1 /*- 2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 /* 29 * Dynamic linker for ELF. 30 * 31 * John Polstra <jdp@polstra.com>. 32 */ 33 34 #ifndef __GNUC__ 35 #error "GCC is needed to compile this file" 36 #endif 37 38 #include <sys/param.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 42 #include <dlfcn.h> 43 #include <err.h> 44 #include <errno.h> 45 #include <fcntl.h> 46 #include <stdarg.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <unistd.h> 51 52 #include "debug.h" 53 #include "rtld.h" 54 55 #define END_SYM "_end" 56 #define PATH_RTLD "/usr/libexec/ld-elf.so.1" 57 58 /* Types. */ 59 typedef void (*func_ptr_type)(); 60 61 /* 62 * This structure provides a reentrant way to keep a list of objects and 63 * check which ones have already been processed in some way. 64 */ 65 typedef struct Struct_DoneList { 66 const Obj_Entry **objs; /* Array of object pointers */ 67 unsigned int num_alloc; /* Allocated size of the array */ 68 unsigned int num_used; /* Number of array slots used */ 69 } DoneList; 70 71 /* 72 * Function declarations. 73 */ 74 static const char *basename(const char *); 75 static void die(void); 76 static void digest_dynamic(Obj_Entry *); 77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 78 static Obj_Entry *dlcheck(void *); 79 static bool donelist_check(DoneList *, const Obj_Entry *); 80 static void errmsg_restore(char *); 81 static char *errmsg_save(void); 82 static char *find_library(const char *, const Obj_Entry *); 83 static const char *gethints(void); 84 static void init_dag(Obj_Entry *); 85 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *); 86 static void init_rtld(caddr_t); 87 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list); 88 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, 89 Objlist *list); 90 static bool is_exported(const Elf_Sym *); 91 static void linkmap_add(Obj_Entry *); 92 static void linkmap_delete(Obj_Entry *); 93 static int load_needed_objects(Obj_Entry *); 94 static int load_preload_objects(void); 95 static Obj_Entry *load_object(char *); 96 static void lock_check(void); 97 static Obj_Entry *obj_from_addr(const void *); 98 static void objlist_call_fini(Objlist *); 99 static void objlist_call_init(Objlist *); 100 static void objlist_clear(Objlist *); 101 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 102 static void objlist_init(Objlist *); 103 static void objlist_push_head(Objlist *, Obj_Entry *); 104 static void objlist_push_tail(Objlist *, Obj_Entry *); 105 static void objlist_remove(Objlist *, Obj_Entry *); 106 static void objlist_remove_unref(Objlist *); 107 static int relocate_objects(Obj_Entry *, bool); 108 static void rtld_exit(void); 109 static char *search_library_path(const char *, const char *); 110 static const void **get_program_var_addr(const char *name); 111 static void set_program_var(const char *, const void *); 112 static const Elf_Sym *symlook_default(const char *, unsigned long hash, 113 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt); 114 static const Elf_Sym *symlook_list(const char *, unsigned long, 115 Objlist *, const Obj_Entry **, bool in_plt, DoneList *); 116 static void trace_loaded_objects(Obj_Entry *obj); 117 static void unload_object(Obj_Entry *); 118 static void unref_dag(Obj_Entry *); 119 120 void r_debug_state(struct r_debug*, struct link_map*); 121 void xprintf(const char *, ...) __printflike(1, 2); 122 123 /* 124 * Data declarations. 125 */ 126 static char *error_message; /* Message for dlerror(), or NULL */ 127 struct r_debug r_debug; /* for GDB; */ 128 static bool trust; /* False for setuid and setgid programs */ 129 static char *ld_bind_now; /* Environment variable for immediate binding */ 130 static char *ld_debug; /* Environment variable for debugging */ 131 static char *ld_library_path; /* Environment variable for search path */ 132 static char *ld_preload; /* Environment variable for libraries to 133 load first */ 134 static char *ld_tracing; /* Called from ldd to print libs */ 135 static Obj_Entry *obj_list; /* Head of linked list of shared objects */ 136 static Obj_Entry **obj_tail; /* Link field of last object in list */ 137 static Obj_Entry *obj_main; /* The main program shared object */ 138 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 139 static unsigned int obj_count; /* Number of objects in obj_list */ 140 141 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 142 STAILQ_HEAD_INITIALIZER(list_global); 143 static Objlist list_main = /* Objects loaded at program startup */ 144 STAILQ_HEAD_INITIALIZER(list_main); 145 static Objlist list_fini = /* Objects needing fini() calls */ 146 STAILQ_HEAD_INITIALIZER(list_fini); 147 148 static LockInfo lockinfo; 149 150 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 151 152 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 153 154 extern Elf_Dyn _DYNAMIC; 155 #pragma weak _DYNAMIC 156 157 /* 158 * These are the functions the dynamic linker exports to application 159 * programs. They are the only symbols the dynamic linker is willing 160 * to export from itself. 161 */ 162 static func_ptr_type exports[] = { 163 (func_ptr_type) &_rtld_error, 164 (func_ptr_type) &dlclose, 165 (func_ptr_type) &dlerror, 166 (func_ptr_type) &dlopen, 167 (func_ptr_type) &dlsym, 168 (func_ptr_type) &dladdr, 169 (func_ptr_type) &dllockinit, 170 NULL 171 }; 172 173 /* 174 * Global declarations normally provided by crt1. The dynamic linker is 175 * not built with crt1, so we have to provide them ourselves. 176 */ 177 char *__progname; 178 char **environ; 179 180 /* 181 * Fill in a DoneList with an allocation large enough to hold all of 182 * the currently-loaded objects. Keep this as a macro since it calls 183 * alloca and we want that to occur within the scope of the caller. 184 */ 185 #define donelist_init(dlp) \ 186 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 187 assert((dlp)->objs != NULL), \ 188 (dlp)->num_alloc = obj_count, \ 189 (dlp)->num_used = 0) 190 191 static __inline void 192 rlock_acquire(void) 193 { 194 lockinfo.rlock_acquire(lockinfo.thelock); 195 atomic_incr_int(&lockinfo.rcount); 196 lock_check(); 197 } 198 199 static __inline void 200 wlock_acquire(void) 201 { 202 lockinfo.wlock_acquire(lockinfo.thelock); 203 atomic_incr_int(&lockinfo.wcount); 204 lock_check(); 205 } 206 207 static __inline void 208 rlock_release(void) 209 { 210 atomic_decr_int(&lockinfo.rcount); 211 lockinfo.rlock_release(lockinfo.thelock); 212 } 213 214 static __inline void 215 wlock_release(void) 216 { 217 atomic_decr_int(&lockinfo.wcount); 218 lockinfo.wlock_release(lockinfo.thelock); 219 } 220 221 /* 222 * Main entry point for dynamic linking. The first argument is the 223 * stack pointer. The stack is expected to be laid out as described 224 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 225 * Specifically, the stack pointer points to a word containing 226 * ARGC. Following that in the stack is a null-terminated sequence 227 * of pointers to argument strings. Then comes a null-terminated 228 * sequence of pointers to environment strings. Finally, there is a 229 * sequence of "auxiliary vector" entries. 230 * 231 * The second argument points to a place to store the dynamic linker's 232 * exit procedure pointer and the third to a place to store the main 233 * program's object. 234 * 235 * The return value is the main program's entry point. 236 */ 237 func_ptr_type 238 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 239 { 240 Elf_Auxinfo *aux_info[AT_COUNT]; 241 int i; 242 int argc; 243 char **argv; 244 char **env; 245 Elf_Auxinfo *aux; 246 Elf_Auxinfo *auxp; 247 const char *argv0; 248 Obj_Entry *obj; 249 Obj_Entry **preload_tail; 250 Objlist initlist; 251 252 /* 253 * On entry, the dynamic linker itself has not been relocated yet. 254 * Be very careful not to reference any global data until after 255 * init_rtld has returned. It is OK to reference file-scope statics 256 * and string constants, and to call static and global functions. 257 */ 258 259 /* Find the auxiliary vector on the stack. */ 260 argc = *sp++; 261 argv = (char **) sp; 262 sp += argc + 1; /* Skip over arguments and NULL terminator */ 263 env = (char **) sp; 264 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 265 ; 266 aux = (Elf_Auxinfo *) sp; 267 268 /* Digest the auxiliary vector. */ 269 for (i = 0; i < AT_COUNT; i++) 270 aux_info[i] = NULL; 271 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 272 if (auxp->a_type < AT_COUNT) 273 aux_info[auxp->a_type] = auxp; 274 } 275 276 /* Initialize and relocate ourselves. */ 277 assert(aux_info[AT_BASE] != NULL); 278 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 279 280 __progname = obj_rtld.path; 281 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 282 environ = env; 283 284 trust = geteuid() == getuid() && getegid() == getgid(); 285 286 ld_bind_now = getenv("LD_BIND_NOW"); 287 if (trust) { 288 ld_debug = getenv("LD_DEBUG"); 289 ld_library_path = getenv("LD_LIBRARY_PATH"); 290 ld_preload = getenv("LD_PRELOAD"); 291 } 292 ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS"); 293 294 if (ld_debug != NULL && *ld_debug != '\0') 295 debug = 1; 296 dbg("%s is initialized, base address = %p", __progname, 297 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 298 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 299 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 300 301 /* 302 * Load the main program, or process its program header if it is 303 * already loaded. 304 */ 305 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ 306 int fd = aux_info[AT_EXECFD]->a_un.a_val; 307 dbg("loading main program"); 308 obj_main = map_object(fd, argv0, NULL); 309 close(fd); 310 if (obj_main == NULL) 311 die(); 312 } else { /* Main program already loaded. */ 313 const Elf_Phdr *phdr; 314 int phnum; 315 caddr_t entry; 316 317 dbg("processing main program's program header"); 318 assert(aux_info[AT_PHDR] != NULL); 319 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 320 assert(aux_info[AT_PHNUM] != NULL); 321 phnum = aux_info[AT_PHNUM]->a_un.a_val; 322 assert(aux_info[AT_PHENT] != NULL); 323 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 324 assert(aux_info[AT_ENTRY] != NULL); 325 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 326 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) 327 die(); 328 } 329 330 obj_main->path = xstrdup(argv0); 331 obj_main->mainprog = true; 332 333 /* 334 * Get the actual dynamic linker pathname from the executable if 335 * possible. (It should always be possible.) That ensures that 336 * gdb will find the right dynamic linker even if a non-standard 337 * one is being used. 338 */ 339 if (obj_main->interp != NULL && 340 strcmp(obj_main->interp, obj_rtld.path) != 0) { 341 free(obj_rtld.path); 342 obj_rtld.path = xstrdup(obj_main->interp); 343 } 344 345 digest_dynamic(obj_main); 346 347 linkmap_add(obj_main); 348 linkmap_add(&obj_rtld); 349 350 /* Link the main program into the list of objects. */ 351 *obj_tail = obj_main; 352 obj_tail = &obj_main->next; 353 obj_count++; 354 obj_main->refcount++; 355 /* Make sure we don't call the main program's init and fini functions. */ 356 obj_main->init = obj_main->fini = NULL; 357 358 /* Initialize a fake symbol for resolving undefined weak references. */ 359 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 360 sym_zero.st_shndx = SHN_ABS; 361 362 dbg("loading LD_PRELOAD libraries"); 363 if (load_preload_objects() == -1) 364 die(); 365 preload_tail = obj_tail; 366 367 dbg("loading needed objects"); 368 if (load_needed_objects(obj_main) == -1) 369 die(); 370 371 /* Make a list of all objects loaded at startup. */ 372 for (obj = obj_list; obj != NULL; obj = obj->next) 373 objlist_push_tail(&list_main, obj); 374 375 if (ld_tracing) { /* We're done */ 376 trace_loaded_objects(obj_main); 377 exit(0); 378 } 379 380 if (relocate_objects(obj_main, 381 ld_bind_now != NULL && *ld_bind_now != '\0') == -1) 382 die(); 383 384 dbg("doing copy relocations"); 385 if (do_copy_relocations(obj_main) == -1) 386 die(); 387 388 dbg("initializing key program variables"); 389 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 390 set_program_var("environ", env); 391 392 dbg("initializing thread locks"); 393 lockdflt_init(&lockinfo); 394 lockinfo.thelock = lockinfo.lock_create(lockinfo.context); 395 396 /* Make a list of init functions to call. */ 397 objlist_init(&initlist); 398 initlist_add_objects(obj_list, preload_tail, &initlist); 399 400 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 401 402 objlist_call_init(&initlist); 403 wlock_acquire(); 404 objlist_clear(&initlist); 405 wlock_release(); 406 407 dbg("transferring control to program entry point = %p", obj_main->entry); 408 409 /* Return the exit procedure and the program entry point. */ 410 *exit_proc = rtld_exit; 411 *objp = obj_main; 412 return (func_ptr_type) obj_main->entry; 413 } 414 415 Elf_Addr 416 _rtld_bind(Obj_Entry *obj, Elf_Word reloff) 417 { 418 const Elf_Rel *rel; 419 const Elf_Sym *def; 420 const Obj_Entry *defobj; 421 Elf_Addr *where; 422 Elf_Addr target; 423 424 rlock_acquire(); 425 if (obj->pltrel) 426 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 427 else 428 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 429 430 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 431 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL); 432 if (def == NULL) 433 die(); 434 435 target = (Elf_Addr)(defobj->relocbase + def->st_value); 436 437 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 438 defobj->strtab + def->st_name, basename(obj->path), 439 (void *)target, basename(defobj->path)); 440 441 /* 442 * Write the new contents for the jmpslot. Note that depending on 443 * architecture, the value which we need to return back to the 444 * lazy binding trampoline may or may not be the target 445 * address. The value returned from reloc_jmpslot() is the value 446 * that the trampoline needs. 447 */ 448 target = reloc_jmpslot(where, target, defobj); 449 rlock_release(); 450 return target; 451 } 452 453 /* 454 * Error reporting function. Use it like printf. If formats the message 455 * into a buffer, and sets things up so that the next call to dlerror() 456 * will return the message. 457 */ 458 void 459 _rtld_error(const char *fmt, ...) 460 { 461 static char buf[512]; 462 va_list ap; 463 464 va_start(ap, fmt); 465 vsnprintf(buf, sizeof buf, fmt, ap); 466 error_message = buf; 467 va_end(ap); 468 } 469 470 /* 471 * Return a dynamically-allocated copy of the current error message, if any. 472 */ 473 static char * 474 errmsg_save(void) 475 { 476 return error_message == NULL ? NULL : xstrdup(error_message); 477 } 478 479 /* 480 * Restore the current error message from a copy which was previously saved 481 * by errmsg_save(). The copy is freed. 482 */ 483 static void 484 errmsg_restore(char *saved_msg) 485 { 486 if (saved_msg == NULL) 487 error_message = NULL; 488 else { 489 _rtld_error("%s", saved_msg); 490 free(saved_msg); 491 } 492 } 493 494 static const char * 495 basename(const char *name) 496 { 497 const char *p = strrchr(name, '/'); 498 return p != NULL ? p + 1 : name; 499 } 500 501 static void 502 die(void) 503 { 504 const char *msg = dlerror(); 505 506 if (msg == NULL) 507 msg = "Fatal error"; 508 errx(1, "%s", msg); 509 } 510 511 /* 512 * Process a shared object's DYNAMIC section, and save the important 513 * information in its Obj_Entry structure. 514 */ 515 static void 516 digest_dynamic(Obj_Entry *obj) 517 { 518 const Elf_Dyn *dynp; 519 Needed_Entry **needed_tail = &obj->needed; 520 const Elf_Dyn *dyn_rpath = NULL; 521 int plttype = DT_REL; 522 523 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 524 switch (dynp->d_tag) { 525 526 case DT_REL: 527 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 528 break; 529 530 case DT_RELSZ: 531 obj->relsize = dynp->d_un.d_val; 532 break; 533 534 case DT_RELENT: 535 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 536 break; 537 538 case DT_JMPREL: 539 obj->pltrel = (const Elf_Rel *) 540 (obj->relocbase + dynp->d_un.d_ptr); 541 break; 542 543 case DT_PLTRELSZ: 544 obj->pltrelsize = dynp->d_un.d_val; 545 break; 546 547 case DT_RELA: 548 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 549 break; 550 551 case DT_RELASZ: 552 obj->relasize = dynp->d_un.d_val; 553 break; 554 555 case DT_RELAENT: 556 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 557 break; 558 559 case DT_PLTREL: 560 plttype = dynp->d_un.d_val; 561 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 562 break; 563 564 case DT_SYMTAB: 565 obj->symtab = (const Elf_Sym *) 566 (obj->relocbase + dynp->d_un.d_ptr); 567 break; 568 569 case DT_SYMENT: 570 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 571 break; 572 573 case DT_STRTAB: 574 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 575 break; 576 577 case DT_STRSZ: 578 obj->strsize = dynp->d_un.d_val; 579 break; 580 581 case DT_HASH: 582 { 583 const Elf_Hashelt *hashtab = (const Elf_Hashelt *) 584 (obj->relocbase + dynp->d_un.d_ptr); 585 obj->nbuckets = hashtab[0]; 586 obj->nchains = hashtab[1]; 587 obj->buckets = hashtab + 2; 588 obj->chains = obj->buckets + obj->nbuckets; 589 } 590 break; 591 592 case DT_NEEDED: 593 if (!obj->rtld) { 594 Needed_Entry *nep = NEW(Needed_Entry); 595 nep->name = dynp->d_un.d_val; 596 nep->obj = NULL; 597 nep->next = NULL; 598 599 *needed_tail = nep; 600 needed_tail = &nep->next; 601 } 602 break; 603 604 case DT_PLTGOT: 605 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 606 break; 607 608 case DT_TEXTREL: 609 obj->textrel = true; 610 break; 611 612 case DT_SYMBOLIC: 613 obj->symbolic = true; 614 break; 615 616 case DT_RPATH: 617 /* 618 * We have to wait until later to process this, because we 619 * might not have gotten the address of the string table yet. 620 */ 621 dyn_rpath = dynp; 622 break; 623 624 case DT_SONAME: 625 /* Not used by the dynamic linker. */ 626 break; 627 628 case DT_INIT: 629 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 630 break; 631 632 case DT_FINI: 633 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 634 break; 635 636 case DT_DEBUG: 637 /* XXX - not implemented yet */ 638 dbg("Filling in DT_DEBUG entry"); 639 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 640 break; 641 642 default: 643 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 644 (long)dynp->d_tag); 645 break; 646 } 647 } 648 649 obj->traced = false; 650 651 if (plttype == DT_RELA) { 652 obj->pltrela = (const Elf_Rela *) obj->pltrel; 653 obj->pltrel = NULL; 654 obj->pltrelasize = obj->pltrelsize; 655 obj->pltrelsize = 0; 656 } 657 658 if (dyn_rpath != NULL) 659 obj->rpath = obj->strtab + dyn_rpath->d_un.d_val; 660 } 661 662 /* 663 * Process a shared object's program header. This is used only for the 664 * main program, when the kernel has already loaded the main program 665 * into memory before calling the dynamic linker. It creates and 666 * returns an Obj_Entry structure. 667 */ 668 static Obj_Entry * 669 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 670 { 671 Obj_Entry *obj; 672 const Elf_Phdr *phlimit = phdr + phnum; 673 const Elf_Phdr *ph; 674 int nsegs = 0; 675 676 obj = obj_new(); 677 for (ph = phdr; ph < phlimit; ph++) { 678 switch (ph->p_type) { 679 680 case PT_PHDR: 681 if ((const Elf_Phdr *)ph->p_vaddr != phdr) { 682 _rtld_error("%s: invalid PT_PHDR", path); 683 return NULL; 684 } 685 obj->phdr = (const Elf_Phdr *) ph->p_vaddr; 686 obj->phsize = ph->p_memsz; 687 break; 688 689 case PT_INTERP: 690 obj->interp = (const char *) ph->p_vaddr; 691 break; 692 693 case PT_LOAD: 694 if (nsegs >= 2) { 695 _rtld_error("%s: too many PT_LOAD segments", path); 696 return NULL; 697 } 698 if (nsegs == 0) { /* First load segment */ 699 obj->vaddrbase = trunc_page(ph->p_vaddr); 700 obj->mapbase = (caddr_t) obj->vaddrbase; 701 obj->relocbase = obj->mapbase - obj->vaddrbase; 702 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 703 obj->vaddrbase; 704 } else { /* Last load segment */ 705 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 706 obj->vaddrbase; 707 } 708 nsegs++; 709 break; 710 711 case PT_DYNAMIC: 712 obj->dynamic = (const Elf_Dyn *) ph->p_vaddr; 713 break; 714 } 715 } 716 if (nsegs < 2) { 717 _rtld_error("%s: too few PT_LOAD segments", path); 718 return NULL; 719 } 720 721 obj->entry = entry; 722 return obj; 723 } 724 725 static Obj_Entry * 726 dlcheck(void *handle) 727 { 728 Obj_Entry *obj; 729 730 for (obj = obj_list; obj != NULL; obj = obj->next) 731 if (obj == (Obj_Entry *) handle) 732 break; 733 734 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 735 _rtld_error("Invalid shared object handle %p", handle); 736 return NULL; 737 } 738 return obj; 739 } 740 741 /* 742 * If the given object is already in the donelist, return true. Otherwise 743 * add the object to the list and return false. 744 */ 745 static bool 746 donelist_check(DoneList *dlp, const Obj_Entry *obj) 747 { 748 unsigned int i; 749 750 for (i = 0; i < dlp->num_used; i++) 751 if (dlp->objs[i] == obj) 752 return true; 753 /* 754 * Our donelist allocation should always be sufficient. But if 755 * our threads locking isn't working properly, more shared objects 756 * could have been loaded since we allocated the list. That should 757 * never happen, but we'll handle it properly just in case it does. 758 */ 759 if (dlp->num_used < dlp->num_alloc) 760 dlp->objs[dlp->num_used++] = obj; 761 return false; 762 } 763 764 /* 765 * Hash function for symbol table lookup. Don't even think about changing 766 * this. It is specified by the System V ABI. 767 */ 768 unsigned long 769 elf_hash(const char *name) 770 { 771 const unsigned char *p = (const unsigned char *) name; 772 unsigned long h = 0; 773 unsigned long g; 774 775 while (*p != '\0') { 776 h = (h << 4) + *p++; 777 if ((g = h & 0xf0000000) != 0) 778 h ^= g >> 24; 779 h &= ~g; 780 } 781 return h; 782 } 783 784 /* 785 * Find the library with the given name, and return its full pathname. 786 * The returned string is dynamically allocated. Generates an error 787 * message and returns NULL if the library cannot be found. 788 * 789 * If the second argument is non-NULL, then it refers to an already- 790 * loaded shared object, whose library search path will be searched. 791 * 792 * The search order is: 793 * rpath in the referencing file 794 * LD_LIBRARY_PATH 795 * ldconfig hints 796 * /usr/lib 797 */ 798 static char * 799 find_library(const char *name, const Obj_Entry *refobj) 800 { 801 char *pathname; 802 803 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 804 if (name[0] != '/' && !trust) { 805 _rtld_error("Absolute pathname required for shared object \"%s\"", 806 name); 807 return NULL; 808 } 809 return xstrdup(name); 810 } 811 812 dbg(" Searching for \"%s\"", name); 813 814 if ((pathname = search_library_path(name, ld_library_path)) != NULL || 815 (refobj != NULL && 816 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 817 (pathname = search_library_path(name, gethints())) != NULL || 818 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL) 819 return pathname; 820 821 _rtld_error("Shared object \"%s\" not found", name); 822 return NULL; 823 } 824 825 /* 826 * Given a symbol number in a referencing object, find the corresponding 827 * definition of the symbol. Returns a pointer to the symbol, or NULL if 828 * no definition was found. Returns a pointer to the Obj_Entry of the 829 * defining object via the reference parameter DEFOBJ_OUT. 830 */ 831 const Elf_Sym * 832 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 833 const Obj_Entry **defobj_out, bool in_plt, SymCache *cache) 834 { 835 const Elf_Sym *ref; 836 const Elf_Sym *def; 837 const Obj_Entry *defobj; 838 const char *name; 839 unsigned long hash; 840 841 /* 842 * If we have already found this symbol, get the information from 843 * the cache. 844 */ 845 if (symnum >= refobj->nchains) 846 return NULL; /* Bad object */ 847 if (cache != NULL && cache[symnum].sym != NULL) { 848 *defobj_out = cache[symnum].obj; 849 return cache[symnum].sym; 850 } 851 852 ref = refobj->symtab + symnum; 853 name = refobj->strtab + ref->st_name; 854 hash = elf_hash(name); 855 defobj = NULL; 856 857 def = symlook_default(name, hash, refobj, &defobj, in_plt); 858 859 /* 860 * If we found no definition and the reference is weak, treat the 861 * symbol as having the value zero. 862 */ 863 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 864 def = &sym_zero; 865 defobj = obj_main; 866 } 867 868 if (def != NULL) { 869 *defobj_out = defobj; 870 /* Record the information in the cache to avoid subsequent lookups. */ 871 if (cache != NULL) { 872 cache[symnum].sym = def; 873 cache[symnum].obj = defobj; 874 } 875 } else { 876 if (refobj != &obj_rtld) 877 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); 878 } 879 return def; 880 } 881 882 /* 883 * Return the search path from the ldconfig hints file, reading it if 884 * necessary. Returns NULL if there are problems with the hints file, 885 * or if the search path there is empty. 886 */ 887 static const char * 888 gethints(void) 889 { 890 static char *hints; 891 892 if (hints == NULL) { 893 int fd; 894 struct elfhints_hdr hdr; 895 char *p; 896 897 /* Keep from trying again in case the hints file is bad. */ 898 hints = ""; 899 900 if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1) 901 return NULL; 902 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 903 hdr.magic != ELFHINTS_MAGIC || 904 hdr.version != 1) { 905 close(fd); 906 return NULL; 907 } 908 p = xmalloc(hdr.dirlistlen + 1); 909 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || 910 read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) { 911 free(p); 912 close(fd); 913 return NULL; 914 } 915 hints = p; 916 close(fd); 917 } 918 return hints[0] != '\0' ? hints : NULL; 919 } 920 921 static void 922 init_dag(Obj_Entry *root) 923 { 924 DoneList donelist; 925 926 donelist_init(&donelist); 927 init_dag1(root, root, &donelist); 928 } 929 930 static void 931 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp) 932 { 933 const Needed_Entry *needed; 934 935 if (donelist_check(dlp, obj)) 936 return; 937 objlist_push_tail(&obj->dldags, root); 938 objlist_push_tail(&root->dagmembers, obj); 939 for (needed = obj->needed; needed != NULL; needed = needed->next) 940 if (needed->obj != NULL) 941 init_dag1(root, needed->obj, dlp); 942 } 943 944 /* 945 * Initialize the dynamic linker. The argument is the address at which 946 * the dynamic linker has been mapped into memory. The primary task of 947 * this function is to relocate the dynamic linker. 948 */ 949 static void 950 init_rtld(caddr_t mapbase) 951 { 952 /* 953 * Conjure up an Obj_Entry structure for the dynamic linker. 954 * 955 * The "path" member is supposed to be dynamically-allocated, but we 956 * aren't yet initialized sufficiently to do that. Below we will 957 * replace the static version with a dynamically-allocated copy. 958 */ 959 obj_rtld.path = PATH_RTLD; 960 obj_rtld.rtld = true; 961 obj_rtld.mapbase = mapbase; 962 #ifdef PIC 963 obj_rtld.relocbase = mapbase; 964 #endif 965 if (&_DYNAMIC != 0) { 966 obj_rtld.dynamic = rtld_dynamic(&obj_rtld); 967 digest_dynamic(&obj_rtld); 968 assert(obj_rtld.needed == NULL); 969 assert(!obj_rtld.textrel); 970 971 /* 972 * Temporarily put the dynamic linker entry into the object list, so 973 * that symbols can be found. 974 */ 975 obj_list = &obj_rtld; 976 obj_tail = &obj_rtld.next; 977 obj_count = 1; 978 979 relocate_objects(&obj_rtld, true); 980 } 981 982 /* Make the object list empty again. */ 983 obj_list = NULL; 984 obj_tail = &obj_list; 985 obj_count = 0; 986 987 /* Replace the path with a dynamically allocated copy. */ 988 obj_rtld.path = xstrdup(obj_rtld.path); 989 990 r_debug.r_brk = r_debug_state; 991 r_debug.r_state = RT_CONSISTENT; 992 } 993 994 /* 995 * Add the init functions from a needed object list (and its recursive 996 * needed objects) to "list". This is not used directly; it is a helper 997 * function for initlist_add_objects(). The write lock must be held 998 * when this function is called. 999 */ 1000 static void 1001 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 1002 { 1003 /* Recursively process the successor needed objects. */ 1004 if (needed->next != NULL) 1005 initlist_add_neededs(needed->next, list); 1006 1007 /* Process the current needed object. */ 1008 if (needed->obj != NULL) 1009 initlist_add_objects(needed->obj, &needed->obj->next, list); 1010 } 1011 1012 /* 1013 * Scan all of the DAGs rooted in the range of objects from "obj" to 1014 * "tail" and add their init functions to "list". This recurses over 1015 * the DAGs and ensure the proper init ordering such that each object's 1016 * needed libraries are initialized before the object itself. At the 1017 * same time, this function adds the objects to the global finalization 1018 * list "list_fini" in the opposite order. The write lock must be 1019 * held when this function is called. 1020 */ 1021 static void 1022 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list) 1023 { 1024 if (obj->init_done) 1025 return; 1026 obj->init_done = true; 1027 1028 /* Recursively process the successor objects. */ 1029 if (&obj->next != tail) 1030 initlist_add_objects(obj->next, tail, list); 1031 1032 /* Recursively process the needed objects. */ 1033 if (obj->needed != NULL) 1034 initlist_add_neededs(obj->needed, list); 1035 1036 /* Add the object to the init list. */ 1037 if (obj->init != NULL) 1038 objlist_push_tail(list, obj); 1039 1040 /* Add the object to the global fini list in the reverse order. */ 1041 if (obj->fini != NULL) 1042 objlist_push_head(&list_fini, obj); 1043 } 1044 1045 #ifndef FPTR_TARGET 1046 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 1047 #endif 1048 1049 static bool 1050 is_exported(const Elf_Sym *def) 1051 { 1052 Elf_Addr value; 1053 const func_ptr_type *p; 1054 1055 value = (Elf_Addr)(obj_rtld.relocbase + def->st_value); 1056 for (p = exports; *p != NULL; p++) 1057 if (FPTR_TARGET(*p) == value) 1058 return true; 1059 return false; 1060 } 1061 1062 /* 1063 * Given a shared object, traverse its list of needed objects, and load 1064 * each of them. Returns 0 on success. Generates an error message and 1065 * returns -1 on failure. 1066 */ 1067 static int 1068 load_needed_objects(Obj_Entry *first) 1069 { 1070 Obj_Entry *obj; 1071 1072 for (obj = first; obj != NULL; obj = obj->next) { 1073 Needed_Entry *needed; 1074 1075 for (needed = obj->needed; needed != NULL; needed = needed->next) { 1076 const char *name = obj->strtab + needed->name; 1077 char *path = find_library(name, obj); 1078 1079 needed->obj = NULL; 1080 if (path == NULL && !ld_tracing) 1081 return -1; 1082 1083 if (path) { 1084 needed->obj = load_object(path); 1085 if (needed->obj == NULL && !ld_tracing) 1086 return -1; /* XXX - cleanup */ 1087 } 1088 } 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int 1095 load_preload_objects(void) 1096 { 1097 char *p = ld_preload; 1098 static const char delim[] = " \t:;"; 1099 1100 if (p == NULL) 1101 return NULL; 1102 1103 p += strspn(p, delim); 1104 while (*p != '\0') { 1105 size_t len = strcspn(p, delim); 1106 char *path; 1107 char savech; 1108 1109 savech = p[len]; 1110 p[len] = '\0'; 1111 if ((path = find_library(p, NULL)) == NULL) 1112 return -1; 1113 if (load_object(path) == NULL) 1114 return -1; /* XXX - cleanup */ 1115 p[len] = savech; 1116 p += len; 1117 p += strspn(p, delim); 1118 } 1119 return 0; 1120 } 1121 1122 /* 1123 * Load a shared object into memory, if it is not already loaded. The 1124 * argument must be a string allocated on the heap. This function assumes 1125 * responsibility for freeing it when necessary. 1126 * 1127 * Returns a pointer to the Obj_Entry for the object. Returns NULL 1128 * on failure. 1129 */ 1130 static Obj_Entry * 1131 load_object(char *path) 1132 { 1133 Obj_Entry *obj; 1134 int fd = -1; 1135 struct stat sb; 1136 1137 for (obj = obj_list->next; obj != NULL; obj = obj->next) 1138 if (strcmp(obj->path, path) == 0) 1139 break; 1140 1141 /* 1142 * If we didn't find a match by pathname, open the file and check 1143 * again by device and inode. This avoids false mismatches caused 1144 * by multiple links or ".." in pathnames. 1145 * 1146 * To avoid a race, we open the file and use fstat() rather than 1147 * using stat(). 1148 */ 1149 if (obj == NULL) { 1150 if ((fd = open(path, O_RDONLY)) == -1) { 1151 _rtld_error("Cannot open \"%s\"", path); 1152 return NULL; 1153 } 1154 if (fstat(fd, &sb) == -1) { 1155 _rtld_error("Cannot fstat \"%s\"", path); 1156 close(fd); 1157 return NULL; 1158 } 1159 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 1160 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) { 1161 close(fd); 1162 break; 1163 } 1164 } 1165 } 1166 1167 if (obj == NULL) { /* First use of this object, so we must map it in */ 1168 dbg("loading \"%s\"", path); 1169 obj = map_object(fd, path, &sb); 1170 close(fd); 1171 if (obj == NULL) { 1172 free(path); 1173 return NULL; 1174 } 1175 1176 obj->path = path; 1177 digest_dynamic(obj); 1178 1179 *obj_tail = obj; 1180 obj_tail = &obj->next; 1181 obj_count++; 1182 linkmap_add(obj); /* for GDB */ 1183 1184 dbg(" %p .. %p: %s", obj->mapbase, 1185 obj->mapbase + obj->mapsize - 1, obj->path); 1186 if (obj->textrel) 1187 dbg(" WARNING: %s has impure text", obj->path); 1188 } else 1189 free(path); 1190 1191 obj->refcount++; 1192 return obj; 1193 } 1194 1195 /* 1196 * Check for locking violations and die if one is found. 1197 */ 1198 static void 1199 lock_check(void) 1200 { 1201 int rcount, wcount; 1202 1203 rcount = lockinfo.rcount; 1204 wcount = lockinfo.wcount; 1205 assert(rcount >= 0); 1206 assert(wcount >= 0); 1207 if (wcount > 1 || (wcount != 0 && rcount != 0)) { 1208 _rtld_error("Application locking error: %d readers and %d writers" 1209 " in dynamic linker. See DLLOCKINIT(3) in manual pages.", 1210 rcount, wcount); 1211 die(); 1212 } 1213 } 1214 1215 static Obj_Entry * 1216 obj_from_addr(const void *addr) 1217 { 1218 unsigned long endhash; 1219 Obj_Entry *obj; 1220 1221 endhash = elf_hash(END_SYM); 1222 for (obj = obj_list; obj != NULL; obj = obj->next) { 1223 const Elf_Sym *endsym; 1224 1225 if (addr < (void *) obj->mapbase) 1226 continue; 1227 if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL) 1228 continue; /* No "end" symbol?! */ 1229 if (addr < (void *) (obj->relocbase + endsym->st_value)) 1230 return obj; 1231 } 1232 return NULL; 1233 } 1234 1235 /* 1236 * Call the finalization functions for each of the objects in "list" 1237 * which are unreferenced. All of the objects are expected to have 1238 * non-NULL fini functions. 1239 */ 1240 static void 1241 objlist_call_fini(Objlist *list) 1242 { 1243 Objlist_Entry *elm; 1244 char *saved_msg; 1245 1246 /* 1247 * Preserve the current error message since a fini function might 1248 * call into the dynamic linker and overwrite it. 1249 */ 1250 saved_msg = errmsg_save(); 1251 STAILQ_FOREACH(elm, list, link) { 1252 if (elm->obj->refcount == 0) { 1253 dbg("calling fini function for %s at %p", elm->obj->path, 1254 (void *)elm->obj->fini); 1255 call_initfini_pointer(elm->obj, elm->obj->fini); 1256 } 1257 } 1258 errmsg_restore(saved_msg); 1259 } 1260 1261 /* 1262 * Call the initialization functions for each of the objects in 1263 * "list". All of the objects are expected to have non-NULL init 1264 * functions. 1265 */ 1266 static void 1267 objlist_call_init(Objlist *list) 1268 { 1269 Objlist_Entry *elm; 1270 char *saved_msg; 1271 1272 /* 1273 * Preserve the current error message since an init function might 1274 * call into the dynamic linker and overwrite it. 1275 */ 1276 saved_msg = errmsg_save(); 1277 STAILQ_FOREACH(elm, list, link) { 1278 dbg("calling init function for %s at %p", elm->obj->path, 1279 (void *)elm->obj->init); 1280 call_initfini_pointer(elm->obj, elm->obj->init); 1281 } 1282 errmsg_restore(saved_msg); 1283 } 1284 1285 static void 1286 objlist_clear(Objlist *list) 1287 { 1288 Objlist_Entry *elm; 1289 1290 while (!STAILQ_EMPTY(list)) { 1291 elm = STAILQ_FIRST(list); 1292 STAILQ_REMOVE_HEAD(list, link); 1293 free(elm); 1294 } 1295 } 1296 1297 static Objlist_Entry * 1298 objlist_find(Objlist *list, const Obj_Entry *obj) 1299 { 1300 Objlist_Entry *elm; 1301 1302 STAILQ_FOREACH(elm, list, link) 1303 if (elm->obj == obj) 1304 return elm; 1305 return NULL; 1306 } 1307 1308 static void 1309 objlist_init(Objlist *list) 1310 { 1311 STAILQ_INIT(list); 1312 } 1313 1314 static void 1315 objlist_push_head(Objlist *list, Obj_Entry *obj) 1316 { 1317 Objlist_Entry *elm; 1318 1319 elm = NEW(Objlist_Entry); 1320 elm->obj = obj; 1321 STAILQ_INSERT_HEAD(list, elm, link); 1322 } 1323 1324 static void 1325 objlist_push_tail(Objlist *list, Obj_Entry *obj) 1326 { 1327 Objlist_Entry *elm; 1328 1329 elm = NEW(Objlist_Entry); 1330 elm->obj = obj; 1331 STAILQ_INSERT_TAIL(list, elm, link); 1332 } 1333 1334 static void 1335 objlist_remove(Objlist *list, Obj_Entry *obj) 1336 { 1337 Objlist_Entry *elm; 1338 1339 if ((elm = objlist_find(list, obj)) != NULL) { 1340 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 1341 free(elm); 1342 } 1343 } 1344 1345 /* 1346 * Remove all of the unreferenced objects from "list". 1347 */ 1348 static void 1349 objlist_remove_unref(Objlist *list) 1350 { 1351 Objlist newlist; 1352 Objlist_Entry *elm; 1353 1354 STAILQ_INIT(&newlist); 1355 while (!STAILQ_EMPTY(list)) { 1356 elm = STAILQ_FIRST(list); 1357 STAILQ_REMOVE_HEAD(list, link); 1358 if (elm->obj->refcount == 0) 1359 free(elm); 1360 else 1361 STAILQ_INSERT_TAIL(&newlist, elm, link); 1362 } 1363 *list = newlist; 1364 } 1365 1366 /* 1367 * Relocate newly-loaded shared objects. The argument is a pointer to 1368 * the Obj_Entry for the first such object. All objects from the first 1369 * to the end of the list of objects are relocated. Returns 0 on success, 1370 * or -1 on failure. 1371 */ 1372 static int 1373 relocate_objects(Obj_Entry *first, bool bind_now) 1374 { 1375 Obj_Entry *obj; 1376 1377 for (obj = first; obj != NULL; obj = obj->next) { 1378 if (obj != &obj_rtld) 1379 dbg("relocating \"%s\"", obj->path); 1380 if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL || 1381 obj->symtab == NULL || obj->strtab == NULL) { 1382 _rtld_error("%s: Shared object has no run-time symbol table", 1383 obj->path); 1384 return -1; 1385 } 1386 1387 if (obj->textrel) { 1388 /* There are relocations to the write-protected text segment. */ 1389 if (mprotect(obj->mapbase, obj->textsize, 1390 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) { 1391 _rtld_error("%s: Cannot write-enable text segment: %s", 1392 obj->path, strerror(errno)); 1393 return -1; 1394 } 1395 } 1396 1397 /* Process the non-PLT relocations. */ 1398 if (reloc_non_plt(obj, &obj_rtld)) 1399 return -1; 1400 1401 if (obj->textrel) { /* Re-protected the text segment. */ 1402 if (mprotect(obj->mapbase, obj->textsize, 1403 PROT_READ|PROT_EXEC) == -1) { 1404 _rtld_error("%s: Cannot write-protect text segment: %s", 1405 obj->path, strerror(errno)); 1406 return -1; 1407 } 1408 } 1409 1410 /* Process the PLT relocations. */ 1411 if (reloc_plt(obj) == -1) 1412 return -1; 1413 /* Relocate the jump slots if we are doing immediate binding. */ 1414 if (bind_now) 1415 if (reloc_jmpslots(obj) == -1) 1416 return -1; 1417 1418 1419 /* 1420 * Set up the magic number and version in the Obj_Entry. These 1421 * were checked in the crt1.o from the original ElfKit, so we 1422 * set them for backward compatibility. 1423 */ 1424 obj->magic = RTLD_MAGIC; 1425 obj->version = RTLD_VERSION; 1426 1427 /* Set the special PLT or GOT entries. */ 1428 init_pltgot(obj); 1429 } 1430 1431 return 0; 1432 } 1433 1434 /* 1435 * Cleanup procedure. It will be called (by the atexit mechanism) just 1436 * before the process exits. 1437 */ 1438 static void 1439 rtld_exit(void) 1440 { 1441 Obj_Entry *obj; 1442 1443 dbg("rtld_exit()"); 1444 wlock_acquire(); 1445 /* Clear all the reference counts so the fini functions will be called. */ 1446 for (obj = obj_list; obj != NULL; obj = obj->next) 1447 obj->refcount = 0; 1448 wlock_release(); 1449 objlist_call_fini(&list_fini); 1450 /* No need to remove the items from the list, since we are exiting. */ 1451 } 1452 1453 static char * 1454 search_library_path(const char *name, const char *path) 1455 { 1456 size_t namelen = strlen(name); 1457 const char *p = path; 1458 1459 if (p == NULL) 1460 return NULL; 1461 1462 p += strspn(p, ":;"); 1463 while (*p != '\0') { 1464 size_t len = strcspn(p, ":;"); 1465 1466 if (*p == '/' || trust) { 1467 char *pathname; 1468 const char *dir = p; 1469 size_t dirlen = len; 1470 1471 pathname = xmalloc(dirlen + 1 + namelen + 1); 1472 strncpy(pathname, dir, dirlen); 1473 pathname[dirlen] = '/'; 1474 strcpy(pathname + dirlen + 1, name); 1475 1476 dbg(" Trying \"%s\"", pathname); 1477 if (access(pathname, F_OK) == 0) /* We found it */ 1478 return pathname; 1479 1480 free(pathname); 1481 } 1482 p += len; 1483 p += strspn(p, ":;"); 1484 } 1485 1486 return NULL; 1487 } 1488 1489 int 1490 dlclose(void *handle) 1491 { 1492 Obj_Entry *root; 1493 1494 wlock_acquire(); 1495 root = dlcheck(handle); 1496 if (root == NULL) { 1497 wlock_release(); 1498 return -1; 1499 } 1500 1501 /* Unreference the object and its dependencies. */ 1502 root->dl_refcount--; 1503 unref_dag(root); 1504 1505 if (root->refcount == 0) { 1506 /* 1507 * The object is no longer referenced, so we must unload it. 1508 * First, call the fini functions with no locks held. 1509 */ 1510 wlock_release(); 1511 objlist_call_fini(&list_fini); 1512 wlock_acquire(); 1513 objlist_remove_unref(&list_fini); 1514 1515 /* Finish cleaning up the newly-unreferenced objects. */ 1516 GDB_STATE(RT_DELETE,&root->linkmap); 1517 unload_object(root); 1518 GDB_STATE(RT_CONSISTENT,NULL); 1519 } 1520 wlock_release(); 1521 return 0; 1522 } 1523 1524 const char * 1525 dlerror(void) 1526 { 1527 char *msg = error_message; 1528 error_message = NULL; 1529 return msg; 1530 } 1531 1532 /* 1533 * This function is deprecated and has no effect. 1534 */ 1535 void 1536 dllockinit(void *context, 1537 void *(*lock_create)(void *context), 1538 void (*rlock_acquire)(void *lock), 1539 void (*wlock_acquire)(void *lock), 1540 void (*lock_release)(void *lock), 1541 void (*lock_destroy)(void *lock), 1542 void (*context_destroy)(void *context)) 1543 { 1544 static void *cur_context; 1545 static void (*cur_context_destroy)(void *); 1546 1547 /* Just destroy the context from the previous call, if necessary. */ 1548 if (cur_context_destroy != NULL) 1549 cur_context_destroy(cur_context); 1550 cur_context = context; 1551 cur_context_destroy = context_destroy; 1552 } 1553 1554 void * 1555 dlopen(const char *name, int mode) 1556 { 1557 Obj_Entry **old_obj_tail; 1558 Obj_Entry *obj; 1559 Objlist initlist; 1560 int result; 1561 1562 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 1563 if (ld_tracing != NULL) 1564 environ = (char **)*get_program_var_addr("environ"); 1565 1566 objlist_init(&initlist); 1567 1568 wlock_acquire(); 1569 GDB_STATE(RT_ADD,NULL); 1570 1571 old_obj_tail = obj_tail; 1572 obj = NULL; 1573 if (name == NULL) { 1574 obj = obj_main; 1575 obj->refcount++; 1576 } else { 1577 char *path = find_library(name, obj_main); 1578 if (path != NULL) 1579 obj = load_object(path); 1580 } 1581 1582 if (obj) { 1583 obj->dl_refcount++; 1584 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 1585 objlist_push_tail(&list_global, obj); 1586 mode &= RTLD_MODEMASK; 1587 if (*old_obj_tail != NULL) { /* We loaded something new. */ 1588 assert(*old_obj_tail == obj); 1589 1590 result = load_needed_objects(obj); 1591 if (result != -1 && ld_tracing) { 1592 trace_loaded_objects(obj); 1593 wlock_release(); 1594 exit(0); 1595 } 1596 1597 if (result == -1 || 1598 (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW)) == -1) { 1599 obj->dl_refcount--; 1600 unref_dag(obj); 1601 if (obj->refcount == 0) 1602 unload_object(obj); 1603 obj = NULL; 1604 } else { 1605 /* Make list of init functions to call. */ 1606 initlist_add_objects(obj, &obj->next, &initlist); 1607 } 1608 } 1609 } 1610 1611 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 1612 1613 /* Call the init functions with no locks held. */ 1614 wlock_release(); 1615 objlist_call_init(&initlist); 1616 wlock_acquire(); 1617 objlist_clear(&initlist); 1618 wlock_release(); 1619 return obj; 1620 } 1621 1622 void * 1623 dlsym(void *handle, const char *name) 1624 { 1625 const Obj_Entry *obj; 1626 unsigned long hash; 1627 const Elf_Sym *def; 1628 const Obj_Entry *defobj; 1629 1630 hash = elf_hash(name); 1631 def = NULL; 1632 defobj = NULL; 1633 1634 rlock_acquire(); 1635 if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) { 1636 void *retaddr; 1637 1638 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 1639 if ((obj = obj_from_addr(retaddr)) == NULL) { 1640 _rtld_error("Cannot determine caller's shared object"); 1641 rlock_release(); 1642 return NULL; 1643 } 1644 if (handle == NULL) { /* Just the caller's shared object. */ 1645 def = symlook_obj(name, hash, obj, true); 1646 defobj = obj; 1647 } else if (handle == RTLD_NEXT) { /* Objects after caller's */ 1648 while ((obj = obj->next) != NULL) { 1649 if ((def = symlook_obj(name, hash, obj, true)) != NULL) { 1650 defobj = obj; 1651 break; 1652 } 1653 } 1654 } else { 1655 assert(handle == RTLD_DEFAULT); 1656 def = symlook_default(name, hash, obj, &defobj, true); 1657 } 1658 } else { 1659 if ((obj = dlcheck(handle)) == NULL) { 1660 rlock_release(); 1661 return NULL; 1662 } 1663 1664 if (obj->mainprog) { 1665 DoneList donelist; 1666 1667 /* Search main program and all libraries loaded by it. */ 1668 donelist_init(&donelist); 1669 def = symlook_list(name, hash, &list_main, &defobj, true, 1670 &donelist); 1671 } else { 1672 /* 1673 * XXX - This isn't correct. The search should include the whole 1674 * DAG rooted at the given object. 1675 */ 1676 def = symlook_obj(name, hash, obj, true); 1677 defobj = obj; 1678 } 1679 } 1680 1681 if (def != NULL) { 1682 rlock_release(); 1683 1684 /* 1685 * The value required by the caller is derived from the value 1686 * of the symbol. For the ia64 architecture, we need to 1687 * construct a function descriptor which the caller can use to 1688 * call the function with the right 'gp' value. For other 1689 * architectures and for non-functions, the value is simply 1690 * the relocated value of the symbol. 1691 */ 1692 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 1693 return make_function_pointer(def, defobj); 1694 else 1695 return defobj->relocbase + def->st_value; 1696 } 1697 1698 _rtld_error("Undefined symbol \"%s\"", name); 1699 rlock_release(); 1700 return NULL; 1701 } 1702 1703 int 1704 dladdr(const void *addr, Dl_info *info) 1705 { 1706 const Obj_Entry *obj; 1707 const Elf_Sym *def; 1708 void *symbol_addr; 1709 unsigned long symoffset; 1710 1711 rlock_acquire(); 1712 obj = obj_from_addr(addr); 1713 if (obj == NULL) { 1714 _rtld_error("No shared object contains address"); 1715 rlock_release(); 1716 return 0; 1717 } 1718 info->dli_fname = obj->path; 1719 info->dli_fbase = obj->mapbase; 1720 info->dli_saddr = (void *)0; 1721 info->dli_sname = NULL; 1722 1723 /* 1724 * Walk the symbol list looking for the symbol whose address is 1725 * closest to the address sent in. 1726 */ 1727 for (symoffset = 0; symoffset < obj->nchains; symoffset++) { 1728 def = obj->symtab + symoffset; 1729 1730 /* 1731 * For skip the symbol if st_shndx is either SHN_UNDEF or 1732 * SHN_COMMON. 1733 */ 1734 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 1735 continue; 1736 1737 /* 1738 * If the symbol is greater than the specified address, or if it 1739 * is further away from addr than the current nearest symbol, 1740 * then reject it. 1741 */ 1742 symbol_addr = obj->relocbase + def->st_value; 1743 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 1744 continue; 1745 1746 /* Update our idea of the nearest symbol. */ 1747 info->dli_sname = obj->strtab + def->st_name; 1748 info->dli_saddr = symbol_addr; 1749 1750 /* Exact match? */ 1751 if (info->dli_saddr == addr) 1752 break; 1753 } 1754 rlock_release(); 1755 return 1; 1756 } 1757 1758 static void 1759 linkmap_add(Obj_Entry *obj) 1760 { 1761 struct link_map *l = &obj->linkmap; 1762 struct link_map *prev; 1763 1764 obj->linkmap.l_name = obj->path; 1765 obj->linkmap.l_addr = obj->mapbase; 1766 obj->linkmap.l_ld = obj->dynamic; 1767 #ifdef __mips__ 1768 /* GDB needs load offset on MIPS to use the symbols */ 1769 obj->linkmap.l_offs = obj->relocbase; 1770 #endif 1771 1772 if (r_debug.r_map == NULL) { 1773 r_debug.r_map = l; 1774 return; 1775 } 1776 1777 /* 1778 * Scan to the end of the list, but not past the entry for the 1779 * dynamic linker, which we want to keep at the very end. 1780 */ 1781 for (prev = r_debug.r_map; 1782 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 1783 prev = prev->l_next) 1784 ; 1785 1786 /* Link in the new entry. */ 1787 l->l_prev = prev; 1788 l->l_next = prev->l_next; 1789 if (l->l_next != NULL) 1790 l->l_next->l_prev = l; 1791 prev->l_next = l; 1792 } 1793 1794 static void 1795 linkmap_delete(Obj_Entry *obj) 1796 { 1797 struct link_map *l = &obj->linkmap; 1798 1799 if (l->l_prev == NULL) { 1800 if ((r_debug.r_map = l->l_next) != NULL) 1801 l->l_next->l_prev = NULL; 1802 return; 1803 } 1804 1805 if ((l->l_prev->l_next = l->l_next) != NULL) 1806 l->l_next->l_prev = l->l_prev; 1807 } 1808 1809 /* 1810 * Function for the debugger to set a breakpoint on to gain control. 1811 * 1812 * The two parameters allow the debugger to easily find and determine 1813 * what the runtime loader is doing and to whom it is doing it. 1814 * 1815 * When the loadhook trap is hit (r_debug_state, set at program 1816 * initialization), the arguments can be found on the stack: 1817 * 1818 * +8 struct link_map *m 1819 * +4 struct r_debug *rd 1820 * +0 RetAddr 1821 */ 1822 void 1823 r_debug_state(struct r_debug* rd, struct link_map *m) 1824 { 1825 } 1826 1827 /* 1828 * Get address of the pointer variable in the main program. 1829 */ 1830 static const void ** 1831 get_program_var_addr(const char *name) 1832 { 1833 const Obj_Entry *obj; 1834 unsigned long hash; 1835 1836 hash = elf_hash(name); 1837 for (obj = obj_main; obj != NULL; obj = obj->next) { 1838 const Elf_Sym *def; 1839 1840 if ((def = symlook_obj(name, hash, obj, false)) != NULL) { 1841 const void **addr; 1842 1843 addr = (const void **)(obj->relocbase + def->st_value); 1844 return addr; 1845 } 1846 } 1847 return NULL; 1848 } 1849 1850 /* 1851 * Set a pointer variable in the main program to the given value. This 1852 * is used to set key variables such as "environ" before any of the 1853 * init functions are called. 1854 */ 1855 static void 1856 set_program_var(const char *name, const void *value) 1857 { 1858 const void **addr; 1859 1860 if ((addr = get_program_var_addr(name)) != NULL) { 1861 dbg("\"%s\": *%p <-- %p", name, addr, value); 1862 *addr = value; 1863 } 1864 } 1865 1866 /* 1867 * Given a symbol name in a referencing object, find the corresponding 1868 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1869 * no definition was found. Returns a pointer to the Obj_Entry of the 1870 * defining object via the reference parameter DEFOBJ_OUT. 1871 */ 1872 static const Elf_Sym * 1873 symlook_default(const char *name, unsigned long hash, 1874 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt) 1875 { 1876 DoneList donelist; 1877 const Elf_Sym *def; 1878 const Elf_Sym *symp; 1879 const Obj_Entry *obj; 1880 const Obj_Entry *defobj; 1881 const Objlist_Entry *elm; 1882 def = NULL; 1883 defobj = NULL; 1884 donelist_init(&donelist); 1885 1886 /* Look first in the referencing object if linked symbolically. */ 1887 if (refobj->symbolic && !donelist_check(&donelist, refobj)) { 1888 symp = symlook_obj(name, hash, refobj, in_plt); 1889 if (symp != NULL) { 1890 def = symp; 1891 defobj = refobj; 1892 } 1893 } 1894 1895 /* Search all objects loaded at program start up. */ 1896 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1897 symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist); 1898 if (symp != NULL && 1899 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1900 def = symp; 1901 defobj = obj; 1902 } 1903 } 1904 1905 /* Search all dlopened DAGs containing the referencing object. */ 1906 STAILQ_FOREACH(elm, &refobj->dldags, link) { 1907 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK) 1908 break; 1909 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt, 1910 &donelist); 1911 if (symp != NULL && 1912 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1913 def = symp; 1914 defobj = obj; 1915 } 1916 } 1917 1918 /* Search all RTLD_GLOBAL objects. */ 1919 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1920 symp = symlook_list(name, hash, &list_global, &obj, in_plt, &donelist); 1921 if (symp != NULL && 1922 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1923 def = symp; 1924 defobj = obj; 1925 } 1926 } 1927 1928 /* 1929 * Search the dynamic linker itself, and possibly resolve the 1930 * symbol from there. This is how the application links to 1931 * dynamic linker services such as dlopen. Only the values listed 1932 * in the "exports" array can be resolved from the dynamic linker. 1933 */ 1934 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1935 symp = symlook_obj(name, hash, &obj_rtld, in_plt); 1936 if (symp != NULL && is_exported(symp)) { 1937 def = symp; 1938 defobj = &obj_rtld; 1939 } 1940 } 1941 1942 if (def != NULL) 1943 *defobj_out = defobj; 1944 return def; 1945 } 1946 1947 static const Elf_Sym * 1948 symlook_list(const char *name, unsigned long hash, Objlist *objlist, 1949 const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp) 1950 { 1951 const Elf_Sym *symp; 1952 const Elf_Sym *def; 1953 const Obj_Entry *defobj; 1954 const Objlist_Entry *elm; 1955 1956 def = NULL; 1957 defobj = NULL; 1958 STAILQ_FOREACH(elm, objlist, link) { 1959 if (donelist_check(dlp, elm->obj)) 1960 continue; 1961 if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) { 1962 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) { 1963 def = symp; 1964 defobj = elm->obj; 1965 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 1966 break; 1967 } 1968 } 1969 } 1970 if (def != NULL) 1971 *defobj_out = defobj; 1972 return def; 1973 } 1974 1975 /* 1976 * Search the symbol table of a single shared object for a symbol of 1977 * the given name. Returns a pointer to the symbol, or NULL if no 1978 * definition was found. 1979 * 1980 * The symbol's hash value is passed in for efficiency reasons; that 1981 * eliminates many recomputations of the hash value. 1982 */ 1983 const Elf_Sym * 1984 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj, 1985 bool in_plt) 1986 { 1987 if (obj->buckets != NULL) { 1988 unsigned long symnum = obj->buckets[hash % obj->nbuckets]; 1989 1990 while (symnum != STN_UNDEF) { 1991 const Elf_Sym *symp; 1992 const char *strp; 1993 1994 if (symnum >= obj->nchains) 1995 return NULL; /* Bad object */ 1996 symp = obj->symtab + symnum; 1997 strp = obj->strtab + symp->st_name; 1998 1999 if (name[0] == strp[0] && strcmp(name, strp) == 0) 2000 return symp->st_shndx != SHN_UNDEF || 2001 (!in_plt && symp->st_value != 0 && 2002 ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL; 2003 2004 symnum = obj->chains[symnum]; 2005 } 2006 } 2007 return NULL; 2008 } 2009 2010 static void 2011 trace_loaded_objects(Obj_Entry *obj) 2012 { 2013 char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 2014 int c; 2015 2016 if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) 2017 main_local = ""; 2018 2019 if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL) 2020 fmt1 = "\t%o => %p (%x)\n"; 2021 2022 if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL) 2023 fmt2 = "\t%o (%x)\n"; 2024 2025 list_containers = getenv("LD_TRACE_LOADED_OBJECTS_ALL"); 2026 2027 for (; obj; obj = obj->next) { 2028 Needed_Entry *needed; 2029 char *name, *path; 2030 bool is_lib; 2031 2032 if (list_containers && obj->needed != NULL) 2033 printf("%s:\n", obj->path); 2034 for (needed = obj->needed; needed; needed = needed->next) { 2035 if (needed->obj != NULL) { 2036 if (needed->obj->traced && !list_containers) 2037 continue; 2038 needed->obj->traced = true; 2039 path = needed->obj->path; 2040 } else 2041 path = "not found"; 2042 2043 name = (char *)obj->strtab + needed->name; 2044 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 2045 2046 fmt = is_lib ? fmt1 : fmt2; 2047 while ((c = *fmt++) != '\0') { 2048 switch (c) { 2049 default: 2050 putchar(c); 2051 continue; 2052 case '\\': 2053 switch (c = *fmt) { 2054 case '\0': 2055 continue; 2056 case 'n': 2057 putchar('\n'); 2058 break; 2059 case 't': 2060 putchar('\t'); 2061 break; 2062 } 2063 break; 2064 case '%': 2065 switch (c = *fmt) { 2066 case '\0': 2067 continue; 2068 case '%': 2069 default: 2070 putchar(c); 2071 break; 2072 case 'A': 2073 printf("%s", main_local); 2074 break; 2075 case 'a': 2076 printf("%s", obj_main->path); 2077 break; 2078 case 'o': 2079 printf("%s", name); 2080 break; 2081 #if 0 2082 case 'm': 2083 printf("%d", sodp->sod_major); 2084 break; 2085 case 'n': 2086 printf("%d", sodp->sod_minor); 2087 break; 2088 #endif 2089 case 'p': 2090 printf("%s", path); 2091 break; 2092 case 'x': 2093 printf("%p", needed->obj ? needed->obj->mapbase : 0); 2094 break; 2095 } 2096 break; 2097 } 2098 ++fmt; 2099 } 2100 } 2101 } 2102 } 2103 2104 /* 2105 * Unload a dlopened object and its dependencies from memory and from 2106 * our data structures. It is assumed that the DAG rooted in the 2107 * object has already been unreferenced, and that the object has a 2108 * reference count of 0. 2109 */ 2110 static void 2111 unload_object(Obj_Entry *root) 2112 { 2113 Obj_Entry *obj; 2114 Obj_Entry **linkp; 2115 Objlist_Entry *elm; 2116 2117 assert(root->refcount == 0); 2118 2119 /* Remove the DAG from all objects' DAG lists. */ 2120 STAILQ_FOREACH(elm, &root->dagmembers , link) 2121 objlist_remove(&elm->obj->dldags, root); 2122 2123 /* Remove the DAG from the RTLD_GLOBAL list. */ 2124 objlist_remove(&list_global, root); 2125 2126 /* Unmap all objects that are no longer referenced. */ 2127 linkp = &obj_list->next; 2128 while ((obj = *linkp) != NULL) { 2129 if (obj->refcount == 0) { 2130 dbg("unloading \"%s\"", obj->path); 2131 munmap(obj->mapbase, obj->mapsize); 2132 linkmap_delete(obj); 2133 *linkp = obj->next; 2134 obj_count--; 2135 obj_free(obj); 2136 } else 2137 linkp = &obj->next; 2138 } 2139 obj_tail = linkp; 2140 } 2141 2142 static void 2143 unref_dag(Obj_Entry *root) 2144 { 2145 const Needed_Entry *needed; 2146 2147 if (root->refcount == 0) 2148 return; 2149 root->refcount--; 2150 if (root->refcount == 0) 2151 for (needed = root->needed; needed != NULL; needed = needed->next) 2152 if (needed->obj != NULL) 2153 unref_dag(needed->obj); 2154 } 2155 2156 /* 2157 * Non-mallocing printf, for use by malloc itself. 2158 * XXX - This doesn't belong in this module. 2159 */ 2160 void 2161 xprintf(const char *fmt, ...) 2162 { 2163 char buf[256]; 2164 va_list ap; 2165 2166 va_start(ap, fmt); 2167 vsprintf(buf, fmt, ap); 2168 (void)write(STDOUT_FILENO, buf, strlen(buf)); 2169 va_end(ap); 2170 } 2171