xref: /freebsd/libexec/rtld-elf/rtld.c (revision e12ff891366cf94db4bfe4c2c810b26a5531053d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path);
138 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
139 static int parse_integer(const char *);
140 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
141 static void print_usage(const char *argv0);
142 static void release_object(Obj_Entry *);
143 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
144     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
145 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
146     int flags, RtldLockState *lockstate);
147 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
148     RtldLockState *);
149 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
150 static int rtld_dirname(const char *, char *);
151 static int rtld_dirname_abs(const char *, char *);
152 static void *rtld_dlopen(const char *name, int fd, int mode);
153 static void rtld_exit(void);
154 static void rtld_nop_exit(void);
155 static char *search_library_path(const char *, const char *, const char *,
156     int *);
157 static char *search_library_pathfds(const char *, const char *, int *);
158 static const void **get_program_var_addr(const char *, RtldLockState *);
159 static void set_program_var(const char *, const void *);
160 static int symlook_default(SymLook *, const Obj_Entry *refobj);
161 static int symlook_global(SymLook *, DoneList *);
162 static void symlook_init_from_req(SymLook *, const SymLook *);
163 static int symlook_list(SymLook *, const Objlist *, DoneList *);
164 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
165 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
166 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
167 static void trace_loaded_objects(Obj_Entry *);
168 static void unlink_object(Obj_Entry *);
169 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
170 static void unref_dag(Obj_Entry *);
171 static void ref_dag(Obj_Entry *);
172 static char *origin_subst_one(Obj_Entry *, char *, const char *,
173     const char *, bool);
174 static char *origin_subst(Obj_Entry *, const char *);
175 static bool obj_resolve_origin(Obj_Entry *obj);
176 static void preinit_main(void);
177 static int  rtld_verify_versions(const Objlist *);
178 static int  rtld_verify_object_versions(Obj_Entry *);
179 static void object_add_name(Obj_Entry *, const char *);
180 static int  object_match_name(const Obj_Entry *, const char *);
181 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
182 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
183     struct dl_phdr_info *phdr_info);
184 static uint32_t gnu_hash(const char *);
185 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
186     const unsigned long);
187 
188 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
189 void _r_debug_postinit(struct link_map *) __noinline __exported;
190 
191 int __sys_openat(int, const char *, int, ...);
192 
193 /*
194  * Data declarations.
195  */
196 static char *error_message;	/* Message for dlerror(), or NULL */
197 struct r_debug r_debug __exported;	/* for GDB; */
198 static bool libmap_disable;	/* Disable libmap */
199 static bool ld_loadfltr;	/* Immediate filters processing */
200 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
201 static bool trust;		/* False for setuid and setgid programs */
202 static bool dangerous_ld_env;	/* True if environment variables have been
203 				   used to affect the libraries loaded */
204 bool ld_bind_not;		/* Disable PLT update */
205 static char *ld_bind_now;	/* Environment variable for immediate binding */
206 static char *ld_debug;		/* Environment variable for debugging */
207 static char *ld_library_path;	/* Environment variable for search path */
208 static char *ld_library_dirs;	/* Environment variable for library descriptors */
209 static char *ld_preload;	/* Environment variable for libraries to
210 				   load first */
211 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
212 static const char *ld_tracing;	/* Called from ldd to print libs */
213 static char *ld_utrace;		/* Use utrace() to log events. */
214 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
215 static Obj_Entry *obj_main;	/* The main program shared object */
216 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
217 static unsigned int obj_count;	/* Number of objects in obj_list */
218 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
219 
220 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
221   STAILQ_HEAD_INITIALIZER(list_global);
222 static Objlist list_main =	/* Objects loaded at program startup */
223   STAILQ_HEAD_INITIALIZER(list_main);
224 static Objlist list_fini =	/* Objects needing fini() calls */
225   STAILQ_HEAD_INITIALIZER(list_fini);
226 
227 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
228 
229 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
230 
231 extern Elf_Dyn _DYNAMIC;
232 #pragma weak _DYNAMIC
233 
234 int dlclose(void *) __exported;
235 char *dlerror(void) __exported;
236 void *dlopen(const char *, int) __exported;
237 void *fdlopen(int, int) __exported;
238 void *dlsym(void *, const char *) __exported;
239 dlfunc_t dlfunc(void *, const char *) __exported;
240 void *dlvsym(void *, const char *, const char *) __exported;
241 int dladdr(const void *, Dl_info *) __exported;
242 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
243     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
244 int dlinfo(void *, int , void *) __exported;
245 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
246 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
247 int _rtld_get_stack_prot(void) __exported;
248 int _rtld_is_dlopened(void *) __exported;
249 void _rtld_error(const char *, ...) __exported;
250 
251 /* Only here to fix -Wmissing-prototypes warnings */
252 int __getosreldate(void);
253 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
254 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
255 
256 
257 int npagesizes;
258 static int osreldate;
259 size_t *pagesizes;
260 
261 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
262 static int max_stack_flags;
263 
264 /*
265  * Global declarations normally provided by crt1.  The dynamic linker is
266  * not built with crt1, so we have to provide them ourselves.
267  */
268 char *__progname;
269 char **environ;
270 
271 /*
272  * Used to pass argc, argv to init functions.
273  */
274 int main_argc;
275 char **main_argv;
276 
277 /*
278  * Globals to control TLS allocation.
279  */
280 size_t tls_last_offset;		/* Static TLS offset of last module */
281 size_t tls_last_size;		/* Static TLS size of last module */
282 size_t tls_static_space;	/* Static TLS space allocated */
283 static size_t tls_static_max_align;
284 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
285 int tls_max_index = 1;		/* Largest module index allocated */
286 
287 static bool ld_library_path_rpath = false;
288 
289 /*
290  * Globals for path names, and such
291  */
292 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
293 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
294 const char *ld_path_rtld = _PATH_RTLD;
295 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
296 const char *ld_env_prefix = LD_;
297 
298 static void (*rtld_exit_ptr)(void);
299 
300 /*
301  * Fill in a DoneList with an allocation large enough to hold all of
302  * the currently-loaded objects.  Keep this as a macro since it calls
303  * alloca and we want that to occur within the scope of the caller.
304  */
305 #define donelist_init(dlp)					\
306     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
307     assert((dlp)->objs != NULL),				\
308     (dlp)->num_alloc = obj_count,				\
309     (dlp)->num_used = 0)
310 
311 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
312 	if (ld_utrace != NULL)					\
313 		ld_utrace_log(e, h, mb, ms, r, n);		\
314 } while (0)
315 
316 static void
317 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
318     int refcnt, const char *name)
319 {
320 	struct utrace_rtld ut;
321 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
322 
323 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
324 	ut.event = event;
325 	ut.handle = handle;
326 	ut.mapbase = mapbase;
327 	ut.mapsize = mapsize;
328 	ut.refcnt = refcnt;
329 	bzero(ut.name, sizeof(ut.name));
330 	if (name)
331 		strlcpy(ut.name, name, sizeof(ut.name));
332 	utrace(&ut, sizeof(ut));
333 }
334 
335 #ifdef RTLD_VARIANT_ENV_NAMES
336 /*
337  * construct the env variable based on the type of binary that's
338  * running.
339  */
340 static inline const char *
341 _LD(const char *var)
342 {
343 	static char buffer[128];
344 
345 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
346 	strlcat(buffer, var, sizeof(buffer));
347 	return (buffer);
348 }
349 #else
350 #define _LD(x)	LD_ x
351 #endif
352 
353 /*
354  * Main entry point for dynamic linking.  The first argument is the
355  * stack pointer.  The stack is expected to be laid out as described
356  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
357  * Specifically, the stack pointer points to a word containing
358  * ARGC.  Following that in the stack is a null-terminated sequence
359  * of pointers to argument strings.  Then comes a null-terminated
360  * sequence of pointers to environment strings.  Finally, there is a
361  * sequence of "auxiliary vector" entries.
362  *
363  * The second argument points to a place to store the dynamic linker's
364  * exit procedure pointer and the third to a place to store the main
365  * program's object.
366  *
367  * The return value is the main program's entry point.
368  */
369 func_ptr_type
370 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
371 {
372     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
373     Objlist_Entry *entry;
374     Obj_Entry *last_interposer, *obj, *preload_tail;
375     const Elf_Phdr *phdr;
376     Objlist initlist;
377     RtldLockState lockstate;
378     struct stat st;
379     Elf_Addr *argcp;
380     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
381     const char *argv0;
382     caddr_t imgentry;
383     char buf[MAXPATHLEN];
384     int argc, fd, i, phnum, rtld_argc;
385     bool dir_enable, explicit_fd, search_in_path;
386 
387     /*
388      * On entry, the dynamic linker itself has not been relocated yet.
389      * Be very careful not to reference any global data until after
390      * init_rtld has returned.  It is OK to reference file-scope statics
391      * and string constants, and to call static and global functions.
392      */
393 
394     /* Find the auxiliary vector on the stack. */
395     argcp = sp;
396     argc = *sp++;
397     argv = (char **) sp;
398     sp += argc + 1;	/* Skip over arguments and NULL terminator */
399     env = (char **) sp;
400     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
401 	;
402     aux = (Elf_Auxinfo *) sp;
403 
404     /* Digest the auxiliary vector. */
405     for (i = 0;  i < AT_COUNT;  i++)
406 	aux_info[i] = NULL;
407     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
408 	if (auxp->a_type < AT_COUNT)
409 	    aux_info[auxp->a_type] = auxp;
410     }
411 
412     /* Initialize and relocate ourselves. */
413     assert(aux_info[AT_BASE] != NULL);
414     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
415 
416     __progname = obj_rtld.path;
417     argv0 = argv[0] != NULL ? argv[0] : "(null)";
418     environ = env;
419     main_argc = argc;
420     main_argv = argv;
421 
422     trust = !issetugid();
423 
424     md_abi_variant_hook(aux_info);
425 
426     fd = -1;
427     if (aux_info[AT_EXECFD] != NULL) {
428 	fd = aux_info[AT_EXECFD]->a_un.a_val;
429     } else {
430 	assert(aux_info[AT_PHDR] != NULL);
431 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
432 	if (phdr == obj_rtld.phdr) {
433 	    if (!trust) {
434 		_rtld_error("Tainted process refusing to run binary %s",
435 		    argv0);
436 		rtld_die();
437 	    }
438 	    dbg("opening main program in direct exec mode");
439 	    if (argc >= 2) {
440 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
441 		argv0 = argv[rtld_argc];
442 		explicit_fd = (fd != -1);
443 		if (!explicit_fd)
444 		    fd = open_binary_fd(argv0, search_in_path);
445 		if (fstat(fd, &st) == -1) {
446 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
447 		      explicit_fd ? "user-provided descriptor" : argv0,
448 		      rtld_strerror(errno));
449 		    rtld_die();
450 		}
451 
452 		/*
453 		 * Rough emulation of the permission checks done by
454 		 * execve(2), only Unix DACs are checked, ACLs are
455 		 * ignored.  Preserve the semantic of disabling owner
456 		 * to execute if owner x bit is cleared, even if
457 		 * others x bit is enabled.
458 		 * mmap(2) does not allow to mmap with PROT_EXEC if
459 		 * binary' file comes from noexec mount.  We cannot
460 		 * set a text reference on the binary.
461 		 */
462 		dir_enable = false;
463 		if (st.st_uid == geteuid()) {
464 		    if ((st.st_mode & S_IXUSR) != 0)
465 			dir_enable = true;
466 		} else if (st.st_gid == getegid()) {
467 		    if ((st.st_mode & S_IXGRP) != 0)
468 			dir_enable = true;
469 		} else if ((st.st_mode & S_IXOTH) != 0) {
470 		    dir_enable = true;
471 		}
472 		if (!dir_enable) {
473 		    _rtld_error("No execute permission for binary %s",
474 		        argv0);
475 		    rtld_die();
476 		}
477 
478 		/*
479 		 * For direct exec mode, argv[0] is the interpreter
480 		 * name, we must remove it and shift arguments left
481 		 * before invoking binary main.  Since stack layout
482 		 * places environment pointers and aux vectors right
483 		 * after the terminating NULL, we must shift
484 		 * environment and aux as well.
485 		 */
486 		main_argc = argc - rtld_argc;
487 		for (i = 0; i <= main_argc; i++)
488 		    argv[i] = argv[i + rtld_argc];
489 		*argcp -= rtld_argc;
490 		environ = env = envp = argv + main_argc + 1;
491 		do {
492 		    *envp = *(envp + rtld_argc);
493 		    envp++;
494 		} while (*envp != NULL);
495 		aux = auxp = (Elf_Auxinfo *)envp;
496 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
497 		for (;; auxp++, auxpf++) {
498 		    *auxp = *auxpf;
499 		    if (auxp->a_type == AT_NULL)
500 			    break;
501 		}
502 		/* Since the auxiliary vector has moved, redigest it. */
503 		for (i = 0;  i < AT_COUNT;  i++)
504 		    aux_info[i] = NULL;
505 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
506 		    if (auxp->a_type < AT_COUNT)
507 			aux_info[auxp->a_type] = auxp;
508 		}
509 	    } else {
510 		_rtld_error("No binary");
511 		rtld_die();
512 	    }
513 	}
514     }
515 
516     ld_bind_now = getenv(_LD("BIND_NOW"));
517 
518     /*
519      * If the process is tainted, then we un-set the dangerous environment
520      * variables.  The process will be marked as tainted until setuid(2)
521      * is called.  If any child process calls setuid(2) we do not want any
522      * future processes to honor the potentially un-safe variables.
523      */
524     if (!trust) {
525 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
526 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
527 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
528 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
529 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
530 		_rtld_error("environment corrupt; aborting");
531 		rtld_die();
532 	}
533     }
534     ld_debug = getenv(_LD("DEBUG"));
535     if (ld_bind_now == NULL)
536 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
537     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
538     libmap_override = getenv(_LD("LIBMAP"));
539     ld_library_path = getenv(_LD("LIBRARY_PATH"));
540     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
541     ld_preload = getenv(_LD("PRELOAD"));
542     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
543     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
544     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
545     if (library_path_rpath != NULL) {
546 	    if (library_path_rpath[0] == 'y' ||
547 		library_path_rpath[0] == 'Y' ||
548 		library_path_rpath[0] == '1')
549 		    ld_library_path_rpath = true;
550 	    else
551 		    ld_library_path_rpath = false;
552     }
553     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
554 	(ld_library_path != NULL) || (ld_preload != NULL) ||
555 	(ld_elf_hints_path != NULL) || ld_loadfltr;
556     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
557     ld_utrace = getenv(_LD("UTRACE"));
558 
559     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
560 	ld_elf_hints_path = ld_elf_hints_default;
561 
562     if (ld_debug != NULL && *ld_debug != '\0')
563 	debug = 1;
564     dbg("%s is initialized, base address = %p", __progname,
565 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
566     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
567     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
568 
569     dbg("initializing thread locks");
570     lockdflt_init();
571 
572     /*
573      * Load the main program, or process its program header if it is
574      * already loaded.
575      */
576     if (fd != -1) {	/* Load the main program. */
577 	dbg("loading main program");
578 	obj_main = map_object(fd, argv0, NULL);
579 	close(fd);
580 	if (obj_main == NULL)
581 	    rtld_die();
582 	max_stack_flags = obj_main->stack_flags;
583     } else {				/* Main program already loaded. */
584 	dbg("processing main program's program header");
585 	assert(aux_info[AT_PHDR] != NULL);
586 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
587 	assert(aux_info[AT_PHNUM] != NULL);
588 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
589 	assert(aux_info[AT_PHENT] != NULL);
590 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
591 	assert(aux_info[AT_ENTRY] != NULL);
592 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
593 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
594 	    rtld_die();
595     }
596 
597     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
598 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
599 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
600 	    if (kexecpath[0] == '/')
601 		    obj_main->path = kexecpath;
602 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
603 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
604 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
605 		    obj_main->path = xstrdup(argv0);
606 	    else
607 		    obj_main->path = xstrdup(buf);
608     } else {
609 	    dbg("No AT_EXECPATH or direct exec");
610 	    obj_main->path = xstrdup(argv0);
611     }
612     dbg("obj_main path %s", obj_main->path);
613     obj_main->mainprog = true;
614 
615     if (aux_info[AT_STACKPROT] != NULL &&
616       aux_info[AT_STACKPROT]->a_un.a_val != 0)
617 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
618 
619 #ifndef COMPAT_32BIT
620     /*
621      * Get the actual dynamic linker pathname from the executable if
622      * possible.  (It should always be possible.)  That ensures that
623      * gdb will find the right dynamic linker even if a non-standard
624      * one is being used.
625      */
626     if (obj_main->interp != NULL &&
627       strcmp(obj_main->interp, obj_rtld.path) != 0) {
628 	free(obj_rtld.path);
629 	obj_rtld.path = xstrdup(obj_main->interp);
630         __progname = obj_rtld.path;
631     }
632 #endif
633 
634     digest_dynamic(obj_main, 0);
635     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
636 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
637 	obj_main->dynsymcount);
638 
639     linkmap_add(obj_main);
640     linkmap_add(&obj_rtld);
641 
642     /* Link the main program into the list of objects. */
643     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
644     obj_count++;
645     obj_loads++;
646 
647     /* Initialize a fake symbol for resolving undefined weak references. */
648     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
649     sym_zero.st_shndx = SHN_UNDEF;
650     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
651 
652     if (!libmap_disable)
653         libmap_disable = (bool)lm_init(libmap_override);
654 
655     dbg("loading LD_PRELOAD libraries");
656     if (load_preload_objects() == -1)
657 	rtld_die();
658     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
659 
660     dbg("loading needed objects");
661     if (load_needed_objects(obj_main, 0) == -1)
662 	rtld_die();
663 
664     /* Make a list of all objects loaded at startup. */
665     last_interposer = obj_main;
666     TAILQ_FOREACH(obj, &obj_list, next) {
667 	if (obj->marker)
668 	    continue;
669 	if (obj->z_interpose && obj != obj_main) {
670 	    objlist_put_after(&list_main, last_interposer, obj);
671 	    last_interposer = obj;
672 	} else {
673 	    objlist_push_tail(&list_main, obj);
674 	}
675     	obj->refcount++;
676     }
677 
678     dbg("checking for required versions");
679     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
680 	rtld_die();
681 
682     if (ld_tracing) {		/* We're done */
683 	trace_loaded_objects(obj_main);
684 	exit(0);
685     }
686 
687     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
688        dump_relocations(obj_main);
689        exit (0);
690     }
691 
692     /*
693      * Processing tls relocations requires having the tls offsets
694      * initialized.  Prepare offsets before starting initial
695      * relocation processing.
696      */
697     dbg("initializing initial thread local storage offsets");
698     STAILQ_FOREACH(entry, &list_main, link) {
699 	/*
700 	 * Allocate all the initial objects out of the static TLS
701 	 * block even if they didn't ask for it.
702 	 */
703 	allocate_tls_offset(entry->obj);
704     }
705 
706     if (relocate_objects(obj_main,
707       ld_bind_now != NULL && *ld_bind_now != '\0',
708       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
709 	rtld_die();
710 
711     dbg("doing copy relocations");
712     if (do_copy_relocations(obj_main) == -1)
713 	rtld_die();
714 
715     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
716        dump_relocations(obj_main);
717        exit (0);
718     }
719 
720     ifunc_init(aux);
721 
722     /*
723      * Setup TLS for main thread.  This must be done after the
724      * relocations are processed, since tls initialization section
725      * might be the subject for relocations.
726      */
727     dbg("initializing initial thread local storage");
728     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
729 
730     dbg("initializing key program variables");
731     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
732     set_program_var("environ", env);
733     set_program_var("__elf_aux_vector", aux);
734 
735     /* Make a list of init functions to call. */
736     objlist_init(&initlist);
737     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
738       preload_tail, &initlist);
739 
740     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
741 
742     map_stacks_exec(NULL);
743 
744     if (!obj_main->crt_no_init) {
745 	/*
746 	 * Make sure we don't call the main program's init and fini
747 	 * functions for binaries linked with old crt1 which calls
748 	 * _init itself.
749 	 */
750 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
751 	obj_main->preinit_array = obj_main->init_array =
752 	    obj_main->fini_array = (Elf_Addr)NULL;
753     }
754 
755     /*
756      * Execute MD initializers required before we call the objects'
757      * init functions.
758      */
759     pre_init();
760 
761     wlock_acquire(rtld_bind_lock, &lockstate);
762 
763     dbg("resolving ifuncs");
764     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
765       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
766 	rtld_die();
767 
768     rtld_exit_ptr = rtld_exit;
769     if (obj_main->crt_no_init)
770 	preinit_main();
771     objlist_call_init(&initlist, &lockstate);
772     _r_debug_postinit(&obj_main->linkmap);
773     objlist_clear(&initlist);
774     dbg("loading filtees");
775     TAILQ_FOREACH(obj, &obj_list, next) {
776 	if (obj->marker)
777 	    continue;
778 	if (ld_loadfltr || obj->z_loadfltr)
779 	    load_filtees(obj, 0, &lockstate);
780     }
781 
782     dbg("enforcing main obj relro");
783     if (obj_enforce_relro(obj_main) == -1)
784 	rtld_die();
785 
786     lock_release(rtld_bind_lock, &lockstate);
787 
788     dbg("transferring control to program entry point = %p", obj_main->entry);
789 
790     /* Return the exit procedure and the program entry point. */
791     *exit_proc = rtld_exit_ptr;
792     *objp = obj_main;
793     return (func_ptr_type) obj_main->entry;
794 }
795 
796 void *
797 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
798 {
799 	void *ptr;
800 	Elf_Addr target;
801 
802 	ptr = (void *)make_function_pointer(def, obj);
803 	target = call_ifunc_resolver(ptr);
804 	return ((void *)target);
805 }
806 
807 /*
808  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
809  * Changes to this function should be applied there as well.
810  */
811 Elf_Addr
812 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
813 {
814     const Elf_Rel *rel;
815     const Elf_Sym *def;
816     const Obj_Entry *defobj;
817     Elf_Addr *where;
818     Elf_Addr target;
819     RtldLockState lockstate;
820 
821     rlock_acquire(rtld_bind_lock, &lockstate);
822     if (sigsetjmp(lockstate.env, 0) != 0)
823 	    lock_upgrade(rtld_bind_lock, &lockstate);
824     if (obj->pltrel)
825 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
826     else
827 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
828 
829     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
830     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
831 	NULL, &lockstate);
832     if (def == NULL)
833 	rtld_die();
834     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
835 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
836     else
837 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
838 
839     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
840       defobj->strtab + def->st_name, basename(obj->path),
841       (void *)target, basename(defobj->path));
842 
843     /*
844      * Write the new contents for the jmpslot. Note that depending on
845      * architecture, the value which we need to return back to the
846      * lazy binding trampoline may or may not be the target
847      * address. The value returned from reloc_jmpslot() is the value
848      * that the trampoline needs.
849      */
850     target = reloc_jmpslot(where, target, defobj, obj, rel);
851     lock_release(rtld_bind_lock, &lockstate);
852     return target;
853 }
854 
855 /*
856  * Error reporting function.  Use it like printf.  If formats the message
857  * into a buffer, and sets things up so that the next call to dlerror()
858  * will return the message.
859  */
860 void
861 _rtld_error(const char *fmt, ...)
862 {
863     static char buf[512];
864     va_list ap;
865 
866     va_start(ap, fmt);
867     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
868     error_message = buf;
869     va_end(ap);
870     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
871 }
872 
873 /*
874  * Return a dynamically-allocated copy of the current error message, if any.
875  */
876 static char *
877 errmsg_save(void)
878 {
879     return error_message == NULL ? NULL : xstrdup(error_message);
880 }
881 
882 /*
883  * Restore the current error message from a copy which was previously saved
884  * by errmsg_save().  The copy is freed.
885  */
886 static void
887 errmsg_restore(char *saved_msg)
888 {
889     if (saved_msg == NULL)
890 	error_message = NULL;
891     else {
892 	_rtld_error("%s", saved_msg);
893 	free(saved_msg);
894     }
895 }
896 
897 static const char *
898 basename(const char *name)
899 {
900     const char *p = strrchr(name, '/');
901     return p != NULL ? p + 1 : name;
902 }
903 
904 static struct utsname uts;
905 
906 static char *
907 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
908     const char *subst, bool may_free)
909 {
910 	char *p, *p1, *res, *resp;
911 	int subst_len, kw_len, subst_count, old_len, new_len;
912 
913 	kw_len = strlen(kw);
914 
915 	/*
916 	 * First, count the number of the keyword occurrences, to
917 	 * preallocate the final string.
918 	 */
919 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
920 		p1 = strstr(p, kw);
921 		if (p1 == NULL)
922 			break;
923 	}
924 
925 	/*
926 	 * If the keyword is not found, just return.
927 	 *
928 	 * Return non-substituted string if resolution failed.  We
929 	 * cannot do anything more reasonable, the failure mode of the
930 	 * caller is unresolved library anyway.
931 	 */
932 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
933 		return (may_free ? real : xstrdup(real));
934 	if (obj != NULL)
935 		subst = obj->origin_path;
936 
937 	/*
938 	 * There is indeed something to substitute.  Calculate the
939 	 * length of the resulting string, and allocate it.
940 	 */
941 	subst_len = strlen(subst);
942 	old_len = strlen(real);
943 	new_len = old_len + (subst_len - kw_len) * subst_count;
944 	res = xmalloc(new_len + 1);
945 
946 	/*
947 	 * Now, execute the substitution loop.
948 	 */
949 	for (p = real, resp = res, *resp = '\0';;) {
950 		p1 = strstr(p, kw);
951 		if (p1 != NULL) {
952 			/* Copy the prefix before keyword. */
953 			memcpy(resp, p, p1 - p);
954 			resp += p1 - p;
955 			/* Keyword replacement. */
956 			memcpy(resp, subst, subst_len);
957 			resp += subst_len;
958 			*resp = '\0';
959 			p = p1 + kw_len;
960 		} else
961 			break;
962 	}
963 
964 	/* Copy to the end of string and finish. */
965 	strcat(resp, p);
966 	if (may_free)
967 		free(real);
968 	return (res);
969 }
970 
971 static char *
972 origin_subst(Obj_Entry *obj, const char *real)
973 {
974 	char *res1, *res2, *res3, *res4;
975 
976 	if (obj == NULL || !trust)
977 		return (xstrdup(real));
978 	if (uts.sysname[0] == '\0') {
979 		if (uname(&uts) != 0) {
980 			_rtld_error("utsname failed: %d", errno);
981 			return (NULL);
982 		}
983 	}
984 	/* __DECONST is safe here since without may_free real is unchanged */
985 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
986 	    false);
987 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
988 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
989 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
990 	return (res4);
991 }
992 
993 void
994 rtld_die(void)
995 {
996     const char *msg = dlerror();
997 
998     if (msg == NULL)
999 	msg = "Fatal error";
1000     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1001     rtld_fdputstr(STDERR_FILENO, msg);
1002     rtld_fdputchar(STDERR_FILENO, '\n');
1003     _exit(1);
1004 }
1005 
1006 /*
1007  * Process a shared object's DYNAMIC section, and save the important
1008  * information in its Obj_Entry structure.
1009  */
1010 static void
1011 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1012     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1013 {
1014     const Elf_Dyn *dynp;
1015     Needed_Entry **needed_tail = &obj->needed;
1016     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1017     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1018     const Elf_Hashelt *hashtab;
1019     const Elf32_Word *hashval;
1020     Elf32_Word bkt, nmaskwords;
1021     int bloom_size32;
1022     int plttype = DT_REL;
1023 
1024     *dyn_rpath = NULL;
1025     *dyn_soname = NULL;
1026     *dyn_runpath = NULL;
1027 
1028     obj->bind_now = false;
1029     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1030 	switch (dynp->d_tag) {
1031 
1032 	case DT_REL:
1033 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1034 	    break;
1035 
1036 	case DT_RELSZ:
1037 	    obj->relsize = dynp->d_un.d_val;
1038 	    break;
1039 
1040 	case DT_RELENT:
1041 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1042 	    break;
1043 
1044 	case DT_JMPREL:
1045 	    obj->pltrel = (const Elf_Rel *)
1046 	      (obj->relocbase + dynp->d_un.d_ptr);
1047 	    break;
1048 
1049 	case DT_PLTRELSZ:
1050 	    obj->pltrelsize = dynp->d_un.d_val;
1051 	    break;
1052 
1053 	case DT_RELA:
1054 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1055 	    break;
1056 
1057 	case DT_RELASZ:
1058 	    obj->relasize = dynp->d_un.d_val;
1059 	    break;
1060 
1061 	case DT_RELAENT:
1062 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1063 	    break;
1064 
1065 	case DT_PLTREL:
1066 	    plttype = dynp->d_un.d_val;
1067 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1068 	    break;
1069 
1070 	case DT_SYMTAB:
1071 	    obj->symtab = (const Elf_Sym *)
1072 	      (obj->relocbase + dynp->d_un.d_ptr);
1073 	    break;
1074 
1075 	case DT_SYMENT:
1076 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1077 	    break;
1078 
1079 	case DT_STRTAB:
1080 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1081 	    break;
1082 
1083 	case DT_STRSZ:
1084 	    obj->strsize = dynp->d_un.d_val;
1085 	    break;
1086 
1087 	case DT_VERNEED:
1088 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1089 		dynp->d_un.d_val);
1090 	    break;
1091 
1092 	case DT_VERNEEDNUM:
1093 	    obj->verneednum = dynp->d_un.d_val;
1094 	    break;
1095 
1096 	case DT_VERDEF:
1097 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1098 		dynp->d_un.d_val);
1099 	    break;
1100 
1101 	case DT_VERDEFNUM:
1102 	    obj->verdefnum = dynp->d_un.d_val;
1103 	    break;
1104 
1105 	case DT_VERSYM:
1106 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1107 		dynp->d_un.d_val);
1108 	    break;
1109 
1110 	case DT_HASH:
1111 	    {
1112 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1113 		    dynp->d_un.d_ptr);
1114 		obj->nbuckets = hashtab[0];
1115 		obj->nchains = hashtab[1];
1116 		obj->buckets = hashtab + 2;
1117 		obj->chains = obj->buckets + obj->nbuckets;
1118 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1119 		  obj->buckets != NULL;
1120 	    }
1121 	    break;
1122 
1123 	case DT_GNU_HASH:
1124 	    {
1125 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1126 		    dynp->d_un.d_ptr);
1127 		obj->nbuckets_gnu = hashtab[0];
1128 		obj->symndx_gnu = hashtab[1];
1129 		nmaskwords = hashtab[2];
1130 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1131 		obj->maskwords_bm_gnu = nmaskwords - 1;
1132 		obj->shift2_gnu = hashtab[3];
1133 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1134 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1135 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1136 		  obj->symndx_gnu;
1137 		/* Number of bitmask words is required to be power of 2 */
1138 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1139 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1140 	    }
1141 	    break;
1142 
1143 	case DT_NEEDED:
1144 	    if (!obj->rtld) {
1145 		Needed_Entry *nep = NEW(Needed_Entry);
1146 		nep->name = dynp->d_un.d_val;
1147 		nep->obj = NULL;
1148 		nep->next = NULL;
1149 
1150 		*needed_tail = nep;
1151 		needed_tail = &nep->next;
1152 	    }
1153 	    break;
1154 
1155 	case DT_FILTER:
1156 	    if (!obj->rtld) {
1157 		Needed_Entry *nep = NEW(Needed_Entry);
1158 		nep->name = dynp->d_un.d_val;
1159 		nep->obj = NULL;
1160 		nep->next = NULL;
1161 
1162 		*needed_filtees_tail = nep;
1163 		needed_filtees_tail = &nep->next;
1164 	    }
1165 	    break;
1166 
1167 	case DT_AUXILIARY:
1168 	    if (!obj->rtld) {
1169 		Needed_Entry *nep = NEW(Needed_Entry);
1170 		nep->name = dynp->d_un.d_val;
1171 		nep->obj = NULL;
1172 		nep->next = NULL;
1173 
1174 		*needed_aux_filtees_tail = nep;
1175 		needed_aux_filtees_tail = &nep->next;
1176 	    }
1177 	    break;
1178 
1179 	case DT_PLTGOT:
1180 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1181 	    break;
1182 
1183 	case DT_TEXTREL:
1184 	    obj->textrel = true;
1185 	    break;
1186 
1187 	case DT_SYMBOLIC:
1188 	    obj->symbolic = true;
1189 	    break;
1190 
1191 	case DT_RPATH:
1192 	    /*
1193 	     * We have to wait until later to process this, because we
1194 	     * might not have gotten the address of the string table yet.
1195 	     */
1196 	    *dyn_rpath = dynp;
1197 	    break;
1198 
1199 	case DT_SONAME:
1200 	    *dyn_soname = dynp;
1201 	    break;
1202 
1203 	case DT_RUNPATH:
1204 	    *dyn_runpath = dynp;
1205 	    break;
1206 
1207 	case DT_INIT:
1208 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1209 	    break;
1210 
1211 	case DT_PREINIT_ARRAY:
1212 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1213 	    break;
1214 
1215 	case DT_PREINIT_ARRAYSZ:
1216 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1217 	    break;
1218 
1219 	case DT_INIT_ARRAY:
1220 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1221 	    break;
1222 
1223 	case DT_INIT_ARRAYSZ:
1224 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1225 	    break;
1226 
1227 	case DT_FINI:
1228 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1229 	    break;
1230 
1231 	case DT_FINI_ARRAY:
1232 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1233 	    break;
1234 
1235 	case DT_FINI_ARRAYSZ:
1236 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1237 	    break;
1238 
1239 	/*
1240 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1241 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1242 	 */
1243 
1244 #ifndef __mips__
1245 	case DT_DEBUG:
1246 	    if (!early)
1247 		dbg("Filling in DT_DEBUG entry");
1248 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1249 	    break;
1250 #endif
1251 
1252 	case DT_FLAGS:
1253 		if (dynp->d_un.d_val & DF_ORIGIN)
1254 		    obj->z_origin = true;
1255 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1256 		    obj->symbolic = true;
1257 		if (dynp->d_un.d_val & DF_TEXTREL)
1258 		    obj->textrel = true;
1259 		if (dynp->d_un.d_val & DF_BIND_NOW)
1260 		    obj->bind_now = true;
1261 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1262 		    obj->static_tls = true;
1263 	    break;
1264 #ifdef __mips__
1265 	case DT_MIPS_LOCAL_GOTNO:
1266 		obj->local_gotno = dynp->d_un.d_val;
1267 		break;
1268 
1269 	case DT_MIPS_SYMTABNO:
1270 		obj->symtabno = dynp->d_un.d_val;
1271 		break;
1272 
1273 	case DT_MIPS_GOTSYM:
1274 		obj->gotsym = dynp->d_un.d_val;
1275 		break;
1276 
1277 	case DT_MIPS_RLD_MAP:
1278 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1279 		break;
1280 
1281 	case DT_MIPS_RLD_MAP_REL:
1282 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1283 		// section relative to the address of the tag itself.
1284 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1285 		    (Elf_Addr) &r_debug;
1286 		break;
1287 
1288 	case DT_MIPS_PLTGOT:
1289 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1290 		    dynp->d_un.d_ptr);
1291 		break;
1292 
1293 #endif
1294 
1295 #ifdef __powerpc__
1296 #ifdef __powerpc64__
1297 	case DT_PPC64_GLINK:
1298 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1299 		break;
1300 #else
1301 	case DT_PPC_GOT:
1302 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1303 		break;
1304 #endif
1305 #endif
1306 
1307 	case DT_FLAGS_1:
1308 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1309 		    obj->z_noopen = true;
1310 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1311 		    obj->z_origin = true;
1312 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1313 		    obj->z_global = true;
1314 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1315 		    obj->bind_now = true;
1316 		if (dynp->d_un.d_val & DF_1_NODELETE)
1317 		    obj->z_nodelete = true;
1318 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1319 		    obj->z_loadfltr = true;
1320 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1321 		    obj->z_interpose = true;
1322 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1323 		    obj->z_nodeflib = true;
1324 	    break;
1325 
1326 	default:
1327 	    if (!early) {
1328 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1329 		    (long)dynp->d_tag);
1330 	    }
1331 	    break;
1332 	}
1333     }
1334 
1335     obj->traced = false;
1336 
1337     if (plttype == DT_RELA) {
1338 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1339 	obj->pltrel = NULL;
1340 	obj->pltrelasize = obj->pltrelsize;
1341 	obj->pltrelsize = 0;
1342     }
1343 
1344     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1345     if (obj->valid_hash_sysv)
1346 	obj->dynsymcount = obj->nchains;
1347     else if (obj->valid_hash_gnu) {
1348 	obj->dynsymcount = 0;
1349 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1350 	    if (obj->buckets_gnu[bkt] == 0)
1351 		continue;
1352 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1353 	    do
1354 		obj->dynsymcount++;
1355 	    while ((*hashval++ & 1u) == 0);
1356 	}
1357 	obj->dynsymcount += obj->symndx_gnu;
1358     }
1359 }
1360 
1361 static bool
1362 obj_resolve_origin(Obj_Entry *obj)
1363 {
1364 
1365 	if (obj->origin_path != NULL)
1366 		return (true);
1367 	obj->origin_path = xmalloc(PATH_MAX);
1368 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1369 }
1370 
1371 static void
1372 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1373     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1374 {
1375 
1376 	if (obj->z_origin && !obj_resolve_origin(obj))
1377 		rtld_die();
1378 
1379 	if (dyn_runpath != NULL) {
1380 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1381 		obj->runpath = origin_subst(obj, obj->runpath);
1382 	} else if (dyn_rpath != NULL) {
1383 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1384 		obj->rpath = origin_subst(obj, obj->rpath);
1385 	}
1386 	if (dyn_soname != NULL)
1387 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1388 }
1389 
1390 static void
1391 digest_dynamic(Obj_Entry *obj, int early)
1392 {
1393 	const Elf_Dyn *dyn_rpath;
1394 	const Elf_Dyn *dyn_soname;
1395 	const Elf_Dyn *dyn_runpath;
1396 
1397 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1398 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1399 }
1400 
1401 /*
1402  * Process a shared object's program header.  This is used only for the
1403  * main program, when the kernel has already loaded the main program
1404  * into memory before calling the dynamic linker.  It creates and
1405  * returns an Obj_Entry structure.
1406  */
1407 static Obj_Entry *
1408 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1409 {
1410     Obj_Entry *obj;
1411     const Elf_Phdr *phlimit = phdr + phnum;
1412     const Elf_Phdr *ph;
1413     Elf_Addr note_start, note_end;
1414     int nsegs = 0;
1415 
1416     obj = obj_new();
1417     for (ph = phdr;  ph < phlimit;  ph++) {
1418 	if (ph->p_type != PT_PHDR)
1419 	    continue;
1420 
1421 	obj->phdr = phdr;
1422 	obj->phsize = ph->p_memsz;
1423 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1424 	break;
1425     }
1426 
1427     obj->stack_flags = PF_X | PF_R | PF_W;
1428 
1429     for (ph = phdr;  ph < phlimit;  ph++) {
1430 	switch (ph->p_type) {
1431 
1432 	case PT_INTERP:
1433 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1434 	    break;
1435 
1436 	case PT_LOAD:
1437 	    if (nsegs == 0) {	/* First load segment */
1438 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1439 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1440 	    } else {		/* Last load segment */
1441 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1442 		  obj->vaddrbase;
1443 	    }
1444 	    nsegs++;
1445 	    break;
1446 
1447 	case PT_DYNAMIC:
1448 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1449 	    break;
1450 
1451 	case PT_TLS:
1452 	    obj->tlsindex = 1;
1453 	    obj->tlssize = ph->p_memsz;
1454 	    obj->tlsalign = ph->p_align;
1455 	    obj->tlsinitsize = ph->p_filesz;
1456 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1457 	    break;
1458 
1459 	case PT_GNU_STACK:
1460 	    obj->stack_flags = ph->p_flags;
1461 	    break;
1462 
1463 	case PT_GNU_RELRO:
1464 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1465 	    obj->relro_size = round_page(ph->p_memsz);
1466 	    break;
1467 
1468 	case PT_NOTE:
1469 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1470 	    note_end = note_start + ph->p_filesz;
1471 	    digest_notes(obj, note_start, note_end);
1472 	    break;
1473 	}
1474     }
1475     if (nsegs < 1) {
1476 	_rtld_error("%s: too few PT_LOAD segments", path);
1477 	return NULL;
1478     }
1479 
1480     obj->entry = entry;
1481     return obj;
1482 }
1483 
1484 void
1485 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1486 {
1487 	const Elf_Note *note;
1488 	const char *note_name;
1489 	uintptr_t p;
1490 
1491 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1492 	    note = (const Elf_Note *)((const char *)(note + 1) +
1493 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1494 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1495 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1496 		    note->n_descsz != sizeof(int32_t))
1497 			continue;
1498 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1499 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1500 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1501 			continue;
1502 		note_name = (const char *)(note + 1);
1503 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1504 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1505 			continue;
1506 		switch (note->n_type) {
1507 		case NT_FREEBSD_ABI_TAG:
1508 			/* FreeBSD osrel note */
1509 			p = (uintptr_t)(note + 1);
1510 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1511 			obj->osrel = *(const int32_t *)(p);
1512 			dbg("note osrel %d", obj->osrel);
1513 			break;
1514 		case NT_FREEBSD_FEATURE_CTL:
1515 			/* FreeBSD ABI feature control note */
1516 			p = (uintptr_t)(note + 1);
1517 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1518 			obj->fctl0 = *(const uint32_t *)(p);
1519 			dbg("note fctl0 %#x", obj->fctl0);
1520 			break;
1521 		case NT_FREEBSD_NOINIT_TAG:
1522 			/* FreeBSD 'crt does not call init' note */
1523 			obj->crt_no_init = true;
1524 			dbg("note crt_no_init");
1525 			break;
1526 		}
1527 	}
1528 }
1529 
1530 static Obj_Entry *
1531 dlcheck(void *handle)
1532 {
1533     Obj_Entry *obj;
1534 
1535     TAILQ_FOREACH(obj, &obj_list, next) {
1536 	if (obj == (Obj_Entry *) handle)
1537 	    break;
1538     }
1539 
1540     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1541 	_rtld_error("Invalid shared object handle %p", handle);
1542 	return NULL;
1543     }
1544     return obj;
1545 }
1546 
1547 /*
1548  * If the given object is already in the donelist, return true.  Otherwise
1549  * add the object to the list and return false.
1550  */
1551 static bool
1552 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1553 {
1554     unsigned int i;
1555 
1556     for (i = 0;  i < dlp->num_used;  i++)
1557 	if (dlp->objs[i] == obj)
1558 	    return true;
1559     /*
1560      * Our donelist allocation should always be sufficient.  But if
1561      * our threads locking isn't working properly, more shared objects
1562      * could have been loaded since we allocated the list.  That should
1563      * never happen, but we'll handle it properly just in case it does.
1564      */
1565     if (dlp->num_used < dlp->num_alloc)
1566 	dlp->objs[dlp->num_used++] = obj;
1567     return false;
1568 }
1569 
1570 /*
1571  * Hash function for symbol table lookup.  Don't even think about changing
1572  * this.  It is specified by the System V ABI.
1573  */
1574 unsigned long
1575 elf_hash(const char *name)
1576 {
1577     const unsigned char *p = (const unsigned char *) name;
1578     unsigned long h = 0;
1579     unsigned long g;
1580 
1581     while (*p != '\0') {
1582 	h = (h << 4) + *p++;
1583 	if ((g = h & 0xf0000000) != 0)
1584 	    h ^= g >> 24;
1585 	h &= ~g;
1586     }
1587     return h;
1588 }
1589 
1590 /*
1591  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1592  * unsigned in case it's implemented with a wider type.
1593  */
1594 static uint32_t
1595 gnu_hash(const char *s)
1596 {
1597 	uint32_t h;
1598 	unsigned char c;
1599 
1600 	h = 5381;
1601 	for (c = *s; c != '\0'; c = *++s)
1602 		h = h * 33 + c;
1603 	return (h & 0xffffffff);
1604 }
1605 
1606 
1607 /*
1608  * Find the library with the given name, and return its full pathname.
1609  * The returned string is dynamically allocated.  Generates an error
1610  * message and returns NULL if the library cannot be found.
1611  *
1612  * If the second argument is non-NULL, then it refers to an already-
1613  * loaded shared object, whose library search path will be searched.
1614  *
1615  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1616  * descriptor (which is close-on-exec) will be passed out via the third
1617  * argument.
1618  *
1619  * The search order is:
1620  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1621  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1622  *   LD_LIBRARY_PATH
1623  *   DT_RUNPATH in the referencing file
1624  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1625  *	 from list)
1626  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1627  *
1628  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1629  */
1630 static char *
1631 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1632 {
1633 	char *pathname, *refobj_path;
1634 	const char *name;
1635 	bool nodeflib, objgiven;
1636 
1637 	objgiven = refobj != NULL;
1638 
1639 	if (libmap_disable || !objgiven ||
1640 	    (name = lm_find(refobj->path, xname)) == NULL)
1641 		name = xname;
1642 
1643 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1644 		if (name[0] != '/' && !trust) {
1645 			_rtld_error("Absolute pathname required "
1646 			    "for shared object \"%s\"", name);
1647 			return (NULL);
1648 		}
1649 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1650 		    __DECONST(char *, name)));
1651 	}
1652 
1653 	dbg(" Searching for \"%s\"", name);
1654 	refobj_path = objgiven ? refobj->path : NULL;
1655 
1656 	/*
1657 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1658 	 * back to pre-conforming behaviour if user requested so with
1659 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1660 	 * nodeflib.
1661 	 */
1662 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1663 		pathname = search_library_path(name, ld_library_path,
1664 		    refobj_path, fdp);
1665 		if (pathname != NULL)
1666 			return (pathname);
1667 		if (refobj != NULL) {
1668 			pathname = search_library_path(name, refobj->rpath,
1669 			    refobj_path, fdp);
1670 			if (pathname != NULL)
1671 				return (pathname);
1672 		}
1673 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1674 		if (pathname != NULL)
1675 			return (pathname);
1676 		pathname = search_library_path(name, gethints(false),
1677 		    refobj_path, fdp);
1678 		if (pathname != NULL)
1679 			return (pathname);
1680 		pathname = search_library_path(name, ld_standard_library_path,
1681 		    refobj_path, fdp);
1682 		if (pathname != NULL)
1683 			return (pathname);
1684 	} else {
1685 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1686 		if (objgiven) {
1687 			pathname = search_library_path(name, refobj->rpath,
1688 			    refobj->path, fdp);
1689 			if (pathname != NULL)
1690 				return (pathname);
1691 		}
1692 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1693 			pathname = search_library_path(name, obj_main->rpath,
1694 			    refobj_path, fdp);
1695 			if (pathname != NULL)
1696 				return (pathname);
1697 		}
1698 		pathname = search_library_path(name, ld_library_path,
1699 		    refobj_path, fdp);
1700 		if (pathname != NULL)
1701 			return (pathname);
1702 		if (objgiven) {
1703 			pathname = search_library_path(name, refobj->runpath,
1704 			    refobj_path, fdp);
1705 			if (pathname != NULL)
1706 				return (pathname);
1707 		}
1708 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1709 		if (pathname != NULL)
1710 			return (pathname);
1711 		pathname = search_library_path(name, gethints(nodeflib),
1712 		    refobj_path, fdp);
1713 		if (pathname != NULL)
1714 			return (pathname);
1715 		if (objgiven && !nodeflib) {
1716 			pathname = search_library_path(name,
1717 			    ld_standard_library_path, refobj_path, fdp);
1718 			if (pathname != NULL)
1719 				return (pathname);
1720 		}
1721 	}
1722 
1723 	if (objgiven && refobj->path != NULL) {
1724 		_rtld_error("Shared object \"%s\" not found, "
1725 		    "required by \"%s\"", name, basename(refobj->path));
1726 	} else {
1727 		_rtld_error("Shared object \"%s\" not found", name);
1728 	}
1729 	return (NULL);
1730 }
1731 
1732 /*
1733  * Given a symbol number in a referencing object, find the corresponding
1734  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1735  * no definition was found.  Returns a pointer to the Obj_Entry of the
1736  * defining object via the reference parameter DEFOBJ_OUT.
1737  */
1738 const Elf_Sym *
1739 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1740     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1741     RtldLockState *lockstate)
1742 {
1743     const Elf_Sym *ref;
1744     const Elf_Sym *def;
1745     const Obj_Entry *defobj;
1746     const Ver_Entry *ve;
1747     SymLook req;
1748     const char *name;
1749     int res;
1750 
1751     /*
1752      * If we have already found this symbol, get the information from
1753      * the cache.
1754      */
1755     if (symnum >= refobj->dynsymcount)
1756 	return NULL;	/* Bad object */
1757     if (cache != NULL && cache[symnum].sym != NULL) {
1758 	*defobj_out = cache[symnum].obj;
1759 	return cache[symnum].sym;
1760     }
1761 
1762     ref = refobj->symtab + symnum;
1763     name = refobj->strtab + ref->st_name;
1764     def = NULL;
1765     defobj = NULL;
1766     ve = NULL;
1767 
1768     /*
1769      * We don't have to do a full scale lookup if the symbol is local.
1770      * We know it will bind to the instance in this load module; to
1771      * which we already have a pointer (ie ref). By not doing a lookup,
1772      * we not only improve performance, but it also avoids unresolvable
1773      * symbols when local symbols are not in the hash table. This has
1774      * been seen with the ia64 toolchain.
1775      */
1776     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1777 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1778 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1779 		symnum);
1780 	}
1781 	symlook_init(&req, name);
1782 	req.flags = flags;
1783 	ve = req.ventry = fetch_ventry(refobj, symnum);
1784 	req.lockstate = lockstate;
1785 	res = symlook_default(&req, refobj);
1786 	if (res == 0) {
1787 	    def = req.sym_out;
1788 	    defobj = req.defobj_out;
1789 	}
1790     } else {
1791 	def = ref;
1792 	defobj = refobj;
1793     }
1794 
1795     /*
1796      * If we found no definition and the reference is weak, treat the
1797      * symbol as having the value zero.
1798      */
1799     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1800 	def = &sym_zero;
1801 	defobj = obj_main;
1802     }
1803 
1804     if (def != NULL) {
1805 	*defobj_out = defobj;
1806 	/* Record the information in the cache to avoid subsequent lookups. */
1807 	if (cache != NULL) {
1808 	    cache[symnum].sym = def;
1809 	    cache[symnum].obj = defobj;
1810 	}
1811     } else {
1812 	if (refobj != &obj_rtld)
1813 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1814 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1815     }
1816     return def;
1817 }
1818 
1819 /*
1820  * Return the search path from the ldconfig hints file, reading it if
1821  * necessary.  If nostdlib is true, then the default search paths are
1822  * not added to result.
1823  *
1824  * Returns NULL if there are problems with the hints file,
1825  * or if the search path there is empty.
1826  */
1827 static const char *
1828 gethints(bool nostdlib)
1829 {
1830 	static char *filtered_path;
1831 	static const char *hints;
1832 	static struct elfhints_hdr hdr;
1833 	struct fill_search_info_args sargs, hargs;
1834 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1835 	struct dl_serpath *SLPpath, *hintpath;
1836 	char *p;
1837 	struct stat hint_stat;
1838 	unsigned int SLPndx, hintndx, fndx, fcount;
1839 	int fd;
1840 	size_t flen;
1841 	uint32_t dl;
1842 	bool skip;
1843 
1844 	/* First call, read the hints file */
1845 	if (hints == NULL) {
1846 		/* Keep from trying again in case the hints file is bad. */
1847 		hints = "";
1848 
1849 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1850 			return (NULL);
1851 
1852 		/*
1853 		 * Check of hdr.dirlistlen value against type limit
1854 		 * intends to pacify static analyzers.  Further
1855 		 * paranoia leads to checks that dirlist is fully
1856 		 * contained in the file range.
1857 		 */
1858 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1859 		    hdr.magic != ELFHINTS_MAGIC ||
1860 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1861 		    fstat(fd, &hint_stat) == -1) {
1862 cleanup1:
1863 			close(fd);
1864 			hdr.dirlistlen = 0;
1865 			return (NULL);
1866 		}
1867 		dl = hdr.strtab;
1868 		if (dl + hdr.dirlist < dl)
1869 			goto cleanup1;
1870 		dl += hdr.dirlist;
1871 		if (dl + hdr.dirlistlen < dl)
1872 			goto cleanup1;
1873 		dl += hdr.dirlistlen;
1874 		if (dl > hint_stat.st_size)
1875 			goto cleanup1;
1876 		p = xmalloc(hdr.dirlistlen + 1);
1877 		if (pread(fd, p, hdr.dirlistlen + 1,
1878 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1879 		    p[hdr.dirlistlen] != '\0') {
1880 			free(p);
1881 			goto cleanup1;
1882 		}
1883 		hints = p;
1884 		close(fd);
1885 	}
1886 
1887 	/*
1888 	 * If caller agreed to receive list which includes the default
1889 	 * paths, we are done. Otherwise, if we still did not
1890 	 * calculated filtered result, do it now.
1891 	 */
1892 	if (!nostdlib)
1893 		return (hints[0] != '\0' ? hints : NULL);
1894 	if (filtered_path != NULL)
1895 		goto filt_ret;
1896 
1897 	/*
1898 	 * Obtain the list of all configured search paths, and the
1899 	 * list of the default paths.
1900 	 *
1901 	 * First estimate the size of the results.
1902 	 */
1903 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1904 	smeta.dls_cnt = 0;
1905 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1906 	hmeta.dls_cnt = 0;
1907 
1908 	sargs.request = RTLD_DI_SERINFOSIZE;
1909 	sargs.serinfo = &smeta;
1910 	hargs.request = RTLD_DI_SERINFOSIZE;
1911 	hargs.serinfo = &hmeta;
1912 
1913 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1914 	    &sargs);
1915 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1916 
1917 	SLPinfo = xmalloc(smeta.dls_size);
1918 	hintinfo = xmalloc(hmeta.dls_size);
1919 
1920 	/*
1921 	 * Next fetch both sets of paths.
1922 	 */
1923 	sargs.request = RTLD_DI_SERINFO;
1924 	sargs.serinfo = SLPinfo;
1925 	sargs.serpath = &SLPinfo->dls_serpath[0];
1926 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1927 
1928 	hargs.request = RTLD_DI_SERINFO;
1929 	hargs.serinfo = hintinfo;
1930 	hargs.serpath = &hintinfo->dls_serpath[0];
1931 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1932 
1933 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1934 	    &sargs);
1935 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1936 
1937 	/*
1938 	 * Now calculate the difference between two sets, by excluding
1939 	 * standard paths from the full set.
1940 	 */
1941 	fndx = 0;
1942 	fcount = 0;
1943 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1944 	hintpath = &hintinfo->dls_serpath[0];
1945 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1946 		skip = false;
1947 		SLPpath = &SLPinfo->dls_serpath[0];
1948 		/*
1949 		 * Check each standard path against current.
1950 		 */
1951 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1952 			/* matched, skip the path */
1953 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1954 				skip = true;
1955 				break;
1956 			}
1957 		}
1958 		if (skip)
1959 			continue;
1960 		/*
1961 		 * Not matched against any standard path, add the path
1962 		 * to result. Separate consequtive paths with ':'.
1963 		 */
1964 		if (fcount > 0) {
1965 			filtered_path[fndx] = ':';
1966 			fndx++;
1967 		}
1968 		fcount++;
1969 		flen = strlen(hintpath->dls_name);
1970 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1971 		fndx += flen;
1972 	}
1973 	filtered_path[fndx] = '\0';
1974 
1975 	free(SLPinfo);
1976 	free(hintinfo);
1977 
1978 filt_ret:
1979 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1980 }
1981 
1982 static void
1983 init_dag(Obj_Entry *root)
1984 {
1985     const Needed_Entry *needed;
1986     const Objlist_Entry *elm;
1987     DoneList donelist;
1988 
1989     if (root->dag_inited)
1990 	return;
1991     donelist_init(&donelist);
1992 
1993     /* Root object belongs to own DAG. */
1994     objlist_push_tail(&root->dldags, root);
1995     objlist_push_tail(&root->dagmembers, root);
1996     donelist_check(&donelist, root);
1997 
1998     /*
1999      * Add dependencies of root object to DAG in breadth order
2000      * by exploiting the fact that each new object get added
2001      * to the tail of the dagmembers list.
2002      */
2003     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2004 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2005 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2006 		continue;
2007 	    objlist_push_tail(&needed->obj->dldags, root);
2008 	    objlist_push_tail(&root->dagmembers, needed->obj);
2009 	}
2010     }
2011     root->dag_inited = true;
2012 }
2013 
2014 static void
2015 init_marker(Obj_Entry *marker)
2016 {
2017 
2018 	bzero(marker, sizeof(*marker));
2019 	marker->marker = true;
2020 }
2021 
2022 Obj_Entry *
2023 globallist_curr(const Obj_Entry *obj)
2024 {
2025 
2026 	for (;;) {
2027 		if (obj == NULL)
2028 			return (NULL);
2029 		if (!obj->marker)
2030 			return (__DECONST(Obj_Entry *, obj));
2031 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2032 	}
2033 }
2034 
2035 Obj_Entry *
2036 globallist_next(const Obj_Entry *obj)
2037 {
2038 
2039 	for (;;) {
2040 		obj = TAILQ_NEXT(obj, next);
2041 		if (obj == NULL)
2042 			return (NULL);
2043 		if (!obj->marker)
2044 			return (__DECONST(Obj_Entry *, obj));
2045 	}
2046 }
2047 
2048 /* Prevent the object from being unmapped while the bind lock is dropped. */
2049 static void
2050 hold_object(Obj_Entry *obj)
2051 {
2052 
2053 	obj->holdcount++;
2054 }
2055 
2056 static void
2057 unhold_object(Obj_Entry *obj)
2058 {
2059 
2060 	assert(obj->holdcount > 0);
2061 	if (--obj->holdcount == 0 && obj->unholdfree)
2062 		release_object(obj);
2063 }
2064 
2065 static void
2066 process_z(Obj_Entry *root)
2067 {
2068 	const Objlist_Entry *elm;
2069 	Obj_Entry *obj;
2070 
2071 	/*
2072 	 * Walk over object DAG and process every dependent object
2073 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2074 	 * to grow their own DAG.
2075 	 *
2076 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2077 	 * symlook_global() to work.
2078 	 *
2079 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2080 	 */
2081 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2082 		obj = elm->obj;
2083 		if (obj == NULL)
2084 			continue;
2085 		if (obj->z_nodelete && !obj->ref_nodel) {
2086 			dbg("obj %s -z nodelete", obj->path);
2087 			init_dag(obj);
2088 			ref_dag(obj);
2089 			obj->ref_nodel = true;
2090 		}
2091 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2092 			dbg("obj %s -z global", obj->path);
2093 			objlist_push_tail(&list_global, obj);
2094 			init_dag(obj);
2095 		}
2096 	}
2097 }
2098 /*
2099  * Initialize the dynamic linker.  The argument is the address at which
2100  * the dynamic linker has been mapped into memory.  The primary task of
2101  * this function is to relocate the dynamic linker.
2102  */
2103 static void
2104 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2105 {
2106     Obj_Entry objtmp;	/* Temporary rtld object */
2107     const Elf_Ehdr *ehdr;
2108     const Elf_Dyn *dyn_rpath;
2109     const Elf_Dyn *dyn_soname;
2110     const Elf_Dyn *dyn_runpath;
2111 
2112 #ifdef RTLD_INIT_PAGESIZES_EARLY
2113     /* The page size is required by the dynamic memory allocator. */
2114     init_pagesizes(aux_info);
2115 #endif
2116 
2117     /*
2118      * Conjure up an Obj_Entry structure for the dynamic linker.
2119      *
2120      * The "path" member can't be initialized yet because string constants
2121      * cannot yet be accessed. Below we will set it correctly.
2122      */
2123     memset(&objtmp, 0, sizeof(objtmp));
2124     objtmp.path = NULL;
2125     objtmp.rtld = true;
2126     objtmp.mapbase = mapbase;
2127 #ifdef PIC
2128     objtmp.relocbase = mapbase;
2129 #endif
2130 
2131     objtmp.dynamic = rtld_dynamic(&objtmp);
2132     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2133     assert(objtmp.needed == NULL);
2134 #if !defined(__mips__)
2135     /* MIPS has a bogus DT_TEXTREL. */
2136     assert(!objtmp.textrel);
2137 #endif
2138     /*
2139      * Temporarily put the dynamic linker entry into the object list, so
2140      * that symbols can be found.
2141      */
2142     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2143 
2144     ehdr = (Elf_Ehdr *)mapbase;
2145     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2146     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2147 
2148     /* Initialize the object list. */
2149     TAILQ_INIT(&obj_list);
2150 
2151     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2152     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2153 
2154 #ifndef RTLD_INIT_PAGESIZES_EARLY
2155     /* The page size is required by the dynamic memory allocator. */
2156     init_pagesizes(aux_info);
2157 #endif
2158 
2159     if (aux_info[AT_OSRELDATE] != NULL)
2160 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2161 
2162     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2163 
2164     /* Replace the path with a dynamically allocated copy. */
2165     obj_rtld.path = xstrdup(ld_path_rtld);
2166 
2167     r_debug.r_brk = r_debug_state;
2168     r_debug.r_state = RT_CONSISTENT;
2169 }
2170 
2171 /*
2172  * Retrieve the array of supported page sizes.  The kernel provides the page
2173  * sizes in increasing order.
2174  */
2175 static void
2176 init_pagesizes(Elf_Auxinfo **aux_info)
2177 {
2178 	static size_t psa[MAXPAGESIZES];
2179 	int mib[2];
2180 	size_t len, size;
2181 
2182 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2183 	    NULL) {
2184 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2185 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2186 	} else {
2187 		len = 2;
2188 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2189 			size = sizeof(psa);
2190 		else {
2191 			/* As a fallback, retrieve the base page size. */
2192 			size = sizeof(psa[0]);
2193 			if (aux_info[AT_PAGESZ] != NULL) {
2194 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2195 				goto psa_filled;
2196 			} else {
2197 				mib[0] = CTL_HW;
2198 				mib[1] = HW_PAGESIZE;
2199 				len = 2;
2200 			}
2201 		}
2202 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2203 			_rtld_error("sysctl for hw.pagesize(s) failed");
2204 			rtld_die();
2205 		}
2206 psa_filled:
2207 		pagesizes = psa;
2208 	}
2209 	npagesizes = size / sizeof(pagesizes[0]);
2210 	/* Discard any invalid entries at the end of the array. */
2211 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2212 		npagesizes--;
2213 }
2214 
2215 /*
2216  * Add the init functions from a needed object list (and its recursive
2217  * needed objects) to "list".  This is not used directly; it is a helper
2218  * function for initlist_add_objects().  The write lock must be held
2219  * when this function is called.
2220  */
2221 static void
2222 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2223 {
2224     /* Recursively process the successor needed objects. */
2225     if (needed->next != NULL)
2226 	initlist_add_neededs(needed->next, list);
2227 
2228     /* Process the current needed object. */
2229     if (needed->obj != NULL)
2230 	initlist_add_objects(needed->obj, needed->obj, list);
2231 }
2232 
2233 /*
2234  * Scan all of the DAGs rooted in the range of objects from "obj" to
2235  * "tail" and add their init functions to "list".  This recurses over
2236  * the DAGs and ensure the proper init ordering such that each object's
2237  * needed libraries are initialized before the object itself.  At the
2238  * same time, this function adds the objects to the global finalization
2239  * list "list_fini" in the opposite order.  The write lock must be
2240  * held when this function is called.
2241  */
2242 static void
2243 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2244 {
2245     Obj_Entry *nobj;
2246 
2247     if (obj->init_scanned || obj->init_done)
2248 	return;
2249     obj->init_scanned = true;
2250 
2251     /* Recursively process the successor objects. */
2252     nobj = globallist_next(obj);
2253     if (nobj != NULL && obj != tail)
2254 	initlist_add_objects(nobj, tail, list);
2255 
2256     /* Recursively process the needed objects. */
2257     if (obj->needed != NULL)
2258 	initlist_add_neededs(obj->needed, list);
2259     if (obj->needed_filtees != NULL)
2260 	initlist_add_neededs(obj->needed_filtees, list);
2261     if (obj->needed_aux_filtees != NULL)
2262 	initlist_add_neededs(obj->needed_aux_filtees, list);
2263 
2264     /* Add the object to the init list. */
2265     objlist_push_tail(list, obj);
2266 
2267     /* Add the object to the global fini list in the reverse order. */
2268     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2269       && !obj->on_fini_list) {
2270 	objlist_push_head(&list_fini, obj);
2271 	obj->on_fini_list = true;
2272     }
2273 }
2274 
2275 #ifndef FPTR_TARGET
2276 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2277 #endif
2278 
2279 static void
2280 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2281 {
2282     Needed_Entry *needed, *needed1;
2283 
2284     for (needed = n; needed != NULL; needed = needed->next) {
2285 	if (needed->obj != NULL) {
2286 	    dlclose_locked(needed->obj, lockstate);
2287 	    needed->obj = NULL;
2288 	}
2289     }
2290     for (needed = n; needed != NULL; needed = needed1) {
2291 	needed1 = needed->next;
2292 	free(needed);
2293     }
2294 }
2295 
2296 static void
2297 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2298 {
2299 
2300 	free_needed_filtees(obj->needed_filtees, lockstate);
2301 	obj->needed_filtees = NULL;
2302 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2303 	obj->needed_aux_filtees = NULL;
2304 	obj->filtees_loaded = false;
2305 }
2306 
2307 static void
2308 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2309     RtldLockState *lockstate)
2310 {
2311 
2312     for (; needed != NULL; needed = needed->next) {
2313 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2314 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2315 	  RTLD_LOCAL, lockstate);
2316     }
2317 }
2318 
2319 static void
2320 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2321 {
2322 
2323     lock_restart_for_upgrade(lockstate);
2324     if (!obj->filtees_loaded) {
2325 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2326 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2327 	obj->filtees_loaded = true;
2328     }
2329 }
2330 
2331 static int
2332 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2333 {
2334     Obj_Entry *obj1;
2335 
2336     for (; needed != NULL; needed = needed->next) {
2337 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2338 	  flags & ~RTLD_LO_NOLOAD);
2339 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2340 	    return (-1);
2341     }
2342     return (0);
2343 }
2344 
2345 /*
2346  * Given a shared object, traverse its list of needed objects, and load
2347  * each of them.  Returns 0 on success.  Generates an error message and
2348  * returns -1 on failure.
2349  */
2350 static int
2351 load_needed_objects(Obj_Entry *first, int flags)
2352 {
2353     Obj_Entry *obj;
2354 
2355     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2356 	if (obj->marker)
2357 	    continue;
2358 	if (process_needed(obj, obj->needed, flags) == -1)
2359 	    return (-1);
2360     }
2361     return (0);
2362 }
2363 
2364 static int
2365 load_preload_objects(void)
2366 {
2367     char *p = ld_preload;
2368     Obj_Entry *obj;
2369     static const char delim[] = " \t:;";
2370 
2371     if (p == NULL)
2372 	return 0;
2373 
2374     p += strspn(p, delim);
2375     while (*p != '\0') {
2376 	size_t len = strcspn(p, delim);
2377 	char savech;
2378 
2379 	savech = p[len];
2380 	p[len] = '\0';
2381 	obj = load_object(p, -1, NULL, 0);
2382 	if (obj == NULL)
2383 	    return -1;	/* XXX - cleanup */
2384 	obj->z_interpose = true;
2385 	p[len] = savech;
2386 	p += len;
2387 	p += strspn(p, delim);
2388     }
2389     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2390     return 0;
2391 }
2392 
2393 static const char *
2394 printable_path(const char *path)
2395 {
2396 
2397 	return (path == NULL ? "<unknown>" : path);
2398 }
2399 
2400 /*
2401  * Load a shared object into memory, if it is not already loaded.  The
2402  * object may be specified by name or by user-supplied file descriptor
2403  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2404  * duplicate is.
2405  *
2406  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2407  * on failure.
2408  */
2409 static Obj_Entry *
2410 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2411 {
2412     Obj_Entry *obj;
2413     int fd;
2414     struct stat sb;
2415     char *path;
2416 
2417     fd = -1;
2418     if (name != NULL) {
2419 	TAILQ_FOREACH(obj, &obj_list, next) {
2420 	    if (obj->marker || obj->doomed)
2421 		continue;
2422 	    if (object_match_name(obj, name))
2423 		return (obj);
2424 	}
2425 
2426 	path = find_library(name, refobj, &fd);
2427 	if (path == NULL)
2428 	    return (NULL);
2429     } else
2430 	path = NULL;
2431 
2432     if (fd >= 0) {
2433 	/*
2434 	 * search_library_pathfds() opens a fresh file descriptor for the
2435 	 * library, so there is no need to dup().
2436 	 */
2437     } else if (fd_u == -1) {
2438 	/*
2439 	 * If we didn't find a match by pathname, or the name is not
2440 	 * supplied, open the file and check again by device and inode.
2441 	 * This avoids false mismatches caused by multiple links or ".."
2442 	 * in pathnames.
2443 	 *
2444 	 * To avoid a race, we open the file and use fstat() rather than
2445 	 * using stat().
2446 	 */
2447 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2448 	    _rtld_error("Cannot open \"%s\"", path);
2449 	    free(path);
2450 	    return (NULL);
2451 	}
2452     } else {
2453 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2454 	if (fd == -1) {
2455 	    _rtld_error("Cannot dup fd");
2456 	    free(path);
2457 	    return (NULL);
2458 	}
2459     }
2460     if (fstat(fd, &sb) == -1) {
2461 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2462 	close(fd);
2463 	free(path);
2464 	return NULL;
2465     }
2466     TAILQ_FOREACH(obj, &obj_list, next) {
2467 	if (obj->marker || obj->doomed)
2468 	    continue;
2469 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2470 	    break;
2471     }
2472     if (obj != NULL && name != NULL) {
2473 	object_add_name(obj, name);
2474 	free(path);
2475 	close(fd);
2476 	return obj;
2477     }
2478     if (flags & RTLD_LO_NOLOAD) {
2479 	free(path);
2480 	close(fd);
2481 	return (NULL);
2482     }
2483 
2484     /* First use of this object, so we must map it in */
2485     obj = do_load_object(fd, name, path, &sb, flags);
2486     if (obj == NULL)
2487 	free(path);
2488     close(fd);
2489 
2490     return obj;
2491 }
2492 
2493 static Obj_Entry *
2494 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2495   int flags)
2496 {
2497     Obj_Entry *obj;
2498     struct statfs fs;
2499 
2500     /*
2501      * but first, make sure that environment variables haven't been
2502      * used to circumvent the noexec flag on a filesystem.
2503      */
2504     if (dangerous_ld_env) {
2505 	if (fstatfs(fd, &fs) != 0) {
2506 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2507 	    return NULL;
2508 	}
2509 	if (fs.f_flags & MNT_NOEXEC) {
2510 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2511 	    return NULL;
2512 	}
2513     }
2514     dbg("loading \"%s\"", printable_path(path));
2515     obj = map_object(fd, printable_path(path), sbp);
2516     if (obj == NULL)
2517         return NULL;
2518 
2519     /*
2520      * If DT_SONAME is present in the object, digest_dynamic2 already
2521      * added it to the object names.
2522      */
2523     if (name != NULL)
2524 	object_add_name(obj, name);
2525     obj->path = path;
2526     digest_dynamic(obj, 0);
2527     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2528 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2529     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2530       RTLD_LO_DLOPEN) {
2531 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2532 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2533 	munmap(obj->mapbase, obj->mapsize);
2534 	obj_free(obj);
2535 	return (NULL);
2536     }
2537 
2538     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2539     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2540     obj_count++;
2541     obj_loads++;
2542     linkmap_add(obj);	/* for GDB & dlinfo() */
2543     max_stack_flags |= obj->stack_flags;
2544 
2545     dbg("  %p .. %p: %s", obj->mapbase,
2546          obj->mapbase + obj->mapsize - 1, obj->path);
2547     if (obj->textrel)
2548 	dbg("  WARNING: %s has impure text", obj->path);
2549     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2550 	obj->path);
2551 
2552     return obj;
2553 }
2554 
2555 static Obj_Entry *
2556 obj_from_addr(const void *addr)
2557 {
2558     Obj_Entry *obj;
2559 
2560     TAILQ_FOREACH(obj, &obj_list, next) {
2561 	if (obj->marker)
2562 	    continue;
2563 	if (addr < (void *) obj->mapbase)
2564 	    continue;
2565 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2566 	    return obj;
2567     }
2568     return NULL;
2569 }
2570 
2571 static void
2572 preinit_main(void)
2573 {
2574     Elf_Addr *preinit_addr;
2575     int index;
2576 
2577     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2578     if (preinit_addr == NULL)
2579 	return;
2580 
2581     for (index = 0; index < obj_main->preinit_array_num; index++) {
2582 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2583 	    dbg("calling preinit function for %s at %p", obj_main->path,
2584 	      (void *)preinit_addr[index]);
2585 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2586 	      0, 0, obj_main->path);
2587 	    call_init_pointer(obj_main, preinit_addr[index]);
2588 	}
2589     }
2590 }
2591 
2592 /*
2593  * Call the finalization functions for each of the objects in "list"
2594  * belonging to the DAG of "root" and referenced once. If NULL "root"
2595  * is specified, every finalization function will be called regardless
2596  * of the reference count and the list elements won't be freed. All of
2597  * the objects are expected to have non-NULL fini functions.
2598  */
2599 static void
2600 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2601 {
2602     Objlist_Entry *elm;
2603     char *saved_msg;
2604     Elf_Addr *fini_addr;
2605     int index;
2606 
2607     assert(root == NULL || root->refcount == 1);
2608 
2609     if (root != NULL)
2610 	root->doomed = true;
2611 
2612     /*
2613      * Preserve the current error message since a fini function might
2614      * call into the dynamic linker and overwrite it.
2615      */
2616     saved_msg = errmsg_save();
2617     do {
2618 	STAILQ_FOREACH(elm, list, link) {
2619 	    if (root != NULL && (elm->obj->refcount != 1 ||
2620 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2621 		continue;
2622 	    /* Remove object from fini list to prevent recursive invocation. */
2623 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2624 	    /* Ensure that new references cannot be acquired. */
2625 	    elm->obj->doomed = true;
2626 
2627 	    hold_object(elm->obj);
2628 	    lock_release(rtld_bind_lock, lockstate);
2629 	    /*
2630 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2631 	     * When this happens, DT_FINI_ARRAY is processed first.
2632 	     */
2633 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2634 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2635 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2636 		  index--) {
2637 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2638 			dbg("calling fini function for %s at %p",
2639 			    elm->obj->path, (void *)fini_addr[index]);
2640 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2641 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2642 			call_initfini_pointer(elm->obj, fini_addr[index]);
2643 		    }
2644 		}
2645 	    }
2646 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2647 		dbg("calling fini function for %s at %p", elm->obj->path,
2648 		    (void *)elm->obj->fini);
2649 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2650 		    0, 0, elm->obj->path);
2651 		call_initfini_pointer(elm->obj, elm->obj->fini);
2652 	    }
2653 	    wlock_acquire(rtld_bind_lock, lockstate);
2654 	    unhold_object(elm->obj);
2655 	    /* No need to free anything if process is going down. */
2656 	    if (root != NULL)
2657 	    	free(elm);
2658 	    /*
2659 	     * We must restart the list traversal after every fini call
2660 	     * because a dlclose() call from the fini function or from
2661 	     * another thread might have modified the reference counts.
2662 	     */
2663 	    break;
2664 	}
2665     } while (elm != NULL);
2666     errmsg_restore(saved_msg);
2667 }
2668 
2669 /*
2670  * Call the initialization functions for each of the objects in
2671  * "list".  All of the objects are expected to have non-NULL init
2672  * functions.
2673  */
2674 static void
2675 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2676 {
2677     Objlist_Entry *elm;
2678     Obj_Entry *obj;
2679     char *saved_msg;
2680     Elf_Addr *init_addr;
2681     void (*reg)(void (*)(void));
2682     int index;
2683 
2684     /*
2685      * Clean init_scanned flag so that objects can be rechecked and
2686      * possibly initialized earlier if any of vectors called below
2687      * cause the change by using dlopen.
2688      */
2689     TAILQ_FOREACH(obj, &obj_list, next) {
2690 	if (obj->marker)
2691 	    continue;
2692 	obj->init_scanned = false;
2693     }
2694 
2695     /*
2696      * Preserve the current error message since an init function might
2697      * call into the dynamic linker and overwrite it.
2698      */
2699     saved_msg = errmsg_save();
2700     STAILQ_FOREACH(elm, list, link) {
2701 	if (elm->obj->init_done) /* Initialized early. */
2702 	    continue;
2703 	/*
2704 	 * Race: other thread might try to use this object before current
2705 	 * one completes the initialization. Not much can be done here
2706 	 * without better locking.
2707 	 */
2708 	elm->obj->init_done = true;
2709 	hold_object(elm->obj);
2710 	reg = NULL;
2711 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2712 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2713 		    "__libc_atexit", lockstate);
2714 	}
2715 	lock_release(rtld_bind_lock, lockstate);
2716 	if (reg != NULL) {
2717 		reg(rtld_exit);
2718 		rtld_exit_ptr = rtld_nop_exit;
2719 	}
2720 
2721         /*
2722          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2723          * When this happens, DT_INIT is processed first.
2724          */
2725 	if (elm->obj->init != (Elf_Addr)NULL) {
2726 	    dbg("calling init function for %s at %p", elm->obj->path,
2727 	        (void *)elm->obj->init);
2728 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2729 	        0, 0, elm->obj->path);
2730 	    call_initfini_pointer(elm->obj, elm->obj->init);
2731 	}
2732 	init_addr = (Elf_Addr *)elm->obj->init_array;
2733 	if (init_addr != NULL) {
2734 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2735 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2736 		    dbg("calling init function for %s at %p", elm->obj->path,
2737 			(void *)init_addr[index]);
2738 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2739 			(void *)init_addr[index], 0, 0, elm->obj->path);
2740 		    call_init_pointer(elm->obj, init_addr[index]);
2741 		}
2742 	    }
2743 	}
2744 	wlock_acquire(rtld_bind_lock, lockstate);
2745 	unhold_object(elm->obj);
2746     }
2747     errmsg_restore(saved_msg);
2748 }
2749 
2750 static void
2751 objlist_clear(Objlist *list)
2752 {
2753     Objlist_Entry *elm;
2754 
2755     while (!STAILQ_EMPTY(list)) {
2756 	elm = STAILQ_FIRST(list);
2757 	STAILQ_REMOVE_HEAD(list, link);
2758 	free(elm);
2759     }
2760 }
2761 
2762 static Objlist_Entry *
2763 objlist_find(Objlist *list, const Obj_Entry *obj)
2764 {
2765     Objlist_Entry *elm;
2766 
2767     STAILQ_FOREACH(elm, list, link)
2768 	if (elm->obj == obj)
2769 	    return elm;
2770     return NULL;
2771 }
2772 
2773 static void
2774 objlist_init(Objlist *list)
2775 {
2776     STAILQ_INIT(list);
2777 }
2778 
2779 static void
2780 objlist_push_head(Objlist *list, Obj_Entry *obj)
2781 {
2782     Objlist_Entry *elm;
2783 
2784     elm = NEW(Objlist_Entry);
2785     elm->obj = obj;
2786     STAILQ_INSERT_HEAD(list, elm, link);
2787 }
2788 
2789 static void
2790 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2791 {
2792     Objlist_Entry *elm;
2793 
2794     elm = NEW(Objlist_Entry);
2795     elm->obj = obj;
2796     STAILQ_INSERT_TAIL(list, elm, link);
2797 }
2798 
2799 static void
2800 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2801 {
2802 	Objlist_Entry *elm, *listelm;
2803 
2804 	STAILQ_FOREACH(listelm, list, link) {
2805 		if (listelm->obj == listobj)
2806 			break;
2807 	}
2808 	elm = NEW(Objlist_Entry);
2809 	elm->obj = obj;
2810 	if (listelm != NULL)
2811 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2812 	else
2813 		STAILQ_INSERT_TAIL(list, elm, link);
2814 }
2815 
2816 static void
2817 objlist_remove(Objlist *list, Obj_Entry *obj)
2818 {
2819     Objlist_Entry *elm;
2820 
2821     if ((elm = objlist_find(list, obj)) != NULL) {
2822 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2823 	free(elm);
2824     }
2825 }
2826 
2827 /*
2828  * Relocate dag rooted in the specified object.
2829  * Returns 0 on success, or -1 on failure.
2830  */
2831 
2832 static int
2833 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2834     int flags, RtldLockState *lockstate)
2835 {
2836 	Objlist_Entry *elm;
2837 	int error;
2838 
2839 	error = 0;
2840 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2841 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2842 		    lockstate);
2843 		if (error == -1)
2844 			break;
2845 	}
2846 	return (error);
2847 }
2848 
2849 /*
2850  * Prepare for, or clean after, relocating an object marked with
2851  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2852  * segments are remapped read-write.  After relocations are done, the
2853  * segment's permissions are returned back to the modes specified in
2854  * the phdrs.  If any relocation happened, or always for wired
2855  * program, COW is triggered.
2856  */
2857 static int
2858 reloc_textrel_prot(Obj_Entry *obj, bool before)
2859 {
2860 	const Elf_Phdr *ph;
2861 	void *base;
2862 	size_t l, sz;
2863 	int prot;
2864 
2865 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2866 	    l--, ph++) {
2867 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2868 			continue;
2869 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2870 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2871 		    trunc_page(ph->p_vaddr);
2872 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2873 		if (mprotect(base, sz, prot) == -1) {
2874 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2875 			    obj->path, before ? "en" : "dis",
2876 			    rtld_strerror(errno));
2877 			return (-1);
2878 		}
2879 	}
2880 	return (0);
2881 }
2882 
2883 /*
2884  * Relocate single object.
2885  * Returns 0 on success, or -1 on failure.
2886  */
2887 static int
2888 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2889     int flags, RtldLockState *lockstate)
2890 {
2891 
2892 	if (obj->relocated)
2893 		return (0);
2894 	obj->relocated = true;
2895 	if (obj != rtldobj)
2896 		dbg("relocating \"%s\"", obj->path);
2897 
2898 	if (obj->symtab == NULL || obj->strtab == NULL ||
2899 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2900 		_rtld_error("%s: Shared object has no run-time symbol table",
2901 			    obj->path);
2902 		return (-1);
2903 	}
2904 
2905 	/* There are relocations to the write-protected text segment. */
2906 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2907 		return (-1);
2908 
2909 	/* Process the non-PLT non-IFUNC relocations. */
2910 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2911 		return (-1);
2912 
2913 	/* Re-protected the text segment. */
2914 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2915 		return (-1);
2916 
2917 	/* Set the special PLT or GOT entries. */
2918 	init_pltgot(obj);
2919 
2920 	/* Process the PLT relocations. */
2921 	if (reloc_plt(obj, flags, lockstate) == -1)
2922 		return (-1);
2923 	/* Relocate the jump slots if we are doing immediate binding. */
2924 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2925 	    lockstate) == -1)
2926 		return (-1);
2927 
2928 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2929 		return (-1);
2930 
2931 	/*
2932 	 * Set up the magic number and version in the Obj_Entry.  These
2933 	 * were checked in the crt1.o from the original ElfKit, so we
2934 	 * set them for backward compatibility.
2935 	 */
2936 	obj->magic = RTLD_MAGIC;
2937 	obj->version = RTLD_VERSION;
2938 
2939 	return (0);
2940 }
2941 
2942 /*
2943  * Relocate newly-loaded shared objects.  The argument is a pointer to
2944  * the Obj_Entry for the first such object.  All objects from the first
2945  * to the end of the list of objects are relocated.  Returns 0 on success,
2946  * or -1 on failure.
2947  */
2948 static int
2949 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2950     int flags, RtldLockState *lockstate)
2951 {
2952 	Obj_Entry *obj;
2953 	int error;
2954 
2955 	for (error = 0, obj = first;  obj != NULL;
2956 	    obj = TAILQ_NEXT(obj, next)) {
2957 		if (obj->marker)
2958 			continue;
2959 		error = relocate_object(obj, bind_now, rtldobj, flags,
2960 		    lockstate);
2961 		if (error == -1)
2962 			break;
2963 	}
2964 	return (error);
2965 }
2966 
2967 /*
2968  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2969  * referencing STT_GNU_IFUNC symbols is postponed till the other
2970  * relocations are done.  The indirect functions specified as
2971  * ifunc are allowed to call other symbols, so we need to have
2972  * objects relocated before asking for resolution from indirects.
2973  *
2974  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2975  * instead of the usual lazy handling of PLT slots.  It is
2976  * consistent with how GNU does it.
2977  */
2978 static int
2979 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2980     RtldLockState *lockstate)
2981 {
2982 
2983 	if (obj->ifuncs_resolved)
2984 		return (0);
2985 	obj->ifuncs_resolved = true;
2986 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
2987 		return (0);
2988 	if (obj_disable_relro(obj) == -1 ||
2989 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
2990 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2991 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
2992 	    obj_enforce_relro(obj) == -1)
2993 		return (-1);
2994 	return (0);
2995 }
2996 
2997 static int
2998 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2999     RtldLockState *lockstate)
3000 {
3001 	Objlist_Entry *elm;
3002 	Obj_Entry *obj;
3003 
3004 	STAILQ_FOREACH(elm, list, link) {
3005 		obj = elm->obj;
3006 		if (obj->marker)
3007 			continue;
3008 		if (resolve_object_ifunc(obj, bind_now, flags,
3009 		    lockstate) == -1)
3010 			return (-1);
3011 	}
3012 	return (0);
3013 }
3014 
3015 /*
3016  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3017  * before the process exits.
3018  */
3019 static void
3020 rtld_exit(void)
3021 {
3022     RtldLockState lockstate;
3023 
3024     wlock_acquire(rtld_bind_lock, &lockstate);
3025     dbg("rtld_exit()");
3026     objlist_call_fini(&list_fini, NULL, &lockstate);
3027     /* No need to remove the items from the list, since we are exiting. */
3028     if (!libmap_disable)
3029         lm_fini();
3030     lock_release(rtld_bind_lock, &lockstate);
3031 }
3032 
3033 static void
3034 rtld_nop_exit(void)
3035 {
3036 }
3037 
3038 /*
3039  * Iterate over a search path, translate each element, and invoke the
3040  * callback on the result.
3041  */
3042 static void *
3043 path_enumerate(const char *path, path_enum_proc callback,
3044     const char *refobj_path, void *arg)
3045 {
3046     const char *trans;
3047     if (path == NULL)
3048 	return (NULL);
3049 
3050     path += strspn(path, ":;");
3051     while (*path != '\0') {
3052 	size_t len;
3053 	char  *res;
3054 
3055 	len = strcspn(path, ":;");
3056 	trans = lm_findn(refobj_path, path, len);
3057 	if (trans)
3058 	    res = callback(trans, strlen(trans), arg);
3059 	else
3060 	    res = callback(path, len, arg);
3061 
3062 	if (res != NULL)
3063 	    return (res);
3064 
3065 	path += len;
3066 	path += strspn(path, ":;");
3067     }
3068 
3069     return (NULL);
3070 }
3071 
3072 struct try_library_args {
3073     const char	*name;
3074     size_t	 namelen;
3075     char	*buffer;
3076     size_t	 buflen;
3077     int		 fd;
3078 };
3079 
3080 static void *
3081 try_library_path(const char *dir, size_t dirlen, void *param)
3082 {
3083     struct try_library_args *arg;
3084     int fd;
3085 
3086     arg = param;
3087     if (*dir == '/' || trust) {
3088 	char *pathname;
3089 
3090 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3091 		return (NULL);
3092 
3093 	pathname = arg->buffer;
3094 	strncpy(pathname, dir, dirlen);
3095 	pathname[dirlen] = '/';
3096 	strcpy(pathname + dirlen + 1, arg->name);
3097 
3098 	dbg("  Trying \"%s\"", pathname);
3099 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3100 	if (fd >= 0) {
3101 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3102 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3103 	    strcpy(pathname, arg->buffer);
3104 	    arg->fd = fd;
3105 	    return (pathname);
3106 	} else {
3107 	    dbg("  Failed to open \"%s\": %s",
3108 		pathname, rtld_strerror(errno));
3109 	}
3110     }
3111     return (NULL);
3112 }
3113 
3114 static char *
3115 search_library_path(const char *name, const char *path,
3116     const char *refobj_path, int *fdp)
3117 {
3118     char *p;
3119     struct try_library_args arg;
3120 
3121     if (path == NULL)
3122 	return NULL;
3123 
3124     arg.name = name;
3125     arg.namelen = strlen(name);
3126     arg.buffer = xmalloc(PATH_MAX);
3127     arg.buflen = PATH_MAX;
3128     arg.fd = -1;
3129 
3130     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3131     *fdp = arg.fd;
3132 
3133     free(arg.buffer);
3134 
3135     return (p);
3136 }
3137 
3138 
3139 /*
3140  * Finds the library with the given name using the directory descriptors
3141  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3142  *
3143  * Returns a freshly-opened close-on-exec file descriptor for the library,
3144  * or -1 if the library cannot be found.
3145  */
3146 static char *
3147 search_library_pathfds(const char *name, const char *path, int *fdp)
3148 {
3149 	char *envcopy, *fdstr, *found, *last_token;
3150 	size_t len;
3151 	int dirfd, fd;
3152 
3153 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3154 
3155 	/* Don't load from user-specified libdirs into setuid binaries. */
3156 	if (!trust)
3157 		return (NULL);
3158 
3159 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3160 	if (path == NULL)
3161 		return (NULL);
3162 
3163 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3164 	if (name[0] == '/') {
3165 		dbg("Absolute path (%s) passed to %s", name, __func__);
3166 		return (NULL);
3167 	}
3168 
3169 	/*
3170 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3171 	 * copy of the path, as strtok_r rewrites separator tokens
3172 	 * with '\0'.
3173 	 */
3174 	found = NULL;
3175 	envcopy = xstrdup(path);
3176 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3177 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3178 		dirfd = parse_integer(fdstr);
3179 		if (dirfd < 0) {
3180 			_rtld_error("failed to parse directory FD: '%s'",
3181 				fdstr);
3182 			break;
3183 		}
3184 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3185 		if (fd >= 0) {
3186 			*fdp = fd;
3187 			len = strlen(fdstr) + strlen(name) + 3;
3188 			found = xmalloc(len);
3189 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3190 				_rtld_error("error generating '%d/%s'",
3191 				    dirfd, name);
3192 				rtld_die();
3193 			}
3194 			dbg("open('%s') => %d", found, fd);
3195 			break;
3196 		}
3197 	}
3198 	free(envcopy);
3199 
3200 	return (found);
3201 }
3202 
3203 
3204 int
3205 dlclose(void *handle)
3206 {
3207 	RtldLockState lockstate;
3208 	int error;
3209 
3210 	wlock_acquire(rtld_bind_lock, &lockstate);
3211 	error = dlclose_locked(handle, &lockstate);
3212 	lock_release(rtld_bind_lock, &lockstate);
3213 	return (error);
3214 }
3215 
3216 static int
3217 dlclose_locked(void *handle, RtldLockState *lockstate)
3218 {
3219     Obj_Entry *root;
3220 
3221     root = dlcheck(handle);
3222     if (root == NULL)
3223 	return -1;
3224     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3225 	root->path);
3226 
3227     /* Unreference the object and its dependencies. */
3228     root->dl_refcount--;
3229 
3230     if (root->refcount == 1) {
3231 	/*
3232 	 * The object will be no longer referenced, so we must unload it.
3233 	 * First, call the fini functions.
3234 	 */
3235 	objlist_call_fini(&list_fini, root, lockstate);
3236 
3237 	unref_dag(root);
3238 
3239 	/* Finish cleaning up the newly-unreferenced objects. */
3240 	GDB_STATE(RT_DELETE,&root->linkmap);
3241 	unload_object(root, lockstate);
3242 	GDB_STATE(RT_CONSISTENT,NULL);
3243     } else
3244 	unref_dag(root);
3245 
3246     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3247     return 0;
3248 }
3249 
3250 char *
3251 dlerror(void)
3252 {
3253     char *msg = error_message;
3254     error_message = NULL;
3255     return msg;
3256 }
3257 
3258 /*
3259  * This function is deprecated and has no effect.
3260  */
3261 void
3262 dllockinit(void *context,
3263     void *(*_lock_create)(void *context) __unused,
3264     void (*_rlock_acquire)(void *lock) __unused,
3265     void (*_wlock_acquire)(void *lock)  __unused,
3266     void (*_lock_release)(void *lock) __unused,
3267     void (*_lock_destroy)(void *lock) __unused,
3268     void (*context_destroy)(void *context))
3269 {
3270     static void *cur_context;
3271     static void (*cur_context_destroy)(void *);
3272 
3273     /* Just destroy the context from the previous call, if necessary. */
3274     if (cur_context_destroy != NULL)
3275 	cur_context_destroy(cur_context);
3276     cur_context = context;
3277     cur_context_destroy = context_destroy;
3278 }
3279 
3280 void *
3281 dlopen(const char *name, int mode)
3282 {
3283 
3284 	return (rtld_dlopen(name, -1, mode));
3285 }
3286 
3287 void *
3288 fdlopen(int fd, int mode)
3289 {
3290 
3291 	return (rtld_dlopen(NULL, fd, mode));
3292 }
3293 
3294 static void *
3295 rtld_dlopen(const char *name, int fd, int mode)
3296 {
3297     RtldLockState lockstate;
3298     int lo_flags;
3299 
3300     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3301     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3302     if (ld_tracing != NULL) {
3303 	rlock_acquire(rtld_bind_lock, &lockstate);
3304 	if (sigsetjmp(lockstate.env, 0) != 0)
3305 	    lock_upgrade(rtld_bind_lock, &lockstate);
3306 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3307 	lock_release(rtld_bind_lock, &lockstate);
3308     }
3309     lo_flags = RTLD_LO_DLOPEN;
3310     if (mode & RTLD_NODELETE)
3311 	    lo_flags |= RTLD_LO_NODELETE;
3312     if (mode & RTLD_NOLOAD)
3313 	    lo_flags |= RTLD_LO_NOLOAD;
3314     if (ld_tracing != NULL)
3315 	    lo_flags |= RTLD_LO_TRACE;
3316 
3317     return (dlopen_object(name, fd, obj_main, lo_flags,
3318       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3319 }
3320 
3321 static void
3322 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3323 {
3324 
3325 	obj->dl_refcount--;
3326 	unref_dag(obj);
3327 	if (obj->refcount == 0)
3328 		unload_object(obj, lockstate);
3329 }
3330 
3331 static Obj_Entry *
3332 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3333     int mode, RtldLockState *lockstate)
3334 {
3335     Obj_Entry *old_obj_tail;
3336     Obj_Entry *obj;
3337     Objlist initlist;
3338     RtldLockState mlockstate;
3339     int result;
3340 
3341     objlist_init(&initlist);
3342 
3343     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3344 	wlock_acquire(rtld_bind_lock, &mlockstate);
3345 	lockstate = &mlockstate;
3346     }
3347     GDB_STATE(RT_ADD,NULL);
3348 
3349     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3350     obj = NULL;
3351     if (name == NULL && fd == -1) {
3352 	obj = obj_main;
3353 	obj->refcount++;
3354     } else {
3355 	obj = load_object(name, fd, refobj, lo_flags);
3356     }
3357 
3358     if (obj) {
3359 	obj->dl_refcount++;
3360 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3361 	    objlist_push_tail(&list_global, obj);
3362 	if (globallist_next(old_obj_tail) != NULL) {
3363 	    /* We loaded something new. */
3364 	    assert(globallist_next(old_obj_tail) == obj);
3365 	    result = 0;
3366 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3367 	      !allocate_tls_offset(obj)) {
3368 		_rtld_error("%s: No space available "
3369 		  "for static Thread Local Storage", obj->path);
3370 		result = -1;
3371 	    }
3372 	    if (result != -1)
3373 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3374 		    RTLD_LO_EARLY));
3375 	    init_dag(obj);
3376 	    ref_dag(obj);
3377 	    if (result != -1)
3378 		result = rtld_verify_versions(&obj->dagmembers);
3379 	    if (result != -1 && ld_tracing)
3380 		goto trace;
3381 	    if (result == -1 || relocate_object_dag(obj,
3382 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3383 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3384 	      lockstate) == -1) {
3385 		dlopen_cleanup(obj, lockstate);
3386 		obj = NULL;
3387 	    } else if (lo_flags & RTLD_LO_EARLY) {
3388 		/*
3389 		 * Do not call the init functions for early loaded
3390 		 * filtees.  The image is still not initialized enough
3391 		 * for them to work.
3392 		 *
3393 		 * Our object is found by the global object list and
3394 		 * will be ordered among all init calls done right
3395 		 * before transferring control to main.
3396 		 */
3397 	    } else {
3398 		/* Make list of init functions to call. */
3399 		initlist_add_objects(obj, obj, &initlist);
3400 	    }
3401 	    /*
3402 	     * Process all no_delete or global objects here, given
3403 	     * them own DAGs to prevent their dependencies from being
3404 	     * unloaded.  This has to be done after we have loaded all
3405 	     * of the dependencies, so that we do not miss any.
3406 	     */
3407 	    if (obj != NULL)
3408 		process_z(obj);
3409 	} else {
3410 	    /*
3411 	     * Bump the reference counts for objects on this DAG.  If
3412 	     * this is the first dlopen() call for the object that was
3413 	     * already loaded as a dependency, initialize the dag
3414 	     * starting at it.
3415 	     */
3416 	    init_dag(obj);
3417 	    ref_dag(obj);
3418 
3419 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3420 		goto trace;
3421 	}
3422 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3423 	  obj->z_nodelete) && !obj->ref_nodel) {
3424 	    dbg("obj %s nodelete", obj->path);
3425 	    ref_dag(obj);
3426 	    obj->z_nodelete = obj->ref_nodel = true;
3427 	}
3428     }
3429 
3430     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3431 	name);
3432     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3433 
3434     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3435 	map_stacks_exec(lockstate);
3436 	if (obj != NULL)
3437 	    distribute_static_tls(&initlist, lockstate);
3438     }
3439 
3440     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3441       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3442       lockstate) == -1) {
3443 	objlist_clear(&initlist);
3444 	dlopen_cleanup(obj, lockstate);
3445 	if (lockstate == &mlockstate)
3446 	    lock_release(rtld_bind_lock, lockstate);
3447 	return (NULL);
3448     }
3449 
3450     if (!(lo_flags & RTLD_LO_EARLY)) {
3451 	/* Call the init functions. */
3452 	objlist_call_init(&initlist, lockstate);
3453     }
3454     objlist_clear(&initlist);
3455     if (lockstate == &mlockstate)
3456 	lock_release(rtld_bind_lock, lockstate);
3457     return obj;
3458 trace:
3459     trace_loaded_objects(obj);
3460     if (lockstate == &mlockstate)
3461 	lock_release(rtld_bind_lock, lockstate);
3462     exit(0);
3463 }
3464 
3465 static void *
3466 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3467     int flags)
3468 {
3469     DoneList donelist;
3470     const Obj_Entry *obj, *defobj;
3471     const Elf_Sym *def;
3472     SymLook req;
3473     RtldLockState lockstate;
3474     tls_index ti;
3475     void *sym;
3476     int res;
3477 
3478     def = NULL;
3479     defobj = NULL;
3480     symlook_init(&req, name);
3481     req.ventry = ve;
3482     req.flags = flags | SYMLOOK_IN_PLT;
3483     req.lockstate = &lockstate;
3484 
3485     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3486     rlock_acquire(rtld_bind_lock, &lockstate);
3487     if (sigsetjmp(lockstate.env, 0) != 0)
3488 	    lock_upgrade(rtld_bind_lock, &lockstate);
3489     if (handle == NULL || handle == RTLD_NEXT ||
3490 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3491 
3492 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3493 	    _rtld_error("Cannot determine caller's shared object");
3494 	    lock_release(rtld_bind_lock, &lockstate);
3495 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3496 	    return NULL;
3497 	}
3498 	if (handle == NULL) {	/* Just the caller's shared object. */
3499 	    res = symlook_obj(&req, obj);
3500 	    if (res == 0) {
3501 		def = req.sym_out;
3502 		defobj = req.defobj_out;
3503 	    }
3504 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3505 		   handle == RTLD_SELF) { /* ... caller included */
3506 	    if (handle == RTLD_NEXT)
3507 		obj = globallist_next(obj);
3508 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3509 		if (obj->marker)
3510 		    continue;
3511 		res = symlook_obj(&req, obj);
3512 		if (res == 0) {
3513 		    if (def == NULL ||
3514 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3515 			def = req.sym_out;
3516 			defobj = req.defobj_out;
3517 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3518 			    break;
3519 		    }
3520 		}
3521 	    }
3522 	    /*
3523 	     * Search the dynamic linker itself, and possibly resolve the
3524 	     * symbol from there.  This is how the application links to
3525 	     * dynamic linker services such as dlopen.
3526 	     */
3527 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3528 		res = symlook_obj(&req, &obj_rtld);
3529 		if (res == 0) {
3530 		    def = req.sym_out;
3531 		    defobj = req.defobj_out;
3532 		}
3533 	    }
3534 	} else {
3535 	    assert(handle == RTLD_DEFAULT);
3536 	    res = symlook_default(&req, obj);
3537 	    if (res == 0) {
3538 		defobj = req.defobj_out;
3539 		def = req.sym_out;
3540 	    }
3541 	}
3542     } else {
3543 	if ((obj = dlcheck(handle)) == NULL) {
3544 	    lock_release(rtld_bind_lock, &lockstate);
3545 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3546 	    return NULL;
3547 	}
3548 
3549 	donelist_init(&donelist);
3550 	if (obj->mainprog) {
3551             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3552 	    res = symlook_global(&req, &donelist);
3553 	    if (res == 0) {
3554 		def = req.sym_out;
3555 		defobj = req.defobj_out;
3556 	    }
3557 	    /*
3558 	     * Search the dynamic linker itself, and possibly resolve the
3559 	     * symbol from there.  This is how the application links to
3560 	     * dynamic linker services such as dlopen.
3561 	     */
3562 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3563 		res = symlook_obj(&req, &obj_rtld);
3564 		if (res == 0) {
3565 		    def = req.sym_out;
3566 		    defobj = req.defobj_out;
3567 		}
3568 	    }
3569 	}
3570 	else {
3571 	    /* Search the whole DAG rooted at the given object. */
3572 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3573 	    if (res == 0) {
3574 		def = req.sym_out;
3575 		defobj = req.defobj_out;
3576 	    }
3577 	}
3578     }
3579 
3580     if (def != NULL) {
3581 	lock_release(rtld_bind_lock, &lockstate);
3582 
3583 	/*
3584 	 * The value required by the caller is derived from the value
3585 	 * of the symbol. this is simply the relocated value of the
3586 	 * symbol.
3587 	 */
3588 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3589 	    sym = make_function_pointer(def, defobj);
3590 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3591 	    sym = rtld_resolve_ifunc(defobj, def);
3592 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3593 	    ti.ti_module = defobj->tlsindex;
3594 	    ti.ti_offset = def->st_value;
3595 	    sym = __tls_get_addr(&ti);
3596 	} else
3597 	    sym = defobj->relocbase + def->st_value;
3598 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3599 	return (sym);
3600     }
3601 
3602     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3603       ve != NULL ? ve->name : "");
3604     lock_release(rtld_bind_lock, &lockstate);
3605     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3606     return NULL;
3607 }
3608 
3609 void *
3610 dlsym(void *handle, const char *name)
3611 {
3612 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3613 	    SYMLOOK_DLSYM);
3614 }
3615 
3616 dlfunc_t
3617 dlfunc(void *handle, const char *name)
3618 {
3619 	union {
3620 		void *d;
3621 		dlfunc_t f;
3622 	} rv;
3623 
3624 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3625 	    SYMLOOK_DLSYM);
3626 	return (rv.f);
3627 }
3628 
3629 void *
3630 dlvsym(void *handle, const char *name, const char *version)
3631 {
3632 	Ver_Entry ventry;
3633 
3634 	ventry.name = version;
3635 	ventry.file = NULL;
3636 	ventry.hash = elf_hash(version);
3637 	ventry.flags= 0;
3638 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3639 	    SYMLOOK_DLSYM);
3640 }
3641 
3642 int
3643 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3644 {
3645     const Obj_Entry *obj;
3646     RtldLockState lockstate;
3647 
3648     rlock_acquire(rtld_bind_lock, &lockstate);
3649     obj = obj_from_addr(addr);
3650     if (obj == NULL) {
3651         _rtld_error("No shared object contains address");
3652 	lock_release(rtld_bind_lock, &lockstate);
3653         return (0);
3654     }
3655     rtld_fill_dl_phdr_info(obj, phdr_info);
3656     lock_release(rtld_bind_lock, &lockstate);
3657     return (1);
3658 }
3659 
3660 int
3661 dladdr(const void *addr, Dl_info *info)
3662 {
3663     const Obj_Entry *obj;
3664     const Elf_Sym *def;
3665     void *symbol_addr;
3666     unsigned long symoffset;
3667     RtldLockState lockstate;
3668 
3669     rlock_acquire(rtld_bind_lock, &lockstate);
3670     obj = obj_from_addr(addr);
3671     if (obj == NULL) {
3672         _rtld_error("No shared object contains address");
3673 	lock_release(rtld_bind_lock, &lockstate);
3674         return 0;
3675     }
3676     info->dli_fname = obj->path;
3677     info->dli_fbase = obj->mapbase;
3678     info->dli_saddr = (void *)0;
3679     info->dli_sname = NULL;
3680 
3681     /*
3682      * Walk the symbol list looking for the symbol whose address is
3683      * closest to the address sent in.
3684      */
3685     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3686         def = obj->symtab + symoffset;
3687 
3688         /*
3689          * For skip the symbol if st_shndx is either SHN_UNDEF or
3690          * SHN_COMMON.
3691          */
3692         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3693             continue;
3694 
3695         /*
3696          * If the symbol is greater than the specified address, or if it
3697          * is further away from addr than the current nearest symbol,
3698          * then reject it.
3699          */
3700         symbol_addr = obj->relocbase + def->st_value;
3701         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3702             continue;
3703 
3704         /* Update our idea of the nearest symbol. */
3705         info->dli_sname = obj->strtab + def->st_name;
3706         info->dli_saddr = symbol_addr;
3707 
3708         /* Exact match? */
3709         if (info->dli_saddr == addr)
3710             break;
3711     }
3712     lock_release(rtld_bind_lock, &lockstate);
3713     return 1;
3714 }
3715 
3716 int
3717 dlinfo(void *handle, int request, void *p)
3718 {
3719     const Obj_Entry *obj;
3720     RtldLockState lockstate;
3721     int error;
3722 
3723     rlock_acquire(rtld_bind_lock, &lockstate);
3724 
3725     if (handle == NULL || handle == RTLD_SELF) {
3726 	void *retaddr;
3727 
3728 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3729 	if ((obj = obj_from_addr(retaddr)) == NULL)
3730 	    _rtld_error("Cannot determine caller's shared object");
3731     } else
3732 	obj = dlcheck(handle);
3733 
3734     if (obj == NULL) {
3735 	lock_release(rtld_bind_lock, &lockstate);
3736 	return (-1);
3737     }
3738 
3739     error = 0;
3740     switch (request) {
3741     case RTLD_DI_LINKMAP:
3742 	*((struct link_map const **)p) = &obj->linkmap;
3743 	break;
3744     case RTLD_DI_ORIGIN:
3745 	error = rtld_dirname(obj->path, p);
3746 	break;
3747 
3748     case RTLD_DI_SERINFOSIZE:
3749     case RTLD_DI_SERINFO:
3750 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3751 	break;
3752 
3753     default:
3754 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3755 	error = -1;
3756     }
3757 
3758     lock_release(rtld_bind_lock, &lockstate);
3759 
3760     return (error);
3761 }
3762 
3763 static void
3764 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3765 {
3766 
3767 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3768 	phdr_info->dlpi_name = obj->path;
3769 	phdr_info->dlpi_phdr = obj->phdr;
3770 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3771 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3772 	phdr_info->dlpi_tls_data = obj->tlsinit;
3773 	phdr_info->dlpi_adds = obj_loads;
3774 	phdr_info->dlpi_subs = obj_loads - obj_count;
3775 }
3776 
3777 int
3778 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3779 {
3780 	struct dl_phdr_info phdr_info;
3781 	Obj_Entry *obj, marker;
3782 	RtldLockState bind_lockstate, phdr_lockstate;
3783 	int error;
3784 
3785 	init_marker(&marker);
3786 	error = 0;
3787 
3788 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3789 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3790 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3791 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3792 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3793 		hold_object(obj);
3794 		lock_release(rtld_bind_lock, &bind_lockstate);
3795 
3796 		error = callback(&phdr_info, sizeof phdr_info, param);
3797 
3798 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3799 		unhold_object(obj);
3800 		obj = globallist_next(&marker);
3801 		TAILQ_REMOVE(&obj_list, &marker, next);
3802 		if (error != 0) {
3803 			lock_release(rtld_bind_lock, &bind_lockstate);
3804 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3805 			return (error);
3806 		}
3807 	}
3808 
3809 	if (error == 0) {
3810 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3811 		lock_release(rtld_bind_lock, &bind_lockstate);
3812 		error = callback(&phdr_info, sizeof(phdr_info), param);
3813 	}
3814 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3815 	return (error);
3816 }
3817 
3818 static void *
3819 fill_search_info(const char *dir, size_t dirlen, void *param)
3820 {
3821     struct fill_search_info_args *arg;
3822 
3823     arg = param;
3824 
3825     if (arg->request == RTLD_DI_SERINFOSIZE) {
3826 	arg->serinfo->dls_cnt ++;
3827 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3828     } else {
3829 	struct dl_serpath *s_entry;
3830 
3831 	s_entry = arg->serpath;
3832 	s_entry->dls_name  = arg->strspace;
3833 	s_entry->dls_flags = arg->flags;
3834 
3835 	strncpy(arg->strspace, dir, dirlen);
3836 	arg->strspace[dirlen] = '\0';
3837 
3838 	arg->strspace += dirlen + 1;
3839 	arg->serpath++;
3840     }
3841 
3842     return (NULL);
3843 }
3844 
3845 static int
3846 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3847 {
3848     struct dl_serinfo _info;
3849     struct fill_search_info_args args;
3850 
3851     args.request = RTLD_DI_SERINFOSIZE;
3852     args.serinfo = &_info;
3853 
3854     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3855     _info.dls_cnt  = 0;
3856 
3857     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3858     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3859     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3860     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3861     if (!obj->z_nodeflib)
3862       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3863 
3864 
3865     if (request == RTLD_DI_SERINFOSIZE) {
3866 	info->dls_size = _info.dls_size;
3867 	info->dls_cnt = _info.dls_cnt;
3868 	return (0);
3869     }
3870 
3871     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3872 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3873 	return (-1);
3874     }
3875 
3876     args.request  = RTLD_DI_SERINFO;
3877     args.serinfo  = info;
3878     args.serpath  = &info->dls_serpath[0];
3879     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3880 
3881     args.flags = LA_SER_RUNPATH;
3882     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3883 	return (-1);
3884 
3885     args.flags = LA_SER_LIBPATH;
3886     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3887 	return (-1);
3888 
3889     args.flags = LA_SER_RUNPATH;
3890     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3891 	return (-1);
3892 
3893     args.flags = LA_SER_CONFIG;
3894     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3895       != NULL)
3896 	return (-1);
3897 
3898     args.flags = LA_SER_DEFAULT;
3899     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3900       fill_search_info, NULL, &args) != NULL)
3901 	return (-1);
3902     return (0);
3903 }
3904 
3905 static int
3906 rtld_dirname(const char *path, char *bname)
3907 {
3908     const char *endp;
3909 
3910     /* Empty or NULL string gets treated as "." */
3911     if (path == NULL || *path == '\0') {
3912 	bname[0] = '.';
3913 	bname[1] = '\0';
3914 	return (0);
3915     }
3916 
3917     /* Strip trailing slashes */
3918     endp = path + strlen(path) - 1;
3919     while (endp > path && *endp == '/')
3920 	endp--;
3921 
3922     /* Find the start of the dir */
3923     while (endp > path && *endp != '/')
3924 	endp--;
3925 
3926     /* Either the dir is "/" or there are no slashes */
3927     if (endp == path) {
3928 	bname[0] = *endp == '/' ? '/' : '.';
3929 	bname[1] = '\0';
3930 	return (0);
3931     } else {
3932 	do {
3933 	    endp--;
3934 	} while (endp > path && *endp == '/');
3935     }
3936 
3937     if (endp - path + 2 > PATH_MAX)
3938     {
3939 	_rtld_error("Filename is too long: %s", path);
3940 	return(-1);
3941     }
3942 
3943     strncpy(bname, path, endp - path + 1);
3944     bname[endp - path + 1] = '\0';
3945     return (0);
3946 }
3947 
3948 static int
3949 rtld_dirname_abs(const char *path, char *base)
3950 {
3951 	char *last;
3952 
3953 	if (realpath(path, base) == NULL)
3954 		return (-1);
3955 	dbg("%s -> %s", path, base);
3956 	last = strrchr(base, '/');
3957 	if (last == NULL)
3958 		return (-1);
3959 	if (last != base)
3960 		*last = '\0';
3961 	return (0);
3962 }
3963 
3964 static void
3965 linkmap_add(Obj_Entry *obj)
3966 {
3967     struct link_map *l = &obj->linkmap;
3968     struct link_map *prev;
3969 
3970     obj->linkmap.l_name = obj->path;
3971     obj->linkmap.l_addr = obj->mapbase;
3972     obj->linkmap.l_ld = obj->dynamic;
3973 #ifdef __mips__
3974     /* GDB needs load offset on MIPS to use the symbols */
3975     obj->linkmap.l_offs = obj->relocbase;
3976 #endif
3977 
3978     if (r_debug.r_map == NULL) {
3979 	r_debug.r_map = l;
3980 	return;
3981     }
3982 
3983     /*
3984      * Scan to the end of the list, but not past the entry for the
3985      * dynamic linker, which we want to keep at the very end.
3986      */
3987     for (prev = r_debug.r_map;
3988       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3989       prev = prev->l_next)
3990 	;
3991 
3992     /* Link in the new entry. */
3993     l->l_prev = prev;
3994     l->l_next = prev->l_next;
3995     if (l->l_next != NULL)
3996 	l->l_next->l_prev = l;
3997     prev->l_next = l;
3998 }
3999 
4000 static void
4001 linkmap_delete(Obj_Entry *obj)
4002 {
4003     struct link_map *l = &obj->linkmap;
4004 
4005     if (l->l_prev == NULL) {
4006 	if ((r_debug.r_map = l->l_next) != NULL)
4007 	    l->l_next->l_prev = NULL;
4008 	return;
4009     }
4010 
4011     if ((l->l_prev->l_next = l->l_next) != NULL)
4012 	l->l_next->l_prev = l->l_prev;
4013 }
4014 
4015 /*
4016  * Function for the debugger to set a breakpoint on to gain control.
4017  *
4018  * The two parameters allow the debugger to easily find and determine
4019  * what the runtime loader is doing and to whom it is doing it.
4020  *
4021  * When the loadhook trap is hit (r_debug_state, set at program
4022  * initialization), the arguments can be found on the stack:
4023  *
4024  *  +8   struct link_map *m
4025  *  +4   struct r_debug  *rd
4026  *  +0   RetAddr
4027  */
4028 void
4029 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4030 {
4031     /*
4032      * The following is a hack to force the compiler to emit calls to
4033      * this function, even when optimizing.  If the function is empty,
4034      * the compiler is not obliged to emit any code for calls to it,
4035      * even when marked __noinline.  However, gdb depends on those
4036      * calls being made.
4037      */
4038     __compiler_membar();
4039 }
4040 
4041 /*
4042  * A function called after init routines have completed. This can be used to
4043  * break before a program's entry routine is called, and can be used when
4044  * main is not available in the symbol table.
4045  */
4046 void
4047 _r_debug_postinit(struct link_map *m __unused)
4048 {
4049 
4050 	/* See r_debug_state(). */
4051 	__compiler_membar();
4052 }
4053 
4054 static void
4055 release_object(Obj_Entry *obj)
4056 {
4057 
4058 	if (obj->holdcount > 0) {
4059 		obj->unholdfree = true;
4060 		return;
4061 	}
4062 	munmap(obj->mapbase, obj->mapsize);
4063 	linkmap_delete(obj);
4064 	obj_free(obj);
4065 }
4066 
4067 /*
4068  * Get address of the pointer variable in the main program.
4069  * Prefer non-weak symbol over the weak one.
4070  */
4071 static const void **
4072 get_program_var_addr(const char *name, RtldLockState *lockstate)
4073 {
4074     SymLook req;
4075     DoneList donelist;
4076 
4077     symlook_init(&req, name);
4078     req.lockstate = lockstate;
4079     donelist_init(&donelist);
4080     if (symlook_global(&req, &donelist) != 0)
4081 	return (NULL);
4082     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4083 	return ((const void **)make_function_pointer(req.sym_out,
4084 	  req.defobj_out));
4085     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4086 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4087     else
4088 	return ((const void **)(req.defobj_out->relocbase +
4089 	  req.sym_out->st_value));
4090 }
4091 
4092 /*
4093  * Set a pointer variable in the main program to the given value.  This
4094  * is used to set key variables such as "environ" before any of the
4095  * init functions are called.
4096  */
4097 static void
4098 set_program_var(const char *name, const void *value)
4099 {
4100     const void **addr;
4101 
4102     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4103 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4104 	*addr = value;
4105     }
4106 }
4107 
4108 /*
4109  * Search the global objects, including dependencies and main object,
4110  * for the given symbol.
4111  */
4112 static int
4113 symlook_global(SymLook *req, DoneList *donelist)
4114 {
4115     SymLook req1;
4116     const Objlist_Entry *elm;
4117     int res;
4118 
4119     symlook_init_from_req(&req1, req);
4120 
4121     /* Search all objects loaded at program start up. */
4122     if (req->defobj_out == NULL ||
4123       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4124 	res = symlook_list(&req1, &list_main, donelist);
4125 	if (res == 0 && (req->defobj_out == NULL ||
4126 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4127 	    req->sym_out = req1.sym_out;
4128 	    req->defobj_out = req1.defobj_out;
4129 	    assert(req->defobj_out != NULL);
4130 	}
4131     }
4132 
4133     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4134     STAILQ_FOREACH(elm, &list_global, link) {
4135 	if (req->defobj_out != NULL &&
4136 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4137 	    break;
4138 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4139 	if (res == 0 && (req->defobj_out == NULL ||
4140 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4141 	    req->sym_out = req1.sym_out;
4142 	    req->defobj_out = req1.defobj_out;
4143 	    assert(req->defobj_out != NULL);
4144 	}
4145     }
4146 
4147     return (req->sym_out != NULL ? 0 : ESRCH);
4148 }
4149 
4150 /*
4151  * Given a symbol name in a referencing object, find the corresponding
4152  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4153  * no definition was found.  Returns a pointer to the Obj_Entry of the
4154  * defining object via the reference parameter DEFOBJ_OUT.
4155  */
4156 static int
4157 symlook_default(SymLook *req, const Obj_Entry *refobj)
4158 {
4159     DoneList donelist;
4160     const Objlist_Entry *elm;
4161     SymLook req1;
4162     int res;
4163 
4164     donelist_init(&donelist);
4165     symlook_init_from_req(&req1, req);
4166 
4167     /*
4168      * Look first in the referencing object if linked symbolically,
4169      * and similarly handle protected symbols.
4170      */
4171     res = symlook_obj(&req1, refobj);
4172     if (res == 0 && (refobj->symbolic ||
4173       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4174 	req->sym_out = req1.sym_out;
4175 	req->defobj_out = req1.defobj_out;
4176 	assert(req->defobj_out != NULL);
4177     }
4178     if (refobj->symbolic || req->defobj_out != NULL)
4179 	donelist_check(&donelist, refobj);
4180 
4181     symlook_global(req, &donelist);
4182 
4183     /* Search all dlopened DAGs containing the referencing object. */
4184     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4185 	if (req->sym_out != NULL &&
4186 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4187 	    break;
4188 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4189 	if (res == 0 && (req->sym_out == NULL ||
4190 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4191 	    req->sym_out = req1.sym_out;
4192 	    req->defobj_out = req1.defobj_out;
4193 	    assert(req->defobj_out != NULL);
4194 	}
4195     }
4196 
4197     /*
4198      * Search the dynamic linker itself, and possibly resolve the
4199      * symbol from there.  This is how the application links to
4200      * dynamic linker services such as dlopen.
4201      */
4202     if (req->sym_out == NULL ||
4203       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4204 	res = symlook_obj(&req1, &obj_rtld);
4205 	if (res == 0) {
4206 	    req->sym_out = req1.sym_out;
4207 	    req->defobj_out = req1.defobj_out;
4208 	    assert(req->defobj_out != NULL);
4209 	}
4210     }
4211 
4212     return (req->sym_out != NULL ? 0 : ESRCH);
4213 }
4214 
4215 static int
4216 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4217 {
4218     const Elf_Sym *def;
4219     const Obj_Entry *defobj;
4220     const Objlist_Entry *elm;
4221     SymLook req1;
4222     int res;
4223 
4224     def = NULL;
4225     defobj = NULL;
4226     STAILQ_FOREACH(elm, objlist, link) {
4227 	if (donelist_check(dlp, elm->obj))
4228 	    continue;
4229 	symlook_init_from_req(&req1, req);
4230 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4231 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4232 		def = req1.sym_out;
4233 		defobj = req1.defobj_out;
4234 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4235 		    break;
4236 	    }
4237 	}
4238     }
4239     if (def != NULL) {
4240 	req->sym_out = def;
4241 	req->defobj_out = defobj;
4242 	return (0);
4243     }
4244     return (ESRCH);
4245 }
4246 
4247 /*
4248  * Search the chain of DAGS cointed to by the given Needed_Entry
4249  * for a symbol of the given name.  Each DAG is scanned completely
4250  * before advancing to the next one.  Returns a pointer to the symbol,
4251  * or NULL if no definition was found.
4252  */
4253 static int
4254 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4255 {
4256     const Elf_Sym *def;
4257     const Needed_Entry *n;
4258     const Obj_Entry *defobj;
4259     SymLook req1;
4260     int res;
4261 
4262     def = NULL;
4263     defobj = NULL;
4264     symlook_init_from_req(&req1, req);
4265     for (n = needed; n != NULL; n = n->next) {
4266 	if (n->obj == NULL ||
4267 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4268 	    continue;
4269 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4270 	    def = req1.sym_out;
4271 	    defobj = req1.defobj_out;
4272 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4273 		break;
4274 	}
4275     }
4276     if (def != NULL) {
4277 	req->sym_out = def;
4278 	req->defobj_out = defobj;
4279 	return (0);
4280     }
4281     return (ESRCH);
4282 }
4283 
4284 /*
4285  * Search the symbol table of a single shared object for a symbol of
4286  * the given name and version, if requested.  Returns a pointer to the
4287  * symbol, or NULL if no definition was found.  If the object is
4288  * filter, return filtered symbol from filtee.
4289  *
4290  * The symbol's hash value is passed in for efficiency reasons; that
4291  * eliminates many recomputations of the hash value.
4292  */
4293 int
4294 symlook_obj(SymLook *req, const Obj_Entry *obj)
4295 {
4296     DoneList donelist;
4297     SymLook req1;
4298     int flags, res, mres;
4299 
4300     /*
4301      * If there is at least one valid hash at this point, we prefer to
4302      * use the faster GNU version if available.
4303      */
4304     if (obj->valid_hash_gnu)
4305 	mres = symlook_obj1_gnu(req, obj);
4306     else if (obj->valid_hash_sysv)
4307 	mres = symlook_obj1_sysv(req, obj);
4308     else
4309 	return (EINVAL);
4310 
4311     if (mres == 0) {
4312 	if (obj->needed_filtees != NULL) {
4313 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4314 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4315 	    donelist_init(&donelist);
4316 	    symlook_init_from_req(&req1, req);
4317 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4318 	    if (res == 0) {
4319 		req->sym_out = req1.sym_out;
4320 		req->defobj_out = req1.defobj_out;
4321 	    }
4322 	    return (res);
4323 	}
4324 	if (obj->needed_aux_filtees != NULL) {
4325 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4326 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4327 	    donelist_init(&donelist);
4328 	    symlook_init_from_req(&req1, req);
4329 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4330 	    if (res == 0) {
4331 		req->sym_out = req1.sym_out;
4332 		req->defobj_out = req1.defobj_out;
4333 		return (res);
4334 	    }
4335 	}
4336     }
4337     return (mres);
4338 }
4339 
4340 /* Symbol match routine common to both hash functions */
4341 static bool
4342 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4343     const unsigned long symnum)
4344 {
4345 	Elf_Versym verndx;
4346 	const Elf_Sym *symp;
4347 	const char *strp;
4348 
4349 	symp = obj->symtab + symnum;
4350 	strp = obj->strtab + symp->st_name;
4351 
4352 	switch (ELF_ST_TYPE(symp->st_info)) {
4353 	case STT_FUNC:
4354 	case STT_NOTYPE:
4355 	case STT_OBJECT:
4356 	case STT_COMMON:
4357 	case STT_GNU_IFUNC:
4358 		if (symp->st_value == 0)
4359 			return (false);
4360 		/* fallthrough */
4361 	case STT_TLS:
4362 		if (symp->st_shndx != SHN_UNDEF)
4363 			break;
4364 #ifndef __mips__
4365 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4366 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4367 			break;
4368 #endif
4369 		/* fallthrough */
4370 	default:
4371 		return (false);
4372 	}
4373 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4374 		return (false);
4375 
4376 	if (req->ventry == NULL) {
4377 		if (obj->versyms != NULL) {
4378 			verndx = VER_NDX(obj->versyms[symnum]);
4379 			if (verndx > obj->vernum) {
4380 				_rtld_error(
4381 				    "%s: symbol %s references wrong version %d",
4382 				    obj->path, obj->strtab + symnum, verndx);
4383 				return (false);
4384 			}
4385 			/*
4386 			 * If we are not called from dlsym (i.e. this
4387 			 * is a normal relocation from unversioned
4388 			 * binary), accept the symbol immediately if
4389 			 * it happens to have first version after this
4390 			 * shared object became versioned.  Otherwise,
4391 			 * if symbol is versioned and not hidden,
4392 			 * remember it. If it is the only symbol with
4393 			 * this name exported by the shared object, it
4394 			 * will be returned as a match by the calling
4395 			 * function. If symbol is global (verndx < 2)
4396 			 * accept it unconditionally.
4397 			 */
4398 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4399 			    verndx == VER_NDX_GIVEN) {
4400 				result->sym_out = symp;
4401 				return (true);
4402 			}
4403 			else if (verndx >= VER_NDX_GIVEN) {
4404 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4405 				    == 0) {
4406 					if (result->vsymp == NULL)
4407 						result->vsymp = symp;
4408 					result->vcount++;
4409 				}
4410 				return (false);
4411 			}
4412 		}
4413 		result->sym_out = symp;
4414 		return (true);
4415 	}
4416 	if (obj->versyms == NULL) {
4417 		if (object_match_name(obj, req->ventry->name)) {
4418 			_rtld_error("%s: object %s should provide version %s "
4419 			    "for symbol %s", obj_rtld.path, obj->path,
4420 			    req->ventry->name, obj->strtab + symnum);
4421 			return (false);
4422 		}
4423 	} else {
4424 		verndx = VER_NDX(obj->versyms[symnum]);
4425 		if (verndx > obj->vernum) {
4426 			_rtld_error("%s: symbol %s references wrong version %d",
4427 			    obj->path, obj->strtab + symnum, verndx);
4428 			return (false);
4429 		}
4430 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4431 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4432 			/*
4433 			 * Version does not match. Look if this is a
4434 			 * global symbol and if it is not hidden. If
4435 			 * global symbol (verndx < 2) is available,
4436 			 * use it. Do not return symbol if we are
4437 			 * called by dlvsym, because dlvsym looks for
4438 			 * a specific version and default one is not
4439 			 * what dlvsym wants.
4440 			 */
4441 			if ((req->flags & SYMLOOK_DLSYM) ||
4442 			    (verndx >= VER_NDX_GIVEN) ||
4443 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4444 				return (false);
4445 		}
4446 	}
4447 	result->sym_out = symp;
4448 	return (true);
4449 }
4450 
4451 /*
4452  * Search for symbol using SysV hash function.
4453  * obj->buckets is known not to be NULL at this point; the test for this was
4454  * performed with the obj->valid_hash_sysv assignment.
4455  */
4456 static int
4457 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4458 {
4459 	unsigned long symnum;
4460 	Sym_Match_Result matchres;
4461 
4462 	matchres.sym_out = NULL;
4463 	matchres.vsymp = NULL;
4464 	matchres.vcount = 0;
4465 
4466 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4467 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4468 		if (symnum >= obj->nchains)
4469 			return (ESRCH);	/* Bad object */
4470 
4471 		if (matched_symbol(req, obj, &matchres, symnum)) {
4472 			req->sym_out = matchres.sym_out;
4473 			req->defobj_out = obj;
4474 			return (0);
4475 		}
4476 	}
4477 	if (matchres.vcount == 1) {
4478 		req->sym_out = matchres.vsymp;
4479 		req->defobj_out = obj;
4480 		return (0);
4481 	}
4482 	return (ESRCH);
4483 }
4484 
4485 /* Search for symbol using GNU hash function */
4486 static int
4487 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4488 {
4489 	Elf_Addr bloom_word;
4490 	const Elf32_Word *hashval;
4491 	Elf32_Word bucket;
4492 	Sym_Match_Result matchres;
4493 	unsigned int h1, h2;
4494 	unsigned long symnum;
4495 
4496 	matchres.sym_out = NULL;
4497 	matchres.vsymp = NULL;
4498 	matchres.vcount = 0;
4499 
4500 	/* Pick right bitmask word from Bloom filter array */
4501 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4502 	    obj->maskwords_bm_gnu];
4503 
4504 	/* Calculate modulus word size of gnu hash and its derivative */
4505 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4506 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4507 
4508 	/* Filter out the "definitely not in set" queries */
4509 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4510 		return (ESRCH);
4511 
4512 	/* Locate hash chain and corresponding value element*/
4513 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4514 	if (bucket == 0)
4515 		return (ESRCH);
4516 	hashval = &obj->chain_zero_gnu[bucket];
4517 	do {
4518 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4519 			symnum = hashval - obj->chain_zero_gnu;
4520 			if (matched_symbol(req, obj, &matchres, symnum)) {
4521 				req->sym_out = matchres.sym_out;
4522 				req->defobj_out = obj;
4523 				return (0);
4524 			}
4525 		}
4526 	} while ((*hashval++ & 1) == 0);
4527 	if (matchres.vcount == 1) {
4528 		req->sym_out = matchres.vsymp;
4529 		req->defobj_out = obj;
4530 		return (0);
4531 	}
4532 	return (ESRCH);
4533 }
4534 
4535 static void
4536 trace_loaded_objects(Obj_Entry *obj)
4537 {
4538     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4539     int c;
4540 
4541     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4542 	main_local = "";
4543 
4544     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4545 	fmt1 = "\t%o => %p (%x)\n";
4546 
4547     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4548 	fmt2 = "\t%o (%x)\n";
4549 
4550     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4551 
4552     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4553 	Needed_Entry *needed;
4554 	const char *name, *path;
4555 	bool is_lib;
4556 
4557 	if (obj->marker)
4558 	    continue;
4559 	if (list_containers && obj->needed != NULL)
4560 	    rtld_printf("%s:\n", obj->path);
4561 	for (needed = obj->needed; needed; needed = needed->next) {
4562 	    if (needed->obj != NULL) {
4563 		if (needed->obj->traced && !list_containers)
4564 		    continue;
4565 		needed->obj->traced = true;
4566 		path = needed->obj->path;
4567 	    } else
4568 		path = "not found";
4569 
4570 	    name = obj->strtab + needed->name;
4571 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4572 
4573 	    fmt = is_lib ? fmt1 : fmt2;
4574 	    while ((c = *fmt++) != '\0') {
4575 		switch (c) {
4576 		default:
4577 		    rtld_putchar(c);
4578 		    continue;
4579 		case '\\':
4580 		    switch (c = *fmt) {
4581 		    case '\0':
4582 			continue;
4583 		    case 'n':
4584 			rtld_putchar('\n');
4585 			break;
4586 		    case 't':
4587 			rtld_putchar('\t');
4588 			break;
4589 		    }
4590 		    break;
4591 		case '%':
4592 		    switch (c = *fmt) {
4593 		    case '\0':
4594 			continue;
4595 		    case '%':
4596 		    default:
4597 			rtld_putchar(c);
4598 			break;
4599 		    case 'A':
4600 			rtld_putstr(main_local);
4601 			break;
4602 		    case 'a':
4603 			rtld_putstr(obj_main->path);
4604 			break;
4605 		    case 'o':
4606 			rtld_putstr(name);
4607 			break;
4608 #if 0
4609 		    case 'm':
4610 			rtld_printf("%d", sodp->sod_major);
4611 			break;
4612 		    case 'n':
4613 			rtld_printf("%d", sodp->sod_minor);
4614 			break;
4615 #endif
4616 		    case 'p':
4617 			rtld_putstr(path);
4618 			break;
4619 		    case 'x':
4620 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4621 			  0);
4622 			break;
4623 		    }
4624 		    break;
4625 		}
4626 		++fmt;
4627 	    }
4628 	}
4629     }
4630 }
4631 
4632 /*
4633  * Unload a dlopened object and its dependencies from memory and from
4634  * our data structures.  It is assumed that the DAG rooted in the
4635  * object has already been unreferenced, and that the object has a
4636  * reference count of 0.
4637  */
4638 static void
4639 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4640 {
4641 	Obj_Entry marker, *obj, *next;
4642 
4643 	assert(root->refcount == 0);
4644 
4645 	/*
4646 	 * Pass over the DAG removing unreferenced objects from
4647 	 * appropriate lists.
4648 	 */
4649 	unlink_object(root);
4650 
4651 	/* Unmap all objects that are no longer referenced. */
4652 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4653 		next = TAILQ_NEXT(obj, next);
4654 		if (obj->marker || obj->refcount != 0)
4655 			continue;
4656 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4657 		    obj->mapsize, 0, obj->path);
4658 		dbg("unloading \"%s\"", obj->path);
4659 		/*
4660 		 * Unlink the object now to prevent new references from
4661 		 * being acquired while the bind lock is dropped in
4662 		 * recursive dlclose() invocations.
4663 		 */
4664 		TAILQ_REMOVE(&obj_list, obj, next);
4665 		obj_count--;
4666 
4667 		if (obj->filtees_loaded) {
4668 			if (next != NULL) {
4669 				init_marker(&marker);
4670 				TAILQ_INSERT_BEFORE(next, &marker, next);
4671 				unload_filtees(obj, lockstate);
4672 				next = TAILQ_NEXT(&marker, next);
4673 				TAILQ_REMOVE(&obj_list, &marker, next);
4674 			} else
4675 				unload_filtees(obj, lockstate);
4676 		}
4677 		release_object(obj);
4678 	}
4679 }
4680 
4681 static void
4682 unlink_object(Obj_Entry *root)
4683 {
4684     Objlist_Entry *elm;
4685 
4686     if (root->refcount == 0) {
4687 	/* Remove the object from the RTLD_GLOBAL list. */
4688 	objlist_remove(&list_global, root);
4689 
4690     	/* Remove the object from all objects' DAG lists. */
4691     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4692 	    objlist_remove(&elm->obj->dldags, root);
4693 	    if (elm->obj != root)
4694 		unlink_object(elm->obj);
4695 	}
4696     }
4697 }
4698 
4699 static void
4700 ref_dag(Obj_Entry *root)
4701 {
4702     Objlist_Entry *elm;
4703 
4704     assert(root->dag_inited);
4705     STAILQ_FOREACH(elm, &root->dagmembers, link)
4706 	elm->obj->refcount++;
4707 }
4708 
4709 static void
4710 unref_dag(Obj_Entry *root)
4711 {
4712     Objlist_Entry *elm;
4713 
4714     assert(root->dag_inited);
4715     STAILQ_FOREACH(elm, &root->dagmembers, link)
4716 	elm->obj->refcount--;
4717 }
4718 
4719 /*
4720  * Common code for MD __tls_get_addr().
4721  */
4722 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4723 static void *
4724 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4725 {
4726     Elf_Addr *newdtv, *dtv;
4727     RtldLockState lockstate;
4728     int to_copy;
4729 
4730     dtv = *dtvp;
4731     /* Check dtv generation in case new modules have arrived */
4732     if (dtv[0] != tls_dtv_generation) {
4733 	wlock_acquire(rtld_bind_lock, &lockstate);
4734 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4735 	to_copy = dtv[1];
4736 	if (to_copy > tls_max_index)
4737 	    to_copy = tls_max_index;
4738 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4739 	newdtv[0] = tls_dtv_generation;
4740 	newdtv[1] = tls_max_index;
4741 	free(dtv);
4742 	lock_release(rtld_bind_lock, &lockstate);
4743 	dtv = *dtvp = newdtv;
4744     }
4745 
4746     /* Dynamically allocate module TLS if necessary */
4747     if (dtv[index + 1] == 0) {
4748 	/* Signal safe, wlock will block out signals. */
4749 	wlock_acquire(rtld_bind_lock, &lockstate);
4750 	if (!dtv[index + 1])
4751 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4752 	lock_release(rtld_bind_lock, &lockstate);
4753     }
4754     return ((void *)(dtv[index + 1] + offset));
4755 }
4756 
4757 void *
4758 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4759 {
4760 	Elf_Addr *dtv;
4761 
4762 	dtv = *dtvp;
4763 	/* Check dtv generation in case new modules have arrived */
4764 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4765 	    dtv[index + 1] != 0))
4766 		return ((void *)(dtv[index + 1] + offset));
4767 	return (tls_get_addr_slow(dtvp, index, offset));
4768 }
4769 
4770 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4771     defined(__powerpc__) || defined(__riscv)
4772 
4773 /*
4774  * Return pointer to allocated TLS block
4775  */
4776 static void *
4777 get_tls_block_ptr(void *tcb, size_t tcbsize)
4778 {
4779     size_t extra_size, post_size, pre_size, tls_block_size;
4780     size_t tls_init_align;
4781 
4782     tls_init_align = MAX(obj_main->tlsalign, 1);
4783 
4784     /* Compute fragments sizes. */
4785     extra_size = tcbsize - TLS_TCB_SIZE;
4786     post_size = calculate_tls_post_size(tls_init_align);
4787     tls_block_size = tcbsize + post_size;
4788     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4789 
4790     return ((char *)tcb - pre_size - extra_size);
4791 }
4792 
4793 /*
4794  * Allocate Static TLS using the Variant I method.
4795  *
4796  * For details on the layout, see lib/libc/gen/tls.c.
4797  *
4798  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4799  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4800  *     offsets, whereas libc's tls_static_space is just the executable's static
4801  *     TLS segment.
4802  */
4803 void *
4804 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4805 {
4806     Obj_Entry *obj;
4807     char *tls_block;
4808     Elf_Addr *dtv, **tcb;
4809     Elf_Addr addr;
4810     Elf_Addr i;
4811     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4812     size_t tls_init_align;
4813 
4814     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4815 	return (oldtcb);
4816 
4817     assert(tcbsize >= TLS_TCB_SIZE);
4818     maxalign = MAX(tcbalign, tls_static_max_align);
4819     tls_init_align = MAX(obj_main->tlsalign, 1);
4820 
4821     /* Compute fragmets sizes. */
4822     extra_size = tcbsize - TLS_TCB_SIZE;
4823     post_size = calculate_tls_post_size(tls_init_align);
4824     tls_block_size = tcbsize + post_size;
4825     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4826     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4827 
4828     /* Allocate whole TLS block */
4829     tls_block = malloc_aligned(tls_block_size, maxalign);
4830     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4831 
4832     if (oldtcb != NULL) {
4833 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4834 	    tls_static_space);
4835 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4836 
4837 	/* Adjust the DTV. */
4838 	dtv = tcb[0];
4839 	for (i = 0; i < dtv[1]; i++) {
4840 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4841 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4842 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4843 	    }
4844 	}
4845     } else {
4846 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4847 	tcb[0] = dtv;
4848 	dtv[0] = tls_dtv_generation;
4849 	dtv[1] = tls_max_index;
4850 
4851 	for (obj = globallist_curr(objs); obj != NULL;
4852 	  obj = globallist_next(obj)) {
4853 	    if (obj->tlsoffset > 0) {
4854 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4855 		if (obj->tlsinitsize > 0)
4856 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4857 		if (obj->tlssize > obj->tlsinitsize)
4858 		    memset((void*)(addr + obj->tlsinitsize), 0,
4859 			   obj->tlssize - obj->tlsinitsize);
4860 		dtv[obj->tlsindex + 1] = addr;
4861 	    }
4862 	}
4863     }
4864 
4865     return (tcb);
4866 }
4867 
4868 void
4869 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4870 {
4871     Elf_Addr *dtv;
4872     Elf_Addr tlsstart, tlsend;
4873     size_t post_size;
4874     size_t dtvsize, i, tls_init_align;
4875 
4876     assert(tcbsize >= TLS_TCB_SIZE);
4877     tls_init_align = MAX(obj_main->tlsalign, 1);
4878 
4879     /* Compute fragments sizes. */
4880     post_size = calculate_tls_post_size(tls_init_align);
4881 
4882     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4883     tlsend = (Elf_Addr)tcb + tls_static_space;
4884 
4885     dtv = *(Elf_Addr **)tcb;
4886     dtvsize = dtv[1];
4887     for (i = 0; i < dtvsize; i++) {
4888 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4889 	    free((void*)dtv[i+2]);
4890 	}
4891     }
4892     free(dtv);
4893     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4894 }
4895 
4896 #endif
4897 
4898 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4899 
4900 /*
4901  * Allocate Static TLS using the Variant II method.
4902  */
4903 void *
4904 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4905 {
4906     Obj_Entry *obj;
4907     size_t size, ralign;
4908     char *tls;
4909     Elf_Addr *dtv, *olddtv;
4910     Elf_Addr segbase, oldsegbase, addr;
4911     size_t i;
4912 
4913     ralign = tcbalign;
4914     if (tls_static_max_align > ralign)
4915 	    ralign = tls_static_max_align;
4916     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4917 
4918     assert(tcbsize >= 2*sizeof(Elf_Addr));
4919     tls = malloc_aligned(size, ralign);
4920     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4921 
4922     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4923     ((Elf_Addr*)segbase)[0] = segbase;
4924     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4925 
4926     dtv[0] = tls_dtv_generation;
4927     dtv[1] = tls_max_index;
4928 
4929     if (oldtls) {
4930 	/*
4931 	 * Copy the static TLS block over whole.
4932 	 */
4933 	oldsegbase = (Elf_Addr) oldtls;
4934 	memcpy((void *)(segbase - tls_static_space),
4935 	       (const void *)(oldsegbase - tls_static_space),
4936 	       tls_static_space);
4937 
4938 	/*
4939 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4940 	 * move them over.
4941 	 */
4942 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4943 	for (i = 0; i < olddtv[1]; i++) {
4944 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4945 		dtv[i+2] = olddtv[i+2];
4946 		olddtv[i+2] = 0;
4947 	    }
4948 	}
4949 
4950 	/*
4951 	 * We assume that this block was the one we created with
4952 	 * allocate_initial_tls().
4953 	 */
4954 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4955     } else {
4956 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4957 		if (obj->marker || obj->tlsoffset == 0)
4958 			continue;
4959 		addr = segbase - obj->tlsoffset;
4960 		memset((void*)(addr + obj->tlsinitsize),
4961 		       0, obj->tlssize - obj->tlsinitsize);
4962 		if (obj->tlsinit) {
4963 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4964 		    obj->static_tls_copied = true;
4965 		}
4966 		dtv[obj->tlsindex + 1] = addr;
4967 	}
4968     }
4969 
4970     return (void*) segbase;
4971 }
4972 
4973 void
4974 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4975 {
4976     Elf_Addr* dtv;
4977     size_t size, ralign;
4978     int dtvsize, i;
4979     Elf_Addr tlsstart, tlsend;
4980 
4981     /*
4982      * Figure out the size of the initial TLS block so that we can
4983      * find stuff which ___tls_get_addr() allocated dynamically.
4984      */
4985     ralign = tcbalign;
4986     if (tls_static_max_align > ralign)
4987 	    ralign = tls_static_max_align;
4988     size = round(tls_static_space, ralign);
4989 
4990     dtv = ((Elf_Addr**)tls)[1];
4991     dtvsize = dtv[1];
4992     tlsend = (Elf_Addr) tls;
4993     tlsstart = tlsend - size;
4994     for (i = 0; i < dtvsize; i++) {
4995 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4996 		free_aligned((void *)dtv[i + 2]);
4997 	}
4998     }
4999 
5000     free_aligned((void *)tlsstart);
5001     free((void*) dtv);
5002 }
5003 
5004 #endif
5005 
5006 /*
5007  * Allocate TLS block for module with given index.
5008  */
5009 void *
5010 allocate_module_tls(int index)
5011 {
5012     Obj_Entry* obj;
5013     char* p;
5014 
5015     TAILQ_FOREACH(obj, &obj_list, next) {
5016 	if (obj->marker)
5017 	    continue;
5018 	if (obj->tlsindex == index)
5019 	    break;
5020     }
5021     if (!obj) {
5022 	_rtld_error("Can't find module with TLS index %d", index);
5023 	rtld_die();
5024     }
5025 
5026     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5027     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5028     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5029 
5030     return p;
5031 }
5032 
5033 bool
5034 allocate_tls_offset(Obj_Entry *obj)
5035 {
5036     size_t off;
5037 
5038     if (obj->tls_done)
5039 	return true;
5040 
5041     if (obj->tlssize == 0) {
5042 	obj->tls_done = true;
5043 	return true;
5044     }
5045 
5046     if (tls_last_offset == 0)
5047 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5048     else
5049 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5050 				   obj->tlssize, obj->tlsalign);
5051 
5052     /*
5053      * If we have already fixed the size of the static TLS block, we
5054      * must stay within that size. When allocating the static TLS, we
5055      * leave a small amount of space spare to be used for dynamically
5056      * loading modules which use static TLS.
5057      */
5058     if (tls_static_space != 0) {
5059 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5060 	    return false;
5061     } else if (obj->tlsalign > tls_static_max_align) {
5062 	    tls_static_max_align = obj->tlsalign;
5063     }
5064 
5065     tls_last_offset = obj->tlsoffset = off;
5066     tls_last_size = obj->tlssize;
5067     obj->tls_done = true;
5068 
5069     return true;
5070 }
5071 
5072 void
5073 free_tls_offset(Obj_Entry *obj)
5074 {
5075 
5076     /*
5077      * If we were the last thing to allocate out of the static TLS
5078      * block, we give our space back to the 'allocator'. This is a
5079      * simplistic workaround to allow libGL.so.1 to be loaded and
5080      * unloaded multiple times.
5081      */
5082     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5083 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5084 	tls_last_offset -= obj->tlssize;
5085 	tls_last_size = 0;
5086     }
5087 }
5088 
5089 void *
5090 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5091 {
5092     void *ret;
5093     RtldLockState lockstate;
5094 
5095     wlock_acquire(rtld_bind_lock, &lockstate);
5096     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5097       tcbsize, tcbalign);
5098     lock_release(rtld_bind_lock, &lockstate);
5099     return (ret);
5100 }
5101 
5102 void
5103 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5104 {
5105     RtldLockState lockstate;
5106 
5107     wlock_acquire(rtld_bind_lock, &lockstate);
5108     free_tls(tcb, tcbsize, tcbalign);
5109     lock_release(rtld_bind_lock, &lockstate);
5110 }
5111 
5112 static void
5113 object_add_name(Obj_Entry *obj, const char *name)
5114 {
5115     Name_Entry *entry;
5116     size_t len;
5117 
5118     len = strlen(name);
5119     entry = malloc(sizeof(Name_Entry) + len);
5120 
5121     if (entry != NULL) {
5122 	strcpy(entry->name, name);
5123 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5124     }
5125 }
5126 
5127 static int
5128 object_match_name(const Obj_Entry *obj, const char *name)
5129 {
5130     Name_Entry *entry;
5131 
5132     STAILQ_FOREACH(entry, &obj->names, link) {
5133 	if (strcmp(name, entry->name) == 0)
5134 	    return (1);
5135     }
5136     return (0);
5137 }
5138 
5139 static Obj_Entry *
5140 locate_dependency(const Obj_Entry *obj, const char *name)
5141 {
5142     const Objlist_Entry *entry;
5143     const Needed_Entry *needed;
5144 
5145     STAILQ_FOREACH(entry, &list_main, link) {
5146 	if (object_match_name(entry->obj, name))
5147 	    return entry->obj;
5148     }
5149 
5150     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5151 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5152 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5153 	    /*
5154 	     * If there is DT_NEEDED for the name we are looking for,
5155 	     * we are all set.  Note that object might not be found if
5156 	     * dependency was not loaded yet, so the function can
5157 	     * return NULL here.  This is expected and handled
5158 	     * properly by the caller.
5159 	     */
5160 	    return (needed->obj);
5161 	}
5162     }
5163     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5164 	obj->path, name);
5165     rtld_die();
5166 }
5167 
5168 static int
5169 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5170     const Elf_Vernaux *vna)
5171 {
5172     const Elf_Verdef *vd;
5173     const char *vername;
5174 
5175     vername = refobj->strtab + vna->vna_name;
5176     vd = depobj->verdef;
5177     if (vd == NULL) {
5178 	_rtld_error("%s: version %s required by %s not defined",
5179 	    depobj->path, vername, refobj->path);
5180 	return (-1);
5181     }
5182     for (;;) {
5183 	if (vd->vd_version != VER_DEF_CURRENT) {
5184 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5185 		depobj->path, vd->vd_version);
5186 	    return (-1);
5187 	}
5188 	if (vna->vna_hash == vd->vd_hash) {
5189 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5190 		((const char *)vd + vd->vd_aux);
5191 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5192 		return (0);
5193 	}
5194 	if (vd->vd_next == 0)
5195 	    break;
5196 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5197     }
5198     if (vna->vna_flags & VER_FLG_WEAK)
5199 	return (0);
5200     _rtld_error("%s: version %s required by %s not found",
5201 	depobj->path, vername, refobj->path);
5202     return (-1);
5203 }
5204 
5205 static int
5206 rtld_verify_object_versions(Obj_Entry *obj)
5207 {
5208     const Elf_Verneed *vn;
5209     const Elf_Verdef  *vd;
5210     const Elf_Verdaux *vda;
5211     const Elf_Vernaux *vna;
5212     const Obj_Entry *depobj;
5213     int maxvernum, vernum;
5214 
5215     if (obj->ver_checked)
5216 	return (0);
5217     obj->ver_checked = true;
5218 
5219     maxvernum = 0;
5220     /*
5221      * Walk over defined and required version records and figure out
5222      * max index used by any of them. Do very basic sanity checking
5223      * while there.
5224      */
5225     vn = obj->verneed;
5226     while (vn != NULL) {
5227 	if (vn->vn_version != VER_NEED_CURRENT) {
5228 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5229 		obj->path, vn->vn_version);
5230 	    return (-1);
5231 	}
5232 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5233 	for (;;) {
5234 	    vernum = VER_NEED_IDX(vna->vna_other);
5235 	    if (vernum > maxvernum)
5236 		maxvernum = vernum;
5237 	    if (vna->vna_next == 0)
5238 		 break;
5239 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5240 	}
5241 	if (vn->vn_next == 0)
5242 	    break;
5243 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5244     }
5245 
5246     vd = obj->verdef;
5247     while (vd != NULL) {
5248 	if (vd->vd_version != VER_DEF_CURRENT) {
5249 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5250 		obj->path, vd->vd_version);
5251 	    return (-1);
5252 	}
5253 	vernum = VER_DEF_IDX(vd->vd_ndx);
5254 	if (vernum > maxvernum)
5255 		maxvernum = vernum;
5256 	if (vd->vd_next == 0)
5257 	    break;
5258 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5259     }
5260 
5261     if (maxvernum == 0)
5262 	return (0);
5263 
5264     /*
5265      * Store version information in array indexable by version index.
5266      * Verify that object version requirements are satisfied along the
5267      * way.
5268      */
5269     obj->vernum = maxvernum + 1;
5270     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5271 
5272     vd = obj->verdef;
5273     while (vd != NULL) {
5274 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5275 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5276 	    assert(vernum <= maxvernum);
5277 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5278 	    obj->vertab[vernum].hash = vd->vd_hash;
5279 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5280 	    obj->vertab[vernum].file = NULL;
5281 	    obj->vertab[vernum].flags = 0;
5282 	}
5283 	if (vd->vd_next == 0)
5284 	    break;
5285 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5286     }
5287 
5288     vn = obj->verneed;
5289     while (vn != NULL) {
5290 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5291 	if (depobj == NULL)
5292 	    return (-1);
5293 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5294 	for (;;) {
5295 	    if (check_object_provided_version(obj, depobj, vna))
5296 		return (-1);
5297 	    vernum = VER_NEED_IDX(vna->vna_other);
5298 	    assert(vernum <= maxvernum);
5299 	    obj->vertab[vernum].hash = vna->vna_hash;
5300 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5301 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5302 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5303 		VER_INFO_HIDDEN : 0;
5304 	    if (vna->vna_next == 0)
5305 		 break;
5306 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5307 	}
5308 	if (vn->vn_next == 0)
5309 	    break;
5310 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5311     }
5312     return 0;
5313 }
5314 
5315 static int
5316 rtld_verify_versions(const Objlist *objlist)
5317 {
5318     Objlist_Entry *entry;
5319     int rc;
5320 
5321     rc = 0;
5322     STAILQ_FOREACH(entry, objlist, link) {
5323 	/*
5324 	 * Skip dummy objects or objects that have their version requirements
5325 	 * already checked.
5326 	 */
5327 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5328 	    continue;
5329 	if (rtld_verify_object_versions(entry->obj) == -1) {
5330 	    rc = -1;
5331 	    if (ld_tracing == NULL)
5332 		break;
5333 	}
5334     }
5335     if (rc == 0 || ld_tracing != NULL)
5336     	rc = rtld_verify_object_versions(&obj_rtld);
5337     return rc;
5338 }
5339 
5340 const Ver_Entry *
5341 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5342 {
5343     Elf_Versym vernum;
5344 
5345     if (obj->vertab) {
5346 	vernum = VER_NDX(obj->versyms[symnum]);
5347 	if (vernum >= obj->vernum) {
5348 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5349 		obj->path, obj->strtab + symnum, vernum);
5350 	} else if (obj->vertab[vernum].hash != 0) {
5351 	    return &obj->vertab[vernum];
5352 	}
5353     }
5354     return NULL;
5355 }
5356 
5357 int
5358 _rtld_get_stack_prot(void)
5359 {
5360 
5361 	return (stack_prot);
5362 }
5363 
5364 int
5365 _rtld_is_dlopened(void *arg)
5366 {
5367 	Obj_Entry *obj;
5368 	RtldLockState lockstate;
5369 	int res;
5370 
5371 	rlock_acquire(rtld_bind_lock, &lockstate);
5372 	obj = dlcheck(arg);
5373 	if (obj == NULL)
5374 		obj = obj_from_addr(arg);
5375 	if (obj == NULL) {
5376 		_rtld_error("No shared object contains address");
5377 		lock_release(rtld_bind_lock, &lockstate);
5378 		return (-1);
5379 	}
5380 	res = obj->dlopened ? 1 : 0;
5381 	lock_release(rtld_bind_lock, &lockstate);
5382 	return (res);
5383 }
5384 
5385 static int
5386 obj_remap_relro(Obj_Entry *obj, int prot)
5387 {
5388 
5389 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5390 	    prot) == -1) {
5391 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5392 		    obj->path, prot, rtld_strerror(errno));
5393 		return (-1);
5394 	}
5395 	return (0);
5396 }
5397 
5398 static int
5399 obj_disable_relro(Obj_Entry *obj)
5400 {
5401 
5402 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5403 }
5404 
5405 static int
5406 obj_enforce_relro(Obj_Entry *obj)
5407 {
5408 
5409 	return (obj_remap_relro(obj, PROT_READ));
5410 }
5411 
5412 static void
5413 map_stacks_exec(RtldLockState *lockstate)
5414 {
5415 	void (*thr_map_stacks_exec)(void);
5416 
5417 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5418 		return;
5419 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5420 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5421 	if (thr_map_stacks_exec != NULL) {
5422 		stack_prot |= PROT_EXEC;
5423 		thr_map_stacks_exec();
5424 	}
5425 }
5426 
5427 static void
5428 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5429 {
5430 	Objlist_Entry *elm;
5431 	Obj_Entry *obj;
5432 	void (*distrib)(size_t, void *, size_t, size_t);
5433 
5434 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5435 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5436 	if (distrib == NULL)
5437 		return;
5438 	STAILQ_FOREACH(elm, list, link) {
5439 		obj = elm->obj;
5440 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5441 			continue;
5442 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5443 		    obj->tlssize);
5444 		obj->static_tls_copied = true;
5445 	}
5446 }
5447 
5448 void
5449 symlook_init(SymLook *dst, const char *name)
5450 {
5451 
5452 	bzero(dst, sizeof(*dst));
5453 	dst->name = name;
5454 	dst->hash = elf_hash(name);
5455 	dst->hash_gnu = gnu_hash(name);
5456 }
5457 
5458 static void
5459 symlook_init_from_req(SymLook *dst, const SymLook *src)
5460 {
5461 
5462 	dst->name = src->name;
5463 	dst->hash = src->hash;
5464 	dst->hash_gnu = src->hash_gnu;
5465 	dst->ventry = src->ventry;
5466 	dst->flags = src->flags;
5467 	dst->defobj_out = NULL;
5468 	dst->sym_out = NULL;
5469 	dst->lockstate = src->lockstate;
5470 }
5471 
5472 static int
5473 open_binary_fd(const char *argv0, bool search_in_path)
5474 {
5475 	char *pathenv, *pe, binpath[PATH_MAX];
5476 	int fd;
5477 
5478 	if (search_in_path && strchr(argv0, '/') == NULL) {
5479 		pathenv = getenv("PATH");
5480 		if (pathenv == NULL) {
5481 			_rtld_error("-p and no PATH environment variable");
5482 			rtld_die();
5483 		}
5484 		pathenv = strdup(pathenv);
5485 		if (pathenv == NULL) {
5486 			_rtld_error("Cannot allocate memory");
5487 			rtld_die();
5488 		}
5489 		fd = -1;
5490 		errno = ENOENT;
5491 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5492 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5493 			    sizeof(binpath))
5494 				continue;
5495 			if (binpath[0] != '\0' &&
5496 			    strlcat(binpath, "/", sizeof(binpath)) >=
5497 			    sizeof(binpath))
5498 				continue;
5499 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5500 			    sizeof(binpath))
5501 				continue;
5502 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5503 			if (fd != -1 || errno != ENOENT)
5504 				break;
5505 		}
5506 		free(pathenv);
5507 	} else {
5508 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5509 	}
5510 
5511 	if (fd == -1) {
5512 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5513 		rtld_die();
5514 	}
5515 	return (fd);
5516 }
5517 
5518 /*
5519  * Parse a set of command-line arguments.
5520  */
5521 static int
5522 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5523 {
5524 	const char *arg;
5525 	int fd, i, j, arglen;
5526 	char opt;
5527 
5528 	dbg("Parsing command-line arguments");
5529 	*use_pathp = false;
5530 	*fdp = -1;
5531 
5532 	for (i = 1; i < argc; i++ ) {
5533 		arg = argv[i];
5534 		dbg("argv[%d]: '%s'", i, arg);
5535 
5536 		/*
5537 		 * rtld arguments end with an explicit "--" or with the first
5538 		 * non-prefixed argument.
5539 		 */
5540 		if (strcmp(arg, "--") == 0) {
5541 			i++;
5542 			break;
5543 		}
5544 		if (arg[0] != '-')
5545 			break;
5546 
5547 		/*
5548 		 * All other arguments are single-character options that can
5549 		 * be combined, so we need to search through `arg` for them.
5550 		 */
5551 		arglen = strlen(arg);
5552 		for (j = 1; j < arglen; j++) {
5553 			opt = arg[j];
5554 			if (opt == 'h') {
5555 				print_usage(argv[0]);
5556 				_exit(0);
5557 			} else if (opt == 'f') {
5558 			/*
5559 			 * -f XX can be used to specify a descriptor for the
5560 			 * binary named at the command line (i.e., the later
5561 			 * argument will specify the process name but the
5562 			 * descriptor is what will actually be executed)
5563 			 */
5564 			if (j != arglen - 1) {
5565 				/* -f must be the last option in, e.g., -abcf */
5566 				_rtld_error("Invalid options: %s", arg);
5567 				rtld_die();
5568 			}
5569 			i++;
5570 			fd = parse_integer(argv[i]);
5571 			if (fd == -1) {
5572 				_rtld_error("Invalid file descriptor: '%s'",
5573 				    argv[i]);
5574 				rtld_die();
5575 			}
5576 			*fdp = fd;
5577 			break;
5578 			} else if (opt == 'p') {
5579 				*use_pathp = true;
5580 			} else {
5581 				_rtld_error("Invalid argument: '%s'", arg);
5582 				print_usage(argv[0]);
5583 				rtld_die();
5584 			}
5585 		}
5586 	}
5587 
5588 	return (i);
5589 }
5590 
5591 /*
5592  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5593  */
5594 static int
5595 parse_integer(const char *str)
5596 {
5597 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5598 	const char *orig;
5599 	int n;
5600 	char c;
5601 
5602 	orig = str;
5603 	n = 0;
5604 	for (c = *str; c != '\0'; c = *++str) {
5605 		if (c < '0' || c > '9')
5606 			return (-1);
5607 
5608 		n *= RADIX;
5609 		n += c - '0';
5610 	}
5611 
5612 	/* Make sure we actually parsed something. */
5613 	if (str == orig)
5614 		return (-1);
5615 	return (n);
5616 }
5617 
5618 static void
5619 print_usage(const char *argv0)
5620 {
5621 
5622 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5623 		"\n"
5624 		"Options:\n"
5625 		"  -h        Display this help message\n"
5626 		"  -p        Search in PATH for named binary\n"
5627 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5628 		"  --        End of RTLD options\n"
5629 		"  <binary>  Name of process to execute\n"
5630 		"  <args>    Arguments to the executed process\n", argv0);
5631 }
5632 
5633 /*
5634  * Overrides for libc_pic-provided functions.
5635  */
5636 
5637 int
5638 __getosreldate(void)
5639 {
5640 	size_t len;
5641 	int oid[2];
5642 	int error, osrel;
5643 
5644 	if (osreldate != 0)
5645 		return (osreldate);
5646 
5647 	oid[0] = CTL_KERN;
5648 	oid[1] = KERN_OSRELDATE;
5649 	osrel = 0;
5650 	len = sizeof(osrel);
5651 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5652 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5653 		osreldate = osrel;
5654 	return (osreldate);
5655 }
5656 const char *
5657 rtld_strerror(int errnum)
5658 {
5659 
5660 	if (errnum < 0 || errnum >= sys_nerr)
5661 		return ("Unknown error");
5662 	return (sys_errlist[errnum]);
5663 }
5664 
5665 /*
5666  * No ifunc relocations.
5667  */
5668 void *
5669 memset(void *dest, int c, size_t len)
5670 {
5671 	size_t i;
5672 
5673 	for (i = 0; i < len; i++)
5674 		((char *)dest)[i] = c;
5675 	return (dest);
5676 }
5677 
5678 void
5679 bzero(void *dest, size_t len)
5680 {
5681 	size_t i;
5682 
5683 	for (i = 0; i < len; i++)
5684 		((char *)dest)[i] = 0;
5685 }
5686 
5687 /* malloc */
5688 void *
5689 malloc(size_t nbytes)
5690 {
5691 
5692 	return (__crt_malloc(nbytes));
5693 }
5694 
5695 void *
5696 calloc(size_t num, size_t size)
5697 {
5698 
5699 	return (__crt_calloc(num, size));
5700 }
5701 
5702 void
5703 free(void *cp)
5704 {
5705 
5706 	__crt_free(cp);
5707 }
5708 
5709 void *
5710 realloc(void *cp, size_t nbytes)
5711 {
5712 
5713 	return (__crt_realloc(cp, nbytes));
5714 }
5715