xref: /freebsd/libexec/rtld-elf/rtld.c (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path);
138 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
139 static int parse_integer(const char *);
140 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
141 static void print_usage(const char *argv0);
142 static void release_object(Obj_Entry *);
143 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
144     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
145 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
146     int flags, RtldLockState *lockstate);
147 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
148     RtldLockState *);
149 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
150 static int rtld_dirname(const char *, char *);
151 static int rtld_dirname_abs(const char *, char *);
152 static void *rtld_dlopen(const char *name, int fd, int mode);
153 static void rtld_exit(void);
154 static void rtld_nop_exit(void);
155 static char *search_library_path(const char *, const char *, const char *,
156     int *);
157 static char *search_library_pathfds(const char *, const char *, int *);
158 static const void **get_program_var_addr(const char *, RtldLockState *);
159 static void set_program_var(const char *, const void *);
160 static int symlook_default(SymLook *, const Obj_Entry *refobj);
161 static int symlook_global(SymLook *, DoneList *);
162 static void symlook_init_from_req(SymLook *, const SymLook *);
163 static int symlook_list(SymLook *, const Objlist *, DoneList *);
164 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
165 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
166 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
167 static void trace_loaded_objects(Obj_Entry *);
168 static void unlink_object(Obj_Entry *);
169 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
170 static void unref_dag(Obj_Entry *);
171 static void ref_dag(Obj_Entry *);
172 static char *origin_subst_one(Obj_Entry *, char *, const char *,
173     const char *, bool);
174 static char *origin_subst(Obj_Entry *, const char *);
175 static bool obj_resolve_origin(Obj_Entry *obj);
176 static void preinit_main(void);
177 static int  rtld_verify_versions(const Objlist *);
178 static int  rtld_verify_object_versions(Obj_Entry *);
179 static void object_add_name(Obj_Entry *, const char *);
180 static int  object_match_name(const Obj_Entry *, const char *);
181 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
182 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
183     struct dl_phdr_info *phdr_info);
184 static uint32_t gnu_hash(const char *);
185 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
186     const unsigned long);
187 
188 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
189 void _r_debug_postinit(struct link_map *) __noinline __exported;
190 
191 int __sys_openat(int, const char *, int, ...);
192 
193 /*
194  * Data declarations.
195  */
196 static char *error_message;	/* Message for dlerror(), or NULL */
197 struct r_debug r_debug __exported;	/* for GDB; */
198 static bool libmap_disable;	/* Disable libmap */
199 static bool ld_loadfltr;	/* Immediate filters processing */
200 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
201 static bool trust;		/* False for setuid and setgid programs */
202 static bool dangerous_ld_env;	/* True if environment variables have been
203 				   used to affect the libraries loaded */
204 bool ld_bind_not;		/* Disable PLT update */
205 static char *ld_bind_now;	/* Environment variable for immediate binding */
206 static char *ld_debug;		/* Environment variable for debugging */
207 static char *ld_library_path;	/* Environment variable for search path */
208 static char *ld_library_dirs;	/* Environment variable for library descriptors */
209 static char *ld_preload;	/* Environment variable for libraries to
210 				   load first */
211 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
212 static const char *ld_tracing;	/* Called from ldd to print libs */
213 static char *ld_utrace;		/* Use utrace() to log events. */
214 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
215 static Obj_Entry *obj_main;	/* The main program shared object */
216 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
217 static unsigned int obj_count;	/* Number of objects in obj_list */
218 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
219 
220 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
221   STAILQ_HEAD_INITIALIZER(list_global);
222 static Objlist list_main =	/* Objects loaded at program startup */
223   STAILQ_HEAD_INITIALIZER(list_main);
224 static Objlist list_fini =	/* Objects needing fini() calls */
225   STAILQ_HEAD_INITIALIZER(list_fini);
226 
227 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
228 
229 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
230 
231 extern Elf_Dyn _DYNAMIC;
232 #pragma weak _DYNAMIC
233 
234 int dlclose(void *) __exported;
235 char *dlerror(void) __exported;
236 void *dlopen(const char *, int) __exported;
237 void *fdlopen(int, int) __exported;
238 void *dlsym(void *, const char *) __exported;
239 dlfunc_t dlfunc(void *, const char *) __exported;
240 void *dlvsym(void *, const char *, const char *) __exported;
241 int dladdr(const void *, Dl_info *) __exported;
242 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
243     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
244 int dlinfo(void *, int , void *) __exported;
245 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
246 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
247 int _rtld_get_stack_prot(void) __exported;
248 int _rtld_is_dlopened(void *) __exported;
249 void _rtld_error(const char *, ...) __exported;
250 
251 /* Only here to fix -Wmissing-prototypes warnings */
252 int __getosreldate(void);
253 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
254 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
255 
256 
257 int npagesizes;
258 static int osreldate;
259 size_t *pagesizes;
260 
261 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
262 static int max_stack_flags;
263 
264 /*
265  * Global declarations normally provided by crt1.  The dynamic linker is
266  * not built with crt1, so we have to provide them ourselves.
267  */
268 char *__progname;
269 char **environ;
270 
271 /*
272  * Used to pass argc, argv to init functions.
273  */
274 int main_argc;
275 char **main_argv;
276 
277 /*
278  * Globals to control TLS allocation.
279  */
280 size_t tls_last_offset;		/* Static TLS offset of last module */
281 size_t tls_last_size;		/* Static TLS size of last module */
282 size_t tls_static_space;	/* Static TLS space allocated */
283 static size_t tls_static_max_align;
284 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
285 int tls_max_index = 1;		/* Largest module index allocated */
286 
287 static bool ld_library_path_rpath = false;
288 
289 /*
290  * Globals for path names, and such
291  */
292 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
293 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
294 const char *ld_path_rtld = _PATH_RTLD;
295 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
296 const char *ld_env_prefix = LD_;
297 
298 static void (*rtld_exit_ptr)(void);
299 
300 /*
301  * Fill in a DoneList with an allocation large enough to hold all of
302  * the currently-loaded objects.  Keep this as a macro since it calls
303  * alloca and we want that to occur within the scope of the caller.
304  */
305 #define donelist_init(dlp)					\
306     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
307     assert((dlp)->objs != NULL),				\
308     (dlp)->num_alloc = obj_count,				\
309     (dlp)->num_used = 0)
310 
311 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
312 	if (ld_utrace != NULL)					\
313 		ld_utrace_log(e, h, mb, ms, r, n);		\
314 } while (0)
315 
316 static void
317 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
318     int refcnt, const char *name)
319 {
320 	struct utrace_rtld ut;
321 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
322 
323 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
324 	ut.event = event;
325 	ut.handle = handle;
326 	ut.mapbase = mapbase;
327 	ut.mapsize = mapsize;
328 	ut.refcnt = refcnt;
329 	bzero(ut.name, sizeof(ut.name));
330 	if (name)
331 		strlcpy(ut.name, name, sizeof(ut.name));
332 	utrace(&ut, sizeof(ut));
333 }
334 
335 #ifdef RTLD_VARIANT_ENV_NAMES
336 /*
337  * construct the env variable based on the type of binary that's
338  * running.
339  */
340 static inline const char *
341 _LD(const char *var)
342 {
343 	static char buffer[128];
344 
345 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
346 	strlcat(buffer, var, sizeof(buffer));
347 	return (buffer);
348 }
349 #else
350 #define _LD(x)	LD_ x
351 #endif
352 
353 /*
354  * Main entry point for dynamic linking.  The first argument is the
355  * stack pointer.  The stack is expected to be laid out as described
356  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
357  * Specifically, the stack pointer points to a word containing
358  * ARGC.  Following that in the stack is a null-terminated sequence
359  * of pointers to argument strings.  Then comes a null-terminated
360  * sequence of pointers to environment strings.  Finally, there is a
361  * sequence of "auxiliary vector" entries.
362  *
363  * The second argument points to a place to store the dynamic linker's
364  * exit procedure pointer and the third to a place to store the main
365  * program's object.
366  *
367  * The return value is the main program's entry point.
368  */
369 func_ptr_type
370 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
371 {
372     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
373     Objlist_Entry *entry;
374     Obj_Entry *last_interposer, *obj, *preload_tail;
375     const Elf_Phdr *phdr;
376     Objlist initlist;
377     RtldLockState lockstate;
378     struct stat st;
379     Elf_Addr *argcp;
380     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
381     const char *argv0;
382     caddr_t imgentry;
383     char buf[MAXPATHLEN];
384     int argc, fd, i, phnum, rtld_argc;
385 #ifdef __powerpc__
386     int old_auxv_format = 1;
387 #endif
388     bool dir_enable, explicit_fd, search_in_path;
389 
390     /*
391      * On entry, the dynamic linker itself has not been relocated yet.
392      * Be very careful not to reference any global data until after
393      * init_rtld has returned.  It is OK to reference file-scope statics
394      * and string constants, and to call static and global functions.
395      */
396 
397     /* Find the auxiliary vector on the stack. */
398     argcp = sp;
399     argc = *sp++;
400     argv = (char **) sp;
401     sp += argc + 1;	/* Skip over arguments and NULL terminator */
402     env = (char **) sp;
403     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
404 	;
405     aux = (Elf_Auxinfo *) sp;
406 
407     /* Digest the auxiliary vector. */
408     for (i = 0;  i < AT_COUNT;  i++)
409 	aux_info[i] = NULL;
410     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
411 	if (auxp->a_type < AT_COUNT)
412 	    aux_info[auxp->a_type] = auxp;
413 #ifdef __powerpc__
414 	if (auxp->a_type == 23) /* AT_STACKPROT */
415 	    old_auxv_format = 0;
416 #endif
417     }
418 
419 #ifdef __powerpc__
420     if (old_auxv_format) {
421 	/* Remap from old-style auxv numbers. */
422 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
423 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
424 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
425 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
426 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
427 	aux_info[13] = NULL;		/* AT_GID */
428 
429 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
430 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
431 	aux_info[16] = aux_info[14];	/* AT_CANARY */
432 	aux_info[14] = NULL;		/* AT_EGID */
433     }
434 #endif
435 
436     /* Initialize and relocate ourselves. */
437     assert(aux_info[AT_BASE] != NULL);
438     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
439 
440     __progname = obj_rtld.path;
441     argv0 = argv[0] != NULL ? argv[0] : "(null)";
442     environ = env;
443     main_argc = argc;
444     main_argv = argv;
445 
446     trust = !issetugid();
447 
448     md_abi_variant_hook(aux_info);
449 
450     fd = -1;
451     if (aux_info[AT_EXECFD] != NULL) {
452 	fd = aux_info[AT_EXECFD]->a_un.a_val;
453     } else {
454 	assert(aux_info[AT_PHDR] != NULL);
455 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
456 	if (phdr == obj_rtld.phdr) {
457 	    if (!trust) {
458 		_rtld_error("Tainted process refusing to run binary %s",
459 		    argv0);
460 		rtld_die();
461 	    }
462 	    dbg("opening main program in direct exec mode");
463 	    if (argc >= 2) {
464 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
465 		argv0 = argv[rtld_argc];
466 		explicit_fd = (fd != -1);
467 		if (!explicit_fd)
468 		    fd = open_binary_fd(argv0, search_in_path);
469 		if (fstat(fd, &st) == -1) {
470 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
471 		      explicit_fd ? "user-provided descriptor" : argv0,
472 		      rtld_strerror(errno));
473 		    rtld_die();
474 		}
475 
476 		/*
477 		 * Rough emulation of the permission checks done by
478 		 * execve(2), only Unix DACs are checked, ACLs are
479 		 * ignored.  Preserve the semantic of disabling owner
480 		 * to execute if owner x bit is cleared, even if
481 		 * others x bit is enabled.
482 		 * mmap(2) does not allow to mmap with PROT_EXEC if
483 		 * binary' file comes from noexec mount.  We cannot
484 		 * set a text reference on the binary.
485 		 */
486 		dir_enable = false;
487 		if (st.st_uid == geteuid()) {
488 		    if ((st.st_mode & S_IXUSR) != 0)
489 			dir_enable = true;
490 		} else if (st.st_gid == getegid()) {
491 		    if ((st.st_mode & S_IXGRP) != 0)
492 			dir_enable = true;
493 		} else if ((st.st_mode & S_IXOTH) != 0) {
494 		    dir_enable = true;
495 		}
496 		if (!dir_enable) {
497 		    _rtld_error("No execute permission for binary %s",
498 		        argv0);
499 		    rtld_die();
500 		}
501 
502 		/*
503 		 * For direct exec mode, argv[0] is the interpreter
504 		 * name, we must remove it and shift arguments left
505 		 * before invoking binary main.  Since stack layout
506 		 * places environment pointers and aux vectors right
507 		 * after the terminating NULL, we must shift
508 		 * environment and aux as well.
509 		 */
510 		main_argc = argc - rtld_argc;
511 		for (i = 0; i <= main_argc; i++)
512 		    argv[i] = argv[i + rtld_argc];
513 		*argcp -= rtld_argc;
514 		environ = env = envp = argv + main_argc + 1;
515 		do {
516 		    *envp = *(envp + rtld_argc);
517 		    envp++;
518 		} while (*envp != NULL);
519 		aux = auxp = (Elf_Auxinfo *)envp;
520 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
521 		for (;; auxp++, auxpf++) {
522 		    *auxp = *auxpf;
523 		    if (auxp->a_type == AT_NULL)
524 			    break;
525 		}
526 		/* Since the auxiliary vector has moved, redigest it. */
527 		for (i = 0;  i < AT_COUNT;  i++)
528 		    aux_info[i] = NULL;
529 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
530 		    if (auxp->a_type < AT_COUNT)
531 			aux_info[auxp->a_type] = auxp;
532 		}
533 	    } else {
534 		_rtld_error("No binary");
535 		rtld_die();
536 	    }
537 	}
538     }
539 
540     ld_bind_now = getenv(_LD("BIND_NOW"));
541 
542     /*
543      * If the process is tainted, then we un-set the dangerous environment
544      * variables.  The process will be marked as tainted until setuid(2)
545      * is called.  If any child process calls setuid(2) we do not want any
546      * future processes to honor the potentially un-safe variables.
547      */
548     if (!trust) {
549 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
550 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
551 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
552 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
553 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
554 		_rtld_error("environment corrupt; aborting");
555 		rtld_die();
556 	}
557     }
558     ld_debug = getenv(_LD("DEBUG"));
559     if (ld_bind_now == NULL)
560 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
561     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
562     libmap_override = getenv(_LD("LIBMAP"));
563     ld_library_path = getenv(_LD("LIBRARY_PATH"));
564     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
565     ld_preload = getenv(_LD("PRELOAD"));
566     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
567     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
568     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
569     if (library_path_rpath != NULL) {
570 	    if (library_path_rpath[0] == 'y' ||
571 		library_path_rpath[0] == 'Y' ||
572 		library_path_rpath[0] == '1')
573 		    ld_library_path_rpath = true;
574 	    else
575 		    ld_library_path_rpath = false;
576     }
577     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
578 	(ld_library_path != NULL) || (ld_preload != NULL) ||
579 	(ld_elf_hints_path != NULL) || ld_loadfltr;
580     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
581     ld_utrace = getenv(_LD("UTRACE"));
582 
583     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
584 	ld_elf_hints_path = ld_elf_hints_default;
585 
586     if (ld_debug != NULL && *ld_debug != '\0')
587 	debug = 1;
588     dbg("%s is initialized, base address = %p", __progname,
589 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
590     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
591     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
592 
593     dbg("initializing thread locks");
594     lockdflt_init();
595 
596     /*
597      * Load the main program, or process its program header if it is
598      * already loaded.
599      */
600     if (fd != -1) {	/* Load the main program. */
601 	dbg("loading main program");
602 	obj_main = map_object(fd, argv0, NULL);
603 	close(fd);
604 	if (obj_main == NULL)
605 	    rtld_die();
606 	max_stack_flags = obj_main->stack_flags;
607     } else {				/* Main program already loaded. */
608 	dbg("processing main program's program header");
609 	assert(aux_info[AT_PHDR] != NULL);
610 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
611 	assert(aux_info[AT_PHNUM] != NULL);
612 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
613 	assert(aux_info[AT_PHENT] != NULL);
614 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
615 	assert(aux_info[AT_ENTRY] != NULL);
616 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
617 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
618 	    rtld_die();
619     }
620 
621     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
622 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
623 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
624 	    if (kexecpath[0] == '/')
625 		    obj_main->path = kexecpath;
626 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
627 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
628 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
629 		    obj_main->path = xstrdup(argv0);
630 	    else
631 		    obj_main->path = xstrdup(buf);
632     } else {
633 	    dbg("No AT_EXECPATH or direct exec");
634 	    obj_main->path = xstrdup(argv0);
635     }
636     dbg("obj_main path %s", obj_main->path);
637     obj_main->mainprog = true;
638 
639     if (aux_info[AT_STACKPROT] != NULL &&
640       aux_info[AT_STACKPROT]->a_un.a_val != 0)
641 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
642 
643 #ifndef COMPAT_32BIT
644     /*
645      * Get the actual dynamic linker pathname from the executable if
646      * possible.  (It should always be possible.)  That ensures that
647      * gdb will find the right dynamic linker even if a non-standard
648      * one is being used.
649      */
650     if (obj_main->interp != NULL &&
651       strcmp(obj_main->interp, obj_rtld.path) != 0) {
652 	free(obj_rtld.path);
653 	obj_rtld.path = xstrdup(obj_main->interp);
654         __progname = obj_rtld.path;
655     }
656 #endif
657 
658     digest_dynamic(obj_main, 0);
659     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
660 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
661 	obj_main->dynsymcount);
662 
663     linkmap_add(obj_main);
664     linkmap_add(&obj_rtld);
665 
666     /* Link the main program into the list of objects. */
667     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
668     obj_count++;
669     obj_loads++;
670 
671     /* Initialize a fake symbol for resolving undefined weak references. */
672     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
673     sym_zero.st_shndx = SHN_UNDEF;
674     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
675 
676     if (!libmap_disable)
677         libmap_disable = (bool)lm_init(libmap_override);
678 
679     dbg("loading LD_PRELOAD libraries");
680     if (load_preload_objects() == -1)
681 	rtld_die();
682     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
683 
684     dbg("loading needed objects");
685     if (load_needed_objects(obj_main, 0) == -1)
686 	rtld_die();
687 
688     /* Make a list of all objects loaded at startup. */
689     last_interposer = obj_main;
690     TAILQ_FOREACH(obj, &obj_list, next) {
691 	if (obj->marker)
692 	    continue;
693 	if (obj->z_interpose && obj != obj_main) {
694 	    objlist_put_after(&list_main, last_interposer, obj);
695 	    last_interposer = obj;
696 	} else {
697 	    objlist_push_tail(&list_main, obj);
698 	}
699     	obj->refcount++;
700     }
701 
702     dbg("checking for required versions");
703     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
704 	rtld_die();
705 
706     if (ld_tracing) {		/* We're done */
707 	trace_loaded_objects(obj_main);
708 	exit(0);
709     }
710 
711     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
712        dump_relocations(obj_main);
713        exit (0);
714     }
715 
716     /*
717      * Processing tls relocations requires having the tls offsets
718      * initialized.  Prepare offsets before starting initial
719      * relocation processing.
720      */
721     dbg("initializing initial thread local storage offsets");
722     STAILQ_FOREACH(entry, &list_main, link) {
723 	/*
724 	 * Allocate all the initial objects out of the static TLS
725 	 * block even if they didn't ask for it.
726 	 */
727 	allocate_tls_offset(entry->obj);
728     }
729 
730     if (relocate_objects(obj_main,
731       ld_bind_now != NULL && *ld_bind_now != '\0',
732       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
733 	rtld_die();
734 
735     dbg("doing copy relocations");
736     if (do_copy_relocations(obj_main) == -1)
737 	rtld_die();
738 
739     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
740        dump_relocations(obj_main);
741        exit (0);
742     }
743 
744     ifunc_init(aux);
745 
746     /*
747      * Setup TLS for main thread.  This must be done after the
748      * relocations are processed, since tls initialization section
749      * might be the subject for relocations.
750      */
751     dbg("initializing initial thread local storage");
752     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
753 
754     dbg("initializing key program variables");
755     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
756     set_program_var("environ", env);
757     set_program_var("__elf_aux_vector", aux);
758 
759     /* Make a list of init functions to call. */
760     objlist_init(&initlist);
761     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
762       preload_tail, &initlist);
763 
764     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
765 
766     map_stacks_exec(NULL);
767 
768     if (!obj_main->crt_no_init) {
769 	/*
770 	 * Make sure we don't call the main program's init and fini
771 	 * functions for binaries linked with old crt1 which calls
772 	 * _init itself.
773 	 */
774 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
775 	obj_main->preinit_array = obj_main->init_array =
776 	    obj_main->fini_array = (Elf_Addr)NULL;
777     }
778 
779     /*
780      * Execute MD initializers required before we call the objects'
781      * init functions.
782      */
783     pre_init();
784 
785     wlock_acquire(rtld_bind_lock, &lockstate);
786 
787     dbg("resolving ifuncs");
788     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
789       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
790 	rtld_die();
791 
792     rtld_exit_ptr = rtld_exit;
793     if (obj_main->crt_no_init)
794 	preinit_main();
795     objlist_call_init(&initlist, &lockstate);
796     _r_debug_postinit(&obj_main->linkmap);
797     objlist_clear(&initlist);
798     dbg("loading filtees");
799     TAILQ_FOREACH(obj, &obj_list, next) {
800 	if (obj->marker)
801 	    continue;
802 	if (ld_loadfltr || obj->z_loadfltr)
803 	    load_filtees(obj, 0, &lockstate);
804     }
805 
806     dbg("enforcing main obj relro");
807     if (obj_enforce_relro(obj_main) == -1)
808 	rtld_die();
809 
810     lock_release(rtld_bind_lock, &lockstate);
811 
812     dbg("transferring control to program entry point = %p", obj_main->entry);
813 
814     /* Return the exit procedure and the program entry point. */
815     *exit_proc = rtld_exit_ptr;
816     *objp = obj_main;
817     return (func_ptr_type) obj_main->entry;
818 }
819 
820 void *
821 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
822 {
823 	void *ptr;
824 	Elf_Addr target;
825 
826 	ptr = (void *)make_function_pointer(def, obj);
827 	target = call_ifunc_resolver(ptr);
828 	return ((void *)target);
829 }
830 
831 /*
832  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
833  * Changes to this function should be applied there as well.
834  */
835 Elf_Addr
836 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
837 {
838     const Elf_Rel *rel;
839     const Elf_Sym *def;
840     const Obj_Entry *defobj;
841     Elf_Addr *where;
842     Elf_Addr target;
843     RtldLockState lockstate;
844 
845     rlock_acquire(rtld_bind_lock, &lockstate);
846     if (sigsetjmp(lockstate.env, 0) != 0)
847 	    lock_upgrade(rtld_bind_lock, &lockstate);
848     if (obj->pltrel)
849 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
850     else
851 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
852 
853     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
854     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
855 	NULL, &lockstate);
856     if (def == NULL)
857 	rtld_die();
858     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
859 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
860     else
861 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
862 
863     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
864       defobj->strtab + def->st_name, basename(obj->path),
865       (void *)target, basename(defobj->path));
866 
867     /*
868      * Write the new contents for the jmpslot. Note that depending on
869      * architecture, the value which we need to return back to the
870      * lazy binding trampoline may or may not be the target
871      * address. The value returned from reloc_jmpslot() is the value
872      * that the trampoline needs.
873      */
874     target = reloc_jmpslot(where, target, defobj, obj, rel);
875     lock_release(rtld_bind_lock, &lockstate);
876     return target;
877 }
878 
879 /*
880  * Error reporting function.  Use it like printf.  If formats the message
881  * into a buffer, and sets things up so that the next call to dlerror()
882  * will return the message.
883  */
884 void
885 _rtld_error(const char *fmt, ...)
886 {
887     static char buf[512];
888     va_list ap;
889 
890     va_start(ap, fmt);
891     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
892     error_message = buf;
893     va_end(ap);
894     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
895 }
896 
897 /*
898  * Return a dynamically-allocated copy of the current error message, if any.
899  */
900 static char *
901 errmsg_save(void)
902 {
903     return error_message == NULL ? NULL : xstrdup(error_message);
904 }
905 
906 /*
907  * Restore the current error message from a copy which was previously saved
908  * by errmsg_save().  The copy is freed.
909  */
910 static void
911 errmsg_restore(char *saved_msg)
912 {
913     if (saved_msg == NULL)
914 	error_message = NULL;
915     else {
916 	_rtld_error("%s", saved_msg);
917 	free(saved_msg);
918     }
919 }
920 
921 static const char *
922 basename(const char *name)
923 {
924     const char *p = strrchr(name, '/');
925     return p != NULL ? p + 1 : name;
926 }
927 
928 static struct utsname uts;
929 
930 static char *
931 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
932     const char *subst, bool may_free)
933 {
934 	char *p, *p1, *res, *resp;
935 	int subst_len, kw_len, subst_count, old_len, new_len;
936 
937 	kw_len = strlen(kw);
938 
939 	/*
940 	 * First, count the number of the keyword occurrences, to
941 	 * preallocate the final string.
942 	 */
943 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
944 		p1 = strstr(p, kw);
945 		if (p1 == NULL)
946 			break;
947 	}
948 
949 	/*
950 	 * If the keyword is not found, just return.
951 	 *
952 	 * Return non-substituted string if resolution failed.  We
953 	 * cannot do anything more reasonable, the failure mode of the
954 	 * caller is unresolved library anyway.
955 	 */
956 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
957 		return (may_free ? real : xstrdup(real));
958 	if (obj != NULL)
959 		subst = obj->origin_path;
960 
961 	/*
962 	 * There is indeed something to substitute.  Calculate the
963 	 * length of the resulting string, and allocate it.
964 	 */
965 	subst_len = strlen(subst);
966 	old_len = strlen(real);
967 	new_len = old_len + (subst_len - kw_len) * subst_count;
968 	res = xmalloc(new_len + 1);
969 
970 	/*
971 	 * Now, execute the substitution loop.
972 	 */
973 	for (p = real, resp = res, *resp = '\0';;) {
974 		p1 = strstr(p, kw);
975 		if (p1 != NULL) {
976 			/* Copy the prefix before keyword. */
977 			memcpy(resp, p, p1 - p);
978 			resp += p1 - p;
979 			/* Keyword replacement. */
980 			memcpy(resp, subst, subst_len);
981 			resp += subst_len;
982 			*resp = '\0';
983 			p = p1 + kw_len;
984 		} else
985 			break;
986 	}
987 
988 	/* Copy to the end of string and finish. */
989 	strcat(resp, p);
990 	if (may_free)
991 		free(real);
992 	return (res);
993 }
994 
995 static char *
996 origin_subst(Obj_Entry *obj, const char *real)
997 {
998 	char *res1, *res2, *res3, *res4;
999 
1000 	if (obj == NULL || !trust)
1001 		return (xstrdup(real));
1002 	if (uts.sysname[0] == '\0') {
1003 		if (uname(&uts) != 0) {
1004 			_rtld_error("utsname failed: %d", errno);
1005 			return (NULL);
1006 		}
1007 	}
1008 	/* __DECONST is safe here since without may_free real is unchanged */
1009 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1010 	    false);
1011 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1012 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1013 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1014 	return (res4);
1015 }
1016 
1017 void
1018 rtld_die(void)
1019 {
1020     const char *msg = dlerror();
1021 
1022     if (msg == NULL)
1023 	msg = "Fatal error";
1024     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1025     rtld_fdputstr(STDERR_FILENO, msg);
1026     rtld_fdputchar(STDERR_FILENO, '\n');
1027     _exit(1);
1028 }
1029 
1030 /*
1031  * Process a shared object's DYNAMIC section, and save the important
1032  * information in its Obj_Entry structure.
1033  */
1034 static void
1035 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1036     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1037 {
1038     const Elf_Dyn *dynp;
1039     Needed_Entry **needed_tail = &obj->needed;
1040     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1041     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1042     const Elf_Hashelt *hashtab;
1043     const Elf32_Word *hashval;
1044     Elf32_Word bkt, nmaskwords;
1045     int bloom_size32;
1046     int plttype = DT_REL;
1047 
1048     *dyn_rpath = NULL;
1049     *dyn_soname = NULL;
1050     *dyn_runpath = NULL;
1051 
1052     obj->bind_now = false;
1053     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1054 	switch (dynp->d_tag) {
1055 
1056 	case DT_REL:
1057 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1058 	    break;
1059 
1060 	case DT_RELSZ:
1061 	    obj->relsize = dynp->d_un.d_val;
1062 	    break;
1063 
1064 	case DT_RELENT:
1065 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1066 	    break;
1067 
1068 	case DT_JMPREL:
1069 	    obj->pltrel = (const Elf_Rel *)
1070 	      (obj->relocbase + dynp->d_un.d_ptr);
1071 	    break;
1072 
1073 	case DT_PLTRELSZ:
1074 	    obj->pltrelsize = dynp->d_un.d_val;
1075 	    break;
1076 
1077 	case DT_RELA:
1078 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1079 	    break;
1080 
1081 	case DT_RELASZ:
1082 	    obj->relasize = dynp->d_un.d_val;
1083 	    break;
1084 
1085 	case DT_RELAENT:
1086 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1087 	    break;
1088 
1089 	case DT_PLTREL:
1090 	    plttype = dynp->d_un.d_val;
1091 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1092 	    break;
1093 
1094 	case DT_SYMTAB:
1095 	    obj->symtab = (const Elf_Sym *)
1096 	      (obj->relocbase + dynp->d_un.d_ptr);
1097 	    break;
1098 
1099 	case DT_SYMENT:
1100 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1101 	    break;
1102 
1103 	case DT_STRTAB:
1104 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1105 	    break;
1106 
1107 	case DT_STRSZ:
1108 	    obj->strsize = dynp->d_un.d_val;
1109 	    break;
1110 
1111 	case DT_VERNEED:
1112 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1113 		dynp->d_un.d_val);
1114 	    break;
1115 
1116 	case DT_VERNEEDNUM:
1117 	    obj->verneednum = dynp->d_un.d_val;
1118 	    break;
1119 
1120 	case DT_VERDEF:
1121 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1122 		dynp->d_un.d_val);
1123 	    break;
1124 
1125 	case DT_VERDEFNUM:
1126 	    obj->verdefnum = dynp->d_un.d_val;
1127 	    break;
1128 
1129 	case DT_VERSYM:
1130 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1131 		dynp->d_un.d_val);
1132 	    break;
1133 
1134 	case DT_HASH:
1135 	    {
1136 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1137 		    dynp->d_un.d_ptr);
1138 		obj->nbuckets = hashtab[0];
1139 		obj->nchains = hashtab[1];
1140 		obj->buckets = hashtab + 2;
1141 		obj->chains = obj->buckets + obj->nbuckets;
1142 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1143 		  obj->buckets != NULL;
1144 	    }
1145 	    break;
1146 
1147 	case DT_GNU_HASH:
1148 	    {
1149 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1150 		    dynp->d_un.d_ptr);
1151 		obj->nbuckets_gnu = hashtab[0];
1152 		obj->symndx_gnu = hashtab[1];
1153 		nmaskwords = hashtab[2];
1154 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1155 		obj->maskwords_bm_gnu = nmaskwords - 1;
1156 		obj->shift2_gnu = hashtab[3];
1157 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1158 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1159 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1160 		  obj->symndx_gnu;
1161 		/* Number of bitmask words is required to be power of 2 */
1162 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1163 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1164 	    }
1165 	    break;
1166 
1167 	case DT_NEEDED:
1168 	    if (!obj->rtld) {
1169 		Needed_Entry *nep = NEW(Needed_Entry);
1170 		nep->name = dynp->d_un.d_val;
1171 		nep->obj = NULL;
1172 		nep->next = NULL;
1173 
1174 		*needed_tail = nep;
1175 		needed_tail = &nep->next;
1176 	    }
1177 	    break;
1178 
1179 	case DT_FILTER:
1180 	    if (!obj->rtld) {
1181 		Needed_Entry *nep = NEW(Needed_Entry);
1182 		nep->name = dynp->d_un.d_val;
1183 		nep->obj = NULL;
1184 		nep->next = NULL;
1185 
1186 		*needed_filtees_tail = nep;
1187 		needed_filtees_tail = &nep->next;
1188 	    }
1189 	    break;
1190 
1191 	case DT_AUXILIARY:
1192 	    if (!obj->rtld) {
1193 		Needed_Entry *nep = NEW(Needed_Entry);
1194 		nep->name = dynp->d_un.d_val;
1195 		nep->obj = NULL;
1196 		nep->next = NULL;
1197 
1198 		*needed_aux_filtees_tail = nep;
1199 		needed_aux_filtees_tail = &nep->next;
1200 	    }
1201 	    break;
1202 
1203 	case DT_PLTGOT:
1204 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1205 	    break;
1206 
1207 	case DT_TEXTREL:
1208 	    obj->textrel = true;
1209 	    break;
1210 
1211 	case DT_SYMBOLIC:
1212 	    obj->symbolic = true;
1213 	    break;
1214 
1215 	case DT_RPATH:
1216 	    /*
1217 	     * We have to wait until later to process this, because we
1218 	     * might not have gotten the address of the string table yet.
1219 	     */
1220 	    *dyn_rpath = dynp;
1221 	    break;
1222 
1223 	case DT_SONAME:
1224 	    *dyn_soname = dynp;
1225 	    break;
1226 
1227 	case DT_RUNPATH:
1228 	    *dyn_runpath = dynp;
1229 	    break;
1230 
1231 	case DT_INIT:
1232 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1233 	    break;
1234 
1235 	case DT_PREINIT_ARRAY:
1236 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1237 	    break;
1238 
1239 	case DT_PREINIT_ARRAYSZ:
1240 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1241 	    break;
1242 
1243 	case DT_INIT_ARRAY:
1244 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1245 	    break;
1246 
1247 	case DT_INIT_ARRAYSZ:
1248 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1249 	    break;
1250 
1251 	case DT_FINI:
1252 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1253 	    break;
1254 
1255 	case DT_FINI_ARRAY:
1256 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1257 	    break;
1258 
1259 	case DT_FINI_ARRAYSZ:
1260 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1261 	    break;
1262 
1263 	/*
1264 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1265 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1266 	 */
1267 
1268 #ifndef __mips__
1269 	case DT_DEBUG:
1270 	    if (!early)
1271 		dbg("Filling in DT_DEBUG entry");
1272 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1273 	    break;
1274 #endif
1275 
1276 	case DT_FLAGS:
1277 		if (dynp->d_un.d_val & DF_ORIGIN)
1278 		    obj->z_origin = true;
1279 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1280 		    obj->symbolic = true;
1281 		if (dynp->d_un.d_val & DF_TEXTREL)
1282 		    obj->textrel = true;
1283 		if (dynp->d_un.d_val & DF_BIND_NOW)
1284 		    obj->bind_now = true;
1285 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1286 		    obj->static_tls = true;
1287 	    break;
1288 #ifdef __mips__
1289 	case DT_MIPS_LOCAL_GOTNO:
1290 		obj->local_gotno = dynp->d_un.d_val;
1291 		break;
1292 
1293 	case DT_MIPS_SYMTABNO:
1294 		obj->symtabno = dynp->d_un.d_val;
1295 		break;
1296 
1297 	case DT_MIPS_GOTSYM:
1298 		obj->gotsym = dynp->d_un.d_val;
1299 		break;
1300 
1301 	case DT_MIPS_RLD_MAP:
1302 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1303 		break;
1304 
1305 	case DT_MIPS_RLD_MAP_REL:
1306 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1307 		// section relative to the address of the tag itself.
1308 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1309 		    (Elf_Addr) &r_debug;
1310 		break;
1311 
1312 	case DT_MIPS_PLTGOT:
1313 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1314 		    dynp->d_un.d_ptr);
1315 		break;
1316 
1317 #endif
1318 
1319 #ifdef __powerpc__
1320 #ifdef __powerpc64__
1321 	case DT_PPC64_GLINK:
1322 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1323 		break;
1324 #else
1325 	case DT_PPC_GOT:
1326 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1327 		break;
1328 #endif
1329 #endif
1330 
1331 	case DT_FLAGS_1:
1332 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1333 		    obj->z_noopen = true;
1334 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1335 		    obj->z_origin = true;
1336 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1337 		    obj->z_global = true;
1338 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1339 		    obj->bind_now = true;
1340 		if (dynp->d_un.d_val & DF_1_NODELETE)
1341 		    obj->z_nodelete = true;
1342 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1343 		    obj->z_loadfltr = true;
1344 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1345 		    obj->z_interpose = true;
1346 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1347 		    obj->z_nodeflib = true;
1348 	    break;
1349 
1350 	default:
1351 	    if (!early) {
1352 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1353 		    (long)dynp->d_tag);
1354 	    }
1355 	    break;
1356 	}
1357     }
1358 
1359     obj->traced = false;
1360 
1361     if (plttype == DT_RELA) {
1362 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1363 	obj->pltrel = NULL;
1364 	obj->pltrelasize = obj->pltrelsize;
1365 	obj->pltrelsize = 0;
1366     }
1367 
1368     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1369     if (obj->valid_hash_sysv)
1370 	obj->dynsymcount = obj->nchains;
1371     else if (obj->valid_hash_gnu) {
1372 	obj->dynsymcount = 0;
1373 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1374 	    if (obj->buckets_gnu[bkt] == 0)
1375 		continue;
1376 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1377 	    do
1378 		obj->dynsymcount++;
1379 	    while ((*hashval++ & 1u) == 0);
1380 	}
1381 	obj->dynsymcount += obj->symndx_gnu;
1382     }
1383 }
1384 
1385 static bool
1386 obj_resolve_origin(Obj_Entry *obj)
1387 {
1388 
1389 	if (obj->origin_path != NULL)
1390 		return (true);
1391 	obj->origin_path = xmalloc(PATH_MAX);
1392 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1393 }
1394 
1395 static void
1396 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1397     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1398 {
1399 
1400 	if (obj->z_origin && !obj_resolve_origin(obj))
1401 		rtld_die();
1402 
1403 	if (dyn_runpath != NULL) {
1404 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1405 		obj->runpath = origin_subst(obj, obj->runpath);
1406 	} else if (dyn_rpath != NULL) {
1407 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1408 		obj->rpath = origin_subst(obj, obj->rpath);
1409 	}
1410 	if (dyn_soname != NULL)
1411 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1412 }
1413 
1414 static void
1415 digest_dynamic(Obj_Entry *obj, int early)
1416 {
1417 	const Elf_Dyn *dyn_rpath;
1418 	const Elf_Dyn *dyn_soname;
1419 	const Elf_Dyn *dyn_runpath;
1420 
1421 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1422 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1423 }
1424 
1425 /*
1426  * Process a shared object's program header.  This is used only for the
1427  * main program, when the kernel has already loaded the main program
1428  * into memory before calling the dynamic linker.  It creates and
1429  * returns an Obj_Entry structure.
1430  */
1431 static Obj_Entry *
1432 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1433 {
1434     Obj_Entry *obj;
1435     const Elf_Phdr *phlimit = phdr + phnum;
1436     const Elf_Phdr *ph;
1437     Elf_Addr note_start, note_end;
1438     int nsegs = 0;
1439 
1440     obj = obj_new();
1441     for (ph = phdr;  ph < phlimit;  ph++) {
1442 	if (ph->p_type != PT_PHDR)
1443 	    continue;
1444 
1445 	obj->phdr = phdr;
1446 	obj->phsize = ph->p_memsz;
1447 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1448 	break;
1449     }
1450 
1451     obj->stack_flags = PF_X | PF_R | PF_W;
1452 
1453     for (ph = phdr;  ph < phlimit;  ph++) {
1454 	switch (ph->p_type) {
1455 
1456 	case PT_INTERP:
1457 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1458 	    break;
1459 
1460 	case PT_LOAD:
1461 	    if (nsegs == 0) {	/* First load segment */
1462 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1463 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1464 	    } else {		/* Last load segment */
1465 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1466 		  obj->vaddrbase;
1467 	    }
1468 	    nsegs++;
1469 	    break;
1470 
1471 	case PT_DYNAMIC:
1472 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1473 	    break;
1474 
1475 	case PT_TLS:
1476 	    obj->tlsindex = 1;
1477 	    obj->tlssize = ph->p_memsz;
1478 	    obj->tlsalign = ph->p_align;
1479 	    obj->tlsinitsize = ph->p_filesz;
1480 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1481 	    break;
1482 
1483 	case PT_GNU_STACK:
1484 	    obj->stack_flags = ph->p_flags;
1485 	    break;
1486 
1487 	case PT_GNU_RELRO:
1488 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1489 	    obj->relro_size = round_page(ph->p_memsz);
1490 	    break;
1491 
1492 	case PT_NOTE:
1493 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1494 	    note_end = note_start + ph->p_filesz;
1495 	    digest_notes(obj, note_start, note_end);
1496 	    break;
1497 	}
1498     }
1499     if (nsegs < 1) {
1500 	_rtld_error("%s: too few PT_LOAD segments", path);
1501 	return NULL;
1502     }
1503 
1504     obj->entry = entry;
1505     return obj;
1506 }
1507 
1508 void
1509 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1510 {
1511 	const Elf_Note *note;
1512 	const char *note_name;
1513 	uintptr_t p;
1514 
1515 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1516 	    note = (const Elf_Note *)((const char *)(note + 1) +
1517 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1518 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1519 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1520 		    note->n_descsz != sizeof(int32_t))
1521 			continue;
1522 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1523 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1524 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1525 			continue;
1526 		note_name = (const char *)(note + 1);
1527 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1528 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1529 			continue;
1530 		switch (note->n_type) {
1531 		case NT_FREEBSD_ABI_TAG:
1532 			/* FreeBSD osrel note */
1533 			p = (uintptr_t)(note + 1);
1534 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1535 			obj->osrel = *(const int32_t *)(p);
1536 			dbg("note osrel %d", obj->osrel);
1537 			break;
1538 		case NT_FREEBSD_FEATURE_CTL:
1539 			/* FreeBSD ABI feature control note */
1540 			p = (uintptr_t)(note + 1);
1541 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1542 			obj->fctl0 = *(const uint32_t *)(p);
1543 			dbg("note fctl0 %#x", obj->fctl0);
1544 			break;
1545 		case NT_FREEBSD_NOINIT_TAG:
1546 			/* FreeBSD 'crt does not call init' note */
1547 			obj->crt_no_init = true;
1548 			dbg("note crt_no_init");
1549 			break;
1550 		}
1551 	}
1552 }
1553 
1554 static Obj_Entry *
1555 dlcheck(void *handle)
1556 {
1557     Obj_Entry *obj;
1558 
1559     TAILQ_FOREACH(obj, &obj_list, next) {
1560 	if (obj == (Obj_Entry *) handle)
1561 	    break;
1562     }
1563 
1564     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1565 	_rtld_error("Invalid shared object handle %p", handle);
1566 	return NULL;
1567     }
1568     return obj;
1569 }
1570 
1571 /*
1572  * If the given object is already in the donelist, return true.  Otherwise
1573  * add the object to the list and return false.
1574  */
1575 static bool
1576 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1577 {
1578     unsigned int i;
1579 
1580     for (i = 0;  i < dlp->num_used;  i++)
1581 	if (dlp->objs[i] == obj)
1582 	    return true;
1583     /*
1584      * Our donelist allocation should always be sufficient.  But if
1585      * our threads locking isn't working properly, more shared objects
1586      * could have been loaded since we allocated the list.  That should
1587      * never happen, but we'll handle it properly just in case it does.
1588      */
1589     if (dlp->num_used < dlp->num_alloc)
1590 	dlp->objs[dlp->num_used++] = obj;
1591     return false;
1592 }
1593 
1594 /*
1595  * Hash function for symbol table lookup.  Don't even think about changing
1596  * this.  It is specified by the System V ABI.
1597  */
1598 unsigned long
1599 elf_hash(const char *name)
1600 {
1601     const unsigned char *p = (const unsigned char *) name;
1602     unsigned long h = 0;
1603     unsigned long g;
1604 
1605     while (*p != '\0') {
1606 	h = (h << 4) + *p++;
1607 	if ((g = h & 0xf0000000) != 0)
1608 	    h ^= g >> 24;
1609 	h &= ~g;
1610     }
1611     return h;
1612 }
1613 
1614 /*
1615  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1616  * unsigned in case it's implemented with a wider type.
1617  */
1618 static uint32_t
1619 gnu_hash(const char *s)
1620 {
1621 	uint32_t h;
1622 	unsigned char c;
1623 
1624 	h = 5381;
1625 	for (c = *s; c != '\0'; c = *++s)
1626 		h = h * 33 + c;
1627 	return (h & 0xffffffff);
1628 }
1629 
1630 
1631 /*
1632  * Find the library with the given name, and return its full pathname.
1633  * The returned string is dynamically allocated.  Generates an error
1634  * message and returns NULL if the library cannot be found.
1635  *
1636  * If the second argument is non-NULL, then it refers to an already-
1637  * loaded shared object, whose library search path will be searched.
1638  *
1639  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1640  * descriptor (which is close-on-exec) will be passed out via the third
1641  * argument.
1642  *
1643  * The search order is:
1644  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1645  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1646  *   LD_LIBRARY_PATH
1647  *   DT_RUNPATH in the referencing file
1648  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1649  *	 from list)
1650  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1651  *
1652  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1653  */
1654 static char *
1655 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1656 {
1657 	char *pathname, *refobj_path;
1658 	const char *name;
1659 	bool nodeflib, objgiven;
1660 
1661 	objgiven = refobj != NULL;
1662 
1663 	if (libmap_disable || !objgiven ||
1664 	    (name = lm_find(refobj->path, xname)) == NULL)
1665 		name = xname;
1666 
1667 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1668 		if (name[0] != '/' && !trust) {
1669 			_rtld_error("Absolute pathname required "
1670 			    "for shared object \"%s\"", name);
1671 			return (NULL);
1672 		}
1673 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1674 		    __DECONST(char *, name)));
1675 	}
1676 
1677 	dbg(" Searching for \"%s\"", name);
1678 	refobj_path = objgiven ? refobj->path : NULL;
1679 
1680 	/*
1681 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1682 	 * back to pre-conforming behaviour if user requested so with
1683 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1684 	 * nodeflib.
1685 	 */
1686 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1687 		pathname = search_library_path(name, ld_library_path,
1688 		    refobj_path, fdp);
1689 		if (pathname != NULL)
1690 			return (pathname);
1691 		if (refobj != NULL) {
1692 			pathname = search_library_path(name, refobj->rpath,
1693 			    refobj_path, fdp);
1694 			if (pathname != NULL)
1695 				return (pathname);
1696 		}
1697 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1698 		if (pathname != NULL)
1699 			return (pathname);
1700 		pathname = search_library_path(name, gethints(false),
1701 		    refobj_path, fdp);
1702 		if (pathname != NULL)
1703 			return (pathname);
1704 		pathname = search_library_path(name, ld_standard_library_path,
1705 		    refobj_path, fdp);
1706 		if (pathname != NULL)
1707 			return (pathname);
1708 	} else {
1709 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1710 		if (objgiven) {
1711 			pathname = search_library_path(name, refobj->rpath,
1712 			    refobj->path, fdp);
1713 			if (pathname != NULL)
1714 				return (pathname);
1715 		}
1716 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1717 			pathname = search_library_path(name, obj_main->rpath,
1718 			    refobj_path, fdp);
1719 			if (pathname != NULL)
1720 				return (pathname);
1721 		}
1722 		pathname = search_library_path(name, ld_library_path,
1723 		    refobj_path, fdp);
1724 		if (pathname != NULL)
1725 			return (pathname);
1726 		if (objgiven) {
1727 			pathname = search_library_path(name, refobj->runpath,
1728 			    refobj_path, fdp);
1729 			if (pathname != NULL)
1730 				return (pathname);
1731 		}
1732 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1733 		if (pathname != NULL)
1734 			return (pathname);
1735 		pathname = search_library_path(name, gethints(nodeflib),
1736 		    refobj_path, fdp);
1737 		if (pathname != NULL)
1738 			return (pathname);
1739 		if (objgiven && !nodeflib) {
1740 			pathname = search_library_path(name,
1741 			    ld_standard_library_path, refobj_path, fdp);
1742 			if (pathname != NULL)
1743 				return (pathname);
1744 		}
1745 	}
1746 
1747 	if (objgiven && refobj->path != NULL) {
1748 		_rtld_error("Shared object \"%s\" not found, "
1749 		    "required by \"%s\"", name, basename(refobj->path));
1750 	} else {
1751 		_rtld_error("Shared object \"%s\" not found", name);
1752 	}
1753 	return (NULL);
1754 }
1755 
1756 /*
1757  * Given a symbol number in a referencing object, find the corresponding
1758  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1759  * no definition was found.  Returns a pointer to the Obj_Entry of the
1760  * defining object via the reference parameter DEFOBJ_OUT.
1761  */
1762 const Elf_Sym *
1763 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1764     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1765     RtldLockState *lockstate)
1766 {
1767     const Elf_Sym *ref;
1768     const Elf_Sym *def;
1769     const Obj_Entry *defobj;
1770     const Ver_Entry *ve;
1771     SymLook req;
1772     const char *name;
1773     int res;
1774 
1775     /*
1776      * If we have already found this symbol, get the information from
1777      * the cache.
1778      */
1779     if (symnum >= refobj->dynsymcount)
1780 	return NULL;	/* Bad object */
1781     if (cache != NULL && cache[symnum].sym != NULL) {
1782 	*defobj_out = cache[symnum].obj;
1783 	return cache[symnum].sym;
1784     }
1785 
1786     ref = refobj->symtab + symnum;
1787     name = refobj->strtab + ref->st_name;
1788     def = NULL;
1789     defobj = NULL;
1790     ve = NULL;
1791 
1792     /*
1793      * We don't have to do a full scale lookup if the symbol is local.
1794      * We know it will bind to the instance in this load module; to
1795      * which we already have a pointer (ie ref). By not doing a lookup,
1796      * we not only improve performance, but it also avoids unresolvable
1797      * symbols when local symbols are not in the hash table. This has
1798      * been seen with the ia64 toolchain.
1799      */
1800     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1801 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1802 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1803 		symnum);
1804 	}
1805 	symlook_init(&req, name);
1806 	req.flags = flags;
1807 	ve = req.ventry = fetch_ventry(refobj, symnum);
1808 	req.lockstate = lockstate;
1809 	res = symlook_default(&req, refobj);
1810 	if (res == 0) {
1811 	    def = req.sym_out;
1812 	    defobj = req.defobj_out;
1813 	}
1814     } else {
1815 	def = ref;
1816 	defobj = refobj;
1817     }
1818 
1819     /*
1820      * If we found no definition and the reference is weak, treat the
1821      * symbol as having the value zero.
1822      */
1823     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1824 	def = &sym_zero;
1825 	defobj = obj_main;
1826     }
1827 
1828     if (def != NULL) {
1829 	*defobj_out = defobj;
1830 	/* Record the information in the cache to avoid subsequent lookups. */
1831 	if (cache != NULL) {
1832 	    cache[symnum].sym = def;
1833 	    cache[symnum].obj = defobj;
1834 	}
1835     } else {
1836 	if (refobj != &obj_rtld)
1837 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1838 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1839     }
1840     return def;
1841 }
1842 
1843 /*
1844  * Return the search path from the ldconfig hints file, reading it if
1845  * necessary.  If nostdlib is true, then the default search paths are
1846  * not added to result.
1847  *
1848  * Returns NULL if there are problems with the hints file,
1849  * or if the search path there is empty.
1850  */
1851 static const char *
1852 gethints(bool nostdlib)
1853 {
1854 	static char *filtered_path;
1855 	static const char *hints;
1856 	static struct elfhints_hdr hdr;
1857 	struct fill_search_info_args sargs, hargs;
1858 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1859 	struct dl_serpath *SLPpath, *hintpath;
1860 	char *p;
1861 	struct stat hint_stat;
1862 	unsigned int SLPndx, hintndx, fndx, fcount;
1863 	int fd;
1864 	size_t flen;
1865 	uint32_t dl;
1866 	bool skip;
1867 
1868 	/* First call, read the hints file */
1869 	if (hints == NULL) {
1870 		/* Keep from trying again in case the hints file is bad. */
1871 		hints = "";
1872 
1873 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1874 			return (NULL);
1875 
1876 		/*
1877 		 * Check of hdr.dirlistlen value against type limit
1878 		 * intends to pacify static analyzers.  Further
1879 		 * paranoia leads to checks that dirlist is fully
1880 		 * contained in the file range.
1881 		 */
1882 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1883 		    hdr.magic != ELFHINTS_MAGIC ||
1884 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1885 		    fstat(fd, &hint_stat) == -1) {
1886 cleanup1:
1887 			close(fd);
1888 			hdr.dirlistlen = 0;
1889 			return (NULL);
1890 		}
1891 		dl = hdr.strtab;
1892 		if (dl + hdr.dirlist < dl)
1893 			goto cleanup1;
1894 		dl += hdr.dirlist;
1895 		if (dl + hdr.dirlistlen < dl)
1896 			goto cleanup1;
1897 		dl += hdr.dirlistlen;
1898 		if (dl > hint_stat.st_size)
1899 			goto cleanup1;
1900 		p = xmalloc(hdr.dirlistlen + 1);
1901 		if (pread(fd, p, hdr.dirlistlen + 1,
1902 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1903 		    p[hdr.dirlistlen] != '\0') {
1904 			free(p);
1905 			goto cleanup1;
1906 		}
1907 		hints = p;
1908 		close(fd);
1909 	}
1910 
1911 	/*
1912 	 * If caller agreed to receive list which includes the default
1913 	 * paths, we are done. Otherwise, if we still did not
1914 	 * calculated filtered result, do it now.
1915 	 */
1916 	if (!nostdlib)
1917 		return (hints[0] != '\0' ? hints : NULL);
1918 	if (filtered_path != NULL)
1919 		goto filt_ret;
1920 
1921 	/*
1922 	 * Obtain the list of all configured search paths, and the
1923 	 * list of the default paths.
1924 	 *
1925 	 * First estimate the size of the results.
1926 	 */
1927 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1928 	smeta.dls_cnt = 0;
1929 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1930 	hmeta.dls_cnt = 0;
1931 
1932 	sargs.request = RTLD_DI_SERINFOSIZE;
1933 	sargs.serinfo = &smeta;
1934 	hargs.request = RTLD_DI_SERINFOSIZE;
1935 	hargs.serinfo = &hmeta;
1936 
1937 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1938 	    &sargs);
1939 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1940 
1941 	SLPinfo = xmalloc(smeta.dls_size);
1942 	hintinfo = xmalloc(hmeta.dls_size);
1943 
1944 	/*
1945 	 * Next fetch both sets of paths.
1946 	 */
1947 	sargs.request = RTLD_DI_SERINFO;
1948 	sargs.serinfo = SLPinfo;
1949 	sargs.serpath = &SLPinfo->dls_serpath[0];
1950 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1951 
1952 	hargs.request = RTLD_DI_SERINFO;
1953 	hargs.serinfo = hintinfo;
1954 	hargs.serpath = &hintinfo->dls_serpath[0];
1955 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1956 
1957 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1958 	    &sargs);
1959 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1960 
1961 	/*
1962 	 * Now calculate the difference between two sets, by excluding
1963 	 * standard paths from the full set.
1964 	 */
1965 	fndx = 0;
1966 	fcount = 0;
1967 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1968 	hintpath = &hintinfo->dls_serpath[0];
1969 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1970 		skip = false;
1971 		SLPpath = &SLPinfo->dls_serpath[0];
1972 		/*
1973 		 * Check each standard path against current.
1974 		 */
1975 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1976 			/* matched, skip the path */
1977 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1978 				skip = true;
1979 				break;
1980 			}
1981 		}
1982 		if (skip)
1983 			continue;
1984 		/*
1985 		 * Not matched against any standard path, add the path
1986 		 * to result. Separate consequtive paths with ':'.
1987 		 */
1988 		if (fcount > 0) {
1989 			filtered_path[fndx] = ':';
1990 			fndx++;
1991 		}
1992 		fcount++;
1993 		flen = strlen(hintpath->dls_name);
1994 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1995 		fndx += flen;
1996 	}
1997 	filtered_path[fndx] = '\0';
1998 
1999 	free(SLPinfo);
2000 	free(hintinfo);
2001 
2002 filt_ret:
2003 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2004 }
2005 
2006 static void
2007 init_dag(Obj_Entry *root)
2008 {
2009     const Needed_Entry *needed;
2010     const Objlist_Entry *elm;
2011     DoneList donelist;
2012 
2013     if (root->dag_inited)
2014 	return;
2015     donelist_init(&donelist);
2016 
2017     /* Root object belongs to own DAG. */
2018     objlist_push_tail(&root->dldags, root);
2019     objlist_push_tail(&root->dagmembers, root);
2020     donelist_check(&donelist, root);
2021 
2022     /*
2023      * Add dependencies of root object to DAG in breadth order
2024      * by exploiting the fact that each new object get added
2025      * to the tail of the dagmembers list.
2026      */
2027     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2028 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2029 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2030 		continue;
2031 	    objlist_push_tail(&needed->obj->dldags, root);
2032 	    objlist_push_tail(&root->dagmembers, needed->obj);
2033 	}
2034     }
2035     root->dag_inited = true;
2036 }
2037 
2038 static void
2039 init_marker(Obj_Entry *marker)
2040 {
2041 
2042 	bzero(marker, sizeof(*marker));
2043 	marker->marker = true;
2044 }
2045 
2046 Obj_Entry *
2047 globallist_curr(const Obj_Entry *obj)
2048 {
2049 
2050 	for (;;) {
2051 		if (obj == NULL)
2052 			return (NULL);
2053 		if (!obj->marker)
2054 			return (__DECONST(Obj_Entry *, obj));
2055 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2056 	}
2057 }
2058 
2059 Obj_Entry *
2060 globallist_next(const Obj_Entry *obj)
2061 {
2062 
2063 	for (;;) {
2064 		obj = TAILQ_NEXT(obj, next);
2065 		if (obj == NULL)
2066 			return (NULL);
2067 		if (!obj->marker)
2068 			return (__DECONST(Obj_Entry *, obj));
2069 	}
2070 }
2071 
2072 /* Prevent the object from being unmapped while the bind lock is dropped. */
2073 static void
2074 hold_object(Obj_Entry *obj)
2075 {
2076 
2077 	obj->holdcount++;
2078 }
2079 
2080 static void
2081 unhold_object(Obj_Entry *obj)
2082 {
2083 
2084 	assert(obj->holdcount > 0);
2085 	if (--obj->holdcount == 0 && obj->unholdfree)
2086 		release_object(obj);
2087 }
2088 
2089 static void
2090 process_z(Obj_Entry *root)
2091 {
2092 	const Objlist_Entry *elm;
2093 	Obj_Entry *obj;
2094 
2095 	/*
2096 	 * Walk over object DAG and process every dependent object
2097 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2098 	 * to grow their own DAG.
2099 	 *
2100 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2101 	 * symlook_global() to work.
2102 	 *
2103 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2104 	 */
2105 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2106 		obj = elm->obj;
2107 		if (obj == NULL)
2108 			continue;
2109 		if (obj->z_nodelete && !obj->ref_nodel) {
2110 			dbg("obj %s -z nodelete", obj->path);
2111 			init_dag(obj);
2112 			ref_dag(obj);
2113 			obj->ref_nodel = true;
2114 		}
2115 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2116 			dbg("obj %s -z global", obj->path);
2117 			objlist_push_tail(&list_global, obj);
2118 			init_dag(obj);
2119 		}
2120 	}
2121 }
2122 /*
2123  * Initialize the dynamic linker.  The argument is the address at which
2124  * the dynamic linker has been mapped into memory.  The primary task of
2125  * this function is to relocate the dynamic linker.
2126  */
2127 static void
2128 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2129 {
2130     Obj_Entry objtmp;	/* Temporary rtld object */
2131     const Elf_Ehdr *ehdr;
2132     const Elf_Dyn *dyn_rpath;
2133     const Elf_Dyn *dyn_soname;
2134     const Elf_Dyn *dyn_runpath;
2135 
2136 #ifdef RTLD_INIT_PAGESIZES_EARLY
2137     /* The page size is required by the dynamic memory allocator. */
2138     init_pagesizes(aux_info);
2139 #endif
2140 
2141     /*
2142      * Conjure up an Obj_Entry structure for the dynamic linker.
2143      *
2144      * The "path" member can't be initialized yet because string constants
2145      * cannot yet be accessed. Below we will set it correctly.
2146      */
2147     memset(&objtmp, 0, sizeof(objtmp));
2148     objtmp.path = NULL;
2149     objtmp.rtld = true;
2150     objtmp.mapbase = mapbase;
2151 #ifdef PIC
2152     objtmp.relocbase = mapbase;
2153 #endif
2154 
2155     objtmp.dynamic = rtld_dynamic(&objtmp);
2156     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2157     assert(objtmp.needed == NULL);
2158 #if !defined(__mips__)
2159     /* MIPS has a bogus DT_TEXTREL. */
2160     assert(!objtmp.textrel);
2161 #endif
2162     /*
2163      * Temporarily put the dynamic linker entry into the object list, so
2164      * that symbols can be found.
2165      */
2166     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2167 
2168     ehdr = (Elf_Ehdr *)mapbase;
2169     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2170     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2171 
2172     /* Initialize the object list. */
2173     TAILQ_INIT(&obj_list);
2174 
2175     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2176     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2177 
2178 #ifndef RTLD_INIT_PAGESIZES_EARLY
2179     /* The page size is required by the dynamic memory allocator. */
2180     init_pagesizes(aux_info);
2181 #endif
2182 
2183     if (aux_info[AT_OSRELDATE] != NULL)
2184 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2185 
2186     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2187 
2188     /* Replace the path with a dynamically allocated copy. */
2189     obj_rtld.path = xstrdup(ld_path_rtld);
2190 
2191     r_debug.r_brk = r_debug_state;
2192     r_debug.r_state = RT_CONSISTENT;
2193 }
2194 
2195 /*
2196  * Retrieve the array of supported page sizes.  The kernel provides the page
2197  * sizes in increasing order.
2198  */
2199 static void
2200 init_pagesizes(Elf_Auxinfo **aux_info)
2201 {
2202 	static size_t psa[MAXPAGESIZES];
2203 	int mib[2];
2204 	size_t len, size;
2205 
2206 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2207 	    NULL) {
2208 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2209 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2210 	} else {
2211 		len = 2;
2212 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2213 			size = sizeof(psa);
2214 		else {
2215 			/* As a fallback, retrieve the base page size. */
2216 			size = sizeof(psa[0]);
2217 			if (aux_info[AT_PAGESZ] != NULL) {
2218 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2219 				goto psa_filled;
2220 			} else {
2221 				mib[0] = CTL_HW;
2222 				mib[1] = HW_PAGESIZE;
2223 				len = 2;
2224 			}
2225 		}
2226 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2227 			_rtld_error("sysctl for hw.pagesize(s) failed");
2228 			rtld_die();
2229 		}
2230 psa_filled:
2231 		pagesizes = psa;
2232 	}
2233 	npagesizes = size / sizeof(pagesizes[0]);
2234 	/* Discard any invalid entries at the end of the array. */
2235 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2236 		npagesizes--;
2237 }
2238 
2239 /*
2240  * Add the init functions from a needed object list (and its recursive
2241  * needed objects) to "list".  This is not used directly; it is a helper
2242  * function for initlist_add_objects().  The write lock must be held
2243  * when this function is called.
2244  */
2245 static void
2246 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2247 {
2248     /* Recursively process the successor needed objects. */
2249     if (needed->next != NULL)
2250 	initlist_add_neededs(needed->next, list);
2251 
2252     /* Process the current needed object. */
2253     if (needed->obj != NULL)
2254 	initlist_add_objects(needed->obj, needed->obj, list);
2255 }
2256 
2257 /*
2258  * Scan all of the DAGs rooted in the range of objects from "obj" to
2259  * "tail" and add their init functions to "list".  This recurses over
2260  * the DAGs and ensure the proper init ordering such that each object's
2261  * needed libraries are initialized before the object itself.  At the
2262  * same time, this function adds the objects to the global finalization
2263  * list "list_fini" in the opposite order.  The write lock must be
2264  * held when this function is called.
2265  */
2266 static void
2267 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2268 {
2269     Obj_Entry *nobj;
2270 
2271     if (obj->init_scanned || obj->init_done)
2272 	return;
2273     obj->init_scanned = true;
2274 
2275     /* Recursively process the successor objects. */
2276     nobj = globallist_next(obj);
2277     if (nobj != NULL && obj != tail)
2278 	initlist_add_objects(nobj, tail, list);
2279 
2280     /* Recursively process the needed objects. */
2281     if (obj->needed != NULL)
2282 	initlist_add_neededs(obj->needed, list);
2283     if (obj->needed_filtees != NULL)
2284 	initlist_add_neededs(obj->needed_filtees, list);
2285     if (obj->needed_aux_filtees != NULL)
2286 	initlist_add_neededs(obj->needed_aux_filtees, list);
2287 
2288     /* Add the object to the init list. */
2289     objlist_push_tail(list, obj);
2290 
2291     /* Add the object to the global fini list in the reverse order. */
2292     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2293       && !obj->on_fini_list) {
2294 	objlist_push_head(&list_fini, obj);
2295 	obj->on_fini_list = true;
2296     }
2297 }
2298 
2299 #ifndef FPTR_TARGET
2300 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2301 #endif
2302 
2303 static void
2304 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2305 {
2306     Needed_Entry *needed, *needed1;
2307 
2308     for (needed = n; needed != NULL; needed = needed->next) {
2309 	if (needed->obj != NULL) {
2310 	    dlclose_locked(needed->obj, lockstate);
2311 	    needed->obj = NULL;
2312 	}
2313     }
2314     for (needed = n; needed != NULL; needed = needed1) {
2315 	needed1 = needed->next;
2316 	free(needed);
2317     }
2318 }
2319 
2320 static void
2321 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2322 {
2323 
2324 	free_needed_filtees(obj->needed_filtees, lockstate);
2325 	obj->needed_filtees = NULL;
2326 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2327 	obj->needed_aux_filtees = NULL;
2328 	obj->filtees_loaded = false;
2329 }
2330 
2331 static void
2332 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2333     RtldLockState *lockstate)
2334 {
2335 
2336     for (; needed != NULL; needed = needed->next) {
2337 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2338 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2339 	  RTLD_LOCAL, lockstate);
2340     }
2341 }
2342 
2343 static void
2344 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2345 {
2346 
2347     lock_restart_for_upgrade(lockstate);
2348     if (!obj->filtees_loaded) {
2349 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2350 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2351 	obj->filtees_loaded = true;
2352     }
2353 }
2354 
2355 static int
2356 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2357 {
2358     Obj_Entry *obj1;
2359 
2360     for (; needed != NULL; needed = needed->next) {
2361 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2362 	  flags & ~RTLD_LO_NOLOAD);
2363 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2364 	    return (-1);
2365     }
2366     return (0);
2367 }
2368 
2369 /*
2370  * Given a shared object, traverse its list of needed objects, and load
2371  * each of them.  Returns 0 on success.  Generates an error message and
2372  * returns -1 on failure.
2373  */
2374 static int
2375 load_needed_objects(Obj_Entry *first, int flags)
2376 {
2377     Obj_Entry *obj;
2378 
2379     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2380 	if (obj->marker)
2381 	    continue;
2382 	if (process_needed(obj, obj->needed, flags) == -1)
2383 	    return (-1);
2384     }
2385     return (0);
2386 }
2387 
2388 static int
2389 load_preload_objects(void)
2390 {
2391     char *p = ld_preload;
2392     Obj_Entry *obj;
2393     static const char delim[] = " \t:;";
2394 
2395     if (p == NULL)
2396 	return 0;
2397 
2398     p += strspn(p, delim);
2399     while (*p != '\0') {
2400 	size_t len = strcspn(p, delim);
2401 	char savech;
2402 
2403 	savech = p[len];
2404 	p[len] = '\0';
2405 	obj = load_object(p, -1, NULL, 0);
2406 	if (obj == NULL)
2407 	    return -1;	/* XXX - cleanup */
2408 	obj->z_interpose = true;
2409 	p[len] = savech;
2410 	p += len;
2411 	p += strspn(p, delim);
2412     }
2413     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2414     return 0;
2415 }
2416 
2417 static const char *
2418 printable_path(const char *path)
2419 {
2420 
2421 	return (path == NULL ? "<unknown>" : path);
2422 }
2423 
2424 /*
2425  * Load a shared object into memory, if it is not already loaded.  The
2426  * object may be specified by name or by user-supplied file descriptor
2427  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2428  * duplicate is.
2429  *
2430  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2431  * on failure.
2432  */
2433 static Obj_Entry *
2434 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2435 {
2436     Obj_Entry *obj;
2437     int fd;
2438     struct stat sb;
2439     char *path;
2440 
2441     fd = -1;
2442     if (name != NULL) {
2443 	TAILQ_FOREACH(obj, &obj_list, next) {
2444 	    if (obj->marker || obj->doomed)
2445 		continue;
2446 	    if (object_match_name(obj, name))
2447 		return (obj);
2448 	}
2449 
2450 	path = find_library(name, refobj, &fd);
2451 	if (path == NULL)
2452 	    return (NULL);
2453     } else
2454 	path = NULL;
2455 
2456     if (fd >= 0) {
2457 	/*
2458 	 * search_library_pathfds() opens a fresh file descriptor for the
2459 	 * library, so there is no need to dup().
2460 	 */
2461     } else if (fd_u == -1) {
2462 	/*
2463 	 * If we didn't find a match by pathname, or the name is not
2464 	 * supplied, open the file and check again by device and inode.
2465 	 * This avoids false mismatches caused by multiple links or ".."
2466 	 * in pathnames.
2467 	 *
2468 	 * To avoid a race, we open the file and use fstat() rather than
2469 	 * using stat().
2470 	 */
2471 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2472 	    _rtld_error("Cannot open \"%s\"", path);
2473 	    free(path);
2474 	    return (NULL);
2475 	}
2476     } else {
2477 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2478 	if (fd == -1) {
2479 	    _rtld_error("Cannot dup fd");
2480 	    free(path);
2481 	    return (NULL);
2482 	}
2483     }
2484     if (fstat(fd, &sb) == -1) {
2485 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2486 	close(fd);
2487 	free(path);
2488 	return NULL;
2489     }
2490     TAILQ_FOREACH(obj, &obj_list, next) {
2491 	if (obj->marker || obj->doomed)
2492 	    continue;
2493 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2494 	    break;
2495     }
2496     if (obj != NULL && name != NULL) {
2497 	object_add_name(obj, name);
2498 	free(path);
2499 	close(fd);
2500 	return obj;
2501     }
2502     if (flags & RTLD_LO_NOLOAD) {
2503 	free(path);
2504 	close(fd);
2505 	return (NULL);
2506     }
2507 
2508     /* First use of this object, so we must map it in */
2509     obj = do_load_object(fd, name, path, &sb, flags);
2510     if (obj == NULL)
2511 	free(path);
2512     close(fd);
2513 
2514     return obj;
2515 }
2516 
2517 static Obj_Entry *
2518 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2519   int flags)
2520 {
2521     Obj_Entry *obj;
2522     struct statfs fs;
2523 
2524     /*
2525      * but first, make sure that environment variables haven't been
2526      * used to circumvent the noexec flag on a filesystem.
2527      */
2528     if (dangerous_ld_env) {
2529 	if (fstatfs(fd, &fs) != 0) {
2530 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2531 	    return NULL;
2532 	}
2533 	if (fs.f_flags & MNT_NOEXEC) {
2534 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2535 	    return NULL;
2536 	}
2537     }
2538     dbg("loading \"%s\"", printable_path(path));
2539     obj = map_object(fd, printable_path(path), sbp);
2540     if (obj == NULL)
2541         return NULL;
2542 
2543     /*
2544      * If DT_SONAME is present in the object, digest_dynamic2 already
2545      * added it to the object names.
2546      */
2547     if (name != NULL)
2548 	object_add_name(obj, name);
2549     obj->path = path;
2550     digest_dynamic(obj, 0);
2551     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2552 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2553     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2554       RTLD_LO_DLOPEN) {
2555 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2556 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2557 	munmap(obj->mapbase, obj->mapsize);
2558 	obj_free(obj);
2559 	return (NULL);
2560     }
2561 
2562     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2563     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2564     obj_count++;
2565     obj_loads++;
2566     linkmap_add(obj);	/* for GDB & dlinfo() */
2567     max_stack_flags |= obj->stack_flags;
2568 
2569     dbg("  %p .. %p: %s", obj->mapbase,
2570          obj->mapbase + obj->mapsize - 1, obj->path);
2571     if (obj->textrel)
2572 	dbg("  WARNING: %s has impure text", obj->path);
2573     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2574 	obj->path);
2575 
2576     return obj;
2577 }
2578 
2579 static Obj_Entry *
2580 obj_from_addr(const void *addr)
2581 {
2582     Obj_Entry *obj;
2583 
2584     TAILQ_FOREACH(obj, &obj_list, next) {
2585 	if (obj->marker)
2586 	    continue;
2587 	if (addr < (void *) obj->mapbase)
2588 	    continue;
2589 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2590 	    return obj;
2591     }
2592     return NULL;
2593 }
2594 
2595 static void
2596 preinit_main(void)
2597 {
2598     Elf_Addr *preinit_addr;
2599     int index;
2600 
2601     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2602     if (preinit_addr == NULL)
2603 	return;
2604 
2605     for (index = 0; index < obj_main->preinit_array_num; index++) {
2606 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2607 	    dbg("calling preinit function for %s at %p", obj_main->path,
2608 	      (void *)preinit_addr[index]);
2609 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2610 	      0, 0, obj_main->path);
2611 	    call_init_pointer(obj_main, preinit_addr[index]);
2612 	}
2613     }
2614 }
2615 
2616 /*
2617  * Call the finalization functions for each of the objects in "list"
2618  * belonging to the DAG of "root" and referenced once. If NULL "root"
2619  * is specified, every finalization function will be called regardless
2620  * of the reference count and the list elements won't be freed. All of
2621  * the objects are expected to have non-NULL fini functions.
2622  */
2623 static void
2624 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2625 {
2626     Objlist_Entry *elm;
2627     char *saved_msg;
2628     Elf_Addr *fini_addr;
2629     int index;
2630 
2631     assert(root == NULL || root->refcount == 1);
2632 
2633     if (root != NULL)
2634 	root->doomed = true;
2635 
2636     /*
2637      * Preserve the current error message since a fini function might
2638      * call into the dynamic linker and overwrite it.
2639      */
2640     saved_msg = errmsg_save();
2641     do {
2642 	STAILQ_FOREACH(elm, list, link) {
2643 	    if (root != NULL && (elm->obj->refcount != 1 ||
2644 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2645 		continue;
2646 	    /* Remove object from fini list to prevent recursive invocation. */
2647 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2648 	    /* Ensure that new references cannot be acquired. */
2649 	    elm->obj->doomed = true;
2650 
2651 	    hold_object(elm->obj);
2652 	    lock_release(rtld_bind_lock, lockstate);
2653 	    /*
2654 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2655 	     * When this happens, DT_FINI_ARRAY is processed first.
2656 	     */
2657 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2658 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2659 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2660 		  index--) {
2661 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2662 			dbg("calling fini function for %s at %p",
2663 			    elm->obj->path, (void *)fini_addr[index]);
2664 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2665 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2666 			call_initfini_pointer(elm->obj, fini_addr[index]);
2667 		    }
2668 		}
2669 	    }
2670 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2671 		dbg("calling fini function for %s at %p", elm->obj->path,
2672 		    (void *)elm->obj->fini);
2673 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2674 		    0, 0, elm->obj->path);
2675 		call_initfini_pointer(elm->obj, elm->obj->fini);
2676 	    }
2677 	    wlock_acquire(rtld_bind_lock, lockstate);
2678 	    unhold_object(elm->obj);
2679 	    /* No need to free anything if process is going down. */
2680 	    if (root != NULL)
2681 	    	free(elm);
2682 	    /*
2683 	     * We must restart the list traversal after every fini call
2684 	     * because a dlclose() call from the fini function or from
2685 	     * another thread might have modified the reference counts.
2686 	     */
2687 	    break;
2688 	}
2689     } while (elm != NULL);
2690     errmsg_restore(saved_msg);
2691 }
2692 
2693 /*
2694  * Call the initialization functions for each of the objects in
2695  * "list".  All of the objects are expected to have non-NULL init
2696  * functions.
2697  */
2698 static void
2699 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2700 {
2701     Objlist_Entry *elm;
2702     Obj_Entry *obj;
2703     char *saved_msg;
2704     Elf_Addr *init_addr;
2705     void (*reg)(void (*)(void));
2706     int index;
2707 
2708     /*
2709      * Clean init_scanned flag so that objects can be rechecked and
2710      * possibly initialized earlier if any of vectors called below
2711      * cause the change by using dlopen.
2712      */
2713     TAILQ_FOREACH(obj, &obj_list, next) {
2714 	if (obj->marker)
2715 	    continue;
2716 	obj->init_scanned = false;
2717     }
2718 
2719     /*
2720      * Preserve the current error message since an init function might
2721      * call into the dynamic linker and overwrite it.
2722      */
2723     saved_msg = errmsg_save();
2724     STAILQ_FOREACH(elm, list, link) {
2725 	if (elm->obj->init_done) /* Initialized early. */
2726 	    continue;
2727 	/*
2728 	 * Race: other thread might try to use this object before current
2729 	 * one completes the initialization. Not much can be done here
2730 	 * without better locking.
2731 	 */
2732 	elm->obj->init_done = true;
2733 	hold_object(elm->obj);
2734 	reg = NULL;
2735 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2736 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2737 		    "__libc_atexit", lockstate);
2738 	}
2739 	lock_release(rtld_bind_lock, lockstate);
2740 	if (reg != NULL) {
2741 		reg(rtld_exit);
2742 		rtld_exit_ptr = rtld_nop_exit;
2743 	}
2744 
2745         /*
2746          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2747          * When this happens, DT_INIT is processed first.
2748          */
2749 	if (elm->obj->init != (Elf_Addr)NULL) {
2750 	    dbg("calling init function for %s at %p", elm->obj->path,
2751 	        (void *)elm->obj->init);
2752 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2753 	        0, 0, elm->obj->path);
2754 	    call_initfini_pointer(elm->obj, elm->obj->init);
2755 	}
2756 	init_addr = (Elf_Addr *)elm->obj->init_array;
2757 	if (init_addr != NULL) {
2758 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2759 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2760 		    dbg("calling init function for %s at %p", elm->obj->path,
2761 			(void *)init_addr[index]);
2762 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2763 			(void *)init_addr[index], 0, 0, elm->obj->path);
2764 		    call_init_pointer(elm->obj, init_addr[index]);
2765 		}
2766 	    }
2767 	}
2768 	wlock_acquire(rtld_bind_lock, lockstate);
2769 	unhold_object(elm->obj);
2770     }
2771     errmsg_restore(saved_msg);
2772 }
2773 
2774 static void
2775 objlist_clear(Objlist *list)
2776 {
2777     Objlist_Entry *elm;
2778 
2779     while (!STAILQ_EMPTY(list)) {
2780 	elm = STAILQ_FIRST(list);
2781 	STAILQ_REMOVE_HEAD(list, link);
2782 	free(elm);
2783     }
2784 }
2785 
2786 static Objlist_Entry *
2787 objlist_find(Objlist *list, const Obj_Entry *obj)
2788 {
2789     Objlist_Entry *elm;
2790 
2791     STAILQ_FOREACH(elm, list, link)
2792 	if (elm->obj == obj)
2793 	    return elm;
2794     return NULL;
2795 }
2796 
2797 static void
2798 objlist_init(Objlist *list)
2799 {
2800     STAILQ_INIT(list);
2801 }
2802 
2803 static void
2804 objlist_push_head(Objlist *list, Obj_Entry *obj)
2805 {
2806     Objlist_Entry *elm;
2807 
2808     elm = NEW(Objlist_Entry);
2809     elm->obj = obj;
2810     STAILQ_INSERT_HEAD(list, elm, link);
2811 }
2812 
2813 static void
2814 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2815 {
2816     Objlist_Entry *elm;
2817 
2818     elm = NEW(Objlist_Entry);
2819     elm->obj = obj;
2820     STAILQ_INSERT_TAIL(list, elm, link);
2821 }
2822 
2823 static void
2824 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2825 {
2826 	Objlist_Entry *elm, *listelm;
2827 
2828 	STAILQ_FOREACH(listelm, list, link) {
2829 		if (listelm->obj == listobj)
2830 			break;
2831 	}
2832 	elm = NEW(Objlist_Entry);
2833 	elm->obj = obj;
2834 	if (listelm != NULL)
2835 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2836 	else
2837 		STAILQ_INSERT_TAIL(list, elm, link);
2838 }
2839 
2840 static void
2841 objlist_remove(Objlist *list, Obj_Entry *obj)
2842 {
2843     Objlist_Entry *elm;
2844 
2845     if ((elm = objlist_find(list, obj)) != NULL) {
2846 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2847 	free(elm);
2848     }
2849 }
2850 
2851 /*
2852  * Relocate dag rooted in the specified object.
2853  * Returns 0 on success, or -1 on failure.
2854  */
2855 
2856 static int
2857 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2858     int flags, RtldLockState *lockstate)
2859 {
2860 	Objlist_Entry *elm;
2861 	int error;
2862 
2863 	error = 0;
2864 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2865 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2866 		    lockstate);
2867 		if (error == -1)
2868 			break;
2869 	}
2870 	return (error);
2871 }
2872 
2873 /*
2874  * Prepare for, or clean after, relocating an object marked with
2875  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2876  * segments are remapped read-write.  After relocations are done, the
2877  * segment's permissions are returned back to the modes specified in
2878  * the phdrs.  If any relocation happened, or always for wired
2879  * program, COW is triggered.
2880  */
2881 static int
2882 reloc_textrel_prot(Obj_Entry *obj, bool before)
2883 {
2884 	const Elf_Phdr *ph;
2885 	void *base;
2886 	size_t l, sz;
2887 	int prot;
2888 
2889 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2890 	    l--, ph++) {
2891 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2892 			continue;
2893 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2894 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2895 		    trunc_page(ph->p_vaddr);
2896 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2897 		if (mprotect(base, sz, prot) == -1) {
2898 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2899 			    obj->path, before ? "en" : "dis",
2900 			    rtld_strerror(errno));
2901 			return (-1);
2902 		}
2903 	}
2904 	return (0);
2905 }
2906 
2907 /*
2908  * Relocate single object.
2909  * Returns 0 on success, or -1 on failure.
2910  */
2911 static int
2912 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2913     int flags, RtldLockState *lockstate)
2914 {
2915 
2916 	if (obj->relocated)
2917 		return (0);
2918 	obj->relocated = true;
2919 	if (obj != rtldobj)
2920 		dbg("relocating \"%s\"", obj->path);
2921 
2922 	if (obj->symtab == NULL || obj->strtab == NULL ||
2923 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2924 		_rtld_error("%s: Shared object has no run-time symbol table",
2925 			    obj->path);
2926 		return (-1);
2927 	}
2928 
2929 	/* There are relocations to the write-protected text segment. */
2930 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2931 		return (-1);
2932 
2933 	/* Process the non-PLT non-IFUNC relocations. */
2934 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2935 		return (-1);
2936 
2937 	/* Re-protected the text segment. */
2938 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2939 		return (-1);
2940 
2941 	/* Set the special PLT or GOT entries. */
2942 	init_pltgot(obj);
2943 
2944 	/* Process the PLT relocations. */
2945 	if (reloc_plt(obj, flags, lockstate) == -1)
2946 		return (-1);
2947 	/* Relocate the jump slots if we are doing immediate binding. */
2948 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2949 	    lockstate) == -1)
2950 		return (-1);
2951 
2952 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2953 		return (-1);
2954 
2955 	/*
2956 	 * Set up the magic number and version in the Obj_Entry.  These
2957 	 * were checked in the crt1.o from the original ElfKit, so we
2958 	 * set them for backward compatibility.
2959 	 */
2960 	obj->magic = RTLD_MAGIC;
2961 	obj->version = RTLD_VERSION;
2962 
2963 	return (0);
2964 }
2965 
2966 /*
2967  * Relocate newly-loaded shared objects.  The argument is a pointer to
2968  * the Obj_Entry for the first such object.  All objects from the first
2969  * to the end of the list of objects are relocated.  Returns 0 on success,
2970  * or -1 on failure.
2971  */
2972 static int
2973 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2974     int flags, RtldLockState *lockstate)
2975 {
2976 	Obj_Entry *obj;
2977 	int error;
2978 
2979 	for (error = 0, obj = first;  obj != NULL;
2980 	    obj = TAILQ_NEXT(obj, next)) {
2981 		if (obj->marker)
2982 			continue;
2983 		error = relocate_object(obj, bind_now, rtldobj, flags,
2984 		    lockstate);
2985 		if (error == -1)
2986 			break;
2987 	}
2988 	return (error);
2989 }
2990 
2991 /*
2992  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2993  * referencing STT_GNU_IFUNC symbols is postponed till the other
2994  * relocations are done.  The indirect functions specified as
2995  * ifunc are allowed to call other symbols, so we need to have
2996  * objects relocated before asking for resolution from indirects.
2997  *
2998  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2999  * instead of the usual lazy handling of PLT slots.  It is
3000  * consistent with how GNU does it.
3001  */
3002 static int
3003 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3004     RtldLockState *lockstate)
3005 {
3006 
3007 	if (obj->ifuncs_resolved)
3008 		return (0);
3009 	obj->ifuncs_resolved = true;
3010 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3011 		return (0);
3012 	if (obj_disable_relro(obj) == -1 ||
3013 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3014 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3015 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3016 	    obj_enforce_relro(obj) == -1)
3017 		return (-1);
3018 	return (0);
3019 }
3020 
3021 static int
3022 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3023     RtldLockState *lockstate)
3024 {
3025 	Objlist_Entry *elm;
3026 	Obj_Entry *obj;
3027 
3028 	STAILQ_FOREACH(elm, list, link) {
3029 		obj = elm->obj;
3030 		if (obj->marker)
3031 			continue;
3032 		if (resolve_object_ifunc(obj, bind_now, flags,
3033 		    lockstate) == -1)
3034 			return (-1);
3035 	}
3036 	return (0);
3037 }
3038 
3039 /*
3040  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3041  * before the process exits.
3042  */
3043 static void
3044 rtld_exit(void)
3045 {
3046     RtldLockState lockstate;
3047 
3048     wlock_acquire(rtld_bind_lock, &lockstate);
3049     dbg("rtld_exit()");
3050     objlist_call_fini(&list_fini, NULL, &lockstate);
3051     /* No need to remove the items from the list, since we are exiting. */
3052     if (!libmap_disable)
3053         lm_fini();
3054     lock_release(rtld_bind_lock, &lockstate);
3055 }
3056 
3057 static void
3058 rtld_nop_exit(void)
3059 {
3060 }
3061 
3062 /*
3063  * Iterate over a search path, translate each element, and invoke the
3064  * callback on the result.
3065  */
3066 static void *
3067 path_enumerate(const char *path, path_enum_proc callback,
3068     const char *refobj_path, void *arg)
3069 {
3070     const char *trans;
3071     if (path == NULL)
3072 	return (NULL);
3073 
3074     path += strspn(path, ":;");
3075     while (*path != '\0') {
3076 	size_t len;
3077 	char  *res;
3078 
3079 	len = strcspn(path, ":;");
3080 	trans = lm_findn(refobj_path, path, len);
3081 	if (trans)
3082 	    res = callback(trans, strlen(trans), arg);
3083 	else
3084 	    res = callback(path, len, arg);
3085 
3086 	if (res != NULL)
3087 	    return (res);
3088 
3089 	path += len;
3090 	path += strspn(path, ":;");
3091     }
3092 
3093     return (NULL);
3094 }
3095 
3096 struct try_library_args {
3097     const char	*name;
3098     size_t	 namelen;
3099     char	*buffer;
3100     size_t	 buflen;
3101     int		 fd;
3102 };
3103 
3104 static void *
3105 try_library_path(const char *dir, size_t dirlen, void *param)
3106 {
3107     struct try_library_args *arg;
3108     int fd;
3109 
3110     arg = param;
3111     if (*dir == '/' || trust) {
3112 	char *pathname;
3113 
3114 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3115 		return (NULL);
3116 
3117 	pathname = arg->buffer;
3118 	strncpy(pathname, dir, dirlen);
3119 	pathname[dirlen] = '/';
3120 	strcpy(pathname + dirlen + 1, arg->name);
3121 
3122 	dbg("  Trying \"%s\"", pathname);
3123 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3124 	if (fd >= 0) {
3125 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3126 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3127 	    strcpy(pathname, arg->buffer);
3128 	    arg->fd = fd;
3129 	    return (pathname);
3130 	} else {
3131 	    dbg("  Failed to open \"%s\": %s",
3132 		pathname, rtld_strerror(errno));
3133 	}
3134     }
3135     return (NULL);
3136 }
3137 
3138 static char *
3139 search_library_path(const char *name, const char *path,
3140     const char *refobj_path, int *fdp)
3141 {
3142     char *p;
3143     struct try_library_args arg;
3144 
3145     if (path == NULL)
3146 	return NULL;
3147 
3148     arg.name = name;
3149     arg.namelen = strlen(name);
3150     arg.buffer = xmalloc(PATH_MAX);
3151     arg.buflen = PATH_MAX;
3152     arg.fd = -1;
3153 
3154     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3155     *fdp = arg.fd;
3156 
3157     free(arg.buffer);
3158 
3159     return (p);
3160 }
3161 
3162 
3163 /*
3164  * Finds the library with the given name using the directory descriptors
3165  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3166  *
3167  * Returns a freshly-opened close-on-exec file descriptor for the library,
3168  * or -1 if the library cannot be found.
3169  */
3170 static char *
3171 search_library_pathfds(const char *name, const char *path, int *fdp)
3172 {
3173 	char *envcopy, *fdstr, *found, *last_token;
3174 	size_t len;
3175 	int dirfd, fd;
3176 
3177 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3178 
3179 	/* Don't load from user-specified libdirs into setuid binaries. */
3180 	if (!trust)
3181 		return (NULL);
3182 
3183 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3184 	if (path == NULL)
3185 		return (NULL);
3186 
3187 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3188 	if (name[0] == '/') {
3189 		dbg("Absolute path (%s) passed to %s", name, __func__);
3190 		return (NULL);
3191 	}
3192 
3193 	/*
3194 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3195 	 * copy of the path, as strtok_r rewrites separator tokens
3196 	 * with '\0'.
3197 	 */
3198 	found = NULL;
3199 	envcopy = xstrdup(path);
3200 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3201 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3202 		dirfd = parse_integer(fdstr);
3203 		if (dirfd < 0) {
3204 			_rtld_error("failed to parse directory FD: '%s'",
3205 				fdstr);
3206 			break;
3207 		}
3208 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3209 		if (fd >= 0) {
3210 			*fdp = fd;
3211 			len = strlen(fdstr) + strlen(name) + 3;
3212 			found = xmalloc(len);
3213 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3214 				_rtld_error("error generating '%d/%s'",
3215 				    dirfd, name);
3216 				rtld_die();
3217 			}
3218 			dbg("open('%s') => %d", found, fd);
3219 			break;
3220 		}
3221 	}
3222 	free(envcopy);
3223 
3224 	return (found);
3225 }
3226 
3227 
3228 int
3229 dlclose(void *handle)
3230 {
3231 	RtldLockState lockstate;
3232 	int error;
3233 
3234 	wlock_acquire(rtld_bind_lock, &lockstate);
3235 	error = dlclose_locked(handle, &lockstate);
3236 	lock_release(rtld_bind_lock, &lockstate);
3237 	return (error);
3238 }
3239 
3240 static int
3241 dlclose_locked(void *handle, RtldLockState *lockstate)
3242 {
3243     Obj_Entry *root;
3244 
3245     root = dlcheck(handle);
3246     if (root == NULL)
3247 	return -1;
3248     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3249 	root->path);
3250 
3251     /* Unreference the object and its dependencies. */
3252     root->dl_refcount--;
3253 
3254     if (root->refcount == 1) {
3255 	/*
3256 	 * The object will be no longer referenced, so we must unload it.
3257 	 * First, call the fini functions.
3258 	 */
3259 	objlist_call_fini(&list_fini, root, lockstate);
3260 
3261 	unref_dag(root);
3262 
3263 	/* Finish cleaning up the newly-unreferenced objects. */
3264 	GDB_STATE(RT_DELETE,&root->linkmap);
3265 	unload_object(root, lockstate);
3266 	GDB_STATE(RT_CONSISTENT,NULL);
3267     } else
3268 	unref_dag(root);
3269 
3270     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3271     return 0;
3272 }
3273 
3274 char *
3275 dlerror(void)
3276 {
3277     char *msg = error_message;
3278     error_message = NULL;
3279     return msg;
3280 }
3281 
3282 /*
3283  * This function is deprecated and has no effect.
3284  */
3285 void
3286 dllockinit(void *context,
3287     void *(*_lock_create)(void *context) __unused,
3288     void (*_rlock_acquire)(void *lock) __unused,
3289     void (*_wlock_acquire)(void *lock)  __unused,
3290     void (*_lock_release)(void *lock) __unused,
3291     void (*_lock_destroy)(void *lock) __unused,
3292     void (*context_destroy)(void *context))
3293 {
3294     static void *cur_context;
3295     static void (*cur_context_destroy)(void *);
3296 
3297     /* Just destroy the context from the previous call, if necessary. */
3298     if (cur_context_destroy != NULL)
3299 	cur_context_destroy(cur_context);
3300     cur_context = context;
3301     cur_context_destroy = context_destroy;
3302 }
3303 
3304 void *
3305 dlopen(const char *name, int mode)
3306 {
3307 
3308 	return (rtld_dlopen(name, -1, mode));
3309 }
3310 
3311 void *
3312 fdlopen(int fd, int mode)
3313 {
3314 
3315 	return (rtld_dlopen(NULL, fd, mode));
3316 }
3317 
3318 static void *
3319 rtld_dlopen(const char *name, int fd, int mode)
3320 {
3321     RtldLockState lockstate;
3322     int lo_flags;
3323 
3324     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3325     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3326     if (ld_tracing != NULL) {
3327 	rlock_acquire(rtld_bind_lock, &lockstate);
3328 	if (sigsetjmp(lockstate.env, 0) != 0)
3329 	    lock_upgrade(rtld_bind_lock, &lockstate);
3330 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3331 	lock_release(rtld_bind_lock, &lockstate);
3332     }
3333     lo_flags = RTLD_LO_DLOPEN;
3334     if (mode & RTLD_NODELETE)
3335 	    lo_flags |= RTLD_LO_NODELETE;
3336     if (mode & RTLD_NOLOAD)
3337 	    lo_flags |= RTLD_LO_NOLOAD;
3338     if (ld_tracing != NULL)
3339 	    lo_flags |= RTLD_LO_TRACE;
3340 
3341     return (dlopen_object(name, fd, obj_main, lo_flags,
3342       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3343 }
3344 
3345 static void
3346 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3347 {
3348 
3349 	obj->dl_refcount--;
3350 	unref_dag(obj);
3351 	if (obj->refcount == 0)
3352 		unload_object(obj, lockstate);
3353 }
3354 
3355 static Obj_Entry *
3356 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3357     int mode, RtldLockState *lockstate)
3358 {
3359     Obj_Entry *old_obj_tail;
3360     Obj_Entry *obj;
3361     Objlist initlist;
3362     RtldLockState mlockstate;
3363     int result;
3364 
3365     objlist_init(&initlist);
3366 
3367     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3368 	wlock_acquire(rtld_bind_lock, &mlockstate);
3369 	lockstate = &mlockstate;
3370     }
3371     GDB_STATE(RT_ADD,NULL);
3372 
3373     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3374     obj = NULL;
3375     if (name == NULL && fd == -1) {
3376 	obj = obj_main;
3377 	obj->refcount++;
3378     } else {
3379 	obj = load_object(name, fd, refobj, lo_flags);
3380     }
3381 
3382     if (obj) {
3383 	obj->dl_refcount++;
3384 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3385 	    objlist_push_tail(&list_global, obj);
3386 	if (globallist_next(old_obj_tail) != NULL) {
3387 	    /* We loaded something new. */
3388 	    assert(globallist_next(old_obj_tail) == obj);
3389 	    result = 0;
3390 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3391 	      !allocate_tls_offset(obj)) {
3392 		_rtld_error("%s: No space available "
3393 		  "for static Thread Local Storage", obj->path);
3394 		result = -1;
3395 	    }
3396 	    if (result != -1)
3397 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3398 		    RTLD_LO_EARLY));
3399 	    init_dag(obj);
3400 	    ref_dag(obj);
3401 	    if (result != -1)
3402 		result = rtld_verify_versions(&obj->dagmembers);
3403 	    if (result != -1 && ld_tracing)
3404 		goto trace;
3405 	    if (result == -1 || relocate_object_dag(obj,
3406 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3407 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3408 	      lockstate) == -1) {
3409 		dlopen_cleanup(obj, lockstate);
3410 		obj = NULL;
3411 	    } else if (lo_flags & RTLD_LO_EARLY) {
3412 		/*
3413 		 * Do not call the init functions for early loaded
3414 		 * filtees.  The image is still not initialized enough
3415 		 * for them to work.
3416 		 *
3417 		 * Our object is found by the global object list and
3418 		 * will be ordered among all init calls done right
3419 		 * before transferring control to main.
3420 		 */
3421 	    } else {
3422 		/* Make list of init functions to call. */
3423 		initlist_add_objects(obj, obj, &initlist);
3424 	    }
3425 	    /*
3426 	     * Process all no_delete or global objects here, given
3427 	     * them own DAGs to prevent their dependencies from being
3428 	     * unloaded.  This has to be done after we have loaded all
3429 	     * of the dependencies, so that we do not miss any.
3430 	     */
3431 	    if (obj != NULL)
3432 		process_z(obj);
3433 	} else {
3434 	    /*
3435 	     * Bump the reference counts for objects on this DAG.  If
3436 	     * this is the first dlopen() call for the object that was
3437 	     * already loaded as a dependency, initialize the dag
3438 	     * starting at it.
3439 	     */
3440 	    init_dag(obj);
3441 	    ref_dag(obj);
3442 
3443 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3444 		goto trace;
3445 	}
3446 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3447 	  obj->z_nodelete) && !obj->ref_nodel) {
3448 	    dbg("obj %s nodelete", obj->path);
3449 	    ref_dag(obj);
3450 	    obj->z_nodelete = obj->ref_nodel = true;
3451 	}
3452     }
3453 
3454     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3455 	name);
3456     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3457 
3458     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3459 	map_stacks_exec(lockstate);
3460 	if (obj != NULL)
3461 	    distribute_static_tls(&initlist, lockstate);
3462     }
3463 
3464     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3465       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3466       lockstate) == -1) {
3467 	objlist_clear(&initlist);
3468 	dlopen_cleanup(obj, lockstate);
3469 	if (lockstate == &mlockstate)
3470 	    lock_release(rtld_bind_lock, lockstate);
3471 	return (NULL);
3472     }
3473 
3474     if (!(lo_flags & RTLD_LO_EARLY)) {
3475 	/* Call the init functions. */
3476 	objlist_call_init(&initlist, lockstate);
3477     }
3478     objlist_clear(&initlist);
3479     if (lockstate == &mlockstate)
3480 	lock_release(rtld_bind_lock, lockstate);
3481     return obj;
3482 trace:
3483     trace_loaded_objects(obj);
3484     if (lockstate == &mlockstate)
3485 	lock_release(rtld_bind_lock, lockstate);
3486     exit(0);
3487 }
3488 
3489 static void *
3490 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3491     int flags)
3492 {
3493     DoneList donelist;
3494     const Obj_Entry *obj, *defobj;
3495     const Elf_Sym *def;
3496     SymLook req;
3497     RtldLockState lockstate;
3498     tls_index ti;
3499     void *sym;
3500     int res;
3501 
3502     def = NULL;
3503     defobj = NULL;
3504     symlook_init(&req, name);
3505     req.ventry = ve;
3506     req.flags = flags | SYMLOOK_IN_PLT;
3507     req.lockstate = &lockstate;
3508 
3509     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3510     rlock_acquire(rtld_bind_lock, &lockstate);
3511     if (sigsetjmp(lockstate.env, 0) != 0)
3512 	    lock_upgrade(rtld_bind_lock, &lockstate);
3513     if (handle == NULL || handle == RTLD_NEXT ||
3514 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3515 
3516 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3517 	    _rtld_error("Cannot determine caller's shared object");
3518 	    lock_release(rtld_bind_lock, &lockstate);
3519 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3520 	    return NULL;
3521 	}
3522 	if (handle == NULL) {	/* Just the caller's shared object. */
3523 	    res = symlook_obj(&req, obj);
3524 	    if (res == 0) {
3525 		def = req.sym_out;
3526 		defobj = req.defobj_out;
3527 	    }
3528 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3529 		   handle == RTLD_SELF) { /* ... caller included */
3530 	    if (handle == RTLD_NEXT)
3531 		obj = globallist_next(obj);
3532 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3533 		if (obj->marker)
3534 		    continue;
3535 		res = symlook_obj(&req, obj);
3536 		if (res == 0) {
3537 		    if (def == NULL ||
3538 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3539 			def = req.sym_out;
3540 			defobj = req.defobj_out;
3541 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3542 			    break;
3543 		    }
3544 		}
3545 	    }
3546 	    /*
3547 	     * Search the dynamic linker itself, and possibly resolve the
3548 	     * symbol from there.  This is how the application links to
3549 	     * dynamic linker services such as dlopen.
3550 	     */
3551 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3552 		res = symlook_obj(&req, &obj_rtld);
3553 		if (res == 0) {
3554 		    def = req.sym_out;
3555 		    defobj = req.defobj_out;
3556 		}
3557 	    }
3558 	} else {
3559 	    assert(handle == RTLD_DEFAULT);
3560 	    res = symlook_default(&req, obj);
3561 	    if (res == 0) {
3562 		defobj = req.defobj_out;
3563 		def = req.sym_out;
3564 	    }
3565 	}
3566     } else {
3567 	if ((obj = dlcheck(handle)) == NULL) {
3568 	    lock_release(rtld_bind_lock, &lockstate);
3569 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3570 	    return NULL;
3571 	}
3572 
3573 	donelist_init(&donelist);
3574 	if (obj->mainprog) {
3575             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3576 	    res = symlook_global(&req, &donelist);
3577 	    if (res == 0) {
3578 		def = req.sym_out;
3579 		defobj = req.defobj_out;
3580 	    }
3581 	    /*
3582 	     * Search the dynamic linker itself, and possibly resolve the
3583 	     * symbol from there.  This is how the application links to
3584 	     * dynamic linker services such as dlopen.
3585 	     */
3586 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3587 		res = symlook_obj(&req, &obj_rtld);
3588 		if (res == 0) {
3589 		    def = req.sym_out;
3590 		    defobj = req.defobj_out;
3591 		}
3592 	    }
3593 	}
3594 	else {
3595 	    /* Search the whole DAG rooted at the given object. */
3596 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3597 	    if (res == 0) {
3598 		def = req.sym_out;
3599 		defobj = req.defobj_out;
3600 	    }
3601 	}
3602     }
3603 
3604     if (def != NULL) {
3605 	lock_release(rtld_bind_lock, &lockstate);
3606 
3607 	/*
3608 	 * The value required by the caller is derived from the value
3609 	 * of the symbol. this is simply the relocated value of the
3610 	 * symbol.
3611 	 */
3612 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3613 	    sym = make_function_pointer(def, defobj);
3614 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3615 	    sym = rtld_resolve_ifunc(defobj, def);
3616 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3617 	    ti.ti_module = defobj->tlsindex;
3618 	    ti.ti_offset = def->st_value;
3619 	    sym = __tls_get_addr(&ti);
3620 	} else
3621 	    sym = defobj->relocbase + def->st_value;
3622 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3623 	return (sym);
3624     }
3625 
3626     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3627       ve != NULL ? ve->name : "");
3628     lock_release(rtld_bind_lock, &lockstate);
3629     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3630     return NULL;
3631 }
3632 
3633 void *
3634 dlsym(void *handle, const char *name)
3635 {
3636 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3637 	    SYMLOOK_DLSYM);
3638 }
3639 
3640 dlfunc_t
3641 dlfunc(void *handle, const char *name)
3642 {
3643 	union {
3644 		void *d;
3645 		dlfunc_t f;
3646 	} rv;
3647 
3648 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3649 	    SYMLOOK_DLSYM);
3650 	return (rv.f);
3651 }
3652 
3653 void *
3654 dlvsym(void *handle, const char *name, const char *version)
3655 {
3656 	Ver_Entry ventry;
3657 
3658 	ventry.name = version;
3659 	ventry.file = NULL;
3660 	ventry.hash = elf_hash(version);
3661 	ventry.flags= 0;
3662 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3663 	    SYMLOOK_DLSYM);
3664 }
3665 
3666 int
3667 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3668 {
3669     const Obj_Entry *obj;
3670     RtldLockState lockstate;
3671 
3672     rlock_acquire(rtld_bind_lock, &lockstate);
3673     obj = obj_from_addr(addr);
3674     if (obj == NULL) {
3675         _rtld_error("No shared object contains address");
3676 	lock_release(rtld_bind_lock, &lockstate);
3677         return (0);
3678     }
3679     rtld_fill_dl_phdr_info(obj, phdr_info);
3680     lock_release(rtld_bind_lock, &lockstate);
3681     return (1);
3682 }
3683 
3684 int
3685 dladdr(const void *addr, Dl_info *info)
3686 {
3687     const Obj_Entry *obj;
3688     const Elf_Sym *def;
3689     void *symbol_addr;
3690     unsigned long symoffset;
3691     RtldLockState lockstate;
3692 
3693     rlock_acquire(rtld_bind_lock, &lockstate);
3694     obj = obj_from_addr(addr);
3695     if (obj == NULL) {
3696         _rtld_error("No shared object contains address");
3697 	lock_release(rtld_bind_lock, &lockstate);
3698         return 0;
3699     }
3700     info->dli_fname = obj->path;
3701     info->dli_fbase = obj->mapbase;
3702     info->dli_saddr = (void *)0;
3703     info->dli_sname = NULL;
3704 
3705     /*
3706      * Walk the symbol list looking for the symbol whose address is
3707      * closest to the address sent in.
3708      */
3709     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3710         def = obj->symtab + symoffset;
3711 
3712         /*
3713          * For skip the symbol if st_shndx is either SHN_UNDEF or
3714          * SHN_COMMON.
3715          */
3716         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3717             continue;
3718 
3719         /*
3720          * If the symbol is greater than the specified address, or if it
3721          * is further away from addr than the current nearest symbol,
3722          * then reject it.
3723          */
3724         symbol_addr = obj->relocbase + def->st_value;
3725         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3726             continue;
3727 
3728         /* Update our idea of the nearest symbol. */
3729         info->dli_sname = obj->strtab + def->st_name;
3730         info->dli_saddr = symbol_addr;
3731 
3732         /* Exact match? */
3733         if (info->dli_saddr == addr)
3734             break;
3735     }
3736     lock_release(rtld_bind_lock, &lockstate);
3737     return 1;
3738 }
3739 
3740 int
3741 dlinfo(void *handle, int request, void *p)
3742 {
3743     const Obj_Entry *obj;
3744     RtldLockState lockstate;
3745     int error;
3746 
3747     rlock_acquire(rtld_bind_lock, &lockstate);
3748 
3749     if (handle == NULL || handle == RTLD_SELF) {
3750 	void *retaddr;
3751 
3752 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3753 	if ((obj = obj_from_addr(retaddr)) == NULL)
3754 	    _rtld_error("Cannot determine caller's shared object");
3755     } else
3756 	obj = dlcheck(handle);
3757 
3758     if (obj == NULL) {
3759 	lock_release(rtld_bind_lock, &lockstate);
3760 	return (-1);
3761     }
3762 
3763     error = 0;
3764     switch (request) {
3765     case RTLD_DI_LINKMAP:
3766 	*((struct link_map const **)p) = &obj->linkmap;
3767 	break;
3768     case RTLD_DI_ORIGIN:
3769 	error = rtld_dirname(obj->path, p);
3770 	break;
3771 
3772     case RTLD_DI_SERINFOSIZE:
3773     case RTLD_DI_SERINFO:
3774 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3775 	break;
3776 
3777     default:
3778 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3779 	error = -1;
3780     }
3781 
3782     lock_release(rtld_bind_lock, &lockstate);
3783 
3784     return (error);
3785 }
3786 
3787 static void
3788 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3789 {
3790 
3791 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3792 	phdr_info->dlpi_name = obj->path;
3793 	phdr_info->dlpi_phdr = obj->phdr;
3794 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3795 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3796 	phdr_info->dlpi_tls_data = obj->tlsinit;
3797 	phdr_info->dlpi_adds = obj_loads;
3798 	phdr_info->dlpi_subs = obj_loads - obj_count;
3799 }
3800 
3801 int
3802 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3803 {
3804 	struct dl_phdr_info phdr_info;
3805 	Obj_Entry *obj, marker;
3806 	RtldLockState bind_lockstate, phdr_lockstate;
3807 	int error;
3808 
3809 	init_marker(&marker);
3810 	error = 0;
3811 
3812 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3813 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3814 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3815 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3816 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3817 		hold_object(obj);
3818 		lock_release(rtld_bind_lock, &bind_lockstate);
3819 
3820 		error = callback(&phdr_info, sizeof phdr_info, param);
3821 
3822 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3823 		unhold_object(obj);
3824 		obj = globallist_next(&marker);
3825 		TAILQ_REMOVE(&obj_list, &marker, next);
3826 		if (error != 0) {
3827 			lock_release(rtld_bind_lock, &bind_lockstate);
3828 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3829 			return (error);
3830 		}
3831 	}
3832 
3833 	if (error == 0) {
3834 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3835 		lock_release(rtld_bind_lock, &bind_lockstate);
3836 		error = callback(&phdr_info, sizeof(phdr_info), param);
3837 	}
3838 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3839 	return (error);
3840 }
3841 
3842 static void *
3843 fill_search_info(const char *dir, size_t dirlen, void *param)
3844 {
3845     struct fill_search_info_args *arg;
3846 
3847     arg = param;
3848 
3849     if (arg->request == RTLD_DI_SERINFOSIZE) {
3850 	arg->serinfo->dls_cnt ++;
3851 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3852     } else {
3853 	struct dl_serpath *s_entry;
3854 
3855 	s_entry = arg->serpath;
3856 	s_entry->dls_name  = arg->strspace;
3857 	s_entry->dls_flags = arg->flags;
3858 
3859 	strncpy(arg->strspace, dir, dirlen);
3860 	arg->strspace[dirlen] = '\0';
3861 
3862 	arg->strspace += dirlen + 1;
3863 	arg->serpath++;
3864     }
3865 
3866     return (NULL);
3867 }
3868 
3869 static int
3870 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3871 {
3872     struct dl_serinfo _info;
3873     struct fill_search_info_args args;
3874 
3875     args.request = RTLD_DI_SERINFOSIZE;
3876     args.serinfo = &_info;
3877 
3878     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3879     _info.dls_cnt  = 0;
3880 
3881     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3882     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3883     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3884     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3885     if (!obj->z_nodeflib)
3886       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3887 
3888 
3889     if (request == RTLD_DI_SERINFOSIZE) {
3890 	info->dls_size = _info.dls_size;
3891 	info->dls_cnt = _info.dls_cnt;
3892 	return (0);
3893     }
3894 
3895     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3896 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3897 	return (-1);
3898     }
3899 
3900     args.request  = RTLD_DI_SERINFO;
3901     args.serinfo  = info;
3902     args.serpath  = &info->dls_serpath[0];
3903     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3904 
3905     args.flags = LA_SER_RUNPATH;
3906     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3907 	return (-1);
3908 
3909     args.flags = LA_SER_LIBPATH;
3910     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3911 	return (-1);
3912 
3913     args.flags = LA_SER_RUNPATH;
3914     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3915 	return (-1);
3916 
3917     args.flags = LA_SER_CONFIG;
3918     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3919       != NULL)
3920 	return (-1);
3921 
3922     args.flags = LA_SER_DEFAULT;
3923     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3924       fill_search_info, NULL, &args) != NULL)
3925 	return (-1);
3926     return (0);
3927 }
3928 
3929 static int
3930 rtld_dirname(const char *path, char *bname)
3931 {
3932     const char *endp;
3933 
3934     /* Empty or NULL string gets treated as "." */
3935     if (path == NULL || *path == '\0') {
3936 	bname[0] = '.';
3937 	bname[1] = '\0';
3938 	return (0);
3939     }
3940 
3941     /* Strip trailing slashes */
3942     endp = path + strlen(path) - 1;
3943     while (endp > path && *endp == '/')
3944 	endp--;
3945 
3946     /* Find the start of the dir */
3947     while (endp > path && *endp != '/')
3948 	endp--;
3949 
3950     /* Either the dir is "/" or there are no slashes */
3951     if (endp == path) {
3952 	bname[0] = *endp == '/' ? '/' : '.';
3953 	bname[1] = '\0';
3954 	return (0);
3955     } else {
3956 	do {
3957 	    endp--;
3958 	} while (endp > path && *endp == '/');
3959     }
3960 
3961     if (endp - path + 2 > PATH_MAX)
3962     {
3963 	_rtld_error("Filename is too long: %s", path);
3964 	return(-1);
3965     }
3966 
3967     strncpy(bname, path, endp - path + 1);
3968     bname[endp - path + 1] = '\0';
3969     return (0);
3970 }
3971 
3972 static int
3973 rtld_dirname_abs(const char *path, char *base)
3974 {
3975 	char *last;
3976 
3977 	if (realpath(path, base) == NULL)
3978 		return (-1);
3979 	dbg("%s -> %s", path, base);
3980 	last = strrchr(base, '/');
3981 	if (last == NULL)
3982 		return (-1);
3983 	if (last != base)
3984 		*last = '\0';
3985 	return (0);
3986 }
3987 
3988 static void
3989 linkmap_add(Obj_Entry *obj)
3990 {
3991     struct link_map *l = &obj->linkmap;
3992     struct link_map *prev;
3993 
3994     obj->linkmap.l_name = obj->path;
3995     obj->linkmap.l_addr = obj->mapbase;
3996     obj->linkmap.l_ld = obj->dynamic;
3997 #ifdef __mips__
3998     /* GDB needs load offset on MIPS to use the symbols */
3999     obj->linkmap.l_offs = obj->relocbase;
4000 #endif
4001 
4002     if (r_debug.r_map == NULL) {
4003 	r_debug.r_map = l;
4004 	return;
4005     }
4006 
4007     /*
4008      * Scan to the end of the list, but not past the entry for the
4009      * dynamic linker, which we want to keep at the very end.
4010      */
4011     for (prev = r_debug.r_map;
4012       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4013       prev = prev->l_next)
4014 	;
4015 
4016     /* Link in the new entry. */
4017     l->l_prev = prev;
4018     l->l_next = prev->l_next;
4019     if (l->l_next != NULL)
4020 	l->l_next->l_prev = l;
4021     prev->l_next = l;
4022 }
4023 
4024 static void
4025 linkmap_delete(Obj_Entry *obj)
4026 {
4027     struct link_map *l = &obj->linkmap;
4028 
4029     if (l->l_prev == NULL) {
4030 	if ((r_debug.r_map = l->l_next) != NULL)
4031 	    l->l_next->l_prev = NULL;
4032 	return;
4033     }
4034 
4035     if ((l->l_prev->l_next = l->l_next) != NULL)
4036 	l->l_next->l_prev = l->l_prev;
4037 }
4038 
4039 /*
4040  * Function for the debugger to set a breakpoint on to gain control.
4041  *
4042  * The two parameters allow the debugger to easily find and determine
4043  * what the runtime loader is doing and to whom it is doing it.
4044  *
4045  * When the loadhook trap is hit (r_debug_state, set at program
4046  * initialization), the arguments can be found on the stack:
4047  *
4048  *  +8   struct link_map *m
4049  *  +4   struct r_debug  *rd
4050  *  +0   RetAddr
4051  */
4052 void
4053 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4054 {
4055     /*
4056      * The following is a hack to force the compiler to emit calls to
4057      * this function, even when optimizing.  If the function is empty,
4058      * the compiler is not obliged to emit any code for calls to it,
4059      * even when marked __noinline.  However, gdb depends on those
4060      * calls being made.
4061      */
4062     __compiler_membar();
4063 }
4064 
4065 /*
4066  * A function called after init routines have completed. This can be used to
4067  * break before a program's entry routine is called, and can be used when
4068  * main is not available in the symbol table.
4069  */
4070 void
4071 _r_debug_postinit(struct link_map *m __unused)
4072 {
4073 
4074 	/* See r_debug_state(). */
4075 	__compiler_membar();
4076 }
4077 
4078 static void
4079 release_object(Obj_Entry *obj)
4080 {
4081 
4082 	if (obj->holdcount > 0) {
4083 		obj->unholdfree = true;
4084 		return;
4085 	}
4086 	munmap(obj->mapbase, obj->mapsize);
4087 	linkmap_delete(obj);
4088 	obj_free(obj);
4089 }
4090 
4091 /*
4092  * Get address of the pointer variable in the main program.
4093  * Prefer non-weak symbol over the weak one.
4094  */
4095 static const void **
4096 get_program_var_addr(const char *name, RtldLockState *lockstate)
4097 {
4098     SymLook req;
4099     DoneList donelist;
4100 
4101     symlook_init(&req, name);
4102     req.lockstate = lockstate;
4103     donelist_init(&donelist);
4104     if (symlook_global(&req, &donelist) != 0)
4105 	return (NULL);
4106     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4107 	return ((const void **)make_function_pointer(req.sym_out,
4108 	  req.defobj_out));
4109     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4110 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4111     else
4112 	return ((const void **)(req.defobj_out->relocbase +
4113 	  req.sym_out->st_value));
4114 }
4115 
4116 /*
4117  * Set a pointer variable in the main program to the given value.  This
4118  * is used to set key variables such as "environ" before any of the
4119  * init functions are called.
4120  */
4121 static void
4122 set_program_var(const char *name, const void *value)
4123 {
4124     const void **addr;
4125 
4126     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4127 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4128 	*addr = value;
4129     }
4130 }
4131 
4132 /*
4133  * Search the global objects, including dependencies and main object,
4134  * for the given symbol.
4135  */
4136 static int
4137 symlook_global(SymLook *req, DoneList *donelist)
4138 {
4139     SymLook req1;
4140     const Objlist_Entry *elm;
4141     int res;
4142 
4143     symlook_init_from_req(&req1, req);
4144 
4145     /* Search all objects loaded at program start up. */
4146     if (req->defobj_out == NULL ||
4147       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4148 	res = symlook_list(&req1, &list_main, donelist);
4149 	if (res == 0 && (req->defobj_out == NULL ||
4150 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4151 	    req->sym_out = req1.sym_out;
4152 	    req->defobj_out = req1.defobj_out;
4153 	    assert(req->defobj_out != NULL);
4154 	}
4155     }
4156 
4157     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4158     STAILQ_FOREACH(elm, &list_global, link) {
4159 	if (req->defobj_out != NULL &&
4160 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4161 	    break;
4162 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4163 	if (res == 0 && (req->defobj_out == NULL ||
4164 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4165 	    req->sym_out = req1.sym_out;
4166 	    req->defobj_out = req1.defobj_out;
4167 	    assert(req->defobj_out != NULL);
4168 	}
4169     }
4170 
4171     return (req->sym_out != NULL ? 0 : ESRCH);
4172 }
4173 
4174 /*
4175  * Given a symbol name in a referencing object, find the corresponding
4176  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4177  * no definition was found.  Returns a pointer to the Obj_Entry of the
4178  * defining object via the reference parameter DEFOBJ_OUT.
4179  */
4180 static int
4181 symlook_default(SymLook *req, const Obj_Entry *refobj)
4182 {
4183     DoneList donelist;
4184     const Objlist_Entry *elm;
4185     SymLook req1;
4186     int res;
4187 
4188     donelist_init(&donelist);
4189     symlook_init_from_req(&req1, req);
4190 
4191     /*
4192      * Look first in the referencing object if linked symbolically,
4193      * and similarly handle protected symbols.
4194      */
4195     res = symlook_obj(&req1, refobj);
4196     if (res == 0 && (refobj->symbolic ||
4197       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4198 	req->sym_out = req1.sym_out;
4199 	req->defobj_out = req1.defobj_out;
4200 	assert(req->defobj_out != NULL);
4201     }
4202     if (refobj->symbolic || req->defobj_out != NULL)
4203 	donelist_check(&donelist, refobj);
4204 
4205     symlook_global(req, &donelist);
4206 
4207     /* Search all dlopened DAGs containing the referencing object. */
4208     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4209 	if (req->sym_out != NULL &&
4210 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4211 	    break;
4212 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4213 	if (res == 0 && (req->sym_out == NULL ||
4214 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4215 	    req->sym_out = req1.sym_out;
4216 	    req->defobj_out = req1.defobj_out;
4217 	    assert(req->defobj_out != NULL);
4218 	}
4219     }
4220 
4221     /*
4222      * Search the dynamic linker itself, and possibly resolve the
4223      * symbol from there.  This is how the application links to
4224      * dynamic linker services such as dlopen.
4225      */
4226     if (req->sym_out == NULL ||
4227       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4228 	res = symlook_obj(&req1, &obj_rtld);
4229 	if (res == 0) {
4230 	    req->sym_out = req1.sym_out;
4231 	    req->defobj_out = req1.defobj_out;
4232 	    assert(req->defobj_out != NULL);
4233 	}
4234     }
4235 
4236     return (req->sym_out != NULL ? 0 : ESRCH);
4237 }
4238 
4239 static int
4240 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4241 {
4242     const Elf_Sym *def;
4243     const Obj_Entry *defobj;
4244     const Objlist_Entry *elm;
4245     SymLook req1;
4246     int res;
4247 
4248     def = NULL;
4249     defobj = NULL;
4250     STAILQ_FOREACH(elm, objlist, link) {
4251 	if (donelist_check(dlp, elm->obj))
4252 	    continue;
4253 	symlook_init_from_req(&req1, req);
4254 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4255 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4256 		def = req1.sym_out;
4257 		defobj = req1.defobj_out;
4258 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4259 		    break;
4260 	    }
4261 	}
4262     }
4263     if (def != NULL) {
4264 	req->sym_out = def;
4265 	req->defobj_out = defobj;
4266 	return (0);
4267     }
4268     return (ESRCH);
4269 }
4270 
4271 /*
4272  * Search the chain of DAGS cointed to by the given Needed_Entry
4273  * for a symbol of the given name.  Each DAG is scanned completely
4274  * before advancing to the next one.  Returns a pointer to the symbol,
4275  * or NULL if no definition was found.
4276  */
4277 static int
4278 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4279 {
4280     const Elf_Sym *def;
4281     const Needed_Entry *n;
4282     const Obj_Entry *defobj;
4283     SymLook req1;
4284     int res;
4285 
4286     def = NULL;
4287     defobj = NULL;
4288     symlook_init_from_req(&req1, req);
4289     for (n = needed; n != NULL; n = n->next) {
4290 	if (n->obj == NULL ||
4291 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4292 	    continue;
4293 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4294 	    def = req1.sym_out;
4295 	    defobj = req1.defobj_out;
4296 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4297 		break;
4298 	}
4299     }
4300     if (def != NULL) {
4301 	req->sym_out = def;
4302 	req->defobj_out = defobj;
4303 	return (0);
4304     }
4305     return (ESRCH);
4306 }
4307 
4308 /*
4309  * Search the symbol table of a single shared object for a symbol of
4310  * the given name and version, if requested.  Returns a pointer to the
4311  * symbol, or NULL if no definition was found.  If the object is
4312  * filter, return filtered symbol from filtee.
4313  *
4314  * The symbol's hash value is passed in for efficiency reasons; that
4315  * eliminates many recomputations of the hash value.
4316  */
4317 int
4318 symlook_obj(SymLook *req, const Obj_Entry *obj)
4319 {
4320     DoneList donelist;
4321     SymLook req1;
4322     int flags, res, mres;
4323 
4324     /*
4325      * If there is at least one valid hash at this point, we prefer to
4326      * use the faster GNU version if available.
4327      */
4328     if (obj->valid_hash_gnu)
4329 	mres = symlook_obj1_gnu(req, obj);
4330     else if (obj->valid_hash_sysv)
4331 	mres = symlook_obj1_sysv(req, obj);
4332     else
4333 	return (EINVAL);
4334 
4335     if (mres == 0) {
4336 	if (obj->needed_filtees != NULL) {
4337 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4338 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4339 	    donelist_init(&donelist);
4340 	    symlook_init_from_req(&req1, req);
4341 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4342 	    if (res == 0) {
4343 		req->sym_out = req1.sym_out;
4344 		req->defobj_out = req1.defobj_out;
4345 	    }
4346 	    return (res);
4347 	}
4348 	if (obj->needed_aux_filtees != NULL) {
4349 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4350 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4351 	    donelist_init(&donelist);
4352 	    symlook_init_from_req(&req1, req);
4353 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4354 	    if (res == 0) {
4355 		req->sym_out = req1.sym_out;
4356 		req->defobj_out = req1.defobj_out;
4357 		return (res);
4358 	    }
4359 	}
4360     }
4361     return (mres);
4362 }
4363 
4364 /* Symbol match routine common to both hash functions */
4365 static bool
4366 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4367     const unsigned long symnum)
4368 {
4369 	Elf_Versym verndx;
4370 	const Elf_Sym *symp;
4371 	const char *strp;
4372 
4373 	symp = obj->symtab + symnum;
4374 	strp = obj->strtab + symp->st_name;
4375 
4376 	switch (ELF_ST_TYPE(symp->st_info)) {
4377 	case STT_FUNC:
4378 	case STT_NOTYPE:
4379 	case STT_OBJECT:
4380 	case STT_COMMON:
4381 	case STT_GNU_IFUNC:
4382 		if (symp->st_value == 0)
4383 			return (false);
4384 		/* fallthrough */
4385 	case STT_TLS:
4386 		if (symp->st_shndx != SHN_UNDEF)
4387 			break;
4388 #ifndef __mips__
4389 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4390 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4391 			break;
4392 #endif
4393 		/* fallthrough */
4394 	default:
4395 		return (false);
4396 	}
4397 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4398 		return (false);
4399 
4400 	if (req->ventry == NULL) {
4401 		if (obj->versyms != NULL) {
4402 			verndx = VER_NDX(obj->versyms[symnum]);
4403 			if (verndx > obj->vernum) {
4404 				_rtld_error(
4405 				    "%s: symbol %s references wrong version %d",
4406 				    obj->path, obj->strtab + symnum, verndx);
4407 				return (false);
4408 			}
4409 			/*
4410 			 * If we are not called from dlsym (i.e. this
4411 			 * is a normal relocation from unversioned
4412 			 * binary), accept the symbol immediately if
4413 			 * it happens to have first version after this
4414 			 * shared object became versioned.  Otherwise,
4415 			 * if symbol is versioned and not hidden,
4416 			 * remember it. If it is the only symbol with
4417 			 * this name exported by the shared object, it
4418 			 * will be returned as a match by the calling
4419 			 * function. If symbol is global (verndx < 2)
4420 			 * accept it unconditionally.
4421 			 */
4422 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4423 			    verndx == VER_NDX_GIVEN) {
4424 				result->sym_out = symp;
4425 				return (true);
4426 			}
4427 			else if (verndx >= VER_NDX_GIVEN) {
4428 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4429 				    == 0) {
4430 					if (result->vsymp == NULL)
4431 						result->vsymp = symp;
4432 					result->vcount++;
4433 				}
4434 				return (false);
4435 			}
4436 		}
4437 		result->sym_out = symp;
4438 		return (true);
4439 	}
4440 	if (obj->versyms == NULL) {
4441 		if (object_match_name(obj, req->ventry->name)) {
4442 			_rtld_error("%s: object %s should provide version %s "
4443 			    "for symbol %s", obj_rtld.path, obj->path,
4444 			    req->ventry->name, obj->strtab + symnum);
4445 			return (false);
4446 		}
4447 	} else {
4448 		verndx = VER_NDX(obj->versyms[symnum]);
4449 		if (verndx > obj->vernum) {
4450 			_rtld_error("%s: symbol %s references wrong version %d",
4451 			    obj->path, obj->strtab + symnum, verndx);
4452 			return (false);
4453 		}
4454 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4455 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4456 			/*
4457 			 * Version does not match. Look if this is a
4458 			 * global symbol and if it is not hidden. If
4459 			 * global symbol (verndx < 2) is available,
4460 			 * use it. Do not return symbol if we are
4461 			 * called by dlvsym, because dlvsym looks for
4462 			 * a specific version and default one is not
4463 			 * what dlvsym wants.
4464 			 */
4465 			if ((req->flags & SYMLOOK_DLSYM) ||
4466 			    (verndx >= VER_NDX_GIVEN) ||
4467 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4468 				return (false);
4469 		}
4470 	}
4471 	result->sym_out = symp;
4472 	return (true);
4473 }
4474 
4475 /*
4476  * Search for symbol using SysV hash function.
4477  * obj->buckets is known not to be NULL at this point; the test for this was
4478  * performed with the obj->valid_hash_sysv assignment.
4479  */
4480 static int
4481 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4482 {
4483 	unsigned long symnum;
4484 	Sym_Match_Result matchres;
4485 
4486 	matchres.sym_out = NULL;
4487 	matchres.vsymp = NULL;
4488 	matchres.vcount = 0;
4489 
4490 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4491 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4492 		if (symnum >= obj->nchains)
4493 			return (ESRCH);	/* Bad object */
4494 
4495 		if (matched_symbol(req, obj, &matchres, symnum)) {
4496 			req->sym_out = matchres.sym_out;
4497 			req->defobj_out = obj;
4498 			return (0);
4499 		}
4500 	}
4501 	if (matchres.vcount == 1) {
4502 		req->sym_out = matchres.vsymp;
4503 		req->defobj_out = obj;
4504 		return (0);
4505 	}
4506 	return (ESRCH);
4507 }
4508 
4509 /* Search for symbol using GNU hash function */
4510 static int
4511 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4512 {
4513 	Elf_Addr bloom_word;
4514 	const Elf32_Word *hashval;
4515 	Elf32_Word bucket;
4516 	Sym_Match_Result matchres;
4517 	unsigned int h1, h2;
4518 	unsigned long symnum;
4519 
4520 	matchres.sym_out = NULL;
4521 	matchres.vsymp = NULL;
4522 	matchres.vcount = 0;
4523 
4524 	/* Pick right bitmask word from Bloom filter array */
4525 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4526 	    obj->maskwords_bm_gnu];
4527 
4528 	/* Calculate modulus word size of gnu hash and its derivative */
4529 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4530 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4531 
4532 	/* Filter out the "definitely not in set" queries */
4533 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4534 		return (ESRCH);
4535 
4536 	/* Locate hash chain and corresponding value element*/
4537 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4538 	if (bucket == 0)
4539 		return (ESRCH);
4540 	hashval = &obj->chain_zero_gnu[bucket];
4541 	do {
4542 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4543 			symnum = hashval - obj->chain_zero_gnu;
4544 			if (matched_symbol(req, obj, &matchres, symnum)) {
4545 				req->sym_out = matchres.sym_out;
4546 				req->defobj_out = obj;
4547 				return (0);
4548 			}
4549 		}
4550 	} while ((*hashval++ & 1) == 0);
4551 	if (matchres.vcount == 1) {
4552 		req->sym_out = matchres.vsymp;
4553 		req->defobj_out = obj;
4554 		return (0);
4555 	}
4556 	return (ESRCH);
4557 }
4558 
4559 static void
4560 trace_loaded_objects(Obj_Entry *obj)
4561 {
4562     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4563     int c;
4564 
4565     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4566 	main_local = "";
4567 
4568     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4569 	fmt1 = "\t%o => %p (%x)\n";
4570 
4571     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4572 	fmt2 = "\t%o (%x)\n";
4573 
4574     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4575 
4576     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4577 	Needed_Entry *needed;
4578 	const char *name, *path;
4579 	bool is_lib;
4580 
4581 	if (obj->marker)
4582 	    continue;
4583 	if (list_containers && obj->needed != NULL)
4584 	    rtld_printf("%s:\n", obj->path);
4585 	for (needed = obj->needed; needed; needed = needed->next) {
4586 	    if (needed->obj != NULL) {
4587 		if (needed->obj->traced && !list_containers)
4588 		    continue;
4589 		needed->obj->traced = true;
4590 		path = needed->obj->path;
4591 	    } else
4592 		path = "not found";
4593 
4594 	    name = obj->strtab + needed->name;
4595 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4596 
4597 	    fmt = is_lib ? fmt1 : fmt2;
4598 	    while ((c = *fmt++) != '\0') {
4599 		switch (c) {
4600 		default:
4601 		    rtld_putchar(c);
4602 		    continue;
4603 		case '\\':
4604 		    switch (c = *fmt) {
4605 		    case '\0':
4606 			continue;
4607 		    case 'n':
4608 			rtld_putchar('\n');
4609 			break;
4610 		    case 't':
4611 			rtld_putchar('\t');
4612 			break;
4613 		    }
4614 		    break;
4615 		case '%':
4616 		    switch (c = *fmt) {
4617 		    case '\0':
4618 			continue;
4619 		    case '%':
4620 		    default:
4621 			rtld_putchar(c);
4622 			break;
4623 		    case 'A':
4624 			rtld_putstr(main_local);
4625 			break;
4626 		    case 'a':
4627 			rtld_putstr(obj_main->path);
4628 			break;
4629 		    case 'o':
4630 			rtld_putstr(name);
4631 			break;
4632 #if 0
4633 		    case 'm':
4634 			rtld_printf("%d", sodp->sod_major);
4635 			break;
4636 		    case 'n':
4637 			rtld_printf("%d", sodp->sod_minor);
4638 			break;
4639 #endif
4640 		    case 'p':
4641 			rtld_putstr(path);
4642 			break;
4643 		    case 'x':
4644 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4645 			  0);
4646 			break;
4647 		    }
4648 		    break;
4649 		}
4650 		++fmt;
4651 	    }
4652 	}
4653     }
4654 }
4655 
4656 /*
4657  * Unload a dlopened object and its dependencies from memory and from
4658  * our data structures.  It is assumed that the DAG rooted in the
4659  * object has already been unreferenced, and that the object has a
4660  * reference count of 0.
4661  */
4662 static void
4663 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4664 {
4665 	Obj_Entry marker, *obj, *next;
4666 
4667 	assert(root->refcount == 0);
4668 
4669 	/*
4670 	 * Pass over the DAG removing unreferenced objects from
4671 	 * appropriate lists.
4672 	 */
4673 	unlink_object(root);
4674 
4675 	/* Unmap all objects that are no longer referenced. */
4676 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4677 		next = TAILQ_NEXT(obj, next);
4678 		if (obj->marker || obj->refcount != 0)
4679 			continue;
4680 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4681 		    obj->mapsize, 0, obj->path);
4682 		dbg("unloading \"%s\"", obj->path);
4683 		/*
4684 		 * Unlink the object now to prevent new references from
4685 		 * being acquired while the bind lock is dropped in
4686 		 * recursive dlclose() invocations.
4687 		 */
4688 		TAILQ_REMOVE(&obj_list, obj, next);
4689 		obj_count--;
4690 
4691 		if (obj->filtees_loaded) {
4692 			if (next != NULL) {
4693 				init_marker(&marker);
4694 				TAILQ_INSERT_BEFORE(next, &marker, next);
4695 				unload_filtees(obj, lockstate);
4696 				next = TAILQ_NEXT(&marker, next);
4697 				TAILQ_REMOVE(&obj_list, &marker, next);
4698 			} else
4699 				unload_filtees(obj, lockstate);
4700 		}
4701 		release_object(obj);
4702 	}
4703 }
4704 
4705 static void
4706 unlink_object(Obj_Entry *root)
4707 {
4708     Objlist_Entry *elm;
4709 
4710     if (root->refcount == 0) {
4711 	/* Remove the object from the RTLD_GLOBAL list. */
4712 	objlist_remove(&list_global, root);
4713 
4714     	/* Remove the object from all objects' DAG lists. */
4715     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4716 	    objlist_remove(&elm->obj->dldags, root);
4717 	    if (elm->obj != root)
4718 		unlink_object(elm->obj);
4719 	}
4720     }
4721 }
4722 
4723 static void
4724 ref_dag(Obj_Entry *root)
4725 {
4726     Objlist_Entry *elm;
4727 
4728     assert(root->dag_inited);
4729     STAILQ_FOREACH(elm, &root->dagmembers, link)
4730 	elm->obj->refcount++;
4731 }
4732 
4733 static void
4734 unref_dag(Obj_Entry *root)
4735 {
4736     Objlist_Entry *elm;
4737 
4738     assert(root->dag_inited);
4739     STAILQ_FOREACH(elm, &root->dagmembers, link)
4740 	elm->obj->refcount--;
4741 }
4742 
4743 /*
4744  * Common code for MD __tls_get_addr().
4745  */
4746 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4747 static void *
4748 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4749 {
4750     Elf_Addr *newdtv, *dtv;
4751     RtldLockState lockstate;
4752     int to_copy;
4753 
4754     dtv = *dtvp;
4755     /* Check dtv generation in case new modules have arrived */
4756     if (dtv[0] != tls_dtv_generation) {
4757 	wlock_acquire(rtld_bind_lock, &lockstate);
4758 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4759 	to_copy = dtv[1];
4760 	if (to_copy > tls_max_index)
4761 	    to_copy = tls_max_index;
4762 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4763 	newdtv[0] = tls_dtv_generation;
4764 	newdtv[1] = tls_max_index;
4765 	free(dtv);
4766 	lock_release(rtld_bind_lock, &lockstate);
4767 	dtv = *dtvp = newdtv;
4768     }
4769 
4770     /* Dynamically allocate module TLS if necessary */
4771     if (dtv[index + 1] == 0) {
4772 	/* Signal safe, wlock will block out signals. */
4773 	wlock_acquire(rtld_bind_lock, &lockstate);
4774 	if (!dtv[index + 1])
4775 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4776 	lock_release(rtld_bind_lock, &lockstate);
4777     }
4778     return ((void *)(dtv[index + 1] + offset));
4779 }
4780 
4781 void *
4782 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4783 {
4784 	Elf_Addr *dtv;
4785 
4786 	dtv = *dtvp;
4787 	/* Check dtv generation in case new modules have arrived */
4788 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4789 	    dtv[index + 1] != 0))
4790 		return ((void *)(dtv[index + 1] + offset));
4791 	return (tls_get_addr_slow(dtvp, index, offset));
4792 }
4793 
4794 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4795     defined(__powerpc__) || defined(__riscv)
4796 
4797 /*
4798  * Return pointer to allocated TLS block
4799  */
4800 static void *
4801 get_tls_block_ptr(void *tcb, size_t tcbsize)
4802 {
4803     size_t extra_size, post_size, pre_size, tls_block_size;
4804     size_t tls_init_align;
4805 
4806     tls_init_align = MAX(obj_main->tlsalign, 1);
4807 
4808     /* Compute fragments sizes. */
4809     extra_size = tcbsize - TLS_TCB_SIZE;
4810     post_size = calculate_tls_post_size(tls_init_align);
4811     tls_block_size = tcbsize + post_size;
4812     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4813 
4814     return ((char *)tcb - pre_size - extra_size);
4815 }
4816 
4817 /*
4818  * Allocate Static TLS using the Variant I method.
4819  *
4820  * For details on the layout, see lib/libc/gen/tls.c.
4821  *
4822  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4823  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4824  *     offsets, whereas libc's tls_static_space is just the executable's static
4825  *     TLS segment.
4826  */
4827 void *
4828 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4829 {
4830     Obj_Entry *obj;
4831     char *tls_block;
4832     Elf_Addr *dtv, **tcb;
4833     Elf_Addr addr;
4834     Elf_Addr i;
4835     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4836     size_t tls_init_align;
4837 
4838     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4839 	return (oldtcb);
4840 
4841     assert(tcbsize >= TLS_TCB_SIZE);
4842     maxalign = MAX(tcbalign, tls_static_max_align);
4843     tls_init_align = MAX(obj_main->tlsalign, 1);
4844 
4845     /* Compute fragmets sizes. */
4846     extra_size = tcbsize - TLS_TCB_SIZE;
4847     post_size = calculate_tls_post_size(tls_init_align);
4848     tls_block_size = tcbsize + post_size;
4849     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4850     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4851 
4852     /* Allocate whole TLS block */
4853     tls_block = malloc_aligned(tls_block_size, maxalign);
4854     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4855 
4856     if (oldtcb != NULL) {
4857 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4858 	    tls_static_space);
4859 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4860 
4861 	/* Adjust the DTV. */
4862 	dtv = tcb[0];
4863 	for (i = 0; i < dtv[1]; i++) {
4864 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4865 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4866 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4867 	    }
4868 	}
4869     } else {
4870 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4871 	tcb[0] = dtv;
4872 	dtv[0] = tls_dtv_generation;
4873 	dtv[1] = tls_max_index;
4874 
4875 	for (obj = globallist_curr(objs); obj != NULL;
4876 	  obj = globallist_next(obj)) {
4877 	    if (obj->tlsoffset > 0) {
4878 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4879 		if (obj->tlsinitsize > 0)
4880 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4881 		if (obj->tlssize > obj->tlsinitsize)
4882 		    memset((void*)(addr + obj->tlsinitsize), 0,
4883 			   obj->tlssize - obj->tlsinitsize);
4884 		dtv[obj->tlsindex + 1] = addr;
4885 	    }
4886 	}
4887     }
4888 
4889     return (tcb);
4890 }
4891 
4892 void
4893 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4894 {
4895     Elf_Addr *dtv;
4896     Elf_Addr tlsstart, tlsend;
4897     size_t post_size;
4898     size_t dtvsize, i, tls_init_align;
4899 
4900     assert(tcbsize >= TLS_TCB_SIZE);
4901     tls_init_align = MAX(obj_main->tlsalign, 1);
4902 
4903     /* Compute fragments sizes. */
4904     post_size = calculate_tls_post_size(tls_init_align);
4905 
4906     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4907     tlsend = (Elf_Addr)tcb + tls_static_space;
4908 
4909     dtv = *(Elf_Addr **)tcb;
4910     dtvsize = dtv[1];
4911     for (i = 0; i < dtvsize; i++) {
4912 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4913 	    free((void*)dtv[i+2]);
4914 	}
4915     }
4916     free(dtv);
4917     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4918 }
4919 
4920 #endif
4921 
4922 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4923 
4924 /*
4925  * Allocate Static TLS using the Variant II method.
4926  */
4927 void *
4928 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4929 {
4930     Obj_Entry *obj;
4931     size_t size, ralign;
4932     char *tls;
4933     Elf_Addr *dtv, *olddtv;
4934     Elf_Addr segbase, oldsegbase, addr;
4935     size_t i;
4936 
4937     ralign = tcbalign;
4938     if (tls_static_max_align > ralign)
4939 	    ralign = tls_static_max_align;
4940     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4941 
4942     assert(tcbsize >= 2*sizeof(Elf_Addr));
4943     tls = malloc_aligned(size, ralign);
4944     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4945 
4946     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4947     ((Elf_Addr*)segbase)[0] = segbase;
4948     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4949 
4950     dtv[0] = tls_dtv_generation;
4951     dtv[1] = tls_max_index;
4952 
4953     if (oldtls) {
4954 	/*
4955 	 * Copy the static TLS block over whole.
4956 	 */
4957 	oldsegbase = (Elf_Addr) oldtls;
4958 	memcpy((void *)(segbase - tls_static_space),
4959 	       (const void *)(oldsegbase - tls_static_space),
4960 	       tls_static_space);
4961 
4962 	/*
4963 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4964 	 * move them over.
4965 	 */
4966 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4967 	for (i = 0; i < olddtv[1]; i++) {
4968 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4969 		dtv[i+2] = olddtv[i+2];
4970 		olddtv[i+2] = 0;
4971 	    }
4972 	}
4973 
4974 	/*
4975 	 * We assume that this block was the one we created with
4976 	 * allocate_initial_tls().
4977 	 */
4978 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4979     } else {
4980 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4981 		if (obj->marker || obj->tlsoffset == 0)
4982 			continue;
4983 		addr = segbase - obj->tlsoffset;
4984 		memset((void*)(addr + obj->tlsinitsize),
4985 		       0, obj->tlssize - obj->tlsinitsize);
4986 		if (obj->tlsinit) {
4987 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4988 		    obj->static_tls_copied = true;
4989 		}
4990 		dtv[obj->tlsindex + 1] = addr;
4991 	}
4992     }
4993 
4994     return (void*) segbase;
4995 }
4996 
4997 void
4998 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4999 {
5000     Elf_Addr* dtv;
5001     size_t size, ralign;
5002     int dtvsize, i;
5003     Elf_Addr tlsstart, tlsend;
5004 
5005     /*
5006      * Figure out the size of the initial TLS block so that we can
5007      * find stuff which ___tls_get_addr() allocated dynamically.
5008      */
5009     ralign = tcbalign;
5010     if (tls_static_max_align > ralign)
5011 	    ralign = tls_static_max_align;
5012     size = round(tls_static_space, ralign);
5013 
5014     dtv = ((Elf_Addr**)tls)[1];
5015     dtvsize = dtv[1];
5016     tlsend = (Elf_Addr) tls;
5017     tlsstart = tlsend - size;
5018     for (i = 0; i < dtvsize; i++) {
5019 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5020 		free_aligned((void *)dtv[i + 2]);
5021 	}
5022     }
5023 
5024     free_aligned((void *)tlsstart);
5025     free((void*) dtv);
5026 }
5027 
5028 #endif
5029 
5030 /*
5031  * Allocate TLS block for module with given index.
5032  */
5033 void *
5034 allocate_module_tls(int index)
5035 {
5036     Obj_Entry* obj;
5037     char* p;
5038 
5039     TAILQ_FOREACH(obj, &obj_list, next) {
5040 	if (obj->marker)
5041 	    continue;
5042 	if (obj->tlsindex == index)
5043 	    break;
5044     }
5045     if (!obj) {
5046 	_rtld_error("Can't find module with TLS index %d", index);
5047 	rtld_die();
5048     }
5049 
5050     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5051     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5052     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5053 
5054     return p;
5055 }
5056 
5057 bool
5058 allocate_tls_offset(Obj_Entry *obj)
5059 {
5060     size_t off;
5061 
5062     if (obj->tls_done)
5063 	return true;
5064 
5065     if (obj->tlssize == 0) {
5066 	obj->tls_done = true;
5067 	return true;
5068     }
5069 
5070     if (tls_last_offset == 0)
5071 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5072     else
5073 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5074 				   obj->tlssize, obj->tlsalign);
5075 
5076     /*
5077      * If we have already fixed the size of the static TLS block, we
5078      * must stay within that size. When allocating the static TLS, we
5079      * leave a small amount of space spare to be used for dynamically
5080      * loading modules which use static TLS.
5081      */
5082     if (tls_static_space != 0) {
5083 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5084 	    return false;
5085     } else if (obj->tlsalign > tls_static_max_align) {
5086 	    tls_static_max_align = obj->tlsalign;
5087     }
5088 
5089     tls_last_offset = obj->tlsoffset = off;
5090     tls_last_size = obj->tlssize;
5091     obj->tls_done = true;
5092 
5093     return true;
5094 }
5095 
5096 void
5097 free_tls_offset(Obj_Entry *obj)
5098 {
5099 
5100     /*
5101      * If we were the last thing to allocate out of the static TLS
5102      * block, we give our space back to the 'allocator'. This is a
5103      * simplistic workaround to allow libGL.so.1 to be loaded and
5104      * unloaded multiple times.
5105      */
5106     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5107 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5108 	tls_last_offset -= obj->tlssize;
5109 	tls_last_size = 0;
5110     }
5111 }
5112 
5113 void *
5114 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5115 {
5116     void *ret;
5117     RtldLockState lockstate;
5118 
5119     wlock_acquire(rtld_bind_lock, &lockstate);
5120     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5121       tcbsize, tcbalign);
5122     lock_release(rtld_bind_lock, &lockstate);
5123     return (ret);
5124 }
5125 
5126 void
5127 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5128 {
5129     RtldLockState lockstate;
5130 
5131     wlock_acquire(rtld_bind_lock, &lockstate);
5132     free_tls(tcb, tcbsize, tcbalign);
5133     lock_release(rtld_bind_lock, &lockstate);
5134 }
5135 
5136 static void
5137 object_add_name(Obj_Entry *obj, const char *name)
5138 {
5139     Name_Entry *entry;
5140     size_t len;
5141 
5142     len = strlen(name);
5143     entry = malloc(sizeof(Name_Entry) + len);
5144 
5145     if (entry != NULL) {
5146 	strcpy(entry->name, name);
5147 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5148     }
5149 }
5150 
5151 static int
5152 object_match_name(const Obj_Entry *obj, const char *name)
5153 {
5154     Name_Entry *entry;
5155 
5156     STAILQ_FOREACH(entry, &obj->names, link) {
5157 	if (strcmp(name, entry->name) == 0)
5158 	    return (1);
5159     }
5160     return (0);
5161 }
5162 
5163 static Obj_Entry *
5164 locate_dependency(const Obj_Entry *obj, const char *name)
5165 {
5166     const Objlist_Entry *entry;
5167     const Needed_Entry *needed;
5168 
5169     STAILQ_FOREACH(entry, &list_main, link) {
5170 	if (object_match_name(entry->obj, name))
5171 	    return entry->obj;
5172     }
5173 
5174     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5175 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5176 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5177 	    /*
5178 	     * If there is DT_NEEDED for the name we are looking for,
5179 	     * we are all set.  Note that object might not be found if
5180 	     * dependency was not loaded yet, so the function can
5181 	     * return NULL here.  This is expected and handled
5182 	     * properly by the caller.
5183 	     */
5184 	    return (needed->obj);
5185 	}
5186     }
5187     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5188 	obj->path, name);
5189     rtld_die();
5190 }
5191 
5192 static int
5193 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5194     const Elf_Vernaux *vna)
5195 {
5196     const Elf_Verdef *vd;
5197     const char *vername;
5198 
5199     vername = refobj->strtab + vna->vna_name;
5200     vd = depobj->verdef;
5201     if (vd == NULL) {
5202 	_rtld_error("%s: version %s required by %s not defined",
5203 	    depobj->path, vername, refobj->path);
5204 	return (-1);
5205     }
5206     for (;;) {
5207 	if (vd->vd_version != VER_DEF_CURRENT) {
5208 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5209 		depobj->path, vd->vd_version);
5210 	    return (-1);
5211 	}
5212 	if (vna->vna_hash == vd->vd_hash) {
5213 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5214 		((const char *)vd + vd->vd_aux);
5215 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5216 		return (0);
5217 	}
5218 	if (vd->vd_next == 0)
5219 	    break;
5220 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5221     }
5222     if (vna->vna_flags & VER_FLG_WEAK)
5223 	return (0);
5224     _rtld_error("%s: version %s required by %s not found",
5225 	depobj->path, vername, refobj->path);
5226     return (-1);
5227 }
5228 
5229 static int
5230 rtld_verify_object_versions(Obj_Entry *obj)
5231 {
5232     const Elf_Verneed *vn;
5233     const Elf_Verdef  *vd;
5234     const Elf_Verdaux *vda;
5235     const Elf_Vernaux *vna;
5236     const Obj_Entry *depobj;
5237     int maxvernum, vernum;
5238 
5239     if (obj->ver_checked)
5240 	return (0);
5241     obj->ver_checked = true;
5242 
5243     maxvernum = 0;
5244     /*
5245      * Walk over defined and required version records and figure out
5246      * max index used by any of them. Do very basic sanity checking
5247      * while there.
5248      */
5249     vn = obj->verneed;
5250     while (vn != NULL) {
5251 	if (vn->vn_version != VER_NEED_CURRENT) {
5252 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5253 		obj->path, vn->vn_version);
5254 	    return (-1);
5255 	}
5256 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5257 	for (;;) {
5258 	    vernum = VER_NEED_IDX(vna->vna_other);
5259 	    if (vernum > maxvernum)
5260 		maxvernum = vernum;
5261 	    if (vna->vna_next == 0)
5262 		 break;
5263 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5264 	}
5265 	if (vn->vn_next == 0)
5266 	    break;
5267 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5268     }
5269 
5270     vd = obj->verdef;
5271     while (vd != NULL) {
5272 	if (vd->vd_version != VER_DEF_CURRENT) {
5273 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5274 		obj->path, vd->vd_version);
5275 	    return (-1);
5276 	}
5277 	vernum = VER_DEF_IDX(vd->vd_ndx);
5278 	if (vernum > maxvernum)
5279 		maxvernum = vernum;
5280 	if (vd->vd_next == 0)
5281 	    break;
5282 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5283     }
5284 
5285     if (maxvernum == 0)
5286 	return (0);
5287 
5288     /*
5289      * Store version information in array indexable by version index.
5290      * Verify that object version requirements are satisfied along the
5291      * way.
5292      */
5293     obj->vernum = maxvernum + 1;
5294     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5295 
5296     vd = obj->verdef;
5297     while (vd != NULL) {
5298 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5299 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5300 	    assert(vernum <= maxvernum);
5301 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5302 	    obj->vertab[vernum].hash = vd->vd_hash;
5303 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5304 	    obj->vertab[vernum].file = NULL;
5305 	    obj->vertab[vernum].flags = 0;
5306 	}
5307 	if (vd->vd_next == 0)
5308 	    break;
5309 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5310     }
5311 
5312     vn = obj->verneed;
5313     while (vn != NULL) {
5314 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5315 	if (depobj == NULL)
5316 	    return (-1);
5317 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5318 	for (;;) {
5319 	    if (check_object_provided_version(obj, depobj, vna))
5320 		return (-1);
5321 	    vernum = VER_NEED_IDX(vna->vna_other);
5322 	    assert(vernum <= maxvernum);
5323 	    obj->vertab[vernum].hash = vna->vna_hash;
5324 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5325 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5326 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5327 		VER_INFO_HIDDEN : 0;
5328 	    if (vna->vna_next == 0)
5329 		 break;
5330 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5331 	}
5332 	if (vn->vn_next == 0)
5333 	    break;
5334 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5335     }
5336     return 0;
5337 }
5338 
5339 static int
5340 rtld_verify_versions(const Objlist *objlist)
5341 {
5342     Objlist_Entry *entry;
5343     int rc;
5344 
5345     rc = 0;
5346     STAILQ_FOREACH(entry, objlist, link) {
5347 	/*
5348 	 * Skip dummy objects or objects that have their version requirements
5349 	 * already checked.
5350 	 */
5351 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5352 	    continue;
5353 	if (rtld_verify_object_versions(entry->obj) == -1) {
5354 	    rc = -1;
5355 	    if (ld_tracing == NULL)
5356 		break;
5357 	}
5358     }
5359     if (rc == 0 || ld_tracing != NULL)
5360     	rc = rtld_verify_object_versions(&obj_rtld);
5361     return rc;
5362 }
5363 
5364 const Ver_Entry *
5365 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5366 {
5367     Elf_Versym vernum;
5368 
5369     if (obj->vertab) {
5370 	vernum = VER_NDX(obj->versyms[symnum]);
5371 	if (vernum >= obj->vernum) {
5372 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5373 		obj->path, obj->strtab + symnum, vernum);
5374 	} else if (obj->vertab[vernum].hash != 0) {
5375 	    return &obj->vertab[vernum];
5376 	}
5377     }
5378     return NULL;
5379 }
5380 
5381 int
5382 _rtld_get_stack_prot(void)
5383 {
5384 
5385 	return (stack_prot);
5386 }
5387 
5388 int
5389 _rtld_is_dlopened(void *arg)
5390 {
5391 	Obj_Entry *obj;
5392 	RtldLockState lockstate;
5393 	int res;
5394 
5395 	rlock_acquire(rtld_bind_lock, &lockstate);
5396 	obj = dlcheck(arg);
5397 	if (obj == NULL)
5398 		obj = obj_from_addr(arg);
5399 	if (obj == NULL) {
5400 		_rtld_error("No shared object contains address");
5401 		lock_release(rtld_bind_lock, &lockstate);
5402 		return (-1);
5403 	}
5404 	res = obj->dlopened ? 1 : 0;
5405 	lock_release(rtld_bind_lock, &lockstate);
5406 	return (res);
5407 }
5408 
5409 static int
5410 obj_remap_relro(Obj_Entry *obj, int prot)
5411 {
5412 
5413 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5414 	    prot) == -1) {
5415 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5416 		    obj->path, prot, rtld_strerror(errno));
5417 		return (-1);
5418 	}
5419 	return (0);
5420 }
5421 
5422 static int
5423 obj_disable_relro(Obj_Entry *obj)
5424 {
5425 
5426 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5427 }
5428 
5429 static int
5430 obj_enforce_relro(Obj_Entry *obj)
5431 {
5432 
5433 	return (obj_remap_relro(obj, PROT_READ));
5434 }
5435 
5436 static void
5437 map_stacks_exec(RtldLockState *lockstate)
5438 {
5439 	void (*thr_map_stacks_exec)(void);
5440 
5441 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5442 		return;
5443 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5444 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5445 	if (thr_map_stacks_exec != NULL) {
5446 		stack_prot |= PROT_EXEC;
5447 		thr_map_stacks_exec();
5448 	}
5449 }
5450 
5451 static void
5452 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5453 {
5454 	Objlist_Entry *elm;
5455 	Obj_Entry *obj;
5456 	void (*distrib)(size_t, void *, size_t, size_t);
5457 
5458 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5459 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5460 	if (distrib == NULL)
5461 		return;
5462 	STAILQ_FOREACH(elm, list, link) {
5463 		obj = elm->obj;
5464 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5465 			continue;
5466 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5467 		    obj->tlssize);
5468 		obj->static_tls_copied = true;
5469 	}
5470 }
5471 
5472 void
5473 symlook_init(SymLook *dst, const char *name)
5474 {
5475 
5476 	bzero(dst, sizeof(*dst));
5477 	dst->name = name;
5478 	dst->hash = elf_hash(name);
5479 	dst->hash_gnu = gnu_hash(name);
5480 }
5481 
5482 static void
5483 symlook_init_from_req(SymLook *dst, const SymLook *src)
5484 {
5485 
5486 	dst->name = src->name;
5487 	dst->hash = src->hash;
5488 	dst->hash_gnu = src->hash_gnu;
5489 	dst->ventry = src->ventry;
5490 	dst->flags = src->flags;
5491 	dst->defobj_out = NULL;
5492 	dst->sym_out = NULL;
5493 	dst->lockstate = src->lockstate;
5494 }
5495 
5496 static int
5497 open_binary_fd(const char *argv0, bool search_in_path)
5498 {
5499 	char *pathenv, *pe, binpath[PATH_MAX];
5500 	int fd;
5501 
5502 	if (search_in_path && strchr(argv0, '/') == NULL) {
5503 		pathenv = getenv("PATH");
5504 		if (pathenv == NULL) {
5505 			_rtld_error("-p and no PATH environment variable");
5506 			rtld_die();
5507 		}
5508 		pathenv = strdup(pathenv);
5509 		if (pathenv == NULL) {
5510 			_rtld_error("Cannot allocate memory");
5511 			rtld_die();
5512 		}
5513 		fd = -1;
5514 		errno = ENOENT;
5515 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5516 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5517 			    sizeof(binpath))
5518 				continue;
5519 			if (binpath[0] != '\0' &&
5520 			    strlcat(binpath, "/", sizeof(binpath)) >=
5521 			    sizeof(binpath))
5522 				continue;
5523 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5524 			    sizeof(binpath))
5525 				continue;
5526 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5527 			if (fd != -1 || errno != ENOENT)
5528 				break;
5529 		}
5530 		free(pathenv);
5531 	} else {
5532 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5533 	}
5534 
5535 	if (fd == -1) {
5536 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5537 		rtld_die();
5538 	}
5539 	return (fd);
5540 }
5541 
5542 /*
5543  * Parse a set of command-line arguments.
5544  */
5545 static int
5546 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5547 {
5548 	const char *arg;
5549 	int fd, i, j, arglen;
5550 	char opt;
5551 
5552 	dbg("Parsing command-line arguments");
5553 	*use_pathp = false;
5554 	*fdp = -1;
5555 
5556 	for (i = 1; i < argc; i++ ) {
5557 		arg = argv[i];
5558 		dbg("argv[%d]: '%s'", i, arg);
5559 
5560 		/*
5561 		 * rtld arguments end with an explicit "--" or with the first
5562 		 * non-prefixed argument.
5563 		 */
5564 		if (strcmp(arg, "--") == 0) {
5565 			i++;
5566 			break;
5567 		}
5568 		if (arg[0] != '-')
5569 			break;
5570 
5571 		/*
5572 		 * All other arguments are single-character options that can
5573 		 * be combined, so we need to search through `arg` for them.
5574 		 */
5575 		arglen = strlen(arg);
5576 		for (j = 1; j < arglen; j++) {
5577 			opt = arg[j];
5578 			if (opt == 'h') {
5579 				print_usage(argv[0]);
5580 				_exit(0);
5581 			} else if (opt == 'f') {
5582 			/*
5583 			 * -f XX can be used to specify a descriptor for the
5584 			 * binary named at the command line (i.e., the later
5585 			 * argument will specify the process name but the
5586 			 * descriptor is what will actually be executed)
5587 			 */
5588 			if (j != arglen - 1) {
5589 				/* -f must be the last option in, e.g., -abcf */
5590 				_rtld_error("Invalid options: %s", arg);
5591 				rtld_die();
5592 			}
5593 			i++;
5594 			fd = parse_integer(argv[i]);
5595 			if (fd == -1) {
5596 				_rtld_error("Invalid file descriptor: '%s'",
5597 				    argv[i]);
5598 				rtld_die();
5599 			}
5600 			*fdp = fd;
5601 			break;
5602 			} else if (opt == 'p') {
5603 				*use_pathp = true;
5604 			} else {
5605 				_rtld_error("Invalid argument: '%s'", arg);
5606 				print_usage(argv[0]);
5607 				rtld_die();
5608 			}
5609 		}
5610 	}
5611 
5612 	return (i);
5613 }
5614 
5615 /*
5616  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5617  */
5618 static int
5619 parse_integer(const char *str)
5620 {
5621 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5622 	const char *orig;
5623 	int n;
5624 	char c;
5625 
5626 	orig = str;
5627 	n = 0;
5628 	for (c = *str; c != '\0'; c = *++str) {
5629 		if (c < '0' || c > '9')
5630 			return (-1);
5631 
5632 		n *= RADIX;
5633 		n += c - '0';
5634 	}
5635 
5636 	/* Make sure we actually parsed something. */
5637 	if (str == orig)
5638 		return (-1);
5639 	return (n);
5640 }
5641 
5642 static void
5643 print_usage(const char *argv0)
5644 {
5645 
5646 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5647 		"\n"
5648 		"Options:\n"
5649 		"  -h        Display this help message\n"
5650 		"  -p        Search in PATH for named binary\n"
5651 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5652 		"  --        End of RTLD options\n"
5653 		"  <binary>  Name of process to execute\n"
5654 		"  <args>    Arguments to the executed process\n", argv0);
5655 }
5656 
5657 /*
5658  * Overrides for libc_pic-provided functions.
5659  */
5660 
5661 int
5662 __getosreldate(void)
5663 {
5664 	size_t len;
5665 	int oid[2];
5666 	int error, osrel;
5667 
5668 	if (osreldate != 0)
5669 		return (osreldate);
5670 
5671 	oid[0] = CTL_KERN;
5672 	oid[1] = KERN_OSRELDATE;
5673 	osrel = 0;
5674 	len = sizeof(osrel);
5675 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5676 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5677 		osreldate = osrel;
5678 	return (osreldate);
5679 }
5680 const char *
5681 rtld_strerror(int errnum)
5682 {
5683 
5684 	if (errnum < 0 || errnum >= sys_nerr)
5685 		return ("Unknown error");
5686 	return (sys_errlist[errnum]);
5687 }
5688 
5689 /*
5690  * No ifunc relocations.
5691  */
5692 void *
5693 memset(void *dest, int c, size_t len)
5694 {
5695 	size_t i;
5696 
5697 	for (i = 0; i < len; i++)
5698 		((char *)dest)[i] = c;
5699 	return (dest);
5700 }
5701 
5702 void
5703 bzero(void *dest, size_t len)
5704 {
5705 	size_t i;
5706 
5707 	for (i = 0; i < len; i++)
5708 		((char *)dest)[i] = 0;
5709 }
5710 
5711 /* malloc */
5712 void *
5713 malloc(size_t nbytes)
5714 {
5715 
5716 	return (__crt_malloc(nbytes));
5717 }
5718 
5719 void *
5720 calloc(size_t num, size_t size)
5721 {
5722 
5723 	return (__crt_calloc(num, size));
5724 }
5725 
5726 void
5727 free(void *cp)
5728 {
5729 
5730 	__crt_free(cp);
5731 }
5732 
5733 void *
5734 realloc(void *cp, size_t nbytes)
5735 {
5736 
5737 	return (__crt_realloc(cp, nbytes));
5738 }
5739