULL, path, len);
2116 	if (trans)
2117 	    res = callback(trans, strlen(trans), arg);
2118 	else
2119 #endif
2120 	res = callback(path, len, arg);
2121 
2122 	if (res != NULL)
2123 	    return (res);
2124 
2125 	path += len;
2126 	path += strspn(path, ":;");
2127     }
2128 
2129     return (NULL);
2130 }
2131 
2132 struct try_library_args {
2133     const char	*name;
2134     size_t	 namelen;
2135     char	*buffer;
2136     size_t	 buflen;
2137 };
2138 
2139 static void *
2140 try_library_path(const char *dir, size_t dirlen, void *param)
2141 {
2142     struct try_library_args *arg;
2143 
2144     arg = param;
2145     if (*dir == '/' || trust) {
2146 	char *pathname;
2147 
2148 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2149 		return (NULL);
2150 
2151 	pathname = arg->buffer;
2152 	strncpy(pathname, dir, dirlen);
2153 	pathname[dirlen] = '/';
2154 	strcpy(pathname + dirlen + 1, arg->name);
2155 
2156 	dbg("  Trying \"%s\"", pathname);
2157 	if (access(pathname, F_OK) == 0) {		/* We found it */
2158 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2159 	    strcpy(pathname, arg->buffer);
2160 	    return (pathname);
2161 	}
2162     }
2163     return (NULL);
2164 }
2165 
2166 static char *
2167 search_library_path(const char *name, const char *path)
2168 {
2169     char *p;
2170     struct try_library_args arg;
2171 
2172     if (path == NULL)
2173 	return NULL;
2174 
2175     arg.name = name;
2176     arg.namelen = strlen(name);
2177     arg.buffer = xmalloc(PATH_MAX);
2178     arg.buflen = PATH_MAX;
2179 
2180     p = path_enumerate(path, try_library_path, &arg);
2181 
2182     free(arg.buffer);
2183 
2184     return (p);
2185 }
2186 
2187 int
2188 dlclose(void *handle)
2189 {
2190     Obj_Entry *root;
2191     RtldLockState lockstate;
2192 
2193     wlock_acquire(rtld_bind_lock, &lockstate);
2194     root = dlcheck(handle);
2195     if (root == NULL) {
2196 	lock_release(rtld_bind_lock, &lockstate);
2197 	return -1;
2198     }
2199     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2200 	root->path);
2201 
2202     /* Unreference the object and its dependencies. */
2203     root->dl_refcount--;
2204 
2205     if (root->refcount == 1) {
2206 	/*
2207 	 * The object will be no longer referenced, so we must unload it.
2208 	 * First, call the fini functions.
2209 	 */
2210 	objlist_call_fini(&list_fini, root, &lockstate);
2211 
2212 	unref_dag(root);
2213 
2214 	/* Finish cleaning up the newly-unreferenced objects. */
2215 	GDB_STATE(RT_DELETE,&root->linkmap);
2216 	unload_object(root);
2217 	GDB_STATE(RT_CONSISTENT,NULL);
2218     } else
2219 	unref_dag(root);
2220 
2221     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2222     lock_release(rtld_bind_lock, &lockstate);
2223     return 0;
2224 }
2225 
2226 char *
2227 dlerror(void)
2228 {
2229     char *msg = error_message;
2230     error_message = NULL;
2231     return msg;
2232 }
2233 
2234 /*
2235  * This function is deprecated and has no effect.
2236  */
2237 void
2238 dllockinit(void *context,
2239 	   void *(*lock_create)(void *context),
2240            void (*rlock_acquire)(void *lock),
2241            void (*wlock_acquire)(void *lock),
2242            void (*lock_release)(void *lock),
2243            void (*lock_destroy)(void *lock),
2244 	   void (*context_destroy)(void *context))
2245 {
2246     static void *cur_context;
2247     static void (*cur_context_destroy)(void *);
2248 
2249     /* Just destroy the context from the previous call, if necessary. */
2250     if (cur_context_destroy != NULL)
2251 	cur_context_destroy(cur_context);
2252     cur_context = context;
2253     cur_context_destroy = context_destroy;
2254 }
2255 
2256 void *
2257 dlopen(const char *name, int mode)
2258 {
2259 
2260 	return (rtld_dlopen(name, -1, mode));
2261 }
2262 
2263 void *
2264 fdlopen(int fd, int mode)
2265 {
2266 
2267 	return (rtld_dlopen(NULL, fd, mode));
2268 }
2269 
2270 static void *
2271 rtld_dlopen(const char *name, int fd, int mode)
2272 {
2273     RtldLockState lockstate;
2274     int lo_flags;
2275 
2276     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2277     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2278     if (ld_tracing != NULL) {
2279 	rlock_acquire(rtld_bind_lock, &lockstate);
2280 	if (sigsetjmp(lockstate.env, 0) != 0)
2281 	    lock_upgrade(rtld_bind_lock, &lockstate);
2282 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2283 	lock_release(rtld_bind_lock, &lockstate);
2284     }
2285     lo_flags = RTLD_LO_DLOPEN;
2286     if (mode & RTLD_NODELETE)
2287 	    lo_flags |= RTLD_LO_NODELETE;
2288     if (mode & RTLD_NOLOAD)
2289 	    lo_flags |= RTLD_LO_NOLOAD;
2290     if (ld_tracing != NULL)
2291 	    lo_flags |= RTLD_LO_TRACE;
2292 
2293     return (dlopen_object(name, fd, obj_main, lo_flags,
2294       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2295 }
2296 
2297 static void
2298 dlopen_cleanup(Obj_Entry *obj)
2299 {
2300 
2301 	obj->dl_refcount--;
2302 	unref_dag(obj);
2303 	if (obj->refcount == 0)
2304 		unload_object(obj);
2305 }
2306 
2307 static Obj_Entry *
2308 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2309     int mode)
2310 {
2311     Obj_Entry **old_obj_tail;
2312     Obj_Entry *obj;
2313     Objlist initlist;
2314     RtldLockState lockstate;
2315     int result;
2316 
2317     objlist_init(&initlist);
2318 
2319     wlock_acquire(rtld_bind_lock, &lockstate);
2320     GDB_STATE(RT_ADD,NULL);
2321 
2322     old_obj_tail = obj_tail;
2323     obj = NULL;
2324     if (name == NULL && fd == -1) {
2325 	obj = obj_main;
2326 	obj->refcount++;
2327     } else {
2328 	obj = load_object(name, fd, refobj, lo_flags);
2329     }
2330 
2331     if (obj) {
2332 	obj->dl_refcount++;
2333 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2334 	    objlist_push_tail(&list_global, obj);
2335 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2336 	    assert(*old_obj_tail == obj);
2337 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2338 	    init_dag(obj);
2339 	    ref_dag(obj);
2340 	    if (result != -1)
2341 		result = rtld_verify_versions(&obj->dagmembers);
2342 	    if (result != -1 && ld_tracing)
2343 		goto trace;
2344 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2345 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2346 		dlopen_cleanup(obj);
2347 		obj = NULL;
2348 	    } else {
2349 		/* Make list of init functions to call. */
2350 		initlist_add_objects(obj, &obj->next, &initlist);
2351 	    }
2352 	} else {
2353 
2354 	    /*
2355 	     * Bump the reference counts for objects on this DAG.  If
2356 	     * this is the first dlopen() call for the object that was
2357 	     * already loaded as a dependency, initialize the dag
2358 	     * starting at it.
2359 	     */
2360 	    init_dag(obj);
2361 	    ref_dag(obj);
2362 
2363 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2364 		goto trace;
2365 	}
2366 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2367 	  obj->z_nodelete) && !obj->ref_nodel) {
2368 	    dbg("obj %s nodelete", obj->path);
2369 	    ref_dag(obj);
2370 	    obj->z_nodelete = obj->ref_nodel = true;
2371 	}
2372     }
2373 
2374     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2375 	name);
2376     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2377 
2378     map_stacks_exec(&lockstate);
2379 
2380     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2381       &lockstate) == -1) {
2382 	objlist_clear(&initlist);
2383 	dlopen_cleanup(obj);
2384 	lock_release(rtld_bind_lock, &lockstate);
2385 	return (NULL);
2386     }
2387 
2388     /* Call the init functions. */
2389     objlist_call_init(&initlist, &lockstate);
2390     objlist_clear(&initlist);
2391     lock_release(rtld_bind_lock, &lockstate);
2392     return obj;
2393 trace:
2394     trace_loaded_objects(obj);
2395     lock_release(rtld_bind_lock, &lockstate);
2396     exit(0);
2397 }
2398 
2399 static void *
2400 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2401     int flags)
2402 {
2403     DoneList donelist;
2404     const Obj_Entry *obj, *defobj;
2405     const Elf_Sym *def;
2406     SymLook req;
2407     RtldLockState lockstate;
2408     int res;
2409 
2410     def = NULL;
2411     defobj = NULL;
2412     symlook_init(&req, name);
2413     req.ventry = ve;
2414     req.flags = flags | SYMLOOK_IN_PLT;
2415     req.lockstate = &lockstate;
2416 
2417     rlock_acquire(rtld_bind_lock, &lockstate);
2418     if (sigsetjmp(lockstate.env, 0) != 0)
2419 	    lock_upgrade(rtld_bind_lock, &lockstate);
2420     if (handle == NULL || handle == RTLD_NEXT ||
2421 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2422 
2423 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2424 	    _rtld_error("Cannot determine caller's shared object");
2425 	    lock_release(rtld_bind_lock, &lockstate);
2426 	    return NULL;
2427 	}
2428 	if (handle == NULL) {	/* Just the caller's shared object. */
2429 	    res = symlook_obj(&req, obj);
2430 	    if (res == 0) {
2431 		def = req.sym_out;
2432 		defobj = req.defobj_out;
2433 	    }
2434 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2435 		   handle == RTLD_SELF) { /* ... caller included */
2436 	    if (handle == RTLD_NEXT)
2437 		obj = obj->next;
2438 	    for (; obj != NULL; obj = obj->next) {
2439 		res = symlook_obj(&req, obj);
2440 		if (res == 0) {
2441 		    if (def == NULL ||
2442 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2443 			def = req.sym_out;
2444 			defobj = req.defobj_out;
2445 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2446 			    break;
2447 		    }
2448 		}
2449 	    }
2450 	    /*
2451 	     * Search the dynamic linker itself, and possibly resolve the
2452 	     * symbol from there.  This is how the application links to
2453 	     * dynamic linker services such as dlopen.
2454 	     */
2455 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2456 		res = symlook_obj(&req, &obj_rtld);
2457 		if (res == 0) {
2458 		    def = req.sym_out;
2459 		    defobj = req.defobj_out;
2460 		}
2461 	    }
2462 	} else {
2463 	    assert(handle == RTLD_DEFAULT);
2464 	    res = symlook_default(&req, obj);
2465 	    if (res == 0) {
2466 		defobj = req.defobj_out;
2467 		def = req.sym_out;
2468 	    }
2469 	}
2470     } else {
2471 	if ((obj = dlcheck(handle)) == NULL) {
2472 	    lock_release(rtld_bind_lock, &lockstate);
2473 	    return NULL;
2474 	}
2475 
2476 	donelist_init(&donelist);
2477 	if (obj->mainprog) {
2478             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2479 	    res = symlook_global(&req, &donelist);
2480 	    if (res == 0) {
2481 		def = req.sym_out;
2482 		defobj = req.defobj_out;
2483 	    }
2484 	    /*
2485 	     * Search the dynamic linker itself, and possibly resolve the
2486 	     * symbol from there.  This is how the application links to
2487 	     * dynamic linker services such as dlopen.
2488 	     */
2489 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2490 		res = symlook_obj(&req, &obj_rtld);
2491 		if (res == 0) {
2492 		    def = req.sym_out;
2493 		    defobj = req.defobj_out;
2494 		}
2495 	    }
2496 	}
2497 	else {
2498 	    /* Search the whole DAG rooted at the given object. */
2499 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2500 	    if (res == 0) {
2501 		def = req.sym_out;
2502 		defobj = req.defobj_out;
2503 	    }
2504 	}
2505     }
2506 
2507     if (def != NULL) {
2508 	lock_release(rtld_bind_lock, &lockstate);
2509 
2510 	/*
2511 	 * The value required by the caller is derived from the value
2512 	 * of the symbol. For the ia64 architecture, we need to
2513 	 * construct a function descriptor which the caller can use to
2514 	 * call the function with the right 'gp' value. For other
2515 	 * architectures and for non-functions, the value is simply
2516 	 * the relocated value of the symbol.
2517 	 */
2518 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2519 	    return (make_function_pointer(def, defobj));
2520 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2521 	    return (rtld_resolve_ifunc(defobj, def));
2522 	else
2523 	    return (defobj->relocbase + def->st_value);
2524     }
2525 
2526     _rtld_error("Undefined symbol \"%s\"", name);
2527     lock_release(rtld_bind_lock, &lockstate);
2528     return NULL;
2529 }
2530 
2531 void *
2532 dlsym(void *handle, const char *name)
2533 {
2534 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2535 	    SYMLOOK_DLSYM);
2536 }
2537 
2538 dlfunc_t
2539 dlfunc(void *handle, const char *name)
2540 {
2541 	union {
2542 		void *d;
2543 		dlfunc_t f;
2544 	} rv;
2545 
2546 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2547 	    SYMLOOK_DLSYM);
2548 	return (rv.f);
2549 }
2550 
2551 void *
2552 dlvsym(void *handle, const char *name, const char *version)
2553 {
2554 	Ver_Entry ventry;
2555 
2556 	ventry.name = version;
2557 	ventry.file = NULL;
2558 	ventry.hash = elf_hash(version);
2559 	ventry.flags= 0;
2560 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2561 	    SYMLOOK_DLSYM);
2562 }
2563 
2564 int
2565 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2566 {
2567     const Obj_Entry *obj;
2568     RtldLockState lockstate;
2569 
2570     rlock_acquire(rtld_bind_lock, &lockstate);
2571     obj = obj_from_addr(addr);
2572     if (obj == NULL) {
2573         _rtld_error("No shared object contains address");
2574 	lock_release(rtld_bind_lock, &lockstate);
2575         return (0);
2576     }
2577     rtld_fill_dl_phdr_info(obj, phdr_info);
2578     lock_release(rtld_bind_lock, &lockstate);
2579     return (1);
2580 }
2581 
2582 int
2583 dladdr(const void *addr, Dl_info *info)
2584 {
2585     const Obj_Entry *obj;
2586     const Elf_Sym *def;
2587     void *symbol_addr;
2588     unsigned long symoffset;
2589     RtldLockState lockstate;
2590 
2591     rlock_acquire(rtld_bind_lock, &lockstate);
2592     obj = obj_from_addr(addr);
2593     if (obj == NULL) {
2594         _rtld_error("No shared object contains address");
2595 	lock_release(rtld_bind_lock, &lockstate);
2596         return 0;
2597     }
2598     info->dli_fname = obj->path;
2599     info->dli_fbase = obj->mapbase;
2600     info->dli_saddr = (void *)0;
2601     info->dli_sname = NULL;
2602 
2603     /*
2604      * Walk the symbol list looking for the symbol whose address is
2605      * closest to the address sent in.
2606      */
2607     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2608         def = obj->symtab + symoffset;
2609 
2610         /*
2611          * For skip the symbol if st_shndx is either SHN_UNDEF or
2612          * SHN_COMMON.
2613          */
2614         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2615             continue;
2616 
2617         /*
2618          * If the symbol is greater than the specified address, or if it
2619          * is further away from addr than the current nearest symbol,
2620          * then reject it.
2621          */
2622         symbol_addr = obj->relocbase + def->st_value;
2623         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2624             continue;
2625 
2626         /* Update our idea of the nearest symbol. */
2627         info->dli_sname = obj->strtab + def->st_name;
2628         info->dli_saddr = symbol_addr;
2629 
2630         /* Exact match? */
2631         if (info->dli_saddr == addr)
2632             break;
2633     }
2634     lock_release(rtld_bind_lock, &lockstate);
2635     return 1;
2636 }
2637 
2638 int
2639 dlinfo(void *handle, int request, void *p)
2640 {
2641     const Obj_Entry *obj;
2642     RtldLockState lockstate;
2643     int error;
2644 
2645     rlock_acquire(rtld_bind_lock, &lockstate);
2646 
2647     if (handle == NULL || handle == RTLD_SELF) {
2648 	void *retaddr;
2649 
2650 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2651 	if ((obj = obj_from_addr(retaddr)) == NULL)
2652 	    _rtld_error("Cannot determine caller's shared object");
2653     } else
2654 	obj = dlcheck(handle);
2655 
2656     if (obj == NULL) {
2657 	lock_release(rtld_bind_lock, &lockstate);
2658 	return (-1);
2659     }
2660 
2661     error = 0;
2662     switch (request) {
2663     case RTLD_DI_LINKMAP:
2664 	*((struct link_map const **)p) = &obj->linkmap;
2665 	break;
2666     case RTLD_DI_ORIGIN:
2667 	error = rtld_dirname(obj->path, p);
2668 	break;
2669 
2670     case RTLD_DI_SERINFOSIZE:
2671     case RTLD_DI_SERINFO:
2672 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2673 	break;
2674 
2675     default:
2676 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2677 	error = -1;
2678     }
2679 
2680     lock_release(rtld_bind_lock, &lockstate);
2681 
2682     return (error);
2683 }
2684 
2685 static void
2686 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2687 {
2688 
2689 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2690 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2691 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2692 	phdr_info->dlpi_phdr = obj->phdr;
2693 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2694 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2695 	phdr_info->dlpi_tls_data = obj->tlsinit;
2696 	phdr_info->dlpi_adds = obj_loads;
2697 	phdr_info->dlpi_subs = obj_loads - obj_count;
2698 }
2699 
2700 int
2701 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2702 {
2703     struct dl_phdr_info phdr_info;
2704     const Obj_Entry *obj;
2705     RtldLockState bind_lockstate, phdr_lockstate;
2706     int error;
2707 
2708     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2709     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2710 
2711     error = 0;
2712 
2713     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2714 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2715 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2716 		break;
2717 
2718     }
2719     lock_release(rtld_bind_lock, &bind_lockstate);
2720     lock_release(rtld_phdr_lock, &phdr_lockstate);
2721 
2722     return (error);
2723 }
2724 
2725 struct fill_search_info_args {
2726     int		 request;
2727     unsigned int flags;
2728     Dl_serinfo  *serinfo;
2729     Dl_serpath  *serpath;
2730     char	*strspace;
2731 };
2732 
2733 static void *
2734 fill_search_info(const char *dir, size_t dirlen, void *param)
2735 {
2736     struct fill_search_info_args *arg;
2737 
2738     arg = param;
2739 
2740     if (arg->request == RTLD_DI_SERINFOSIZE) {
2741 	arg->serinfo->dls_cnt ++;
2742 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2743     } else {
2744 	struct dl_serpath *s_entry;
2745 
2746 	s_entry = arg->serpath;
2747 	s_entry->dls_name  = arg->strspace;
2748 	s_entry->dls_flags = arg->flags;
2749 
2750 	strncpy(arg->strspace, dir, dirlen);
2751 	arg->strspace[dirlen] = '\0';
2752 
2753 	arg->strspace += dirlen + 1;
2754 	arg->serpath++;
2755     }
2756 
2757     return (NULL);
2758 }
2759 
2760 static int
2761 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2762 {
2763     struct dl_serinfo _info;
2764     struct fill_search_info_args args;
2765 
2766     args.request = RTLD_DI_SERINFOSIZE;
2767     args.serinfo = &_info;
2768 
2769     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2770     _info.dls_cnt  = 0;
2771 
2772     path_enumerate(ld_library_path, fill_search_info, &args);
2773     path_enumerate(obj->rpath, fill_search_info, &args);
2774     path_enumerate(gethints(), fill_search_info, &args);
2775     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2776 
2777 
2778     if (request == RTLD_DI_SERINFOSIZE) {
2779 	info->dls_size = _info.dls_size;
2780 	info->dls_cnt = _info.dls_cnt;
2781 	return (0);
2782     }
2783 
2784     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2785 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2786 	return (-1);
2787     }
2788 
2789     args.request  = RTLD_DI_SERINFO;
2790     args.serinfo  = info;
2791     args.serpath  = &info->dls_serpath[0];
2792     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2793 
2794     args.flags = LA_SER_LIBPATH;
2795     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2796 	return (-1);
2797 
2798     args.flags = LA_SER_RUNPATH;
2799     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2800 	return (-1);
2801 
2802     args.flags = LA_SER_CONFIG;
2803     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2804 	return (-1);
2805 
2806     args.flags = LA_SER_DEFAULT;
2807     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2808 	return (-1);
2809     return (0);
2810 }
2811 
2812 static int
2813 rtld_dirname(const char *path, char *bname)
2814 {
2815     const char *endp;
2816 
2817     /* Empty or NULL string gets treated as "." */
2818     if (path == NULL || *path == '\0') {
2819 	bname[0] = '.';
2820 	bname[1] = '\0';
2821 	return (0);
2822     }
2823 
2824     /* Strip trailing slashes */
2825     endp = path + strlen(path) - 1;
2826     while (endp > path && *endp == '/')
2827 	endp--;
2828 
2829     /* Find the start of the dir */
2830     while (endp > path && *endp != '/')
2831 	endp--;
2832 
2833     /* Either the dir is "/" or there are no slashes */
2834     if (endp == path) {
2835 	bname[0] = *endp == '/' ? '/' : '.';
2836 	bname[1] = '\0';
2837 	return (0);
2838     } else {
2839 	do {
2840 	    endp--;
2841 	} while (endp > path && *endp == '/');
2842     }
2843 
2844     if (endp - path + 2 > PATH_MAX)
2845     {
2846 	_rtld_error("Filename is too long: %s", path);
2847 	return(-1);
2848     }
2849 
2850     strncpy(bname, path, endp - path + 1);
2851     bname[endp - path + 1] = '\0';
2852     return (0);
2853 }
2854 
2855 static int
2856 rtld_dirname_abs(const char *path, char *base)
2857 {
2858 	char base_rel[PATH_MAX];
2859 
2860 	if (rtld_dirname(path, base) == -1)
2861 		return (-1);
2862 	if (base[0] == '/')
2863 		return (0);
2864 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2865 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2866 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2867 		return (-1);
2868 	strcpy(base, base_rel);
2869 	return (0);
2870 }
2871 
2872 static void
2873 linkmap_add(Obj_Entry *obj)
2874 {
2875     struct link_map *l = &obj->linkmap;
2876     struct link_map *prev;
2877 
2878     obj->linkmap.l_name = obj->path;
2879     obj->linkmap.l_addr = obj->mapbase;
2880     obj->linkmap.l_ld = obj->dynamic;
2881 #ifdef __mips__
2882     /* GDB needs load offset on MIPS to use the symbols */
2883     obj->linkmap.l_offs = obj->relocbase;
2884 #endif
2885 
2886     if (r_debug.r_map == NULL) {
2887 	r_debug.r_map = l;
2888 	return;
2889     }
2890 
2891     /*
2892      * Scan to the end of the list, but not past the entry for the
2893      * dynamic linker, which we want to keep at the very end.
2894      */
2895     for (prev = r_debug.r_map;
2896       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2897       prev = prev->l_next)
2898 	;
2899 
2900     /* Link in the new entry. */
2901     l->l_prev = prev;
2902     l->l_next = prev->l_next;
2903     if (l->l_next != NULL)
2904 	l->l_next->l_prev = l;
2905     prev->l_next = l;
2906 }
2907 
2908 static void
2909 linkmap_delete(Obj_Entry *obj)
2910 {
2911     struct link_map *l = &obj->linkmap;
2912 
2913     if (l->l_prev == NULL) {
2914 	if ((r_debug.r_map = l->l_next) != NULL)
2915 	    l->l_next->l_prev = NULL;
2916 	return;
2917     }
2918 
2919     if ((l->l_prev->l_next = l->l_next) != NULL)
2920 	l->l_next->l_prev = l->l_prev;
2921 }
2922 
2923 /*
2924  * Function for the debugger to set a breakpoint on to gain control.
2925  *
2926  * The two parameters allow the debugger to easily find and determine
2927  * what the runtime loader is doing and to whom it is doing it.
2928  *
2929  * When the loadhook trap is hit (r_debug_state, set at program
2930  * initialization), the arguments can be found on the stack:
2931  *
2932  *  +8   struct link_map *m
2933  *  +4   struct r_debug  *rd
2934  *  +0   RetAddr
2935  */
2936 void
2937 r_debug_state(struct r_debug* rd, struct link_map *m)
2938 {
2939     /*
2940      * The following is a hack to force the compiler to emit calls to
2941      * this function, even when optimizing.  If the function is empty,
2942      * the compiler is not obliged to emit any code for calls to it,
2943      * even when marked __noinline.  However, gdb depends on those
2944      * calls being made.
2945      */
2946     __asm __volatile("" : : : "memory");
2947 }
2948 
2949 /*
2950  * Get address of the pointer variable in the main program.
2951  * Prefer non-weak symbol over the weak one.
2952  */
2953 static const void **
2954 get_program_var_addr(const char *name, RtldLockState *lockstate)
2955 {
2956     SymLook req;
2957     DoneList donelist;
2958 
2959     symlook_init(&req, name);
2960     req.lockstate = lockstate;
2961     donelist_init(&donelist);
2962     if (symlook_global(&req, &donelist) != 0)
2963 	return (NULL);
2964     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
2965 	return ((const void **)make_function_pointer(req.sym_out,
2966 	  req.defobj_out));
2967     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
2968 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
2969     else
2970 	return ((const void **)(req.defobj_out->relocbase +
2971 	  req.sym_out->st_value));
2972 }
2973 
2974 /*
2975  * Set a pointer variable in the main program to the given value.  This
2976  * is used to set key variables such as "environ" before any of the
2977  * init functions are called.
2978  */
2979 static void
2980 set_program_var(const char *name, const void *value)
2981 {
2982     const void **addr;
2983 
2984     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
2985 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2986 	*addr = value;
2987     }
2988 }
2989 
2990 /*
2991  * Search the global objects, including dependencies and main object,
2992  * for the given symbol.
2993  */
2994 static int
2995 symlook_global(SymLook *req, DoneList *donelist)
2996 {
2997     SymLook req1;
2998     const Objlist_Entry *elm;
2999     int res;
3000 
3001     symlook_init_from_req(&req1, req);
3002 
3003     /* Search all objects loaded at program start up. */
3004     if (req->defobj_out == NULL ||
3005       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3006 	res = symlook_list(&req1, &list_main, donelist);
3007 	if (res == 0 && (req->defobj_out == NULL ||
3008 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3009 	    req->sym_out = req1.sym_out;
3010 	    req->defobj_out = req1.defobj_out;
3011 	    assert(req->defobj_out != NULL);
3012 	}
3013     }
3014 
3015     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3016     STAILQ_FOREACH(elm, &list_global, link) {
3017 	if (req->defobj_out != NULL &&
3018 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3019 	    break;
3020 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3021 	if (res == 0 && (req->defobj_out == NULL ||
3022 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3023 	    req->sym_out = req1.sym_out;
3024 	    req->defobj_out = req1.defobj_out;
3025 	    assert(req->defobj_out != NULL);
3026 	}
3027     }
3028 
3029     return (req->sym_out != NULL ? 0 : ESRCH);
3030 }
3031 
3032 /*
3033  * Given a symbol name in a referencing object, find the corresponding
3034  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3035  * no definition was found.  Returns a pointer to the Obj_Entry of the
3036  * defining object via the reference parameter DEFOBJ_OUT.
3037  */
3038 static int
3039 symlook_default(SymLook *req, const Obj_Entry *refobj)
3040 {
3041     DoneList donelist;
3042     const Objlist_Entry *elm;
3043     SymLook req1;
3044     int res;
3045 
3046     donelist_init(&donelist);
3047     symlook_init_from_req(&req1, req);
3048 
3049     /* Look first in the referencing object if linked symbolically. */
3050     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3051 	res = symlook_obj(&req1, refobj);
3052 	if (res == 0) {
3053 	    req->sym_out = req1.sym_out;
3054 	    req->defobj_out = req1.defobj_out;
3055 	    assert(req->defobj_out != NULL);
3056 	}
3057     }
3058 
3059     symlook_global(req, &donelist);
3060 
3061     /* Search all dlopened DAGs containing the referencing object. */
3062     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3063 	if (req->sym_out != NULL &&
3064 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3065 	    break;
3066 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3067 	if (res == 0 && (req->sym_out == NULL ||
3068 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3069 	    req->sym_out = req1.sym_out;
3070 	    req->defobj_out = req1.defobj_out;
3071 	    assert(req->defobj_out != NULL);
3072 	}
3073     }
3074 
3075     /*
3076      * Search the dynamic linker itself, and possibly resolve the
3077      * symbol from there.  This is how the application links to
3078      * dynamic linker services such as dlopen.
3079      */
3080     if (req->sym_out == NULL ||
3081       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3082 	res = symlook_obj(&req1, &obj_rtld);
3083 	if (res == 0) {
3084 	    req->sym_out = req1.sym_out;
3085 	    req->defobj_out = req1.defobj_out;
3086 	    assert(req->defobj_out != NULL);
3087 	}
3088     }
3089 
3090     return (req->sym_out != NULL ? 0 : ESRCH);
3091 }
3092 
3093 static int
3094 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3095 {
3096     const Elf_Sym *def;
3097     const Obj_Entry *defobj;
3098     const Objlist_Entry *elm;
3099     SymLook req1;
3100     int res;
3101 
3102     def = NULL;
3103     defobj = NULL;
3104     STAILQ_FOREACH(elm, objlist, link) {
3105 	if (donelist_check(dlp, elm->obj))
3106 	    continue;
3107 	symlook_init_from_req(&req1, req);
3108 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3109 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3110 		def = req1.sym_out;
3111 		defobj = req1.defobj_out;
3112 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3113 		    break;
3114 	    }
3115 	}
3116     }
3117     if (def != NULL) {
3118 	req->sym_out = def;
3119 	req->defobj_out = defobj;
3120 	return (0);
3121     }
3122     return (ESRCH);
3123 }
3124 
3125 /*
3126  * Search the chain of DAGS cointed to by the given Needed_Entry
3127  * for a symbol of the given name.  Each DAG is scanned completely
3128  * before advancing to the next one.  Returns a pointer to the symbol,
3129  * or NULL if no definition was found.
3130  */
3131 static int
3132 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3133 {
3134     const Elf_Sym *def;
3135     const Needed_Entry *n;
3136     const Obj_Entry *defobj;
3137     SymLook req1;
3138     int res;
3139 
3140     def = NULL;
3141     defobj = NULL;
3142     symlook_init_from_req(&req1, req);
3143     for (n = needed; n != NULL; n = n->next) {
3144 	if (n->obj == NULL ||
3145 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3146 	    continue;
3147 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3148 	    def = req1.sym_out;
3149 	    defobj = req1.defobj_out;
3150 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3151 		break;
3152 	}
3153     }
3154     if (def != NULL) {
3155 	req->sym_out = def;
3156 	req->defobj_out = defobj;
3157 	return (0);
3158     }
3159     return (ESRCH);
3160 }
3161 
3162 /*
3163  * Search the symbol table of a single shared object for a symbol of
3164  * the given name and version, if requested.  Returns a pointer to the
3165  * symbol, or NULL if no definition was found.  If the object is
3166  * filter, return filtered symbol from filtee.
3167  *
3168  * The symbol's hash value is passed in for efficiency reasons; that
3169  * eliminates many recomputations of the hash value.
3170  */
3171 int
3172 symlook_obj(SymLook *req, const Obj_Entry *obj)
3173 {
3174     DoneList donelist;
3175     SymLook req1;
3176     int res, mres;
3177 
3178     mres = symlook_obj1(req, obj);
3179     if (mres == 0) {
3180 	if (obj->needed_filtees != NULL) {
3181 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3182 	    donelist_init(&donelist);
3183 	    symlook_init_from_req(&req1, req);
3184 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3185 	    if (res == 0) {
3186 		req->sym_out = req1.sym_out;
3187 		req->defobj_out = req1.defobj_out;
3188 	    }
3189 	    return (res);
3190 	}
3191 	if (obj->needed_aux_filtees != NULL) {
3192 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3193 	    donelist_init(&donelist);
3194 	    symlook_init_from_req(&req1, req);
3195 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3196 	    if (res == 0) {
3197 		req->sym_out = req1.sym_out;
3198 		req->defobj_out = req1.defobj_out;
3199 		return (res);
3200 	    }
3201 	}
3202     }
3203     return (mres);
3204 }
3205 
3206 static int
3207 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3208 {
3209     unsigned long symnum;
3210     const Elf_Sym *vsymp;
3211     Elf_Versym verndx;
3212     int vcount;
3213 
3214     if (obj->buckets == NULL)
3215 	return (ESRCH);
3216 
3217     vsymp = NULL;
3218     vcount = 0;
3219     symnum = obj->buckets[req->hash % obj->nbuckets];
3220 
3221     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3222 	const Elf_Sym *symp;
3223 	const char *strp;
3224 
3225 	if (symnum >= obj->nchains)
3226 	    return (ESRCH);	/* Bad object */
3227 
3228 	symp = obj->symtab + symnum;
3229 	strp = obj->strtab + symp->st_name;
3230 
3231 	switch (ELF_ST_TYPE(symp->st_info)) {
3232 	case STT_FUNC:
3233 	case STT_NOTYPE:
3234 	case STT_OBJECT:
3235 	case STT_GNU_IFUNC:
3236 	    if (symp->st_value == 0)
3237 		continue;
3238 		/* fallthrough */
3239 	case STT_TLS:
3240 	    if (symp->st_shndx != SHN_UNDEF)
3241 		break;
3242 #ifndef __mips__
3243 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3244 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3245 		break;
3246 		/* fallthrough */
3247 #endif
3248 	default:
3249 	    continue;
3250 	}
3251 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3252 	    continue;
3253 
3254 	if (req->ventry == NULL) {
3255 	    if (obj->versyms != NULL) {
3256 		verndx = VER_NDX(obj->versyms[symnum]);
3257 		if (verndx > obj->vernum) {
3258 		    _rtld_error("%s: symbol %s references wrong version %d",
3259 			obj->path, obj->strtab + symnum, verndx);
3260 		    continue;
3261 		}
3262 		/*
3263 		 * If we are not called from dlsym (i.e. this is a normal
3264 		 * relocation from unversioned binary), accept the symbol
3265 		 * immediately if it happens to have first version after
3266 		 * this shared object became versioned. Otherwise, if
3267 		 * symbol is versioned and not hidden, remember it. If it
3268 		 * is the only symbol with this name exported by the
3269 		 * shared object, it will be returned as a match at the
3270 		 * end of the function. If symbol is global (verndx < 2)
3271 		 * accept it unconditionally.
3272 		 */
3273 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3274 		  verndx == VER_NDX_GIVEN) {
3275 		    req->sym_out = symp;
3276 		    req->defobj_out = obj;
3277 		    return (0);
3278 		}
3279 		else if (verndx >= VER_NDX_GIVEN) {
3280 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3281 			if (vsymp == NULL)
3282 			    vsymp = symp;
3283 			vcount ++;
3284 		    }
3285 		    continue;
3286 		}
3287 	    }
3288 	    req->sym_out = symp;
3289 	    req->defobj_out = obj;
3290 	    return (0);
3291 	} else {
3292 	    if (obj->versyms == NULL) {
3293 		if (object_match_name(obj, req->ventry->name)) {
3294 		    _rtld_error("%s: object %s should provide version %s for "
3295 			"symbol %s", obj_rtld.path, obj->path,
3296 			req->ventry->name, obj->strtab + symnum);
3297 		    continue;
3298 		}
3299 	    } else {
3300 		verndx = VER_NDX(obj->versyms[symnum]);
3301 		if (verndx > obj->vernum) {
3302 		    _rtld_error("%s: symbol %s references wrong version %d",
3303 			obj->path, obj->strtab + symnum, verndx);
3304 		    continue;
3305 		}
3306 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3307 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3308 		    /*
3309 		     * Version does not match. Look if this is a global symbol
3310 		     * and if it is not hidden. If global symbol (verndx < 2)
3311 		     * is available, use it. Do not return symbol if we are
3312 		     * called by dlvsym, because dlvsym looks for a specific
3313 		     * version and default one is not what dlvsym wants.
3314 		     */
3315 		    if ((req->flags & SYMLOOK_DLSYM) ||
3316 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3317 			(verndx >= VER_NDX_GIVEN))
3318 			continue;
3319 		}
3320 	    }
3321 	    req->sym_out = symp;
3322 	    req->defobj_out = obj;
3323 	    return (0);
3324 	}
3325     }
3326     if (vcount == 1) {
3327 	req->sym_out = vsymp;
3328 	req->defobj_out = obj;
3329 	return (0);
3330     }
3331     return (ESRCH);
3332 }
3333 
3334 static void
3335 trace_loaded_objects(Obj_Entry *obj)
3336 {
3337     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3338     int		c;
3339 
3340     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3341 	main_local = "";
3342 
3343     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3344 	fmt1 = "\t%o => %p (%x)\n";
3345 
3346     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3347 	fmt2 = "\t%o (%x)\n";
3348 
3349     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3350 
3351     for (; obj; obj = obj->next) {
3352 	Needed_Entry		*needed;
3353 	char			*name, *path;
3354 	bool			is_lib;
3355 
3356 	if (list_containers && obj->needed != NULL)
3357 	    rtld_printf("%s:\n", obj->path);
3358 	for (needed = obj->needed; needed; needed = needed->next) {
3359 	    if (needed->obj != NULL) {
3360 		if (needed->obj->traced && !list_containers)
3361 		    continue;
3362 		needed->obj->traced = true;
3363 		path = needed->obj->path;
3364 	    } else
3365 		path = "not found";
3366 
3367 	    name = (char *)obj->strtab + needed->name;
3368 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3369 
3370 	    fmt = is_lib ? fmt1 : fmt2;
3371 	    while ((c = *fmt++) != '\0') {
3372 		switch (c) {
3373 		default:
3374 		    rtld_putchar(c);
3375 		    continue;
3376 		case '\\':
3377 		    switch (c = *fmt) {
3378 		    case '\0':
3379 			continue;
3380 		    case 'n':
3381 			rtld_putchar('\n');
3382 			break;
3383 		    case 't':
3384 			rtld_putchar('\t');
3385 			break;
3386 		    }
3387 		    break;
3388 		case '%':
3389 		    switch (c = *fmt) {
3390 		    case '\0':
3391 			continue;
3392 		    case '%':
3393 		    default:
3394 			rtld_putchar(c);
3395 			break;
3396 		    case 'A':
3397 			rtld_putstr(main_local);
3398 			break;
3399 		    case 'a':
3400 			rtld_putstr(obj_main->path);
3401 			break;
3402 		    case 'o':
3403 			rtld_putstr(name);
3404 			break;
3405 #if 0
3406 		    case 'm':
3407 			rtld_printf("%d", sodp->sod_major);
3408 			break;
3409 		    case 'n':
3410 			rtld_printf("%d", sodp->sod_minor);
3411 			break;
3412 #endif
3413 		    case 'p':
3414 			rtld_putstr(path);
3415 			break;
3416 		    case 'x':
3417 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3418 			  0);
3419 			break;
3420 		    }
3421 		    break;
3422 		}
3423 		++fmt;
3424 	    }
3425 	}
3426     }
3427 }
3428 
3429 /*
3430  * Unload a dlopened object and its dependencies from memory and from
3431  * our data structures.  It is assumed that the DAG rooted in the
3432  * object has already been unreferenced, and that the object has a
3433  * reference count of 0.
3434  */
3435 static void
3436 unload_object(Obj_Entry *root)
3437 {
3438     Obj_Entry *obj;
3439     Obj_Entry **linkp;
3440 
3441     assert(root->refcount == 0);
3442 
3443     /*
3444      * Pass over the DAG removing unreferenced objects from
3445      * appropriate lists.
3446      */
3447     unlink_object(root);
3448 
3449     /* Unmap all objects that are no longer referenced. */
3450     linkp = &obj_list->next;
3451     while ((obj = *linkp) != NULL) {
3452 	if (obj->refcount == 0) {
3453 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3454 		obj->path);
3455 	    dbg("unloading \"%s\"", obj->path);
3456 	    unload_filtees(root);
3457 	    munmap(obj->mapbase, obj->mapsize);
3458 	    linkmap_delete(obj);
3459 	    *linkp = obj->next;
3460 	    obj_count--;
3461 	    obj_free(obj);
3462 	} else
3463 	    linkp = &obj->next;
3464     }
3465     obj_tail = linkp;
3466 }
3467 
3468 static void
3469 unlink_object(Obj_Entry *root)
3470 {
3471     Objlist_Entry *elm;
3472 
3473     if (root->refcount == 0) {
3474 	/* Remove the object from the RTLD_GLOBAL list. */
3475 	objlist_remove(&list_global, root);
3476 
3477     	/* Remove the object from all objects' DAG lists. */
3478     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3479 	    objlist_remove(&elm->obj->dldags, root);
3480 	    if (elm->obj != root)
3481 		unlink_object(elm->obj);
3482 	}
3483     }
3484 }
3485 
3486 static void
3487 ref_dag(Obj_Entry *root)
3488 {
3489     Objlist_Entry *elm;
3490 
3491     assert(root->dag_inited);
3492     STAILQ_FOREACH(elm, &root->dagmembers, link)
3493 	elm->obj->refcount++;
3494 }
3495 
3496 static void
3497 unref_dag(Obj_Entry *root)
3498 {
3499     Objlist_Entry *elm;
3500 
3501     assert(root->dag_inited);
3502     STAILQ_FOREACH(elm, &root->dagmembers, link)
3503 	elm->obj->refcount--;
3504 }
3505 
3506 /*
3507  * Common code for MD __tls_get_addr().
3508  */
3509 void *
3510 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3511 {
3512     Elf_Addr* dtv = *dtvp;
3513     RtldLockState lockstate;
3514 
3515     /* Check dtv generation in case new modules have arrived */
3516     if (dtv[0] != tls_dtv_generation) {
3517 	Elf_Addr* newdtv;
3518 	int to_copy;
3519 
3520 	wlock_acquire(rtld_bind_lock, &lockstate);
3521 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3522 	to_copy = dtv[1];
3523 	if (to_copy > tls_max_index)
3524 	    to_copy = tls_max_index;
3525 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3526 	newdtv[0] = tls_dtv_generation;
3527 	newdtv[1] = tls_max_index;
3528 	free(dtv);
3529 	lock_release(rtld_bind_lock, &lockstate);
3530 	dtv = *dtvp = newdtv;
3531     }
3532 
3533     /* Dynamically allocate module TLS if necessary */
3534     if (!dtv[index + 1]) {
3535 	/* Signal safe, wlock will block out signals. */
3536 	    wlock_acquire(rtld_bind_lock, &lockstate);
3537 	if (!dtv[index + 1])
3538 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3539 	lock_release(rtld_bind_lock, &lockstate);
3540     }
3541     return (void*) (dtv[index + 1] + offset);
3542 }
3543 
3544 /* XXX not sure what variants to use for arm. */
3545 
3546 #if defined(__ia64__) || defined(__powerpc__)
3547 
3548 /*
3549  * Allocate Static TLS using the Variant I method.
3550  */
3551 void *
3552 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3553 {
3554     Obj_Entry *obj;
3555     char *tcb;
3556     Elf_Addr **tls;
3557     Elf_Addr *dtv;
3558     Elf_Addr addr;
3559     int i;
3560 
3561     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3562 	return (oldtcb);
3563 
3564     assert(tcbsize >= TLS_TCB_SIZE);
3565     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3566     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3567 
3568     if (oldtcb != NULL) {
3569 	memcpy(tls, oldtcb, tls_static_space);
3570 	free(oldtcb);
3571 
3572 	/* Adjust the DTV. */
3573 	dtv = tls[0];
3574 	for (i = 0; i < dtv[1]; i++) {
3575 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3576 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3577 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3578 	    }
3579 	}
3580     } else {
3581 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3582 	tls[0] = dtv;
3583 	dtv[0] = tls_dtv_generation;
3584 	dtv[1] = tls_max_index;
3585 
3586 	for (obj = objs; obj; obj = obj->next) {
3587 	    if (obj->tlsoffset > 0) {
3588 		addr = (Elf_Addr)tls + obj->tlsoffset;
3589 		if (obj->tlsinitsize > 0)
3590 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3591 		if (obj->tlssize > obj->tlsinitsize)
3592 		    memset((void*) (addr + obj->tlsinitsize), 0,
3593 			   obj->tlssize - obj->tlsinitsize);
3594 		dtv[obj->tlsindex + 1] = addr;
3595 	    }
3596 	}
3597     }
3598 
3599     return (tcb);
3600 }
3601 
3602 void
3603 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3604 {
3605     Elf_Addr *dtv;
3606     Elf_Addr tlsstart, tlsend;
3607     int dtvsize, i;
3608 
3609     assert(tcbsize >= TLS_TCB_SIZE);
3610 
3611     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3612     tlsend = tlsstart + tls_static_space;
3613 
3614     dtv = *(Elf_Addr **)tlsstart;
3615     dtvsize = dtv[1];
3616     for (i = 0; i < dtvsize; i++) {
3617 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3618 	    free((void*)dtv[i+2]);
3619 	}
3620     }
3621     free(dtv);
3622     free(tcb);
3623 }
3624 
3625 #endif
3626 
3627 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3628     defined(__arm__) || defined(__mips__)
3629 
3630 /*
3631  * Allocate Static TLS using the Variant II method.
3632  */
3633 void *
3634 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3635 {
3636     Obj_Entry *obj;
3637     size_t size;
3638     char *tls;
3639     Elf_Addr *dtv, *olddtv;
3640     Elf_Addr segbase, oldsegbase, addr;
3641     int i;
3642 
3643     size = round(tls_static_space, tcbalign);
3644 
3645     assert(tcbsize >= 2*sizeof(Elf_Addr));
3646     tls = calloc(1, size + tcbsize);
3647     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3648 
3649     segbase = (Elf_Addr)(tls + size);
3650     ((Elf_Addr*)segbase)[0] = segbase;
3651     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3652 
3653     dtv[0] = tls_dtv_generation;
3654     dtv[1] = tls_max_index;
3655 
3656     if (oldtls) {
3657 	/*
3658 	 * Copy the static TLS block over whole.
3659 	 */
3660 	oldsegbase = (Elf_Addr) oldtls;
3661 	memcpy((void *)(segbase - tls_static_space),
3662 	       (const void *)(oldsegbase - tls_static_space),
3663 	       tls_static_space);
3664 
3665 	/*
3666 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3667 	 * move them over.
3668 	 */
3669 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3670 	for (i = 0; i < olddtv[1]; i++) {
3671 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3672 		dtv[i+2] = olddtv[i+2];
3673 		olddtv[i+2] = 0;
3674 	    }
3675 	}
3676 
3677 	/*
3678 	 * We assume that this block was the one we created with
3679 	 * allocate_initial_tls().
3680 	 */
3681 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3682     } else {
3683 	for (obj = objs; obj; obj = obj->next) {
3684 	    if (obj->tlsoffset) {
3685 		addr = segbase - obj->tlsoffset;
3686 		memset((void*) (addr + obj->tlsinitsize),
3687 		       0, obj->tlssize - obj->tlsinitsize);
3688 		if (obj->tlsinit)
3689 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3690 		dtv[obj->tlsindex + 1] = addr;
3691 	    }
3692 	}
3693     }
3694 
3695     return (void*) segbase;
3696 }
3697 
3698 void
3699 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3700 {
3701     size_t size;
3702     Elf_Addr* dtv;
3703     int dtvsize, i;
3704     Elf_Addr tlsstart, tlsend;
3705 
3706     /*
3707      * Figure out the size of the initial TLS block so that we can
3708      * find stuff which ___tls_get_addr() allocated dynamically.
3709      */
3710     size = round(tls_static_space, tcbalign);
3711 
3712     dtv = ((Elf_Addr**)tls)[1];
3713     dtvsize = dtv[1];
3714     tlsend = (Elf_Addr) tls;
3715     tlsstart = tlsend - size;
3716     for (i = 0; i < dtvsize; i++) {
3717 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3718 	    free((void*) dtv[i+2]);
3719 	}
3720     }
3721 
3722     free((void*) tlsstart);
3723     free((void*) dtv);
3724 }
3725 
3726 #endif
3727 
3728 /*
3729  * Allocate TLS block for module with given index.
3730  */
3731 void *
3732 allocate_module_tls(int index)
3733 {
3734     Obj_Entry* obj;
3735     char* p;
3736 
3737     for (obj = obj_list; obj; obj = obj->next) {
3738 	if (obj->tlsindex == index)
3739 	    break;
3740     }
3741     if (!obj) {
3742 	_rtld_error("Can't find module with TLS index %d", index);
3743 	die();
3744     }
3745 
3746     p = malloc(obj->tlssize);
3747     if (p == NULL) {
3748 	_rtld_error("Cannot allocate TLS block for index %d", index);
3749 	die();
3750     }
3751     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3752     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3753 
3754     return p;
3755 }
3756 
3757 bool
3758 allocate_tls_offset(Obj_Entry *obj)
3759 {
3760     size_t off;
3761 
3762     if (obj->tls_done)
3763 	return true;
3764 
3765     if (obj->tlssize == 0) {
3766 	obj->tls_done = true;
3767 	return true;
3768     }
3769 
3770     if (obj->tlsindex == 1)
3771 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3772     else
3773 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3774 				   obj->tlssize, obj->tlsalign);
3775 
3776     /*
3777      * If we have already fixed the size of the static TLS block, we
3778      * must stay within that size. When allocating the static TLS, we
3779      * leave a small amount of space spare to be used for dynamically
3780      * loading modules which use static TLS.
3781      */
3782     if (tls_static_space) {
3783 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3784 	    return false;
3785     }
3786 
3787     tls_last_offset = obj->tlsoffset = off;
3788     tls_last_size = obj->tlssize;
3789     obj->tls_done = true;
3790 
3791     return true;
3792 }
3793 
3794 void
3795 free_tls_offset(Obj_Entry *obj)
3796 {
3797 
3798     /*
3799      * If we were the last thing to allocate out of the static TLS
3800      * block, we give our space back to the 'allocator'. This is a
3801      * simplistic workaround to allow libGL.so.1 to be loaded and
3802      * unloaded multiple times.
3803      */
3804     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3805 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3806 	tls_last_offset -= obj->tlssize;
3807 	tls_last_size = 0;
3808     }
3809 }
3810 
3811 void *
3812 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3813 {
3814     void *ret;
3815     RtldLockState lockstate;
3816 
3817     wlock_acquire(rtld_bind_lock, &lockstate);
3818     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3819     lock_release(rtld_bind_lock, &lockstate);
3820     return (ret);
3821 }
3822 
3823 void
3824 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3825 {
3826     RtldLockState lockstate;
3827 
3828     wlock_acquire(rtld_bind_lock, &lockstate);
3829     free_tls(tcb, tcbsize, tcbalign);
3830     lock_release(rtld_bind_lock, &lockstate);
3831 }
3832 
3833 static void
3834 object_add_name(Obj_Entry *obj, const char *name)
3835 {
3836     Name_Entry *entry;
3837     size_t len;
3838 
3839     len = strlen(name);
3840     entry = malloc(sizeof(Name_Entry) + len);
3841 
3842     if (entry != NULL) {
3843 	strcpy(entry->name, name);
3844 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3845     }
3846 }
3847 
3848 static int
3849 object_match_name(const Obj_Entry *obj, const char *name)
3850 {
3851     Name_Entry *entry;
3852 
3853     STAILQ_FOREACH(entry, &obj->names, link) {
3854 	if (strcmp(name, entry->name) == 0)
3855 	    return (1);
3856     }
3857     return (0);
3858 }
3859 
3860 static Obj_Entry *
3861 locate_dependency(const Obj_Entry *obj, const char *name)
3862 {
3863     const Objlist_Entry *entry;
3864     const Needed_Entry *needed;
3865 
3866     STAILQ_FOREACH(entry, &list_main, link) {
3867 	if (object_match_name(entry->obj, name))
3868 	    return entry->obj;
3869     }
3870 
3871     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3872 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3873 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3874 	    /*
3875 	     * If there is DT_NEEDED for the name we are looking for,
3876 	     * we are all set.  Note that object might not be found if
3877 	     * dependency was not loaded yet, so the function can
3878 	     * return NULL here.  This is expected and handled
3879 	     * properly by the caller.
3880 	     */
3881 	    return (needed->obj);
3882 	}
3883     }
3884     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3885 	obj->path, name);
3886     die();
3887 }
3888 
3889 static int
3890 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3891     const Elf_Vernaux *vna)
3892 {
3893     const Elf_Verdef *vd;
3894     const char *vername;
3895 
3896     vername = refobj->strtab + vna->vna_name;
3897     vd = depobj->verdef;
3898     if (vd == NULL) {
3899 	_rtld_error("%s: version %s required by %s not defined",
3900 	    depobj->path, vername, refobj->path);
3901 	return (-1);
3902     }
3903     for (;;) {
3904 	if (vd->vd_version != VER_DEF_CURRENT) {
3905 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3906 		depobj->path, vd->vd_version);
3907 	    return (-1);
3908 	}
3909 	if (vna->vna_hash == vd->vd_hash) {
3910 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3911 		((char *)vd + vd->vd_aux);
3912 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3913 		return (0);
3914 	}
3915 	if (vd->vd_next == 0)
3916 	    break;
3917 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3918     }
3919     if (vna->vna_flags & VER_FLG_WEAK)
3920 	return (0);
3921     _rtld_error("%s: version %s required by %s not found",
3922 	depobj->path, vername, refobj->path);
3923     return (-1);
3924 }
3925 
3926 static int
3927 rtld_verify_object_versions(Obj_Entry *obj)
3928 {
3929     const Elf_Verneed *vn;
3930     const Elf_Verdef  *vd;
3931     const Elf_Verdaux *vda;
3932     const Elf_Vernaux *vna;
3933     const Obj_Entry *depobj;
3934     int maxvernum, vernum;
3935 
3936     maxvernum = 0;
3937     /*
3938      * Walk over defined and required version records and figure out
3939      * max index used by any of them. Do very basic sanity checking
3940      * while there.
3941      */
3942     vn = obj->verneed;
3943     while (vn != NULL) {
3944 	if (vn->vn_version != VER_NEED_CURRENT) {
3945 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3946 		obj->path, vn->vn_version);
3947 	    return (-1);
3948 	}
3949 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3950 	for (;;) {
3951 	    vernum = VER_NEED_IDX(vna->vna_other);
3952 	    if (vernum > maxvernum)
3953 		maxvernum = vernum;
3954 	    if (vna->vna_next == 0)
3955 		 break;
3956 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3957 	}
3958 	if (vn->vn_next == 0)
3959 	    break;
3960 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3961     }
3962 
3963     vd = obj->verdef;
3964     while (vd != NULL) {
3965 	if (vd->vd_version != VER_DEF_CURRENT) {
3966 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3967 		obj->path, vd->vd_version);
3968 	    return (-1);
3969 	}
3970 	vernum = VER_DEF_IDX(vd->vd_ndx);
3971 	if (vernum > maxvernum)
3972 		maxvernum = vernum;
3973 	if (vd->vd_next == 0)
3974 	    break;
3975 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3976     }
3977 
3978     if (maxvernum == 0)
3979 	return (0);
3980 
3981     /*
3982      * Store version information in array indexable by version index.
3983      * Verify that object version requirements are satisfied along the
3984      * way.
3985      */
3986     obj->vernum = maxvernum + 1;
3987     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3988 
3989     vd = obj->verdef;
3990     while (vd != NULL) {
3991 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3992 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3993 	    assert(vernum <= maxvernum);
3994 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3995 	    obj->vertab[vernum].hash = vd->vd_hash;
3996 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3997 	    obj->vertab[vernum].file = NULL;
3998 	    obj->vertab[vernum].flags = 0;
3999 	}
4000 	if (vd->vd_next == 0)
4001 	    break;
4002 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4003     }
4004 
4005     vn = obj->verneed;
4006     while (vn != NULL) {
4007 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4008 	if (depobj == NULL)
4009 	    return (-1);
4010 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4011 	for (;;) {
4012 	    if (check_object_provided_version(obj, depobj, vna))
4013 		return (-1);
4014 	    vernum = VER_NEED_IDX(vna->vna_other);
4015 	    assert(vernum <= maxvernum);
4016 	    obj->vertab[vernum].hash = vna->vna_hash;
4017 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4018 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4019 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4020 		VER_INFO_HIDDEN : 0;
4021 	    if (vna->vna_next == 0)
4022 		 break;
4023 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4024 	}
4025 	if (vn->vn_next == 0)
4026 	    break;
4027 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4028     }
4029     return 0;
4030 }
4031 
4032 static int
4033 rtld_verify_versions(const Objlist *objlist)
4034 {
4035     Objlist_Entry *entry;
4036     int rc;
4037 
4038     rc = 0;
4039     STAILQ_FOREACH(entry, objlist, link) {
4040 	/*
4041 	 * Skip dummy objects or objects that have their version requirements
4042 	 * already checked.
4043 	 */
4044 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4045 	    continue;
4046 	if (rtld_verify_object_versions(entry->obj) == -1) {
4047 	    rc = -1;
4048 	    if (ld_tracing == NULL)
4049 		break;
4050 	}
4051     }
4052     if (rc == 0 || ld_tracing != NULL)
4053     	rc = rtld_verify_object_versions(&obj_rtld);
4054     return rc;
4055 }
4056 
4057 const Ver_Entry *
4058 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4059 {
4060     Elf_Versym vernum;
4061 
4062     if (obj->vertab) {
4063 	vernum = VER_NDX(obj->versyms[symnum]);
4064 	if (vernum >= obj->vernum) {
4065 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4066 		obj->path, obj->strtab + symnum, vernum);
4067 	} else if (obj->vertab[vernum].hash != 0) {
4068 	    return &obj->vertab[vernum];
4069 	}
4070     }
4071     return NULL;
4072 }
4073 
4074 int
4075 _rtld_get_stack_prot(void)
4076 {
4077 
4078 	return (stack_prot);
4079 }
4080 
4081 static void
4082 map_stacks_exec(RtldLockState *lockstate)
4083 {
4084 	void (*thr_map_stacks_exec)(void);
4085 
4086 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4087 		return;
4088 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4089 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4090 	if (thr_map_stacks_exec != NULL) {
4091 		stack_prot |= PROT_EXEC;
4092 		thr_map_stacks_exec();
4093 	}
4094 }
4095 
4096 void
4097 symlook_init(SymLook *dst, const char *name)
4098 {
4099 
4100 	bzero(dst, sizeof(*dst));
4101 	dst->name = name;
4102 	dst->hash = elf_hash(name);
4103 }
4104 
4105 static void
4106 symlook_init_from_req(SymLook *dst, const SymLook *src)
4107 {
4108 
4109 	dst->name = src->name;
4110 	dst->hash = src->hash;
4111 	dst->ventry = src->ventry;
4112 	dst->flags = src->flags;
4113 	dst->defobj_out = NULL;
4114 	dst->sym_out = NULL;
4115 	dst->lockstate = src->lockstate;
4116 }
4117 
4118 /*
4119  * Overrides for libc_pic-provided functions.
4120  */
4121 
4122 int
4123 __getosreldate(void)
4124 {
4125 	size_t len;
4126 	int oid[2];
4127 	int error, osrel;
4128 
4129 	if (osreldate != 0)
4130 		return (osreldate);
4131 
4132 	oid[0] = CTL_KERN;
4133 	oid[1] = KERN_OSRELDATE;
4134 	osrel = 0;
4135 	len = sizeof(osrel);
4136 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4137 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4138 		osreldate = osrel;
4139 	return (osreldate);
4140 }
4141 
4142 /*
4143  * No unresolved symbols for rtld.
4144  */
4145 void
4146 __pthread_cxa_finalize(struct dl_phdr_info *a)
4147 {
4148 }
4149