1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 5 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>. 6 * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>. 7 * Copyright 2012 John Marino <draco@marino.st>. 8 * Copyright 2014-2017 The FreeBSD Foundation 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Konstantin Belousov 12 * under sponsorship from the FreeBSD Foundation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Dynamic linker for ELF. 37 * 38 * John Polstra <jdp@polstra.com>. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include <sys/param.h> 45 #include <sys/mount.h> 46 #include <sys/mman.h> 47 #include <sys/stat.h> 48 #include <sys/sysctl.h> 49 #include <sys/uio.h> 50 #include <sys/utsname.h> 51 #include <sys/ktrace.h> 52 53 #include <dlfcn.h> 54 #include <err.h> 55 #include <errno.h> 56 #include <fcntl.h> 57 #include <stdarg.h> 58 #include <stdio.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <unistd.h> 62 63 #include "debug.h" 64 #include "rtld.h" 65 #include "libmap.h" 66 #include "paths.h" 67 #include "rtld_tls.h" 68 #include "rtld_printf.h" 69 #include "rtld_utrace.h" 70 #include "notes.h" 71 72 /* Types. */ 73 typedef void (*func_ptr_type)(void); 74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); 75 76 77 /* Variables that cannot be static: */ 78 extern struct r_debug r_debug; /* For GDB */ 79 extern int _thread_autoinit_dummy_decl; 80 extern char* __progname; 81 extern void (*__cleanup)(void); 82 83 84 /* 85 * Function declarations. 86 */ 87 static const char *basename(const char *); 88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, 89 const Elf_Dyn **, const Elf_Dyn **); 90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, 91 const Elf_Dyn *); 92 static void digest_dynamic(Obj_Entry *, int); 93 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 94 static Obj_Entry *dlcheck(void *); 95 static int dlclose_locked(void *, RtldLockState *); 96 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, 97 int lo_flags, int mode, RtldLockState *lockstate); 98 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); 99 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); 100 static bool donelist_check(DoneList *, const Obj_Entry *); 101 static void errmsg_restore(char *); 102 static char *errmsg_save(void); 103 static void *fill_search_info(const char *, size_t, void *); 104 static char *find_library(const char *, const Obj_Entry *, int *); 105 static const char *gethints(bool); 106 static void hold_object(Obj_Entry *); 107 static void unhold_object(Obj_Entry *); 108 static void init_dag(Obj_Entry *); 109 static void init_marker(Obj_Entry *); 110 static void init_pagesizes(Elf_Auxinfo **aux_info); 111 static void init_rtld(caddr_t, Elf_Auxinfo **); 112 static void initlist_add_neededs(Needed_Entry *, Objlist *); 113 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *); 114 static void linkmap_add(Obj_Entry *); 115 static void linkmap_delete(Obj_Entry *); 116 static void load_filtees(Obj_Entry *, int flags, RtldLockState *); 117 static void unload_filtees(Obj_Entry *, RtldLockState *); 118 static int load_needed_objects(Obj_Entry *, int); 119 static int load_preload_objects(void); 120 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); 121 static void map_stacks_exec(RtldLockState *); 122 static int obj_enforce_relro(Obj_Entry *); 123 static Obj_Entry *obj_from_addr(const void *); 124 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); 125 static void objlist_call_init(Objlist *, RtldLockState *); 126 static void objlist_clear(Objlist *); 127 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 128 static void objlist_init(Objlist *); 129 static void objlist_push_head(Objlist *, Obj_Entry *); 130 static void objlist_push_tail(Objlist *, Obj_Entry *); 131 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); 132 static void objlist_remove(Objlist *, Obj_Entry *); 133 static int open_binary_fd(const char *argv0, bool search_in_path); 134 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp); 135 static int parse_integer(const char *); 136 static void *path_enumerate(const char *, path_enum_proc, const char *, void *); 137 static void print_usage(const char *argv0); 138 static void release_object(Obj_Entry *); 139 static int relocate_object_dag(Obj_Entry *root, bool bind_now, 140 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); 141 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 142 int flags, RtldLockState *lockstate); 143 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, 144 RtldLockState *); 145 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, 146 int flags, RtldLockState *lockstate); 147 static int rtld_dirname(const char *, char *); 148 static int rtld_dirname_abs(const char *, char *); 149 static void *rtld_dlopen(const char *name, int fd, int mode); 150 static void rtld_exit(void); 151 static char *search_library_path(const char *, const char *, const char *, 152 int *); 153 static char *search_library_pathfds(const char *, const char *, int *); 154 static const void **get_program_var_addr(const char *, RtldLockState *); 155 static void set_program_var(const char *, const void *); 156 static int symlook_default(SymLook *, const Obj_Entry *refobj); 157 static int symlook_global(SymLook *, DoneList *); 158 static void symlook_init_from_req(SymLook *, const SymLook *); 159 static int symlook_list(SymLook *, const Objlist *, DoneList *); 160 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); 161 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); 162 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); 163 static void trace_loaded_objects(Obj_Entry *); 164 static void unlink_object(Obj_Entry *); 165 static void unload_object(Obj_Entry *, RtldLockState *lockstate); 166 static void unref_dag(Obj_Entry *); 167 static void ref_dag(Obj_Entry *); 168 static char *origin_subst_one(Obj_Entry *, char *, const char *, 169 const char *, bool); 170 static char *origin_subst(Obj_Entry *, const char *); 171 static bool obj_resolve_origin(Obj_Entry *obj); 172 static void preinit_main(void); 173 static int rtld_verify_versions(const Objlist *); 174 static int rtld_verify_object_versions(Obj_Entry *); 175 static void object_add_name(Obj_Entry *, const char *); 176 static int object_match_name(const Obj_Entry *, const char *); 177 static void ld_utrace_log(int, void *, void *, size_t, int, const char *); 178 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, 179 struct dl_phdr_info *phdr_info); 180 static uint32_t gnu_hash(const char *); 181 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, 182 const unsigned long); 183 184 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; 185 void _r_debug_postinit(struct link_map *) __noinline __exported; 186 187 int __sys_openat(int, const char *, int, ...); 188 189 /* 190 * Data declarations. 191 */ 192 static char *error_message; /* Message for dlerror(), or NULL */ 193 struct r_debug r_debug __exported; /* for GDB; */ 194 static bool libmap_disable; /* Disable libmap */ 195 static bool ld_loadfltr; /* Immediate filters processing */ 196 static char *libmap_override; /* Maps to use in addition to libmap.conf */ 197 static bool trust; /* False for setuid and setgid programs */ 198 static bool dangerous_ld_env; /* True if environment variables have been 199 used to affect the libraries loaded */ 200 bool ld_bind_not; /* Disable PLT update */ 201 static char *ld_bind_now; /* Environment variable for immediate binding */ 202 static char *ld_debug; /* Environment variable for debugging */ 203 static char *ld_library_path; /* Environment variable for search path */ 204 static char *ld_library_dirs; /* Environment variable for library descriptors */ 205 static char *ld_preload; /* Environment variable for libraries to 206 load first */ 207 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */ 208 static const char *ld_tracing; /* Called from ldd to print libs */ 209 static char *ld_utrace; /* Use utrace() to log events. */ 210 static struct obj_entry_q obj_list; /* Queue of all loaded objects */ 211 static Obj_Entry *obj_main; /* The main program shared object */ 212 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 213 static unsigned int obj_count; /* Number of objects in obj_list */ 214 static unsigned int obj_loads; /* Number of loads of objects (gen count) */ 215 216 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 217 STAILQ_HEAD_INITIALIZER(list_global); 218 static Objlist list_main = /* Objects loaded at program startup */ 219 STAILQ_HEAD_INITIALIZER(list_main); 220 static Objlist list_fini = /* Objects needing fini() calls */ 221 STAILQ_HEAD_INITIALIZER(list_fini); 222 223 Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 224 225 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 226 227 extern Elf_Dyn _DYNAMIC; 228 #pragma weak _DYNAMIC 229 230 int dlclose(void *) __exported; 231 char *dlerror(void) __exported; 232 void *dlopen(const char *, int) __exported; 233 void *fdlopen(int, int) __exported; 234 void *dlsym(void *, const char *) __exported; 235 dlfunc_t dlfunc(void *, const char *) __exported; 236 void *dlvsym(void *, const char *, const char *) __exported; 237 int dladdr(const void *, Dl_info *) __exported; 238 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), 239 void (*)(void *), void (*)(void *), void (*)(void *)) __exported; 240 int dlinfo(void *, int , void *) __exported; 241 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; 242 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; 243 int _rtld_get_stack_prot(void) __exported; 244 int _rtld_is_dlopened(void *) __exported; 245 void _rtld_error(const char *, ...) __exported; 246 247 /* Only here to fix -Wmissing-prototypes warnings */ 248 int __getosreldate(void); 249 void __pthread_cxa_finalize(struct dl_phdr_info *a); 250 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp); 251 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff); 252 253 254 int npagesizes; 255 static int osreldate; 256 size_t *pagesizes; 257 258 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC; 259 static int max_stack_flags; 260 261 /* 262 * Global declarations normally provided by crt1. The dynamic linker is 263 * not built with crt1, so we have to provide them ourselves. 264 */ 265 char *__progname; 266 char **environ; 267 268 /* 269 * Used to pass argc, argv to init functions. 270 */ 271 int main_argc; 272 char **main_argv; 273 274 /* 275 * Globals to control TLS allocation. 276 */ 277 size_t tls_last_offset; /* Static TLS offset of last module */ 278 size_t tls_last_size; /* Static TLS size of last module */ 279 size_t tls_static_space; /* Static TLS space allocated */ 280 static size_t tls_static_max_align; 281 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */ 282 int tls_max_index = 1; /* Largest module index allocated */ 283 284 static bool ld_library_path_rpath = false; 285 286 /* 287 * Globals for path names, and such 288 */ 289 const char *ld_elf_hints_default = _PATH_ELF_HINTS; 290 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF; 291 const char *ld_path_rtld = _PATH_RTLD; 292 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH; 293 const char *ld_env_prefix = LD_; 294 295 /* 296 * Fill in a DoneList with an allocation large enough to hold all of 297 * the currently-loaded objects. Keep this as a macro since it calls 298 * alloca and we want that to occur within the scope of the caller. 299 */ 300 #define donelist_init(dlp) \ 301 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 302 assert((dlp)->objs != NULL), \ 303 (dlp)->num_alloc = obj_count, \ 304 (dlp)->num_used = 0) 305 306 #define LD_UTRACE(e, h, mb, ms, r, n) do { \ 307 if (ld_utrace != NULL) \ 308 ld_utrace_log(e, h, mb, ms, r, n); \ 309 } while (0) 310 311 static void 312 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, 313 int refcnt, const char *name) 314 { 315 struct utrace_rtld ut; 316 static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG; 317 318 memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig)); 319 ut.event = event; 320 ut.handle = handle; 321 ut.mapbase = mapbase; 322 ut.mapsize = mapsize; 323 ut.refcnt = refcnt; 324 bzero(ut.name, sizeof(ut.name)); 325 if (name) 326 strlcpy(ut.name, name, sizeof(ut.name)); 327 utrace(&ut, sizeof(ut)); 328 } 329 330 #ifdef RTLD_VARIANT_ENV_NAMES 331 /* 332 * construct the env variable based on the type of binary that's 333 * running. 334 */ 335 static inline const char * 336 _LD(const char *var) 337 { 338 static char buffer[128]; 339 340 strlcpy(buffer, ld_env_prefix, sizeof(buffer)); 341 strlcat(buffer, var, sizeof(buffer)); 342 return (buffer); 343 } 344 #else 345 #define _LD(x) LD_ x 346 #endif 347 348 /* 349 * Main entry point for dynamic linking. The first argument is the 350 * stack pointer. The stack is expected to be laid out as described 351 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 352 * Specifically, the stack pointer points to a word containing 353 * ARGC. Following that in the stack is a null-terminated sequence 354 * of pointers to argument strings. Then comes a null-terminated 355 * sequence of pointers to environment strings. Finally, there is a 356 * sequence of "auxiliary vector" entries. 357 * 358 * The second argument points to a place to store the dynamic linker's 359 * exit procedure pointer and the third to a place to store the main 360 * program's object. 361 * 362 * The return value is the main program's entry point. 363 */ 364 func_ptr_type 365 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 366 { 367 Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT]; 368 Objlist_Entry *entry; 369 Obj_Entry *last_interposer, *obj, *preload_tail; 370 const Elf_Phdr *phdr; 371 Objlist initlist; 372 RtldLockState lockstate; 373 struct stat st; 374 Elf_Addr *argcp; 375 char **argv, **env, **envp, *kexecpath, *library_path_rpath; 376 const char *argv0; 377 caddr_t imgentry; 378 char buf[MAXPATHLEN]; 379 int argc, fd, i, phnum, rtld_argc; 380 bool dir_enable, explicit_fd, search_in_path; 381 382 /* 383 * On entry, the dynamic linker itself has not been relocated yet. 384 * Be very careful not to reference any global data until after 385 * init_rtld has returned. It is OK to reference file-scope statics 386 * and string constants, and to call static and global functions. 387 */ 388 389 /* Find the auxiliary vector on the stack. */ 390 argcp = sp; 391 argc = *sp++; 392 argv = (char **) sp; 393 sp += argc + 1; /* Skip over arguments and NULL terminator */ 394 env = (char **) sp; 395 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 396 ; 397 aux = (Elf_Auxinfo *) sp; 398 399 /* Digest the auxiliary vector. */ 400 for (i = 0; i < AT_COUNT; i++) 401 aux_info[i] = NULL; 402 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 403 if (auxp->a_type < AT_COUNT) 404 aux_info[auxp->a_type] = auxp; 405 } 406 407 /* Initialize and relocate ourselves. */ 408 assert(aux_info[AT_BASE] != NULL); 409 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); 410 411 __progname = obj_rtld.path; 412 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 413 environ = env; 414 main_argc = argc; 415 main_argv = argv; 416 417 trust = !issetugid(); 418 419 md_abi_variant_hook(aux_info); 420 421 fd = -1; 422 if (aux_info[AT_EXECFD] != NULL) { 423 fd = aux_info[AT_EXECFD]->a_un.a_val; 424 } else { 425 assert(aux_info[AT_PHDR] != NULL); 426 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr; 427 if (phdr == obj_rtld.phdr) { 428 if (!trust) { 429 _rtld_error("Tainted process refusing to run binary %s", 430 argv0); 431 rtld_die(); 432 } 433 dbg("opening main program in direct exec mode"); 434 if (argc >= 2) { 435 rtld_argc = parse_args(argv, argc, &search_in_path, &fd); 436 argv0 = argv[rtld_argc]; 437 explicit_fd = (fd != -1); 438 if (!explicit_fd) 439 fd = open_binary_fd(argv0, search_in_path); 440 if (fstat(fd, &st) == -1) { 441 _rtld_error("Failed to fstat FD %d (%s): %s", fd, 442 explicit_fd ? "user-provided descriptor" : argv0, 443 rtld_strerror(errno)); 444 rtld_die(); 445 } 446 447 /* 448 * Rough emulation of the permission checks done by 449 * execve(2), only Unix DACs are checked, ACLs are 450 * ignored. Preserve the semantic of disabling owner 451 * to execute if owner x bit is cleared, even if 452 * others x bit is enabled. 453 * mmap(2) does not allow to mmap with PROT_EXEC if 454 * binary' file comes from noexec mount. We cannot 455 * set VV_TEXT on the binary. 456 */ 457 dir_enable = false; 458 if (st.st_uid == geteuid()) { 459 if ((st.st_mode & S_IXUSR) != 0) 460 dir_enable = true; 461 } else if (st.st_gid == getegid()) { 462 if ((st.st_mode & S_IXGRP) != 0) 463 dir_enable = true; 464 } else if ((st.st_mode & S_IXOTH) != 0) { 465 dir_enable = true; 466 } 467 if (!dir_enable) { 468 _rtld_error("No execute permission for binary %s", 469 argv0); 470 rtld_die(); 471 } 472 473 /* 474 * For direct exec mode, argv[0] is the interpreter 475 * name, we must remove it and shift arguments left 476 * before invoking binary main. Since stack layout 477 * places environment pointers and aux vectors right 478 * after the terminating NULL, we must shift 479 * environment and aux as well. 480 */ 481 main_argc = argc - rtld_argc; 482 for (i = 0; i <= main_argc; i++) 483 argv[i] = argv[i + rtld_argc]; 484 *argcp -= rtld_argc; 485 environ = env = envp = argv + main_argc + 1; 486 do { 487 *envp = *(envp + rtld_argc); 488 envp++; 489 } while (*envp != NULL); 490 aux = auxp = (Elf_Auxinfo *)envp; 491 auxpf = (Elf_Auxinfo *)(envp + rtld_argc); 492 for (;; auxp++, auxpf++) { 493 *auxp = *auxpf; 494 if (auxp->a_type == AT_NULL) 495 break; 496 } 497 } else { 498 _rtld_error("No binary"); 499 rtld_die(); 500 } 501 } 502 } 503 504 ld_bind_now = getenv(_LD("BIND_NOW")); 505 506 /* 507 * If the process is tainted, then we un-set the dangerous environment 508 * variables. The process will be marked as tainted until setuid(2) 509 * is called. If any child process calls setuid(2) we do not want any 510 * future processes to honor the potentially un-safe variables. 511 */ 512 if (!trust) { 513 if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) || 514 unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) || 515 unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) || 516 unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) || 517 unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) { 518 _rtld_error("environment corrupt; aborting"); 519 rtld_die(); 520 } 521 } 522 ld_debug = getenv(_LD("DEBUG")); 523 if (ld_bind_now == NULL) 524 ld_bind_not = getenv(_LD("BIND_NOT")) != NULL; 525 libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL; 526 libmap_override = getenv(_LD("LIBMAP")); 527 ld_library_path = getenv(_LD("LIBRARY_PATH")); 528 ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS")); 529 ld_preload = getenv(_LD("PRELOAD")); 530 ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH")); 531 ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL; 532 library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH")); 533 if (library_path_rpath != NULL) { 534 if (library_path_rpath[0] == 'y' || 535 library_path_rpath[0] == 'Y' || 536 library_path_rpath[0] == '1') 537 ld_library_path_rpath = true; 538 else 539 ld_library_path_rpath = false; 540 } 541 dangerous_ld_env = libmap_disable || (libmap_override != NULL) || 542 (ld_library_path != NULL) || (ld_preload != NULL) || 543 (ld_elf_hints_path != NULL) || ld_loadfltr; 544 ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS")); 545 ld_utrace = getenv(_LD("UTRACE")); 546 547 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0) 548 ld_elf_hints_path = ld_elf_hints_default; 549 550 if (ld_debug != NULL && *ld_debug != '\0') 551 debug = 1; 552 dbg("%s is initialized, base address = %p", __progname, 553 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 554 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 555 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 556 557 dbg("initializing thread locks"); 558 lockdflt_init(); 559 560 /* 561 * Load the main program, or process its program header if it is 562 * already loaded. 563 */ 564 if (fd != -1) { /* Load the main program. */ 565 dbg("loading main program"); 566 obj_main = map_object(fd, argv0, NULL); 567 close(fd); 568 if (obj_main == NULL) 569 rtld_die(); 570 max_stack_flags = obj_main->stack_flags; 571 } else { /* Main program already loaded. */ 572 dbg("processing main program's program header"); 573 assert(aux_info[AT_PHDR] != NULL); 574 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 575 assert(aux_info[AT_PHNUM] != NULL); 576 phnum = aux_info[AT_PHNUM]->a_un.a_val; 577 assert(aux_info[AT_PHENT] != NULL); 578 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 579 assert(aux_info[AT_ENTRY] != NULL); 580 imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 581 if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL) 582 rtld_die(); 583 } 584 585 if (aux_info[AT_EXECPATH] != NULL && fd == -1) { 586 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; 587 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); 588 if (kexecpath[0] == '/') 589 obj_main->path = kexecpath; 590 else if (getcwd(buf, sizeof(buf)) == NULL || 591 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || 592 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) 593 obj_main->path = xstrdup(argv0); 594 else 595 obj_main->path = xstrdup(buf); 596 } else { 597 dbg("No AT_EXECPATH or direct exec"); 598 obj_main->path = xstrdup(argv0); 599 } 600 dbg("obj_main path %s", obj_main->path); 601 obj_main->mainprog = true; 602 603 if (aux_info[AT_STACKPROT] != NULL && 604 aux_info[AT_STACKPROT]->a_un.a_val != 0) 605 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; 606 607 #ifndef COMPAT_32BIT 608 /* 609 * Get the actual dynamic linker pathname from the executable if 610 * possible. (It should always be possible.) That ensures that 611 * gdb will find the right dynamic linker even if a non-standard 612 * one is being used. 613 */ 614 if (obj_main->interp != NULL && 615 strcmp(obj_main->interp, obj_rtld.path) != 0) { 616 free(obj_rtld.path); 617 obj_rtld.path = xstrdup(obj_main->interp); 618 __progname = obj_rtld.path; 619 } 620 #endif 621 622 digest_dynamic(obj_main, 0); 623 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", 624 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, 625 obj_main->dynsymcount); 626 627 linkmap_add(obj_main); 628 linkmap_add(&obj_rtld); 629 630 /* Link the main program into the list of objects. */ 631 TAILQ_INSERT_HEAD(&obj_list, obj_main, next); 632 obj_count++; 633 obj_loads++; 634 635 /* Initialize a fake symbol for resolving undefined weak references. */ 636 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 637 sym_zero.st_shndx = SHN_UNDEF; 638 sym_zero.st_value = -(uintptr_t)obj_main->relocbase; 639 640 if (!libmap_disable) 641 libmap_disable = (bool)lm_init(libmap_override); 642 643 dbg("loading LD_PRELOAD libraries"); 644 if (load_preload_objects() == -1) 645 rtld_die(); 646 preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); 647 648 dbg("loading needed objects"); 649 if (load_needed_objects(obj_main, 0) == -1) 650 rtld_die(); 651 652 /* Make a list of all objects loaded at startup. */ 653 last_interposer = obj_main; 654 TAILQ_FOREACH(obj, &obj_list, next) { 655 if (obj->marker) 656 continue; 657 if (obj->z_interpose && obj != obj_main) { 658 objlist_put_after(&list_main, last_interposer, obj); 659 last_interposer = obj; 660 } else { 661 objlist_push_tail(&list_main, obj); 662 } 663 obj->refcount++; 664 } 665 666 dbg("checking for required versions"); 667 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) 668 rtld_die(); 669 670 if (ld_tracing) { /* We're done */ 671 trace_loaded_objects(obj_main); 672 exit(0); 673 } 674 675 if (getenv(_LD("DUMP_REL_PRE")) != NULL) { 676 dump_relocations(obj_main); 677 exit (0); 678 } 679 680 /* 681 * Processing tls relocations requires having the tls offsets 682 * initialized. Prepare offsets before starting initial 683 * relocation processing. 684 */ 685 dbg("initializing initial thread local storage offsets"); 686 STAILQ_FOREACH(entry, &list_main, link) { 687 /* 688 * Allocate all the initial objects out of the static TLS 689 * block even if they didn't ask for it. 690 */ 691 allocate_tls_offset(entry->obj); 692 } 693 694 if (relocate_objects(obj_main, 695 ld_bind_now != NULL && *ld_bind_now != '\0', 696 &obj_rtld, SYMLOOK_EARLY, NULL) == -1) 697 rtld_die(); 698 699 dbg("doing copy relocations"); 700 if (do_copy_relocations(obj_main) == -1) 701 rtld_die(); 702 703 dbg("enforcing main obj relro"); 704 if (obj_enforce_relro(obj_main) == -1) 705 rtld_die(); 706 707 if (getenv(_LD("DUMP_REL_POST")) != NULL) { 708 dump_relocations(obj_main); 709 exit (0); 710 } 711 712 ifunc_init(aux); 713 714 /* 715 * Setup TLS for main thread. This must be done after the 716 * relocations are processed, since tls initialization section 717 * might be the subject for relocations. 718 */ 719 dbg("initializing initial thread local storage"); 720 allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list))); 721 722 dbg("initializing key program variables"); 723 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 724 set_program_var("environ", env); 725 set_program_var("__elf_aux_vector", aux); 726 727 /* Make a list of init functions to call. */ 728 objlist_init(&initlist); 729 initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)), 730 preload_tail, &initlist); 731 732 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 733 734 map_stacks_exec(NULL); 735 736 dbg("resolving ifuncs"); 737 if (resolve_objects_ifunc(obj_main, 738 ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY, 739 NULL) == -1) 740 rtld_die(); 741 742 if (!obj_main->crt_no_init) { 743 /* 744 * Make sure we don't call the main program's init and fini 745 * functions for binaries linked with old crt1 which calls 746 * _init itself. 747 */ 748 obj_main->init = obj_main->fini = (Elf_Addr)NULL; 749 obj_main->preinit_array = obj_main->init_array = 750 obj_main->fini_array = (Elf_Addr)NULL; 751 } 752 753 /* 754 * Execute MD initializers required before we call the objects' 755 * init functions. 756 */ 757 pre_init(); 758 759 wlock_acquire(rtld_bind_lock, &lockstate); 760 if (obj_main->crt_no_init) 761 preinit_main(); 762 objlist_call_init(&initlist, &lockstate); 763 _r_debug_postinit(&obj_main->linkmap); 764 objlist_clear(&initlist); 765 dbg("loading filtees"); 766 TAILQ_FOREACH(obj, &obj_list, next) { 767 if (obj->marker) 768 continue; 769 if (ld_loadfltr || obj->z_loadfltr) 770 load_filtees(obj, 0, &lockstate); 771 } 772 lock_release(rtld_bind_lock, &lockstate); 773 774 dbg("transferring control to program entry point = %p", obj_main->entry); 775 776 /* Return the exit procedure and the program entry point. */ 777 *exit_proc = rtld_exit; 778 *objp = obj_main; 779 return (func_ptr_type) obj_main->entry; 780 } 781 782 void * 783 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) 784 { 785 void *ptr; 786 Elf_Addr target; 787 788 ptr = (void *)make_function_pointer(def, obj); 789 target = call_ifunc_resolver(ptr); 790 return ((void *)target); 791 } 792 793 /* 794 * NB: MIPS uses a private version of this function (_mips_rtld_bind). 795 * Changes to this function should be applied there as well. 796 */ 797 Elf_Addr 798 _rtld_bind(Obj_Entry *obj, Elf_Size reloff) 799 { 800 const Elf_Rel *rel; 801 const Elf_Sym *def; 802 const Obj_Entry *defobj; 803 Elf_Addr *where; 804 Elf_Addr target; 805 RtldLockState lockstate; 806 807 rlock_acquire(rtld_bind_lock, &lockstate); 808 if (sigsetjmp(lockstate.env, 0) != 0) 809 lock_upgrade(rtld_bind_lock, &lockstate); 810 if (obj->pltrel) 811 rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff); 812 else 813 rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff); 814 815 where = (Elf_Addr *)(obj->relocbase + rel->r_offset); 816 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT, 817 NULL, &lockstate); 818 if (def == NULL) 819 rtld_die(); 820 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 821 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); 822 else 823 target = (Elf_Addr)(defobj->relocbase + def->st_value); 824 825 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 826 defobj->strtab + def->st_name, basename(obj->path), 827 (void *)target, basename(defobj->path)); 828 829 /* 830 * Write the new contents for the jmpslot. Note that depending on 831 * architecture, the value which we need to return back to the 832 * lazy binding trampoline may or may not be the target 833 * address. The value returned from reloc_jmpslot() is the value 834 * that the trampoline needs. 835 */ 836 target = reloc_jmpslot(where, target, defobj, obj, rel); 837 lock_release(rtld_bind_lock, &lockstate); 838 return target; 839 } 840 841 /* 842 * Error reporting function. Use it like printf. If formats the message 843 * into a buffer, and sets things up so that the next call to dlerror() 844 * will return the message. 845 */ 846 void 847 _rtld_error(const char *fmt, ...) 848 { 849 static char buf[512]; 850 va_list ap; 851 852 va_start(ap, fmt); 853 rtld_vsnprintf(buf, sizeof buf, fmt, ap); 854 error_message = buf; 855 va_end(ap); 856 LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message); 857 } 858 859 /* 860 * Return a dynamically-allocated copy of the current error message, if any. 861 */ 862 static char * 863 errmsg_save(void) 864 { 865 return error_message == NULL ? NULL : xstrdup(error_message); 866 } 867 868 /* 869 * Restore the current error message from a copy which was previously saved 870 * by errmsg_save(). The copy is freed. 871 */ 872 static void 873 errmsg_restore(char *saved_msg) 874 { 875 if (saved_msg == NULL) 876 error_message = NULL; 877 else { 878 _rtld_error("%s", saved_msg); 879 free(saved_msg); 880 } 881 } 882 883 static const char * 884 basename(const char *name) 885 { 886 const char *p = strrchr(name, '/'); 887 return p != NULL ? p + 1 : name; 888 } 889 890 static struct utsname uts; 891 892 static char * 893 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, 894 const char *subst, bool may_free) 895 { 896 char *p, *p1, *res, *resp; 897 int subst_len, kw_len, subst_count, old_len, new_len; 898 899 kw_len = strlen(kw); 900 901 /* 902 * First, count the number of the keyword occurrences, to 903 * preallocate the final string. 904 */ 905 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { 906 p1 = strstr(p, kw); 907 if (p1 == NULL) 908 break; 909 } 910 911 /* 912 * If the keyword is not found, just return. 913 * 914 * Return non-substituted string if resolution failed. We 915 * cannot do anything more reasonable, the failure mode of the 916 * caller is unresolved library anyway. 917 */ 918 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj))) 919 return (may_free ? real : xstrdup(real)); 920 if (obj != NULL) 921 subst = obj->origin_path; 922 923 /* 924 * There is indeed something to substitute. Calculate the 925 * length of the resulting string, and allocate it. 926 */ 927 subst_len = strlen(subst); 928 old_len = strlen(real); 929 new_len = old_len + (subst_len - kw_len) * subst_count; 930 res = xmalloc(new_len + 1); 931 932 /* 933 * Now, execute the substitution loop. 934 */ 935 for (p = real, resp = res, *resp = '\0';;) { 936 p1 = strstr(p, kw); 937 if (p1 != NULL) { 938 /* Copy the prefix before keyword. */ 939 memcpy(resp, p, p1 - p); 940 resp += p1 - p; 941 /* Keyword replacement. */ 942 memcpy(resp, subst, subst_len); 943 resp += subst_len; 944 *resp = '\0'; 945 p = p1 + kw_len; 946 } else 947 break; 948 } 949 950 /* Copy to the end of string and finish. */ 951 strcat(resp, p); 952 if (may_free) 953 free(real); 954 return (res); 955 } 956 957 static char * 958 origin_subst(Obj_Entry *obj, const char *real) 959 { 960 char *res1, *res2, *res3, *res4; 961 962 if (obj == NULL || !trust) 963 return (xstrdup(real)); 964 if (uts.sysname[0] == '\0') { 965 if (uname(&uts) != 0) { 966 _rtld_error("utsname failed: %d", errno); 967 return (NULL); 968 } 969 } 970 /* __DECONST is safe here since without may_free real is unchanged */ 971 res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL, 972 false); 973 res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true); 974 res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true); 975 res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true); 976 return (res4); 977 } 978 979 void 980 rtld_die(void) 981 { 982 const char *msg = dlerror(); 983 984 if (msg == NULL) 985 msg = "Fatal error"; 986 rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": "); 987 rtld_fdputstr(STDERR_FILENO, msg); 988 rtld_fdputchar(STDERR_FILENO, '\n'); 989 _exit(1); 990 } 991 992 /* 993 * Process a shared object's DYNAMIC section, and save the important 994 * information in its Obj_Entry structure. 995 */ 996 static void 997 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, 998 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) 999 { 1000 const Elf_Dyn *dynp; 1001 Needed_Entry **needed_tail = &obj->needed; 1002 Needed_Entry **needed_filtees_tail = &obj->needed_filtees; 1003 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; 1004 const Elf_Hashelt *hashtab; 1005 const Elf32_Word *hashval; 1006 Elf32_Word bkt, nmaskwords; 1007 int bloom_size32; 1008 int plttype = DT_REL; 1009 1010 *dyn_rpath = NULL; 1011 *dyn_soname = NULL; 1012 *dyn_runpath = NULL; 1013 1014 obj->bind_now = false; 1015 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 1016 switch (dynp->d_tag) { 1017 1018 case DT_REL: 1019 obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr); 1020 break; 1021 1022 case DT_RELSZ: 1023 obj->relsize = dynp->d_un.d_val; 1024 break; 1025 1026 case DT_RELENT: 1027 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 1028 break; 1029 1030 case DT_JMPREL: 1031 obj->pltrel = (const Elf_Rel *) 1032 (obj->relocbase + dynp->d_un.d_ptr); 1033 break; 1034 1035 case DT_PLTRELSZ: 1036 obj->pltrelsize = dynp->d_un.d_val; 1037 break; 1038 1039 case DT_RELA: 1040 obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr); 1041 break; 1042 1043 case DT_RELASZ: 1044 obj->relasize = dynp->d_un.d_val; 1045 break; 1046 1047 case DT_RELAENT: 1048 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 1049 break; 1050 1051 case DT_PLTREL: 1052 plttype = dynp->d_un.d_val; 1053 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 1054 break; 1055 1056 case DT_SYMTAB: 1057 obj->symtab = (const Elf_Sym *) 1058 (obj->relocbase + dynp->d_un.d_ptr); 1059 break; 1060 1061 case DT_SYMENT: 1062 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 1063 break; 1064 1065 case DT_STRTAB: 1066 obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr); 1067 break; 1068 1069 case DT_STRSZ: 1070 obj->strsize = dynp->d_un.d_val; 1071 break; 1072 1073 case DT_VERNEED: 1074 obj->verneed = (const Elf_Verneed *)(obj->relocbase + 1075 dynp->d_un.d_val); 1076 break; 1077 1078 case DT_VERNEEDNUM: 1079 obj->verneednum = dynp->d_un.d_val; 1080 break; 1081 1082 case DT_VERDEF: 1083 obj->verdef = (const Elf_Verdef *)(obj->relocbase + 1084 dynp->d_un.d_val); 1085 break; 1086 1087 case DT_VERDEFNUM: 1088 obj->verdefnum = dynp->d_un.d_val; 1089 break; 1090 1091 case DT_VERSYM: 1092 obj->versyms = (const Elf_Versym *)(obj->relocbase + 1093 dynp->d_un.d_val); 1094 break; 1095 1096 case DT_HASH: 1097 { 1098 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1099 dynp->d_un.d_ptr); 1100 obj->nbuckets = hashtab[0]; 1101 obj->nchains = hashtab[1]; 1102 obj->buckets = hashtab + 2; 1103 obj->chains = obj->buckets + obj->nbuckets; 1104 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && 1105 obj->buckets != NULL; 1106 } 1107 break; 1108 1109 case DT_GNU_HASH: 1110 { 1111 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1112 dynp->d_un.d_ptr); 1113 obj->nbuckets_gnu = hashtab[0]; 1114 obj->symndx_gnu = hashtab[1]; 1115 nmaskwords = hashtab[2]; 1116 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; 1117 obj->maskwords_bm_gnu = nmaskwords - 1; 1118 obj->shift2_gnu = hashtab[3]; 1119 obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4); 1120 obj->buckets_gnu = hashtab + 4 + bloom_size32; 1121 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - 1122 obj->symndx_gnu; 1123 /* Number of bitmask words is required to be power of 2 */ 1124 obj->valid_hash_gnu = powerof2(nmaskwords) && 1125 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; 1126 } 1127 break; 1128 1129 case DT_NEEDED: 1130 if (!obj->rtld) { 1131 Needed_Entry *nep = NEW(Needed_Entry); 1132 nep->name = dynp->d_un.d_val; 1133 nep->obj = NULL; 1134 nep->next = NULL; 1135 1136 *needed_tail = nep; 1137 needed_tail = &nep->next; 1138 } 1139 break; 1140 1141 case DT_FILTER: 1142 if (!obj->rtld) { 1143 Needed_Entry *nep = NEW(Needed_Entry); 1144 nep->name = dynp->d_un.d_val; 1145 nep->obj = NULL; 1146 nep->next = NULL; 1147 1148 *needed_filtees_tail = nep; 1149 needed_filtees_tail = &nep->next; 1150 } 1151 break; 1152 1153 case DT_AUXILIARY: 1154 if (!obj->rtld) { 1155 Needed_Entry *nep = NEW(Needed_Entry); 1156 nep->name = dynp->d_un.d_val; 1157 nep->obj = NULL; 1158 nep->next = NULL; 1159 1160 *needed_aux_filtees_tail = nep; 1161 needed_aux_filtees_tail = &nep->next; 1162 } 1163 break; 1164 1165 case DT_PLTGOT: 1166 obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr); 1167 break; 1168 1169 case DT_TEXTREL: 1170 obj->textrel = true; 1171 break; 1172 1173 case DT_SYMBOLIC: 1174 obj->symbolic = true; 1175 break; 1176 1177 case DT_RPATH: 1178 /* 1179 * We have to wait until later to process this, because we 1180 * might not have gotten the address of the string table yet. 1181 */ 1182 *dyn_rpath = dynp; 1183 break; 1184 1185 case DT_SONAME: 1186 *dyn_soname = dynp; 1187 break; 1188 1189 case DT_RUNPATH: 1190 *dyn_runpath = dynp; 1191 break; 1192 1193 case DT_INIT: 1194 obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1195 break; 1196 1197 case DT_PREINIT_ARRAY: 1198 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1199 break; 1200 1201 case DT_PREINIT_ARRAYSZ: 1202 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1203 break; 1204 1205 case DT_INIT_ARRAY: 1206 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1207 break; 1208 1209 case DT_INIT_ARRAYSZ: 1210 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1211 break; 1212 1213 case DT_FINI: 1214 obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1215 break; 1216 1217 case DT_FINI_ARRAY: 1218 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1219 break; 1220 1221 case DT_FINI_ARRAYSZ: 1222 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1223 break; 1224 1225 /* 1226 * Don't process DT_DEBUG on MIPS as the dynamic section 1227 * is mapped read-only. DT_MIPS_RLD_MAP is used instead. 1228 */ 1229 1230 #ifndef __mips__ 1231 case DT_DEBUG: 1232 if (!early) 1233 dbg("Filling in DT_DEBUG entry"); 1234 (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug; 1235 break; 1236 #endif 1237 1238 case DT_FLAGS: 1239 if (dynp->d_un.d_val & DF_ORIGIN) 1240 obj->z_origin = true; 1241 if (dynp->d_un.d_val & DF_SYMBOLIC) 1242 obj->symbolic = true; 1243 if (dynp->d_un.d_val & DF_TEXTREL) 1244 obj->textrel = true; 1245 if (dynp->d_un.d_val & DF_BIND_NOW) 1246 obj->bind_now = true; 1247 /*if (dynp->d_un.d_val & DF_STATIC_TLS) 1248 ;*/ 1249 break; 1250 #ifdef __mips__ 1251 case DT_MIPS_LOCAL_GOTNO: 1252 obj->local_gotno = dynp->d_un.d_val; 1253 break; 1254 1255 case DT_MIPS_SYMTABNO: 1256 obj->symtabno = dynp->d_un.d_val; 1257 break; 1258 1259 case DT_MIPS_GOTSYM: 1260 obj->gotsym = dynp->d_un.d_val; 1261 break; 1262 1263 case DT_MIPS_RLD_MAP: 1264 *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug; 1265 break; 1266 1267 case DT_MIPS_PLTGOT: 1268 obj->mips_pltgot = (Elf_Addr *)(obj->relocbase + 1269 dynp->d_un.d_ptr); 1270 break; 1271 1272 #endif 1273 1274 #ifdef __powerpc64__ 1275 case DT_PPC64_GLINK: 1276 obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1277 break; 1278 #endif 1279 1280 case DT_FLAGS_1: 1281 if (dynp->d_un.d_val & DF_1_NOOPEN) 1282 obj->z_noopen = true; 1283 if (dynp->d_un.d_val & DF_1_ORIGIN) 1284 obj->z_origin = true; 1285 if (dynp->d_un.d_val & DF_1_GLOBAL) 1286 obj->z_global = true; 1287 if (dynp->d_un.d_val & DF_1_BIND_NOW) 1288 obj->bind_now = true; 1289 if (dynp->d_un.d_val & DF_1_NODELETE) 1290 obj->z_nodelete = true; 1291 if (dynp->d_un.d_val & DF_1_LOADFLTR) 1292 obj->z_loadfltr = true; 1293 if (dynp->d_un.d_val & DF_1_INTERPOSE) 1294 obj->z_interpose = true; 1295 if (dynp->d_un.d_val & DF_1_NODEFLIB) 1296 obj->z_nodeflib = true; 1297 break; 1298 1299 default: 1300 if (!early) { 1301 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 1302 (long)dynp->d_tag); 1303 } 1304 break; 1305 } 1306 } 1307 1308 obj->traced = false; 1309 1310 if (plttype == DT_RELA) { 1311 obj->pltrela = (const Elf_Rela *) obj->pltrel; 1312 obj->pltrel = NULL; 1313 obj->pltrelasize = obj->pltrelsize; 1314 obj->pltrelsize = 0; 1315 } 1316 1317 /* Determine size of dynsym table (equal to nchains of sysv hash) */ 1318 if (obj->valid_hash_sysv) 1319 obj->dynsymcount = obj->nchains; 1320 else if (obj->valid_hash_gnu) { 1321 obj->dynsymcount = 0; 1322 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { 1323 if (obj->buckets_gnu[bkt] == 0) 1324 continue; 1325 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; 1326 do 1327 obj->dynsymcount++; 1328 while ((*hashval++ & 1u) == 0); 1329 } 1330 obj->dynsymcount += obj->symndx_gnu; 1331 } 1332 } 1333 1334 static bool 1335 obj_resolve_origin(Obj_Entry *obj) 1336 { 1337 1338 if (obj->origin_path != NULL) 1339 return (true); 1340 obj->origin_path = xmalloc(PATH_MAX); 1341 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1); 1342 } 1343 1344 static void 1345 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, 1346 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) 1347 { 1348 1349 if (obj->z_origin && !obj_resolve_origin(obj)) 1350 rtld_die(); 1351 1352 if (dyn_runpath != NULL) { 1353 obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val; 1354 obj->runpath = origin_subst(obj, obj->runpath); 1355 } else if (dyn_rpath != NULL) { 1356 obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val; 1357 obj->rpath = origin_subst(obj, obj->rpath); 1358 } 1359 if (dyn_soname != NULL) 1360 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); 1361 } 1362 1363 static void 1364 digest_dynamic(Obj_Entry *obj, int early) 1365 { 1366 const Elf_Dyn *dyn_rpath; 1367 const Elf_Dyn *dyn_soname; 1368 const Elf_Dyn *dyn_runpath; 1369 1370 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); 1371 digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath); 1372 } 1373 1374 /* 1375 * Process a shared object's program header. This is used only for the 1376 * main program, when the kernel has already loaded the main program 1377 * into memory before calling the dynamic linker. It creates and 1378 * returns an Obj_Entry structure. 1379 */ 1380 static Obj_Entry * 1381 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 1382 { 1383 Obj_Entry *obj; 1384 const Elf_Phdr *phlimit = phdr + phnum; 1385 const Elf_Phdr *ph; 1386 Elf_Addr note_start, note_end; 1387 int nsegs = 0; 1388 1389 obj = obj_new(); 1390 for (ph = phdr; ph < phlimit; ph++) { 1391 if (ph->p_type != PT_PHDR) 1392 continue; 1393 1394 obj->phdr = phdr; 1395 obj->phsize = ph->p_memsz; 1396 obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr; 1397 break; 1398 } 1399 1400 obj->stack_flags = PF_X | PF_R | PF_W; 1401 1402 for (ph = phdr; ph < phlimit; ph++) { 1403 switch (ph->p_type) { 1404 1405 case PT_INTERP: 1406 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); 1407 break; 1408 1409 case PT_LOAD: 1410 if (nsegs == 0) { /* First load segment */ 1411 obj->vaddrbase = trunc_page(ph->p_vaddr); 1412 obj->mapbase = obj->vaddrbase + obj->relocbase; 1413 } else { /* Last load segment */ 1414 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 1415 obj->vaddrbase; 1416 } 1417 nsegs++; 1418 break; 1419 1420 case PT_DYNAMIC: 1421 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); 1422 break; 1423 1424 case PT_TLS: 1425 obj->tlsindex = 1; 1426 obj->tlssize = ph->p_memsz; 1427 obj->tlsalign = ph->p_align; 1428 obj->tlsinitsize = ph->p_filesz; 1429 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); 1430 break; 1431 1432 case PT_GNU_STACK: 1433 obj->stack_flags = ph->p_flags; 1434 break; 1435 1436 case PT_GNU_RELRO: 1437 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr); 1438 obj->relro_size = round_page(ph->p_memsz); 1439 break; 1440 1441 case PT_NOTE: 1442 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; 1443 note_end = note_start + ph->p_filesz; 1444 digest_notes(obj, note_start, note_end); 1445 break; 1446 } 1447 } 1448 if (nsegs < 1) { 1449 _rtld_error("%s: too few PT_LOAD segments", path); 1450 return NULL; 1451 } 1452 1453 obj->entry = entry; 1454 return obj; 1455 } 1456 1457 void 1458 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) 1459 { 1460 const Elf_Note *note; 1461 const char *note_name; 1462 uintptr_t p; 1463 1464 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; 1465 note = (const Elf_Note *)((const char *)(note + 1) + 1466 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1467 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { 1468 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || 1469 note->n_descsz != sizeof(int32_t)) 1470 continue; 1471 if (note->n_type != NT_FREEBSD_ABI_TAG && 1472 note->n_type != NT_FREEBSD_NOINIT_TAG) 1473 continue; 1474 note_name = (const char *)(note + 1); 1475 if (strncmp(NOTE_FREEBSD_VENDOR, note_name, 1476 sizeof(NOTE_FREEBSD_VENDOR)) != 0) 1477 continue; 1478 switch (note->n_type) { 1479 case NT_FREEBSD_ABI_TAG: 1480 /* FreeBSD osrel note */ 1481 p = (uintptr_t)(note + 1); 1482 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 1483 obj->osrel = *(const int32_t *)(p); 1484 dbg("note osrel %d", obj->osrel); 1485 break; 1486 case NT_FREEBSD_NOINIT_TAG: 1487 /* FreeBSD 'crt does not call init' note */ 1488 obj->crt_no_init = true; 1489 dbg("note crt_no_init"); 1490 break; 1491 } 1492 } 1493 } 1494 1495 static Obj_Entry * 1496 dlcheck(void *handle) 1497 { 1498 Obj_Entry *obj; 1499 1500 TAILQ_FOREACH(obj, &obj_list, next) { 1501 if (obj == (Obj_Entry *) handle) 1502 break; 1503 } 1504 1505 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 1506 _rtld_error("Invalid shared object handle %p", handle); 1507 return NULL; 1508 } 1509 return obj; 1510 } 1511 1512 /* 1513 * If the given object is already in the donelist, return true. Otherwise 1514 * add the object to the list and return false. 1515 */ 1516 static bool 1517 donelist_check(DoneList *dlp, const Obj_Entry *obj) 1518 { 1519 unsigned int i; 1520 1521 for (i = 0; i < dlp->num_used; i++) 1522 if (dlp->objs[i] == obj) 1523 return true; 1524 /* 1525 * Our donelist allocation should always be sufficient. But if 1526 * our threads locking isn't working properly, more shared objects 1527 * could have been loaded since we allocated the list. That should 1528 * never happen, but we'll handle it properly just in case it does. 1529 */ 1530 if (dlp->num_used < dlp->num_alloc) 1531 dlp->objs[dlp->num_used++] = obj; 1532 return false; 1533 } 1534 1535 /* 1536 * Hash function for symbol table lookup. Don't even think about changing 1537 * this. It is specified by the System V ABI. 1538 */ 1539 unsigned long 1540 elf_hash(const char *name) 1541 { 1542 const unsigned char *p = (const unsigned char *) name; 1543 unsigned long h = 0; 1544 unsigned long g; 1545 1546 while (*p != '\0') { 1547 h = (h << 4) + *p++; 1548 if ((g = h & 0xf0000000) != 0) 1549 h ^= g >> 24; 1550 h &= ~g; 1551 } 1552 return h; 1553 } 1554 1555 /* 1556 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits 1557 * unsigned in case it's implemented with a wider type. 1558 */ 1559 static uint32_t 1560 gnu_hash(const char *s) 1561 { 1562 uint32_t h; 1563 unsigned char c; 1564 1565 h = 5381; 1566 for (c = *s; c != '\0'; c = *++s) 1567 h = h * 33 + c; 1568 return (h & 0xffffffff); 1569 } 1570 1571 1572 /* 1573 * Find the library with the given name, and return its full pathname. 1574 * The returned string is dynamically allocated. Generates an error 1575 * message and returns NULL if the library cannot be found. 1576 * 1577 * If the second argument is non-NULL, then it refers to an already- 1578 * loaded shared object, whose library search path will be searched. 1579 * 1580 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its 1581 * descriptor (which is close-on-exec) will be passed out via the third 1582 * argument. 1583 * 1584 * The search order is: 1585 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) 1586 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) 1587 * LD_LIBRARY_PATH 1588 * DT_RUNPATH in the referencing file 1589 * ldconfig hints (if -z nodefaultlib, filter out default library directories 1590 * from list) 1591 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib 1592 * 1593 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. 1594 */ 1595 static char * 1596 find_library(const char *xname, const Obj_Entry *refobj, int *fdp) 1597 { 1598 char *pathname, *refobj_path; 1599 const char *name; 1600 bool nodeflib, objgiven; 1601 1602 objgiven = refobj != NULL; 1603 1604 if (libmap_disable || !objgiven || 1605 (name = lm_find(refobj->path, xname)) == NULL) 1606 name = xname; 1607 1608 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 1609 if (name[0] != '/' && !trust) { 1610 _rtld_error("Absolute pathname required " 1611 "for shared object \"%s\"", name); 1612 return (NULL); 1613 } 1614 return (origin_subst(__DECONST(Obj_Entry *, refobj), 1615 __DECONST(char *, name))); 1616 } 1617 1618 dbg(" Searching for \"%s\"", name); 1619 refobj_path = objgiven ? refobj->path : NULL; 1620 1621 /* 1622 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall 1623 * back to pre-conforming behaviour if user requested so with 1624 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z 1625 * nodeflib. 1626 */ 1627 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { 1628 pathname = search_library_path(name, ld_library_path, 1629 refobj_path, fdp); 1630 if (pathname != NULL) 1631 return (pathname); 1632 if (refobj != NULL) { 1633 pathname = search_library_path(name, refobj->rpath, 1634 refobj_path, fdp); 1635 if (pathname != NULL) 1636 return (pathname); 1637 } 1638 pathname = search_library_pathfds(name, ld_library_dirs, fdp); 1639 if (pathname != NULL) 1640 return (pathname); 1641 pathname = search_library_path(name, gethints(false), 1642 refobj_path, fdp); 1643 if (pathname != NULL) 1644 return (pathname); 1645 pathname = search_library_path(name, ld_standard_library_path, 1646 refobj_path, fdp); 1647 if (pathname != NULL) 1648 return (pathname); 1649 } else { 1650 nodeflib = objgiven ? refobj->z_nodeflib : false; 1651 if (objgiven) { 1652 pathname = search_library_path(name, refobj->rpath, 1653 refobj->path, fdp); 1654 if (pathname != NULL) 1655 return (pathname); 1656 } 1657 if (objgiven && refobj->runpath == NULL && refobj != obj_main) { 1658 pathname = search_library_path(name, obj_main->rpath, 1659 refobj_path, fdp); 1660 if (pathname != NULL) 1661 return (pathname); 1662 } 1663 pathname = search_library_path(name, ld_library_path, 1664 refobj_path, fdp); 1665 if (pathname != NULL) 1666 return (pathname); 1667 if (objgiven) { 1668 pathname = search_library_path(name, refobj->runpath, 1669 refobj_path, fdp); 1670 if (pathname != NULL) 1671 return (pathname); 1672 } 1673 pathname = search_library_pathfds(name, ld_library_dirs, fdp); 1674 if (pathname != NULL) 1675 return (pathname); 1676 pathname = search_library_path(name, gethints(nodeflib), 1677 refobj_path, fdp); 1678 if (pathname != NULL) 1679 return (pathname); 1680 if (objgiven && !nodeflib) { 1681 pathname = search_library_path(name, 1682 ld_standard_library_path, refobj_path, fdp); 1683 if (pathname != NULL) 1684 return (pathname); 1685 } 1686 } 1687 1688 if (objgiven && refobj->path != NULL) { 1689 _rtld_error("Shared object \"%s\" not found, " 1690 "required by \"%s\"", name, basename(refobj->path)); 1691 } else { 1692 _rtld_error("Shared object \"%s\" not found", name); 1693 } 1694 return (NULL); 1695 } 1696 1697 /* 1698 * Given a symbol number in a referencing object, find the corresponding 1699 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1700 * no definition was found. Returns a pointer to the Obj_Entry of the 1701 * defining object via the reference parameter DEFOBJ_OUT. 1702 */ 1703 const Elf_Sym * 1704 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 1705 const Obj_Entry **defobj_out, int flags, SymCache *cache, 1706 RtldLockState *lockstate) 1707 { 1708 const Elf_Sym *ref; 1709 const Elf_Sym *def; 1710 const Obj_Entry *defobj; 1711 const Ver_Entry *ve; 1712 SymLook req; 1713 const char *name; 1714 int res; 1715 1716 /* 1717 * If we have already found this symbol, get the information from 1718 * the cache. 1719 */ 1720 if (symnum >= refobj->dynsymcount) 1721 return NULL; /* Bad object */ 1722 if (cache != NULL && cache[symnum].sym != NULL) { 1723 *defobj_out = cache[symnum].obj; 1724 return cache[symnum].sym; 1725 } 1726 1727 ref = refobj->symtab + symnum; 1728 name = refobj->strtab + ref->st_name; 1729 def = NULL; 1730 defobj = NULL; 1731 ve = NULL; 1732 1733 /* 1734 * We don't have to do a full scale lookup if the symbol is local. 1735 * We know it will bind to the instance in this load module; to 1736 * which we already have a pointer (ie ref). By not doing a lookup, 1737 * we not only improve performance, but it also avoids unresolvable 1738 * symbols when local symbols are not in the hash table. This has 1739 * been seen with the ia64 toolchain. 1740 */ 1741 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 1742 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 1743 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 1744 symnum); 1745 } 1746 symlook_init(&req, name); 1747 req.flags = flags; 1748 ve = req.ventry = fetch_ventry(refobj, symnum); 1749 req.lockstate = lockstate; 1750 res = symlook_default(&req, refobj); 1751 if (res == 0) { 1752 def = req.sym_out; 1753 defobj = req.defobj_out; 1754 } 1755 } else { 1756 def = ref; 1757 defobj = refobj; 1758 } 1759 1760 /* 1761 * If we found no definition and the reference is weak, treat the 1762 * symbol as having the value zero. 1763 */ 1764 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 1765 def = &sym_zero; 1766 defobj = obj_main; 1767 } 1768 1769 if (def != NULL) { 1770 *defobj_out = defobj; 1771 /* Record the information in the cache to avoid subsequent lookups. */ 1772 if (cache != NULL) { 1773 cache[symnum].sym = def; 1774 cache[symnum].obj = defobj; 1775 } 1776 } else { 1777 if (refobj != &obj_rtld) 1778 _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name, 1779 ve != NULL ? "@" : "", ve != NULL ? ve->name : ""); 1780 } 1781 return def; 1782 } 1783 1784 /* 1785 * Return the search path from the ldconfig hints file, reading it if 1786 * necessary. If nostdlib is true, then the default search paths are 1787 * not added to result. 1788 * 1789 * Returns NULL if there are problems with the hints file, 1790 * or if the search path there is empty. 1791 */ 1792 static const char * 1793 gethints(bool nostdlib) 1794 { 1795 static char *filtered_path; 1796 static const char *hints; 1797 static struct elfhints_hdr hdr; 1798 struct fill_search_info_args sargs, hargs; 1799 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; 1800 struct dl_serpath *SLPpath, *hintpath; 1801 char *p; 1802 struct stat hint_stat; 1803 unsigned int SLPndx, hintndx, fndx, fcount; 1804 int fd; 1805 size_t flen; 1806 uint32_t dl; 1807 bool skip; 1808 1809 /* First call, read the hints file */ 1810 if (hints == NULL) { 1811 /* Keep from trying again in case the hints file is bad. */ 1812 hints = ""; 1813 1814 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) 1815 return (NULL); 1816 1817 /* 1818 * Check of hdr.dirlistlen value against type limit 1819 * intends to pacify static analyzers. Further 1820 * paranoia leads to checks that dirlist is fully 1821 * contained in the file range. 1822 */ 1823 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 1824 hdr.magic != ELFHINTS_MAGIC || 1825 hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 || 1826 fstat(fd, &hint_stat) == -1) { 1827 cleanup1: 1828 close(fd); 1829 hdr.dirlistlen = 0; 1830 return (NULL); 1831 } 1832 dl = hdr.strtab; 1833 if (dl + hdr.dirlist < dl) 1834 goto cleanup1; 1835 dl += hdr.dirlist; 1836 if (dl + hdr.dirlistlen < dl) 1837 goto cleanup1; 1838 dl += hdr.dirlistlen; 1839 if (dl > hint_stat.st_size) 1840 goto cleanup1; 1841 p = xmalloc(hdr.dirlistlen + 1); 1842 if (pread(fd, p, hdr.dirlistlen + 1, 1843 hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 || 1844 p[hdr.dirlistlen] != '\0') { 1845 free(p); 1846 goto cleanup1; 1847 } 1848 hints = p; 1849 close(fd); 1850 } 1851 1852 /* 1853 * If caller agreed to receive list which includes the default 1854 * paths, we are done. Otherwise, if we still did not 1855 * calculated filtered result, do it now. 1856 */ 1857 if (!nostdlib) 1858 return (hints[0] != '\0' ? hints : NULL); 1859 if (filtered_path != NULL) 1860 goto filt_ret; 1861 1862 /* 1863 * Obtain the list of all configured search paths, and the 1864 * list of the default paths. 1865 * 1866 * First estimate the size of the results. 1867 */ 1868 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1869 smeta.dls_cnt = 0; 1870 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1871 hmeta.dls_cnt = 0; 1872 1873 sargs.request = RTLD_DI_SERINFOSIZE; 1874 sargs.serinfo = &smeta; 1875 hargs.request = RTLD_DI_SERINFOSIZE; 1876 hargs.serinfo = &hmeta; 1877 1878 path_enumerate(ld_standard_library_path, fill_search_info, NULL, 1879 &sargs); 1880 path_enumerate(hints, fill_search_info, NULL, &hargs); 1881 1882 SLPinfo = xmalloc(smeta.dls_size); 1883 hintinfo = xmalloc(hmeta.dls_size); 1884 1885 /* 1886 * Next fetch both sets of paths. 1887 */ 1888 sargs.request = RTLD_DI_SERINFO; 1889 sargs.serinfo = SLPinfo; 1890 sargs.serpath = &SLPinfo->dls_serpath[0]; 1891 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; 1892 1893 hargs.request = RTLD_DI_SERINFO; 1894 hargs.serinfo = hintinfo; 1895 hargs.serpath = &hintinfo->dls_serpath[0]; 1896 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; 1897 1898 path_enumerate(ld_standard_library_path, fill_search_info, NULL, 1899 &sargs); 1900 path_enumerate(hints, fill_search_info, NULL, &hargs); 1901 1902 /* 1903 * Now calculate the difference between two sets, by excluding 1904 * standard paths from the full set. 1905 */ 1906 fndx = 0; 1907 fcount = 0; 1908 filtered_path = xmalloc(hdr.dirlistlen + 1); 1909 hintpath = &hintinfo->dls_serpath[0]; 1910 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { 1911 skip = false; 1912 SLPpath = &SLPinfo->dls_serpath[0]; 1913 /* 1914 * Check each standard path against current. 1915 */ 1916 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { 1917 /* matched, skip the path */ 1918 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { 1919 skip = true; 1920 break; 1921 } 1922 } 1923 if (skip) 1924 continue; 1925 /* 1926 * Not matched against any standard path, add the path 1927 * to result. Separate consequtive paths with ':'. 1928 */ 1929 if (fcount > 0) { 1930 filtered_path[fndx] = ':'; 1931 fndx++; 1932 } 1933 fcount++; 1934 flen = strlen(hintpath->dls_name); 1935 strncpy((filtered_path + fndx), hintpath->dls_name, flen); 1936 fndx += flen; 1937 } 1938 filtered_path[fndx] = '\0'; 1939 1940 free(SLPinfo); 1941 free(hintinfo); 1942 1943 filt_ret: 1944 return (filtered_path[0] != '\0' ? filtered_path : NULL); 1945 } 1946 1947 static void 1948 init_dag(Obj_Entry *root) 1949 { 1950 const Needed_Entry *needed; 1951 const Objlist_Entry *elm; 1952 DoneList donelist; 1953 1954 if (root->dag_inited) 1955 return; 1956 donelist_init(&donelist); 1957 1958 /* Root object belongs to own DAG. */ 1959 objlist_push_tail(&root->dldags, root); 1960 objlist_push_tail(&root->dagmembers, root); 1961 donelist_check(&donelist, root); 1962 1963 /* 1964 * Add dependencies of root object to DAG in breadth order 1965 * by exploiting the fact that each new object get added 1966 * to the tail of the dagmembers list. 1967 */ 1968 STAILQ_FOREACH(elm, &root->dagmembers, link) { 1969 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { 1970 if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) 1971 continue; 1972 objlist_push_tail(&needed->obj->dldags, root); 1973 objlist_push_tail(&root->dagmembers, needed->obj); 1974 } 1975 } 1976 root->dag_inited = true; 1977 } 1978 1979 static void 1980 init_marker(Obj_Entry *marker) 1981 { 1982 1983 bzero(marker, sizeof(*marker)); 1984 marker->marker = true; 1985 } 1986 1987 Obj_Entry * 1988 globallist_curr(const Obj_Entry *obj) 1989 { 1990 1991 for (;;) { 1992 if (obj == NULL) 1993 return (NULL); 1994 if (!obj->marker) 1995 return (__DECONST(Obj_Entry *, obj)); 1996 obj = TAILQ_PREV(obj, obj_entry_q, next); 1997 } 1998 } 1999 2000 Obj_Entry * 2001 globallist_next(const Obj_Entry *obj) 2002 { 2003 2004 for (;;) { 2005 obj = TAILQ_NEXT(obj, next); 2006 if (obj == NULL) 2007 return (NULL); 2008 if (!obj->marker) 2009 return (__DECONST(Obj_Entry *, obj)); 2010 } 2011 } 2012 2013 /* Prevent the object from being unmapped while the bind lock is dropped. */ 2014 static void 2015 hold_object(Obj_Entry *obj) 2016 { 2017 2018 obj->holdcount++; 2019 } 2020 2021 static void 2022 unhold_object(Obj_Entry *obj) 2023 { 2024 2025 assert(obj->holdcount > 0); 2026 if (--obj->holdcount == 0 && obj->unholdfree) 2027 release_object(obj); 2028 } 2029 2030 static void 2031 process_z(Obj_Entry *root) 2032 { 2033 const Objlist_Entry *elm; 2034 Obj_Entry *obj; 2035 2036 /* 2037 * Walk over object DAG and process every dependent object 2038 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need 2039 * to grow their own DAG. 2040 * 2041 * For DF_1_GLOBAL, DAG is required for symbol lookups in 2042 * symlook_global() to work. 2043 * 2044 * For DF_1_NODELETE, the DAG should have its reference upped. 2045 */ 2046 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2047 obj = elm->obj; 2048 if (obj == NULL) 2049 continue; 2050 if (obj->z_nodelete && !obj->ref_nodel) { 2051 dbg("obj %s -z nodelete", obj->path); 2052 init_dag(obj); 2053 ref_dag(obj); 2054 obj->ref_nodel = true; 2055 } 2056 if (obj->z_global && objlist_find(&list_global, obj) == NULL) { 2057 dbg("obj %s -z global", obj->path); 2058 objlist_push_tail(&list_global, obj); 2059 init_dag(obj); 2060 } 2061 } 2062 } 2063 /* 2064 * Initialize the dynamic linker. The argument is the address at which 2065 * the dynamic linker has been mapped into memory. The primary task of 2066 * this function is to relocate the dynamic linker. 2067 */ 2068 static void 2069 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) 2070 { 2071 Obj_Entry objtmp; /* Temporary rtld object */ 2072 const Elf_Ehdr *ehdr; 2073 const Elf_Dyn *dyn_rpath; 2074 const Elf_Dyn *dyn_soname; 2075 const Elf_Dyn *dyn_runpath; 2076 2077 #ifdef RTLD_INIT_PAGESIZES_EARLY 2078 /* The page size is required by the dynamic memory allocator. */ 2079 init_pagesizes(aux_info); 2080 #endif 2081 2082 /* 2083 * Conjure up an Obj_Entry structure for the dynamic linker. 2084 * 2085 * The "path" member can't be initialized yet because string constants 2086 * cannot yet be accessed. Below we will set it correctly. 2087 */ 2088 memset(&objtmp, 0, sizeof(objtmp)); 2089 objtmp.path = NULL; 2090 objtmp.rtld = true; 2091 objtmp.mapbase = mapbase; 2092 #ifdef PIC 2093 objtmp.relocbase = mapbase; 2094 #endif 2095 2096 objtmp.dynamic = rtld_dynamic(&objtmp); 2097 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); 2098 assert(objtmp.needed == NULL); 2099 #if !defined(__mips__) 2100 /* MIPS has a bogus DT_TEXTREL. */ 2101 assert(!objtmp.textrel); 2102 #endif 2103 /* 2104 * Temporarily put the dynamic linker entry into the object list, so 2105 * that symbols can be found. 2106 */ 2107 relocate_objects(&objtmp, true, &objtmp, 0, NULL); 2108 2109 ehdr = (Elf_Ehdr *)mapbase; 2110 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff); 2111 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]); 2112 2113 /* Initialize the object list. */ 2114 TAILQ_INIT(&obj_list); 2115 2116 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 2117 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 2118 2119 #ifndef RTLD_INIT_PAGESIZES_EARLY 2120 /* The page size is required by the dynamic memory allocator. */ 2121 init_pagesizes(aux_info); 2122 #endif 2123 2124 if (aux_info[AT_OSRELDATE] != NULL) 2125 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; 2126 2127 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); 2128 2129 /* Replace the path with a dynamically allocated copy. */ 2130 obj_rtld.path = xstrdup(ld_path_rtld); 2131 2132 r_debug.r_brk = r_debug_state; 2133 r_debug.r_state = RT_CONSISTENT; 2134 } 2135 2136 /* 2137 * Retrieve the array of supported page sizes. The kernel provides the page 2138 * sizes in increasing order. 2139 */ 2140 static void 2141 init_pagesizes(Elf_Auxinfo **aux_info) 2142 { 2143 static size_t psa[MAXPAGESIZES]; 2144 int mib[2]; 2145 size_t len, size; 2146 2147 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != 2148 NULL) { 2149 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; 2150 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; 2151 } else { 2152 len = 2; 2153 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) 2154 size = sizeof(psa); 2155 else { 2156 /* As a fallback, retrieve the base page size. */ 2157 size = sizeof(psa[0]); 2158 if (aux_info[AT_PAGESZ] != NULL) { 2159 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; 2160 goto psa_filled; 2161 } else { 2162 mib[0] = CTL_HW; 2163 mib[1] = HW_PAGESIZE; 2164 len = 2; 2165 } 2166 } 2167 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { 2168 _rtld_error("sysctl for hw.pagesize(s) failed"); 2169 rtld_die(); 2170 } 2171 psa_filled: 2172 pagesizes = psa; 2173 } 2174 npagesizes = size / sizeof(pagesizes[0]); 2175 /* Discard any invalid entries at the end of the array. */ 2176 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) 2177 npagesizes--; 2178 } 2179 2180 /* 2181 * Add the init functions from a needed object list (and its recursive 2182 * needed objects) to "list". This is not used directly; it is a helper 2183 * function for initlist_add_objects(). The write lock must be held 2184 * when this function is called. 2185 */ 2186 static void 2187 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 2188 { 2189 /* Recursively process the successor needed objects. */ 2190 if (needed->next != NULL) 2191 initlist_add_neededs(needed->next, list); 2192 2193 /* Process the current needed object. */ 2194 if (needed->obj != NULL) 2195 initlist_add_objects(needed->obj, needed->obj, list); 2196 } 2197 2198 /* 2199 * Scan all of the DAGs rooted in the range of objects from "obj" to 2200 * "tail" and add their init functions to "list". This recurses over 2201 * the DAGs and ensure the proper init ordering such that each object's 2202 * needed libraries are initialized before the object itself. At the 2203 * same time, this function adds the objects to the global finalization 2204 * list "list_fini" in the opposite order. The write lock must be 2205 * held when this function is called. 2206 */ 2207 static void 2208 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list) 2209 { 2210 Obj_Entry *nobj; 2211 2212 if (obj->init_scanned || obj->init_done) 2213 return; 2214 obj->init_scanned = true; 2215 2216 /* Recursively process the successor objects. */ 2217 nobj = globallist_next(obj); 2218 if (nobj != NULL && obj != tail) 2219 initlist_add_objects(nobj, tail, list); 2220 2221 /* Recursively process the needed objects. */ 2222 if (obj->needed != NULL) 2223 initlist_add_neededs(obj->needed, list); 2224 if (obj->needed_filtees != NULL) 2225 initlist_add_neededs(obj->needed_filtees, list); 2226 if (obj->needed_aux_filtees != NULL) 2227 initlist_add_neededs(obj->needed_aux_filtees, list); 2228 2229 /* Add the object to the init list. */ 2230 if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL || 2231 obj->init_array != (Elf_Addr)NULL) 2232 objlist_push_tail(list, obj); 2233 2234 /* Add the object to the global fini list in the reverse order. */ 2235 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) 2236 && !obj->on_fini_list) { 2237 objlist_push_head(&list_fini, obj); 2238 obj->on_fini_list = true; 2239 } 2240 } 2241 2242 #ifndef FPTR_TARGET 2243 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 2244 #endif 2245 2246 static void 2247 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate) 2248 { 2249 Needed_Entry *needed, *needed1; 2250 2251 for (needed = n; needed != NULL; needed = needed->next) { 2252 if (needed->obj != NULL) { 2253 dlclose_locked(needed->obj, lockstate); 2254 needed->obj = NULL; 2255 } 2256 } 2257 for (needed = n; needed != NULL; needed = needed1) { 2258 needed1 = needed->next; 2259 free(needed); 2260 } 2261 } 2262 2263 static void 2264 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate) 2265 { 2266 2267 free_needed_filtees(obj->needed_filtees, lockstate); 2268 obj->needed_filtees = NULL; 2269 free_needed_filtees(obj->needed_aux_filtees, lockstate); 2270 obj->needed_aux_filtees = NULL; 2271 obj->filtees_loaded = false; 2272 } 2273 2274 static void 2275 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, 2276 RtldLockState *lockstate) 2277 { 2278 2279 for (; needed != NULL; needed = needed->next) { 2280 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, 2281 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | 2282 RTLD_LOCAL, lockstate); 2283 } 2284 } 2285 2286 static void 2287 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) 2288 { 2289 2290 lock_restart_for_upgrade(lockstate); 2291 if (!obj->filtees_loaded) { 2292 load_filtee1(obj, obj->needed_filtees, flags, lockstate); 2293 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); 2294 obj->filtees_loaded = true; 2295 } 2296 } 2297 2298 static int 2299 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) 2300 { 2301 Obj_Entry *obj1; 2302 2303 for (; needed != NULL; needed = needed->next) { 2304 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, 2305 flags & ~RTLD_LO_NOLOAD); 2306 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) 2307 return (-1); 2308 } 2309 return (0); 2310 } 2311 2312 /* 2313 * Given a shared object, traverse its list of needed objects, and load 2314 * each of them. Returns 0 on success. Generates an error message and 2315 * returns -1 on failure. 2316 */ 2317 static int 2318 load_needed_objects(Obj_Entry *first, int flags) 2319 { 2320 Obj_Entry *obj; 2321 2322 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 2323 if (obj->marker) 2324 continue; 2325 if (process_needed(obj, obj->needed, flags) == -1) 2326 return (-1); 2327 } 2328 return (0); 2329 } 2330 2331 static int 2332 load_preload_objects(void) 2333 { 2334 char *p = ld_preload; 2335 Obj_Entry *obj; 2336 static const char delim[] = " \t:;"; 2337 2338 if (p == NULL) 2339 return 0; 2340 2341 p += strspn(p, delim); 2342 while (*p != '\0') { 2343 size_t len = strcspn(p, delim); 2344 char savech; 2345 2346 savech = p[len]; 2347 p[len] = '\0'; 2348 obj = load_object(p, -1, NULL, 0); 2349 if (obj == NULL) 2350 return -1; /* XXX - cleanup */ 2351 obj->z_interpose = true; 2352 p[len] = savech; 2353 p += len; 2354 p += strspn(p, delim); 2355 } 2356 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); 2357 return 0; 2358 } 2359 2360 static const char * 2361 printable_path(const char *path) 2362 { 2363 2364 return (path == NULL ? "<unknown>" : path); 2365 } 2366 2367 /* 2368 * Load a shared object into memory, if it is not already loaded. The 2369 * object may be specified by name or by user-supplied file descriptor 2370 * fd_u. In the later case, the fd_u descriptor is not closed, but its 2371 * duplicate is. 2372 * 2373 * Returns a pointer to the Obj_Entry for the object. Returns NULL 2374 * on failure. 2375 */ 2376 static Obj_Entry * 2377 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) 2378 { 2379 Obj_Entry *obj; 2380 int fd; 2381 struct stat sb; 2382 char *path; 2383 2384 fd = -1; 2385 if (name != NULL) { 2386 TAILQ_FOREACH(obj, &obj_list, next) { 2387 if (obj->marker || obj->doomed) 2388 continue; 2389 if (object_match_name(obj, name)) 2390 return (obj); 2391 } 2392 2393 path = find_library(name, refobj, &fd); 2394 if (path == NULL) 2395 return (NULL); 2396 } else 2397 path = NULL; 2398 2399 if (fd >= 0) { 2400 /* 2401 * search_library_pathfds() opens a fresh file descriptor for the 2402 * library, so there is no need to dup(). 2403 */ 2404 } else if (fd_u == -1) { 2405 /* 2406 * If we didn't find a match by pathname, or the name is not 2407 * supplied, open the file and check again by device and inode. 2408 * This avoids false mismatches caused by multiple links or ".." 2409 * in pathnames. 2410 * 2411 * To avoid a race, we open the file and use fstat() rather than 2412 * using stat(). 2413 */ 2414 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) { 2415 _rtld_error("Cannot open \"%s\"", path); 2416 free(path); 2417 return (NULL); 2418 } 2419 } else { 2420 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); 2421 if (fd == -1) { 2422 _rtld_error("Cannot dup fd"); 2423 free(path); 2424 return (NULL); 2425 } 2426 } 2427 if (fstat(fd, &sb) == -1) { 2428 _rtld_error("Cannot fstat \"%s\"", printable_path(path)); 2429 close(fd); 2430 free(path); 2431 return NULL; 2432 } 2433 TAILQ_FOREACH(obj, &obj_list, next) { 2434 if (obj->marker || obj->doomed) 2435 continue; 2436 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) 2437 break; 2438 } 2439 if (obj != NULL && name != NULL) { 2440 object_add_name(obj, name); 2441 free(path); 2442 close(fd); 2443 return obj; 2444 } 2445 if (flags & RTLD_LO_NOLOAD) { 2446 free(path); 2447 close(fd); 2448 return (NULL); 2449 } 2450 2451 /* First use of this object, so we must map it in */ 2452 obj = do_load_object(fd, name, path, &sb, flags); 2453 if (obj == NULL) 2454 free(path); 2455 close(fd); 2456 2457 return obj; 2458 } 2459 2460 static Obj_Entry * 2461 do_load_object(int fd, const char *name, char *path, struct stat *sbp, 2462 int flags) 2463 { 2464 Obj_Entry *obj; 2465 struct statfs fs; 2466 2467 /* 2468 * but first, make sure that environment variables haven't been 2469 * used to circumvent the noexec flag on a filesystem. 2470 */ 2471 if (dangerous_ld_env) { 2472 if (fstatfs(fd, &fs) != 0) { 2473 _rtld_error("Cannot fstatfs \"%s\"", printable_path(path)); 2474 return NULL; 2475 } 2476 if (fs.f_flags & MNT_NOEXEC) { 2477 _rtld_error("Cannot execute objects on %s", fs.f_mntonname); 2478 return NULL; 2479 } 2480 } 2481 dbg("loading \"%s\"", printable_path(path)); 2482 obj = map_object(fd, printable_path(path), sbp); 2483 if (obj == NULL) 2484 return NULL; 2485 2486 /* 2487 * If DT_SONAME is present in the object, digest_dynamic2 already 2488 * added it to the object names. 2489 */ 2490 if (name != NULL) 2491 object_add_name(obj, name); 2492 obj->path = path; 2493 digest_dynamic(obj, 0); 2494 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, 2495 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); 2496 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == 2497 RTLD_LO_DLOPEN) { 2498 dbg("refusing to load non-loadable \"%s\"", obj->path); 2499 _rtld_error("Cannot dlopen non-loadable %s", obj->path); 2500 munmap(obj->mapbase, obj->mapsize); 2501 obj_free(obj); 2502 return (NULL); 2503 } 2504 2505 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; 2506 TAILQ_INSERT_TAIL(&obj_list, obj, next); 2507 obj_count++; 2508 obj_loads++; 2509 linkmap_add(obj); /* for GDB & dlinfo() */ 2510 max_stack_flags |= obj->stack_flags; 2511 2512 dbg(" %p .. %p: %s", obj->mapbase, 2513 obj->mapbase + obj->mapsize - 1, obj->path); 2514 if (obj->textrel) 2515 dbg(" WARNING: %s has impure text", obj->path); 2516 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 2517 obj->path); 2518 2519 return obj; 2520 } 2521 2522 static Obj_Entry * 2523 obj_from_addr(const void *addr) 2524 { 2525 Obj_Entry *obj; 2526 2527 TAILQ_FOREACH(obj, &obj_list, next) { 2528 if (obj->marker) 2529 continue; 2530 if (addr < (void *) obj->mapbase) 2531 continue; 2532 if (addr < (void *)(obj->mapbase + obj->mapsize)) 2533 return obj; 2534 } 2535 return NULL; 2536 } 2537 2538 static void 2539 preinit_main(void) 2540 { 2541 Elf_Addr *preinit_addr; 2542 int index; 2543 2544 preinit_addr = (Elf_Addr *)obj_main->preinit_array; 2545 if (preinit_addr == NULL) 2546 return; 2547 2548 for (index = 0; index < obj_main->preinit_array_num; index++) { 2549 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { 2550 dbg("calling preinit function for %s at %p", obj_main->path, 2551 (void *)preinit_addr[index]); 2552 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 2553 0, 0, obj_main->path); 2554 call_init_pointer(obj_main, preinit_addr[index]); 2555 } 2556 } 2557 } 2558 2559 /* 2560 * Call the finalization functions for each of the objects in "list" 2561 * belonging to the DAG of "root" and referenced once. If NULL "root" 2562 * is specified, every finalization function will be called regardless 2563 * of the reference count and the list elements won't be freed. All of 2564 * the objects are expected to have non-NULL fini functions. 2565 */ 2566 static void 2567 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) 2568 { 2569 Objlist_Entry *elm; 2570 char *saved_msg; 2571 Elf_Addr *fini_addr; 2572 int index; 2573 2574 assert(root == NULL || root->refcount == 1); 2575 2576 if (root != NULL) 2577 root->doomed = true; 2578 2579 /* 2580 * Preserve the current error message since a fini function might 2581 * call into the dynamic linker and overwrite it. 2582 */ 2583 saved_msg = errmsg_save(); 2584 do { 2585 STAILQ_FOREACH(elm, list, link) { 2586 if (root != NULL && (elm->obj->refcount != 1 || 2587 objlist_find(&root->dagmembers, elm->obj) == NULL)) 2588 continue; 2589 /* Remove object from fini list to prevent recursive invocation. */ 2590 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2591 /* Ensure that new references cannot be acquired. */ 2592 elm->obj->doomed = true; 2593 2594 hold_object(elm->obj); 2595 lock_release(rtld_bind_lock, lockstate); 2596 /* 2597 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. 2598 * When this happens, DT_FINI_ARRAY is processed first. 2599 */ 2600 fini_addr = (Elf_Addr *)elm->obj->fini_array; 2601 if (fini_addr != NULL && elm->obj->fini_array_num > 0) { 2602 for (index = elm->obj->fini_array_num - 1; index >= 0; 2603 index--) { 2604 if (fini_addr[index] != 0 && fini_addr[index] != 1) { 2605 dbg("calling fini function for %s at %p", 2606 elm->obj->path, (void *)fini_addr[index]); 2607 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, 2608 (void *)fini_addr[index], 0, 0, elm->obj->path); 2609 call_initfini_pointer(elm->obj, fini_addr[index]); 2610 } 2611 } 2612 } 2613 if (elm->obj->fini != (Elf_Addr)NULL) { 2614 dbg("calling fini function for %s at %p", elm->obj->path, 2615 (void *)elm->obj->fini); 2616 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 2617 0, 0, elm->obj->path); 2618 call_initfini_pointer(elm->obj, elm->obj->fini); 2619 } 2620 wlock_acquire(rtld_bind_lock, lockstate); 2621 unhold_object(elm->obj); 2622 /* No need to free anything if process is going down. */ 2623 if (root != NULL) 2624 free(elm); 2625 /* 2626 * We must restart the list traversal after every fini call 2627 * because a dlclose() call from the fini function or from 2628 * another thread might have modified the reference counts. 2629 */ 2630 break; 2631 } 2632 } while (elm != NULL); 2633 errmsg_restore(saved_msg); 2634 } 2635 2636 /* 2637 * Call the initialization functions for each of the objects in 2638 * "list". All of the objects are expected to have non-NULL init 2639 * functions. 2640 */ 2641 static void 2642 objlist_call_init(Objlist *list, RtldLockState *lockstate) 2643 { 2644 Objlist_Entry *elm; 2645 Obj_Entry *obj; 2646 char *saved_msg; 2647 Elf_Addr *init_addr; 2648 int index; 2649 2650 /* 2651 * Clean init_scanned flag so that objects can be rechecked and 2652 * possibly initialized earlier if any of vectors called below 2653 * cause the change by using dlopen. 2654 */ 2655 TAILQ_FOREACH(obj, &obj_list, next) { 2656 if (obj->marker) 2657 continue; 2658 obj->init_scanned = false; 2659 } 2660 2661 /* 2662 * Preserve the current error message since an init function might 2663 * call into the dynamic linker and overwrite it. 2664 */ 2665 saved_msg = errmsg_save(); 2666 STAILQ_FOREACH(elm, list, link) { 2667 if (elm->obj->init_done) /* Initialized early. */ 2668 continue; 2669 /* 2670 * Race: other thread might try to use this object before current 2671 * one completes the initialization. Not much can be done here 2672 * without better locking. 2673 */ 2674 elm->obj->init_done = true; 2675 hold_object(elm->obj); 2676 lock_release(rtld_bind_lock, lockstate); 2677 2678 /* 2679 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. 2680 * When this happens, DT_INIT is processed first. 2681 */ 2682 if (elm->obj->init != (Elf_Addr)NULL) { 2683 dbg("calling init function for %s at %p", elm->obj->path, 2684 (void *)elm->obj->init); 2685 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 2686 0, 0, elm->obj->path); 2687 call_initfini_pointer(elm->obj, elm->obj->init); 2688 } 2689 init_addr = (Elf_Addr *)elm->obj->init_array; 2690 if (init_addr != NULL) { 2691 for (index = 0; index < elm->obj->init_array_num; index++) { 2692 if (init_addr[index] != 0 && init_addr[index] != 1) { 2693 dbg("calling init function for %s at %p", elm->obj->path, 2694 (void *)init_addr[index]); 2695 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, 2696 (void *)init_addr[index], 0, 0, elm->obj->path); 2697 call_init_pointer(elm->obj, init_addr[index]); 2698 } 2699 } 2700 } 2701 wlock_acquire(rtld_bind_lock, lockstate); 2702 unhold_object(elm->obj); 2703 } 2704 errmsg_restore(saved_msg); 2705 } 2706 2707 static void 2708 objlist_clear(Objlist *list) 2709 { 2710 Objlist_Entry *elm; 2711 2712 while (!STAILQ_EMPTY(list)) { 2713 elm = STAILQ_FIRST(list); 2714 STAILQ_REMOVE_HEAD(list, link); 2715 free(elm); 2716 } 2717 } 2718 2719 static Objlist_Entry * 2720 objlist_find(Objlist *list, const Obj_Entry *obj) 2721 { 2722 Objlist_Entry *elm; 2723 2724 STAILQ_FOREACH(elm, list, link) 2725 if (elm->obj == obj) 2726 return elm; 2727 return NULL; 2728 } 2729 2730 static void 2731 objlist_init(Objlist *list) 2732 { 2733 STAILQ_INIT(list); 2734 } 2735 2736 static void 2737 objlist_push_head(Objlist *list, Obj_Entry *obj) 2738 { 2739 Objlist_Entry *elm; 2740 2741 elm = NEW(Objlist_Entry); 2742 elm->obj = obj; 2743 STAILQ_INSERT_HEAD(list, elm, link); 2744 } 2745 2746 static void 2747 objlist_push_tail(Objlist *list, Obj_Entry *obj) 2748 { 2749 Objlist_Entry *elm; 2750 2751 elm = NEW(Objlist_Entry); 2752 elm->obj = obj; 2753 STAILQ_INSERT_TAIL(list, elm, link); 2754 } 2755 2756 static void 2757 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) 2758 { 2759 Objlist_Entry *elm, *listelm; 2760 2761 STAILQ_FOREACH(listelm, list, link) { 2762 if (listelm->obj == listobj) 2763 break; 2764 } 2765 elm = NEW(Objlist_Entry); 2766 elm->obj = obj; 2767 if (listelm != NULL) 2768 STAILQ_INSERT_AFTER(list, listelm, elm, link); 2769 else 2770 STAILQ_INSERT_TAIL(list, elm, link); 2771 } 2772 2773 static void 2774 objlist_remove(Objlist *list, Obj_Entry *obj) 2775 { 2776 Objlist_Entry *elm; 2777 2778 if ((elm = objlist_find(list, obj)) != NULL) { 2779 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2780 free(elm); 2781 } 2782 } 2783 2784 /* 2785 * Relocate dag rooted in the specified object. 2786 * Returns 0 on success, or -1 on failure. 2787 */ 2788 2789 static int 2790 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, 2791 int flags, RtldLockState *lockstate) 2792 { 2793 Objlist_Entry *elm; 2794 int error; 2795 2796 error = 0; 2797 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2798 error = relocate_object(elm->obj, bind_now, rtldobj, flags, 2799 lockstate); 2800 if (error == -1) 2801 break; 2802 } 2803 return (error); 2804 } 2805 2806 /* 2807 * Prepare for, or clean after, relocating an object marked with 2808 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only 2809 * segments are remapped read-write. After relocations are done, the 2810 * segment's permissions are returned back to the modes specified in 2811 * the phdrs. If any relocation happened, or always for wired 2812 * program, COW is triggered. 2813 */ 2814 static int 2815 reloc_textrel_prot(Obj_Entry *obj, bool before) 2816 { 2817 const Elf_Phdr *ph; 2818 void *base; 2819 size_t l, sz; 2820 int prot; 2821 2822 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; 2823 l--, ph++) { 2824 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0) 2825 continue; 2826 base = obj->relocbase + trunc_page(ph->p_vaddr); 2827 sz = round_page(ph->p_vaddr + ph->p_filesz) - 2828 trunc_page(ph->p_vaddr); 2829 prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0); 2830 if (mprotect(base, sz, prot) == -1) { 2831 _rtld_error("%s: Cannot write-%sable text segment: %s", 2832 obj->path, before ? "en" : "dis", 2833 rtld_strerror(errno)); 2834 return (-1); 2835 } 2836 } 2837 return (0); 2838 } 2839 2840 /* 2841 * Relocate single object. 2842 * Returns 0 on success, or -1 on failure. 2843 */ 2844 static int 2845 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 2846 int flags, RtldLockState *lockstate) 2847 { 2848 2849 if (obj->relocated) 2850 return (0); 2851 obj->relocated = true; 2852 if (obj != rtldobj) 2853 dbg("relocating \"%s\"", obj->path); 2854 2855 if (obj->symtab == NULL || obj->strtab == NULL || 2856 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) { 2857 _rtld_error("%s: Shared object has no run-time symbol table", 2858 obj->path); 2859 return (-1); 2860 } 2861 2862 /* There are relocations to the write-protected text segment. */ 2863 if (obj->textrel && reloc_textrel_prot(obj, true) != 0) 2864 return (-1); 2865 2866 /* Process the non-PLT non-IFUNC relocations. */ 2867 if (reloc_non_plt(obj, rtldobj, flags, lockstate)) 2868 return (-1); 2869 2870 /* Re-protected the text segment. */ 2871 if (obj->textrel && reloc_textrel_prot(obj, false) != 0) 2872 return (-1); 2873 2874 /* Set the special PLT or GOT entries. */ 2875 init_pltgot(obj); 2876 2877 /* Process the PLT relocations. */ 2878 if (reloc_plt(obj) == -1) 2879 return (-1); 2880 /* Relocate the jump slots if we are doing immediate binding. */ 2881 if (obj->bind_now || bind_now) 2882 if (reloc_jmpslots(obj, flags, lockstate) == -1) 2883 return (-1); 2884 2885 /* 2886 * Process the non-PLT IFUNC relocations. The relocations are 2887 * processed in two phases, because IFUNC resolvers may 2888 * reference other symbols, which must be readily processed 2889 * before resolvers are called. 2890 */ 2891 if (obj->non_plt_gnu_ifunc && 2892 reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate)) 2893 return (-1); 2894 2895 if (!obj->mainprog && obj_enforce_relro(obj) == -1) 2896 return (-1); 2897 2898 /* 2899 * Set up the magic number and version in the Obj_Entry. These 2900 * were checked in the crt1.o from the original ElfKit, so we 2901 * set them for backward compatibility. 2902 */ 2903 obj->magic = RTLD_MAGIC; 2904 obj->version = RTLD_VERSION; 2905 2906 return (0); 2907 } 2908 2909 /* 2910 * Relocate newly-loaded shared objects. The argument is a pointer to 2911 * the Obj_Entry for the first such object. All objects from the first 2912 * to the end of the list of objects are relocated. Returns 0 on success, 2913 * or -1 on failure. 2914 */ 2915 static int 2916 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, 2917 int flags, RtldLockState *lockstate) 2918 { 2919 Obj_Entry *obj; 2920 int error; 2921 2922 for (error = 0, obj = first; obj != NULL; 2923 obj = TAILQ_NEXT(obj, next)) { 2924 if (obj->marker) 2925 continue; 2926 error = relocate_object(obj, bind_now, rtldobj, flags, 2927 lockstate); 2928 if (error == -1) 2929 break; 2930 } 2931 return (error); 2932 } 2933 2934 /* 2935 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots 2936 * referencing STT_GNU_IFUNC symbols is postponed till the other 2937 * relocations are done. The indirect functions specified as 2938 * ifunc are allowed to call other symbols, so we need to have 2939 * objects relocated before asking for resolution from indirects. 2940 * 2941 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, 2942 * instead of the usual lazy handling of PLT slots. It is 2943 * consistent with how GNU does it. 2944 */ 2945 static int 2946 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, 2947 RtldLockState *lockstate) 2948 { 2949 if (obj->irelative && reloc_iresolve(obj, lockstate) == -1) 2950 return (-1); 2951 if ((obj->bind_now || bind_now) && obj->gnu_ifunc && 2952 reloc_gnu_ifunc(obj, flags, lockstate) == -1) 2953 return (-1); 2954 return (0); 2955 } 2956 2957 static int 2958 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, 2959 RtldLockState *lockstate) 2960 { 2961 Obj_Entry *obj; 2962 2963 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 2964 if (obj->marker) 2965 continue; 2966 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1) 2967 return (-1); 2968 } 2969 return (0); 2970 } 2971 2972 static int 2973 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, 2974 RtldLockState *lockstate) 2975 { 2976 Objlist_Entry *elm; 2977 2978 STAILQ_FOREACH(elm, list, link) { 2979 if (resolve_object_ifunc(elm->obj, bind_now, flags, 2980 lockstate) == -1) 2981 return (-1); 2982 } 2983 return (0); 2984 } 2985 2986 /* 2987 * Cleanup procedure. It will be called (by the atexit mechanism) just 2988 * before the process exits. 2989 */ 2990 static void 2991 rtld_exit(void) 2992 { 2993 RtldLockState lockstate; 2994 2995 wlock_acquire(rtld_bind_lock, &lockstate); 2996 dbg("rtld_exit()"); 2997 objlist_call_fini(&list_fini, NULL, &lockstate); 2998 /* No need to remove the items from the list, since we are exiting. */ 2999 if (!libmap_disable) 3000 lm_fini(); 3001 lock_release(rtld_bind_lock, &lockstate); 3002 } 3003 3004 /* 3005 * Iterate over a search path, translate each element, and invoke the 3006 * callback on the result. 3007 */ 3008 static void * 3009 path_enumerate(const char *path, path_enum_proc callback, 3010 const char *refobj_path, void *arg) 3011 { 3012 const char *trans; 3013 if (path == NULL) 3014 return (NULL); 3015 3016 path += strspn(path, ":;"); 3017 while (*path != '\0') { 3018 size_t len; 3019 char *res; 3020 3021 len = strcspn(path, ":;"); 3022 trans = lm_findn(refobj_path, path, len); 3023 if (trans) 3024 res = callback(trans, strlen(trans), arg); 3025 else 3026 res = callback(path, len, arg); 3027 3028 if (res != NULL) 3029 return (res); 3030 3031 path += len; 3032 path += strspn(path, ":;"); 3033 } 3034 3035 return (NULL); 3036 } 3037 3038 struct try_library_args { 3039 const char *name; 3040 size_t namelen; 3041 char *buffer; 3042 size_t buflen; 3043 int fd; 3044 }; 3045 3046 static void * 3047 try_library_path(const char *dir, size_t dirlen, void *param) 3048 { 3049 struct try_library_args *arg; 3050 int fd; 3051 3052 arg = param; 3053 if (*dir == '/' || trust) { 3054 char *pathname; 3055 3056 if (dirlen + 1 + arg->namelen + 1 > arg->buflen) 3057 return (NULL); 3058 3059 pathname = arg->buffer; 3060 strncpy(pathname, dir, dirlen); 3061 pathname[dirlen] = '/'; 3062 strcpy(pathname + dirlen + 1, arg->name); 3063 3064 dbg(" Trying \"%s\"", pathname); 3065 fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY); 3066 if (fd >= 0) { 3067 dbg(" Opened \"%s\", fd %d", pathname, fd); 3068 pathname = xmalloc(dirlen + 1 + arg->namelen + 1); 3069 strcpy(pathname, arg->buffer); 3070 arg->fd = fd; 3071 return (pathname); 3072 } else { 3073 dbg(" Failed to open \"%s\": %s", 3074 pathname, rtld_strerror(errno)); 3075 } 3076 } 3077 return (NULL); 3078 } 3079 3080 static char * 3081 search_library_path(const char *name, const char *path, 3082 const char *refobj_path, int *fdp) 3083 { 3084 char *p; 3085 struct try_library_args arg; 3086 3087 if (path == NULL) 3088 return NULL; 3089 3090 arg.name = name; 3091 arg.namelen = strlen(name); 3092 arg.buffer = xmalloc(PATH_MAX); 3093 arg.buflen = PATH_MAX; 3094 arg.fd = -1; 3095 3096 p = path_enumerate(path, try_library_path, refobj_path, &arg); 3097 *fdp = arg.fd; 3098 3099 free(arg.buffer); 3100 3101 return (p); 3102 } 3103 3104 3105 /* 3106 * Finds the library with the given name using the directory descriptors 3107 * listed in the LD_LIBRARY_PATH_FDS environment variable. 3108 * 3109 * Returns a freshly-opened close-on-exec file descriptor for the library, 3110 * or -1 if the library cannot be found. 3111 */ 3112 static char * 3113 search_library_pathfds(const char *name, const char *path, int *fdp) 3114 { 3115 char *envcopy, *fdstr, *found, *last_token; 3116 size_t len; 3117 int dirfd, fd; 3118 3119 dbg("%s('%s', '%s', fdp)", __func__, name, path); 3120 3121 /* Don't load from user-specified libdirs into setuid binaries. */ 3122 if (!trust) 3123 return (NULL); 3124 3125 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */ 3126 if (path == NULL) 3127 return (NULL); 3128 3129 /* LD_LIBRARY_PATH_FDS only works with relative paths. */ 3130 if (name[0] == '/') { 3131 dbg("Absolute path (%s) passed to %s", name, __func__); 3132 return (NULL); 3133 } 3134 3135 /* 3136 * Use strtok_r() to walk the FD:FD:FD list. This requires a local 3137 * copy of the path, as strtok_r rewrites separator tokens 3138 * with '\0'. 3139 */ 3140 found = NULL; 3141 envcopy = xstrdup(path); 3142 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL; 3143 fdstr = strtok_r(NULL, ":", &last_token)) { 3144 dirfd = parse_integer(fdstr); 3145 if (dirfd < 0) { 3146 _rtld_error("failed to parse directory FD: '%s'", 3147 fdstr); 3148 break; 3149 } 3150 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY); 3151 if (fd >= 0) { 3152 *fdp = fd; 3153 len = strlen(fdstr) + strlen(name) + 3; 3154 found = xmalloc(len); 3155 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) { 3156 _rtld_error("error generating '%d/%s'", 3157 dirfd, name); 3158 rtld_die(); 3159 } 3160 dbg("open('%s') => %d", found, fd); 3161 break; 3162 } 3163 } 3164 free(envcopy); 3165 3166 return (found); 3167 } 3168 3169 3170 int 3171 dlclose(void *handle) 3172 { 3173 RtldLockState lockstate; 3174 int error; 3175 3176 wlock_acquire(rtld_bind_lock, &lockstate); 3177 error = dlclose_locked(handle, &lockstate); 3178 lock_release(rtld_bind_lock, &lockstate); 3179 return (error); 3180 } 3181 3182 static int 3183 dlclose_locked(void *handle, RtldLockState *lockstate) 3184 { 3185 Obj_Entry *root; 3186 3187 root = dlcheck(handle); 3188 if (root == NULL) 3189 return -1; 3190 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, 3191 root->path); 3192 3193 /* Unreference the object and its dependencies. */ 3194 root->dl_refcount--; 3195 3196 if (root->refcount == 1) { 3197 /* 3198 * The object will be no longer referenced, so we must unload it. 3199 * First, call the fini functions. 3200 */ 3201 objlist_call_fini(&list_fini, root, lockstate); 3202 3203 unref_dag(root); 3204 3205 /* Finish cleaning up the newly-unreferenced objects. */ 3206 GDB_STATE(RT_DELETE,&root->linkmap); 3207 unload_object(root, lockstate); 3208 GDB_STATE(RT_CONSISTENT,NULL); 3209 } else 3210 unref_dag(root); 3211 3212 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); 3213 return 0; 3214 } 3215 3216 char * 3217 dlerror(void) 3218 { 3219 char *msg = error_message; 3220 error_message = NULL; 3221 return msg; 3222 } 3223 3224 /* 3225 * This function is deprecated and has no effect. 3226 */ 3227 void 3228 dllockinit(void *context, 3229 void *(*_lock_create)(void *context) __unused, 3230 void (*_rlock_acquire)(void *lock) __unused, 3231 void (*_wlock_acquire)(void *lock) __unused, 3232 void (*_lock_release)(void *lock) __unused, 3233 void (*_lock_destroy)(void *lock) __unused, 3234 void (*context_destroy)(void *context)) 3235 { 3236 static void *cur_context; 3237 static void (*cur_context_destroy)(void *); 3238 3239 /* Just destroy the context from the previous call, if necessary. */ 3240 if (cur_context_destroy != NULL) 3241 cur_context_destroy(cur_context); 3242 cur_context = context; 3243 cur_context_destroy = context_destroy; 3244 } 3245 3246 void * 3247 dlopen(const char *name, int mode) 3248 { 3249 3250 return (rtld_dlopen(name, -1, mode)); 3251 } 3252 3253 void * 3254 fdlopen(int fd, int mode) 3255 { 3256 3257 return (rtld_dlopen(NULL, fd, mode)); 3258 } 3259 3260 static void * 3261 rtld_dlopen(const char *name, int fd, int mode) 3262 { 3263 RtldLockState lockstate; 3264 int lo_flags; 3265 3266 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); 3267 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 3268 if (ld_tracing != NULL) { 3269 rlock_acquire(rtld_bind_lock, &lockstate); 3270 if (sigsetjmp(lockstate.env, 0) != 0) 3271 lock_upgrade(rtld_bind_lock, &lockstate); 3272 environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate)); 3273 lock_release(rtld_bind_lock, &lockstate); 3274 } 3275 lo_flags = RTLD_LO_DLOPEN; 3276 if (mode & RTLD_NODELETE) 3277 lo_flags |= RTLD_LO_NODELETE; 3278 if (mode & RTLD_NOLOAD) 3279 lo_flags |= RTLD_LO_NOLOAD; 3280 if (ld_tracing != NULL) 3281 lo_flags |= RTLD_LO_TRACE; 3282 3283 return (dlopen_object(name, fd, obj_main, lo_flags, 3284 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); 3285 } 3286 3287 static void 3288 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate) 3289 { 3290 3291 obj->dl_refcount--; 3292 unref_dag(obj); 3293 if (obj->refcount == 0) 3294 unload_object(obj, lockstate); 3295 } 3296 3297 static Obj_Entry * 3298 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, 3299 int mode, RtldLockState *lockstate) 3300 { 3301 Obj_Entry *old_obj_tail; 3302 Obj_Entry *obj; 3303 Objlist initlist; 3304 RtldLockState mlockstate; 3305 int result; 3306 3307 objlist_init(&initlist); 3308 3309 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { 3310 wlock_acquire(rtld_bind_lock, &mlockstate); 3311 lockstate = &mlockstate; 3312 } 3313 GDB_STATE(RT_ADD,NULL); 3314 3315 old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); 3316 obj = NULL; 3317 if (name == NULL && fd == -1) { 3318 obj = obj_main; 3319 obj->refcount++; 3320 } else { 3321 obj = load_object(name, fd, refobj, lo_flags); 3322 } 3323 3324 if (obj) { 3325 obj->dl_refcount++; 3326 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 3327 objlist_push_tail(&list_global, obj); 3328 if (globallist_next(old_obj_tail) != NULL) { 3329 /* We loaded something new. */ 3330 assert(globallist_next(old_obj_tail) == obj); 3331 result = load_needed_objects(obj, 3332 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY)); 3333 init_dag(obj); 3334 ref_dag(obj); 3335 if (result != -1) 3336 result = rtld_verify_versions(&obj->dagmembers); 3337 if (result != -1 && ld_tracing) 3338 goto trace; 3339 if (result == -1 || relocate_object_dag(obj, 3340 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, 3341 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3342 lockstate) == -1) { 3343 dlopen_cleanup(obj, lockstate); 3344 obj = NULL; 3345 } else if (lo_flags & RTLD_LO_EARLY) { 3346 /* 3347 * Do not call the init functions for early loaded 3348 * filtees. The image is still not initialized enough 3349 * for them to work. 3350 * 3351 * Our object is found by the global object list and 3352 * will be ordered among all init calls done right 3353 * before transferring control to main. 3354 */ 3355 } else { 3356 /* Make list of init functions to call. */ 3357 initlist_add_objects(obj, obj, &initlist); 3358 } 3359 /* 3360 * Process all no_delete or global objects here, given 3361 * them own DAGs to prevent their dependencies from being 3362 * unloaded. This has to be done after we have loaded all 3363 * of the dependencies, so that we do not miss any. 3364 */ 3365 if (obj != NULL) 3366 process_z(obj); 3367 } else { 3368 /* 3369 * Bump the reference counts for objects on this DAG. If 3370 * this is the first dlopen() call for the object that was 3371 * already loaded as a dependency, initialize the dag 3372 * starting at it. 3373 */ 3374 init_dag(obj); 3375 ref_dag(obj); 3376 3377 if ((lo_flags & RTLD_LO_TRACE) != 0) 3378 goto trace; 3379 } 3380 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || 3381 obj->z_nodelete) && !obj->ref_nodel) { 3382 dbg("obj %s nodelete", obj->path); 3383 ref_dag(obj); 3384 obj->z_nodelete = obj->ref_nodel = true; 3385 } 3386 } 3387 3388 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, 3389 name); 3390 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 3391 3392 if (!(lo_flags & RTLD_LO_EARLY)) { 3393 map_stacks_exec(lockstate); 3394 } 3395 3396 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, 3397 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3398 lockstate) == -1) { 3399 objlist_clear(&initlist); 3400 dlopen_cleanup(obj, lockstate); 3401 if (lockstate == &mlockstate) 3402 lock_release(rtld_bind_lock, lockstate); 3403 return (NULL); 3404 } 3405 3406 if (!(lo_flags & RTLD_LO_EARLY)) { 3407 /* Call the init functions. */ 3408 objlist_call_init(&initlist, lockstate); 3409 } 3410 objlist_clear(&initlist); 3411 if (lockstate == &mlockstate) 3412 lock_release(rtld_bind_lock, lockstate); 3413 return obj; 3414 trace: 3415 trace_loaded_objects(obj); 3416 if (lockstate == &mlockstate) 3417 lock_release(rtld_bind_lock, lockstate); 3418 exit(0); 3419 } 3420 3421 static void * 3422 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, 3423 int flags) 3424 { 3425 DoneList donelist; 3426 const Obj_Entry *obj, *defobj; 3427 const Elf_Sym *def; 3428 SymLook req; 3429 RtldLockState lockstate; 3430 tls_index ti; 3431 void *sym; 3432 int res; 3433 3434 def = NULL; 3435 defobj = NULL; 3436 symlook_init(&req, name); 3437 req.ventry = ve; 3438 req.flags = flags | SYMLOOK_IN_PLT; 3439 req.lockstate = &lockstate; 3440 3441 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); 3442 rlock_acquire(rtld_bind_lock, &lockstate); 3443 if (sigsetjmp(lockstate.env, 0) != 0) 3444 lock_upgrade(rtld_bind_lock, &lockstate); 3445 if (handle == NULL || handle == RTLD_NEXT || 3446 handle == RTLD_DEFAULT || handle == RTLD_SELF) { 3447 3448 if ((obj = obj_from_addr(retaddr)) == NULL) { 3449 _rtld_error("Cannot determine caller's shared object"); 3450 lock_release(rtld_bind_lock, &lockstate); 3451 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3452 return NULL; 3453 } 3454 if (handle == NULL) { /* Just the caller's shared object. */ 3455 res = symlook_obj(&req, obj); 3456 if (res == 0) { 3457 def = req.sym_out; 3458 defobj = req.defobj_out; 3459 } 3460 } else if (handle == RTLD_NEXT || /* Objects after caller's */ 3461 handle == RTLD_SELF) { /* ... caller included */ 3462 if (handle == RTLD_NEXT) 3463 obj = globallist_next(obj); 3464 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 3465 if (obj->marker) 3466 continue; 3467 res = symlook_obj(&req, obj); 3468 if (res == 0) { 3469 if (def == NULL || 3470 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) { 3471 def = req.sym_out; 3472 defobj = req.defobj_out; 3473 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3474 break; 3475 } 3476 } 3477 } 3478 /* 3479 * Search the dynamic linker itself, and possibly resolve the 3480 * symbol from there. This is how the application links to 3481 * dynamic linker services such as dlopen. 3482 */ 3483 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3484 res = symlook_obj(&req, &obj_rtld); 3485 if (res == 0) { 3486 def = req.sym_out; 3487 defobj = req.defobj_out; 3488 } 3489 } 3490 } else { 3491 assert(handle == RTLD_DEFAULT); 3492 res = symlook_default(&req, obj); 3493 if (res == 0) { 3494 defobj = req.defobj_out; 3495 def = req.sym_out; 3496 } 3497 } 3498 } else { 3499 if ((obj = dlcheck(handle)) == NULL) { 3500 lock_release(rtld_bind_lock, &lockstate); 3501 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3502 return NULL; 3503 } 3504 3505 donelist_init(&donelist); 3506 if (obj->mainprog) { 3507 /* Handle obtained by dlopen(NULL, ...) implies global scope. */ 3508 res = symlook_global(&req, &donelist); 3509 if (res == 0) { 3510 def = req.sym_out; 3511 defobj = req.defobj_out; 3512 } 3513 /* 3514 * Search the dynamic linker itself, and possibly resolve the 3515 * symbol from there. This is how the application links to 3516 * dynamic linker services such as dlopen. 3517 */ 3518 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3519 res = symlook_obj(&req, &obj_rtld); 3520 if (res == 0) { 3521 def = req.sym_out; 3522 defobj = req.defobj_out; 3523 } 3524 } 3525 } 3526 else { 3527 /* Search the whole DAG rooted at the given object. */ 3528 res = symlook_list(&req, &obj->dagmembers, &donelist); 3529 if (res == 0) { 3530 def = req.sym_out; 3531 defobj = req.defobj_out; 3532 } 3533 } 3534 } 3535 3536 if (def != NULL) { 3537 lock_release(rtld_bind_lock, &lockstate); 3538 3539 /* 3540 * The value required by the caller is derived from the value 3541 * of the symbol. this is simply the relocated value of the 3542 * symbol. 3543 */ 3544 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 3545 sym = make_function_pointer(def, defobj); 3546 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 3547 sym = rtld_resolve_ifunc(defobj, def); 3548 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { 3549 ti.ti_module = defobj->tlsindex; 3550 ti.ti_offset = def->st_value; 3551 sym = __tls_get_addr(&ti); 3552 } else 3553 sym = defobj->relocbase + def->st_value; 3554 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); 3555 return (sym); 3556 } 3557 3558 _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "", 3559 ve != NULL ? ve->name : ""); 3560 lock_release(rtld_bind_lock, &lockstate); 3561 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3562 return NULL; 3563 } 3564 3565 void * 3566 dlsym(void *handle, const char *name) 3567 { 3568 return do_dlsym(handle, name, __builtin_return_address(0), NULL, 3569 SYMLOOK_DLSYM); 3570 } 3571 3572 dlfunc_t 3573 dlfunc(void *handle, const char *name) 3574 { 3575 union { 3576 void *d; 3577 dlfunc_t f; 3578 } rv; 3579 3580 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, 3581 SYMLOOK_DLSYM); 3582 return (rv.f); 3583 } 3584 3585 void * 3586 dlvsym(void *handle, const char *name, const char *version) 3587 { 3588 Ver_Entry ventry; 3589 3590 ventry.name = version; 3591 ventry.file = NULL; 3592 ventry.hash = elf_hash(version); 3593 ventry.flags= 0; 3594 return do_dlsym(handle, name, __builtin_return_address(0), &ventry, 3595 SYMLOOK_DLSYM); 3596 } 3597 3598 int 3599 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) 3600 { 3601 const Obj_Entry *obj; 3602 RtldLockState lockstate; 3603 3604 rlock_acquire(rtld_bind_lock, &lockstate); 3605 obj = obj_from_addr(addr); 3606 if (obj == NULL) { 3607 _rtld_error("No shared object contains address"); 3608 lock_release(rtld_bind_lock, &lockstate); 3609 return (0); 3610 } 3611 rtld_fill_dl_phdr_info(obj, phdr_info); 3612 lock_release(rtld_bind_lock, &lockstate); 3613 return (1); 3614 } 3615 3616 int 3617 dladdr(const void *addr, Dl_info *info) 3618 { 3619 const Obj_Entry *obj; 3620 const Elf_Sym *def; 3621 void *symbol_addr; 3622 unsigned long symoffset; 3623 RtldLockState lockstate; 3624 3625 rlock_acquire(rtld_bind_lock, &lockstate); 3626 obj = obj_from_addr(addr); 3627 if (obj == NULL) { 3628 _rtld_error("No shared object contains address"); 3629 lock_release(rtld_bind_lock, &lockstate); 3630 return 0; 3631 } 3632 info->dli_fname = obj->path; 3633 info->dli_fbase = obj->mapbase; 3634 info->dli_saddr = (void *)0; 3635 info->dli_sname = NULL; 3636 3637 /* 3638 * Walk the symbol list looking for the symbol whose address is 3639 * closest to the address sent in. 3640 */ 3641 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { 3642 def = obj->symtab + symoffset; 3643 3644 /* 3645 * For skip the symbol if st_shndx is either SHN_UNDEF or 3646 * SHN_COMMON. 3647 */ 3648 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 3649 continue; 3650 3651 /* 3652 * If the symbol is greater than the specified address, or if it 3653 * is further away from addr than the current nearest symbol, 3654 * then reject it. 3655 */ 3656 symbol_addr = obj->relocbase + def->st_value; 3657 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 3658 continue; 3659 3660 /* Update our idea of the nearest symbol. */ 3661 info->dli_sname = obj->strtab + def->st_name; 3662 info->dli_saddr = symbol_addr; 3663 3664 /* Exact match? */ 3665 if (info->dli_saddr == addr) 3666 break; 3667 } 3668 lock_release(rtld_bind_lock, &lockstate); 3669 return 1; 3670 } 3671 3672 int 3673 dlinfo(void *handle, int request, void *p) 3674 { 3675 const Obj_Entry *obj; 3676 RtldLockState lockstate; 3677 int error; 3678 3679 rlock_acquire(rtld_bind_lock, &lockstate); 3680 3681 if (handle == NULL || handle == RTLD_SELF) { 3682 void *retaddr; 3683 3684 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 3685 if ((obj = obj_from_addr(retaddr)) == NULL) 3686 _rtld_error("Cannot determine caller's shared object"); 3687 } else 3688 obj = dlcheck(handle); 3689 3690 if (obj == NULL) { 3691 lock_release(rtld_bind_lock, &lockstate); 3692 return (-1); 3693 } 3694 3695 error = 0; 3696 switch (request) { 3697 case RTLD_DI_LINKMAP: 3698 *((struct link_map const **)p) = &obj->linkmap; 3699 break; 3700 case RTLD_DI_ORIGIN: 3701 error = rtld_dirname(obj->path, p); 3702 break; 3703 3704 case RTLD_DI_SERINFOSIZE: 3705 case RTLD_DI_SERINFO: 3706 error = do_search_info(obj, request, (struct dl_serinfo *)p); 3707 break; 3708 3709 default: 3710 _rtld_error("Invalid request %d passed to dlinfo()", request); 3711 error = -1; 3712 } 3713 3714 lock_release(rtld_bind_lock, &lockstate); 3715 3716 return (error); 3717 } 3718 3719 static void 3720 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) 3721 { 3722 3723 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; 3724 phdr_info->dlpi_name = obj->path; 3725 phdr_info->dlpi_phdr = obj->phdr; 3726 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); 3727 phdr_info->dlpi_tls_modid = obj->tlsindex; 3728 phdr_info->dlpi_tls_data = obj->tlsinit; 3729 phdr_info->dlpi_adds = obj_loads; 3730 phdr_info->dlpi_subs = obj_loads - obj_count; 3731 } 3732 3733 int 3734 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) 3735 { 3736 struct dl_phdr_info phdr_info; 3737 Obj_Entry *obj, marker; 3738 RtldLockState bind_lockstate, phdr_lockstate; 3739 int error; 3740 3741 init_marker(&marker); 3742 error = 0; 3743 3744 wlock_acquire(rtld_phdr_lock, &phdr_lockstate); 3745 wlock_acquire(rtld_bind_lock, &bind_lockstate); 3746 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) { 3747 TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next); 3748 rtld_fill_dl_phdr_info(obj, &phdr_info); 3749 hold_object(obj); 3750 lock_release(rtld_bind_lock, &bind_lockstate); 3751 3752 error = callback(&phdr_info, sizeof phdr_info, param); 3753 3754 wlock_acquire(rtld_bind_lock, &bind_lockstate); 3755 unhold_object(obj); 3756 obj = globallist_next(&marker); 3757 TAILQ_REMOVE(&obj_list, &marker, next); 3758 if (error != 0) { 3759 lock_release(rtld_bind_lock, &bind_lockstate); 3760 lock_release(rtld_phdr_lock, &phdr_lockstate); 3761 return (error); 3762 } 3763 } 3764 3765 if (error == 0) { 3766 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); 3767 lock_release(rtld_bind_lock, &bind_lockstate); 3768 error = callback(&phdr_info, sizeof(phdr_info), param); 3769 } 3770 lock_release(rtld_phdr_lock, &phdr_lockstate); 3771 return (error); 3772 } 3773 3774 static void * 3775 fill_search_info(const char *dir, size_t dirlen, void *param) 3776 { 3777 struct fill_search_info_args *arg; 3778 3779 arg = param; 3780 3781 if (arg->request == RTLD_DI_SERINFOSIZE) { 3782 arg->serinfo->dls_cnt ++; 3783 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; 3784 } else { 3785 struct dl_serpath *s_entry; 3786 3787 s_entry = arg->serpath; 3788 s_entry->dls_name = arg->strspace; 3789 s_entry->dls_flags = arg->flags; 3790 3791 strncpy(arg->strspace, dir, dirlen); 3792 arg->strspace[dirlen] = '\0'; 3793 3794 arg->strspace += dirlen + 1; 3795 arg->serpath++; 3796 } 3797 3798 return (NULL); 3799 } 3800 3801 static int 3802 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) 3803 { 3804 struct dl_serinfo _info; 3805 struct fill_search_info_args args; 3806 3807 args.request = RTLD_DI_SERINFOSIZE; 3808 args.serinfo = &_info; 3809 3810 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 3811 _info.dls_cnt = 0; 3812 3813 path_enumerate(obj->rpath, fill_search_info, NULL, &args); 3814 path_enumerate(ld_library_path, fill_search_info, NULL, &args); 3815 path_enumerate(obj->runpath, fill_search_info, NULL, &args); 3816 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args); 3817 if (!obj->z_nodeflib) 3818 path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args); 3819 3820 3821 if (request == RTLD_DI_SERINFOSIZE) { 3822 info->dls_size = _info.dls_size; 3823 info->dls_cnt = _info.dls_cnt; 3824 return (0); 3825 } 3826 3827 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { 3828 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); 3829 return (-1); 3830 } 3831 3832 args.request = RTLD_DI_SERINFO; 3833 args.serinfo = info; 3834 args.serpath = &info->dls_serpath[0]; 3835 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; 3836 3837 args.flags = LA_SER_RUNPATH; 3838 if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL) 3839 return (-1); 3840 3841 args.flags = LA_SER_LIBPATH; 3842 if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL) 3843 return (-1); 3844 3845 args.flags = LA_SER_RUNPATH; 3846 if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL) 3847 return (-1); 3848 3849 args.flags = LA_SER_CONFIG; 3850 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args) 3851 != NULL) 3852 return (-1); 3853 3854 args.flags = LA_SER_DEFAULT; 3855 if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path, 3856 fill_search_info, NULL, &args) != NULL) 3857 return (-1); 3858 return (0); 3859 } 3860 3861 static int 3862 rtld_dirname(const char *path, char *bname) 3863 { 3864 const char *endp; 3865 3866 /* Empty or NULL string gets treated as "." */ 3867 if (path == NULL || *path == '\0') { 3868 bname[0] = '.'; 3869 bname[1] = '\0'; 3870 return (0); 3871 } 3872 3873 /* Strip trailing slashes */ 3874 endp = path + strlen(path) - 1; 3875 while (endp > path && *endp == '/') 3876 endp--; 3877 3878 /* Find the start of the dir */ 3879 while (endp > path && *endp != '/') 3880 endp--; 3881 3882 /* Either the dir is "/" or there are no slashes */ 3883 if (endp == path) { 3884 bname[0] = *endp == '/' ? '/' : '.'; 3885 bname[1] = '\0'; 3886 return (0); 3887 } else { 3888 do { 3889 endp--; 3890 } while (endp > path && *endp == '/'); 3891 } 3892 3893 if (endp - path + 2 > PATH_MAX) 3894 { 3895 _rtld_error("Filename is too long: %s", path); 3896 return(-1); 3897 } 3898 3899 strncpy(bname, path, endp - path + 1); 3900 bname[endp - path + 1] = '\0'; 3901 return (0); 3902 } 3903 3904 static int 3905 rtld_dirname_abs(const char *path, char *base) 3906 { 3907 char *last; 3908 3909 if (realpath(path, base) == NULL) 3910 return (-1); 3911 dbg("%s -> %s", path, base); 3912 last = strrchr(base, '/'); 3913 if (last == NULL) 3914 return (-1); 3915 if (last != base) 3916 *last = '\0'; 3917 return (0); 3918 } 3919 3920 static void 3921 linkmap_add(Obj_Entry *obj) 3922 { 3923 struct link_map *l = &obj->linkmap; 3924 struct link_map *prev; 3925 3926 obj->linkmap.l_name = obj->path; 3927 obj->linkmap.l_addr = obj->mapbase; 3928 obj->linkmap.l_ld = obj->dynamic; 3929 #ifdef __mips__ 3930 /* GDB needs load offset on MIPS to use the symbols */ 3931 obj->linkmap.l_offs = obj->relocbase; 3932 #endif 3933 3934 if (r_debug.r_map == NULL) { 3935 r_debug.r_map = l; 3936 return; 3937 } 3938 3939 /* 3940 * Scan to the end of the list, but not past the entry for the 3941 * dynamic linker, which we want to keep at the very end. 3942 */ 3943 for (prev = r_debug.r_map; 3944 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 3945 prev = prev->l_next) 3946 ; 3947 3948 /* Link in the new entry. */ 3949 l->l_prev = prev; 3950 l->l_next = prev->l_next; 3951 if (l->l_next != NULL) 3952 l->l_next->l_prev = l; 3953 prev->l_next = l; 3954 } 3955 3956 static void 3957 linkmap_delete(Obj_Entry *obj) 3958 { 3959 struct link_map *l = &obj->linkmap; 3960 3961 if (l->l_prev == NULL) { 3962 if ((r_debug.r_map = l->l_next) != NULL) 3963 l->l_next->l_prev = NULL; 3964 return; 3965 } 3966 3967 if ((l->l_prev->l_next = l->l_next) != NULL) 3968 l->l_next->l_prev = l->l_prev; 3969 } 3970 3971 /* 3972 * Function for the debugger to set a breakpoint on to gain control. 3973 * 3974 * The two parameters allow the debugger to easily find and determine 3975 * what the runtime loader is doing and to whom it is doing it. 3976 * 3977 * When the loadhook trap is hit (r_debug_state, set at program 3978 * initialization), the arguments can be found on the stack: 3979 * 3980 * +8 struct link_map *m 3981 * +4 struct r_debug *rd 3982 * +0 RetAddr 3983 */ 3984 void 3985 r_debug_state(struct r_debug* rd __unused, struct link_map *m __unused) 3986 { 3987 /* 3988 * The following is a hack to force the compiler to emit calls to 3989 * this function, even when optimizing. If the function is empty, 3990 * the compiler is not obliged to emit any code for calls to it, 3991 * even when marked __noinline. However, gdb depends on those 3992 * calls being made. 3993 */ 3994 __compiler_membar(); 3995 } 3996 3997 /* 3998 * A function called after init routines have completed. This can be used to 3999 * break before a program's entry routine is called, and can be used when 4000 * main is not available in the symbol table. 4001 */ 4002 void 4003 _r_debug_postinit(struct link_map *m __unused) 4004 { 4005 4006 /* See r_debug_state(). */ 4007 __compiler_membar(); 4008 } 4009 4010 static void 4011 release_object(Obj_Entry *obj) 4012 { 4013 4014 if (obj->holdcount > 0) { 4015 obj->unholdfree = true; 4016 return; 4017 } 4018 munmap(obj->mapbase, obj->mapsize); 4019 linkmap_delete(obj); 4020 obj_free(obj); 4021 } 4022 4023 /* 4024 * Get address of the pointer variable in the main program. 4025 * Prefer non-weak symbol over the weak one. 4026 */ 4027 static const void ** 4028 get_program_var_addr(const char *name, RtldLockState *lockstate) 4029 { 4030 SymLook req; 4031 DoneList donelist; 4032 4033 symlook_init(&req, name); 4034 req.lockstate = lockstate; 4035 donelist_init(&donelist); 4036 if (symlook_global(&req, &donelist) != 0) 4037 return (NULL); 4038 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) 4039 return ((const void **)make_function_pointer(req.sym_out, 4040 req.defobj_out)); 4041 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) 4042 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); 4043 else 4044 return ((const void **)(req.defobj_out->relocbase + 4045 req.sym_out->st_value)); 4046 } 4047 4048 /* 4049 * Set a pointer variable in the main program to the given value. This 4050 * is used to set key variables such as "environ" before any of the 4051 * init functions are called. 4052 */ 4053 static void 4054 set_program_var(const char *name, const void *value) 4055 { 4056 const void **addr; 4057 4058 if ((addr = get_program_var_addr(name, NULL)) != NULL) { 4059 dbg("\"%s\": *%p <-- %p", name, addr, value); 4060 *addr = value; 4061 } 4062 } 4063 4064 /* 4065 * Search the global objects, including dependencies and main object, 4066 * for the given symbol. 4067 */ 4068 static int 4069 symlook_global(SymLook *req, DoneList *donelist) 4070 { 4071 SymLook req1; 4072 const Objlist_Entry *elm; 4073 int res; 4074 4075 symlook_init_from_req(&req1, req); 4076 4077 /* Search all objects loaded at program start up. */ 4078 if (req->defobj_out == NULL || 4079 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 4080 res = symlook_list(&req1, &list_main, donelist); 4081 if (res == 0 && (req->defobj_out == NULL || 4082 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4083 req->sym_out = req1.sym_out; 4084 req->defobj_out = req1.defobj_out; 4085 assert(req->defobj_out != NULL); 4086 } 4087 } 4088 4089 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 4090 STAILQ_FOREACH(elm, &list_global, link) { 4091 if (req->defobj_out != NULL && 4092 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 4093 break; 4094 res = symlook_list(&req1, &elm->obj->dagmembers, donelist); 4095 if (res == 0 && (req->defobj_out == NULL || 4096 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4097 req->sym_out = req1.sym_out; 4098 req->defobj_out = req1.defobj_out; 4099 assert(req->defobj_out != NULL); 4100 } 4101 } 4102 4103 return (req->sym_out != NULL ? 0 : ESRCH); 4104 } 4105 4106 /* 4107 * Given a symbol name in a referencing object, find the corresponding 4108 * definition of the symbol. Returns a pointer to the symbol, or NULL if 4109 * no definition was found. Returns a pointer to the Obj_Entry of the 4110 * defining object via the reference parameter DEFOBJ_OUT. 4111 */ 4112 static int 4113 symlook_default(SymLook *req, const Obj_Entry *refobj) 4114 { 4115 DoneList donelist; 4116 const Objlist_Entry *elm; 4117 SymLook req1; 4118 int res; 4119 4120 donelist_init(&donelist); 4121 symlook_init_from_req(&req1, req); 4122 4123 /* 4124 * Look first in the referencing object if linked symbolically, 4125 * and similarly handle protected symbols. 4126 */ 4127 res = symlook_obj(&req1, refobj); 4128 if (res == 0 && (refobj->symbolic || 4129 ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) { 4130 req->sym_out = req1.sym_out; 4131 req->defobj_out = req1.defobj_out; 4132 assert(req->defobj_out != NULL); 4133 } 4134 if (refobj->symbolic || req->defobj_out != NULL) 4135 donelist_check(&donelist, refobj); 4136 4137 symlook_global(req, &donelist); 4138 4139 /* Search all dlopened DAGs containing the referencing object. */ 4140 STAILQ_FOREACH(elm, &refobj->dldags, link) { 4141 if (req->sym_out != NULL && 4142 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 4143 break; 4144 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); 4145 if (res == 0 && (req->sym_out == NULL || 4146 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4147 req->sym_out = req1.sym_out; 4148 req->defobj_out = req1.defobj_out; 4149 assert(req->defobj_out != NULL); 4150 } 4151 } 4152 4153 /* 4154 * Search the dynamic linker itself, and possibly resolve the 4155 * symbol from there. This is how the application links to 4156 * dynamic linker services such as dlopen. 4157 */ 4158 if (req->sym_out == NULL || 4159 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 4160 res = symlook_obj(&req1, &obj_rtld); 4161 if (res == 0) { 4162 req->sym_out = req1.sym_out; 4163 req->defobj_out = req1.defobj_out; 4164 assert(req->defobj_out != NULL); 4165 } 4166 } 4167 4168 return (req->sym_out != NULL ? 0 : ESRCH); 4169 } 4170 4171 static int 4172 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) 4173 { 4174 const Elf_Sym *def; 4175 const Obj_Entry *defobj; 4176 const Objlist_Entry *elm; 4177 SymLook req1; 4178 int res; 4179 4180 def = NULL; 4181 defobj = NULL; 4182 STAILQ_FOREACH(elm, objlist, link) { 4183 if (donelist_check(dlp, elm->obj)) 4184 continue; 4185 symlook_init_from_req(&req1, req); 4186 if ((res = symlook_obj(&req1, elm->obj)) == 0) { 4187 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 4188 def = req1.sym_out; 4189 defobj = req1.defobj_out; 4190 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 4191 break; 4192 } 4193 } 4194 } 4195 if (def != NULL) { 4196 req->sym_out = def; 4197 req->defobj_out = defobj; 4198 return (0); 4199 } 4200 return (ESRCH); 4201 } 4202 4203 /* 4204 * Search the chain of DAGS cointed to by the given Needed_Entry 4205 * for a symbol of the given name. Each DAG is scanned completely 4206 * before advancing to the next one. Returns a pointer to the symbol, 4207 * or NULL if no definition was found. 4208 */ 4209 static int 4210 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) 4211 { 4212 const Elf_Sym *def; 4213 const Needed_Entry *n; 4214 const Obj_Entry *defobj; 4215 SymLook req1; 4216 int res; 4217 4218 def = NULL; 4219 defobj = NULL; 4220 symlook_init_from_req(&req1, req); 4221 for (n = needed; n != NULL; n = n->next) { 4222 if (n->obj == NULL || 4223 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) 4224 continue; 4225 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 4226 def = req1.sym_out; 4227 defobj = req1.defobj_out; 4228 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 4229 break; 4230 } 4231 } 4232 if (def != NULL) { 4233 req->sym_out = def; 4234 req->defobj_out = defobj; 4235 return (0); 4236 } 4237 return (ESRCH); 4238 } 4239 4240 /* 4241 * Search the symbol table of a single shared object for a symbol of 4242 * the given name and version, if requested. Returns a pointer to the 4243 * symbol, or NULL if no definition was found. If the object is 4244 * filter, return filtered symbol from filtee. 4245 * 4246 * The symbol's hash value is passed in for efficiency reasons; that 4247 * eliminates many recomputations of the hash value. 4248 */ 4249 int 4250 symlook_obj(SymLook *req, const Obj_Entry *obj) 4251 { 4252 DoneList donelist; 4253 SymLook req1; 4254 int flags, res, mres; 4255 4256 /* 4257 * If there is at least one valid hash at this point, we prefer to 4258 * use the faster GNU version if available. 4259 */ 4260 if (obj->valid_hash_gnu) 4261 mres = symlook_obj1_gnu(req, obj); 4262 else if (obj->valid_hash_sysv) 4263 mres = symlook_obj1_sysv(req, obj); 4264 else 4265 return (EINVAL); 4266 4267 if (mres == 0) { 4268 if (obj->needed_filtees != NULL) { 4269 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 4270 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 4271 donelist_init(&donelist); 4272 symlook_init_from_req(&req1, req); 4273 res = symlook_needed(&req1, obj->needed_filtees, &donelist); 4274 if (res == 0) { 4275 req->sym_out = req1.sym_out; 4276 req->defobj_out = req1.defobj_out; 4277 } 4278 return (res); 4279 } 4280 if (obj->needed_aux_filtees != NULL) { 4281 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 4282 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 4283 donelist_init(&donelist); 4284 symlook_init_from_req(&req1, req); 4285 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist); 4286 if (res == 0) { 4287 req->sym_out = req1.sym_out; 4288 req->defobj_out = req1.defobj_out; 4289 return (res); 4290 } 4291 } 4292 } 4293 return (mres); 4294 } 4295 4296 /* Symbol match routine common to both hash functions */ 4297 static bool 4298 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, 4299 const unsigned long symnum) 4300 { 4301 Elf_Versym verndx; 4302 const Elf_Sym *symp; 4303 const char *strp; 4304 4305 symp = obj->symtab + symnum; 4306 strp = obj->strtab + symp->st_name; 4307 4308 switch (ELF_ST_TYPE(symp->st_info)) { 4309 case STT_FUNC: 4310 case STT_NOTYPE: 4311 case STT_OBJECT: 4312 case STT_COMMON: 4313 case STT_GNU_IFUNC: 4314 if (symp->st_value == 0) 4315 return (false); 4316 /* fallthrough */ 4317 case STT_TLS: 4318 if (symp->st_shndx != SHN_UNDEF) 4319 break; 4320 #ifndef __mips__ 4321 else if (((req->flags & SYMLOOK_IN_PLT) == 0) && 4322 (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) 4323 break; 4324 #endif 4325 /* fallthrough */ 4326 default: 4327 return (false); 4328 } 4329 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) 4330 return (false); 4331 4332 if (req->ventry == NULL) { 4333 if (obj->versyms != NULL) { 4334 verndx = VER_NDX(obj->versyms[symnum]); 4335 if (verndx > obj->vernum) { 4336 _rtld_error( 4337 "%s: symbol %s references wrong version %d", 4338 obj->path, obj->strtab + symnum, verndx); 4339 return (false); 4340 } 4341 /* 4342 * If we are not called from dlsym (i.e. this 4343 * is a normal relocation from unversioned 4344 * binary), accept the symbol immediately if 4345 * it happens to have first version after this 4346 * shared object became versioned. Otherwise, 4347 * if symbol is versioned and not hidden, 4348 * remember it. If it is the only symbol with 4349 * this name exported by the shared object, it 4350 * will be returned as a match by the calling 4351 * function. If symbol is global (verndx < 2) 4352 * accept it unconditionally. 4353 */ 4354 if ((req->flags & SYMLOOK_DLSYM) == 0 && 4355 verndx == VER_NDX_GIVEN) { 4356 result->sym_out = symp; 4357 return (true); 4358 } 4359 else if (verndx >= VER_NDX_GIVEN) { 4360 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) 4361 == 0) { 4362 if (result->vsymp == NULL) 4363 result->vsymp = symp; 4364 result->vcount++; 4365 } 4366 return (false); 4367 } 4368 } 4369 result->sym_out = symp; 4370 return (true); 4371 } 4372 if (obj->versyms == NULL) { 4373 if (object_match_name(obj, req->ventry->name)) { 4374 _rtld_error("%s: object %s should provide version %s " 4375 "for symbol %s", obj_rtld.path, obj->path, 4376 req->ventry->name, obj->strtab + symnum); 4377 return (false); 4378 } 4379 } else { 4380 verndx = VER_NDX(obj->versyms[symnum]); 4381 if (verndx > obj->vernum) { 4382 _rtld_error("%s: symbol %s references wrong version %d", 4383 obj->path, obj->strtab + symnum, verndx); 4384 return (false); 4385 } 4386 if (obj->vertab[verndx].hash != req->ventry->hash || 4387 strcmp(obj->vertab[verndx].name, req->ventry->name)) { 4388 /* 4389 * Version does not match. Look if this is a 4390 * global symbol and if it is not hidden. If 4391 * global symbol (verndx < 2) is available, 4392 * use it. Do not return symbol if we are 4393 * called by dlvsym, because dlvsym looks for 4394 * a specific version and default one is not 4395 * what dlvsym wants. 4396 */ 4397 if ((req->flags & SYMLOOK_DLSYM) || 4398 (verndx >= VER_NDX_GIVEN) || 4399 (obj->versyms[symnum] & VER_NDX_HIDDEN)) 4400 return (false); 4401 } 4402 } 4403 result->sym_out = symp; 4404 return (true); 4405 } 4406 4407 /* 4408 * Search for symbol using SysV hash function. 4409 * obj->buckets is known not to be NULL at this point; the test for this was 4410 * performed with the obj->valid_hash_sysv assignment. 4411 */ 4412 static int 4413 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) 4414 { 4415 unsigned long symnum; 4416 Sym_Match_Result matchres; 4417 4418 matchres.sym_out = NULL; 4419 matchres.vsymp = NULL; 4420 matchres.vcount = 0; 4421 4422 for (symnum = obj->buckets[req->hash % obj->nbuckets]; 4423 symnum != STN_UNDEF; symnum = obj->chains[symnum]) { 4424 if (symnum >= obj->nchains) 4425 return (ESRCH); /* Bad object */ 4426 4427 if (matched_symbol(req, obj, &matchres, symnum)) { 4428 req->sym_out = matchres.sym_out; 4429 req->defobj_out = obj; 4430 return (0); 4431 } 4432 } 4433 if (matchres.vcount == 1) { 4434 req->sym_out = matchres.vsymp; 4435 req->defobj_out = obj; 4436 return (0); 4437 } 4438 return (ESRCH); 4439 } 4440 4441 /* Search for symbol using GNU hash function */ 4442 static int 4443 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) 4444 { 4445 Elf_Addr bloom_word; 4446 const Elf32_Word *hashval; 4447 Elf32_Word bucket; 4448 Sym_Match_Result matchres; 4449 unsigned int h1, h2; 4450 unsigned long symnum; 4451 4452 matchres.sym_out = NULL; 4453 matchres.vsymp = NULL; 4454 matchres.vcount = 0; 4455 4456 /* Pick right bitmask word from Bloom filter array */ 4457 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & 4458 obj->maskwords_bm_gnu]; 4459 4460 /* Calculate modulus word size of gnu hash and its derivative */ 4461 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); 4462 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); 4463 4464 /* Filter out the "definitely not in set" queries */ 4465 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) 4466 return (ESRCH); 4467 4468 /* Locate hash chain and corresponding value element*/ 4469 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; 4470 if (bucket == 0) 4471 return (ESRCH); 4472 hashval = &obj->chain_zero_gnu[bucket]; 4473 do { 4474 if (((*hashval ^ req->hash_gnu) >> 1) == 0) { 4475 symnum = hashval - obj->chain_zero_gnu; 4476 if (matched_symbol(req, obj, &matchres, symnum)) { 4477 req->sym_out = matchres.sym_out; 4478 req->defobj_out = obj; 4479 return (0); 4480 } 4481 } 4482 } while ((*hashval++ & 1) == 0); 4483 if (matchres.vcount == 1) { 4484 req->sym_out = matchres.vsymp; 4485 req->defobj_out = obj; 4486 return (0); 4487 } 4488 return (ESRCH); 4489 } 4490 4491 static void 4492 trace_loaded_objects(Obj_Entry *obj) 4493 { 4494 const char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 4495 int c; 4496 4497 if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL) 4498 main_local = ""; 4499 4500 if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL) 4501 fmt1 = "\t%o => %p (%x)\n"; 4502 4503 if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL) 4504 fmt2 = "\t%o (%x)\n"; 4505 4506 list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL")); 4507 4508 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 4509 Needed_Entry *needed; 4510 const char *name, *path; 4511 bool is_lib; 4512 4513 if (obj->marker) 4514 continue; 4515 if (list_containers && obj->needed != NULL) 4516 rtld_printf("%s:\n", obj->path); 4517 for (needed = obj->needed; needed; needed = needed->next) { 4518 if (needed->obj != NULL) { 4519 if (needed->obj->traced && !list_containers) 4520 continue; 4521 needed->obj->traced = true; 4522 path = needed->obj->path; 4523 } else 4524 path = "not found"; 4525 4526 name = obj->strtab + needed->name; 4527 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 4528 4529 fmt = is_lib ? fmt1 : fmt2; 4530 while ((c = *fmt++) != '\0') { 4531 switch (c) { 4532 default: 4533 rtld_putchar(c); 4534 continue; 4535 case '\\': 4536 switch (c = *fmt) { 4537 case '\0': 4538 continue; 4539 case 'n': 4540 rtld_putchar('\n'); 4541 break; 4542 case 't': 4543 rtld_putchar('\t'); 4544 break; 4545 } 4546 break; 4547 case '%': 4548 switch (c = *fmt) { 4549 case '\0': 4550 continue; 4551 case '%': 4552 default: 4553 rtld_putchar(c); 4554 break; 4555 case 'A': 4556 rtld_putstr(main_local); 4557 break; 4558 case 'a': 4559 rtld_putstr(obj_main->path); 4560 break; 4561 case 'o': 4562 rtld_putstr(name); 4563 break; 4564 #if 0 4565 case 'm': 4566 rtld_printf("%d", sodp->sod_major); 4567 break; 4568 case 'n': 4569 rtld_printf("%d", sodp->sod_minor); 4570 break; 4571 #endif 4572 case 'p': 4573 rtld_putstr(path); 4574 break; 4575 case 'x': 4576 rtld_printf("%p", needed->obj ? needed->obj->mapbase : 4577 0); 4578 break; 4579 } 4580 break; 4581 } 4582 ++fmt; 4583 } 4584 } 4585 } 4586 } 4587 4588 /* 4589 * Unload a dlopened object and its dependencies from memory and from 4590 * our data structures. It is assumed that the DAG rooted in the 4591 * object has already been unreferenced, and that the object has a 4592 * reference count of 0. 4593 */ 4594 static void 4595 unload_object(Obj_Entry *root, RtldLockState *lockstate) 4596 { 4597 Obj_Entry marker, *obj, *next; 4598 4599 assert(root->refcount == 0); 4600 4601 /* 4602 * Pass over the DAG removing unreferenced objects from 4603 * appropriate lists. 4604 */ 4605 unlink_object(root); 4606 4607 /* Unmap all objects that are no longer referenced. */ 4608 for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) { 4609 next = TAILQ_NEXT(obj, next); 4610 if (obj->marker || obj->refcount != 0) 4611 continue; 4612 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, 4613 obj->mapsize, 0, obj->path); 4614 dbg("unloading \"%s\"", obj->path); 4615 /* 4616 * Unlink the object now to prevent new references from 4617 * being acquired while the bind lock is dropped in 4618 * recursive dlclose() invocations. 4619 */ 4620 TAILQ_REMOVE(&obj_list, obj, next); 4621 obj_count--; 4622 4623 if (obj->filtees_loaded) { 4624 if (next != NULL) { 4625 init_marker(&marker); 4626 TAILQ_INSERT_BEFORE(next, &marker, next); 4627 unload_filtees(obj, lockstate); 4628 next = TAILQ_NEXT(&marker, next); 4629 TAILQ_REMOVE(&obj_list, &marker, next); 4630 } else 4631 unload_filtees(obj, lockstate); 4632 } 4633 release_object(obj); 4634 } 4635 } 4636 4637 static void 4638 unlink_object(Obj_Entry *root) 4639 { 4640 Objlist_Entry *elm; 4641 4642 if (root->refcount == 0) { 4643 /* Remove the object from the RTLD_GLOBAL list. */ 4644 objlist_remove(&list_global, root); 4645 4646 /* Remove the object from all objects' DAG lists. */ 4647 STAILQ_FOREACH(elm, &root->dagmembers, link) { 4648 objlist_remove(&elm->obj->dldags, root); 4649 if (elm->obj != root) 4650 unlink_object(elm->obj); 4651 } 4652 } 4653 } 4654 4655 static void 4656 ref_dag(Obj_Entry *root) 4657 { 4658 Objlist_Entry *elm; 4659 4660 assert(root->dag_inited); 4661 STAILQ_FOREACH(elm, &root->dagmembers, link) 4662 elm->obj->refcount++; 4663 } 4664 4665 static void 4666 unref_dag(Obj_Entry *root) 4667 { 4668 Objlist_Entry *elm; 4669 4670 assert(root->dag_inited); 4671 STAILQ_FOREACH(elm, &root->dagmembers, link) 4672 elm->obj->refcount--; 4673 } 4674 4675 /* 4676 * Common code for MD __tls_get_addr(). 4677 */ 4678 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline; 4679 static void * 4680 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset) 4681 { 4682 Elf_Addr *newdtv, *dtv; 4683 RtldLockState lockstate; 4684 int to_copy; 4685 4686 dtv = *dtvp; 4687 /* Check dtv generation in case new modules have arrived */ 4688 if (dtv[0] != tls_dtv_generation) { 4689 wlock_acquire(rtld_bind_lock, &lockstate); 4690 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4691 to_copy = dtv[1]; 4692 if (to_copy > tls_max_index) 4693 to_copy = tls_max_index; 4694 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); 4695 newdtv[0] = tls_dtv_generation; 4696 newdtv[1] = tls_max_index; 4697 free(dtv); 4698 lock_release(rtld_bind_lock, &lockstate); 4699 dtv = *dtvp = newdtv; 4700 } 4701 4702 /* Dynamically allocate module TLS if necessary */ 4703 if (dtv[index + 1] == 0) { 4704 /* Signal safe, wlock will block out signals. */ 4705 wlock_acquire(rtld_bind_lock, &lockstate); 4706 if (!dtv[index + 1]) 4707 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); 4708 lock_release(rtld_bind_lock, &lockstate); 4709 } 4710 return ((void *)(dtv[index + 1] + offset)); 4711 } 4712 4713 void * 4714 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset) 4715 { 4716 Elf_Addr *dtv; 4717 4718 dtv = *dtvp; 4719 /* Check dtv generation in case new modules have arrived */ 4720 if (__predict_true(dtv[0] == tls_dtv_generation && 4721 dtv[index + 1] != 0)) 4722 return ((void *)(dtv[index + 1] + offset)); 4723 return (tls_get_addr_slow(dtvp, index, offset)); 4724 } 4725 4726 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \ 4727 defined(__powerpc__) || defined(__riscv) 4728 4729 /* 4730 * Return pointer to allocated TLS block 4731 */ 4732 static void * 4733 get_tls_block_ptr(void *tcb, size_t tcbsize) 4734 { 4735 size_t extra_size, post_size, pre_size, tls_block_size; 4736 size_t tls_init_align; 4737 4738 tls_init_align = MAX(obj_main->tlsalign, 1); 4739 4740 /* Compute fragments sizes. */ 4741 extra_size = tcbsize - TLS_TCB_SIZE; 4742 post_size = calculate_tls_post_size(tls_init_align); 4743 tls_block_size = tcbsize + post_size; 4744 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size; 4745 4746 return ((char *)tcb - pre_size - extra_size); 4747 } 4748 4749 /* 4750 * Allocate Static TLS using the Variant I method. 4751 * 4752 * For details on the layout, see lib/libc/gen/tls.c. 4753 * 4754 * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as 4755 * it is based on tls_last_offset, and TLS offsets here are really TCB 4756 * offsets, whereas libc's tls_static_space is just the executable's static 4757 * TLS segment. 4758 */ 4759 void * 4760 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) 4761 { 4762 Obj_Entry *obj; 4763 char *tls_block; 4764 Elf_Addr *dtv, **tcb; 4765 Elf_Addr addr; 4766 Elf_Addr i; 4767 size_t extra_size, maxalign, post_size, pre_size, tls_block_size; 4768 size_t tls_init_align; 4769 4770 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) 4771 return (oldtcb); 4772 4773 assert(tcbsize >= TLS_TCB_SIZE); 4774 maxalign = MAX(tcbalign, tls_static_max_align); 4775 tls_init_align = MAX(obj_main->tlsalign, 1); 4776 4777 /* Compute fragmets sizes. */ 4778 extra_size = tcbsize - TLS_TCB_SIZE; 4779 post_size = calculate_tls_post_size(tls_init_align); 4780 tls_block_size = tcbsize + post_size; 4781 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size; 4782 tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size; 4783 4784 /* Allocate whole TLS block */ 4785 tls_block = malloc_aligned(tls_block_size, maxalign); 4786 tcb = (Elf_Addr **)(tls_block + pre_size + extra_size); 4787 4788 if (oldtcb != NULL) { 4789 memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize), 4790 tls_static_space); 4791 free_aligned(get_tls_block_ptr(oldtcb, tcbsize)); 4792 4793 /* Adjust the DTV. */ 4794 dtv = tcb[0]; 4795 for (i = 0; i < dtv[1]; i++) { 4796 if (dtv[i+2] >= (Elf_Addr)oldtcb && 4797 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { 4798 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb; 4799 } 4800 } 4801 } else { 4802 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4803 tcb[0] = dtv; 4804 dtv[0] = tls_dtv_generation; 4805 dtv[1] = tls_max_index; 4806 4807 for (obj = globallist_curr(objs); obj != NULL; 4808 obj = globallist_next(obj)) { 4809 if (obj->tlsoffset > 0) { 4810 addr = (Elf_Addr)tcb + obj->tlsoffset; 4811 if (obj->tlsinitsize > 0) 4812 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4813 if (obj->tlssize > obj->tlsinitsize) 4814 memset((void*)(addr + obj->tlsinitsize), 0, 4815 obj->tlssize - obj->tlsinitsize); 4816 dtv[obj->tlsindex + 1] = addr; 4817 } 4818 } 4819 } 4820 4821 return (tcb); 4822 } 4823 4824 void 4825 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused) 4826 { 4827 Elf_Addr *dtv; 4828 Elf_Addr tlsstart, tlsend; 4829 size_t post_size; 4830 size_t dtvsize, i, tls_init_align; 4831 4832 assert(tcbsize >= TLS_TCB_SIZE); 4833 tls_init_align = MAX(obj_main->tlsalign, 1); 4834 4835 /* Compute fragments sizes. */ 4836 post_size = calculate_tls_post_size(tls_init_align); 4837 4838 tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size; 4839 tlsend = (Elf_Addr)tcb + tls_static_space; 4840 4841 dtv = *(Elf_Addr **)tcb; 4842 dtvsize = dtv[1]; 4843 for (i = 0; i < dtvsize; i++) { 4844 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { 4845 free((void*)dtv[i+2]); 4846 } 4847 } 4848 free(dtv); 4849 free_aligned(get_tls_block_ptr(tcb, tcbsize)); 4850 } 4851 4852 #endif 4853 4854 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) 4855 4856 /* 4857 * Allocate Static TLS using the Variant II method. 4858 */ 4859 void * 4860 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) 4861 { 4862 Obj_Entry *obj; 4863 size_t size, ralign; 4864 char *tls; 4865 Elf_Addr *dtv, *olddtv; 4866 Elf_Addr segbase, oldsegbase, addr; 4867 size_t i; 4868 4869 ralign = tcbalign; 4870 if (tls_static_max_align > ralign) 4871 ralign = tls_static_max_align; 4872 size = round(tls_static_space, ralign) + round(tcbsize, ralign); 4873 4874 assert(tcbsize >= 2*sizeof(Elf_Addr)); 4875 tls = malloc_aligned(size, ralign); 4876 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4877 4878 segbase = (Elf_Addr)(tls + round(tls_static_space, ralign)); 4879 ((Elf_Addr*)segbase)[0] = segbase; 4880 ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv; 4881 4882 dtv[0] = tls_dtv_generation; 4883 dtv[1] = tls_max_index; 4884 4885 if (oldtls) { 4886 /* 4887 * Copy the static TLS block over whole. 4888 */ 4889 oldsegbase = (Elf_Addr) oldtls; 4890 memcpy((void *)(segbase - tls_static_space), 4891 (const void *)(oldsegbase - tls_static_space), 4892 tls_static_space); 4893 4894 /* 4895 * If any dynamic TLS blocks have been created tls_get_addr(), 4896 * move them over. 4897 */ 4898 olddtv = ((Elf_Addr**)oldsegbase)[1]; 4899 for (i = 0; i < olddtv[1]; i++) { 4900 if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) { 4901 dtv[i+2] = olddtv[i+2]; 4902 olddtv[i+2] = 0; 4903 } 4904 } 4905 4906 /* 4907 * We assume that this block was the one we created with 4908 * allocate_initial_tls(). 4909 */ 4910 free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr)); 4911 } else { 4912 for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 4913 if (obj->marker || obj->tlsoffset == 0) 4914 continue; 4915 addr = segbase - obj->tlsoffset; 4916 memset((void*)(addr + obj->tlsinitsize), 4917 0, obj->tlssize - obj->tlsinitsize); 4918 if (obj->tlsinit) 4919 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4920 dtv[obj->tlsindex + 1] = addr; 4921 } 4922 } 4923 4924 return (void*) segbase; 4925 } 4926 4927 void 4928 free_tls(void *tls, size_t tcbsize __unused, size_t tcbalign) 4929 { 4930 Elf_Addr* dtv; 4931 size_t size, ralign; 4932 int dtvsize, i; 4933 Elf_Addr tlsstart, tlsend; 4934 4935 /* 4936 * Figure out the size of the initial TLS block so that we can 4937 * find stuff which ___tls_get_addr() allocated dynamically. 4938 */ 4939 ralign = tcbalign; 4940 if (tls_static_max_align > ralign) 4941 ralign = tls_static_max_align; 4942 size = round(tls_static_space, ralign); 4943 4944 dtv = ((Elf_Addr**)tls)[1]; 4945 dtvsize = dtv[1]; 4946 tlsend = (Elf_Addr) tls; 4947 tlsstart = tlsend - size; 4948 for (i = 0; i < dtvsize; i++) { 4949 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) { 4950 free_aligned((void *)dtv[i + 2]); 4951 } 4952 } 4953 4954 free_aligned((void *)tlsstart); 4955 free((void*) dtv); 4956 } 4957 4958 #endif 4959 4960 /* 4961 * Allocate TLS block for module with given index. 4962 */ 4963 void * 4964 allocate_module_tls(int index) 4965 { 4966 Obj_Entry* obj; 4967 char* p; 4968 4969 TAILQ_FOREACH(obj, &obj_list, next) { 4970 if (obj->marker) 4971 continue; 4972 if (obj->tlsindex == index) 4973 break; 4974 } 4975 if (!obj) { 4976 _rtld_error("Can't find module with TLS index %d", index); 4977 rtld_die(); 4978 } 4979 4980 p = malloc_aligned(obj->tlssize, obj->tlsalign); 4981 memcpy(p, obj->tlsinit, obj->tlsinitsize); 4982 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); 4983 4984 return p; 4985 } 4986 4987 bool 4988 allocate_tls_offset(Obj_Entry *obj) 4989 { 4990 size_t off; 4991 4992 if (obj->tls_done) 4993 return true; 4994 4995 if (obj->tlssize == 0) { 4996 obj->tls_done = true; 4997 return true; 4998 } 4999 5000 if (tls_last_offset == 0) 5001 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign); 5002 else 5003 off = calculate_tls_offset(tls_last_offset, tls_last_size, 5004 obj->tlssize, obj->tlsalign); 5005 5006 /* 5007 * If we have already fixed the size of the static TLS block, we 5008 * must stay within that size. When allocating the static TLS, we 5009 * leave a small amount of space spare to be used for dynamically 5010 * loading modules which use static TLS. 5011 */ 5012 if (tls_static_space != 0) { 5013 if (calculate_tls_end(off, obj->tlssize) > tls_static_space) 5014 return false; 5015 } else if (obj->tlsalign > tls_static_max_align) { 5016 tls_static_max_align = obj->tlsalign; 5017 } 5018 5019 tls_last_offset = obj->tlsoffset = off; 5020 tls_last_size = obj->tlssize; 5021 obj->tls_done = true; 5022 5023 return true; 5024 } 5025 5026 void 5027 free_tls_offset(Obj_Entry *obj) 5028 { 5029 5030 /* 5031 * If we were the last thing to allocate out of the static TLS 5032 * block, we give our space back to the 'allocator'. This is a 5033 * simplistic workaround to allow libGL.so.1 to be loaded and 5034 * unloaded multiple times. 5035 */ 5036 if (calculate_tls_end(obj->tlsoffset, obj->tlssize) 5037 == calculate_tls_end(tls_last_offset, tls_last_size)) { 5038 tls_last_offset -= obj->tlssize; 5039 tls_last_size = 0; 5040 } 5041 } 5042 5043 void * 5044 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) 5045 { 5046 void *ret; 5047 RtldLockState lockstate; 5048 5049 wlock_acquire(rtld_bind_lock, &lockstate); 5050 ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls, 5051 tcbsize, tcbalign); 5052 lock_release(rtld_bind_lock, &lockstate); 5053 return (ret); 5054 } 5055 5056 void 5057 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 5058 { 5059 RtldLockState lockstate; 5060 5061 wlock_acquire(rtld_bind_lock, &lockstate); 5062 free_tls(tcb, tcbsize, tcbalign); 5063 lock_release(rtld_bind_lock, &lockstate); 5064 } 5065 5066 static void 5067 object_add_name(Obj_Entry *obj, const char *name) 5068 { 5069 Name_Entry *entry; 5070 size_t len; 5071 5072 len = strlen(name); 5073 entry = malloc(sizeof(Name_Entry) + len); 5074 5075 if (entry != NULL) { 5076 strcpy(entry->name, name); 5077 STAILQ_INSERT_TAIL(&obj->names, entry, link); 5078 } 5079 } 5080 5081 static int 5082 object_match_name(const Obj_Entry *obj, const char *name) 5083 { 5084 Name_Entry *entry; 5085 5086 STAILQ_FOREACH(entry, &obj->names, link) { 5087 if (strcmp(name, entry->name) == 0) 5088 return (1); 5089 } 5090 return (0); 5091 } 5092 5093 static Obj_Entry * 5094 locate_dependency(const Obj_Entry *obj, const char *name) 5095 { 5096 const Objlist_Entry *entry; 5097 const Needed_Entry *needed; 5098 5099 STAILQ_FOREACH(entry, &list_main, link) { 5100 if (object_match_name(entry->obj, name)) 5101 return entry->obj; 5102 } 5103 5104 for (needed = obj->needed; needed != NULL; needed = needed->next) { 5105 if (strcmp(obj->strtab + needed->name, name) == 0 || 5106 (needed->obj != NULL && object_match_name(needed->obj, name))) { 5107 /* 5108 * If there is DT_NEEDED for the name we are looking for, 5109 * we are all set. Note that object might not be found if 5110 * dependency was not loaded yet, so the function can 5111 * return NULL here. This is expected and handled 5112 * properly by the caller. 5113 */ 5114 return (needed->obj); 5115 } 5116 } 5117 _rtld_error("%s: Unexpected inconsistency: dependency %s not found", 5118 obj->path, name); 5119 rtld_die(); 5120 } 5121 5122 static int 5123 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, 5124 const Elf_Vernaux *vna) 5125 { 5126 const Elf_Verdef *vd; 5127 const char *vername; 5128 5129 vername = refobj->strtab + vna->vna_name; 5130 vd = depobj->verdef; 5131 if (vd == NULL) { 5132 _rtld_error("%s: version %s required by %s not defined", 5133 depobj->path, vername, refobj->path); 5134 return (-1); 5135 } 5136 for (;;) { 5137 if (vd->vd_version != VER_DEF_CURRENT) { 5138 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 5139 depobj->path, vd->vd_version); 5140 return (-1); 5141 } 5142 if (vna->vna_hash == vd->vd_hash) { 5143 const Elf_Verdaux *aux = (const Elf_Verdaux *) 5144 ((const char *)vd + vd->vd_aux); 5145 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) 5146 return (0); 5147 } 5148 if (vd->vd_next == 0) 5149 break; 5150 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next); 5151 } 5152 if (vna->vna_flags & VER_FLG_WEAK) 5153 return (0); 5154 _rtld_error("%s: version %s required by %s not found", 5155 depobj->path, vername, refobj->path); 5156 return (-1); 5157 } 5158 5159 static int 5160 rtld_verify_object_versions(Obj_Entry *obj) 5161 { 5162 const Elf_Verneed *vn; 5163 const Elf_Verdef *vd; 5164 const Elf_Verdaux *vda; 5165 const Elf_Vernaux *vna; 5166 const Obj_Entry *depobj; 5167 int maxvernum, vernum; 5168 5169 if (obj->ver_checked) 5170 return (0); 5171 obj->ver_checked = true; 5172 5173 maxvernum = 0; 5174 /* 5175 * Walk over defined and required version records and figure out 5176 * max index used by any of them. Do very basic sanity checking 5177 * while there. 5178 */ 5179 vn = obj->verneed; 5180 while (vn != NULL) { 5181 if (vn->vn_version != VER_NEED_CURRENT) { 5182 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", 5183 obj->path, vn->vn_version); 5184 return (-1); 5185 } 5186 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux); 5187 for (;;) { 5188 vernum = VER_NEED_IDX(vna->vna_other); 5189 if (vernum > maxvernum) 5190 maxvernum = vernum; 5191 if (vna->vna_next == 0) 5192 break; 5193 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next); 5194 } 5195 if (vn->vn_next == 0) 5196 break; 5197 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next); 5198 } 5199 5200 vd = obj->verdef; 5201 while (vd != NULL) { 5202 if (vd->vd_version != VER_DEF_CURRENT) { 5203 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 5204 obj->path, vd->vd_version); 5205 return (-1); 5206 } 5207 vernum = VER_DEF_IDX(vd->vd_ndx); 5208 if (vernum > maxvernum) 5209 maxvernum = vernum; 5210 if (vd->vd_next == 0) 5211 break; 5212 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next); 5213 } 5214 5215 if (maxvernum == 0) 5216 return (0); 5217 5218 /* 5219 * Store version information in array indexable by version index. 5220 * Verify that object version requirements are satisfied along the 5221 * way. 5222 */ 5223 obj->vernum = maxvernum + 1; 5224 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); 5225 5226 vd = obj->verdef; 5227 while (vd != NULL) { 5228 if ((vd->vd_flags & VER_FLG_BASE) == 0) { 5229 vernum = VER_DEF_IDX(vd->vd_ndx); 5230 assert(vernum <= maxvernum); 5231 vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux); 5232 obj->vertab[vernum].hash = vd->vd_hash; 5233 obj->vertab[vernum].name = obj->strtab + vda->vda_name; 5234 obj->vertab[vernum].file = NULL; 5235 obj->vertab[vernum].flags = 0; 5236 } 5237 if (vd->vd_next == 0) 5238 break; 5239 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next); 5240 } 5241 5242 vn = obj->verneed; 5243 while (vn != NULL) { 5244 depobj = locate_dependency(obj, obj->strtab + vn->vn_file); 5245 if (depobj == NULL) 5246 return (-1); 5247 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux); 5248 for (;;) { 5249 if (check_object_provided_version(obj, depobj, vna)) 5250 return (-1); 5251 vernum = VER_NEED_IDX(vna->vna_other); 5252 assert(vernum <= maxvernum); 5253 obj->vertab[vernum].hash = vna->vna_hash; 5254 obj->vertab[vernum].name = obj->strtab + vna->vna_name; 5255 obj->vertab[vernum].file = obj->strtab + vn->vn_file; 5256 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? 5257 VER_INFO_HIDDEN : 0; 5258 if (vna->vna_next == 0) 5259 break; 5260 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next); 5261 } 5262 if (vn->vn_next == 0) 5263 break; 5264 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next); 5265 } 5266 return 0; 5267 } 5268 5269 static int 5270 rtld_verify_versions(const Objlist *objlist) 5271 { 5272 Objlist_Entry *entry; 5273 int rc; 5274 5275 rc = 0; 5276 STAILQ_FOREACH(entry, objlist, link) { 5277 /* 5278 * Skip dummy objects or objects that have their version requirements 5279 * already checked. 5280 */ 5281 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) 5282 continue; 5283 if (rtld_verify_object_versions(entry->obj) == -1) { 5284 rc = -1; 5285 if (ld_tracing == NULL) 5286 break; 5287 } 5288 } 5289 if (rc == 0 || ld_tracing != NULL) 5290 rc = rtld_verify_object_versions(&obj_rtld); 5291 return rc; 5292 } 5293 5294 const Ver_Entry * 5295 fetch_ventry(const Obj_Entry *obj, unsigned long symnum) 5296 { 5297 Elf_Versym vernum; 5298 5299 if (obj->vertab) { 5300 vernum = VER_NDX(obj->versyms[symnum]); 5301 if (vernum >= obj->vernum) { 5302 _rtld_error("%s: symbol %s has wrong verneed value %d", 5303 obj->path, obj->strtab + symnum, vernum); 5304 } else if (obj->vertab[vernum].hash != 0) { 5305 return &obj->vertab[vernum]; 5306 } 5307 } 5308 return NULL; 5309 } 5310 5311 int 5312 _rtld_get_stack_prot(void) 5313 { 5314 5315 return (stack_prot); 5316 } 5317 5318 int 5319 _rtld_is_dlopened(void *arg) 5320 { 5321 Obj_Entry *obj; 5322 RtldLockState lockstate; 5323 int res; 5324 5325 rlock_acquire(rtld_bind_lock, &lockstate); 5326 obj = dlcheck(arg); 5327 if (obj == NULL) 5328 obj = obj_from_addr(arg); 5329 if (obj == NULL) { 5330 _rtld_error("No shared object contains address"); 5331 lock_release(rtld_bind_lock, &lockstate); 5332 return (-1); 5333 } 5334 res = obj->dlopened ? 1 : 0; 5335 lock_release(rtld_bind_lock, &lockstate); 5336 return (res); 5337 } 5338 5339 int 5340 obj_enforce_relro(Obj_Entry *obj) 5341 { 5342 5343 if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size, 5344 PROT_READ) == -1) { 5345 _rtld_error("%s: Cannot enforce relro protection: %s", 5346 obj->path, rtld_strerror(errno)); 5347 return (-1); 5348 } 5349 return (0); 5350 } 5351 5352 static void 5353 map_stacks_exec(RtldLockState *lockstate) 5354 { 5355 void (*thr_map_stacks_exec)(void); 5356 5357 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) 5358 return; 5359 thr_map_stacks_exec = (void (*)(void))(uintptr_t) 5360 get_program_var_addr("__pthread_map_stacks_exec", lockstate); 5361 if (thr_map_stacks_exec != NULL) { 5362 stack_prot |= PROT_EXEC; 5363 thr_map_stacks_exec(); 5364 } 5365 } 5366 5367 void 5368 symlook_init(SymLook *dst, const char *name) 5369 { 5370 5371 bzero(dst, sizeof(*dst)); 5372 dst->name = name; 5373 dst->hash = elf_hash(name); 5374 dst->hash_gnu = gnu_hash(name); 5375 } 5376 5377 static void 5378 symlook_init_from_req(SymLook *dst, const SymLook *src) 5379 { 5380 5381 dst->name = src->name; 5382 dst->hash = src->hash; 5383 dst->hash_gnu = src->hash_gnu; 5384 dst->ventry = src->ventry; 5385 dst->flags = src->flags; 5386 dst->defobj_out = NULL; 5387 dst->sym_out = NULL; 5388 dst->lockstate = src->lockstate; 5389 } 5390 5391 static int 5392 open_binary_fd(const char *argv0, bool search_in_path) 5393 { 5394 char *pathenv, *pe, binpath[PATH_MAX]; 5395 int fd; 5396 5397 if (search_in_path && strchr(argv0, '/') == NULL) { 5398 pathenv = getenv("PATH"); 5399 if (pathenv == NULL) { 5400 _rtld_error("-p and no PATH environment variable"); 5401 rtld_die(); 5402 } 5403 pathenv = strdup(pathenv); 5404 if (pathenv == NULL) { 5405 _rtld_error("Cannot allocate memory"); 5406 rtld_die(); 5407 } 5408 fd = -1; 5409 errno = ENOENT; 5410 while ((pe = strsep(&pathenv, ":")) != NULL) { 5411 if (strlcpy(binpath, pe, sizeof(binpath)) >= 5412 sizeof(binpath)) 5413 continue; 5414 if (binpath[0] != '\0' && 5415 strlcat(binpath, "/", sizeof(binpath)) >= 5416 sizeof(binpath)) 5417 continue; 5418 if (strlcat(binpath, argv0, sizeof(binpath)) >= 5419 sizeof(binpath)) 5420 continue; 5421 fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY); 5422 if (fd != -1 || errno != ENOENT) 5423 break; 5424 } 5425 free(pathenv); 5426 } else { 5427 fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY); 5428 } 5429 5430 if (fd == -1) { 5431 _rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno)); 5432 rtld_die(); 5433 } 5434 return (fd); 5435 } 5436 5437 /* 5438 * Parse a set of command-line arguments. 5439 */ 5440 static int 5441 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp) 5442 { 5443 const char *arg; 5444 int fd, i, j, arglen; 5445 char opt; 5446 5447 dbg("Parsing command-line arguments"); 5448 *use_pathp = false; 5449 *fdp = -1; 5450 5451 for (i = 1; i < argc; i++ ) { 5452 arg = argv[i]; 5453 dbg("argv[%d]: '%s'", i, arg); 5454 5455 /* 5456 * rtld arguments end with an explicit "--" or with the first 5457 * non-prefixed argument. 5458 */ 5459 if (strcmp(arg, "--") == 0) { 5460 i++; 5461 break; 5462 } 5463 if (arg[0] != '-') 5464 break; 5465 5466 /* 5467 * All other arguments are single-character options that can 5468 * be combined, so we need to search through `arg` for them. 5469 */ 5470 arglen = strlen(arg); 5471 for (j = 1; j < arglen; j++) { 5472 opt = arg[j]; 5473 if (opt == 'h') { 5474 print_usage(argv[0]); 5475 _exit(0); 5476 } else if (opt == 'f') { 5477 /* 5478 * -f XX can be used to specify a descriptor for the 5479 * binary named at the command line (i.e., the later 5480 * argument will specify the process name but the 5481 * descriptor is what will actually be executed) 5482 */ 5483 if (j != arglen - 1) { 5484 /* -f must be the last option in, e.g., -abcf */ 5485 _rtld_error("Invalid options: %s", arg); 5486 rtld_die(); 5487 } 5488 i++; 5489 fd = parse_integer(argv[i]); 5490 if (fd == -1) { 5491 _rtld_error("Invalid file descriptor: '%s'", 5492 argv[i]); 5493 rtld_die(); 5494 } 5495 *fdp = fd; 5496 break; 5497 } else if (opt == 'p') { 5498 *use_pathp = true; 5499 } else { 5500 _rtld_error("Invalid argument: '%s'", arg); 5501 print_usage(argv[0]); 5502 rtld_die(); 5503 } 5504 } 5505 } 5506 5507 return (i); 5508 } 5509 5510 /* 5511 * Parse a file descriptor number without pulling in more of libc (e.g. atoi). 5512 */ 5513 static int 5514 parse_integer(const char *str) 5515 { 5516 static const int RADIX = 10; /* XXXJA: possibly support hex? */ 5517 const char *orig; 5518 int n; 5519 char c; 5520 5521 orig = str; 5522 n = 0; 5523 for (c = *str; c != '\0'; c = *++str) { 5524 if (c < '0' || c > '9') 5525 return (-1); 5526 5527 n *= RADIX; 5528 n += c - '0'; 5529 } 5530 5531 /* Make sure we actually parsed something. */ 5532 if (str == orig) 5533 return (-1); 5534 return (n); 5535 } 5536 5537 static void 5538 print_usage(const char *argv0) 5539 { 5540 5541 rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n" 5542 "\n" 5543 "Options:\n" 5544 " -h Display this help message\n" 5545 " -p Search in PATH for named binary\n" 5546 " -f <FD> Execute <FD> instead of searching for <binary>\n" 5547 " -- End of RTLD options\n" 5548 " <binary> Name of process to execute\n" 5549 " <args> Arguments to the executed process\n", argv0); 5550 } 5551 5552 /* 5553 * Overrides for libc_pic-provided functions. 5554 */ 5555 5556 int 5557 __getosreldate(void) 5558 { 5559 size_t len; 5560 int oid[2]; 5561 int error, osrel; 5562 5563 if (osreldate != 0) 5564 return (osreldate); 5565 5566 oid[0] = CTL_KERN; 5567 oid[1] = KERN_OSRELDATE; 5568 osrel = 0; 5569 len = sizeof(osrel); 5570 error = sysctl(oid, 2, &osrel, &len, NULL, 0); 5571 if (error == 0 && osrel > 0 && len == sizeof(osrel)) 5572 osreldate = osrel; 5573 return (osreldate); 5574 } 5575 5576 void 5577 exit(int status) 5578 { 5579 5580 _exit(status); 5581 } 5582 5583 void (*__cleanup)(void); 5584 int __isthreaded = 0; 5585 int _thread_autoinit_dummy_decl = 1; 5586 5587 /* 5588 * No unresolved symbols for rtld. 5589 */ 5590 void 5591 __pthread_cxa_finalize(struct dl_phdr_info *a __unused) 5592 { 5593 } 5594 5595 const char * 5596 rtld_strerror(int errnum) 5597 { 5598 5599 if (errnum < 0 || errnum >= sys_nerr) 5600 return ("Unknown error"); 5601 return (sys_errlist[errnum]); 5602 } 5603