xref: /freebsd/libexec/rtld-elf/rtld.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD$
26  */
27 
28 /*
29  * Dynamic linker for ELF.
30  *
31  * John Polstra <jdp@polstra.com>.
32  */
33 
34 #ifndef __GNUC__
35 #error "GCC is needed to compile this file"
36 #endif
37 
38 #include <sys/param.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 
42 #include <dlfcn.h>
43 #include <err.h>
44 #include <errno.h>
45 #include <fcntl.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <unistd.h>
51 
52 #include "debug.h"
53 #include "rtld.h"
54 
55 #define END_SYM		"_end"
56 #define PATH_RTLD	"/usr/libexec/ld-elf.so.1"
57 
58 /* Types. */
59 typedef void (*func_ptr_type)();
60 
61 /*
62  * This structure provides a reentrant way to keep a list of objects and
63  * check which ones have already been processed in some way.
64  */
65 typedef struct Struct_DoneList {
66     const Obj_Entry **objs;		/* Array of object pointers */
67     unsigned int num_alloc;		/* Allocated size of the array */
68     unsigned int num_used;		/* Number of array slots used */
69 } DoneList;
70 
71 /*
72  * Function declarations.
73  */
74 static const char *basename(const char *);
75 static void die(void);
76 static void digest_dynamic(Obj_Entry *, int);
77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
78 static Obj_Entry *dlcheck(void *);
79 static bool donelist_check(DoneList *, const Obj_Entry *);
80 static void errmsg_restore(char *);
81 static char *errmsg_save(void);
82 static char *find_library(const char *, const Obj_Entry *);
83 static const char *gethints(void);
84 static void init_dag(Obj_Entry *);
85 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
86 static void init_rtld(caddr_t);
87 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
88 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
89   Objlist *list);
90 static bool is_exported(const Elf_Sym *);
91 static void linkmap_add(Obj_Entry *);
92 static void linkmap_delete(Obj_Entry *);
93 static int load_needed_objects(Obj_Entry *);
94 static int load_preload_objects(void);
95 static Obj_Entry *load_object(char *);
96 static void lock_check(void);
97 static Obj_Entry *obj_from_addr(const void *);
98 static void objlist_call_fini(Objlist *);
99 static void objlist_call_init(Objlist *);
100 static void objlist_clear(Objlist *);
101 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
102 static void objlist_init(Objlist *);
103 static void objlist_push_head(Objlist *, Obj_Entry *);
104 static void objlist_push_tail(Objlist *, Obj_Entry *);
105 static void objlist_remove(Objlist *, Obj_Entry *);
106 static void objlist_remove_unref(Objlist *);
107 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
108 static void rtld_exit(void);
109 static char *search_library_path(const char *, const char *);
110 static const void **get_program_var_addr(const char *name);
111 static void set_program_var(const char *, const void *);
112 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
113   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
114 static const Elf_Sym *symlook_list(const char *, unsigned long,
115   Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
116 static void trace_loaded_objects(Obj_Entry *obj);
117 static void unload_object(Obj_Entry *);
118 static void unref_dag(Obj_Entry *);
119 
120 void r_debug_state(struct r_debug*, struct link_map*);
121 void xprintf(const char *, ...) __printflike(1, 2);
122 
123 /*
124  * Data declarations.
125  */
126 static char *error_message;	/* Message for dlerror(), or NULL */
127 struct r_debug r_debug;	/* for GDB; */
128 static bool trust;		/* False for setuid and setgid programs */
129 static char *ld_bind_now;	/* Environment variable for immediate binding */
130 static char *ld_debug;		/* Environment variable for debugging */
131 static char *ld_library_path;	/* Environment variable for search path */
132 static char *ld_preload;	/* Environment variable for libraries to
133 				   load first */
134 static char *ld_tracing;	/* Called from ldd to print libs */
135 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
136 static Obj_Entry **obj_tail;	/* Link field of last object in list */
137 static Obj_Entry *obj_main;	/* The main program shared object */
138 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
139 static unsigned int obj_count;	/* Number of objects in obj_list */
140 
141 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
142   STAILQ_HEAD_INITIALIZER(list_global);
143 static Objlist list_main =	/* Objects loaded at program startup */
144   STAILQ_HEAD_INITIALIZER(list_main);
145 static Objlist list_fini =	/* Objects needing fini() calls */
146   STAILQ_HEAD_INITIALIZER(list_fini);
147 
148 static LockInfo lockinfo;
149 
150 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
151 
152 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
153 
154 extern Elf_Dyn _DYNAMIC;
155 #pragma weak _DYNAMIC
156 
157 /*
158  * These are the functions the dynamic linker exports to application
159  * programs.  They are the only symbols the dynamic linker is willing
160  * to export from itself.
161  */
162 static func_ptr_type exports[] = {
163     (func_ptr_type) &_rtld_error,
164     (func_ptr_type) &dlclose,
165     (func_ptr_type) &dlerror,
166     (func_ptr_type) &dlopen,
167     (func_ptr_type) &dlsym,
168     (func_ptr_type) &dladdr,
169     (func_ptr_type) &dllockinit,
170     NULL
171 };
172 
173 /*
174  * Global declarations normally provided by crt1.  The dynamic linker is
175  * not built with crt1, so we have to provide them ourselves.
176  */
177 char *__progname;
178 char **environ;
179 
180 /*
181  * Fill in a DoneList with an allocation large enough to hold all of
182  * the currently-loaded objects.  Keep this as a macro since it calls
183  * alloca and we want that to occur within the scope of the caller.
184  */
185 #define donelist_init(dlp)					\
186     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
187     assert((dlp)->objs != NULL),				\
188     (dlp)->num_alloc = obj_count,				\
189     (dlp)->num_used = 0)
190 
191 static __inline void
192 rlock_acquire(void)
193 {
194     lockinfo.rlock_acquire(lockinfo.thelock);
195     atomic_incr_int(&lockinfo.rcount);
196     lock_check();
197 }
198 
199 static __inline void
200 wlock_acquire(void)
201 {
202     lockinfo.wlock_acquire(lockinfo.thelock);
203     atomic_incr_int(&lockinfo.wcount);
204     lock_check();
205 }
206 
207 static __inline void
208 rlock_release(void)
209 {
210     atomic_decr_int(&lockinfo.rcount);
211     lockinfo.rlock_release(lockinfo.thelock);
212 }
213 
214 static __inline void
215 wlock_release(void)
216 {
217     atomic_decr_int(&lockinfo.wcount);
218     lockinfo.wlock_release(lockinfo.thelock);
219 }
220 
221 /*
222  * Main entry point for dynamic linking.  The first argument is the
223  * stack pointer.  The stack is expected to be laid out as described
224  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
225  * Specifically, the stack pointer points to a word containing
226  * ARGC.  Following that in the stack is a null-terminated sequence
227  * of pointers to argument strings.  Then comes a null-terminated
228  * sequence of pointers to environment strings.  Finally, there is a
229  * sequence of "auxiliary vector" entries.
230  *
231  * The second argument points to a place to store the dynamic linker's
232  * exit procedure pointer and the third to a place to store the main
233  * program's object.
234  *
235  * The return value is the main program's entry point.
236  */
237 func_ptr_type
238 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
239 {
240     Elf_Auxinfo *aux_info[AT_COUNT];
241     int i;
242     int argc;
243     char **argv;
244     char **env;
245     Elf_Auxinfo *aux;
246     Elf_Auxinfo *auxp;
247     const char *argv0;
248     Obj_Entry *obj;
249     Obj_Entry **preload_tail;
250     Objlist initlist;
251 
252     /*
253      * On entry, the dynamic linker itself has not been relocated yet.
254      * Be very careful not to reference any global data until after
255      * init_rtld has returned.  It is OK to reference file-scope statics
256      * and string constants, and to call static and global functions.
257      */
258 
259     /* Find the auxiliary vector on the stack. */
260     argc = *sp++;
261     argv = (char **) sp;
262     sp += argc + 1;	/* Skip over arguments and NULL terminator */
263     env = (char **) sp;
264     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
265 	;
266     aux = (Elf_Auxinfo *) sp;
267 
268     /* Digest the auxiliary vector. */
269     for (i = 0;  i < AT_COUNT;  i++)
270 	aux_info[i] = NULL;
271     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
272 	if (auxp->a_type < AT_COUNT)
273 	    aux_info[auxp->a_type] = auxp;
274     }
275 
276     /* Initialize and relocate ourselves. */
277     assert(aux_info[AT_BASE] != NULL);
278     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
279 
280     __progname = obj_rtld.path;
281     argv0 = argv[0] != NULL ? argv[0] : "(null)";
282     environ = env;
283 
284     trust = geteuid() == getuid() && getegid() == getgid();
285 
286     ld_bind_now = getenv("LD_BIND_NOW");
287     if (trust) {
288 	ld_debug = getenv("LD_DEBUG");
289 	ld_library_path = getenv("LD_LIBRARY_PATH");
290 	ld_preload = getenv("LD_PRELOAD");
291     }
292     ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS");
293 
294     if (ld_debug != NULL && *ld_debug != '\0')
295 	debug = 1;
296     dbg("%s is initialized, base address = %p", __progname,
297 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
298     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
299     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
300 
301     /*
302      * Load the main program, or process its program header if it is
303      * already loaded.
304      */
305     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
306 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
307 	dbg("loading main program");
308 	obj_main = map_object(fd, argv0, NULL);
309 	close(fd);
310 	if (obj_main == NULL)
311 	    die();
312     } else {				/* Main program already loaded. */
313 	const Elf_Phdr *phdr;
314 	int phnum;
315 	caddr_t entry;
316 
317 	dbg("processing main program's program header");
318 	assert(aux_info[AT_PHDR] != NULL);
319 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
320 	assert(aux_info[AT_PHNUM] != NULL);
321 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
322 	assert(aux_info[AT_PHENT] != NULL);
323 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
324 	assert(aux_info[AT_ENTRY] != NULL);
325 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
326 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
327 	    die();
328     }
329 
330     obj_main->path = xstrdup(argv0);
331     obj_main->mainprog = true;
332 
333     /*
334      * Get the actual dynamic linker pathname from the executable if
335      * possible.  (It should always be possible.)  That ensures that
336      * gdb will find the right dynamic linker even if a non-standard
337      * one is being used.
338      */
339     if (obj_main->interp != NULL &&
340       strcmp(obj_main->interp, obj_rtld.path) != 0) {
341 	free(obj_rtld.path);
342 	obj_rtld.path = xstrdup(obj_main->interp);
343     }
344 
345     digest_dynamic(obj_main, 0);
346 
347     linkmap_add(obj_main);
348     linkmap_add(&obj_rtld);
349 
350     /* Link the main program into the list of objects. */
351     *obj_tail = obj_main;
352     obj_tail = &obj_main->next;
353     obj_count++;
354     obj_main->refcount++;
355     /* Make sure we don't call the main program's init and fini functions. */
356     obj_main->init = obj_main->fini = NULL;
357 
358     /* Initialize a fake symbol for resolving undefined weak references. */
359     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
360     sym_zero.st_shndx = SHN_UNDEF;
361 
362     dbg("loading LD_PRELOAD libraries");
363     if (load_preload_objects() == -1)
364 	die();
365     preload_tail = obj_tail;
366 
367     dbg("loading needed objects");
368     if (load_needed_objects(obj_main) == -1)
369 	die();
370 
371     /* Make a list of all objects loaded at startup. */
372     for (obj = obj_list;  obj != NULL;  obj = obj->next)
373 	objlist_push_tail(&list_main, obj);
374 
375     if (ld_tracing) {		/* We're done */
376 	trace_loaded_objects(obj_main);
377 	exit(0);
378     }
379 
380     if (relocate_objects(obj_main,
381 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
382 	die();
383 
384     dbg("doing copy relocations");
385     if (do_copy_relocations(obj_main) == -1)
386 	die();
387 
388     dbg("initializing key program variables");
389     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
390     set_program_var("environ", env);
391 
392     dbg("initializing thread locks");
393     lockdflt_init(&lockinfo);
394     lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
395 
396     /* Make a list of init functions to call. */
397     objlist_init(&initlist);
398     initlist_add_objects(obj_list, preload_tail, &initlist);
399 
400     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
401 
402     objlist_call_init(&initlist);
403     wlock_acquire();
404     objlist_clear(&initlist);
405     wlock_release();
406 
407     dbg("transferring control to program entry point = %p", obj_main->entry);
408 
409     /* Return the exit procedure and the program entry point. */
410     *exit_proc = rtld_exit;
411     *objp = obj_main;
412     return (func_ptr_type) obj_main->entry;
413 }
414 
415 Elf_Addr
416 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
417 {
418     const Elf_Rel *rel;
419     const Elf_Sym *def;
420     const Obj_Entry *defobj;
421     Elf_Addr *where;
422     Elf_Addr target;
423 
424     rlock_acquire();
425     if (obj->pltrel)
426 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
427     else
428 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
429 
430     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
431     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
432     if (def == NULL)
433 	die();
434 
435     target = (Elf_Addr)(defobj->relocbase + def->st_value);
436 
437     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
438       defobj->strtab + def->st_name, basename(obj->path),
439       (void *)target, basename(defobj->path));
440 
441     /*
442      * Write the new contents for the jmpslot. Note that depending on
443      * architecture, the value which we need to return back to the
444      * lazy binding trampoline may or may not be the target
445      * address. The value returned from reloc_jmpslot() is the value
446      * that the trampoline needs.
447      */
448     target = reloc_jmpslot(where, target, defobj);
449     rlock_release();
450     return target;
451 }
452 
453 /*
454  * Error reporting function.  Use it like printf.  If formats the message
455  * into a buffer, and sets things up so that the next call to dlerror()
456  * will return the message.
457  */
458 void
459 _rtld_error(const char *fmt, ...)
460 {
461     static char buf[512];
462     va_list ap;
463 
464     va_start(ap, fmt);
465     vsnprintf(buf, sizeof buf, fmt, ap);
466     error_message = buf;
467     va_end(ap);
468 }
469 
470 /*
471  * Return a dynamically-allocated copy of the current error message, if any.
472  */
473 static char *
474 errmsg_save(void)
475 {
476     return error_message == NULL ? NULL : xstrdup(error_message);
477 }
478 
479 /*
480  * Restore the current error message from a copy which was previously saved
481  * by errmsg_save().  The copy is freed.
482  */
483 static void
484 errmsg_restore(char *saved_msg)
485 {
486     if (saved_msg == NULL)
487 	error_message = NULL;
488     else {
489 	_rtld_error("%s", saved_msg);
490 	free(saved_msg);
491     }
492 }
493 
494 static const char *
495 basename(const char *name)
496 {
497     const char *p = strrchr(name, '/');
498     return p != NULL ? p + 1 : name;
499 }
500 
501 static void
502 die(void)
503 {
504     const char *msg = dlerror();
505 
506     if (msg == NULL)
507 	msg = "Fatal error";
508     errx(1, "%s", msg);
509 }
510 
511 /*
512  * Process a shared object's DYNAMIC section, and save the important
513  * information in its Obj_Entry structure.
514  */
515 static void
516 digest_dynamic(Obj_Entry *obj, int early)
517 {
518     const Elf_Dyn *dynp;
519     Needed_Entry **needed_tail = &obj->needed;
520     const Elf_Dyn *dyn_rpath = NULL;
521     int plttype = DT_REL;
522 
523     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
524 	switch (dynp->d_tag) {
525 
526 	case DT_REL:
527 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
528 	    break;
529 
530 	case DT_RELSZ:
531 	    obj->relsize = dynp->d_un.d_val;
532 	    break;
533 
534 	case DT_RELENT:
535 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
536 	    break;
537 
538 	case DT_JMPREL:
539 	    obj->pltrel = (const Elf_Rel *)
540 	      (obj->relocbase + dynp->d_un.d_ptr);
541 	    break;
542 
543 	case DT_PLTRELSZ:
544 	    obj->pltrelsize = dynp->d_un.d_val;
545 	    break;
546 
547 	case DT_RELA:
548 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
549 	    break;
550 
551 	case DT_RELASZ:
552 	    obj->relasize = dynp->d_un.d_val;
553 	    break;
554 
555 	case DT_RELAENT:
556 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
557 	    break;
558 
559 	case DT_PLTREL:
560 	    plttype = dynp->d_un.d_val;
561 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
562 	    break;
563 
564 	case DT_SYMTAB:
565 	    obj->symtab = (const Elf_Sym *)
566 	      (obj->relocbase + dynp->d_un.d_ptr);
567 	    break;
568 
569 	case DT_SYMENT:
570 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
571 	    break;
572 
573 	case DT_STRTAB:
574 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
575 	    break;
576 
577 	case DT_STRSZ:
578 	    obj->strsize = dynp->d_un.d_val;
579 	    break;
580 
581 	case DT_HASH:
582 	    {
583 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
584 		  (obj->relocbase + dynp->d_un.d_ptr);
585 		obj->nbuckets = hashtab[0];
586 		obj->nchains = hashtab[1];
587 		obj->buckets = hashtab + 2;
588 		obj->chains = obj->buckets + obj->nbuckets;
589 	    }
590 	    break;
591 
592 	case DT_NEEDED:
593 	    if (!obj->rtld) {
594 		Needed_Entry *nep = NEW(Needed_Entry);
595 		nep->name = dynp->d_un.d_val;
596 		nep->obj = NULL;
597 		nep->next = NULL;
598 
599 		*needed_tail = nep;
600 		needed_tail = &nep->next;
601 	    }
602 	    break;
603 
604 	case DT_PLTGOT:
605 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
606 	    break;
607 
608 	case DT_TEXTREL:
609 	    obj->textrel = true;
610 	    break;
611 
612 	case DT_SYMBOLIC:
613 	    obj->symbolic = true;
614 	    break;
615 
616 	case DT_RPATH:
617 	    /*
618 	     * We have to wait until later to process this, because we
619 	     * might not have gotten the address of the string table yet.
620 	     */
621 	    dyn_rpath = dynp;
622 	    break;
623 
624 	case DT_SONAME:
625 	    /* Not used by the dynamic linker. */
626 	    break;
627 
628 	case DT_INIT:
629 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
630 	    break;
631 
632 	case DT_FINI:
633 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
634 	    break;
635 
636 	case DT_DEBUG:
637 	    /* XXX - not implemented yet */
638 	    if (!early)
639 		dbg("Filling in DT_DEBUG entry");
640 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
641 	    break;
642 
643 	default:
644 	    if (!early) {
645 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
646 		    (long)dynp->d_tag);
647 	    }
648 	    break;
649 	}
650     }
651 
652     obj->traced = false;
653 
654     if (plttype == DT_RELA) {
655 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
656 	obj->pltrel = NULL;
657 	obj->pltrelasize = obj->pltrelsize;
658 	obj->pltrelsize = 0;
659     }
660 
661     if (dyn_rpath != NULL)
662 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
663 }
664 
665 /*
666  * Process a shared object's program header.  This is used only for the
667  * main program, when the kernel has already loaded the main program
668  * into memory before calling the dynamic linker.  It creates and
669  * returns an Obj_Entry structure.
670  */
671 static Obj_Entry *
672 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
673 {
674     Obj_Entry *obj;
675     const Elf_Phdr *phlimit = phdr + phnum;
676     const Elf_Phdr *ph;
677     int nsegs = 0;
678 
679     obj = obj_new();
680     for (ph = phdr;  ph < phlimit;  ph++) {
681 	switch (ph->p_type) {
682 
683 	case PT_PHDR:
684 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
685 		_rtld_error("%s: invalid PT_PHDR", path);
686 		return NULL;
687 	    }
688 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
689 	    obj->phsize = ph->p_memsz;
690 	    break;
691 
692 	case PT_INTERP:
693 	    obj->interp = (const char *) ph->p_vaddr;
694 	    break;
695 
696 	case PT_LOAD:
697 	    if (nsegs >= 2) {
698 		_rtld_error("%s: too many PT_LOAD segments", path);
699 		return NULL;
700 	    }
701 	    if (nsegs == 0) {	/* First load segment */
702 		obj->vaddrbase = trunc_page(ph->p_vaddr);
703 		obj->mapbase = (caddr_t) obj->vaddrbase;
704 		obj->relocbase = obj->mapbase - obj->vaddrbase;
705 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
706 		  obj->vaddrbase;
707 	    } else {		/* Last load segment */
708 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
709 		  obj->vaddrbase;
710 	    }
711 	    nsegs++;
712 	    break;
713 
714 	case PT_DYNAMIC:
715 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
716 	    break;
717 	}
718     }
719     if (nsegs < 2) {
720 	_rtld_error("%s: too few PT_LOAD segments", path);
721 	return NULL;
722     }
723 
724     obj->entry = entry;
725     return obj;
726 }
727 
728 static Obj_Entry *
729 dlcheck(void *handle)
730 {
731     Obj_Entry *obj;
732 
733     for (obj = obj_list;  obj != NULL;  obj = obj->next)
734 	if (obj == (Obj_Entry *) handle)
735 	    break;
736 
737     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
738 	_rtld_error("Invalid shared object handle %p", handle);
739 	return NULL;
740     }
741     return obj;
742 }
743 
744 /*
745  * If the given object is already in the donelist, return true.  Otherwise
746  * add the object to the list and return false.
747  */
748 static bool
749 donelist_check(DoneList *dlp, const Obj_Entry *obj)
750 {
751     unsigned int i;
752 
753     for (i = 0;  i < dlp->num_used;  i++)
754 	if (dlp->objs[i] == obj)
755 	    return true;
756     /*
757      * Our donelist allocation should always be sufficient.  But if
758      * our threads locking isn't working properly, more shared objects
759      * could have been loaded since we allocated the list.  That should
760      * never happen, but we'll handle it properly just in case it does.
761      */
762     if (dlp->num_used < dlp->num_alloc)
763 	dlp->objs[dlp->num_used++] = obj;
764     return false;
765 }
766 
767 /*
768  * Hash function for symbol table lookup.  Don't even think about changing
769  * this.  It is specified by the System V ABI.
770  */
771 unsigned long
772 elf_hash(const char *name)
773 {
774     const unsigned char *p = (const unsigned char *) name;
775     unsigned long h = 0;
776     unsigned long g;
777 
778     while (*p != '\0') {
779 	h = (h << 4) + *p++;
780 	if ((g = h & 0xf0000000) != 0)
781 	    h ^= g >> 24;
782 	h &= ~g;
783     }
784     return h;
785 }
786 
787 /*
788  * Find the library with the given name, and return its full pathname.
789  * The returned string is dynamically allocated.  Generates an error
790  * message and returns NULL if the library cannot be found.
791  *
792  * If the second argument is non-NULL, then it refers to an already-
793  * loaded shared object, whose library search path will be searched.
794  *
795  * The search order is:
796  *   rpath in the referencing file
797  *   LD_LIBRARY_PATH
798  *   ldconfig hints
799  *   /usr/lib
800  */
801 static char *
802 find_library(const char *name, const Obj_Entry *refobj)
803 {
804     char *pathname;
805 
806     if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
807 	if (name[0] != '/' && !trust) {
808 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
809 	      name);
810 	    return NULL;
811 	}
812 	return xstrdup(name);
813     }
814 
815     dbg(" Searching for \"%s\"", name);
816 
817     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
818       (refobj != NULL &&
819       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
820       (pathname = search_library_path(name, gethints())) != NULL ||
821       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
822 	return pathname;
823 
824     _rtld_error("Shared object \"%s\" not found", name);
825     return NULL;
826 }
827 
828 /*
829  * Given a symbol number in a referencing object, find the corresponding
830  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
831  * no definition was found.  Returns a pointer to the Obj_Entry of the
832  * defining object via the reference parameter DEFOBJ_OUT.
833  */
834 const Elf_Sym *
835 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
836     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
837 {
838     const Elf_Sym *ref;
839     const Elf_Sym *def;
840     const Obj_Entry *defobj;
841     const char *name;
842     unsigned long hash;
843 
844     /*
845      * If we have already found this symbol, get the information from
846      * the cache.
847      */
848     if (symnum >= refobj->nchains)
849 	return NULL;	/* Bad object */
850     if (cache != NULL && cache[symnum].sym != NULL) {
851 	*defobj_out = cache[symnum].obj;
852 	return cache[symnum].sym;
853     }
854 
855     ref = refobj->symtab + symnum;
856     name = refobj->strtab + ref->st_name;
857     defobj = NULL;
858 
859     /*
860      * We don't have to do a full scale lookup if the symbol is local.
861      * We know it will bind to the instance in this load module; to
862      * which we already have a pointer (ie ref). By not doing a lookup,
863      * we not only improve performance, but it also avoids unresolvable
864      * symbols when local symbols are not in the hash table. This has
865      * been seen with the ia64 toolchain.
866      */
867     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
868 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
869 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
870 		symnum);
871 	}
872 	hash = elf_hash(name);
873 	def = symlook_default(name, hash, refobj, &defobj, in_plt);
874     } else {
875 	def = ref;
876 	defobj = refobj;
877     }
878 
879     /*
880      * If we found no definition and the reference is weak, treat the
881      * symbol as having the value zero.
882      */
883     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
884 	def = &sym_zero;
885 	defobj = obj_main;
886     }
887 
888     if (def != NULL) {
889 	*defobj_out = defobj;
890 	/* Record the information in the cache to avoid subsequent lookups. */
891 	if (cache != NULL) {
892 	    cache[symnum].sym = def;
893 	    cache[symnum].obj = defobj;
894 	}
895     } else {
896 	if (refobj != &obj_rtld)
897 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
898     }
899     return def;
900 }
901 
902 /*
903  * Return the search path from the ldconfig hints file, reading it if
904  * necessary.  Returns NULL if there are problems with the hints file,
905  * or if the search path there is empty.
906  */
907 static const char *
908 gethints(void)
909 {
910     static char *hints;
911 
912     if (hints == NULL) {
913 	int fd;
914 	struct elfhints_hdr hdr;
915 	char *p;
916 
917 	/* Keep from trying again in case the hints file is bad. */
918 	hints = "";
919 
920 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
921 	    return NULL;
922 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
923 	  hdr.magic != ELFHINTS_MAGIC ||
924 	  hdr.version != 1) {
925 	    close(fd);
926 	    return NULL;
927 	}
928 	p = xmalloc(hdr.dirlistlen + 1);
929 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
930 	  read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) {
931 	    free(p);
932 	    close(fd);
933 	    return NULL;
934 	}
935 	hints = p;
936 	close(fd);
937     }
938     return hints[0] != '\0' ? hints : NULL;
939 }
940 
941 static void
942 init_dag(Obj_Entry *root)
943 {
944     DoneList donelist;
945 
946     donelist_init(&donelist);
947     init_dag1(root, root, &donelist);
948 }
949 
950 static void
951 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
952 {
953     const Needed_Entry *needed;
954 
955     if (donelist_check(dlp, obj))
956 	return;
957     objlist_push_tail(&obj->dldags, root);
958     objlist_push_tail(&root->dagmembers, obj);
959     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
960 	if (needed->obj != NULL)
961 	    init_dag1(root, needed->obj, dlp);
962 }
963 
964 /*
965  * Initialize the dynamic linker.  The argument is the address at which
966  * the dynamic linker has been mapped into memory.  The primary task of
967  * this function is to relocate the dynamic linker.
968  */
969 static void
970 init_rtld(caddr_t mapbase)
971 {
972     Obj_Entry objtmp;	/* Temporary rtld object */
973 
974     /*
975      * Conjure up an Obj_Entry structure for the dynamic linker.
976      *
977      * The "path" member can't be initialized yet because string constatns
978      * cannot yet be acessed. Below we will set it correctly.
979      */
980     objtmp.path = NULL;
981     objtmp.rtld = true;
982     objtmp.mapbase = mapbase;
983 #ifdef PIC
984     objtmp.relocbase = mapbase;
985 #endif
986     if (&_DYNAMIC != 0) {
987 	objtmp.dynamic = rtld_dynamic(&objtmp);
988 	digest_dynamic(&objtmp, 1);
989 	assert(objtmp.needed == NULL);
990 	assert(!objtmp.textrel);
991 
992 	/*
993 	 * Temporarily put the dynamic linker entry into the object list, so
994 	 * that symbols can be found.
995 	 */
996 
997 	relocate_objects(&objtmp, true, &objtmp);
998     }
999 
1000     /* Initialize the object list. */
1001     obj_tail = &obj_list;
1002 
1003     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1004     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1005 
1006     /* Replace the path with a dynamically allocated copy. */
1007     obj_rtld.path = xstrdup(PATH_RTLD);
1008 
1009     r_debug.r_brk = r_debug_state;
1010     r_debug.r_state = RT_CONSISTENT;
1011 }
1012 
1013 /*
1014  * Add the init functions from a needed object list (and its recursive
1015  * needed objects) to "list".  This is not used directly; it is a helper
1016  * function for initlist_add_objects().  The write lock must be held
1017  * when this function is called.
1018  */
1019 static void
1020 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1021 {
1022     /* Recursively process the successor needed objects. */
1023     if (needed->next != NULL)
1024 	initlist_add_neededs(needed->next, list);
1025 
1026     /* Process the current needed object. */
1027     if (needed->obj != NULL)
1028 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1029 }
1030 
1031 /*
1032  * Scan all of the DAGs rooted in the range of objects from "obj" to
1033  * "tail" and add their init functions to "list".  This recurses over
1034  * the DAGs and ensure the proper init ordering such that each object's
1035  * needed libraries are initialized before the object itself.  At the
1036  * same time, this function adds the objects to the global finalization
1037  * list "list_fini" in the opposite order.  The write lock must be
1038  * held when this function is called.
1039  */
1040 static void
1041 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1042 {
1043     if (obj->init_done)
1044 	return;
1045     obj->init_done = true;
1046 
1047     /* Recursively process the successor objects. */
1048     if (&obj->next != tail)
1049 	initlist_add_objects(obj->next, tail, list);
1050 
1051     /* Recursively process the needed objects. */
1052     if (obj->needed != NULL)
1053 	initlist_add_neededs(obj->needed, list);
1054 
1055     /* Add the object to the init list. */
1056     if (obj->init != NULL)
1057 	objlist_push_tail(list, obj);
1058 
1059     /* Add the object to the global fini list in the reverse order. */
1060     if (obj->fini != NULL)
1061 	objlist_push_head(&list_fini, obj);
1062 }
1063 
1064 #ifndef FPTR_TARGET
1065 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1066 #endif
1067 
1068 static bool
1069 is_exported(const Elf_Sym *def)
1070 {
1071     Elf_Addr value;
1072     const func_ptr_type *p;
1073 
1074     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1075     for (p = exports;  *p != NULL;  p++)
1076 	if (FPTR_TARGET(*p) == value)
1077 	    return true;
1078     return false;
1079 }
1080 
1081 /*
1082  * Given a shared object, traverse its list of needed objects, and load
1083  * each of them.  Returns 0 on success.  Generates an error message and
1084  * returns -1 on failure.
1085  */
1086 static int
1087 load_needed_objects(Obj_Entry *first)
1088 {
1089     Obj_Entry *obj;
1090 
1091     for (obj = first;  obj != NULL;  obj = obj->next) {
1092 	Needed_Entry *needed;
1093 
1094 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1095 	    const char *name = obj->strtab + needed->name;
1096 	    char *path = find_library(name, obj);
1097 
1098 	    needed->obj = NULL;
1099 	    if (path == NULL && !ld_tracing)
1100 		return -1;
1101 
1102 	    if (path) {
1103 		needed->obj = load_object(path);
1104 		if (needed->obj == NULL && !ld_tracing)
1105 		    return -1;		/* XXX - cleanup */
1106 	    }
1107 	}
1108     }
1109 
1110     return 0;
1111 }
1112 
1113 static int
1114 load_preload_objects(void)
1115 {
1116     char *p = ld_preload;
1117     static const char delim[] = " \t:;";
1118 
1119     if (p == NULL)
1120 	return NULL;
1121 
1122     p += strspn(p, delim);
1123     while (*p != '\0') {
1124 	size_t len = strcspn(p, delim);
1125 	char *path;
1126 	char savech;
1127 
1128 	savech = p[len];
1129 	p[len] = '\0';
1130 	if ((path = find_library(p, NULL)) == NULL)
1131 	    return -1;
1132 	if (load_object(path) == NULL)
1133 	    return -1;	/* XXX - cleanup */
1134 	p[len] = savech;
1135 	p += len;
1136 	p += strspn(p, delim);
1137     }
1138     return 0;
1139 }
1140 
1141 /*
1142  * Load a shared object into memory, if it is not already loaded.  The
1143  * argument must be a string allocated on the heap.  This function assumes
1144  * responsibility for freeing it when necessary.
1145  *
1146  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1147  * on failure.
1148  */
1149 static Obj_Entry *
1150 load_object(char *path)
1151 {
1152     Obj_Entry *obj;
1153     int fd = -1;
1154     struct stat sb;
1155 
1156     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1157 	if (strcmp(obj->path, path) == 0)
1158 	    break;
1159 
1160     /*
1161      * If we didn't find a match by pathname, open the file and check
1162      * again by device and inode.  This avoids false mismatches caused
1163      * by multiple links or ".." in pathnames.
1164      *
1165      * To avoid a race, we open the file and use fstat() rather than
1166      * using stat().
1167      */
1168     if (obj == NULL) {
1169 	if ((fd = open(path, O_RDONLY)) == -1) {
1170 	    _rtld_error("Cannot open \"%s\"", path);
1171 	    return NULL;
1172 	}
1173 	if (fstat(fd, &sb) == -1) {
1174 	    _rtld_error("Cannot fstat \"%s\"", path);
1175 	    close(fd);
1176 	    return NULL;
1177 	}
1178 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1179 	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1180 		close(fd);
1181 		break;
1182 	    }
1183 	}
1184     }
1185 
1186     if (obj == NULL) {	/* First use of this object, so we must map it in */
1187 	dbg("loading \"%s\"", path);
1188 	obj = map_object(fd, path, &sb);
1189 	close(fd);
1190 	if (obj == NULL) {
1191 	    free(path);
1192 	    return NULL;
1193 	}
1194 
1195 	obj->path = path;
1196 	digest_dynamic(obj, 0);
1197 
1198 	*obj_tail = obj;
1199 	obj_tail = &obj->next;
1200 	obj_count++;
1201 	linkmap_add(obj);	/* for GDB */
1202 
1203 	dbg("  %p .. %p: %s", obj->mapbase,
1204 	  obj->mapbase + obj->mapsize - 1, obj->path);
1205 	if (obj->textrel)
1206 	    dbg("  WARNING: %s has impure text", obj->path);
1207     } else
1208 	free(path);
1209 
1210     obj->refcount++;
1211     return obj;
1212 }
1213 
1214 /*
1215  * Check for locking violations and die if one is found.
1216  */
1217 static void
1218 lock_check(void)
1219 {
1220     int rcount, wcount;
1221 
1222     rcount = lockinfo.rcount;
1223     wcount = lockinfo.wcount;
1224     assert(rcount >= 0);
1225     assert(wcount >= 0);
1226     if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1227 	_rtld_error("Application locking error: %d readers and %d writers"
1228 	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1229 	  rcount, wcount);
1230 	die();
1231     }
1232 }
1233 
1234 static Obj_Entry *
1235 obj_from_addr(const void *addr)
1236 {
1237     unsigned long endhash;
1238     Obj_Entry *obj;
1239 
1240     endhash = elf_hash(END_SYM);
1241     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1242 	const Elf_Sym *endsym;
1243 
1244 	if (addr < (void *) obj->mapbase)
1245 	    continue;
1246 	if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL)
1247 	    continue;	/* No "end" symbol?! */
1248 	if (addr < (void *) (obj->relocbase + endsym->st_value))
1249 	    return obj;
1250     }
1251     return NULL;
1252 }
1253 
1254 /*
1255  * Call the finalization functions for each of the objects in "list"
1256  * which are unreferenced.  All of the objects are expected to have
1257  * non-NULL fini functions.
1258  */
1259 static void
1260 objlist_call_fini(Objlist *list)
1261 {
1262     Objlist_Entry *elm;
1263     char *saved_msg;
1264 
1265     /*
1266      * Preserve the current error message since a fini function might
1267      * call into the dynamic linker and overwrite it.
1268      */
1269     saved_msg = errmsg_save();
1270     STAILQ_FOREACH(elm, list, link) {
1271 	if (elm->obj->refcount == 0) {
1272 	    dbg("calling fini function for %s at %p", elm->obj->path,
1273 	        (void *)elm->obj->fini);
1274 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1275 	}
1276     }
1277     errmsg_restore(saved_msg);
1278 }
1279 
1280 /*
1281  * Call the initialization functions for each of the objects in
1282  * "list".  All of the objects are expected to have non-NULL init
1283  * functions.
1284  */
1285 static void
1286 objlist_call_init(Objlist *list)
1287 {
1288     Objlist_Entry *elm;
1289     char *saved_msg;
1290 
1291     /*
1292      * Preserve the current error message since an init function might
1293      * call into the dynamic linker and overwrite it.
1294      */
1295     saved_msg = errmsg_save();
1296     STAILQ_FOREACH(elm, list, link) {
1297 	dbg("calling init function for %s at %p", elm->obj->path,
1298 	    (void *)elm->obj->init);
1299 	call_initfini_pointer(elm->obj, elm->obj->init);
1300     }
1301     errmsg_restore(saved_msg);
1302 }
1303 
1304 static void
1305 objlist_clear(Objlist *list)
1306 {
1307     Objlist_Entry *elm;
1308 
1309     while (!STAILQ_EMPTY(list)) {
1310 	elm = STAILQ_FIRST(list);
1311 	STAILQ_REMOVE_HEAD(list, link);
1312 	free(elm);
1313     }
1314 }
1315 
1316 static Objlist_Entry *
1317 objlist_find(Objlist *list, const Obj_Entry *obj)
1318 {
1319     Objlist_Entry *elm;
1320 
1321     STAILQ_FOREACH(elm, list, link)
1322 	if (elm->obj == obj)
1323 	    return elm;
1324     return NULL;
1325 }
1326 
1327 static void
1328 objlist_init(Objlist *list)
1329 {
1330     STAILQ_INIT(list);
1331 }
1332 
1333 static void
1334 objlist_push_head(Objlist *list, Obj_Entry *obj)
1335 {
1336     Objlist_Entry *elm;
1337 
1338     elm = NEW(Objlist_Entry);
1339     elm->obj = obj;
1340     STAILQ_INSERT_HEAD(list, elm, link);
1341 }
1342 
1343 static void
1344 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1345 {
1346     Objlist_Entry *elm;
1347 
1348     elm = NEW(Objlist_Entry);
1349     elm->obj = obj;
1350     STAILQ_INSERT_TAIL(list, elm, link);
1351 }
1352 
1353 static void
1354 objlist_remove(Objlist *list, Obj_Entry *obj)
1355 {
1356     Objlist_Entry *elm;
1357 
1358     if ((elm = objlist_find(list, obj)) != NULL) {
1359 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1360 	free(elm);
1361     }
1362 }
1363 
1364 /*
1365  * Remove all of the unreferenced objects from "list".
1366  */
1367 static void
1368 objlist_remove_unref(Objlist *list)
1369 {
1370     Objlist newlist;
1371     Objlist_Entry *elm;
1372 
1373     STAILQ_INIT(&newlist);
1374     while (!STAILQ_EMPTY(list)) {
1375 	elm = STAILQ_FIRST(list);
1376 	STAILQ_REMOVE_HEAD(list, link);
1377 	if (elm->obj->refcount == 0)
1378 	    free(elm);
1379 	else
1380 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1381     }
1382     *list = newlist;
1383 }
1384 
1385 /*
1386  * Relocate newly-loaded shared objects.  The argument is a pointer to
1387  * the Obj_Entry for the first such object.  All objects from the first
1388  * to the end of the list of objects are relocated.  Returns 0 on success,
1389  * or -1 on failure.
1390  */
1391 static int
1392 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1393 {
1394     Obj_Entry *obj;
1395 
1396     for (obj = first;  obj != NULL;  obj = obj->next) {
1397 	if (obj != rtldobj)
1398 	    dbg("relocating \"%s\"", obj->path);
1399 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1400 	    obj->symtab == NULL || obj->strtab == NULL) {
1401 	    _rtld_error("%s: Shared object has no run-time symbol table",
1402 	      obj->path);
1403 	    return -1;
1404 	}
1405 
1406 	if (obj->textrel) {
1407 	    /* There are relocations to the write-protected text segment. */
1408 	    if (mprotect(obj->mapbase, obj->textsize,
1409 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1410 		_rtld_error("%s: Cannot write-enable text segment: %s",
1411 		  obj->path, strerror(errno));
1412 		return -1;
1413 	    }
1414 	}
1415 
1416 	/* Process the non-PLT relocations. */
1417 	if (reloc_non_plt(obj, rtldobj))
1418 		return -1;
1419 
1420 	if (obj->textrel) {	/* Re-protected the text segment. */
1421 	    if (mprotect(obj->mapbase, obj->textsize,
1422 	      PROT_READ|PROT_EXEC) == -1) {
1423 		_rtld_error("%s: Cannot write-protect text segment: %s",
1424 		  obj->path, strerror(errno));
1425 		return -1;
1426 	    }
1427 	}
1428 
1429 	/* Process the PLT relocations. */
1430 	if (reloc_plt(obj) == -1)
1431 	    return -1;
1432 	/* Relocate the jump slots if we are doing immediate binding. */
1433 	if (bind_now)
1434 	    if (reloc_jmpslots(obj) == -1)
1435 		return -1;
1436 
1437 
1438 	/*
1439 	 * Set up the magic number and version in the Obj_Entry.  These
1440 	 * were checked in the crt1.o from the original ElfKit, so we
1441 	 * set them for backward compatibility.
1442 	 */
1443 	obj->magic = RTLD_MAGIC;
1444 	obj->version = RTLD_VERSION;
1445 
1446 	/* Set the special PLT or GOT entries. */
1447 	init_pltgot(obj);
1448     }
1449 
1450     return 0;
1451 }
1452 
1453 /*
1454  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1455  * before the process exits.
1456  */
1457 static void
1458 rtld_exit(void)
1459 {
1460     Obj_Entry *obj;
1461 
1462     dbg("rtld_exit()");
1463     wlock_acquire();
1464     /* Clear all the reference counts so the fini functions will be called. */
1465     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1466 	obj->refcount = 0;
1467     wlock_release();
1468     objlist_call_fini(&list_fini);
1469     /* No need to remove the items from the list, since we are exiting. */
1470 }
1471 
1472 static char *
1473 search_library_path(const char *name, const char *path)
1474 {
1475     size_t namelen = strlen(name);
1476     const char *p = path;
1477 
1478     if (p == NULL)
1479 	return NULL;
1480 
1481     p += strspn(p, ":;");
1482     while (*p != '\0') {
1483 	size_t len = strcspn(p, ":;");
1484 
1485 	if (*p == '/' || trust) {
1486 	    char *pathname;
1487 	    const char *dir = p;
1488 	    size_t dirlen = len;
1489 
1490 	    pathname = xmalloc(dirlen + 1 + namelen + 1);
1491 	    strncpy(pathname, dir, dirlen);
1492 	    pathname[dirlen] = '/';
1493 	    strcpy(pathname + dirlen + 1, name);
1494 
1495 	    dbg("  Trying \"%s\"", pathname);
1496 	    if (access(pathname, F_OK) == 0)		/* We found it */
1497 		return pathname;
1498 
1499 	    free(pathname);
1500 	}
1501 	p += len;
1502 	p += strspn(p, ":;");
1503     }
1504 
1505     return NULL;
1506 }
1507 
1508 int
1509 dlclose(void *handle)
1510 {
1511     Obj_Entry *root;
1512 
1513     wlock_acquire();
1514     root = dlcheck(handle);
1515     if (root == NULL) {
1516 	wlock_release();
1517 	return -1;
1518     }
1519 
1520     /* Unreference the object and its dependencies. */
1521     root->dl_refcount--;
1522     unref_dag(root);
1523 
1524     if (root->refcount == 0) {
1525 	/*
1526 	 * The object is no longer referenced, so we must unload it.
1527 	 * First, call the fini functions with no locks held.
1528 	 */
1529 	wlock_release();
1530 	objlist_call_fini(&list_fini);
1531 	wlock_acquire();
1532 	objlist_remove_unref(&list_fini);
1533 
1534 	/* Finish cleaning up the newly-unreferenced objects. */
1535 	GDB_STATE(RT_DELETE,&root->linkmap);
1536 	unload_object(root);
1537 	GDB_STATE(RT_CONSISTENT,NULL);
1538     }
1539     wlock_release();
1540     return 0;
1541 }
1542 
1543 const char *
1544 dlerror(void)
1545 {
1546     char *msg = error_message;
1547     error_message = NULL;
1548     return msg;
1549 }
1550 
1551 /*
1552  * This function is deprecated and has no effect.
1553  */
1554 void
1555 dllockinit(void *context,
1556 	   void *(*lock_create)(void *context),
1557            void (*rlock_acquire)(void *lock),
1558            void (*wlock_acquire)(void *lock),
1559            void (*lock_release)(void *lock),
1560            void (*lock_destroy)(void *lock),
1561 	   void (*context_destroy)(void *context))
1562 {
1563     static void *cur_context;
1564     static void (*cur_context_destroy)(void *);
1565 
1566     /* Just destroy the context from the previous call, if necessary. */
1567     if (cur_context_destroy != NULL)
1568 	cur_context_destroy(cur_context);
1569     cur_context = context;
1570     cur_context_destroy = context_destroy;
1571 }
1572 
1573 void *
1574 dlopen(const char *name, int mode)
1575 {
1576     Obj_Entry **old_obj_tail;
1577     Obj_Entry *obj;
1578     Objlist initlist;
1579     int result;
1580 
1581     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1582     if (ld_tracing != NULL)
1583 	environ = (char **)*get_program_var_addr("environ");
1584 
1585     objlist_init(&initlist);
1586 
1587     wlock_acquire();
1588     GDB_STATE(RT_ADD,NULL);
1589 
1590     old_obj_tail = obj_tail;
1591     obj = NULL;
1592     if (name == NULL) {
1593 	obj = obj_main;
1594 	obj->refcount++;
1595     } else {
1596 	char *path = find_library(name, obj_main);
1597 	if (path != NULL)
1598 	    obj = load_object(path);
1599     }
1600 
1601     if (obj) {
1602 	obj->dl_refcount++;
1603 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1604 	    objlist_push_tail(&list_global, obj);
1605 	mode &= RTLD_MODEMASK;
1606 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1607 	    assert(*old_obj_tail == obj);
1608 
1609 	    result = load_needed_objects(obj);
1610 	    if (result != -1 && ld_tracing) {
1611 		trace_loaded_objects(obj);
1612 		wlock_release();
1613 		exit(0);
1614 	    }
1615 
1616 	    if (result == -1 ||
1617 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1618 	       &obj_rtld)) == -1) {
1619 		obj->dl_refcount--;
1620 		unref_dag(obj);
1621 		if (obj->refcount == 0)
1622 		    unload_object(obj);
1623 		obj = NULL;
1624 	    } else {
1625 		/* Make list of init functions to call. */
1626 		initlist_add_objects(obj, &obj->next, &initlist);
1627 	    }
1628 	}
1629     }
1630 
1631     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1632 
1633     /* Call the init functions with no locks held. */
1634     wlock_release();
1635     objlist_call_init(&initlist);
1636     wlock_acquire();
1637     objlist_clear(&initlist);
1638     wlock_release();
1639     return obj;
1640 }
1641 
1642 void *
1643 dlsym(void *handle, const char *name)
1644 {
1645     const Obj_Entry *obj;
1646     unsigned long hash;
1647     const Elf_Sym *def;
1648     const Obj_Entry *defobj;
1649 
1650     hash = elf_hash(name);
1651     def = NULL;
1652     defobj = NULL;
1653 
1654     rlock_acquire();
1655     if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) {
1656 	void *retaddr;
1657 
1658 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1659 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1660 	    _rtld_error("Cannot determine caller's shared object");
1661 	    rlock_release();
1662 	    return NULL;
1663 	}
1664 	if (handle == NULL) {	/* Just the caller's shared object. */
1665 	    def = symlook_obj(name, hash, obj, true);
1666 	    defobj = obj;
1667 	} else if (handle == RTLD_NEXT) {	/* Objects after caller's */
1668 	    while ((obj = obj->next) != NULL) {
1669 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1670 		    defobj = obj;
1671 		    break;
1672 		}
1673 	    }
1674 	} else {
1675 	    assert(handle == RTLD_DEFAULT);
1676 	    def = symlook_default(name, hash, obj, &defobj, true);
1677 	}
1678     } else {
1679 	if ((obj = dlcheck(handle)) == NULL) {
1680 	    rlock_release();
1681 	    return NULL;
1682 	}
1683 
1684 	if (obj->mainprog) {
1685 	    DoneList donelist;
1686 
1687 	    /* Search main program and all libraries loaded by it. */
1688 	    donelist_init(&donelist);
1689 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1690 	      &donelist);
1691 	} else {
1692 	    /*
1693 	     * XXX - This isn't correct.  The search should include the whole
1694 	     * DAG rooted at the given object.
1695 	     */
1696 	    def = symlook_obj(name, hash, obj, true);
1697 	    defobj = obj;
1698 	}
1699     }
1700 
1701     if (def != NULL) {
1702 	rlock_release();
1703 
1704 	/*
1705 	 * The value required by the caller is derived from the value
1706 	 * of the symbol. For the ia64 architecture, we need to
1707 	 * construct a function descriptor which the caller can use to
1708 	 * call the function with the right 'gp' value. For other
1709 	 * architectures and for non-functions, the value is simply
1710 	 * the relocated value of the symbol.
1711 	 */
1712 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1713 	    return make_function_pointer(def, defobj);
1714 	else
1715 	    return defobj->relocbase + def->st_value;
1716     }
1717 
1718     _rtld_error("Undefined symbol \"%s\"", name);
1719     rlock_release();
1720     return NULL;
1721 }
1722 
1723 int
1724 dladdr(const void *addr, Dl_info *info)
1725 {
1726     const Obj_Entry *obj;
1727     const Elf_Sym *def;
1728     void *symbol_addr;
1729     unsigned long symoffset;
1730 
1731     rlock_acquire();
1732     obj = obj_from_addr(addr);
1733     if (obj == NULL) {
1734         _rtld_error("No shared object contains address");
1735 	rlock_release();
1736         return 0;
1737     }
1738     info->dli_fname = obj->path;
1739     info->dli_fbase = obj->mapbase;
1740     info->dli_saddr = (void *)0;
1741     info->dli_sname = NULL;
1742 
1743     /*
1744      * Walk the symbol list looking for the symbol whose address is
1745      * closest to the address sent in.
1746      */
1747     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1748         def = obj->symtab + symoffset;
1749 
1750         /*
1751          * For skip the symbol if st_shndx is either SHN_UNDEF or
1752          * SHN_COMMON.
1753          */
1754         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1755             continue;
1756 
1757         /*
1758          * If the symbol is greater than the specified address, or if it
1759          * is further away from addr than the current nearest symbol,
1760          * then reject it.
1761          */
1762         symbol_addr = obj->relocbase + def->st_value;
1763         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1764             continue;
1765 
1766         /* Update our idea of the nearest symbol. */
1767         info->dli_sname = obj->strtab + def->st_name;
1768         info->dli_saddr = symbol_addr;
1769 
1770         /* Exact match? */
1771         if (info->dli_saddr == addr)
1772             break;
1773     }
1774     rlock_release();
1775     return 1;
1776 }
1777 
1778 static void
1779 linkmap_add(Obj_Entry *obj)
1780 {
1781     struct link_map *l = &obj->linkmap;
1782     struct link_map *prev;
1783 
1784     obj->linkmap.l_name = obj->path;
1785     obj->linkmap.l_addr = obj->mapbase;
1786     obj->linkmap.l_ld = obj->dynamic;
1787 #ifdef __mips__
1788     /* GDB needs load offset on MIPS to use the symbols */
1789     obj->linkmap.l_offs = obj->relocbase;
1790 #endif
1791 
1792     if (r_debug.r_map == NULL) {
1793 	r_debug.r_map = l;
1794 	return;
1795     }
1796 
1797     /*
1798      * Scan to the end of the list, but not past the entry for the
1799      * dynamic linker, which we want to keep at the very end.
1800      */
1801     for (prev = r_debug.r_map;
1802       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
1803       prev = prev->l_next)
1804 	;
1805 
1806     /* Link in the new entry. */
1807     l->l_prev = prev;
1808     l->l_next = prev->l_next;
1809     if (l->l_next != NULL)
1810 	l->l_next->l_prev = l;
1811     prev->l_next = l;
1812 }
1813 
1814 static void
1815 linkmap_delete(Obj_Entry *obj)
1816 {
1817     struct link_map *l = &obj->linkmap;
1818 
1819     if (l->l_prev == NULL) {
1820 	if ((r_debug.r_map = l->l_next) != NULL)
1821 	    l->l_next->l_prev = NULL;
1822 	return;
1823     }
1824 
1825     if ((l->l_prev->l_next = l->l_next) != NULL)
1826 	l->l_next->l_prev = l->l_prev;
1827 }
1828 
1829 /*
1830  * Function for the debugger to set a breakpoint on to gain control.
1831  *
1832  * The two parameters allow the debugger to easily find and determine
1833  * what the runtime loader is doing and to whom it is doing it.
1834  *
1835  * When the loadhook trap is hit (r_debug_state, set at program
1836  * initialization), the arguments can be found on the stack:
1837  *
1838  *  +8   struct link_map *m
1839  *  +4   struct r_debug  *rd
1840  *  +0   RetAddr
1841  */
1842 void
1843 r_debug_state(struct r_debug* rd, struct link_map *m)
1844 {
1845 }
1846 
1847 /*
1848  * Get address of the pointer variable in the main program.
1849  */
1850 static const void **
1851 get_program_var_addr(const char *name)
1852 {
1853     const Obj_Entry *obj;
1854     unsigned long hash;
1855 
1856     hash = elf_hash(name);
1857     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
1858 	const Elf_Sym *def;
1859 
1860 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
1861 	    const void **addr;
1862 
1863 	    addr = (const void **)(obj->relocbase + def->st_value);
1864 	    return addr;
1865 	}
1866     }
1867     return NULL;
1868 }
1869 
1870 /*
1871  * Set a pointer variable in the main program to the given value.  This
1872  * is used to set key variables such as "environ" before any of the
1873  * init functions are called.
1874  */
1875 static void
1876 set_program_var(const char *name, const void *value)
1877 {
1878     const void **addr;
1879 
1880     if ((addr = get_program_var_addr(name)) != NULL) {
1881 	dbg("\"%s\": *%p <-- %p", name, addr, value);
1882 	*addr = value;
1883     }
1884 }
1885 
1886 /*
1887  * Given a symbol name in a referencing object, find the corresponding
1888  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1889  * no definition was found.  Returns a pointer to the Obj_Entry of the
1890  * defining object via the reference parameter DEFOBJ_OUT.
1891  */
1892 static const Elf_Sym *
1893 symlook_default(const char *name, unsigned long hash,
1894     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
1895 {
1896     DoneList donelist;
1897     const Elf_Sym *def;
1898     const Elf_Sym *symp;
1899     const Obj_Entry *obj;
1900     const Obj_Entry *defobj;
1901     const Objlist_Entry *elm;
1902     def = NULL;
1903     defobj = NULL;
1904     donelist_init(&donelist);
1905 
1906     /* Look first in the referencing object if linked symbolically. */
1907     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
1908 	symp = symlook_obj(name, hash, refobj, in_plt);
1909 	if (symp != NULL) {
1910 	    def = symp;
1911 	    defobj = refobj;
1912 	}
1913     }
1914 
1915     /* Search all objects loaded at program start up. */
1916     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1917 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
1918 	if (symp != NULL &&
1919 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1920 	    def = symp;
1921 	    defobj = obj;
1922 	}
1923     }
1924 
1925     /* Search all dlopened DAGs containing the referencing object. */
1926     STAILQ_FOREACH(elm, &refobj->dldags, link) {
1927 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
1928 	    break;
1929 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
1930 	  &donelist);
1931 	if (symp != NULL &&
1932 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1933 	    def = symp;
1934 	    defobj = obj;
1935 	}
1936     }
1937 
1938     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
1939     STAILQ_FOREACH(elm, &list_global, link) {
1940        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
1941            break;
1942        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
1943          &donelist);
1944 	if (symp != NULL &&
1945 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
1946 	    def = symp;
1947 	    defobj = obj;
1948 	}
1949     }
1950 
1951     /*
1952      * Search the dynamic linker itself, and possibly resolve the
1953      * symbol from there.  This is how the application links to
1954      * dynamic linker services such as dlopen.  Only the values listed
1955      * in the "exports" array can be resolved from the dynamic linker.
1956      */
1957     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
1958 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
1959 	if (symp != NULL && is_exported(symp)) {
1960 	    def = symp;
1961 	    defobj = &obj_rtld;
1962 	}
1963     }
1964 
1965     if (def != NULL)
1966 	*defobj_out = defobj;
1967     return def;
1968 }
1969 
1970 static const Elf_Sym *
1971 symlook_list(const char *name, unsigned long hash, Objlist *objlist,
1972   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
1973 {
1974     const Elf_Sym *symp;
1975     const Elf_Sym *def;
1976     const Obj_Entry *defobj;
1977     const Objlist_Entry *elm;
1978 
1979     def = NULL;
1980     defobj = NULL;
1981     STAILQ_FOREACH(elm, objlist, link) {
1982 	if (donelist_check(dlp, elm->obj))
1983 	    continue;
1984 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
1985 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
1986 		def = symp;
1987 		defobj = elm->obj;
1988 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
1989 		    break;
1990 	    }
1991 	}
1992     }
1993     if (def != NULL)
1994 	*defobj_out = defobj;
1995     return def;
1996 }
1997 
1998 /*
1999  * Search the symbol table of a single shared object for a symbol of
2000  * the given name.  Returns a pointer to the symbol, or NULL if no
2001  * definition was found.
2002  *
2003  * The symbol's hash value is passed in for efficiency reasons; that
2004  * eliminates many recomputations of the hash value.
2005  */
2006 const Elf_Sym *
2007 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2008   bool in_plt)
2009 {
2010     if (obj->buckets != NULL) {
2011 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2012 
2013 	while (symnum != STN_UNDEF) {
2014 	    const Elf_Sym *symp;
2015 	    const char *strp;
2016 
2017 	    if (symnum >= obj->nchains)
2018 		return NULL;	/* Bad object */
2019 	    symp = obj->symtab + symnum;
2020 	    strp = obj->strtab + symp->st_name;
2021 
2022 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2023 		return symp->st_shndx != SHN_UNDEF ||
2024 		  (!in_plt && symp->st_value != 0 &&
2025 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2026 
2027 	    symnum = obj->chains[symnum];
2028 	}
2029     }
2030     return NULL;
2031 }
2032 
2033 static void
2034 trace_loaded_objects(Obj_Entry *obj)
2035 {
2036     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2037     int		c;
2038 
2039     if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2040 	main_local = "";
2041 
2042     if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2043 	fmt1 = "\t%o => %p (%x)\n";
2044 
2045     if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2046 	fmt2 = "\t%o (%x)\n";
2047 
2048     list_containers = getenv("LD_TRACE_LOADED_OBJECTS_ALL");
2049 
2050     for (; obj; obj = obj->next) {
2051 	Needed_Entry		*needed;
2052 	char			*name, *path;
2053 	bool			is_lib;
2054 
2055 	if (list_containers && obj->needed != NULL)
2056 	    printf("%s:\n", obj->path);
2057 	for (needed = obj->needed; needed; needed = needed->next) {
2058 	    if (needed->obj != NULL) {
2059 		if (needed->obj->traced && !list_containers)
2060 		    continue;
2061 		needed->obj->traced = true;
2062 		path = needed->obj->path;
2063 	    } else
2064 		path = "not found";
2065 
2066 	    name = (char *)obj->strtab + needed->name;
2067 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2068 
2069 	    fmt = is_lib ? fmt1 : fmt2;
2070 	    while ((c = *fmt++) != '\0') {
2071 		switch (c) {
2072 		default:
2073 		    putchar(c);
2074 		    continue;
2075 		case '\\':
2076 		    switch (c = *fmt) {
2077 		    case '\0':
2078 			continue;
2079 		    case 'n':
2080 			putchar('\n');
2081 			break;
2082 		    case 't':
2083 			putchar('\t');
2084 			break;
2085 		    }
2086 		    break;
2087 		case '%':
2088 		    switch (c = *fmt) {
2089 		    case '\0':
2090 			continue;
2091 		    case '%':
2092 		    default:
2093 			putchar(c);
2094 			break;
2095 		    case 'A':
2096 			printf("%s", main_local);
2097 			break;
2098 		    case 'a':
2099 			printf("%s", obj_main->path);
2100 			break;
2101 		    case 'o':
2102 			printf("%s", name);
2103 			break;
2104 #if 0
2105 		    case 'm':
2106 			printf("%d", sodp->sod_major);
2107 			break;
2108 		    case 'n':
2109 			printf("%d", sodp->sod_minor);
2110 			break;
2111 #endif
2112 		    case 'p':
2113 			printf("%s", path);
2114 			break;
2115 		    case 'x':
2116 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2117 			break;
2118 		    }
2119 		    break;
2120 		}
2121 		++fmt;
2122 	    }
2123 	}
2124     }
2125 }
2126 
2127 /*
2128  * Unload a dlopened object and its dependencies from memory and from
2129  * our data structures.  It is assumed that the DAG rooted in the
2130  * object has already been unreferenced, and that the object has a
2131  * reference count of 0.
2132  */
2133 static void
2134 unload_object(Obj_Entry *root)
2135 {
2136     Obj_Entry *obj;
2137     Obj_Entry **linkp;
2138     Objlist_Entry *elm;
2139 
2140     assert(root->refcount == 0);
2141 
2142     /* Remove the DAG from all objects' DAG lists. */
2143     STAILQ_FOREACH(elm, &root->dagmembers , link)
2144 	objlist_remove(&elm->obj->dldags, root);
2145 
2146     /* Remove the DAG from the RTLD_GLOBAL list. */
2147     objlist_remove(&list_global, root);
2148 
2149     /* Unmap all objects that are no longer referenced. */
2150     linkp = &obj_list->next;
2151     while ((obj = *linkp) != NULL) {
2152 	if (obj->refcount == 0) {
2153 	    dbg("unloading \"%s\"", obj->path);
2154 	    munmap(obj->mapbase, obj->mapsize);
2155 	    linkmap_delete(obj);
2156 	    *linkp = obj->next;
2157 	    obj_count--;
2158 	    obj_free(obj);
2159 	} else
2160 	    linkp = &obj->next;
2161     }
2162     obj_tail = linkp;
2163 }
2164 
2165 static void
2166 unref_dag(Obj_Entry *root)
2167 {
2168     const Needed_Entry *needed;
2169 
2170     if (root->refcount == 0)
2171 	return;
2172     root->refcount--;
2173     if (root->refcount == 0)
2174 	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2175 	    if (needed->obj != NULL)
2176 		unref_dag(needed->obj);
2177 }
2178 
2179 /*
2180  * Non-mallocing printf, for use by malloc itself.
2181  * XXX - This doesn't belong in this module.
2182  */
2183 void
2184 xprintf(const char *fmt, ...)
2185 {
2186     char buf[256];
2187     va_list ap;
2188 
2189     va_start(ap, fmt);
2190     vsprintf(buf, fmt, ap);
2191     (void)write(STDOUT_FILENO, buf, strlen(buf));
2192     va_end(ap);
2193 }
2194