xref: /freebsd/libexec/rtld-elf/rtld.c (revision e9d419a05357036ea2fd37218d853d2c713d55cc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
140     const char **argv0);
141 static int parse_integer(const char *);
142 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
143 static void print_usage(const char *argv0);
144 static void release_object(Obj_Entry *);
145 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
146     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
147 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
148     int flags, RtldLockState *lockstate);
149 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
150     RtldLockState *);
151 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
152 static int rtld_dirname(const char *, char *);
153 static int rtld_dirname_abs(const char *, char *);
154 static void *rtld_dlopen(const char *name, int fd, int mode);
155 static void rtld_exit(void);
156 static void rtld_nop_exit(void);
157 static char *search_library_path(const char *, const char *, const char *,
158     int *);
159 static char *search_library_pathfds(const char *, const char *, int *);
160 static const void **get_program_var_addr(const char *, RtldLockState *);
161 static void set_program_var(const char *, const void *);
162 static int symlook_default(SymLook *, const Obj_Entry *refobj);
163 static int symlook_global(SymLook *, DoneList *);
164 static void symlook_init_from_req(SymLook *, const SymLook *);
165 static int symlook_list(SymLook *, const Objlist *, DoneList *);
166 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
167 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
168 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
169 static void trace_loaded_objects(Obj_Entry *);
170 static void unlink_object(Obj_Entry *);
171 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
172 static void unref_dag(Obj_Entry *);
173 static void ref_dag(Obj_Entry *);
174 static char *origin_subst_one(Obj_Entry *, char *, const char *,
175     const char *, bool);
176 static char *origin_subst(Obj_Entry *, const char *);
177 static bool obj_resolve_origin(Obj_Entry *obj);
178 static void preinit_main(void);
179 static int  rtld_verify_versions(const Objlist *);
180 static int  rtld_verify_object_versions(Obj_Entry *);
181 static void object_add_name(Obj_Entry *, const char *);
182 static int  object_match_name(const Obj_Entry *, const char *);
183 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
184 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
185     struct dl_phdr_info *phdr_info);
186 static uint32_t gnu_hash(const char *);
187 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
188     const unsigned long);
189 
190 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
191 void _r_debug_postinit(struct link_map *) __noinline __exported;
192 
193 int __sys_openat(int, const char *, int, ...);
194 
195 /*
196  * Data declarations.
197  */
198 static char *error_message;	/* Message for dlerror(), or NULL */
199 struct r_debug r_debug __exported;	/* for GDB; */
200 static bool libmap_disable;	/* Disable libmap */
201 static bool ld_loadfltr;	/* Immediate filters processing */
202 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
203 static bool trust;		/* False for setuid and setgid programs */
204 static bool dangerous_ld_env;	/* True if environment variables have been
205 				   used to affect the libraries loaded */
206 bool ld_bind_not;		/* Disable PLT update */
207 static char *ld_bind_now;	/* Environment variable for immediate binding */
208 static char *ld_debug;		/* Environment variable for debugging */
209 static char *ld_library_path;	/* Environment variable for search path */
210 static char *ld_library_dirs;	/* Environment variable for library descriptors */
211 static char *ld_preload;	/* Environment variable for libraries to
212 				   load first */
213 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
214 static const char *ld_tracing;	/* Called from ldd to print libs */
215 static char *ld_utrace;		/* Use utrace() to log events. */
216 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
217 static Obj_Entry *obj_main;	/* The main program shared object */
218 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
219 static unsigned int obj_count;	/* Number of objects in obj_list */
220 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
221 
222 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
223   STAILQ_HEAD_INITIALIZER(list_global);
224 static Objlist list_main =	/* Objects loaded at program startup */
225   STAILQ_HEAD_INITIALIZER(list_main);
226 static Objlist list_fini =	/* Objects needing fini() calls */
227   STAILQ_HEAD_INITIALIZER(list_fini);
228 
229 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
230 
231 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
232 
233 extern Elf_Dyn _DYNAMIC;
234 #pragma weak _DYNAMIC
235 
236 int dlclose(void *) __exported;
237 char *dlerror(void) __exported;
238 void *dlopen(const char *, int) __exported;
239 void *fdlopen(int, int) __exported;
240 void *dlsym(void *, const char *) __exported;
241 dlfunc_t dlfunc(void *, const char *) __exported;
242 void *dlvsym(void *, const char *, const char *) __exported;
243 int dladdr(const void *, Dl_info *) __exported;
244 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
245     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
246 int dlinfo(void *, int , void *) __exported;
247 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
248 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
249 int _rtld_get_stack_prot(void) __exported;
250 int _rtld_is_dlopened(void *) __exported;
251 void _rtld_error(const char *, ...) __exported;
252 
253 /* Only here to fix -Wmissing-prototypes warnings */
254 int __getosreldate(void);
255 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
256 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
257 
258 
259 int npagesizes;
260 static int osreldate;
261 size_t *pagesizes;
262 
263 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
264 static int max_stack_flags;
265 
266 /*
267  * Global declarations normally provided by crt1.  The dynamic linker is
268  * not built with crt1, so we have to provide them ourselves.
269  */
270 char *__progname;
271 char **environ;
272 
273 /*
274  * Used to pass argc, argv to init functions.
275  */
276 int main_argc;
277 char **main_argv;
278 
279 /*
280  * Globals to control TLS allocation.
281  */
282 size_t tls_last_offset;		/* Static TLS offset of last module */
283 size_t tls_last_size;		/* Static TLS size of last module */
284 size_t tls_static_space;	/* Static TLS space allocated */
285 static size_t tls_static_max_align;
286 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
287 int tls_max_index = 1;		/* Largest module index allocated */
288 
289 static bool ld_library_path_rpath = false;
290 bool ld_fast_sigblock = false;
291 
292 /*
293  * Globals for path names, and such
294  */
295 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
296 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
297 const char *ld_path_rtld = _PATH_RTLD;
298 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
299 const char *ld_env_prefix = LD_;
300 
301 static void (*rtld_exit_ptr)(void);
302 
303 /*
304  * Fill in a DoneList with an allocation large enough to hold all of
305  * the currently-loaded objects.  Keep this as a macro since it calls
306  * alloca and we want that to occur within the scope of the caller.
307  */
308 #define donelist_init(dlp)					\
309     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
310     assert((dlp)->objs != NULL),				\
311     (dlp)->num_alloc = obj_count,				\
312     (dlp)->num_used = 0)
313 
314 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
315 	if (ld_utrace != NULL)					\
316 		ld_utrace_log(e, h, mb, ms, r, n);		\
317 } while (0)
318 
319 static void
320 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
321     int refcnt, const char *name)
322 {
323 	struct utrace_rtld ut;
324 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
325 
326 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
327 	ut.event = event;
328 	ut.handle = handle;
329 	ut.mapbase = mapbase;
330 	ut.mapsize = mapsize;
331 	ut.refcnt = refcnt;
332 	bzero(ut.name, sizeof(ut.name));
333 	if (name)
334 		strlcpy(ut.name, name, sizeof(ut.name));
335 	utrace(&ut, sizeof(ut));
336 }
337 
338 #ifdef RTLD_VARIANT_ENV_NAMES
339 /*
340  * construct the env variable based on the type of binary that's
341  * running.
342  */
343 static inline const char *
344 _LD(const char *var)
345 {
346 	static char buffer[128];
347 
348 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
349 	strlcat(buffer, var, sizeof(buffer));
350 	return (buffer);
351 }
352 #else
353 #define _LD(x)	LD_ x
354 #endif
355 
356 /*
357  * Main entry point for dynamic linking.  The first argument is the
358  * stack pointer.  The stack is expected to be laid out as described
359  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
360  * Specifically, the stack pointer points to a word containing
361  * ARGC.  Following that in the stack is a null-terminated sequence
362  * of pointers to argument strings.  Then comes a null-terminated
363  * sequence of pointers to environment strings.  Finally, there is a
364  * sequence of "auxiliary vector" entries.
365  *
366  * The second argument points to a place to store the dynamic linker's
367  * exit procedure pointer and the third to a place to store the main
368  * program's object.
369  *
370  * The return value is the main program's entry point.
371  */
372 func_ptr_type
373 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
374 {
375     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
376     Objlist_Entry *entry;
377     Obj_Entry *last_interposer, *obj, *preload_tail;
378     const Elf_Phdr *phdr;
379     Objlist initlist;
380     RtldLockState lockstate;
381     struct stat st;
382     Elf_Addr *argcp;
383     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
384     const char *argv0, *binpath;
385     caddr_t imgentry;
386     char buf[MAXPATHLEN];
387     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
388     size_t sz;
389 #ifdef __powerpc__
390     int old_auxv_format = 1;
391 #endif
392     bool dir_enable, direct_exec, explicit_fd, search_in_path;
393 
394     /*
395      * On entry, the dynamic linker itself has not been relocated yet.
396      * Be very careful not to reference any global data until after
397      * init_rtld has returned.  It is OK to reference file-scope statics
398      * and string constants, and to call static and global functions.
399      */
400 
401     /* Find the auxiliary vector on the stack. */
402     argcp = sp;
403     argc = *sp++;
404     argv = (char **) sp;
405     sp += argc + 1;	/* Skip over arguments and NULL terminator */
406     env = (char **) sp;
407     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
408 	;
409     aux = (Elf_Auxinfo *) sp;
410 
411     /* Digest the auxiliary vector. */
412     for (i = 0;  i < AT_COUNT;  i++)
413 	aux_info[i] = NULL;
414     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
415 	if (auxp->a_type < AT_COUNT)
416 	    aux_info[auxp->a_type] = auxp;
417 #ifdef __powerpc__
418 	if (auxp->a_type == 23) /* AT_STACKPROT */
419 	    old_auxv_format = 0;
420 #endif
421     }
422 
423 #ifdef __powerpc__
424     if (old_auxv_format) {
425 	/* Remap from old-style auxv numbers. */
426 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
427 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
428 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
429 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
430 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
431 	aux_info[13] = NULL;		/* AT_GID */
432 
433 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
434 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
435 	aux_info[16] = aux_info[14];	/* AT_CANARY */
436 	aux_info[14] = NULL;		/* AT_EGID */
437     }
438 #endif
439 
440     /* Initialize and relocate ourselves. */
441     assert(aux_info[AT_BASE] != NULL);
442     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
443 
444     __progname = obj_rtld.path;
445     argv0 = argv[0] != NULL ? argv[0] : "(null)";
446     environ = env;
447     main_argc = argc;
448     main_argv = argv;
449 
450     if (aux_info[AT_BSDFLAGS] != NULL &&
451 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
452 	    ld_fast_sigblock = true;
453 
454     trust = !issetugid();
455     direct_exec = false;
456 
457     md_abi_variant_hook(aux_info);
458 
459     fd = -1;
460     if (aux_info[AT_EXECFD] != NULL) {
461 	fd = aux_info[AT_EXECFD]->a_un.a_val;
462     } else {
463 	assert(aux_info[AT_PHDR] != NULL);
464 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
465 	if (phdr == obj_rtld.phdr) {
466 	    if (!trust) {
467 		_rtld_error("Tainted process refusing to run binary %s",
468 		    argv0);
469 		rtld_die();
470 	    }
471 	    direct_exec = true;
472 
473 	    dbg("opening main program in direct exec mode");
474 	    if (argc >= 2) {
475 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
476 		explicit_fd = (fd != -1);
477 		binpath = NULL;
478 		if (!explicit_fd)
479 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
480 		if (fstat(fd, &st) == -1) {
481 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
482 		      explicit_fd ? "user-provided descriptor" : argv0,
483 		      rtld_strerror(errno));
484 		    rtld_die();
485 		}
486 
487 		/*
488 		 * Rough emulation of the permission checks done by
489 		 * execve(2), only Unix DACs are checked, ACLs are
490 		 * ignored.  Preserve the semantic of disabling owner
491 		 * to execute if owner x bit is cleared, even if
492 		 * others x bit is enabled.
493 		 * mmap(2) does not allow to mmap with PROT_EXEC if
494 		 * binary' file comes from noexec mount.  We cannot
495 		 * set a text reference on the binary.
496 		 */
497 		dir_enable = false;
498 		if (st.st_uid == geteuid()) {
499 		    if ((st.st_mode & S_IXUSR) != 0)
500 			dir_enable = true;
501 		} else if (st.st_gid == getegid()) {
502 		    if ((st.st_mode & S_IXGRP) != 0)
503 			dir_enable = true;
504 		} else if ((st.st_mode & S_IXOTH) != 0) {
505 		    dir_enable = true;
506 		}
507 		if (!dir_enable) {
508 		    _rtld_error("No execute permission for binary %s",
509 		        argv0);
510 		    rtld_die();
511 		}
512 
513 		/*
514 		 * For direct exec mode, argv[0] is the interpreter
515 		 * name, we must remove it and shift arguments left
516 		 * before invoking binary main.  Since stack layout
517 		 * places environment pointers and aux vectors right
518 		 * after the terminating NULL, we must shift
519 		 * environment and aux as well.
520 		 */
521 		main_argc = argc - rtld_argc;
522 		for (i = 0; i <= main_argc; i++)
523 		    argv[i] = argv[i + rtld_argc];
524 		*argcp -= rtld_argc;
525 		environ = env = envp = argv + main_argc + 1;
526 		dbg("move env from %p to %p", envp + rtld_argc, envp);
527 		do {
528 		    *envp = *(envp + rtld_argc);
529 		}  while (*envp++ != NULL);
530 		aux = auxp = (Elf_Auxinfo *)envp;
531 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
532 		dbg("move aux from %p to %p", auxpf, aux);
533 		/* XXXKIB insert place for AT_EXECPATH if not present */
534 		for (;; auxp++, auxpf++) {
535 		    *auxp = *auxpf;
536 		    if (auxp->a_type == AT_NULL)
537 			    break;
538 		}
539 		/* Since the auxiliary vector has moved, redigest it. */
540 		for (i = 0;  i < AT_COUNT;  i++)
541 		    aux_info[i] = NULL;
542 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
543 		    if (auxp->a_type < AT_COUNT)
544 			aux_info[auxp->a_type] = auxp;
545 		}
546 
547 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
548 		if (binpath == NULL) {
549 		    aux_info[AT_EXECPATH] = NULL;
550 		} else {
551 		    if (aux_info[AT_EXECPATH] == NULL) {
552 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
553 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
554 		    }
555 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
556 		      binpath);
557 		}
558 	    } else {
559 		_rtld_error("No binary");
560 		rtld_die();
561 	    }
562 	}
563     }
564 
565     ld_bind_now = getenv(_LD("BIND_NOW"));
566 
567     /*
568      * If the process is tainted, then we un-set the dangerous environment
569      * variables.  The process will be marked as tainted until setuid(2)
570      * is called.  If any child process calls setuid(2) we do not want any
571      * future processes to honor the potentially un-safe variables.
572      */
573     if (!trust) {
574 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
575 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
576 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
577 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
578 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
579 		_rtld_error("environment corrupt; aborting");
580 		rtld_die();
581 	}
582     }
583     ld_debug = getenv(_LD("DEBUG"));
584     if (ld_bind_now == NULL)
585 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
586     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
587     libmap_override = getenv(_LD("LIBMAP"));
588     ld_library_path = getenv(_LD("LIBRARY_PATH"));
589     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
590     ld_preload = getenv(_LD("PRELOAD"));
591     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
592     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
593     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
594     if (library_path_rpath != NULL) {
595 	    if (library_path_rpath[0] == 'y' ||
596 		library_path_rpath[0] == 'Y' ||
597 		library_path_rpath[0] == '1')
598 		    ld_library_path_rpath = true;
599 	    else
600 		    ld_library_path_rpath = false;
601     }
602     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
603 	(ld_library_path != NULL) || (ld_preload != NULL) ||
604 	(ld_elf_hints_path != NULL) || ld_loadfltr;
605     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
606     ld_utrace = getenv(_LD("UTRACE"));
607 
608     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
609 	ld_elf_hints_path = ld_elf_hints_default;
610 
611     if (ld_debug != NULL && *ld_debug != '\0')
612 	debug = 1;
613     dbg("%s is initialized, base address = %p", __progname,
614 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
615     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
616     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
617 
618     dbg("initializing thread locks");
619     lockdflt_init();
620 
621     /*
622      * Load the main program, or process its program header if it is
623      * already loaded.
624      */
625     if (fd != -1) {	/* Load the main program. */
626 	dbg("loading main program");
627 	obj_main = map_object(fd, argv0, NULL);
628 	close(fd);
629 	if (obj_main == NULL)
630 	    rtld_die();
631 	max_stack_flags = obj_main->stack_flags;
632     } else {				/* Main program already loaded. */
633 	dbg("processing main program's program header");
634 	assert(aux_info[AT_PHDR] != NULL);
635 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
636 	assert(aux_info[AT_PHNUM] != NULL);
637 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
638 	assert(aux_info[AT_PHENT] != NULL);
639 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
640 	assert(aux_info[AT_ENTRY] != NULL);
641 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
642 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
643 	    rtld_die();
644     }
645 
646     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
647 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
648 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
649 	    if (kexecpath[0] == '/')
650 		    obj_main->path = kexecpath;
651 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
652 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
653 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
654 		    obj_main->path = xstrdup(argv0);
655 	    else
656 		    obj_main->path = xstrdup(buf);
657     } else {
658 	    dbg("No AT_EXECPATH or direct exec");
659 	    obj_main->path = xstrdup(argv0);
660     }
661     dbg("obj_main path %s", obj_main->path);
662     obj_main->mainprog = true;
663 
664     if (aux_info[AT_STACKPROT] != NULL &&
665       aux_info[AT_STACKPROT]->a_un.a_val != 0)
666 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
667 
668 #ifndef COMPAT_32BIT
669     /*
670      * Get the actual dynamic linker pathname from the executable if
671      * possible.  (It should always be possible.)  That ensures that
672      * gdb will find the right dynamic linker even if a non-standard
673      * one is being used.
674      */
675     if (obj_main->interp != NULL &&
676       strcmp(obj_main->interp, obj_rtld.path) != 0) {
677 	free(obj_rtld.path);
678 	obj_rtld.path = xstrdup(obj_main->interp);
679         __progname = obj_rtld.path;
680     }
681 #endif
682 
683     if (!digest_dynamic(obj_main, 0))
684 	rtld_die();
685     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
686 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
687 	obj_main->dynsymcount);
688 
689     linkmap_add(obj_main);
690     linkmap_add(&obj_rtld);
691 
692     /* Link the main program into the list of objects. */
693     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
694     obj_count++;
695     obj_loads++;
696 
697     /* Initialize a fake symbol for resolving undefined weak references. */
698     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
699     sym_zero.st_shndx = SHN_UNDEF;
700     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
701 
702     if (!libmap_disable)
703         libmap_disable = (bool)lm_init(libmap_override);
704 
705     dbg("loading LD_PRELOAD libraries");
706     if (load_preload_objects() == -1)
707 	rtld_die();
708     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
709 
710     dbg("loading needed objects");
711     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
712       0) == -1)
713 	rtld_die();
714 
715     /* Make a list of all objects loaded at startup. */
716     last_interposer = obj_main;
717     TAILQ_FOREACH(obj, &obj_list, next) {
718 	if (obj->marker)
719 	    continue;
720 	if (obj->z_interpose && obj != obj_main) {
721 	    objlist_put_after(&list_main, last_interposer, obj);
722 	    last_interposer = obj;
723 	} else {
724 	    objlist_push_tail(&list_main, obj);
725 	}
726     	obj->refcount++;
727     }
728 
729     dbg("checking for required versions");
730     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
731 	rtld_die();
732 
733     if (ld_tracing) {		/* We're done */
734 	trace_loaded_objects(obj_main);
735 	exit(0);
736     }
737 
738     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
739        dump_relocations(obj_main);
740        exit (0);
741     }
742 
743     /*
744      * Processing tls relocations requires having the tls offsets
745      * initialized.  Prepare offsets before starting initial
746      * relocation processing.
747      */
748     dbg("initializing initial thread local storage offsets");
749     STAILQ_FOREACH(entry, &list_main, link) {
750 	/*
751 	 * Allocate all the initial objects out of the static TLS
752 	 * block even if they didn't ask for it.
753 	 */
754 	allocate_tls_offset(entry->obj);
755     }
756 
757     if (relocate_objects(obj_main,
758       ld_bind_now != NULL && *ld_bind_now != '\0',
759       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
760 	rtld_die();
761 
762     dbg("doing copy relocations");
763     if (do_copy_relocations(obj_main) == -1)
764 	rtld_die();
765 
766     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
767        dump_relocations(obj_main);
768        exit (0);
769     }
770 
771     ifunc_init(aux);
772 
773     /*
774      * Setup TLS for main thread.  This must be done after the
775      * relocations are processed, since tls initialization section
776      * might be the subject for relocations.
777      */
778     dbg("initializing initial thread local storage");
779     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
780 
781     dbg("initializing key program variables");
782     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
783     set_program_var("environ", env);
784     set_program_var("__elf_aux_vector", aux);
785 
786     /* Make a list of init functions to call. */
787     objlist_init(&initlist);
788     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
789       preload_tail, &initlist);
790 
791     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
792 
793     map_stacks_exec(NULL);
794 
795     if (!obj_main->crt_no_init) {
796 	/*
797 	 * Make sure we don't call the main program's init and fini
798 	 * functions for binaries linked with old crt1 which calls
799 	 * _init itself.
800 	 */
801 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
802 	obj_main->preinit_array = obj_main->init_array =
803 	    obj_main->fini_array = (Elf_Addr)NULL;
804     }
805 
806     if (direct_exec) {
807 	/* Set osrel for direct-execed binary */
808 	mib[0] = CTL_KERN;
809 	mib[1] = KERN_PROC;
810 	mib[2] = KERN_PROC_OSREL;
811 	mib[3] = getpid();
812 	osrel = obj_main->osrel;
813 	sz = sizeof(old_osrel);
814 	dbg("setting osrel to %d", osrel);
815 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
816     }
817 
818     wlock_acquire(rtld_bind_lock, &lockstate);
819 
820     dbg("resolving ifuncs");
821     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
822       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
823 	rtld_die();
824 
825     rtld_exit_ptr = rtld_exit;
826     if (obj_main->crt_no_init)
827 	preinit_main();
828     objlist_call_init(&initlist, &lockstate);
829     _r_debug_postinit(&obj_main->linkmap);
830     objlist_clear(&initlist);
831     dbg("loading filtees");
832     TAILQ_FOREACH(obj, &obj_list, next) {
833 	if (obj->marker)
834 	    continue;
835 	if (ld_loadfltr || obj->z_loadfltr)
836 	    load_filtees(obj, 0, &lockstate);
837     }
838 
839     dbg("enforcing main obj relro");
840     if (obj_enforce_relro(obj_main) == -1)
841 	rtld_die();
842 
843     lock_release(rtld_bind_lock, &lockstate);
844 
845     dbg("transferring control to program entry point = %p", obj_main->entry);
846 
847     /* Return the exit procedure and the program entry point. */
848     *exit_proc = rtld_exit_ptr;
849     *objp = obj_main;
850     return (func_ptr_type) obj_main->entry;
851 }
852 
853 void *
854 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
855 {
856 	void *ptr;
857 	Elf_Addr target;
858 
859 	ptr = (void *)make_function_pointer(def, obj);
860 	target = call_ifunc_resolver(ptr);
861 	return ((void *)target);
862 }
863 
864 /*
865  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
866  * Changes to this function should be applied there as well.
867  */
868 Elf_Addr
869 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
870 {
871     const Elf_Rel *rel;
872     const Elf_Sym *def;
873     const Obj_Entry *defobj;
874     Elf_Addr *where;
875     Elf_Addr target;
876     RtldLockState lockstate;
877 
878     rlock_acquire(rtld_bind_lock, &lockstate);
879     if (sigsetjmp(lockstate.env, 0) != 0)
880 	    lock_upgrade(rtld_bind_lock, &lockstate);
881     if (obj->pltrel)
882 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
883     else
884 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
885 
886     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
887     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
888 	NULL, &lockstate);
889     if (def == NULL)
890 	rtld_die();
891     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
892 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
893     else
894 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
895 
896     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
897       defobj->strtab + def->st_name,
898       obj->path == NULL ? NULL : basename(obj->path),
899       (void *)target,
900       defobj->path == NULL ? NULL : basename(defobj->path));
901 
902     /*
903      * Write the new contents for the jmpslot. Note that depending on
904      * architecture, the value which we need to return back to the
905      * lazy binding trampoline may or may not be the target
906      * address. The value returned from reloc_jmpslot() is the value
907      * that the trampoline needs.
908      */
909     target = reloc_jmpslot(where, target, defobj, obj, rel);
910     lock_release(rtld_bind_lock, &lockstate);
911     return target;
912 }
913 
914 /*
915  * Error reporting function.  Use it like printf.  If formats the message
916  * into a buffer, and sets things up so that the next call to dlerror()
917  * will return the message.
918  */
919 void
920 _rtld_error(const char *fmt, ...)
921 {
922     static char buf[512];
923     va_list ap;
924 
925     va_start(ap, fmt);
926     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
927     error_message = buf;
928     va_end(ap);
929     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
930 }
931 
932 /*
933  * Return a dynamically-allocated copy of the current error message, if any.
934  */
935 static char *
936 errmsg_save(void)
937 {
938     return error_message == NULL ? NULL : xstrdup(error_message);
939 }
940 
941 /*
942  * Restore the current error message from a copy which was previously saved
943  * by errmsg_save().  The copy is freed.
944  */
945 static void
946 errmsg_restore(char *saved_msg)
947 {
948     if (saved_msg == NULL)
949 	error_message = NULL;
950     else {
951 	_rtld_error("%s", saved_msg);
952 	free(saved_msg);
953     }
954 }
955 
956 static const char *
957 basename(const char *name)
958 {
959     const char *p = strrchr(name, '/');
960     return p != NULL ? p + 1 : name;
961 }
962 
963 static struct utsname uts;
964 
965 static char *
966 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
967     const char *subst, bool may_free)
968 {
969 	char *p, *p1, *res, *resp;
970 	int subst_len, kw_len, subst_count, old_len, new_len;
971 
972 	kw_len = strlen(kw);
973 
974 	/*
975 	 * First, count the number of the keyword occurrences, to
976 	 * preallocate the final string.
977 	 */
978 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
979 		p1 = strstr(p, kw);
980 		if (p1 == NULL)
981 			break;
982 	}
983 
984 	/*
985 	 * If the keyword is not found, just return.
986 	 *
987 	 * Return non-substituted string if resolution failed.  We
988 	 * cannot do anything more reasonable, the failure mode of the
989 	 * caller is unresolved library anyway.
990 	 */
991 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
992 		return (may_free ? real : xstrdup(real));
993 	if (obj != NULL)
994 		subst = obj->origin_path;
995 
996 	/*
997 	 * There is indeed something to substitute.  Calculate the
998 	 * length of the resulting string, and allocate it.
999 	 */
1000 	subst_len = strlen(subst);
1001 	old_len = strlen(real);
1002 	new_len = old_len + (subst_len - kw_len) * subst_count;
1003 	res = xmalloc(new_len + 1);
1004 
1005 	/*
1006 	 * Now, execute the substitution loop.
1007 	 */
1008 	for (p = real, resp = res, *resp = '\0';;) {
1009 		p1 = strstr(p, kw);
1010 		if (p1 != NULL) {
1011 			/* Copy the prefix before keyword. */
1012 			memcpy(resp, p, p1 - p);
1013 			resp += p1 - p;
1014 			/* Keyword replacement. */
1015 			memcpy(resp, subst, subst_len);
1016 			resp += subst_len;
1017 			*resp = '\0';
1018 			p = p1 + kw_len;
1019 		} else
1020 			break;
1021 	}
1022 
1023 	/* Copy to the end of string and finish. */
1024 	strcat(resp, p);
1025 	if (may_free)
1026 		free(real);
1027 	return (res);
1028 }
1029 
1030 static char *
1031 origin_subst(Obj_Entry *obj, const char *real)
1032 {
1033 	char *res1, *res2, *res3, *res4;
1034 
1035 	if (obj == NULL || !trust)
1036 		return (xstrdup(real));
1037 	if (uts.sysname[0] == '\0') {
1038 		if (uname(&uts) != 0) {
1039 			_rtld_error("utsname failed: %d", errno);
1040 			return (NULL);
1041 		}
1042 	}
1043 	/* __DECONST is safe here since without may_free real is unchanged */
1044 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1045 	    false);
1046 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1047 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1048 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1049 	return (res4);
1050 }
1051 
1052 void
1053 rtld_die(void)
1054 {
1055     const char *msg = dlerror();
1056 
1057     if (msg == NULL)
1058 	msg = "Fatal error";
1059     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1060     rtld_fdputstr(STDERR_FILENO, msg);
1061     rtld_fdputchar(STDERR_FILENO, '\n');
1062     _exit(1);
1063 }
1064 
1065 /*
1066  * Process a shared object's DYNAMIC section, and save the important
1067  * information in its Obj_Entry structure.
1068  */
1069 static void
1070 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1071     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1072 {
1073     const Elf_Dyn *dynp;
1074     Needed_Entry **needed_tail = &obj->needed;
1075     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1076     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1077     const Elf_Hashelt *hashtab;
1078     const Elf32_Word *hashval;
1079     Elf32_Word bkt, nmaskwords;
1080     int bloom_size32;
1081     int plttype = DT_REL;
1082 
1083     *dyn_rpath = NULL;
1084     *dyn_soname = NULL;
1085     *dyn_runpath = NULL;
1086 
1087     obj->bind_now = false;
1088     dynp = obj->dynamic;
1089     if (dynp == NULL)
1090 	return;
1091     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1092 	switch (dynp->d_tag) {
1093 
1094 	case DT_REL:
1095 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1096 	    break;
1097 
1098 	case DT_RELSZ:
1099 	    obj->relsize = dynp->d_un.d_val;
1100 	    break;
1101 
1102 	case DT_RELENT:
1103 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1104 	    break;
1105 
1106 	case DT_JMPREL:
1107 	    obj->pltrel = (const Elf_Rel *)
1108 	      (obj->relocbase + dynp->d_un.d_ptr);
1109 	    break;
1110 
1111 	case DT_PLTRELSZ:
1112 	    obj->pltrelsize = dynp->d_un.d_val;
1113 	    break;
1114 
1115 	case DT_RELA:
1116 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1117 	    break;
1118 
1119 	case DT_RELASZ:
1120 	    obj->relasize = dynp->d_un.d_val;
1121 	    break;
1122 
1123 	case DT_RELAENT:
1124 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1125 	    break;
1126 
1127 	case DT_PLTREL:
1128 	    plttype = dynp->d_un.d_val;
1129 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1130 	    break;
1131 
1132 	case DT_SYMTAB:
1133 	    obj->symtab = (const Elf_Sym *)
1134 	      (obj->relocbase + dynp->d_un.d_ptr);
1135 	    break;
1136 
1137 	case DT_SYMENT:
1138 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1139 	    break;
1140 
1141 	case DT_STRTAB:
1142 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1143 	    break;
1144 
1145 	case DT_STRSZ:
1146 	    obj->strsize = dynp->d_un.d_val;
1147 	    break;
1148 
1149 	case DT_VERNEED:
1150 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1151 		dynp->d_un.d_val);
1152 	    break;
1153 
1154 	case DT_VERNEEDNUM:
1155 	    obj->verneednum = dynp->d_un.d_val;
1156 	    break;
1157 
1158 	case DT_VERDEF:
1159 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1160 		dynp->d_un.d_val);
1161 	    break;
1162 
1163 	case DT_VERDEFNUM:
1164 	    obj->verdefnum = dynp->d_un.d_val;
1165 	    break;
1166 
1167 	case DT_VERSYM:
1168 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1169 		dynp->d_un.d_val);
1170 	    break;
1171 
1172 	case DT_HASH:
1173 	    {
1174 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1175 		    dynp->d_un.d_ptr);
1176 		obj->nbuckets = hashtab[0];
1177 		obj->nchains = hashtab[1];
1178 		obj->buckets = hashtab + 2;
1179 		obj->chains = obj->buckets + obj->nbuckets;
1180 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1181 		  obj->buckets != NULL;
1182 	    }
1183 	    break;
1184 
1185 	case DT_GNU_HASH:
1186 	    {
1187 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1188 		    dynp->d_un.d_ptr);
1189 		obj->nbuckets_gnu = hashtab[0];
1190 		obj->symndx_gnu = hashtab[1];
1191 		nmaskwords = hashtab[2];
1192 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1193 		obj->maskwords_bm_gnu = nmaskwords - 1;
1194 		obj->shift2_gnu = hashtab[3];
1195 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1196 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1197 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1198 		  obj->symndx_gnu;
1199 		/* Number of bitmask words is required to be power of 2 */
1200 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1201 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1202 	    }
1203 	    break;
1204 
1205 	case DT_NEEDED:
1206 	    if (!obj->rtld) {
1207 		Needed_Entry *nep = NEW(Needed_Entry);
1208 		nep->name = dynp->d_un.d_val;
1209 		nep->obj = NULL;
1210 		nep->next = NULL;
1211 
1212 		*needed_tail = nep;
1213 		needed_tail = &nep->next;
1214 	    }
1215 	    break;
1216 
1217 	case DT_FILTER:
1218 	    if (!obj->rtld) {
1219 		Needed_Entry *nep = NEW(Needed_Entry);
1220 		nep->name = dynp->d_un.d_val;
1221 		nep->obj = NULL;
1222 		nep->next = NULL;
1223 
1224 		*needed_filtees_tail = nep;
1225 		needed_filtees_tail = &nep->next;
1226 
1227 		if (obj->linkmap.l_refname == NULL)
1228 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1229 	    }
1230 	    break;
1231 
1232 	case DT_AUXILIARY:
1233 	    if (!obj->rtld) {
1234 		Needed_Entry *nep = NEW(Needed_Entry);
1235 		nep->name = dynp->d_un.d_val;
1236 		nep->obj = NULL;
1237 		nep->next = NULL;
1238 
1239 		*needed_aux_filtees_tail = nep;
1240 		needed_aux_filtees_tail = &nep->next;
1241 	    }
1242 	    break;
1243 
1244 	case DT_PLTGOT:
1245 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1246 	    break;
1247 
1248 	case DT_TEXTREL:
1249 	    obj->textrel = true;
1250 	    break;
1251 
1252 	case DT_SYMBOLIC:
1253 	    obj->symbolic = true;
1254 	    break;
1255 
1256 	case DT_RPATH:
1257 	    /*
1258 	     * We have to wait until later to process this, because we
1259 	     * might not have gotten the address of the string table yet.
1260 	     */
1261 	    *dyn_rpath = dynp;
1262 	    break;
1263 
1264 	case DT_SONAME:
1265 	    *dyn_soname = dynp;
1266 	    break;
1267 
1268 	case DT_RUNPATH:
1269 	    *dyn_runpath = dynp;
1270 	    break;
1271 
1272 	case DT_INIT:
1273 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1274 	    break;
1275 
1276 	case DT_PREINIT_ARRAY:
1277 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1278 	    break;
1279 
1280 	case DT_PREINIT_ARRAYSZ:
1281 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1282 	    break;
1283 
1284 	case DT_INIT_ARRAY:
1285 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1286 	    break;
1287 
1288 	case DT_INIT_ARRAYSZ:
1289 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1290 	    break;
1291 
1292 	case DT_FINI:
1293 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1294 	    break;
1295 
1296 	case DT_FINI_ARRAY:
1297 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1298 	    break;
1299 
1300 	case DT_FINI_ARRAYSZ:
1301 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1302 	    break;
1303 
1304 	/*
1305 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1306 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1307 	 */
1308 
1309 #ifndef __mips__
1310 	case DT_DEBUG:
1311 	    if (!early)
1312 		dbg("Filling in DT_DEBUG entry");
1313 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1314 	    break;
1315 #endif
1316 
1317 	case DT_FLAGS:
1318 		if (dynp->d_un.d_val & DF_ORIGIN)
1319 		    obj->z_origin = true;
1320 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1321 		    obj->symbolic = true;
1322 		if (dynp->d_un.d_val & DF_TEXTREL)
1323 		    obj->textrel = true;
1324 		if (dynp->d_un.d_val & DF_BIND_NOW)
1325 		    obj->bind_now = true;
1326 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1327 		    obj->static_tls = true;
1328 	    break;
1329 #ifdef __mips__
1330 	case DT_MIPS_LOCAL_GOTNO:
1331 		obj->local_gotno = dynp->d_un.d_val;
1332 		break;
1333 
1334 	case DT_MIPS_SYMTABNO:
1335 		obj->symtabno = dynp->d_un.d_val;
1336 		break;
1337 
1338 	case DT_MIPS_GOTSYM:
1339 		obj->gotsym = dynp->d_un.d_val;
1340 		break;
1341 
1342 	case DT_MIPS_RLD_MAP:
1343 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1344 		break;
1345 
1346 	case DT_MIPS_RLD_MAP_REL:
1347 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1348 		// section relative to the address of the tag itself.
1349 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1350 		    (Elf_Addr) &r_debug;
1351 		break;
1352 
1353 	case DT_MIPS_PLTGOT:
1354 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1355 		    dynp->d_un.d_ptr);
1356 		break;
1357 
1358 #endif
1359 
1360 #ifdef __powerpc__
1361 #ifdef __powerpc64__
1362 	case DT_PPC64_GLINK:
1363 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1364 		break;
1365 #else
1366 	case DT_PPC_GOT:
1367 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1368 		break;
1369 #endif
1370 #endif
1371 
1372 	case DT_FLAGS_1:
1373 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1374 		    obj->z_noopen = true;
1375 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1376 		    obj->z_origin = true;
1377 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1378 		    obj->z_global = true;
1379 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1380 		    obj->bind_now = true;
1381 		if (dynp->d_un.d_val & DF_1_NODELETE)
1382 		    obj->z_nodelete = true;
1383 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1384 		    obj->z_loadfltr = true;
1385 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1386 		    obj->z_interpose = true;
1387 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1388 		    obj->z_nodeflib = true;
1389 		if (dynp->d_un.d_val & DF_1_PIE)
1390 		    obj->z_pie = true;
1391 	    break;
1392 
1393 	default:
1394 	    if (!early) {
1395 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1396 		    (long)dynp->d_tag);
1397 	    }
1398 	    break;
1399 	}
1400     }
1401 
1402     obj->traced = false;
1403 
1404     if (plttype == DT_RELA) {
1405 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1406 	obj->pltrel = NULL;
1407 	obj->pltrelasize = obj->pltrelsize;
1408 	obj->pltrelsize = 0;
1409     }
1410 
1411     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1412     if (obj->valid_hash_sysv)
1413 	obj->dynsymcount = obj->nchains;
1414     else if (obj->valid_hash_gnu) {
1415 	obj->dynsymcount = 0;
1416 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1417 	    if (obj->buckets_gnu[bkt] == 0)
1418 		continue;
1419 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1420 	    do
1421 		obj->dynsymcount++;
1422 	    while ((*hashval++ & 1u) == 0);
1423 	}
1424 	obj->dynsymcount += obj->symndx_gnu;
1425     }
1426 
1427     if (obj->linkmap.l_refname != NULL)
1428 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1429 	  linkmap.l_refname;
1430 }
1431 
1432 static bool
1433 obj_resolve_origin(Obj_Entry *obj)
1434 {
1435 
1436 	if (obj->origin_path != NULL)
1437 		return (true);
1438 	obj->origin_path = xmalloc(PATH_MAX);
1439 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1440 }
1441 
1442 static bool
1443 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1444     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1445 {
1446 
1447 	if (obj->z_origin && !obj_resolve_origin(obj))
1448 		return (false);
1449 
1450 	if (dyn_runpath != NULL) {
1451 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1452 		obj->runpath = origin_subst(obj, obj->runpath);
1453 	} else if (dyn_rpath != NULL) {
1454 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1455 		obj->rpath = origin_subst(obj, obj->rpath);
1456 	}
1457 	if (dyn_soname != NULL)
1458 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1459 	return (true);
1460 }
1461 
1462 static bool
1463 digest_dynamic(Obj_Entry *obj, int early)
1464 {
1465 	const Elf_Dyn *dyn_rpath;
1466 	const Elf_Dyn *dyn_soname;
1467 	const Elf_Dyn *dyn_runpath;
1468 
1469 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1470 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1471 }
1472 
1473 /*
1474  * Process a shared object's program header.  This is used only for the
1475  * main program, when the kernel has already loaded the main program
1476  * into memory before calling the dynamic linker.  It creates and
1477  * returns an Obj_Entry structure.
1478  */
1479 static Obj_Entry *
1480 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1481 {
1482     Obj_Entry *obj;
1483     const Elf_Phdr *phlimit = phdr + phnum;
1484     const Elf_Phdr *ph;
1485     Elf_Addr note_start, note_end;
1486     int nsegs = 0;
1487 
1488     obj = obj_new();
1489     for (ph = phdr;  ph < phlimit;  ph++) {
1490 	if (ph->p_type != PT_PHDR)
1491 	    continue;
1492 
1493 	obj->phdr = phdr;
1494 	obj->phsize = ph->p_memsz;
1495 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1496 	break;
1497     }
1498 
1499     obj->stack_flags = PF_X | PF_R | PF_W;
1500 
1501     for (ph = phdr;  ph < phlimit;  ph++) {
1502 	switch (ph->p_type) {
1503 
1504 	case PT_INTERP:
1505 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1506 	    break;
1507 
1508 	case PT_LOAD:
1509 	    if (nsegs == 0) {	/* First load segment */
1510 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1511 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1512 	    } else {		/* Last load segment */
1513 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1514 		  obj->vaddrbase;
1515 	    }
1516 	    nsegs++;
1517 	    break;
1518 
1519 	case PT_DYNAMIC:
1520 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1521 	    break;
1522 
1523 	case PT_TLS:
1524 	    obj->tlsindex = 1;
1525 	    obj->tlssize = ph->p_memsz;
1526 	    obj->tlsalign = ph->p_align;
1527 	    obj->tlsinitsize = ph->p_filesz;
1528 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1529 	    obj->tlspoffset = ph->p_offset;
1530 	    break;
1531 
1532 	case PT_GNU_STACK:
1533 	    obj->stack_flags = ph->p_flags;
1534 	    break;
1535 
1536 	case PT_GNU_RELRO:
1537 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1538 	    obj->relro_size = round_page(ph->p_memsz);
1539 	    break;
1540 
1541 	case PT_NOTE:
1542 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1543 	    note_end = note_start + ph->p_filesz;
1544 	    digest_notes(obj, note_start, note_end);
1545 	    break;
1546 	}
1547     }
1548     if (nsegs < 1) {
1549 	_rtld_error("%s: too few PT_LOAD segments", path);
1550 	return NULL;
1551     }
1552 
1553     obj->entry = entry;
1554     return obj;
1555 }
1556 
1557 void
1558 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1559 {
1560 	const Elf_Note *note;
1561 	const char *note_name;
1562 	uintptr_t p;
1563 
1564 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1565 	    note = (const Elf_Note *)((const char *)(note + 1) +
1566 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1567 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1568 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1569 		    note->n_descsz != sizeof(int32_t))
1570 			continue;
1571 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1572 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1573 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1574 			continue;
1575 		note_name = (const char *)(note + 1);
1576 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1577 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1578 			continue;
1579 		switch (note->n_type) {
1580 		case NT_FREEBSD_ABI_TAG:
1581 			/* FreeBSD osrel note */
1582 			p = (uintptr_t)(note + 1);
1583 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1584 			obj->osrel = *(const int32_t *)(p);
1585 			dbg("note osrel %d", obj->osrel);
1586 			break;
1587 		case NT_FREEBSD_FEATURE_CTL:
1588 			/* FreeBSD ABI feature control note */
1589 			p = (uintptr_t)(note + 1);
1590 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1591 			obj->fctl0 = *(const uint32_t *)(p);
1592 			dbg("note fctl0 %#x", obj->fctl0);
1593 			break;
1594 		case NT_FREEBSD_NOINIT_TAG:
1595 			/* FreeBSD 'crt does not call init' note */
1596 			obj->crt_no_init = true;
1597 			dbg("note crt_no_init");
1598 			break;
1599 		}
1600 	}
1601 }
1602 
1603 static Obj_Entry *
1604 dlcheck(void *handle)
1605 {
1606     Obj_Entry *obj;
1607 
1608     TAILQ_FOREACH(obj, &obj_list, next) {
1609 	if (obj == (Obj_Entry *) handle)
1610 	    break;
1611     }
1612 
1613     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1614 	_rtld_error("Invalid shared object handle %p", handle);
1615 	return NULL;
1616     }
1617     return obj;
1618 }
1619 
1620 /*
1621  * If the given object is already in the donelist, return true.  Otherwise
1622  * add the object to the list and return false.
1623  */
1624 static bool
1625 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1626 {
1627     unsigned int i;
1628 
1629     for (i = 0;  i < dlp->num_used;  i++)
1630 	if (dlp->objs[i] == obj)
1631 	    return true;
1632     /*
1633      * Our donelist allocation should always be sufficient.  But if
1634      * our threads locking isn't working properly, more shared objects
1635      * could have been loaded since we allocated the list.  That should
1636      * never happen, but we'll handle it properly just in case it does.
1637      */
1638     if (dlp->num_used < dlp->num_alloc)
1639 	dlp->objs[dlp->num_used++] = obj;
1640     return false;
1641 }
1642 
1643 /*
1644  * Hash function for symbol table lookup.  Don't even think about changing
1645  * this.  It is specified by the System V ABI.
1646  */
1647 unsigned long
1648 elf_hash(const char *name)
1649 {
1650     const unsigned char *p = (const unsigned char *) name;
1651     unsigned long h = 0;
1652     unsigned long g;
1653 
1654     while (*p != '\0') {
1655 	h = (h << 4) + *p++;
1656 	if ((g = h & 0xf0000000) != 0)
1657 	    h ^= g >> 24;
1658 	h &= ~g;
1659     }
1660     return h;
1661 }
1662 
1663 /*
1664  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1665  * unsigned in case it's implemented with a wider type.
1666  */
1667 static uint32_t
1668 gnu_hash(const char *s)
1669 {
1670 	uint32_t h;
1671 	unsigned char c;
1672 
1673 	h = 5381;
1674 	for (c = *s; c != '\0'; c = *++s)
1675 		h = h * 33 + c;
1676 	return (h & 0xffffffff);
1677 }
1678 
1679 
1680 /*
1681  * Find the library with the given name, and return its full pathname.
1682  * The returned string is dynamically allocated.  Generates an error
1683  * message and returns NULL if the library cannot be found.
1684  *
1685  * If the second argument is non-NULL, then it refers to an already-
1686  * loaded shared object, whose library search path will be searched.
1687  *
1688  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1689  * descriptor (which is close-on-exec) will be passed out via the third
1690  * argument.
1691  *
1692  * The search order is:
1693  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1694  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1695  *   LD_LIBRARY_PATH
1696  *   DT_RUNPATH in the referencing file
1697  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1698  *	 from list)
1699  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1700  *
1701  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1702  */
1703 static char *
1704 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1705 {
1706 	char *pathname, *refobj_path;
1707 	const char *name;
1708 	bool nodeflib, objgiven;
1709 
1710 	objgiven = refobj != NULL;
1711 
1712 	if (libmap_disable || !objgiven ||
1713 	    (name = lm_find(refobj->path, xname)) == NULL)
1714 		name = xname;
1715 
1716 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1717 		if (name[0] != '/' && !trust) {
1718 			_rtld_error("Absolute pathname required "
1719 			    "for shared object \"%s\"", name);
1720 			return (NULL);
1721 		}
1722 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1723 		    __DECONST(char *, name)));
1724 	}
1725 
1726 	dbg(" Searching for \"%s\"", name);
1727 	refobj_path = objgiven ? refobj->path : NULL;
1728 
1729 	/*
1730 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1731 	 * back to pre-conforming behaviour if user requested so with
1732 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1733 	 * nodeflib.
1734 	 */
1735 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1736 		pathname = search_library_path(name, ld_library_path,
1737 		    refobj_path, fdp);
1738 		if (pathname != NULL)
1739 			return (pathname);
1740 		if (refobj != NULL) {
1741 			pathname = search_library_path(name, refobj->rpath,
1742 			    refobj_path, fdp);
1743 			if (pathname != NULL)
1744 				return (pathname);
1745 		}
1746 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1747 		if (pathname != NULL)
1748 			return (pathname);
1749 		pathname = search_library_path(name, gethints(false),
1750 		    refobj_path, fdp);
1751 		if (pathname != NULL)
1752 			return (pathname);
1753 		pathname = search_library_path(name, ld_standard_library_path,
1754 		    refobj_path, fdp);
1755 		if (pathname != NULL)
1756 			return (pathname);
1757 	} else {
1758 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1759 		if (objgiven) {
1760 			pathname = search_library_path(name, refobj->rpath,
1761 			    refobj->path, fdp);
1762 			if (pathname != NULL)
1763 				return (pathname);
1764 		}
1765 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1766 			pathname = search_library_path(name, obj_main->rpath,
1767 			    refobj_path, fdp);
1768 			if (pathname != NULL)
1769 				return (pathname);
1770 		}
1771 		pathname = search_library_path(name, ld_library_path,
1772 		    refobj_path, fdp);
1773 		if (pathname != NULL)
1774 			return (pathname);
1775 		if (objgiven) {
1776 			pathname = search_library_path(name, refobj->runpath,
1777 			    refobj_path, fdp);
1778 			if (pathname != NULL)
1779 				return (pathname);
1780 		}
1781 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1782 		if (pathname != NULL)
1783 			return (pathname);
1784 		pathname = search_library_path(name, gethints(nodeflib),
1785 		    refobj_path, fdp);
1786 		if (pathname != NULL)
1787 			return (pathname);
1788 		if (objgiven && !nodeflib) {
1789 			pathname = search_library_path(name,
1790 			    ld_standard_library_path, refobj_path, fdp);
1791 			if (pathname != NULL)
1792 				return (pathname);
1793 		}
1794 	}
1795 
1796 	if (objgiven && refobj->path != NULL) {
1797 		_rtld_error("Shared object \"%s\" not found, "
1798 		    "required by \"%s\"", name, basename(refobj->path));
1799 	} else {
1800 		_rtld_error("Shared object \"%s\" not found", name);
1801 	}
1802 	return (NULL);
1803 }
1804 
1805 /*
1806  * Given a symbol number in a referencing object, find the corresponding
1807  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1808  * no definition was found.  Returns a pointer to the Obj_Entry of the
1809  * defining object via the reference parameter DEFOBJ_OUT.
1810  */
1811 const Elf_Sym *
1812 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1813     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1814     RtldLockState *lockstate)
1815 {
1816     const Elf_Sym *ref;
1817     const Elf_Sym *def;
1818     const Obj_Entry *defobj;
1819     const Ver_Entry *ve;
1820     SymLook req;
1821     const char *name;
1822     int res;
1823 
1824     /*
1825      * If we have already found this symbol, get the information from
1826      * the cache.
1827      */
1828     if (symnum >= refobj->dynsymcount)
1829 	return NULL;	/* Bad object */
1830     if (cache != NULL && cache[symnum].sym != NULL) {
1831 	*defobj_out = cache[symnum].obj;
1832 	return cache[symnum].sym;
1833     }
1834 
1835     ref = refobj->symtab + symnum;
1836     name = refobj->strtab + ref->st_name;
1837     def = NULL;
1838     defobj = NULL;
1839     ve = NULL;
1840 
1841     /*
1842      * We don't have to do a full scale lookup if the symbol is local.
1843      * We know it will bind to the instance in this load module; to
1844      * which we already have a pointer (ie ref). By not doing a lookup,
1845      * we not only improve performance, but it also avoids unresolvable
1846      * symbols when local symbols are not in the hash table. This has
1847      * been seen with the ia64 toolchain.
1848      */
1849     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1850 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1851 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1852 		symnum);
1853 	}
1854 	symlook_init(&req, name);
1855 	req.flags = flags;
1856 	ve = req.ventry = fetch_ventry(refobj, symnum);
1857 	req.lockstate = lockstate;
1858 	res = symlook_default(&req, refobj);
1859 	if (res == 0) {
1860 	    def = req.sym_out;
1861 	    defobj = req.defobj_out;
1862 	}
1863     } else {
1864 	def = ref;
1865 	defobj = refobj;
1866     }
1867 
1868     /*
1869      * If we found no definition and the reference is weak, treat the
1870      * symbol as having the value zero.
1871      */
1872     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1873 	def = &sym_zero;
1874 	defobj = obj_main;
1875     }
1876 
1877     if (def != NULL) {
1878 	*defobj_out = defobj;
1879 	/* Record the information in the cache to avoid subsequent lookups. */
1880 	if (cache != NULL) {
1881 	    cache[symnum].sym = def;
1882 	    cache[symnum].obj = defobj;
1883 	}
1884     } else {
1885 	if (refobj != &obj_rtld)
1886 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1887 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1888     }
1889     return def;
1890 }
1891 
1892 /*
1893  * Return the search path from the ldconfig hints file, reading it if
1894  * necessary.  If nostdlib is true, then the default search paths are
1895  * not added to result.
1896  *
1897  * Returns NULL if there are problems with the hints file,
1898  * or if the search path there is empty.
1899  */
1900 static const char *
1901 gethints(bool nostdlib)
1902 {
1903 	static char *filtered_path;
1904 	static const char *hints;
1905 	static struct elfhints_hdr hdr;
1906 	struct fill_search_info_args sargs, hargs;
1907 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1908 	struct dl_serpath *SLPpath, *hintpath;
1909 	char *p;
1910 	struct stat hint_stat;
1911 	unsigned int SLPndx, hintndx, fndx, fcount;
1912 	int fd;
1913 	size_t flen;
1914 	uint32_t dl;
1915 	bool skip;
1916 
1917 	/* First call, read the hints file */
1918 	if (hints == NULL) {
1919 		/* Keep from trying again in case the hints file is bad. */
1920 		hints = "";
1921 
1922 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1923 			return (NULL);
1924 
1925 		/*
1926 		 * Check of hdr.dirlistlen value against type limit
1927 		 * intends to pacify static analyzers.  Further
1928 		 * paranoia leads to checks that dirlist is fully
1929 		 * contained in the file range.
1930 		 */
1931 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1932 		    hdr.magic != ELFHINTS_MAGIC ||
1933 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1934 		    fstat(fd, &hint_stat) == -1) {
1935 cleanup1:
1936 			close(fd);
1937 			hdr.dirlistlen = 0;
1938 			return (NULL);
1939 		}
1940 		dl = hdr.strtab;
1941 		if (dl + hdr.dirlist < dl)
1942 			goto cleanup1;
1943 		dl += hdr.dirlist;
1944 		if (dl + hdr.dirlistlen < dl)
1945 			goto cleanup1;
1946 		dl += hdr.dirlistlen;
1947 		if (dl > hint_stat.st_size)
1948 			goto cleanup1;
1949 		p = xmalloc(hdr.dirlistlen + 1);
1950 		if (pread(fd, p, hdr.dirlistlen + 1,
1951 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1952 		    p[hdr.dirlistlen] != '\0') {
1953 			free(p);
1954 			goto cleanup1;
1955 		}
1956 		hints = p;
1957 		close(fd);
1958 	}
1959 
1960 	/*
1961 	 * If caller agreed to receive list which includes the default
1962 	 * paths, we are done. Otherwise, if we still did not
1963 	 * calculated filtered result, do it now.
1964 	 */
1965 	if (!nostdlib)
1966 		return (hints[0] != '\0' ? hints : NULL);
1967 	if (filtered_path != NULL)
1968 		goto filt_ret;
1969 
1970 	/*
1971 	 * Obtain the list of all configured search paths, and the
1972 	 * list of the default paths.
1973 	 *
1974 	 * First estimate the size of the results.
1975 	 */
1976 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1977 	smeta.dls_cnt = 0;
1978 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1979 	hmeta.dls_cnt = 0;
1980 
1981 	sargs.request = RTLD_DI_SERINFOSIZE;
1982 	sargs.serinfo = &smeta;
1983 	hargs.request = RTLD_DI_SERINFOSIZE;
1984 	hargs.serinfo = &hmeta;
1985 
1986 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1987 	    &sargs);
1988 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1989 
1990 	SLPinfo = xmalloc(smeta.dls_size);
1991 	hintinfo = xmalloc(hmeta.dls_size);
1992 
1993 	/*
1994 	 * Next fetch both sets of paths.
1995 	 */
1996 	sargs.request = RTLD_DI_SERINFO;
1997 	sargs.serinfo = SLPinfo;
1998 	sargs.serpath = &SLPinfo->dls_serpath[0];
1999 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2000 
2001 	hargs.request = RTLD_DI_SERINFO;
2002 	hargs.serinfo = hintinfo;
2003 	hargs.serpath = &hintinfo->dls_serpath[0];
2004 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2005 
2006 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2007 	    &sargs);
2008 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2009 
2010 	/*
2011 	 * Now calculate the difference between two sets, by excluding
2012 	 * standard paths from the full set.
2013 	 */
2014 	fndx = 0;
2015 	fcount = 0;
2016 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2017 	hintpath = &hintinfo->dls_serpath[0];
2018 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2019 		skip = false;
2020 		SLPpath = &SLPinfo->dls_serpath[0];
2021 		/*
2022 		 * Check each standard path against current.
2023 		 */
2024 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2025 			/* matched, skip the path */
2026 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2027 				skip = true;
2028 				break;
2029 			}
2030 		}
2031 		if (skip)
2032 			continue;
2033 		/*
2034 		 * Not matched against any standard path, add the path
2035 		 * to result. Separate consequtive paths with ':'.
2036 		 */
2037 		if (fcount > 0) {
2038 			filtered_path[fndx] = ':';
2039 			fndx++;
2040 		}
2041 		fcount++;
2042 		flen = strlen(hintpath->dls_name);
2043 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2044 		fndx += flen;
2045 	}
2046 	filtered_path[fndx] = '\0';
2047 
2048 	free(SLPinfo);
2049 	free(hintinfo);
2050 
2051 filt_ret:
2052 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2053 }
2054 
2055 static void
2056 init_dag(Obj_Entry *root)
2057 {
2058     const Needed_Entry *needed;
2059     const Objlist_Entry *elm;
2060     DoneList donelist;
2061 
2062     if (root->dag_inited)
2063 	return;
2064     donelist_init(&donelist);
2065 
2066     /* Root object belongs to own DAG. */
2067     objlist_push_tail(&root->dldags, root);
2068     objlist_push_tail(&root->dagmembers, root);
2069     donelist_check(&donelist, root);
2070 
2071     /*
2072      * Add dependencies of root object to DAG in breadth order
2073      * by exploiting the fact that each new object get added
2074      * to the tail of the dagmembers list.
2075      */
2076     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2077 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2078 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2079 		continue;
2080 	    objlist_push_tail(&needed->obj->dldags, root);
2081 	    objlist_push_tail(&root->dagmembers, needed->obj);
2082 	}
2083     }
2084     root->dag_inited = true;
2085 }
2086 
2087 static void
2088 init_marker(Obj_Entry *marker)
2089 {
2090 
2091 	bzero(marker, sizeof(*marker));
2092 	marker->marker = true;
2093 }
2094 
2095 Obj_Entry *
2096 globallist_curr(const Obj_Entry *obj)
2097 {
2098 
2099 	for (;;) {
2100 		if (obj == NULL)
2101 			return (NULL);
2102 		if (!obj->marker)
2103 			return (__DECONST(Obj_Entry *, obj));
2104 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2105 	}
2106 }
2107 
2108 Obj_Entry *
2109 globallist_next(const Obj_Entry *obj)
2110 {
2111 
2112 	for (;;) {
2113 		obj = TAILQ_NEXT(obj, next);
2114 		if (obj == NULL)
2115 			return (NULL);
2116 		if (!obj->marker)
2117 			return (__DECONST(Obj_Entry *, obj));
2118 	}
2119 }
2120 
2121 /* Prevent the object from being unmapped while the bind lock is dropped. */
2122 static void
2123 hold_object(Obj_Entry *obj)
2124 {
2125 
2126 	obj->holdcount++;
2127 }
2128 
2129 static void
2130 unhold_object(Obj_Entry *obj)
2131 {
2132 
2133 	assert(obj->holdcount > 0);
2134 	if (--obj->holdcount == 0 && obj->unholdfree)
2135 		release_object(obj);
2136 }
2137 
2138 static void
2139 process_z(Obj_Entry *root)
2140 {
2141 	const Objlist_Entry *elm;
2142 	Obj_Entry *obj;
2143 
2144 	/*
2145 	 * Walk over object DAG and process every dependent object
2146 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2147 	 * to grow their own DAG.
2148 	 *
2149 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2150 	 * symlook_global() to work.
2151 	 *
2152 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2153 	 */
2154 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2155 		obj = elm->obj;
2156 		if (obj == NULL)
2157 			continue;
2158 		if (obj->z_nodelete && !obj->ref_nodel) {
2159 			dbg("obj %s -z nodelete", obj->path);
2160 			init_dag(obj);
2161 			ref_dag(obj);
2162 			obj->ref_nodel = true;
2163 		}
2164 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2165 			dbg("obj %s -z global", obj->path);
2166 			objlist_push_tail(&list_global, obj);
2167 			init_dag(obj);
2168 		}
2169 	}
2170 }
2171 
2172 static void
2173 parse_rtld_phdr(Obj_Entry *obj)
2174 {
2175 	const Elf_Phdr *ph;
2176 	Elf_Addr note_start, note_end;
2177 
2178 	obj->stack_flags = PF_X | PF_R | PF_W;
2179 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2180 	    obj->phsize; ph++) {
2181 		switch (ph->p_type) {
2182 		case PT_GNU_STACK:
2183 			obj->stack_flags = ph->p_flags;
2184 			break;
2185 		case PT_GNU_RELRO:
2186 			obj->relro_page = obj->relocbase +
2187 			    trunc_page(ph->p_vaddr);
2188 			obj->relro_size = round_page(ph->p_memsz);
2189 			break;
2190 		case PT_NOTE:
2191 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2192 			note_end = note_start + ph->p_filesz;
2193 			digest_notes(obj, note_start, note_end);
2194 			break;
2195 		}
2196 	}
2197 }
2198 
2199 /*
2200  * Initialize the dynamic linker.  The argument is the address at which
2201  * the dynamic linker has been mapped into memory.  The primary task of
2202  * this function is to relocate the dynamic linker.
2203  */
2204 static void
2205 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2206 {
2207     Obj_Entry objtmp;	/* Temporary rtld object */
2208     const Elf_Ehdr *ehdr;
2209     const Elf_Dyn *dyn_rpath;
2210     const Elf_Dyn *dyn_soname;
2211     const Elf_Dyn *dyn_runpath;
2212 
2213 #ifdef RTLD_INIT_PAGESIZES_EARLY
2214     /* The page size is required by the dynamic memory allocator. */
2215     init_pagesizes(aux_info);
2216 #endif
2217 
2218     /*
2219      * Conjure up an Obj_Entry structure for the dynamic linker.
2220      *
2221      * The "path" member can't be initialized yet because string constants
2222      * cannot yet be accessed. Below we will set it correctly.
2223      */
2224     memset(&objtmp, 0, sizeof(objtmp));
2225     objtmp.path = NULL;
2226     objtmp.rtld = true;
2227     objtmp.mapbase = mapbase;
2228 #ifdef PIC
2229     objtmp.relocbase = mapbase;
2230 #endif
2231 
2232     objtmp.dynamic = rtld_dynamic(&objtmp);
2233     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2234     assert(objtmp.needed == NULL);
2235 #if !defined(__mips__)
2236     /* MIPS has a bogus DT_TEXTREL. */
2237     assert(!objtmp.textrel);
2238 #endif
2239     /*
2240      * Temporarily put the dynamic linker entry into the object list, so
2241      * that symbols can be found.
2242      */
2243     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2244 
2245     ehdr = (Elf_Ehdr *)mapbase;
2246     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2247     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2248 
2249     /* Initialize the object list. */
2250     TAILQ_INIT(&obj_list);
2251 
2252     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2253     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2254 
2255 #ifndef RTLD_INIT_PAGESIZES_EARLY
2256     /* The page size is required by the dynamic memory allocator. */
2257     init_pagesizes(aux_info);
2258 #endif
2259 
2260     if (aux_info[AT_OSRELDATE] != NULL)
2261 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2262 
2263     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2264 
2265     /* Replace the path with a dynamically allocated copy. */
2266     obj_rtld.path = xstrdup(ld_path_rtld);
2267 
2268     parse_rtld_phdr(&obj_rtld);
2269     obj_enforce_relro(&obj_rtld);
2270 
2271     r_debug.r_version = R_DEBUG_VERSION;
2272     r_debug.r_brk = r_debug_state;
2273     r_debug.r_state = RT_CONSISTENT;
2274     r_debug.r_ldbase = obj_rtld.relocbase;
2275 }
2276 
2277 /*
2278  * Retrieve the array of supported page sizes.  The kernel provides the page
2279  * sizes in increasing order.
2280  */
2281 static void
2282 init_pagesizes(Elf_Auxinfo **aux_info)
2283 {
2284 	static size_t psa[MAXPAGESIZES];
2285 	int mib[2];
2286 	size_t len, size;
2287 
2288 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2289 	    NULL) {
2290 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2291 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2292 	} else {
2293 		len = 2;
2294 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2295 			size = sizeof(psa);
2296 		else {
2297 			/* As a fallback, retrieve the base page size. */
2298 			size = sizeof(psa[0]);
2299 			if (aux_info[AT_PAGESZ] != NULL) {
2300 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2301 				goto psa_filled;
2302 			} else {
2303 				mib[0] = CTL_HW;
2304 				mib[1] = HW_PAGESIZE;
2305 				len = 2;
2306 			}
2307 		}
2308 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2309 			_rtld_error("sysctl for hw.pagesize(s) failed");
2310 			rtld_die();
2311 		}
2312 psa_filled:
2313 		pagesizes = psa;
2314 	}
2315 	npagesizes = size / sizeof(pagesizes[0]);
2316 	/* Discard any invalid entries at the end of the array. */
2317 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2318 		npagesizes--;
2319 }
2320 
2321 /*
2322  * Add the init functions from a needed object list (and its recursive
2323  * needed objects) to "list".  This is not used directly; it is a helper
2324  * function for initlist_add_objects().  The write lock must be held
2325  * when this function is called.
2326  */
2327 static void
2328 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2329 {
2330     /* Recursively process the successor needed objects. */
2331     if (needed->next != NULL)
2332 	initlist_add_neededs(needed->next, list);
2333 
2334     /* Process the current needed object. */
2335     if (needed->obj != NULL)
2336 	initlist_add_objects(needed->obj, needed->obj, list);
2337 }
2338 
2339 /*
2340  * Scan all of the DAGs rooted in the range of objects from "obj" to
2341  * "tail" and add their init functions to "list".  This recurses over
2342  * the DAGs and ensure the proper init ordering such that each object's
2343  * needed libraries are initialized before the object itself.  At the
2344  * same time, this function adds the objects to the global finalization
2345  * list "list_fini" in the opposite order.  The write lock must be
2346  * held when this function is called.
2347  */
2348 static void
2349 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2350 {
2351     Obj_Entry *nobj;
2352 
2353     if (obj->init_scanned || obj->init_done)
2354 	return;
2355     obj->init_scanned = true;
2356 
2357     /* Recursively process the successor objects. */
2358     nobj = globallist_next(obj);
2359     if (nobj != NULL && obj != tail)
2360 	initlist_add_objects(nobj, tail, list);
2361 
2362     /* Recursively process the needed objects. */
2363     if (obj->needed != NULL)
2364 	initlist_add_neededs(obj->needed, list);
2365     if (obj->needed_filtees != NULL)
2366 	initlist_add_neededs(obj->needed_filtees, list);
2367     if (obj->needed_aux_filtees != NULL)
2368 	initlist_add_neededs(obj->needed_aux_filtees, list);
2369 
2370     /* Add the object to the init list. */
2371     objlist_push_tail(list, obj);
2372 
2373     /* Add the object to the global fini list in the reverse order. */
2374     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2375       && !obj->on_fini_list) {
2376 	objlist_push_head(&list_fini, obj);
2377 	obj->on_fini_list = true;
2378     }
2379 }
2380 
2381 #ifndef FPTR_TARGET
2382 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2383 #endif
2384 
2385 static void
2386 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2387 {
2388     Needed_Entry *needed, *needed1;
2389 
2390     for (needed = n; needed != NULL; needed = needed->next) {
2391 	if (needed->obj != NULL) {
2392 	    dlclose_locked(needed->obj, lockstate);
2393 	    needed->obj = NULL;
2394 	}
2395     }
2396     for (needed = n; needed != NULL; needed = needed1) {
2397 	needed1 = needed->next;
2398 	free(needed);
2399     }
2400 }
2401 
2402 static void
2403 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2404 {
2405 
2406 	free_needed_filtees(obj->needed_filtees, lockstate);
2407 	obj->needed_filtees = NULL;
2408 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2409 	obj->needed_aux_filtees = NULL;
2410 	obj->filtees_loaded = false;
2411 }
2412 
2413 static void
2414 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2415     RtldLockState *lockstate)
2416 {
2417 
2418     for (; needed != NULL; needed = needed->next) {
2419 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2420 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2421 	  RTLD_LOCAL, lockstate);
2422     }
2423 }
2424 
2425 static void
2426 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2427 {
2428 
2429     lock_restart_for_upgrade(lockstate);
2430     if (!obj->filtees_loaded) {
2431 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2432 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2433 	obj->filtees_loaded = true;
2434     }
2435 }
2436 
2437 static int
2438 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2439 {
2440     Obj_Entry *obj1;
2441 
2442     for (; needed != NULL; needed = needed->next) {
2443 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2444 	  flags & ~RTLD_LO_NOLOAD);
2445 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2446 	    return (-1);
2447     }
2448     return (0);
2449 }
2450 
2451 /*
2452  * Given a shared object, traverse its list of needed objects, and load
2453  * each of them.  Returns 0 on success.  Generates an error message and
2454  * returns -1 on failure.
2455  */
2456 static int
2457 load_needed_objects(Obj_Entry *first, int flags)
2458 {
2459     Obj_Entry *obj;
2460 
2461     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2462 	if (obj->marker)
2463 	    continue;
2464 	if (process_needed(obj, obj->needed, flags) == -1)
2465 	    return (-1);
2466     }
2467     return (0);
2468 }
2469 
2470 static int
2471 load_preload_objects(void)
2472 {
2473     char *p = ld_preload;
2474     Obj_Entry *obj;
2475     static const char delim[] = " \t:;";
2476 
2477     if (p == NULL)
2478 	return 0;
2479 
2480     p += strspn(p, delim);
2481     while (*p != '\0') {
2482 	size_t len = strcspn(p, delim);
2483 	char savech;
2484 
2485 	savech = p[len];
2486 	p[len] = '\0';
2487 	obj = load_object(p, -1, NULL, 0);
2488 	if (obj == NULL)
2489 	    return -1;	/* XXX - cleanup */
2490 	obj->z_interpose = true;
2491 	p[len] = savech;
2492 	p += len;
2493 	p += strspn(p, delim);
2494     }
2495     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2496     return 0;
2497 }
2498 
2499 static const char *
2500 printable_path(const char *path)
2501 {
2502 
2503 	return (path == NULL ? "<unknown>" : path);
2504 }
2505 
2506 /*
2507  * Load a shared object into memory, if it is not already loaded.  The
2508  * object may be specified by name or by user-supplied file descriptor
2509  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2510  * duplicate is.
2511  *
2512  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2513  * on failure.
2514  */
2515 static Obj_Entry *
2516 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2517 {
2518     Obj_Entry *obj;
2519     int fd;
2520     struct stat sb;
2521     char *path;
2522 
2523     fd = -1;
2524     if (name != NULL) {
2525 	TAILQ_FOREACH(obj, &obj_list, next) {
2526 	    if (obj->marker || obj->doomed)
2527 		continue;
2528 	    if (object_match_name(obj, name))
2529 		return (obj);
2530 	}
2531 
2532 	path = find_library(name, refobj, &fd);
2533 	if (path == NULL)
2534 	    return (NULL);
2535     } else
2536 	path = NULL;
2537 
2538     if (fd >= 0) {
2539 	/*
2540 	 * search_library_pathfds() opens a fresh file descriptor for the
2541 	 * library, so there is no need to dup().
2542 	 */
2543     } else if (fd_u == -1) {
2544 	/*
2545 	 * If we didn't find a match by pathname, or the name is not
2546 	 * supplied, open the file and check again by device and inode.
2547 	 * This avoids false mismatches caused by multiple links or ".."
2548 	 * in pathnames.
2549 	 *
2550 	 * To avoid a race, we open the file and use fstat() rather than
2551 	 * using stat().
2552 	 */
2553 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2554 	    _rtld_error("Cannot open \"%s\"", path);
2555 	    free(path);
2556 	    return (NULL);
2557 	}
2558     } else {
2559 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2560 	if (fd == -1) {
2561 	    _rtld_error("Cannot dup fd");
2562 	    free(path);
2563 	    return (NULL);
2564 	}
2565     }
2566     if (fstat(fd, &sb) == -1) {
2567 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2568 	close(fd);
2569 	free(path);
2570 	return NULL;
2571     }
2572     TAILQ_FOREACH(obj, &obj_list, next) {
2573 	if (obj->marker || obj->doomed)
2574 	    continue;
2575 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2576 	    break;
2577     }
2578     if (obj != NULL && name != NULL) {
2579 	object_add_name(obj, name);
2580 	free(path);
2581 	close(fd);
2582 	return obj;
2583     }
2584     if (flags & RTLD_LO_NOLOAD) {
2585 	free(path);
2586 	close(fd);
2587 	return (NULL);
2588     }
2589 
2590     /* First use of this object, so we must map it in */
2591     obj = do_load_object(fd, name, path, &sb, flags);
2592     if (obj == NULL)
2593 	free(path);
2594     close(fd);
2595 
2596     return obj;
2597 }
2598 
2599 static Obj_Entry *
2600 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2601   int flags)
2602 {
2603     Obj_Entry *obj;
2604     struct statfs fs;
2605 
2606     /*
2607      * but first, make sure that environment variables haven't been
2608      * used to circumvent the noexec flag on a filesystem.
2609      */
2610     if (dangerous_ld_env) {
2611 	if (fstatfs(fd, &fs) != 0) {
2612 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2613 	    return NULL;
2614 	}
2615 	if (fs.f_flags & MNT_NOEXEC) {
2616 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2617 	    return NULL;
2618 	}
2619     }
2620     dbg("loading \"%s\"", printable_path(path));
2621     obj = map_object(fd, printable_path(path), sbp);
2622     if (obj == NULL)
2623         return NULL;
2624 
2625     /*
2626      * If DT_SONAME is present in the object, digest_dynamic2 already
2627      * added it to the object names.
2628      */
2629     if (name != NULL)
2630 	object_add_name(obj, name);
2631     obj->path = path;
2632     if (!digest_dynamic(obj, 0))
2633 	goto errp;
2634     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2635 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2636     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2637 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2638 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2639 	goto errp;
2640     }
2641     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2642       RTLD_LO_DLOPEN) {
2643 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2644 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2645 	goto errp;
2646     }
2647 
2648     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2649     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2650     obj_count++;
2651     obj_loads++;
2652     linkmap_add(obj);	/* for GDB & dlinfo() */
2653     max_stack_flags |= obj->stack_flags;
2654 
2655     dbg("  %p .. %p: %s", obj->mapbase,
2656          obj->mapbase + obj->mapsize - 1, obj->path);
2657     if (obj->textrel)
2658 	dbg("  WARNING: %s has impure text", obj->path);
2659     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2660 	obj->path);
2661 
2662     return (obj);
2663 
2664 errp:
2665     munmap(obj->mapbase, obj->mapsize);
2666     obj_free(obj);
2667     return (NULL);
2668 }
2669 
2670 static Obj_Entry *
2671 obj_from_addr(const void *addr)
2672 {
2673     Obj_Entry *obj;
2674 
2675     TAILQ_FOREACH(obj, &obj_list, next) {
2676 	if (obj->marker)
2677 	    continue;
2678 	if (addr < (void *) obj->mapbase)
2679 	    continue;
2680 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2681 	    return obj;
2682     }
2683     return NULL;
2684 }
2685 
2686 static void
2687 preinit_main(void)
2688 {
2689     Elf_Addr *preinit_addr;
2690     int index;
2691 
2692     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2693     if (preinit_addr == NULL)
2694 	return;
2695 
2696     for (index = 0; index < obj_main->preinit_array_num; index++) {
2697 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2698 	    dbg("calling preinit function for %s at %p", obj_main->path,
2699 	      (void *)preinit_addr[index]);
2700 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2701 	      0, 0, obj_main->path);
2702 	    call_init_pointer(obj_main, preinit_addr[index]);
2703 	}
2704     }
2705 }
2706 
2707 /*
2708  * Call the finalization functions for each of the objects in "list"
2709  * belonging to the DAG of "root" and referenced once. If NULL "root"
2710  * is specified, every finalization function will be called regardless
2711  * of the reference count and the list elements won't be freed. All of
2712  * the objects are expected to have non-NULL fini functions.
2713  */
2714 static void
2715 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2716 {
2717     Objlist_Entry *elm;
2718     char *saved_msg;
2719     Elf_Addr *fini_addr;
2720     int index;
2721 
2722     assert(root == NULL || root->refcount == 1);
2723 
2724     if (root != NULL)
2725 	root->doomed = true;
2726 
2727     /*
2728      * Preserve the current error message since a fini function might
2729      * call into the dynamic linker and overwrite it.
2730      */
2731     saved_msg = errmsg_save();
2732     do {
2733 	STAILQ_FOREACH(elm, list, link) {
2734 	    if (root != NULL && (elm->obj->refcount != 1 ||
2735 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2736 		continue;
2737 	    /* Remove object from fini list to prevent recursive invocation. */
2738 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2739 	    /* Ensure that new references cannot be acquired. */
2740 	    elm->obj->doomed = true;
2741 
2742 	    hold_object(elm->obj);
2743 	    lock_release(rtld_bind_lock, lockstate);
2744 	    /*
2745 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2746 	     * When this happens, DT_FINI_ARRAY is processed first.
2747 	     */
2748 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2749 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2750 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2751 		  index--) {
2752 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2753 			dbg("calling fini function for %s at %p",
2754 			    elm->obj->path, (void *)fini_addr[index]);
2755 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2756 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2757 			call_initfini_pointer(elm->obj, fini_addr[index]);
2758 		    }
2759 		}
2760 	    }
2761 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2762 		dbg("calling fini function for %s at %p", elm->obj->path,
2763 		    (void *)elm->obj->fini);
2764 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2765 		    0, 0, elm->obj->path);
2766 		call_initfini_pointer(elm->obj, elm->obj->fini);
2767 	    }
2768 	    wlock_acquire(rtld_bind_lock, lockstate);
2769 	    unhold_object(elm->obj);
2770 	    /* No need to free anything if process is going down. */
2771 	    if (root != NULL)
2772 	    	free(elm);
2773 	    /*
2774 	     * We must restart the list traversal after every fini call
2775 	     * because a dlclose() call from the fini function or from
2776 	     * another thread might have modified the reference counts.
2777 	     */
2778 	    break;
2779 	}
2780     } while (elm != NULL);
2781     errmsg_restore(saved_msg);
2782 }
2783 
2784 /*
2785  * Call the initialization functions for each of the objects in
2786  * "list".  All of the objects are expected to have non-NULL init
2787  * functions.
2788  */
2789 static void
2790 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2791 {
2792     Objlist_Entry *elm;
2793     Obj_Entry *obj;
2794     char *saved_msg;
2795     Elf_Addr *init_addr;
2796     void (*reg)(void (*)(void));
2797     int index;
2798 
2799     /*
2800      * Clean init_scanned flag so that objects can be rechecked and
2801      * possibly initialized earlier if any of vectors called below
2802      * cause the change by using dlopen.
2803      */
2804     TAILQ_FOREACH(obj, &obj_list, next) {
2805 	if (obj->marker)
2806 	    continue;
2807 	obj->init_scanned = false;
2808     }
2809 
2810     /*
2811      * Preserve the current error message since an init function might
2812      * call into the dynamic linker and overwrite it.
2813      */
2814     saved_msg = errmsg_save();
2815     STAILQ_FOREACH(elm, list, link) {
2816 	if (elm->obj->init_done) /* Initialized early. */
2817 	    continue;
2818 	/*
2819 	 * Race: other thread might try to use this object before current
2820 	 * one completes the initialization. Not much can be done here
2821 	 * without better locking.
2822 	 */
2823 	elm->obj->init_done = true;
2824 	hold_object(elm->obj);
2825 	reg = NULL;
2826 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2827 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2828 		    "__libc_atexit", lockstate);
2829 	}
2830 	lock_release(rtld_bind_lock, lockstate);
2831 	if (reg != NULL) {
2832 		reg(rtld_exit);
2833 		rtld_exit_ptr = rtld_nop_exit;
2834 	}
2835 
2836         /*
2837          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2838          * When this happens, DT_INIT is processed first.
2839          */
2840 	if (elm->obj->init != (Elf_Addr)NULL) {
2841 	    dbg("calling init function for %s at %p", elm->obj->path,
2842 	        (void *)elm->obj->init);
2843 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2844 	        0, 0, elm->obj->path);
2845 	    call_init_pointer(elm->obj, elm->obj->init);
2846 	}
2847 	init_addr = (Elf_Addr *)elm->obj->init_array;
2848 	if (init_addr != NULL) {
2849 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2850 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2851 		    dbg("calling init function for %s at %p", elm->obj->path,
2852 			(void *)init_addr[index]);
2853 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2854 			(void *)init_addr[index], 0, 0, elm->obj->path);
2855 		    call_init_pointer(elm->obj, init_addr[index]);
2856 		}
2857 	    }
2858 	}
2859 	wlock_acquire(rtld_bind_lock, lockstate);
2860 	unhold_object(elm->obj);
2861     }
2862     errmsg_restore(saved_msg);
2863 }
2864 
2865 static void
2866 objlist_clear(Objlist *list)
2867 {
2868     Objlist_Entry *elm;
2869 
2870     while (!STAILQ_EMPTY(list)) {
2871 	elm = STAILQ_FIRST(list);
2872 	STAILQ_REMOVE_HEAD(list, link);
2873 	free(elm);
2874     }
2875 }
2876 
2877 static Objlist_Entry *
2878 objlist_find(Objlist *list, const Obj_Entry *obj)
2879 {
2880     Objlist_Entry *elm;
2881 
2882     STAILQ_FOREACH(elm, list, link)
2883 	if (elm->obj == obj)
2884 	    return elm;
2885     return NULL;
2886 }
2887 
2888 static void
2889 objlist_init(Objlist *list)
2890 {
2891     STAILQ_INIT(list);
2892 }
2893 
2894 static void
2895 objlist_push_head(Objlist *list, Obj_Entry *obj)
2896 {
2897     Objlist_Entry *elm;
2898 
2899     elm = NEW(Objlist_Entry);
2900     elm->obj = obj;
2901     STAILQ_INSERT_HEAD(list, elm, link);
2902 }
2903 
2904 static void
2905 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2906 {
2907     Objlist_Entry *elm;
2908 
2909     elm = NEW(Objlist_Entry);
2910     elm->obj = obj;
2911     STAILQ_INSERT_TAIL(list, elm, link);
2912 }
2913 
2914 static void
2915 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2916 {
2917 	Objlist_Entry *elm, *listelm;
2918 
2919 	STAILQ_FOREACH(listelm, list, link) {
2920 		if (listelm->obj == listobj)
2921 			break;
2922 	}
2923 	elm = NEW(Objlist_Entry);
2924 	elm->obj = obj;
2925 	if (listelm != NULL)
2926 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2927 	else
2928 		STAILQ_INSERT_TAIL(list, elm, link);
2929 }
2930 
2931 static void
2932 objlist_remove(Objlist *list, Obj_Entry *obj)
2933 {
2934     Objlist_Entry *elm;
2935 
2936     if ((elm = objlist_find(list, obj)) != NULL) {
2937 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2938 	free(elm);
2939     }
2940 }
2941 
2942 /*
2943  * Relocate dag rooted in the specified object.
2944  * Returns 0 on success, or -1 on failure.
2945  */
2946 
2947 static int
2948 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2949     int flags, RtldLockState *lockstate)
2950 {
2951 	Objlist_Entry *elm;
2952 	int error;
2953 
2954 	error = 0;
2955 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2956 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2957 		    lockstate);
2958 		if (error == -1)
2959 			break;
2960 	}
2961 	return (error);
2962 }
2963 
2964 /*
2965  * Prepare for, or clean after, relocating an object marked with
2966  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2967  * segments are remapped read-write.  After relocations are done, the
2968  * segment's permissions are returned back to the modes specified in
2969  * the phdrs.  If any relocation happened, or always for wired
2970  * program, COW is triggered.
2971  */
2972 static int
2973 reloc_textrel_prot(Obj_Entry *obj, bool before)
2974 {
2975 	const Elf_Phdr *ph;
2976 	void *base;
2977 	size_t l, sz;
2978 	int prot;
2979 
2980 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2981 	    l--, ph++) {
2982 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2983 			continue;
2984 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2985 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2986 		    trunc_page(ph->p_vaddr);
2987 		prot = before ? (PROT_READ | PROT_WRITE) :
2988 		    convert_prot(ph->p_flags);
2989 		if (mprotect(base, sz, prot) == -1) {
2990 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2991 			    obj->path, before ? "en" : "dis",
2992 			    rtld_strerror(errno));
2993 			return (-1);
2994 		}
2995 	}
2996 	return (0);
2997 }
2998 
2999 /*
3000  * Relocate single object.
3001  * Returns 0 on success, or -1 on failure.
3002  */
3003 static int
3004 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3005     int flags, RtldLockState *lockstate)
3006 {
3007 
3008 	if (obj->relocated)
3009 		return (0);
3010 	obj->relocated = true;
3011 	if (obj != rtldobj)
3012 		dbg("relocating \"%s\"", obj->path);
3013 
3014 	if (obj->symtab == NULL || obj->strtab == NULL ||
3015 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3016 		dbg("object %s has no run-time symbol table", obj->path);
3017 
3018 	/* There are relocations to the write-protected text segment. */
3019 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3020 		return (-1);
3021 
3022 	/* Process the non-PLT non-IFUNC relocations. */
3023 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3024 		return (-1);
3025 
3026 	/* Re-protected the text segment. */
3027 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3028 		return (-1);
3029 
3030 	/* Set the special PLT or GOT entries. */
3031 	init_pltgot(obj);
3032 
3033 	/* Process the PLT relocations. */
3034 	if (reloc_plt(obj, flags, lockstate) == -1)
3035 		return (-1);
3036 	/* Relocate the jump slots if we are doing immediate binding. */
3037 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3038 	    lockstate) == -1)
3039 		return (-1);
3040 
3041 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3042 		return (-1);
3043 
3044 	/*
3045 	 * Set up the magic number and version in the Obj_Entry.  These
3046 	 * were checked in the crt1.o from the original ElfKit, so we
3047 	 * set them for backward compatibility.
3048 	 */
3049 	obj->magic = RTLD_MAGIC;
3050 	obj->version = RTLD_VERSION;
3051 
3052 	return (0);
3053 }
3054 
3055 /*
3056  * Relocate newly-loaded shared objects.  The argument is a pointer to
3057  * the Obj_Entry for the first such object.  All objects from the first
3058  * to the end of the list of objects are relocated.  Returns 0 on success,
3059  * or -1 on failure.
3060  */
3061 static int
3062 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3063     int flags, RtldLockState *lockstate)
3064 {
3065 	Obj_Entry *obj;
3066 	int error;
3067 
3068 	for (error = 0, obj = first;  obj != NULL;
3069 	    obj = TAILQ_NEXT(obj, next)) {
3070 		if (obj->marker)
3071 			continue;
3072 		error = relocate_object(obj, bind_now, rtldobj, flags,
3073 		    lockstate);
3074 		if (error == -1)
3075 			break;
3076 	}
3077 	return (error);
3078 }
3079 
3080 /*
3081  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3082  * referencing STT_GNU_IFUNC symbols is postponed till the other
3083  * relocations are done.  The indirect functions specified as
3084  * ifunc are allowed to call other symbols, so we need to have
3085  * objects relocated before asking for resolution from indirects.
3086  *
3087  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3088  * instead of the usual lazy handling of PLT slots.  It is
3089  * consistent with how GNU does it.
3090  */
3091 static int
3092 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3093     RtldLockState *lockstate)
3094 {
3095 
3096 	if (obj->ifuncs_resolved)
3097 		return (0);
3098 	obj->ifuncs_resolved = true;
3099 	if (!obj->irelative && !obj->irelative_nonplt &&
3100 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3101 	    !obj->non_plt_gnu_ifunc)
3102 		return (0);
3103 	if (obj_disable_relro(obj) == -1 ||
3104 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3105 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3106 	    lockstate) == -1) ||
3107 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3108 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3109 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3110 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3111 	    obj_enforce_relro(obj) == -1)
3112 		return (-1);
3113 	return (0);
3114 }
3115 
3116 static int
3117 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3118     RtldLockState *lockstate)
3119 {
3120 	Objlist_Entry *elm;
3121 	Obj_Entry *obj;
3122 
3123 	STAILQ_FOREACH(elm, list, link) {
3124 		obj = elm->obj;
3125 		if (obj->marker)
3126 			continue;
3127 		if (resolve_object_ifunc(obj, bind_now, flags,
3128 		    lockstate) == -1)
3129 			return (-1);
3130 	}
3131 	return (0);
3132 }
3133 
3134 /*
3135  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3136  * before the process exits.
3137  */
3138 static void
3139 rtld_exit(void)
3140 {
3141     RtldLockState lockstate;
3142 
3143     wlock_acquire(rtld_bind_lock, &lockstate);
3144     dbg("rtld_exit()");
3145     objlist_call_fini(&list_fini, NULL, &lockstate);
3146     /* No need to remove the items from the list, since we are exiting. */
3147     if (!libmap_disable)
3148         lm_fini();
3149     lock_release(rtld_bind_lock, &lockstate);
3150 }
3151 
3152 static void
3153 rtld_nop_exit(void)
3154 {
3155 }
3156 
3157 /*
3158  * Iterate over a search path, translate each element, and invoke the
3159  * callback on the result.
3160  */
3161 static void *
3162 path_enumerate(const char *path, path_enum_proc callback,
3163     const char *refobj_path, void *arg)
3164 {
3165     const char *trans;
3166     if (path == NULL)
3167 	return (NULL);
3168 
3169     path += strspn(path, ":;");
3170     while (*path != '\0') {
3171 	size_t len;
3172 	char  *res;
3173 
3174 	len = strcspn(path, ":;");
3175 	trans = lm_findn(refobj_path, path, len);
3176 	if (trans)
3177 	    res = callback(trans, strlen(trans), arg);
3178 	else
3179 	    res = callback(path, len, arg);
3180 
3181 	if (res != NULL)
3182 	    return (res);
3183 
3184 	path += len;
3185 	path += strspn(path, ":;");
3186     }
3187 
3188     return (NULL);
3189 }
3190 
3191 struct try_library_args {
3192     const char	*name;
3193     size_t	 namelen;
3194     char	*buffer;
3195     size_t	 buflen;
3196     int		 fd;
3197 };
3198 
3199 static void *
3200 try_library_path(const char *dir, size_t dirlen, void *param)
3201 {
3202     struct try_library_args *arg;
3203     int fd;
3204 
3205     arg = param;
3206     if (*dir == '/' || trust) {
3207 	char *pathname;
3208 
3209 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3210 		return (NULL);
3211 
3212 	pathname = arg->buffer;
3213 	strncpy(pathname, dir, dirlen);
3214 	pathname[dirlen] = '/';
3215 	strcpy(pathname + dirlen + 1, arg->name);
3216 
3217 	dbg("  Trying \"%s\"", pathname);
3218 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3219 	if (fd >= 0) {
3220 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3221 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3222 	    strcpy(pathname, arg->buffer);
3223 	    arg->fd = fd;
3224 	    return (pathname);
3225 	} else {
3226 	    dbg("  Failed to open \"%s\": %s",
3227 		pathname, rtld_strerror(errno));
3228 	}
3229     }
3230     return (NULL);
3231 }
3232 
3233 static char *
3234 search_library_path(const char *name, const char *path,
3235     const char *refobj_path, int *fdp)
3236 {
3237     char *p;
3238     struct try_library_args arg;
3239 
3240     if (path == NULL)
3241 	return NULL;
3242 
3243     arg.name = name;
3244     arg.namelen = strlen(name);
3245     arg.buffer = xmalloc(PATH_MAX);
3246     arg.buflen = PATH_MAX;
3247     arg.fd = -1;
3248 
3249     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3250     *fdp = arg.fd;
3251 
3252     free(arg.buffer);
3253 
3254     return (p);
3255 }
3256 
3257 
3258 /*
3259  * Finds the library with the given name using the directory descriptors
3260  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3261  *
3262  * Returns a freshly-opened close-on-exec file descriptor for the library,
3263  * or -1 if the library cannot be found.
3264  */
3265 static char *
3266 search_library_pathfds(const char *name, const char *path, int *fdp)
3267 {
3268 	char *envcopy, *fdstr, *found, *last_token;
3269 	size_t len;
3270 	int dirfd, fd;
3271 
3272 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3273 
3274 	/* Don't load from user-specified libdirs into setuid binaries. */
3275 	if (!trust)
3276 		return (NULL);
3277 
3278 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3279 	if (path == NULL)
3280 		return (NULL);
3281 
3282 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3283 	if (name[0] == '/') {
3284 		dbg("Absolute path (%s) passed to %s", name, __func__);
3285 		return (NULL);
3286 	}
3287 
3288 	/*
3289 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3290 	 * copy of the path, as strtok_r rewrites separator tokens
3291 	 * with '\0'.
3292 	 */
3293 	found = NULL;
3294 	envcopy = xstrdup(path);
3295 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3296 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3297 		dirfd = parse_integer(fdstr);
3298 		if (dirfd < 0) {
3299 			_rtld_error("failed to parse directory FD: '%s'",
3300 				fdstr);
3301 			break;
3302 		}
3303 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3304 		if (fd >= 0) {
3305 			*fdp = fd;
3306 			len = strlen(fdstr) + strlen(name) + 3;
3307 			found = xmalloc(len);
3308 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3309 				_rtld_error("error generating '%d/%s'",
3310 				    dirfd, name);
3311 				rtld_die();
3312 			}
3313 			dbg("open('%s') => %d", found, fd);
3314 			break;
3315 		}
3316 	}
3317 	free(envcopy);
3318 
3319 	return (found);
3320 }
3321 
3322 
3323 int
3324 dlclose(void *handle)
3325 {
3326 	RtldLockState lockstate;
3327 	int error;
3328 
3329 	wlock_acquire(rtld_bind_lock, &lockstate);
3330 	error = dlclose_locked(handle, &lockstate);
3331 	lock_release(rtld_bind_lock, &lockstate);
3332 	return (error);
3333 }
3334 
3335 static int
3336 dlclose_locked(void *handle, RtldLockState *lockstate)
3337 {
3338     Obj_Entry *root;
3339 
3340     root = dlcheck(handle);
3341     if (root == NULL)
3342 	return -1;
3343     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3344 	root->path);
3345 
3346     /* Unreference the object and its dependencies. */
3347     root->dl_refcount--;
3348 
3349     if (root->refcount == 1) {
3350 	/*
3351 	 * The object will be no longer referenced, so we must unload it.
3352 	 * First, call the fini functions.
3353 	 */
3354 	objlist_call_fini(&list_fini, root, lockstate);
3355 
3356 	unref_dag(root);
3357 
3358 	/* Finish cleaning up the newly-unreferenced objects. */
3359 	GDB_STATE(RT_DELETE,&root->linkmap);
3360 	unload_object(root, lockstate);
3361 	GDB_STATE(RT_CONSISTENT,NULL);
3362     } else
3363 	unref_dag(root);
3364 
3365     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3366     return 0;
3367 }
3368 
3369 char *
3370 dlerror(void)
3371 {
3372     char *msg = error_message;
3373     error_message = NULL;
3374     return msg;
3375 }
3376 
3377 /*
3378  * This function is deprecated and has no effect.
3379  */
3380 void
3381 dllockinit(void *context,
3382     void *(*_lock_create)(void *context) __unused,
3383     void (*_rlock_acquire)(void *lock) __unused,
3384     void (*_wlock_acquire)(void *lock)  __unused,
3385     void (*_lock_release)(void *lock) __unused,
3386     void (*_lock_destroy)(void *lock) __unused,
3387     void (*context_destroy)(void *context))
3388 {
3389     static void *cur_context;
3390     static void (*cur_context_destroy)(void *);
3391 
3392     /* Just destroy the context from the previous call, if necessary. */
3393     if (cur_context_destroy != NULL)
3394 	cur_context_destroy(cur_context);
3395     cur_context = context;
3396     cur_context_destroy = context_destroy;
3397 }
3398 
3399 void *
3400 dlopen(const char *name, int mode)
3401 {
3402 
3403 	return (rtld_dlopen(name, -1, mode));
3404 }
3405 
3406 void *
3407 fdlopen(int fd, int mode)
3408 {
3409 
3410 	return (rtld_dlopen(NULL, fd, mode));
3411 }
3412 
3413 static void *
3414 rtld_dlopen(const char *name, int fd, int mode)
3415 {
3416     RtldLockState lockstate;
3417     int lo_flags;
3418 
3419     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3420     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3421     if (ld_tracing != NULL) {
3422 	rlock_acquire(rtld_bind_lock, &lockstate);
3423 	if (sigsetjmp(lockstate.env, 0) != 0)
3424 	    lock_upgrade(rtld_bind_lock, &lockstate);
3425 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3426 	lock_release(rtld_bind_lock, &lockstate);
3427     }
3428     lo_flags = RTLD_LO_DLOPEN;
3429     if (mode & RTLD_NODELETE)
3430 	    lo_flags |= RTLD_LO_NODELETE;
3431     if (mode & RTLD_NOLOAD)
3432 	    lo_flags |= RTLD_LO_NOLOAD;
3433     if (mode & RTLD_DEEPBIND)
3434 	    lo_flags |= RTLD_LO_DEEPBIND;
3435     if (ld_tracing != NULL)
3436 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3437 
3438     return (dlopen_object(name, fd, obj_main, lo_flags,
3439       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3440 }
3441 
3442 static void
3443 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3444 {
3445 
3446 	obj->dl_refcount--;
3447 	unref_dag(obj);
3448 	if (obj->refcount == 0)
3449 		unload_object(obj, lockstate);
3450 }
3451 
3452 static Obj_Entry *
3453 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3454     int mode, RtldLockState *lockstate)
3455 {
3456     Obj_Entry *old_obj_tail;
3457     Obj_Entry *obj;
3458     Objlist initlist;
3459     RtldLockState mlockstate;
3460     int result;
3461 
3462     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3463       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3464       refobj->path, lo_flags, mode);
3465     objlist_init(&initlist);
3466 
3467     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3468 	wlock_acquire(rtld_bind_lock, &mlockstate);
3469 	lockstate = &mlockstate;
3470     }
3471     GDB_STATE(RT_ADD,NULL);
3472 
3473     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3474     obj = NULL;
3475     if (name == NULL && fd == -1) {
3476 	obj = obj_main;
3477 	obj->refcount++;
3478     } else {
3479 	obj = load_object(name, fd, refobj, lo_flags);
3480     }
3481 
3482     if (obj) {
3483 	obj->dl_refcount++;
3484 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3485 	    objlist_push_tail(&list_global, obj);
3486 	if (globallist_next(old_obj_tail) != NULL) {
3487 	    /* We loaded something new. */
3488 	    assert(globallist_next(old_obj_tail) == obj);
3489 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3490 		obj->symbolic = true;
3491 	    result = 0;
3492 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3493 	      obj->static_tls && !allocate_tls_offset(obj)) {
3494 		_rtld_error("%s: No space available "
3495 		  "for static Thread Local Storage", obj->path);
3496 		result = -1;
3497 	    }
3498 	    if (result != -1)
3499 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3500 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3501 	    init_dag(obj);
3502 	    ref_dag(obj);
3503 	    if (result != -1)
3504 		result = rtld_verify_versions(&obj->dagmembers);
3505 	    if (result != -1 && ld_tracing)
3506 		goto trace;
3507 	    if (result == -1 || relocate_object_dag(obj,
3508 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3509 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3510 	      lockstate) == -1) {
3511 		dlopen_cleanup(obj, lockstate);
3512 		obj = NULL;
3513 	    } else if (lo_flags & RTLD_LO_EARLY) {
3514 		/*
3515 		 * Do not call the init functions for early loaded
3516 		 * filtees.  The image is still not initialized enough
3517 		 * for them to work.
3518 		 *
3519 		 * Our object is found by the global object list and
3520 		 * will be ordered among all init calls done right
3521 		 * before transferring control to main.
3522 		 */
3523 	    } else {
3524 		/* Make list of init functions to call. */
3525 		initlist_add_objects(obj, obj, &initlist);
3526 	    }
3527 	    /*
3528 	     * Process all no_delete or global objects here, given
3529 	     * them own DAGs to prevent their dependencies from being
3530 	     * unloaded.  This has to be done after we have loaded all
3531 	     * of the dependencies, so that we do not miss any.
3532 	     */
3533 	    if (obj != NULL)
3534 		process_z(obj);
3535 	} else {
3536 	    /*
3537 	     * Bump the reference counts for objects on this DAG.  If
3538 	     * this is the first dlopen() call for the object that was
3539 	     * already loaded as a dependency, initialize the dag
3540 	     * starting at it.
3541 	     */
3542 	    init_dag(obj);
3543 	    ref_dag(obj);
3544 
3545 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3546 		goto trace;
3547 	}
3548 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3549 	  obj->z_nodelete) && !obj->ref_nodel) {
3550 	    dbg("obj %s nodelete", obj->path);
3551 	    ref_dag(obj);
3552 	    obj->z_nodelete = obj->ref_nodel = true;
3553 	}
3554     }
3555 
3556     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3557 	name);
3558     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3559 
3560     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3561 	map_stacks_exec(lockstate);
3562 	if (obj != NULL)
3563 	    distribute_static_tls(&initlist, lockstate);
3564     }
3565 
3566     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3567       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3568       lockstate) == -1) {
3569 	objlist_clear(&initlist);
3570 	dlopen_cleanup(obj, lockstate);
3571 	if (lockstate == &mlockstate)
3572 	    lock_release(rtld_bind_lock, lockstate);
3573 	return (NULL);
3574     }
3575 
3576     if (!(lo_flags & RTLD_LO_EARLY)) {
3577 	/* Call the init functions. */
3578 	objlist_call_init(&initlist, lockstate);
3579     }
3580     objlist_clear(&initlist);
3581     if (lockstate == &mlockstate)
3582 	lock_release(rtld_bind_lock, lockstate);
3583     return obj;
3584 trace:
3585     trace_loaded_objects(obj);
3586     if (lockstate == &mlockstate)
3587 	lock_release(rtld_bind_lock, lockstate);
3588     exit(0);
3589 }
3590 
3591 static void *
3592 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3593     int flags)
3594 {
3595     DoneList donelist;
3596     const Obj_Entry *obj, *defobj;
3597     const Elf_Sym *def;
3598     SymLook req;
3599     RtldLockState lockstate;
3600     tls_index ti;
3601     void *sym;
3602     int res;
3603 
3604     def = NULL;
3605     defobj = NULL;
3606     symlook_init(&req, name);
3607     req.ventry = ve;
3608     req.flags = flags | SYMLOOK_IN_PLT;
3609     req.lockstate = &lockstate;
3610 
3611     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3612     rlock_acquire(rtld_bind_lock, &lockstate);
3613     if (sigsetjmp(lockstate.env, 0) != 0)
3614 	    lock_upgrade(rtld_bind_lock, &lockstate);
3615     if (handle == NULL || handle == RTLD_NEXT ||
3616 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3617 
3618 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3619 	    _rtld_error("Cannot determine caller's shared object");
3620 	    lock_release(rtld_bind_lock, &lockstate);
3621 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3622 	    return NULL;
3623 	}
3624 	if (handle == NULL) {	/* Just the caller's shared object. */
3625 	    res = symlook_obj(&req, obj);
3626 	    if (res == 0) {
3627 		def = req.sym_out;
3628 		defobj = req.defobj_out;
3629 	    }
3630 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3631 		   handle == RTLD_SELF) { /* ... caller included */
3632 	    if (handle == RTLD_NEXT)
3633 		obj = globallist_next(obj);
3634 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3635 		if (obj->marker)
3636 		    continue;
3637 		res = symlook_obj(&req, obj);
3638 		if (res == 0) {
3639 		    if (def == NULL ||
3640 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3641 			def = req.sym_out;
3642 			defobj = req.defobj_out;
3643 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3644 			    break;
3645 		    }
3646 		}
3647 	    }
3648 	    /*
3649 	     * Search the dynamic linker itself, and possibly resolve the
3650 	     * symbol from there.  This is how the application links to
3651 	     * dynamic linker services such as dlopen.
3652 	     */
3653 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3654 		res = symlook_obj(&req, &obj_rtld);
3655 		if (res == 0) {
3656 		    def = req.sym_out;
3657 		    defobj = req.defobj_out;
3658 		}
3659 	    }
3660 	} else {
3661 	    assert(handle == RTLD_DEFAULT);
3662 	    res = symlook_default(&req, obj);
3663 	    if (res == 0) {
3664 		defobj = req.defobj_out;
3665 		def = req.sym_out;
3666 	    }
3667 	}
3668     } else {
3669 	if ((obj = dlcheck(handle)) == NULL) {
3670 	    lock_release(rtld_bind_lock, &lockstate);
3671 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3672 	    return NULL;
3673 	}
3674 
3675 	donelist_init(&donelist);
3676 	if (obj->mainprog) {
3677             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3678 	    res = symlook_global(&req, &donelist);
3679 	    if (res == 0) {
3680 		def = req.sym_out;
3681 		defobj = req.defobj_out;
3682 	    }
3683 	    /*
3684 	     * Search the dynamic linker itself, and possibly resolve the
3685 	     * symbol from there.  This is how the application links to
3686 	     * dynamic linker services such as dlopen.
3687 	     */
3688 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3689 		res = symlook_obj(&req, &obj_rtld);
3690 		if (res == 0) {
3691 		    def = req.sym_out;
3692 		    defobj = req.defobj_out;
3693 		}
3694 	    }
3695 	}
3696 	else {
3697 	    /* Search the whole DAG rooted at the given object. */
3698 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3699 	    if (res == 0) {
3700 		def = req.sym_out;
3701 		defobj = req.defobj_out;
3702 	    }
3703 	}
3704     }
3705 
3706     if (def != NULL) {
3707 	lock_release(rtld_bind_lock, &lockstate);
3708 
3709 	/*
3710 	 * The value required by the caller is derived from the value
3711 	 * of the symbol. this is simply the relocated value of the
3712 	 * symbol.
3713 	 */
3714 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3715 	    sym = make_function_pointer(def, defobj);
3716 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3717 	    sym = rtld_resolve_ifunc(defobj, def);
3718 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3719 	    ti.ti_module = defobj->tlsindex;
3720 	    ti.ti_offset = def->st_value;
3721 	    sym = __tls_get_addr(&ti);
3722 	} else
3723 	    sym = defobj->relocbase + def->st_value;
3724 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3725 	return (sym);
3726     }
3727 
3728     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3729       ve != NULL ? ve->name : "");
3730     lock_release(rtld_bind_lock, &lockstate);
3731     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3732     return NULL;
3733 }
3734 
3735 void *
3736 dlsym(void *handle, const char *name)
3737 {
3738 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3739 	    SYMLOOK_DLSYM);
3740 }
3741 
3742 dlfunc_t
3743 dlfunc(void *handle, const char *name)
3744 {
3745 	union {
3746 		void *d;
3747 		dlfunc_t f;
3748 	} rv;
3749 
3750 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3751 	    SYMLOOK_DLSYM);
3752 	return (rv.f);
3753 }
3754 
3755 void *
3756 dlvsym(void *handle, const char *name, const char *version)
3757 {
3758 	Ver_Entry ventry;
3759 
3760 	ventry.name = version;
3761 	ventry.file = NULL;
3762 	ventry.hash = elf_hash(version);
3763 	ventry.flags= 0;
3764 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3765 	    SYMLOOK_DLSYM);
3766 }
3767 
3768 int
3769 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3770 {
3771     const Obj_Entry *obj;
3772     RtldLockState lockstate;
3773 
3774     rlock_acquire(rtld_bind_lock, &lockstate);
3775     obj = obj_from_addr(addr);
3776     if (obj == NULL) {
3777         _rtld_error("No shared object contains address");
3778 	lock_release(rtld_bind_lock, &lockstate);
3779         return (0);
3780     }
3781     rtld_fill_dl_phdr_info(obj, phdr_info);
3782     lock_release(rtld_bind_lock, &lockstate);
3783     return (1);
3784 }
3785 
3786 int
3787 dladdr(const void *addr, Dl_info *info)
3788 {
3789     const Obj_Entry *obj;
3790     const Elf_Sym *def;
3791     void *symbol_addr;
3792     unsigned long symoffset;
3793     RtldLockState lockstate;
3794 
3795     rlock_acquire(rtld_bind_lock, &lockstate);
3796     obj = obj_from_addr(addr);
3797     if (obj == NULL) {
3798         _rtld_error("No shared object contains address");
3799 	lock_release(rtld_bind_lock, &lockstate);
3800         return 0;
3801     }
3802     info->dli_fname = obj->path;
3803     info->dli_fbase = obj->mapbase;
3804     info->dli_saddr = (void *)0;
3805     info->dli_sname = NULL;
3806 
3807     /*
3808      * Walk the symbol list looking for the symbol whose address is
3809      * closest to the address sent in.
3810      */
3811     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3812         def = obj->symtab + symoffset;
3813 
3814         /*
3815          * For skip the symbol if st_shndx is either SHN_UNDEF or
3816          * SHN_COMMON.
3817          */
3818         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3819             continue;
3820 
3821         /*
3822          * If the symbol is greater than the specified address, or if it
3823          * is further away from addr than the current nearest symbol,
3824          * then reject it.
3825          */
3826         symbol_addr = obj->relocbase + def->st_value;
3827         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3828             continue;
3829 
3830         /* Update our idea of the nearest symbol. */
3831         info->dli_sname = obj->strtab + def->st_name;
3832         info->dli_saddr = symbol_addr;
3833 
3834         /* Exact match? */
3835         if (info->dli_saddr == addr)
3836             break;
3837     }
3838     lock_release(rtld_bind_lock, &lockstate);
3839     return 1;
3840 }
3841 
3842 int
3843 dlinfo(void *handle, int request, void *p)
3844 {
3845     const Obj_Entry *obj;
3846     RtldLockState lockstate;
3847     int error;
3848 
3849     rlock_acquire(rtld_bind_lock, &lockstate);
3850 
3851     if (handle == NULL || handle == RTLD_SELF) {
3852 	void *retaddr;
3853 
3854 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3855 	if ((obj = obj_from_addr(retaddr)) == NULL)
3856 	    _rtld_error("Cannot determine caller's shared object");
3857     } else
3858 	obj = dlcheck(handle);
3859 
3860     if (obj == NULL) {
3861 	lock_release(rtld_bind_lock, &lockstate);
3862 	return (-1);
3863     }
3864 
3865     error = 0;
3866     switch (request) {
3867     case RTLD_DI_LINKMAP:
3868 	*((struct link_map const **)p) = &obj->linkmap;
3869 	break;
3870     case RTLD_DI_ORIGIN:
3871 	error = rtld_dirname(obj->path, p);
3872 	break;
3873 
3874     case RTLD_DI_SERINFOSIZE:
3875     case RTLD_DI_SERINFO:
3876 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3877 	break;
3878 
3879     default:
3880 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3881 	error = -1;
3882     }
3883 
3884     lock_release(rtld_bind_lock, &lockstate);
3885 
3886     return (error);
3887 }
3888 
3889 static void
3890 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3891 {
3892 
3893 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3894 	phdr_info->dlpi_name = obj->path;
3895 	phdr_info->dlpi_phdr = obj->phdr;
3896 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3897 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3898 	phdr_info->dlpi_tls_data = obj->tlsinit;
3899 	phdr_info->dlpi_adds = obj_loads;
3900 	phdr_info->dlpi_subs = obj_loads - obj_count;
3901 }
3902 
3903 int
3904 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3905 {
3906 	struct dl_phdr_info phdr_info;
3907 	Obj_Entry *obj, marker;
3908 	RtldLockState bind_lockstate, phdr_lockstate;
3909 	int error;
3910 
3911 	init_marker(&marker);
3912 	error = 0;
3913 
3914 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3915 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3916 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3917 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3918 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3919 		hold_object(obj);
3920 		lock_release(rtld_bind_lock, &bind_lockstate);
3921 
3922 		error = callback(&phdr_info, sizeof phdr_info, param);
3923 
3924 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3925 		unhold_object(obj);
3926 		obj = globallist_next(&marker);
3927 		TAILQ_REMOVE(&obj_list, &marker, next);
3928 		if (error != 0) {
3929 			lock_release(rtld_bind_lock, &bind_lockstate);
3930 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3931 			return (error);
3932 		}
3933 	}
3934 
3935 	if (error == 0) {
3936 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3937 		lock_release(rtld_bind_lock, &bind_lockstate);
3938 		error = callback(&phdr_info, sizeof(phdr_info), param);
3939 	}
3940 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3941 	return (error);
3942 }
3943 
3944 static void *
3945 fill_search_info(const char *dir, size_t dirlen, void *param)
3946 {
3947     struct fill_search_info_args *arg;
3948 
3949     arg = param;
3950 
3951     if (arg->request == RTLD_DI_SERINFOSIZE) {
3952 	arg->serinfo->dls_cnt ++;
3953 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3954     } else {
3955 	struct dl_serpath *s_entry;
3956 
3957 	s_entry = arg->serpath;
3958 	s_entry->dls_name  = arg->strspace;
3959 	s_entry->dls_flags = arg->flags;
3960 
3961 	strncpy(arg->strspace, dir, dirlen);
3962 	arg->strspace[dirlen] = '\0';
3963 
3964 	arg->strspace += dirlen + 1;
3965 	arg->serpath++;
3966     }
3967 
3968     return (NULL);
3969 }
3970 
3971 static int
3972 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3973 {
3974     struct dl_serinfo _info;
3975     struct fill_search_info_args args;
3976 
3977     args.request = RTLD_DI_SERINFOSIZE;
3978     args.serinfo = &_info;
3979 
3980     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3981     _info.dls_cnt  = 0;
3982 
3983     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3984     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3985     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3986     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3987     if (!obj->z_nodeflib)
3988       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3989 
3990 
3991     if (request == RTLD_DI_SERINFOSIZE) {
3992 	info->dls_size = _info.dls_size;
3993 	info->dls_cnt = _info.dls_cnt;
3994 	return (0);
3995     }
3996 
3997     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3998 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3999 	return (-1);
4000     }
4001 
4002     args.request  = RTLD_DI_SERINFO;
4003     args.serinfo  = info;
4004     args.serpath  = &info->dls_serpath[0];
4005     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4006 
4007     args.flags = LA_SER_RUNPATH;
4008     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4009 	return (-1);
4010 
4011     args.flags = LA_SER_LIBPATH;
4012     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4013 	return (-1);
4014 
4015     args.flags = LA_SER_RUNPATH;
4016     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4017 	return (-1);
4018 
4019     args.flags = LA_SER_CONFIG;
4020     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4021       != NULL)
4022 	return (-1);
4023 
4024     args.flags = LA_SER_DEFAULT;
4025     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4026       fill_search_info, NULL, &args) != NULL)
4027 	return (-1);
4028     return (0);
4029 }
4030 
4031 static int
4032 rtld_dirname(const char *path, char *bname)
4033 {
4034     const char *endp;
4035 
4036     /* Empty or NULL string gets treated as "." */
4037     if (path == NULL || *path == '\0') {
4038 	bname[0] = '.';
4039 	bname[1] = '\0';
4040 	return (0);
4041     }
4042 
4043     /* Strip trailing slashes */
4044     endp = path + strlen(path) - 1;
4045     while (endp > path && *endp == '/')
4046 	endp--;
4047 
4048     /* Find the start of the dir */
4049     while (endp > path && *endp != '/')
4050 	endp--;
4051 
4052     /* Either the dir is "/" or there are no slashes */
4053     if (endp == path) {
4054 	bname[0] = *endp == '/' ? '/' : '.';
4055 	bname[1] = '\0';
4056 	return (0);
4057     } else {
4058 	do {
4059 	    endp--;
4060 	} while (endp > path && *endp == '/');
4061     }
4062 
4063     if (endp - path + 2 > PATH_MAX)
4064     {
4065 	_rtld_error("Filename is too long: %s", path);
4066 	return(-1);
4067     }
4068 
4069     strncpy(bname, path, endp - path + 1);
4070     bname[endp - path + 1] = '\0';
4071     return (0);
4072 }
4073 
4074 static int
4075 rtld_dirname_abs(const char *path, char *base)
4076 {
4077 	char *last;
4078 
4079 	if (realpath(path, base) == NULL) {
4080 		_rtld_error("realpath \"%s\" failed (%s)", path,
4081 		    rtld_strerror(errno));
4082 		return (-1);
4083 	}
4084 	dbg("%s -> %s", path, base);
4085 	last = strrchr(base, '/');
4086 	if (last == NULL) {
4087 		_rtld_error("non-abs result from realpath \"%s\"", path);
4088 		return (-1);
4089 	}
4090 	if (last != base)
4091 		*last = '\0';
4092 	return (0);
4093 }
4094 
4095 static void
4096 linkmap_add(Obj_Entry *obj)
4097 {
4098 	struct link_map *l, *prev;
4099 
4100 	l = &obj->linkmap;
4101 	l->l_name = obj->path;
4102 	l->l_base = obj->mapbase;
4103 	l->l_ld = obj->dynamic;
4104 	l->l_addr = obj->relocbase;
4105 
4106 	if (r_debug.r_map == NULL) {
4107 		r_debug.r_map = l;
4108 		return;
4109 	}
4110 
4111 	/*
4112 	 * Scan to the end of the list, but not past the entry for the
4113 	 * dynamic linker, which we want to keep at the very end.
4114 	 */
4115 	for (prev = r_debug.r_map;
4116 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4117 	     prev = prev->l_next)
4118 		;
4119 
4120 	/* Link in the new entry. */
4121 	l->l_prev = prev;
4122 	l->l_next = prev->l_next;
4123 	if (l->l_next != NULL)
4124 		l->l_next->l_prev = l;
4125 	prev->l_next = l;
4126 }
4127 
4128 static void
4129 linkmap_delete(Obj_Entry *obj)
4130 {
4131 	struct link_map *l;
4132 
4133 	l = &obj->linkmap;
4134 	if (l->l_prev == NULL) {
4135 		if ((r_debug.r_map = l->l_next) != NULL)
4136 			l->l_next->l_prev = NULL;
4137 		return;
4138 	}
4139 
4140 	if ((l->l_prev->l_next = l->l_next) != NULL)
4141 		l->l_next->l_prev = l->l_prev;
4142 }
4143 
4144 /*
4145  * Function for the debugger to set a breakpoint on to gain control.
4146  *
4147  * The two parameters allow the debugger to easily find and determine
4148  * what the runtime loader is doing and to whom it is doing it.
4149  *
4150  * When the loadhook trap is hit (r_debug_state, set at program
4151  * initialization), the arguments can be found on the stack:
4152  *
4153  *  +8   struct link_map *m
4154  *  +4   struct r_debug  *rd
4155  *  +0   RetAddr
4156  */
4157 void
4158 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4159 {
4160     /*
4161      * The following is a hack to force the compiler to emit calls to
4162      * this function, even when optimizing.  If the function is empty,
4163      * the compiler is not obliged to emit any code for calls to it,
4164      * even when marked __noinline.  However, gdb depends on those
4165      * calls being made.
4166      */
4167     __compiler_membar();
4168 }
4169 
4170 /*
4171  * A function called after init routines have completed. This can be used to
4172  * break before a program's entry routine is called, and can be used when
4173  * main is not available in the symbol table.
4174  */
4175 void
4176 _r_debug_postinit(struct link_map *m __unused)
4177 {
4178 
4179 	/* See r_debug_state(). */
4180 	__compiler_membar();
4181 }
4182 
4183 static void
4184 release_object(Obj_Entry *obj)
4185 {
4186 
4187 	if (obj->holdcount > 0) {
4188 		obj->unholdfree = true;
4189 		return;
4190 	}
4191 	munmap(obj->mapbase, obj->mapsize);
4192 	linkmap_delete(obj);
4193 	obj_free(obj);
4194 }
4195 
4196 /*
4197  * Get address of the pointer variable in the main program.
4198  * Prefer non-weak symbol over the weak one.
4199  */
4200 static const void **
4201 get_program_var_addr(const char *name, RtldLockState *lockstate)
4202 {
4203     SymLook req;
4204     DoneList donelist;
4205 
4206     symlook_init(&req, name);
4207     req.lockstate = lockstate;
4208     donelist_init(&donelist);
4209     if (symlook_global(&req, &donelist) != 0)
4210 	return (NULL);
4211     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4212 	return ((const void **)make_function_pointer(req.sym_out,
4213 	  req.defobj_out));
4214     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4215 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4216     else
4217 	return ((const void **)(req.defobj_out->relocbase +
4218 	  req.sym_out->st_value));
4219 }
4220 
4221 /*
4222  * Set a pointer variable in the main program to the given value.  This
4223  * is used to set key variables such as "environ" before any of the
4224  * init functions are called.
4225  */
4226 static void
4227 set_program_var(const char *name, const void *value)
4228 {
4229     const void **addr;
4230 
4231     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4232 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4233 	*addr = value;
4234     }
4235 }
4236 
4237 /*
4238  * Search the global objects, including dependencies and main object,
4239  * for the given symbol.
4240  */
4241 static int
4242 symlook_global(SymLook *req, DoneList *donelist)
4243 {
4244     SymLook req1;
4245     const Objlist_Entry *elm;
4246     int res;
4247 
4248     symlook_init_from_req(&req1, req);
4249 
4250     /* Search all objects loaded at program start up. */
4251     if (req->defobj_out == NULL ||
4252       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4253 	res = symlook_list(&req1, &list_main, donelist);
4254 	if (res == 0 && (req->defobj_out == NULL ||
4255 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4256 	    req->sym_out = req1.sym_out;
4257 	    req->defobj_out = req1.defobj_out;
4258 	    assert(req->defobj_out != NULL);
4259 	}
4260     }
4261 
4262     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4263     STAILQ_FOREACH(elm, &list_global, link) {
4264 	if (req->defobj_out != NULL &&
4265 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4266 	    break;
4267 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4268 	if (res == 0 && (req->defobj_out == NULL ||
4269 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4270 	    req->sym_out = req1.sym_out;
4271 	    req->defobj_out = req1.defobj_out;
4272 	    assert(req->defobj_out != NULL);
4273 	}
4274     }
4275 
4276     return (req->sym_out != NULL ? 0 : ESRCH);
4277 }
4278 
4279 /*
4280  * Given a symbol name in a referencing object, find the corresponding
4281  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4282  * no definition was found.  Returns a pointer to the Obj_Entry of the
4283  * defining object via the reference parameter DEFOBJ_OUT.
4284  */
4285 static int
4286 symlook_default(SymLook *req, const Obj_Entry *refobj)
4287 {
4288     DoneList donelist;
4289     const Objlist_Entry *elm;
4290     SymLook req1;
4291     int res;
4292 
4293     donelist_init(&donelist);
4294     symlook_init_from_req(&req1, req);
4295 
4296     /*
4297      * Look first in the referencing object if linked symbolically,
4298      * and similarly handle protected symbols.
4299      */
4300     res = symlook_obj(&req1, refobj);
4301     if (res == 0 && (refobj->symbolic ||
4302       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4303 	req->sym_out = req1.sym_out;
4304 	req->defobj_out = req1.defobj_out;
4305 	assert(req->defobj_out != NULL);
4306     }
4307     if (refobj->symbolic || req->defobj_out != NULL)
4308 	donelist_check(&donelist, refobj);
4309 
4310     symlook_global(req, &donelist);
4311 
4312     /* Search all dlopened DAGs containing the referencing object. */
4313     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4314 	if (req->sym_out != NULL &&
4315 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4316 	    break;
4317 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4318 	if (res == 0 && (req->sym_out == NULL ||
4319 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4320 	    req->sym_out = req1.sym_out;
4321 	    req->defobj_out = req1.defobj_out;
4322 	    assert(req->defobj_out != NULL);
4323 	}
4324     }
4325 
4326     /*
4327      * Search the dynamic linker itself, and possibly resolve the
4328      * symbol from there.  This is how the application links to
4329      * dynamic linker services such as dlopen.
4330      */
4331     if (req->sym_out == NULL ||
4332       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4333 	res = symlook_obj(&req1, &obj_rtld);
4334 	if (res == 0) {
4335 	    req->sym_out = req1.sym_out;
4336 	    req->defobj_out = req1.defobj_out;
4337 	    assert(req->defobj_out != NULL);
4338 	}
4339     }
4340 
4341     return (req->sym_out != NULL ? 0 : ESRCH);
4342 }
4343 
4344 static int
4345 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4346 {
4347     const Elf_Sym *def;
4348     const Obj_Entry *defobj;
4349     const Objlist_Entry *elm;
4350     SymLook req1;
4351     int res;
4352 
4353     def = NULL;
4354     defobj = NULL;
4355     STAILQ_FOREACH(elm, objlist, link) {
4356 	if (donelist_check(dlp, elm->obj))
4357 	    continue;
4358 	symlook_init_from_req(&req1, req);
4359 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4360 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4361 		def = req1.sym_out;
4362 		defobj = req1.defobj_out;
4363 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4364 		    break;
4365 	    }
4366 	}
4367     }
4368     if (def != NULL) {
4369 	req->sym_out = def;
4370 	req->defobj_out = defobj;
4371 	return (0);
4372     }
4373     return (ESRCH);
4374 }
4375 
4376 /*
4377  * Search the chain of DAGS cointed to by the given Needed_Entry
4378  * for a symbol of the given name.  Each DAG is scanned completely
4379  * before advancing to the next one.  Returns a pointer to the symbol,
4380  * or NULL if no definition was found.
4381  */
4382 static int
4383 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4384 {
4385     const Elf_Sym *def;
4386     const Needed_Entry *n;
4387     const Obj_Entry *defobj;
4388     SymLook req1;
4389     int res;
4390 
4391     def = NULL;
4392     defobj = NULL;
4393     symlook_init_from_req(&req1, req);
4394     for (n = needed; n != NULL; n = n->next) {
4395 	if (n->obj == NULL ||
4396 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4397 	    continue;
4398 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4399 	    def = req1.sym_out;
4400 	    defobj = req1.defobj_out;
4401 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4402 		break;
4403 	}
4404     }
4405     if (def != NULL) {
4406 	req->sym_out = def;
4407 	req->defobj_out = defobj;
4408 	return (0);
4409     }
4410     return (ESRCH);
4411 }
4412 
4413 /*
4414  * Search the symbol table of a single shared object for a symbol of
4415  * the given name and version, if requested.  Returns a pointer to the
4416  * symbol, or NULL if no definition was found.  If the object is
4417  * filter, return filtered symbol from filtee.
4418  *
4419  * The symbol's hash value is passed in for efficiency reasons; that
4420  * eliminates many recomputations of the hash value.
4421  */
4422 int
4423 symlook_obj(SymLook *req, const Obj_Entry *obj)
4424 {
4425     DoneList donelist;
4426     SymLook req1;
4427     int flags, res, mres;
4428 
4429     /*
4430      * If there is at least one valid hash at this point, we prefer to
4431      * use the faster GNU version if available.
4432      */
4433     if (obj->valid_hash_gnu)
4434 	mres = symlook_obj1_gnu(req, obj);
4435     else if (obj->valid_hash_sysv)
4436 	mres = symlook_obj1_sysv(req, obj);
4437     else
4438 	return (EINVAL);
4439 
4440     if (mres == 0) {
4441 	if (obj->needed_filtees != NULL) {
4442 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4443 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4444 	    donelist_init(&donelist);
4445 	    symlook_init_from_req(&req1, req);
4446 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4447 	    if (res == 0) {
4448 		req->sym_out = req1.sym_out;
4449 		req->defobj_out = req1.defobj_out;
4450 	    }
4451 	    return (res);
4452 	}
4453 	if (obj->needed_aux_filtees != NULL) {
4454 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4455 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4456 	    donelist_init(&donelist);
4457 	    symlook_init_from_req(&req1, req);
4458 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4459 	    if (res == 0) {
4460 		req->sym_out = req1.sym_out;
4461 		req->defobj_out = req1.defobj_out;
4462 		return (res);
4463 	    }
4464 	}
4465     }
4466     return (mres);
4467 }
4468 
4469 /* Symbol match routine common to both hash functions */
4470 static bool
4471 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4472     const unsigned long symnum)
4473 {
4474 	Elf_Versym verndx;
4475 	const Elf_Sym *symp;
4476 	const char *strp;
4477 
4478 	symp = obj->symtab + symnum;
4479 	strp = obj->strtab + symp->st_name;
4480 
4481 	switch (ELF_ST_TYPE(symp->st_info)) {
4482 	case STT_FUNC:
4483 	case STT_NOTYPE:
4484 	case STT_OBJECT:
4485 	case STT_COMMON:
4486 	case STT_GNU_IFUNC:
4487 		if (symp->st_value == 0)
4488 			return (false);
4489 		/* fallthrough */
4490 	case STT_TLS:
4491 		if (symp->st_shndx != SHN_UNDEF)
4492 			break;
4493 #ifndef __mips__
4494 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4495 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4496 			break;
4497 #endif
4498 		/* fallthrough */
4499 	default:
4500 		return (false);
4501 	}
4502 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4503 		return (false);
4504 
4505 	if (req->ventry == NULL) {
4506 		if (obj->versyms != NULL) {
4507 			verndx = VER_NDX(obj->versyms[symnum]);
4508 			if (verndx > obj->vernum) {
4509 				_rtld_error(
4510 				    "%s: symbol %s references wrong version %d",
4511 				    obj->path, obj->strtab + symnum, verndx);
4512 				return (false);
4513 			}
4514 			/*
4515 			 * If we are not called from dlsym (i.e. this
4516 			 * is a normal relocation from unversioned
4517 			 * binary), accept the symbol immediately if
4518 			 * it happens to have first version after this
4519 			 * shared object became versioned.  Otherwise,
4520 			 * if symbol is versioned and not hidden,
4521 			 * remember it. If it is the only symbol with
4522 			 * this name exported by the shared object, it
4523 			 * will be returned as a match by the calling
4524 			 * function. If symbol is global (verndx < 2)
4525 			 * accept it unconditionally.
4526 			 */
4527 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4528 			    verndx == VER_NDX_GIVEN) {
4529 				result->sym_out = symp;
4530 				return (true);
4531 			}
4532 			else if (verndx >= VER_NDX_GIVEN) {
4533 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4534 				    == 0) {
4535 					if (result->vsymp == NULL)
4536 						result->vsymp = symp;
4537 					result->vcount++;
4538 				}
4539 				return (false);
4540 			}
4541 		}
4542 		result->sym_out = symp;
4543 		return (true);
4544 	}
4545 	if (obj->versyms == NULL) {
4546 		if (object_match_name(obj, req->ventry->name)) {
4547 			_rtld_error("%s: object %s should provide version %s "
4548 			    "for symbol %s", obj_rtld.path, obj->path,
4549 			    req->ventry->name, obj->strtab + symnum);
4550 			return (false);
4551 		}
4552 	} else {
4553 		verndx = VER_NDX(obj->versyms[symnum]);
4554 		if (verndx > obj->vernum) {
4555 			_rtld_error("%s: symbol %s references wrong version %d",
4556 			    obj->path, obj->strtab + symnum, verndx);
4557 			return (false);
4558 		}
4559 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4560 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4561 			/*
4562 			 * Version does not match. Look if this is a
4563 			 * global symbol and if it is not hidden. If
4564 			 * global symbol (verndx < 2) is available,
4565 			 * use it. Do not return symbol if we are
4566 			 * called by dlvsym, because dlvsym looks for
4567 			 * a specific version and default one is not
4568 			 * what dlvsym wants.
4569 			 */
4570 			if ((req->flags & SYMLOOK_DLSYM) ||
4571 			    (verndx >= VER_NDX_GIVEN) ||
4572 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4573 				return (false);
4574 		}
4575 	}
4576 	result->sym_out = symp;
4577 	return (true);
4578 }
4579 
4580 /*
4581  * Search for symbol using SysV hash function.
4582  * obj->buckets is known not to be NULL at this point; the test for this was
4583  * performed with the obj->valid_hash_sysv assignment.
4584  */
4585 static int
4586 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4587 {
4588 	unsigned long symnum;
4589 	Sym_Match_Result matchres;
4590 
4591 	matchres.sym_out = NULL;
4592 	matchres.vsymp = NULL;
4593 	matchres.vcount = 0;
4594 
4595 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4596 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4597 		if (symnum >= obj->nchains)
4598 			return (ESRCH);	/* Bad object */
4599 
4600 		if (matched_symbol(req, obj, &matchres, symnum)) {
4601 			req->sym_out = matchres.sym_out;
4602 			req->defobj_out = obj;
4603 			return (0);
4604 		}
4605 	}
4606 	if (matchres.vcount == 1) {
4607 		req->sym_out = matchres.vsymp;
4608 		req->defobj_out = obj;
4609 		return (0);
4610 	}
4611 	return (ESRCH);
4612 }
4613 
4614 /* Search for symbol using GNU hash function */
4615 static int
4616 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4617 {
4618 	Elf_Addr bloom_word;
4619 	const Elf32_Word *hashval;
4620 	Elf32_Word bucket;
4621 	Sym_Match_Result matchres;
4622 	unsigned int h1, h2;
4623 	unsigned long symnum;
4624 
4625 	matchres.sym_out = NULL;
4626 	matchres.vsymp = NULL;
4627 	matchres.vcount = 0;
4628 
4629 	/* Pick right bitmask word from Bloom filter array */
4630 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4631 	    obj->maskwords_bm_gnu];
4632 
4633 	/* Calculate modulus word size of gnu hash and its derivative */
4634 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4635 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4636 
4637 	/* Filter out the "definitely not in set" queries */
4638 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4639 		return (ESRCH);
4640 
4641 	/* Locate hash chain and corresponding value element*/
4642 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4643 	if (bucket == 0)
4644 		return (ESRCH);
4645 	hashval = &obj->chain_zero_gnu[bucket];
4646 	do {
4647 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4648 			symnum = hashval - obj->chain_zero_gnu;
4649 			if (matched_symbol(req, obj, &matchres, symnum)) {
4650 				req->sym_out = matchres.sym_out;
4651 				req->defobj_out = obj;
4652 				return (0);
4653 			}
4654 		}
4655 	} while ((*hashval++ & 1) == 0);
4656 	if (matchres.vcount == 1) {
4657 		req->sym_out = matchres.vsymp;
4658 		req->defobj_out = obj;
4659 		return (0);
4660 	}
4661 	return (ESRCH);
4662 }
4663 
4664 static void
4665 trace_loaded_objects(Obj_Entry *obj)
4666 {
4667     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4668     int c;
4669 
4670     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4671 	main_local = "";
4672 
4673     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4674 	fmt1 = "\t%o => %p (%x)\n";
4675 
4676     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4677 	fmt2 = "\t%o (%x)\n";
4678 
4679     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4680 
4681     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4682 	Needed_Entry *needed;
4683 	const char *name, *path;
4684 	bool is_lib;
4685 
4686 	if (obj->marker)
4687 	    continue;
4688 	if (list_containers && obj->needed != NULL)
4689 	    rtld_printf("%s:\n", obj->path);
4690 	for (needed = obj->needed; needed; needed = needed->next) {
4691 	    if (needed->obj != NULL) {
4692 		if (needed->obj->traced && !list_containers)
4693 		    continue;
4694 		needed->obj->traced = true;
4695 		path = needed->obj->path;
4696 	    } else
4697 		path = "not found";
4698 
4699 	    name = obj->strtab + needed->name;
4700 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4701 
4702 	    fmt = is_lib ? fmt1 : fmt2;
4703 	    while ((c = *fmt++) != '\0') {
4704 		switch (c) {
4705 		default:
4706 		    rtld_putchar(c);
4707 		    continue;
4708 		case '\\':
4709 		    switch (c = *fmt) {
4710 		    case '\0':
4711 			continue;
4712 		    case 'n':
4713 			rtld_putchar('\n');
4714 			break;
4715 		    case 't':
4716 			rtld_putchar('\t');
4717 			break;
4718 		    }
4719 		    break;
4720 		case '%':
4721 		    switch (c = *fmt) {
4722 		    case '\0':
4723 			continue;
4724 		    case '%':
4725 		    default:
4726 			rtld_putchar(c);
4727 			break;
4728 		    case 'A':
4729 			rtld_putstr(main_local);
4730 			break;
4731 		    case 'a':
4732 			rtld_putstr(obj_main->path);
4733 			break;
4734 		    case 'o':
4735 			rtld_putstr(name);
4736 			break;
4737 #if 0
4738 		    case 'm':
4739 			rtld_printf("%d", sodp->sod_major);
4740 			break;
4741 		    case 'n':
4742 			rtld_printf("%d", sodp->sod_minor);
4743 			break;
4744 #endif
4745 		    case 'p':
4746 			rtld_putstr(path);
4747 			break;
4748 		    case 'x':
4749 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4750 			  0);
4751 			break;
4752 		    }
4753 		    break;
4754 		}
4755 		++fmt;
4756 	    }
4757 	}
4758     }
4759 }
4760 
4761 /*
4762  * Unload a dlopened object and its dependencies from memory and from
4763  * our data structures.  It is assumed that the DAG rooted in the
4764  * object has already been unreferenced, and that the object has a
4765  * reference count of 0.
4766  */
4767 static void
4768 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4769 {
4770 	Obj_Entry marker, *obj, *next;
4771 
4772 	assert(root->refcount == 0);
4773 
4774 	/*
4775 	 * Pass over the DAG removing unreferenced objects from
4776 	 * appropriate lists.
4777 	 */
4778 	unlink_object(root);
4779 
4780 	/* Unmap all objects that are no longer referenced. */
4781 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4782 		next = TAILQ_NEXT(obj, next);
4783 		if (obj->marker || obj->refcount != 0)
4784 			continue;
4785 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4786 		    obj->mapsize, 0, obj->path);
4787 		dbg("unloading \"%s\"", obj->path);
4788 		/*
4789 		 * Unlink the object now to prevent new references from
4790 		 * being acquired while the bind lock is dropped in
4791 		 * recursive dlclose() invocations.
4792 		 */
4793 		TAILQ_REMOVE(&obj_list, obj, next);
4794 		obj_count--;
4795 
4796 		if (obj->filtees_loaded) {
4797 			if (next != NULL) {
4798 				init_marker(&marker);
4799 				TAILQ_INSERT_BEFORE(next, &marker, next);
4800 				unload_filtees(obj, lockstate);
4801 				next = TAILQ_NEXT(&marker, next);
4802 				TAILQ_REMOVE(&obj_list, &marker, next);
4803 			} else
4804 				unload_filtees(obj, lockstate);
4805 		}
4806 		release_object(obj);
4807 	}
4808 }
4809 
4810 static void
4811 unlink_object(Obj_Entry *root)
4812 {
4813     Objlist_Entry *elm;
4814 
4815     if (root->refcount == 0) {
4816 	/* Remove the object from the RTLD_GLOBAL list. */
4817 	objlist_remove(&list_global, root);
4818 
4819     	/* Remove the object from all objects' DAG lists. */
4820     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4821 	    objlist_remove(&elm->obj->dldags, root);
4822 	    if (elm->obj != root)
4823 		unlink_object(elm->obj);
4824 	}
4825     }
4826 }
4827 
4828 static void
4829 ref_dag(Obj_Entry *root)
4830 {
4831     Objlist_Entry *elm;
4832 
4833     assert(root->dag_inited);
4834     STAILQ_FOREACH(elm, &root->dagmembers, link)
4835 	elm->obj->refcount++;
4836 }
4837 
4838 static void
4839 unref_dag(Obj_Entry *root)
4840 {
4841     Objlist_Entry *elm;
4842 
4843     assert(root->dag_inited);
4844     STAILQ_FOREACH(elm, &root->dagmembers, link)
4845 	elm->obj->refcount--;
4846 }
4847 
4848 /*
4849  * Common code for MD __tls_get_addr().
4850  */
4851 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4852 static void *
4853 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4854 {
4855     Elf_Addr *newdtv, *dtv;
4856     RtldLockState lockstate;
4857     int to_copy;
4858 
4859     dtv = *dtvp;
4860     /* Check dtv generation in case new modules have arrived */
4861     if (dtv[0] != tls_dtv_generation) {
4862 	wlock_acquire(rtld_bind_lock, &lockstate);
4863 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4864 	to_copy = dtv[1];
4865 	if (to_copy > tls_max_index)
4866 	    to_copy = tls_max_index;
4867 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4868 	newdtv[0] = tls_dtv_generation;
4869 	newdtv[1] = tls_max_index;
4870 	free(dtv);
4871 	lock_release(rtld_bind_lock, &lockstate);
4872 	dtv = *dtvp = newdtv;
4873     }
4874 
4875     /* Dynamically allocate module TLS if necessary */
4876     if (dtv[index + 1] == 0) {
4877 	/* Signal safe, wlock will block out signals. */
4878 	wlock_acquire(rtld_bind_lock, &lockstate);
4879 	if (!dtv[index + 1])
4880 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4881 	lock_release(rtld_bind_lock, &lockstate);
4882     }
4883     return ((void *)(dtv[index + 1] + offset));
4884 }
4885 
4886 void *
4887 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4888 {
4889 	Elf_Addr *dtv;
4890 
4891 	dtv = *dtvp;
4892 	/* Check dtv generation in case new modules have arrived */
4893 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4894 	    dtv[index + 1] != 0))
4895 		return ((void *)(dtv[index + 1] + offset));
4896 	return (tls_get_addr_slow(dtvp, index, offset));
4897 }
4898 
4899 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4900     defined(__powerpc__) || defined(__riscv)
4901 
4902 /*
4903  * Return pointer to allocated TLS block
4904  */
4905 static void *
4906 get_tls_block_ptr(void *tcb, size_t tcbsize)
4907 {
4908     size_t extra_size, post_size, pre_size, tls_block_size;
4909     size_t tls_init_align;
4910 
4911     tls_init_align = MAX(obj_main->tlsalign, 1);
4912 
4913     /* Compute fragments sizes. */
4914     extra_size = tcbsize - TLS_TCB_SIZE;
4915     post_size = calculate_tls_post_size(tls_init_align);
4916     tls_block_size = tcbsize + post_size;
4917     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4918 
4919     return ((char *)tcb - pre_size - extra_size);
4920 }
4921 
4922 /*
4923  * Allocate Static TLS using the Variant I method.
4924  *
4925  * For details on the layout, see lib/libc/gen/tls.c.
4926  *
4927  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4928  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4929  *     offsets, whereas libc's tls_static_space is just the executable's static
4930  *     TLS segment.
4931  */
4932 void *
4933 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4934 {
4935     Obj_Entry *obj;
4936     char *tls_block;
4937     Elf_Addr *dtv, **tcb;
4938     Elf_Addr addr;
4939     Elf_Addr i;
4940     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4941     size_t tls_init_align, tls_init_offset;
4942 
4943     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4944 	return (oldtcb);
4945 
4946     assert(tcbsize >= TLS_TCB_SIZE);
4947     maxalign = MAX(tcbalign, tls_static_max_align);
4948     tls_init_align = MAX(obj_main->tlsalign, 1);
4949 
4950     /* Compute fragmets sizes. */
4951     extra_size = tcbsize - TLS_TCB_SIZE;
4952     post_size = calculate_tls_post_size(tls_init_align);
4953     tls_block_size = tcbsize + post_size;
4954     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4955     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4956 
4957     /* Allocate whole TLS block */
4958     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4959     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4960 
4961     if (oldtcb != NULL) {
4962 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4963 	    tls_static_space);
4964 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4965 
4966 	/* Adjust the DTV. */
4967 	dtv = tcb[0];
4968 	for (i = 0; i < dtv[1]; i++) {
4969 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4970 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4971 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4972 	    }
4973 	}
4974     } else {
4975 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4976 	tcb[0] = dtv;
4977 	dtv[0] = tls_dtv_generation;
4978 	dtv[1] = tls_max_index;
4979 
4980 	for (obj = globallist_curr(objs); obj != NULL;
4981 	  obj = globallist_next(obj)) {
4982 	    if (obj->tlsoffset == 0)
4983 		continue;
4984 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4985 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4986 	    if (tls_init_offset > 0)
4987 		memset((void *)addr, 0, tls_init_offset);
4988 	    if (obj->tlsinitsize > 0) {
4989 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4990 		    obj->tlsinitsize);
4991 	    }
4992 	    if (obj->tlssize > obj->tlsinitsize) {
4993 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4994 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4995 	    }
4996 	    dtv[obj->tlsindex + 1] = addr;
4997 	}
4998     }
4999 
5000     return (tcb);
5001 }
5002 
5003 void
5004 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5005 {
5006     Elf_Addr *dtv;
5007     Elf_Addr tlsstart, tlsend;
5008     size_t post_size;
5009     size_t dtvsize, i, tls_init_align;
5010 
5011     assert(tcbsize >= TLS_TCB_SIZE);
5012     tls_init_align = MAX(obj_main->tlsalign, 1);
5013 
5014     /* Compute fragments sizes. */
5015     post_size = calculate_tls_post_size(tls_init_align);
5016 
5017     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5018     tlsend = (Elf_Addr)tcb + tls_static_space;
5019 
5020     dtv = *(Elf_Addr **)tcb;
5021     dtvsize = dtv[1];
5022     for (i = 0; i < dtvsize; i++) {
5023 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5024 	    free((void*)dtv[i+2]);
5025 	}
5026     }
5027     free(dtv);
5028     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5029 }
5030 
5031 #endif
5032 
5033 #if defined(__i386__) || defined(__amd64__)
5034 
5035 /*
5036  * Allocate Static TLS using the Variant II method.
5037  */
5038 void *
5039 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5040 {
5041     Obj_Entry *obj;
5042     size_t size, ralign;
5043     char *tls;
5044     Elf_Addr *dtv, *olddtv;
5045     Elf_Addr segbase, oldsegbase, addr;
5046     size_t i;
5047 
5048     ralign = tcbalign;
5049     if (tls_static_max_align > ralign)
5050 	    ralign = tls_static_max_align;
5051     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5052 
5053     assert(tcbsize >= 2*sizeof(Elf_Addr));
5054     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5055     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5056 
5057     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5058     ((Elf_Addr*)segbase)[0] = segbase;
5059     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5060 
5061     dtv[0] = tls_dtv_generation;
5062     dtv[1] = tls_max_index;
5063 
5064     if (oldtls) {
5065 	/*
5066 	 * Copy the static TLS block over whole.
5067 	 */
5068 	oldsegbase = (Elf_Addr) oldtls;
5069 	memcpy((void *)(segbase - tls_static_space),
5070 	       (const void *)(oldsegbase - tls_static_space),
5071 	       tls_static_space);
5072 
5073 	/*
5074 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5075 	 * move them over.
5076 	 */
5077 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5078 	for (i = 0; i < olddtv[1]; i++) {
5079 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5080 		dtv[i+2] = olddtv[i+2];
5081 		olddtv[i+2] = 0;
5082 	    }
5083 	}
5084 
5085 	/*
5086 	 * We assume that this block was the one we created with
5087 	 * allocate_initial_tls().
5088 	 */
5089 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5090     } else {
5091 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5092 		if (obj->marker || obj->tlsoffset == 0)
5093 			continue;
5094 		addr = segbase - obj->tlsoffset;
5095 		memset((void*)(addr + obj->tlsinitsize),
5096 		       0, obj->tlssize - obj->tlsinitsize);
5097 		if (obj->tlsinit) {
5098 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5099 		    obj->static_tls_copied = true;
5100 		}
5101 		dtv[obj->tlsindex + 1] = addr;
5102 	}
5103     }
5104 
5105     return (void*) segbase;
5106 }
5107 
5108 void
5109 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5110 {
5111     Elf_Addr* dtv;
5112     size_t size, ralign;
5113     int dtvsize, i;
5114     Elf_Addr tlsstart, tlsend;
5115 
5116     /*
5117      * Figure out the size of the initial TLS block so that we can
5118      * find stuff which ___tls_get_addr() allocated dynamically.
5119      */
5120     ralign = tcbalign;
5121     if (tls_static_max_align > ralign)
5122 	    ralign = tls_static_max_align;
5123     size = roundup(tls_static_space, ralign);
5124 
5125     dtv = ((Elf_Addr**)tls)[1];
5126     dtvsize = dtv[1];
5127     tlsend = (Elf_Addr) tls;
5128     tlsstart = tlsend - size;
5129     for (i = 0; i < dtvsize; i++) {
5130 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5131 		free_aligned((void *)dtv[i + 2]);
5132 	}
5133     }
5134 
5135     free_aligned((void *)tlsstart);
5136     free((void*) dtv);
5137 }
5138 
5139 #endif
5140 
5141 /*
5142  * Allocate TLS block for module with given index.
5143  */
5144 void *
5145 allocate_module_tls(int index)
5146 {
5147 	Obj_Entry *obj;
5148 	char *p;
5149 
5150 	TAILQ_FOREACH(obj, &obj_list, next) {
5151 		if (obj->marker)
5152 			continue;
5153 		if (obj->tlsindex == index)
5154 			break;
5155 	}
5156 	if (obj == NULL) {
5157 		_rtld_error("Can't find module with TLS index %d", index);
5158 		rtld_die();
5159 	}
5160 
5161 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5162 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5163 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5164 	return (p);
5165 }
5166 
5167 bool
5168 allocate_tls_offset(Obj_Entry *obj)
5169 {
5170     size_t off;
5171 
5172     if (obj->tls_done)
5173 	return true;
5174 
5175     if (obj->tlssize == 0) {
5176 	obj->tls_done = true;
5177 	return true;
5178     }
5179 
5180     if (tls_last_offset == 0)
5181 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5182 	  obj->tlspoffset);
5183     else
5184 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5185 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5186 
5187     /*
5188      * If we have already fixed the size of the static TLS block, we
5189      * must stay within that size. When allocating the static TLS, we
5190      * leave a small amount of space spare to be used for dynamically
5191      * loading modules which use static TLS.
5192      */
5193     if (tls_static_space != 0) {
5194 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5195 	    return false;
5196     } else if (obj->tlsalign > tls_static_max_align) {
5197 	    tls_static_max_align = obj->tlsalign;
5198     }
5199 
5200     tls_last_offset = obj->tlsoffset = off;
5201     tls_last_size = obj->tlssize;
5202     obj->tls_done = true;
5203 
5204     return true;
5205 }
5206 
5207 void
5208 free_tls_offset(Obj_Entry *obj)
5209 {
5210 
5211     /*
5212      * If we were the last thing to allocate out of the static TLS
5213      * block, we give our space back to the 'allocator'. This is a
5214      * simplistic workaround to allow libGL.so.1 to be loaded and
5215      * unloaded multiple times.
5216      */
5217     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5218 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5219 	tls_last_offset -= obj->tlssize;
5220 	tls_last_size = 0;
5221     }
5222 }
5223 
5224 void *
5225 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5226 {
5227     void *ret;
5228     RtldLockState lockstate;
5229 
5230     wlock_acquire(rtld_bind_lock, &lockstate);
5231     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5232       tcbsize, tcbalign);
5233     lock_release(rtld_bind_lock, &lockstate);
5234     return (ret);
5235 }
5236 
5237 void
5238 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5239 {
5240     RtldLockState lockstate;
5241 
5242     wlock_acquire(rtld_bind_lock, &lockstate);
5243     free_tls(tcb, tcbsize, tcbalign);
5244     lock_release(rtld_bind_lock, &lockstate);
5245 }
5246 
5247 static void
5248 object_add_name(Obj_Entry *obj, const char *name)
5249 {
5250     Name_Entry *entry;
5251     size_t len;
5252 
5253     len = strlen(name);
5254     entry = malloc(sizeof(Name_Entry) + len);
5255 
5256     if (entry != NULL) {
5257 	strcpy(entry->name, name);
5258 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5259     }
5260 }
5261 
5262 static int
5263 object_match_name(const Obj_Entry *obj, const char *name)
5264 {
5265     Name_Entry *entry;
5266 
5267     STAILQ_FOREACH(entry, &obj->names, link) {
5268 	if (strcmp(name, entry->name) == 0)
5269 	    return (1);
5270     }
5271     return (0);
5272 }
5273 
5274 static Obj_Entry *
5275 locate_dependency(const Obj_Entry *obj, const char *name)
5276 {
5277     const Objlist_Entry *entry;
5278     const Needed_Entry *needed;
5279 
5280     STAILQ_FOREACH(entry, &list_main, link) {
5281 	if (object_match_name(entry->obj, name))
5282 	    return entry->obj;
5283     }
5284 
5285     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5286 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5287 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5288 	    /*
5289 	     * If there is DT_NEEDED for the name we are looking for,
5290 	     * we are all set.  Note that object might not be found if
5291 	     * dependency was not loaded yet, so the function can
5292 	     * return NULL here.  This is expected and handled
5293 	     * properly by the caller.
5294 	     */
5295 	    return (needed->obj);
5296 	}
5297     }
5298     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5299 	obj->path, name);
5300     rtld_die();
5301 }
5302 
5303 static int
5304 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5305     const Elf_Vernaux *vna)
5306 {
5307     const Elf_Verdef *vd;
5308     const char *vername;
5309 
5310     vername = refobj->strtab + vna->vna_name;
5311     vd = depobj->verdef;
5312     if (vd == NULL) {
5313 	_rtld_error("%s: version %s required by %s not defined",
5314 	    depobj->path, vername, refobj->path);
5315 	return (-1);
5316     }
5317     for (;;) {
5318 	if (vd->vd_version != VER_DEF_CURRENT) {
5319 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5320 		depobj->path, vd->vd_version);
5321 	    return (-1);
5322 	}
5323 	if (vna->vna_hash == vd->vd_hash) {
5324 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5325 		((const char *)vd + vd->vd_aux);
5326 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5327 		return (0);
5328 	}
5329 	if (vd->vd_next == 0)
5330 	    break;
5331 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5332     }
5333     if (vna->vna_flags & VER_FLG_WEAK)
5334 	return (0);
5335     _rtld_error("%s: version %s required by %s not found",
5336 	depobj->path, vername, refobj->path);
5337     return (-1);
5338 }
5339 
5340 static int
5341 rtld_verify_object_versions(Obj_Entry *obj)
5342 {
5343     const Elf_Verneed *vn;
5344     const Elf_Verdef  *vd;
5345     const Elf_Verdaux *vda;
5346     const Elf_Vernaux *vna;
5347     const Obj_Entry *depobj;
5348     int maxvernum, vernum;
5349 
5350     if (obj->ver_checked)
5351 	return (0);
5352     obj->ver_checked = true;
5353 
5354     maxvernum = 0;
5355     /*
5356      * Walk over defined and required version records and figure out
5357      * max index used by any of them. Do very basic sanity checking
5358      * while there.
5359      */
5360     vn = obj->verneed;
5361     while (vn != NULL) {
5362 	if (vn->vn_version != VER_NEED_CURRENT) {
5363 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5364 		obj->path, vn->vn_version);
5365 	    return (-1);
5366 	}
5367 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5368 	for (;;) {
5369 	    vernum = VER_NEED_IDX(vna->vna_other);
5370 	    if (vernum > maxvernum)
5371 		maxvernum = vernum;
5372 	    if (vna->vna_next == 0)
5373 		 break;
5374 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5375 	}
5376 	if (vn->vn_next == 0)
5377 	    break;
5378 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5379     }
5380 
5381     vd = obj->verdef;
5382     while (vd != NULL) {
5383 	if (vd->vd_version != VER_DEF_CURRENT) {
5384 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5385 		obj->path, vd->vd_version);
5386 	    return (-1);
5387 	}
5388 	vernum = VER_DEF_IDX(vd->vd_ndx);
5389 	if (vernum > maxvernum)
5390 		maxvernum = vernum;
5391 	if (vd->vd_next == 0)
5392 	    break;
5393 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5394     }
5395 
5396     if (maxvernum == 0)
5397 	return (0);
5398 
5399     /*
5400      * Store version information in array indexable by version index.
5401      * Verify that object version requirements are satisfied along the
5402      * way.
5403      */
5404     obj->vernum = maxvernum + 1;
5405     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5406 
5407     vd = obj->verdef;
5408     while (vd != NULL) {
5409 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5410 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5411 	    assert(vernum <= maxvernum);
5412 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5413 	    obj->vertab[vernum].hash = vd->vd_hash;
5414 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5415 	    obj->vertab[vernum].file = NULL;
5416 	    obj->vertab[vernum].flags = 0;
5417 	}
5418 	if (vd->vd_next == 0)
5419 	    break;
5420 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5421     }
5422 
5423     vn = obj->verneed;
5424     while (vn != NULL) {
5425 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5426 	if (depobj == NULL)
5427 	    return (-1);
5428 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5429 	for (;;) {
5430 	    if (check_object_provided_version(obj, depobj, vna))
5431 		return (-1);
5432 	    vernum = VER_NEED_IDX(vna->vna_other);
5433 	    assert(vernum <= maxvernum);
5434 	    obj->vertab[vernum].hash = vna->vna_hash;
5435 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5436 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5437 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5438 		VER_INFO_HIDDEN : 0;
5439 	    if (vna->vna_next == 0)
5440 		 break;
5441 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5442 	}
5443 	if (vn->vn_next == 0)
5444 	    break;
5445 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5446     }
5447     return 0;
5448 }
5449 
5450 static int
5451 rtld_verify_versions(const Objlist *objlist)
5452 {
5453     Objlist_Entry *entry;
5454     int rc;
5455 
5456     rc = 0;
5457     STAILQ_FOREACH(entry, objlist, link) {
5458 	/*
5459 	 * Skip dummy objects or objects that have their version requirements
5460 	 * already checked.
5461 	 */
5462 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5463 	    continue;
5464 	if (rtld_verify_object_versions(entry->obj) == -1) {
5465 	    rc = -1;
5466 	    if (ld_tracing == NULL)
5467 		break;
5468 	}
5469     }
5470     if (rc == 0 || ld_tracing != NULL)
5471     	rc = rtld_verify_object_versions(&obj_rtld);
5472     return rc;
5473 }
5474 
5475 const Ver_Entry *
5476 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5477 {
5478     Elf_Versym vernum;
5479 
5480     if (obj->vertab) {
5481 	vernum = VER_NDX(obj->versyms[symnum]);
5482 	if (vernum >= obj->vernum) {
5483 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5484 		obj->path, obj->strtab + symnum, vernum);
5485 	} else if (obj->vertab[vernum].hash != 0) {
5486 	    return &obj->vertab[vernum];
5487 	}
5488     }
5489     return NULL;
5490 }
5491 
5492 int
5493 _rtld_get_stack_prot(void)
5494 {
5495 
5496 	return (stack_prot);
5497 }
5498 
5499 int
5500 _rtld_is_dlopened(void *arg)
5501 {
5502 	Obj_Entry *obj;
5503 	RtldLockState lockstate;
5504 	int res;
5505 
5506 	rlock_acquire(rtld_bind_lock, &lockstate);
5507 	obj = dlcheck(arg);
5508 	if (obj == NULL)
5509 		obj = obj_from_addr(arg);
5510 	if (obj == NULL) {
5511 		_rtld_error("No shared object contains address");
5512 		lock_release(rtld_bind_lock, &lockstate);
5513 		return (-1);
5514 	}
5515 	res = obj->dlopened ? 1 : 0;
5516 	lock_release(rtld_bind_lock, &lockstate);
5517 	return (res);
5518 }
5519 
5520 static int
5521 obj_remap_relro(Obj_Entry *obj, int prot)
5522 {
5523 
5524 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5525 	    prot) == -1) {
5526 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5527 		    obj->path, prot, rtld_strerror(errno));
5528 		return (-1);
5529 	}
5530 	return (0);
5531 }
5532 
5533 static int
5534 obj_disable_relro(Obj_Entry *obj)
5535 {
5536 
5537 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5538 }
5539 
5540 static int
5541 obj_enforce_relro(Obj_Entry *obj)
5542 {
5543 
5544 	return (obj_remap_relro(obj, PROT_READ));
5545 }
5546 
5547 static void
5548 map_stacks_exec(RtldLockState *lockstate)
5549 {
5550 	void (*thr_map_stacks_exec)(void);
5551 
5552 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5553 		return;
5554 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5555 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5556 	if (thr_map_stacks_exec != NULL) {
5557 		stack_prot |= PROT_EXEC;
5558 		thr_map_stacks_exec();
5559 	}
5560 }
5561 
5562 static void
5563 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5564 {
5565 	Objlist_Entry *elm;
5566 	Obj_Entry *obj;
5567 	void (*distrib)(size_t, void *, size_t, size_t);
5568 
5569 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5570 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5571 	if (distrib == NULL)
5572 		return;
5573 	STAILQ_FOREACH(elm, list, link) {
5574 		obj = elm->obj;
5575 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5576 			continue;
5577 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5578 		    obj->tlssize);
5579 		obj->static_tls_copied = true;
5580 	}
5581 }
5582 
5583 void
5584 symlook_init(SymLook *dst, const char *name)
5585 {
5586 
5587 	bzero(dst, sizeof(*dst));
5588 	dst->name = name;
5589 	dst->hash = elf_hash(name);
5590 	dst->hash_gnu = gnu_hash(name);
5591 }
5592 
5593 static void
5594 symlook_init_from_req(SymLook *dst, const SymLook *src)
5595 {
5596 
5597 	dst->name = src->name;
5598 	dst->hash = src->hash;
5599 	dst->hash_gnu = src->hash_gnu;
5600 	dst->ventry = src->ventry;
5601 	dst->flags = src->flags;
5602 	dst->defobj_out = NULL;
5603 	dst->sym_out = NULL;
5604 	dst->lockstate = src->lockstate;
5605 }
5606 
5607 static int
5608 open_binary_fd(const char *argv0, bool search_in_path,
5609     const char **binpath_res)
5610 {
5611 	char *binpath, *pathenv, *pe, *res1;
5612 	const char *res;
5613 	int fd;
5614 
5615 	binpath = NULL;
5616 	res = NULL;
5617 	if (search_in_path && strchr(argv0, '/') == NULL) {
5618 		binpath = xmalloc(PATH_MAX);
5619 		pathenv = getenv("PATH");
5620 		if (pathenv == NULL) {
5621 			_rtld_error("-p and no PATH environment variable");
5622 			rtld_die();
5623 		}
5624 		pathenv = strdup(pathenv);
5625 		if (pathenv == NULL) {
5626 			_rtld_error("Cannot allocate memory");
5627 			rtld_die();
5628 		}
5629 		fd = -1;
5630 		errno = ENOENT;
5631 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5632 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5633 				continue;
5634 			if (binpath[0] != '\0' &&
5635 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5636 				continue;
5637 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5638 				continue;
5639 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5640 			if (fd != -1 || errno != ENOENT) {
5641 				res = binpath;
5642 				break;
5643 			}
5644 		}
5645 		free(pathenv);
5646 	} else {
5647 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5648 		res = argv0;
5649 	}
5650 
5651 	if (fd == -1) {
5652 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5653 		rtld_die();
5654 	}
5655 	if (res != NULL && res[0] != '/') {
5656 		res1 = xmalloc(PATH_MAX);
5657 		if (realpath(res, res1) != NULL) {
5658 			if (res != argv0)
5659 				free(__DECONST(char *, res));
5660 			res = res1;
5661 		} else {
5662 			free(res1);
5663 		}
5664 	}
5665 	*binpath_res = res;
5666 	return (fd);
5667 }
5668 
5669 /*
5670  * Parse a set of command-line arguments.
5671  */
5672 static int
5673 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5674     const char **argv0)
5675 {
5676 	const char *arg;
5677 	char machine[64];
5678 	size_t sz;
5679 	int arglen, fd, i, j, mib[2];
5680 	char opt;
5681 	bool seen_b, seen_f;
5682 
5683 	dbg("Parsing command-line arguments");
5684 	*use_pathp = false;
5685 	*fdp = -1;
5686 	seen_b = seen_f = false;
5687 
5688 	for (i = 1; i < argc; i++ ) {
5689 		arg = argv[i];
5690 		dbg("argv[%d]: '%s'", i, arg);
5691 
5692 		/*
5693 		 * rtld arguments end with an explicit "--" or with the first
5694 		 * non-prefixed argument.
5695 		 */
5696 		if (strcmp(arg, "--") == 0) {
5697 			i++;
5698 			break;
5699 		}
5700 		if (arg[0] != '-')
5701 			break;
5702 
5703 		/*
5704 		 * All other arguments are single-character options that can
5705 		 * be combined, so we need to search through `arg` for them.
5706 		 */
5707 		arglen = strlen(arg);
5708 		for (j = 1; j < arglen; j++) {
5709 			opt = arg[j];
5710 			if (opt == 'h') {
5711 				print_usage(argv[0]);
5712 				_exit(0);
5713 			} else if (opt == 'b') {
5714 				if (seen_f) {
5715 					_rtld_error("Both -b and -f specified");
5716 					rtld_die();
5717 				}
5718 				i++;
5719 				*argv0 = argv[i];
5720 				seen_b = true;
5721 				break;
5722 			} else if (opt == 'f') {
5723 				if (seen_b) {
5724 					_rtld_error("Both -b and -f specified");
5725 					rtld_die();
5726 				}
5727 
5728 				/*
5729 				 * -f XX can be used to specify a
5730 				 * descriptor for the binary named at
5731 				 * the command line (i.e., the later
5732 				 * argument will specify the process
5733 				 * name but the descriptor is what
5734 				 * will actually be executed).
5735 				 *
5736 				 * -f must be the last option in, e.g., -abcf.
5737 				 */
5738 				if (j != arglen - 1) {
5739 					_rtld_error("Invalid options: %s", arg);
5740 					rtld_die();
5741 				}
5742 				i++;
5743 				fd = parse_integer(argv[i]);
5744 				if (fd == -1) {
5745 					_rtld_error(
5746 					    "Invalid file descriptor: '%s'",
5747 					    argv[i]);
5748 					rtld_die();
5749 				}
5750 				*fdp = fd;
5751 				seen_f = true;
5752 				break;
5753 			} else if (opt == 'p') {
5754 				*use_pathp = true;
5755 			} else if (opt == 'v') {
5756 				machine[0] = '\0';
5757 				mib[0] = CTL_HW;
5758 				mib[1] = HW_MACHINE;
5759 				sz = sizeof(machine);
5760 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5761 				rtld_printf(
5762 				    "FreeBSD ld-elf.so.1 %s\n"
5763 				    "FreeBSD_version %d\n"
5764 				    "Default lib path %s\n"
5765 				    "Env prefix %s\n"
5766 				    "Hint file %s\n"
5767 				    "libmap file %s\n",
5768 				    machine,
5769 				    __FreeBSD_version, ld_standard_library_path,
5770 				    ld_env_prefix, ld_elf_hints_default,
5771 				    ld_path_libmap_conf);
5772 				_exit(0);
5773 			} else {
5774 				_rtld_error("Invalid argument: '%s'", arg);
5775 				print_usage(argv[0]);
5776 				rtld_die();
5777 			}
5778 		}
5779 	}
5780 
5781 	if (!seen_b)
5782 		*argv0 = argv[i];
5783 	return (i);
5784 }
5785 
5786 /*
5787  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5788  */
5789 static int
5790 parse_integer(const char *str)
5791 {
5792 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5793 	const char *orig;
5794 	int n;
5795 	char c;
5796 
5797 	orig = str;
5798 	n = 0;
5799 	for (c = *str; c != '\0'; c = *++str) {
5800 		if (c < '0' || c > '9')
5801 			return (-1);
5802 
5803 		n *= RADIX;
5804 		n += c - '0';
5805 	}
5806 
5807 	/* Make sure we actually parsed something. */
5808 	if (str == orig)
5809 		return (-1);
5810 	return (n);
5811 }
5812 
5813 static void
5814 print_usage(const char *argv0)
5815 {
5816 
5817 	rtld_printf(
5818 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5819 	    "\n"
5820 	    "Options:\n"
5821 	    "  -h        Display this help message\n"
5822 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5823 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5824 	    "  -p        Search in PATH for named binary\n"
5825 	    "  -v        Display identification information\n"
5826 	    "  --        End of RTLD options\n"
5827 	    "  <binary>  Name of process to execute\n"
5828 	    "  <args>    Arguments to the executed process\n", argv0);
5829 }
5830 
5831 /*
5832  * Overrides for libc_pic-provided functions.
5833  */
5834 
5835 int
5836 __getosreldate(void)
5837 {
5838 	size_t len;
5839 	int oid[2];
5840 	int error, osrel;
5841 
5842 	if (osreldate != 0)
5843 		return (osreldate);
5844 
5845 	oid[0] = CTL_KERN;
5846 	oid[1] = KERN_OSRELDATE;
5847 	osrel = 0;
5848 	len = sizeof(osrel);
5849 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5850 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5851 		osreldate = osrel;
5852 	return (osreldate);
5853 }
5854 const char *
5855 rtld_strerror(int errnum)
5856 {
5857 
5858 	if (errnum < 0 || errnum >= sys_nerr)
5859 		return ("Unknown error");
5860 	return (sys_errlist[errnum]);
5861 }
5862 
5863 /* malloc */
5864 void *
5865 malloc(size_t nbytes)
5866 {
5867 
5868 	return (__crt_malloc(nbytes));
5869 }
5870 
5871 void *
5872 calloc(size_t num, size_t size)
5873 {
5874 
5875 	return (__crt_calloc(num, size));
5876 }
5877 
5878 void
5879 free(void *cp)
5880 {
5881 
5882 	__crt_free(cp);
5883 }
5884 
5885 void *
5886 realloc(void *cp, size_t nbytes)
5887 {
5888 
5889 	return (__crt_realloc(cp, nbytes));
5890 }
5891 
5892 extern int _rtld_version__FreeBSD_version __exported;
5893 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5894 
5895 extern char _rtld_version_laddr_offset __exported;
5896 char _rtld_version_laddr_offset;
5897