xref: /freebsd/libexec/rtld-elf/rtld.c (revision dacc43df34a7da82747af82be62cb645eb36f6ca)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern char* __progname;
81 extern void (*__cleanup)(void);
82 
83 
84 /*
85  * Function declarations.
86  */
87 static const char *basename(const char *);
88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
89     const Elf_Dyn **, const Elf_Dyn **);
90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
91     const Elf_Dyn *);
92 static void digest_dynamic(Obj_Entry *, int);
93 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
94 static Obj_Entry *dlcheck(void *);
95 static int dlclose_locked(void *, RtldLockState *);
96 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
97     int lo_flags, int mode, RtldLockState *lockstate);
98 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
99 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
100 static bool donelist_check(DoneList *, const Obj_Entry *);
101 static void errmsg_restore(char *);
102 static char *errmsg_save(void);
103 static void *fill_search_info(const char *, size_t, void *);
104 static char *find_library(const char *, const Obj_Entry *, int *);
105 static const char *gethints(bool);
106 static void hold_object(Obj_Entry *);
107 static void unhold_object(Obj_Entry *);
108 static void init_dag(Obj_Entry *);
109 static void init_marker(Obj_Entry *);
110 static void init_pagesizes(Elf_Auxinfo **aux_info);
111 static void init_rtld(caddr_t, Elf_Auxinfo **);
112 static void initlist_add_neededs(Needed_Entry *, Objlist *);
113 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
114 static void linkmap_add(Obj_Entry *);
115 static void linkmap_delete(Obj_Entry *);
116 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
117 static void unload_filtees(Obj_Entry *, RtldLockState *);
118 static int load_needed_objects(Obj_Entry *, int);
119 static int load_preload_objects(void);
120 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
121 static void map_stacks_exec(RtldLockState *);
122 static int obj_enforce_relro(Obj_Entry *);
123 static Obj_Entry *obj_from_addr(const void *);
124 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
125 static void objlist_call_init(Objlist *, RtldLockState *);
126 static void objlist_clear(Objlist *);
127 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
128 static void objlist_init(Objlist *);
129 static void objlist_push_head(Objlist *, Obj_Entry *);
130 static void objlist_push_tail(Objlist *, Obj_Entry *);
131 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
132 static void objlist_remove(Objlist *, Obj_Entry *);
133 static int open_binary_fd(const char *argv0, bool search_in_path);
134 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
135 static int parse_integer(const char *);
136 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
137 static void print_usage(const char *argv0);
138 static void release_object(Obj_Entry *);
139 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
140     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
141 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
142     int flags, RtldLockState *lockstate);
143 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
144     RtldLockState *);
145 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
146     int flags, RtldLockState *lockstate);
147 static int rtld_dirname(const char *, char *);
148 static int rtld_dirname_abs(const char *, char *);
149 static void *rtld_dlopen(const char *name, int fd, int mode);
150 static void rtld_exit(void);
151 static char *search_library_path(const char *, const char *, const char *,
152     int *);
153 static char *search_library_pathfds(const char *, const char *, int *);
154 static const void **get_program_var_addr(const char *, RtldLockState *);
155 static void set_program_var(const char *, const void *);
156 static int symlook_default(SymLook *, const Obj_Entry *refobj);
157 static int symlook_global(SymLook *, DoneList *);
158 static void symlook_init_from_req(SymLook *, const SymLook *);
159 static int symlook_list(SymLook *, const Objlist *, DoneList *);
160 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
161 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
162 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
163 static void trace_loaded_objects(Obj_Entry *);
164 static void unlink_object(Obj_Entry *);
165 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
166 static void unref_dag(Obj_Entry *);
167 static void ref_dag(Obj_Entry *);
168 static char *origin_subst_one(Obj_Entry *, char *, const char *,
169     const char *, bool);
170 static char *origin_subst(Obj_Entry *, const char *);
171 static bool obj_resolve_origin(Obj_Entry *obj);
172 static void preinit_main(void);
173 static int  rtld_verify_versions(const Objlist *);
174 static int  rtld_verify_object_versions(Obj_Entry *);
175 static void object_add_name(Obj_Entry *, const char *);
176 static int  object_match_name(const Obj_Entry *, const char *);
177 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
178 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
179     struct dl_phdr_info *phdr_info);
180 static uint32_t gnu_hash(const char *);
181 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
182     const unsigned long);
183 
184 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
185 void _r_debug_postinit(struct link_map *) __noinline __exported;
186 
187 int __sys_openat(int, const char *, int, ...);
188 
189 /*
190  * Data declarations.
191  */
192 static char *error_message;	/* Message for dlerror(), or NULL */
193 struct r_debug r_debug __exported;	/* for GDB; */
194 static bool libmap_disable;	/* Disable libmap */
195 static bool ld_loadfltr;	/* Immediate filters processing */
196 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
197 static bool trust;		/* False for setuid and setgid programs */
198 static bool dangerous_ld_env;	/* True if environment variables have been
199 				   used to affect the libraries loaded */
200 bool ld_bind_not;		/* Disable PLT update */
201 static char *ld_bind_now;	/* Environment variable for immediate binding */
202 static char *ld_debug;		/* Environment variable for debugging */
203 static char *ld_library_path;	/* Environment variable for search path */
204 static char *ld_library_dirs;	/* Environment variable for library descriptors */
205 static char *ld_preload;	/* Environment variable for libraries to
206 				   load first */
207 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
208 static const char *ld_tracing;	/* Called from ldd to print libs */
209 static char *ld_utrace;		/* Use utrace() to log events. */
210 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
211 static Obj_Entry *obj_main;	/* The main program shared object */
212 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
213 static unsigned int obj_count;	/* Number of objects in obj_list */
214 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
215 
216 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
217   STAILQ_HEAD_INITIALIZER(list_global);
218 static Objlist list_main =	/* Objects loaded at program startup */
219   STAILQ_HEAD_INITIALIZER(list_main);
220 static Objlist list_fini =	/* Objects needing fini() calls */
221   STAILQ_HEAD_INITIALIZER(list_fini);
222 
223 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
224 
225 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
226 
227 extern Elf_Dyn _DYNAMIC;
228 #pragma weak _DYNAMIC
229 
230 int dlclose(void *) __exported;
231 char *dlerror(void) __exported;
232 void *dlopen(const char *, int) __exported;
233 void *fdlopen(int, int) __exported;
234 void *dlsym(void *, const char *) __exported;
235 dlfunc_t dlfunc(void *, const char *) __exported;
236 void *dlvsym(void *, const char *, const char *) __exported;
237 int dladdr(const void *, Dl_info *) __exported;
238 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
239     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
240 int dlinfo(void *, int , void *) __exported;
241 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
242 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
243 int _rtld_get_stack_prot(void) __exported;
244 int _rtld_is_dlopened(void *) __exported;
245 void _rtld_error(const char *, ...) __exported;
246 
247 /* Only here to fix -Wmissing-prototypes warnings */
248 int __getosreldate(void);
249 void __pthread_cxa_finalize(struct dl_phdr_info *a);
250 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
251 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
252 
253 
254 int npagesizes;
255 static int osreldate;
256 size_t *pagesizes;
257 
258 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
259 static int max_stack_flags;
260 
261 /*
262  * Global declarations normally provided by crt1.  The dynamic linker is
263  * not built with crt1, so we have to provide them ourselves.
264  */
265 char *__progname;
266 char **environ;
267 
268 /*
269  * Used to pass argc, argv to init functions.
270  */
271 int main_argc;
272 char **main_argv;
273 
274 /*
275  * Globals to control TLS allocation.
276  */
277 size_t tls_last_offset;		/* Static TLS offset of last module */
278 size_t tls_last_size;		/* Static TLS size of last module */
279 size_t tls_static_space;	/* Static TLS space allocated */
280 static size_t tls_static_max_align;
281 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
282 int tls_max_index = 1;		/* Largest module index allocated */
283 
284 static bool ld_library_path_rpath = false;
285 
286 /*
287  * Globals for path names, and such
288  */
289 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
290 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
291 const char *ld_path_rtld = _PATH_RTLD;
292 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
293 const char *ld_env_prefix = LD_;
294 
295 /*
296  * Fill in a DoneList with an allocation large enough to hold all of
297  * the currently-loaded objects.  Keep this as a macro since it calls
298  * alloca and we want that to occur within the scope of the caller.
299  */
300 #define donelist_init(dlp)					\
301     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
302     assert((dlp)->objs != NULL),				\
303     (dlp)->num_alloc = obj_count,				\
304     (dlp)->num_used = 0)
305 
306 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
307 	if (ld_utrace != NULL)					\
308 		ld_utrace_log(e, h, mb, ms, r, n);		\
309 } while (0)
310 
311 static void
312 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
313     int refcnt, const char *name)
314 {
315 	struct utrace_rtld ut;
316 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
317 
318 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
319 	ut.event = event;
320 	ut.handle = handle;
321 	ut.mapbase = mapbase;
322 	ut.mapsize = mapsize;
323 	ut.refcnt = refcnt;
324 	bzero(ut.name, sizeof(ut.name));
325 	if (name)
326 		strlcpy(ut.name, name, sizeof(ut.name));
327 	utrace(&ut, sizeof(ut));
328 }
329 
330 #ifdef RTLD_VARIANT_ENV_NAMES
331 /*
332  * construct the env variable based on the type of binary that's
333  * running.
334  */
335 static inline const char *
336 _LD(const char *var)
337 {
338 	static char buffer[128];
339 
340 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
341 	strlcat(buffer, var, sizeof(buffer));
342 	return (buffer);
343 }
344 #else
345 #define _LD(x)	LD_ x
346 #endif
347 
348 /*
349  * Main entry point for dynamic linking.  The first argument is the
350  * stack pointer.  The stack is expected to be laid out as described
351  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
352  * Specifically, the stack pointer points to a word containing
353  * ARGC.  Following that in the stack is a null-terminated sequence
354  * of pointers to argument strings.  Then comes a null-terminated
355  * sequence of pointers to environment strings.  Finally, there is a
356  * sequence of "auxiliary vector" entries.
357  *
358  * The second argument points to a place to store the dynamic linker's
359  * exit procedure pointer and the third to a place to store the main
360  * program's object.
361  *
362  * The return value is the main program's entry point.
363  */
364 func_ptr_type
365 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
366 {
367     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
368     Objlist_Entry *entry;
369     Obj_Entry *last_interposer, *obj, *preload_tail;
370     const Elf_Phdr *phdr;
371     Objlist initlist;
372     RtldLockState lockstate;
373     struct stat st;
374     Elf_Addr *argcp;
375     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
376     const char *argv0;
377     caddr_t imgentry;
378     char buf[MAXPATHLEN];
379     int argc, fd, i, phnum, rtld_argc;
380     bool dir_enable, explicit_fd, search_in_path;
381 
382     /*
383      * On entry, the dynamic linker itself has not been relocated yet.
384      * Be very careful not to reference any global data until after
385      * init_rtld has returned.  It is OK to reference file-scope statics
386      * and string constants, and to call static and global functions.
387      */
388 
389     /* Find the auxiliary vector on the stack. */
390     argcp = sp;
391     argc = *sp++;
392     argv = (char **) sp;
393     sp += argc + 1;	/* Skip over arguments and NULL terminator */
394     env = (char **) sp;
395     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
396 	;
397     aux = (Elf_Auxinfo *) sp;
398 
399     /* Digest the auxiliary vector. */
400     for (i = 0;  i < AT_COUNT;  i++)
401 	aux_info[i] = NULL;
402     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
403 	if (auxp->a_type < AT_COUNT)
404 	    aux_info[auxp->a_type] = auxp;
405     }
406 
407     /* Initialize and relocate ourselves. */
408     assert(aux_info[AT_BASE] != NULL);
409     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
410 
411     __progname = obj_rtld.path;
412     argv0 = argv[0] != NULL ? argv[0] : "(null)";
413     environ = env;
414     main_argc = argc;
415     main_argv = argv;
416 
417     trust = !issetugid();
418 
419     md_abi_variant_hook(aux_info);
420 
421     fd = -1;
422     if (aux_info[AT_EXECFD] != NULL) {
423 	fd = aux_info[AT_EXECFD]->a_un.a_val;
424     } else {
425 	assert(aux_info[AT_PHDR] != NULL);
426 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
427 	if (phdr == obj_rtld.phdr) {
428 	    if (!trust) {
429 		_rtld_error("Tainted process refusing to run binary %s",
430 		    argv0);
431 		rtld_die();
432 	    }
433 	    dbg("opening main program in direct exec mode");
434 	    if (argc >= 2) {
435 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
436 		argv0 = argv[rtld_argc];
437 		explicit_fd = (fd != -1);
438 		if (!explicit_fd)
439 		    fd = open_binary_fd(argv0, search_in_path);
440 		if (fstat(fd, &st) == -1) {
441 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
442 		      explicit_fd ? "user-provided descriptor" : argv0,
443 		      rtld_strerror(errno));
444 		    rtld_die();
445 		}
446 
447 		/*
448 		 * Rough emulation of the permission checks done by
449 		 * execve(2), only Unix DACs are checked, ACLs are
450 		 * ignored.  Preserve the semantic of disabling owner
451 		 * to execute if owner x bit is cleared, even if
452 		 * others x bit is enabled.
453 		 * mmap(2) does not allow to mmap with PROT_EXEC if
454 		 * binary' file comes from noexec mount.  We cannot
455 		 * set VV_TEXT on the binary.
456 		 */
457 		dir_enable = false;
458 		if (st.st_uid == geteuid()) {
459 		    if ((st.st_mode & S_IXUSR) != 0)
460 			dir_enable = true;
461 		} else if (st.st_gid == getegid()) {
462 		    if ((st.st_mode & S_IXGRP) != 0)
463 			dir_enable = true;
464 		} else if ((st.st_mode & S_IXOTH) != 0) {
465 		    dir_enable = true;
466 		}
467 		if (!dir_enable) {
468 		    _rtld_error("No execute permission for binary %s",
469 		        argv0);
470 		    rtld_die();
471 		}
472 
473 		/*
474 		 * For direct exec mode, argv[0] is the interpreter
475 		 * name, we must remove it and shift arguments left
476 		 * before invoking binary main.  Since stack layout
477 		 * places environment pointers and aux vectors right
478 		 * after the terminating NULL, we must shift
479 		 * environment and aux as well.
480 		 */
481 		main_argc = argc - rtld_argc;
482 		for (i = 0; i <= main_argc; i++)
483 		    argv[i] = argv[i + rtld_argc];
484 		*argcp -= rtld_argc;
485 		environ = env = envp = argv + main_argc + 1;
486 		do {
487 		    *envp = *(envp + rtld_argc);
488 		    envp++;
489 		} while (*envp != NULL);
490 		aux = auxp = (Elf_Auxinfo *)envp;
491 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
492 		for (;; auxp++, auxpf++) {
493 		    *auxp = *auxpf;
494 		    if (auxp->a_type == AT_NULL)
495 			    break;
496 		}
497 	    } else {
498 		_rtld_error("No binary");
499 		rtld_die();
500 	    }
501 	}
502     }
503 
504     ld_bind_now = getenv(_LD("BIND_NOW"));
505 
506     /*
507      * If the process is tainted, then we un-set the dangerous environment
508      * variables.  The process will be marked as tainted until setuid(2)
509      * is called.  If any child process calls setuid(2) we do not want any
510      * future processes to honor the potentially un-safe variables.
511      */
512     if (!trust) {
513 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
514 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
515 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
516 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
517 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
518 		_rtld_error("environment corrupt; aborting");
519 		rtld_die();
520 	}
521     }
522     ld_debug = getenv(_LD("DEBUG"));
523     if (ld_bind_now == NULL)
524 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
525     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
526     libmap_override = getenv(_LD("LIBMAP"));
527     ld_library_path = getenv(_LD("LIBRARY_PATH"));
528     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
529     ld_preload = getenv(_LD("PRELOAD"));
530     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
531     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
532     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
533     if (library_path_rpath != NULL) {
534 	    if (library_path_rpath[0] == 'y' ||
535 		library_path_rpath[0] == 'Y' ||
536 		library_path_rpath[0] == '1')
537 		    ld_library_path_rpath = true;
538 	    else
539 		    ld_library_path_rpath = false;
540     }
541     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
542 	(ld_library_path != NULL) || (ld_preload != NULL) ||
543 	(ld_elf_hints_path != NULL) || ld_loadfltr;
544     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
545     ld_utrace = getenv(_LD("UTRACE"));
546 
547     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
548 	ld_elf_hints_path = ld_elf_hints_default;
549 
550     if (ld_debug != NULL && *ld_debug != '\0')
551 	debug = 1;
552     dbg("%s is initialized, base address = %p", __progname,
553 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
554     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
555     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
556 
557     dbg("initializing thread locks");
558     lockdflt_init();
559 
560     /*
561      * Load the main program, or process its program header if it is
562      * already loaded.
563      */
564     if (fd != -1) {	/* Load the main program. */
565 	dbg("loading main program");
566 	obj_main = map_object(fd, argv0, NULL);
567 	close(fd);
568 	if (obj_main == NULL)
569 	    rtld_die();
570 	max_stack_flags = obj_main->stack_flags;
571     } else {				/* Main program already loaded. */
572 	dbg("processing main program's program header");
573 	assert(aux_info[AT_PHDR] != NULL);
574 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
575 	assert(aux_info[AT_PHNUM] != NULL);
576 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
577 	assert(aux_info[AT_PHENT] != NULL);
578 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
579 	assert(aux_info[AT_ENTRY] != NULL);
580 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
581 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
582 	    rtld_die();
583     }
584 
585     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
586 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
587 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
588 	    if (kexecpath[0] == '/')
589 		    obj_main->path = kexecpath;
590 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
591 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
592 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
593 		    obj_main->path = xstrdup(argv0);
594 	    else
595 		    obj_main->path = xstrdup(buf);
596     } else {
597 	    dbg("No AT_EXECPATH or direct exec");
598 	    obj_main->path = xstrdup(argv0);
599     }
600     dbg("obj_main path %s", obj_main->path);
601     obj_main->mainprog = true;
602 
603     if (aux_info[AT_STACKPROT] != NULL &&
604       aux_info[AT_STACKPROT]->a_un.a_val != 0)
605 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
606 
607 #ifndef COMPAT_32BIT
608     /*
609      * Get the actual dynamic linker pathname from the executable if
610      * possible.  (It should always be possible.)  That ensures that
611      * gdb will find the right dynamic linker even if a non-standard
612      * one is being used.
613      */
614     if (obj_main->interp != NULL &&
615       strcmp(obj_main->interp, obj_rtld.path) != 0) {
616 	free(obj_rtld.path);
617 	obj_rtld.path = xstrdup(obj_main->interp);
618         __progname = obj_rtld.path;
619     }
620 #endif
621 
622     digest_dynamic(obj_main, 0);
623     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
624 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
625 	obj_main->dynsymcount);
626 
627     linkmap_add(obj_main);
628     linkmap_add(&obj_rtld);
629 
630     /* Link the main program into the list of objects. */
631     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
632     obj_count++;
633     obj_loads++;
634 
635     /* Initialize a fake symbol for resolving undefined weak references. */
636     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
637     sym_zero.st_shndx = SHN_UNDEF;
638     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
639 
640     if (!libmap_disable)
641         libmap_disable = (bool)lm_init(libmap_override);
642 
643     dbg("loading LD_PRELOAD libraries");
644     if (load_preload_objects() == -1)
645 	rtld_die();
646     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
647 
648     dbg("loading needed objects");
649     if (load_needed_objects(obj_main, 0) == -1)
650 	rtld_die();
651 
652     /* Make a list of all objects loaded at startup. */
653     last_interposer = obj_main;
654     TAILQ_FOREACH(obj, &obj_list, next) {
655 	if (obj->marker)
656 	    continue;
657 	if (obj->z_interpose && obj != obj_main) {
658 	    objlist_put_after(&list_main, last_interposer, obj);
659 	    last_interposer = obj;
660 	} else {
661 	    objlist_push_tail(&list_main, obj);
662 	}
663     	obj->refcount++;
664     }
665 
666     dbg("checking for required versions");
667     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
668 	rtld_die();
669 
670     if (ld_tracing) {		/* We're done */
671 	trace_loaded_objects(obj_main);
672 	exit(0);
673     }
674 
675     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
676        dump_relocations(obj_main);
677        exit (0);
678     }
679 
680     /*
681      * Processing tls relocations requires having the tls offsets
682      * initialized.  Prepare offsets before starting initial
683      * relocation processing.
684      */
685     dbg("initializing initial thread local storage offsets");
686     STAILQ_FOREACH(entry, &list_main, link) {
687 	/*
688 	 * Allocate all the initial objects out of the static TLS
689 	 * block even if they didn't ask for it.
690 	 */
691 	allocate_tls_offset(entry->obj);
692     }
693 
694     if (relocate_objects(obj_main,
695       ld_bind_now != NULL && *ld_bind_now != '\0',
696       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
697 	rtld_die();
698 
699     dbg("doing copy relocations");
700     if (do_copy_relocations(obj_main) == -1)
701 	rtld_die();
702 
703     dbg("enforcing main obj relro");
704     if (obj_enforce_relro(obj_main) == -1)
705 	rtld_die();
706 
707     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
708        dump_relocations(obj_main);
709        exit (0);
710     }
711 
712     ifunc_init(aux);
713 
714     /*
715      * Setup TLS for main thread.  This must be done after the
716      * relocations are processed, since tls initialization section
717      * might be the subject for relocations.
718      */
719     dbg("initializing initial thread local storage");
720     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
721 
722     dbg("initializing key program variables");
723     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
724     set_program_var("environ", env);
725     set_program_var("__elf_aux_vector", aux);
726 
727     /* Make a list of init functions to call. */
728     objlist_init(&initlist);
729     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
730       preload_tail, &initlist);
731 
732     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
733 
734     map_stacks_exec(NULL);
735 
736     dbg("resolving ifuncs");
737     if (resolve_objects_ifunc(obj_main,
738       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
739       NULL) == -1)
740 	rtld_die();
741 
742     if (!obj_main->crt_no_init) {
743 	/*
744 	 * Make sure we don't call the main program's init and fini
745 	 * functions for binaries linked with old crt1 which calls
746 	 * _init itself.
747 	 */
748 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
749 	obj_main->preinit_array = obj_main->init_array =
750 	    obj_main->fini_array = (Elf_Addr)NULL;
751     }
752 
753     /*
754      * Execute MD initializers required before we call the objects'
755      * init functions.
756      */
757     pre_init();
758 
759     wlock_acquire(rtld_bind_lock, &lockstate);
760     if (obj_main->crt_no_init)
761 	preinit_main();
762     objlist_call_init(&initlist, &lockstate);
763     _r_debug_postinit(&obj_main->linkmap);
764     objlist_clear(&initlist);
765     dbg("loading filtees");
766     TAILQ_FOREACH(obj, &obj_list, next) {
767 	if (obj->marker)
768 	    continue;
769 	if (ld_loadfltr || obj->z_loadfltr)
770 	    load_filtees(obj, 0, &lockstate);
771     }
772     lock_release(rtld_bind_lock, &lockstate);
773 
774     dbg("transferring control to program entry point = %p", obj_main->entry);
775 
776     /* Return the exit procedure and the program entry point. */
777     *exit_proc = rtld_exit;
778     *objp = obj_main;
779     return (func_ptr_type) obj_main->entry;
780 }
781 
782 void *
783 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
784 {
785 	void *ptr;
786 	Elf_Addr target;
787 
788 	ptr = (void *)make_function_pointer(def, obj);
789 	target = call_ifunc_resolver(ptr);
790 	return ((void *)target);
791 }
792 
793 /*
794  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
795  * Changes to this function should be applied there as well.
796  */
797 Elf_Addr
798 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
799 {
800     const Elf_Rel *rel;
801     const Elf_Sym *def;
802     const Obj_Entry *defobj;
803     Elf_Addr *where;
804     Elf_Addr target;
805     RtldLockState lockstate;
806 
807     rlock_acquire(rtld_bind_lock, &lockstate);
808     if (sigsetjmp(lockstate.env, 0) != 0)
809 	    lock_upgrade(rtld_bind_lock, &lockstate);
810     if (obj->pltrel)
811 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
812     else
813 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
814 
815     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
816     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
817 	NULL, &lockstate);
818     if (def == NULL)
819 	rtld_die();
820     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
821 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
822     else
823 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
824 
825     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
826       defobj->strtab + def->st_name, basename(obj->path),
827       (void *)target, basename(defobj->path));
828 
829     /*
830      * Write the new contents for the jmpslot. Note that depending on
831      * architecture, the value which we need to return back to the
832      * lazy binding trampoline may or may not be the target
833      * address. The value returned from reloc_jmpslot() is the value
834      * that the trampoline needs.
835      */
836     target = reloc_jmpslot(where, target, defobj, obj, rel);
837     lock_release(rtld_bind_lock, &lockstate);
838     return target;
839 }
840 
841 /*
842  * Error reporting function.  Use it like printf.  If formats the message
843  * into a buffer, and sets things up so that the next call to dlerror()
844  * will return the message.
845  */
846 void
847 _rtld_error(const char *fmt, ...)
848 {
849     static char buf[512];
850     va_list ap;
851 
852     va_start(ap, fmt);
853     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
854     error_message = buf;
855     va_end(ap);
856     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
857 }
858 
859 /*
860  * Return a dynamically-allocated copy of the current error message, if any.
861  */
862 static char *
863 errmsg_save(void)
864 {
865     return error_message == NULL ? NULL : xstrdup(error_message);
866 }
867 
868 /*
869  * Restore the current error message from a copy which was previously saved
870  * by errmsg_save().  The copy is freed.
871  */
872 static void
873 errmsg_restore(char *saved_msg)
874 {
875     if (saved_msg == NULL)
876 	error_message = NULL;
877     else {
878 	_rtld_error("%s", saved_msg);
879 	free(saved_msg);
880     }
881 }
882 
883 static const char *
884 basename(const char *name)
885 {
886     const char *p = strrchr(name, '/');
887     return p != NULL ? p + 1 : name;
888 }
889 
890 static struct utsname uts;
891 
892 static char *
893 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
894     const char *subst, bool may_free)
895 {
896 	char *p, *p1, *res, *resp;
897 	int subst_len, kw_len, subst_count, old_len, new_len;
898 
899 	kw_len = strlen(kw);
900 
901 	/*
902 	 * First, count the number of the keyword occurrences, to
903 	 * preallocate the final string.
904 	 */
905 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
906 		p1 = strstr(p, kw);
907 		if (p1 == NULL)
908 			break;
909 	}
910 
911 	/*
912 	 * If the keyword is not found, just return.
913 	 *
914 	 * Return non-substituted string if resolution failed.  We
915 	 * cannot do anything more reasonable, the failure mode of the
916 	 * caller is unresolved library anyway.
917 	 */
918 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
919 		return (may_free ? real : xstrdup(real));
920 	if (obj != NULL)
921 		subst = obj->origin_path;
922 
923 	/*
924 	 * There is indeed something to substitute.  Calculate the
925 	 * length of the resulting string, and allocate it.
926 	 */
927 	subst_len = strlen(subst);
928 	old_len = strlen(real);
929 	new_len = old_len + (subst_len - kw_len) * subst_count;
930 	res = xmalloc(new_len + 1);
931 
932 	/*
933 	 * Now, execute the substitution loop.
934 	 */
935 	for (p = real, resp = res, *resp = '\0';;) {
936 		p1 = strstr(p, kw);
937 		if (p1 != NULL) {
938 			/* Copy the prefix before keyword. */
939 			memcpy(resp, p, p1 - p);
940 			resp += p1 - p;
941 			/* Keyword replacement. */
942 			memcpy(resp, subst, subst_len);
943 			resp += subst_len;
944 			*resp = '\0';
945 			p = p1 + kw_len;
946 		} else
947 			break;
948 	}
949 
950 	/* Copy to the end of string and finish. */
951 	strcat(resp, p);
952 	if (may_free)
953 		free(real);
954 	return (res);
955 }
956 
957 static char *
958 origin_subst(Obj_Entry *obj, const char *real)
959 {
960 	char *res1, *res2, *res3, *res4;
961 
962 	if (obj == NULL || !trust)
963 		return (xstrdup(real));
964 	if (uts.sysname[0] == '\0') {
965 		if (uname(&uts) != 0) {
966 			_rtld_error("utsname failed: %d", errno);
967 			return (NULL);
968 		}
969 	}
970 	/* __DECONST is safe here since without may_free real is unchanged */
971 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
972 	    false);
973 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
974 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
975 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
976 	return (res4);
977 }
978 
979 void
980 rtld_die(void)
981 {
982     const char *msg = dlerror();
983 
984     if (msg == NULL)
985 	msg = "Fatal error";
986     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
987     rtld_fdputstr(STDERR_FILENO, msg);
988     rtld_fdputchar(STDERR_FILENO, '\n');
989     _exit(1);
990 }
991 
992 /*
993  * Process a shared object's DYNAMIC section, and save the important
994  * information in its Obj_Entry structure.
995  */
996 static void
997 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
998     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
999 {
1000     const Elf_Dyn *dynp;
1001     Needed_Entry **needed_tail = &obj->needed;
1002     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1003     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1004     const Elf_Hashelt *hashtab;
1005     const Elf32_Word *hashval;
1006     Elf32_Word bkt, nmaskwords;
1007     int bloom_size32;
1008     int plttype = DT_REL;
1009 
1010     *dyn_rpath = NULL;
1011     *dyn_soname = NULL;
1012     *dyn_runpath = NULL;
1013 
1014     obj->bind_now = false;
1015     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1016 	switch (dynp->d_tag) {
1017 
1018 	case DT_REL:
1019 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1020 	    break;
1021 
1022 	case DT_RELSZ:
1023 	    obj->relsize = dynp->d_un.d_val;
1024 	    break;
1025 
1026 	case DT_RELENT:
1027 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1028 	    break;
1029 
1030 	case DT_JMPREL:
1031 	    obj->pltrel = (const Elf_Rel *)
1032 	      (obj->relocbase + dynp->d_un.d_ptr);
1033 	    break;
1034 
1035 	case DT_PLTRELSZ:
1036 	    obj->pltrelsize = dynp->d_un.d_val;
1037 	    break;
1038 
1039 	case DT_RELA:
1040 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1041 	    break;
1042 
1043 	case DT_RELASZ:
1044 	    obj->relasize = dynp->d_un.d_val;
1045 	    break;
1046 
1047 	case DT_RELAENT:
1048 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1049 	    break;
1050 
1051 	case DT_PLTREL:
1052 	    plttype = dynp->d_un.d_val;
1053 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1054 	    break;
1055 
1056 	case DT_SYMTAB:
1057 	    obj->symtab = (const Elf_Sym *)
1058 	      (obj->relocbase + dynp->d_un.d_ptr);
1059 	    break;
1060 
1061 	case DT_SYMENT:
1062 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1063 	    break;
1064 
1065 	case DT_STRTAB:
1066 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1067 	    break;
1068 
1069 	case DT_STRSZ:
1070 	    obj->strsize = dynp->d_un.d_val;
1071 	    break;
1072 
1073 	case DT_VERNEED:
1074 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1075 		dynp->d_un.d_val);
1076 	    break;
1077 
1078 	case DT_VERNEEDNUM:
1079 	    obj->verneednum = dynp->d_un.d_val;
1080 	    break;
1081 
1082 	case DT_VERDEF:
1083 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1084 		dynp->d_un.d_val);
1085 	    break;
1086 
1087 	case DT_VERDEFNUM:
1088 	    obj->verdefnum = dynp->d_un.d_val;
1089 	    break;
1090 
1091 	case DT_VERSYM:
1092 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1093 		dynp->d_un.d_val);
1094 	    break;
1095 
1096 	case DT_HASH:
1097 	    {
1098 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1099 		    dynp->d_un.d_ptr);
1100 		obj->nbuckets = hashtab[0];
1101 		obj->nchains = hashtab[1];
1102 		obj->buckets = hashtab + 2;
1103 		obj->chains = obj->buckets + obj->nbuckets;
1104 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1105 		  obj->buckets != NULL;
1106 	    }
1107 	    break;
1108 
1109 	case DT_GNU_HASH:
1110 	    {
1111 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1112 		    dynp->d_un.d_ptr);
1113 		obj->nbuckets_gnu = hashtab[0];
1114 		obj->symndx_gnu = hashtab[1];
1115 		nmaskwords = hashtab[2];
1116 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1117 		obj->maskwords_bm_gnu = nmaskwords - 1;
1118 		obj->shift2_gnu = hashtab[3];
1119 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1120 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1121 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1122 		  obj->symndx_gnu;
1123 		/* Number of bitmask words is required to be power of 2 */
1124 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1125 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1126 	    }
1127 	    break;
1128 
1129 	case DT_NEEDED:
1130 	    if (!obj->rtld) {
1131 		Needed_Entry *nep = NEW(Needed_Entry);
1132 		nep->name = dynp->d_un.d_val;
1133 		nep->obj = NULL;
1134 		nep->next = NULL;
1135 
1136 		*needed_tail = nep;
1137 		needed_tail = &nep->next;
1138 	    }
1139 	    break;
1140 
1141 	case DT_FILTER:
1142 	    if (!obj->rtld) {
1143 		Needed_Entry *nep = NEW(Needed_Entry);
1144 		nep->name = dynp->d_un.d_val;
1145 		nep->obj = NULL;
1146 		nep->next = NULL;
1147 
1148 		*needed_filtees_tail = nep;
1149 		needed_filtees_tail = &nep->next;
1150 	    }
1151 	    break;
1152 
1153 	case DT_AUXILIARY:
1154 	    if (!obj->rtld) {
1155 		Needed_Entry *nep = NEW(Needed_Entry);
1156 		nep->name = dynp->d_un.d_val;
1157 		nep->obj = NULL;
1158 		nep->next = NULL;
1159 
1160 		*needed_aux_filtees_tail = nep;
1161 		needed_aux_filtees_tail = &nep->next;
1162 	    }
1163 	    break;
1164 
1165 	case DT_PLTGOT:
1166 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1167 	    break;
1168 
1169 	case DT_TEXTREL:
1170 	    obj->textrel = true;
1171 	    break;
1172 
1173 	case DT_SYMBOLIC:
1174 	    obj->symbolic = true;
1175 	    break;
1176 
1177 	case DT_RPATH:
1178 	    /*
1179 	     * We have to wait until later to process this, because we
1180 	     * might not have gotten the address of the string table yet.
1181 	     */
1182 	    *dyn_rpath = dynp;
1183 	    break;
1184 
1185 	case DT_SONAME:
1186 	    *dyn_soname = dynp;
1187 	    break;
1188 
1189 	case DT_RUNPATH:
1190 	    *dyn_runpath = dynp;
1191 	    break;
1192 
1193 	case DT_INIT:
1194 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1195 	    break;
1196 
1197 	case DT_PREINIT_ARRAY:
1198 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1199 	    break;
1200 
1201 	case DT_PREINIT_ARRAYSZ:
1202 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1203 	    break;
1204 
1205 	case DT_INIT_ARRAY:
1206 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1207 	    break;
1208 
1209 	case DT_INIT_ARRAYSZ:
1210 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1211 	    break;
1212 
1213 	case DT_FINI:
1214 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1215 	    break;
1216 
1217 	case DT_FINI_ARRAY:
1218 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1219 	    break;
1220 
1221 	case DT_FINI_ARRAYSZ:
1222 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1223 	    break;
1224 
1225 	/*
1226 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1227 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1228 	 */
1229 
1230 #ifndef __mips__
1231 	case DT_DEBUG:
1232 	    if (!early)
1233 		dbg("Filling in DT_DEBUG entry");
1234 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1235 	    break;
1236 #endif
1237 
1238 	case DT_FLAGS:
1239 		if (dynp->d_un.d_val & DF_ORIGIN)
1240 		    obj->z_origin = true;
1241 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1242 		    obj->symbolic = true;
1243 		if (dynp->d_un.d_val & DF_TEXTREL)
1244 		    obj->textrel = true;
1245 		if (dynp->d_un.d_val & DF_BIND_NOW)
1246 		    obj->bind_now = true;
1247 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1248 		    ;*/
1249 	    break;
1250 #ifdef __mips__
1251 	case DT_MIPS_LOCAL_GOTNO:
1252 		obj->local_gotno = dynp->d_un.d_val;
1253 		break;
1254 
1255 	case DT_MIPS_SYMTABNO:
1256 		obj->symtabno = dynp->d_un.d_val;
1257 		break;
1258 
1259 	case DT_MIPS_GOTSYM:
1260 		obj->gotsym = dynp->d_un.d_val;
1261 		break;
1262 
1263 	case DT_MIPS_RLD_MAP:
1264 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1265 		break;
1266 
1267 	case DT_MIPS_PLTGOT:
1268 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1269 		    dynp->d_un.d_ptr);
1270 		break;
1271 
1272 #endif
1273 
1274 #ifdef __powerpc64__
1275 	case DT_PPC64_GLINK:
1276 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1277 		break;
1278 #endif
1279 
1280 	case DT_FLAGS_1:
1281 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1282 		    obj->z_noopen = true;
1283 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1284 		    obj->z_origin = true;
1285 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1286 		    obj->z_global = true;
1287 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1288 		    obj->bind_now = true;
1289 		if (dynp->d_un.d_val & DF_1_NODELETE)
1290 		    obj->z_nodelete = true;
1291 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1292 		    obj->z_loadfltr = true;
1293 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1294 		    obj->z_interpose = true;
1295 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1296 		    obj->z_nodeflib = true;
1297 	    break;
1298 
1299 	default:
1300 	    if (!early) {
1301 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1302 		    (long)dynp->d_tag);
1303 	    }
1304 	    break;
1305 	}
1306     }
1307 
1308     obj->traced = false;
1309 
1310     if (plttype == DT_RELA) {
1311 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1312 	obj->pltrel = NULL;
1313 	obj->pltrelasize = obj->pltrelsize;
1314 	obj->pltrelsize = 0;
1315     }
1316 
1317     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1318     if (obj->valid_hash_sysv)
1319 	obj->dynsymcount = obj->nchains;
1320     else if (obj->valid_hash_gnu) {
1321 	obj->dynsymcount = 0;
1322 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1323 	    if (obj->buckets_gnu[bkt] == 0)
1324 		continue;
1325 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1326 	    do
1327 		obj->dynsymcount++;
1328 	    while ((*hashval++ & 1u) == 0);
1329 	}
1330 	obj->dynsymcount += obj->symndx_gnu;
1331     }
1332 }
1333 
1334 static bool
1335 obj_resolve_origin(Obj_Entry *obj)
1336 {
1337 
1338 	if (obj->origin_path != NULL)
1339 		return (true);
1340 	obj->origin_path = xmalloc(PATH_MAX);
1341 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1342 }
1343 
1344 static void
1345 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1346     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1347 {
1348 
1349 	if (obj->z_origin && !obj_resolve_origin(obj))
1350 		rtld_die();
1351 
1352 	if (dyn_runpath != NULL) {
1353 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1354 		obj->runpath = origin_subst(obj, obj->runpath);
1355 	} else if (dyn_rpath != NULL) {
1356 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1357 		obj->rpath = origin_subst(obj, obj->rpath);
1358 	}
1359 	if (dyn_soname != NULL)
1360 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1361 }
1362 
1363 static void
1364 digest_dynamic(Obj_Entry *obj, int early)
1365 {
1366 	const Elf_Dyn *dyn_rpath;
1367 	const Elf_Dyn *dyn_soname;
1368 	const Elf_Dyn *dyn_runpath;
1369 
1370 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1371 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1372 }
1373 
1374 /*
1375  * Process a shared object's program header.  This is used only for the
1376  * main program, when the kernel has already loaded the main program
1377  * into memory before calling the dynamic linker.  It creates and
1378  * returns an Obj_Entry structure.
1379  */
1380 static Obj_Entry *
1381 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1382 {
1383     Obj_Entry *obj;
1384     const Elf_Phdr *phlimit = phdr + phnum;
1385     const Elf_Phdr *ph;
1386     Elf_Addr note_start, note_end;
1387     int nsegs = 0;
1388 
1389     obj = obj_new();
1390     for (ph = phdr;  ph < phlimit;  ph++) {
1391 	if (ph->p_type != PT_PHDR)
1392 	    continue;
1393 
1394 	obj->phdr = phdr;
1395 	obj->phsize = ph->p_memsz;
1396 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1397 	break;
1398     }
1399 
1400     obj->stack_flags = PF_X | PF_R | PF_W;
1401 
1402     for (ph = phdr;  ph < phlimit;  ph++) {
1403 	switch (ph->p_type) {
1404 
1405 	case PT_INTERP:
1406 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1407 	    break;
1408 
1409 	case PT_LOAD:
1410 	    if (nsegs == 0) {	/* First load segment */
1411 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1412 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1413 	    } else {		/* Last load segment */
1414 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1415 		  obj->vaddrbase;
1416 	    }
1417 	    nsegs++;
1418 	    break;
1419 
1420 	case PT_DYNAMIC:
1421 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1422 	    break;
1423 
1424 	case PT_TLS:
1425 	    obj->tlsindex = 1;
1426 	    obj->tlssize = ph->p_memsz;
1427 	    obj->tlsalign = ph->p_align;
1428 	    obj->tlsinitsize = ph->p_filesz;
1429 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1430 	    break;
1431 
1432 	case PT_GNU_STACK:
1433 	    obj->stack_flags = ph->p_flags;
1434 	    break;
1435 
1436 	case PT_GNU_RELRO:
1437 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1438 	    obj->relro_size = round_page(ph->p_memsz);
1439 	    break;
1440 
1441 	case PT_NOTE:
1442 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1443 	    note_end = note_start + ph->p_filesz;
1444 	    digest_notes(obj, note_start, note_end);
1445 	    break;
1446 	}
1447     }
1448     if (nsegs < 1) {
1449 	_rtld_error("%s: too few PT_LOAD segments", path);
1450 	return NULL;
1451     }
1452 
1453     obj->entry = entry;
1454     return obj;
1455 }
1456 
1457 void
1458 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1459 {
1460 	const Elf_Note *note;
1461 	const char *note_name;
1462 	uintptr_t p;
1463 
1464 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1465 	    note = (const Elf_Note *)((const char *)(note + 1) +
1466 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1467 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1468 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1469 		    note->n_descsz != sizeof(int32_t))
1470 			continue;
1471 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1472 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1473 			continue;
1474 		note_name = (const char *)(note + 1);
1475 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1476 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1477 			continue;
1478 		switch (note->n_type) {
1479 		case NT_FREEBSD_ABI_TAG:
1480 			/* FreeBSD osrel note */
1481 			p = (uintptr_t)(note + 1);
1482 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1483 			obj->osrel = *(const int32_t *)(p);
1484 			dbg("note osrel %d", obj->osrel);
1485 			break;
1486 		case NT_FREEBSD_NOINIT_TAG:
1487 			/* FreeBSD 'crt does not call init' note */
1488 			obj->crt_no_init = true;
1489 			dbg("note crt_no_init");
1490 			break;
1491 		}
1492 	}
1493 }
1494 
1495 static Obj_Entry *
1496 dlcheck(void *handle)
1497 {
1498     Obj_Entry *obj;
1499 
1500     TAILQ_FOREACH(obj, &obj_list, next) {
1501 	if (obj == (Obj_Entry *) handle)
1502 	    break;
1503     }
1504 
1505     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1506 	_rtld_error("Invalid shared object handle %p", handle);
1507 	return NULL;
1508     }
1509     return obj;
1510 }
1511 
1512 /*
1513  * If the given object is already in the donelist, return true.  Otherwise
1514  * add the object to the list and return false.
1515  */
1516 static bool
1517 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1518 {
1519     unsigned int i;
1520 
1521     for (i = 0;  i < dlp->num_used;  i++)
1522 	if (dlp->objs[i] == obj)
1523 	    return true;
1524     /*
1525      * Our donelist allocation should always be sufficient.  But if
1526      * our threads locking isn't working properly, more shared objects
1527      * could have been loaded since we allocated the list.  That should
1528      * never happen, but we'll handle it properly just in case it does.
1529      */
1530     if (dlp->num_used < dlp->num_alloc)
1531 	dlp->objs[dlp->num_used++] = obj;
1532     return false;
1533 }
1534 
1535 /*
1536  * Hash function for symbol table lookup.  Don't even think about changing
1537  * this.  It is specified by the System V ABI.
1538  */
1539 unsigned long
1540 elf_hash(const char *name)
1541 {
1542     const unsigned char *p = (const unsigned char *) name;
1543     unsigned long h = 0;
1544     unsigned long g;
1545 
1546     while (*p != '\0') {
1547 	h = (h << 4) + *p++;
1548 	if ((g = h & 0xf0000000) != 0)
1549 	    h ^= g >> 24;
1550 	h &= ~g;
1551     }
1552     return h;
1553 }
1554 
1555 /*
1556  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1557  * unsigned in case it's implemented with a wider type.
1558  */
1559 static uint32_t
1560 gnu_hash(const char *s)
1561 {
1562 	uint32_t h;
1563 	unsigned char c;
1564 
1565 	h = 5381;
1566 	for (c = *s; c != '\0'; c = *++s)
1567 		h = h * 33 + c;
1568 	return (h & 0xffffffff);
1569 }
1570 
1571 
1572 /*
1573  * Find the library with the given name, and return its full pathname.
1574  * The returned string is dynamically allocated.  Generates an error
1575  * message and returns NULL if the library cannot be found.
1576  *
1577  * If the second argument is non-NULL, then it refers to an already-
1578  * loaded shared object, whose library search path will be searched.
1579  *
1580  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1581  * descriptor (which is close-on-exec) will be passed out via the third
1582  * argument.
1583  *
1584  * The search order is:
1585  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1586  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1587  *   LD_LIBRARY_PATH
1588  *   DT_RUNPATH in the referencing file
1589  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1590  *	 from list)
1591  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1592  *
1593  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1594  */
1595 static char *
1596 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1597 {
1598 	char *pathname, *refobj_path;
1599 	const char *name;
1600 	bool nodeflib, objgiven;
1601 
1602 	objgiven = refobj != NULL;
1603 
1604 	if (libmap_disable || !objgiven ||
1605 	    (name = lm_find(refobj->path, xname)) == NULL)
1606 		name = xname;
1607 
1608 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1609 		if (name[0] != '/' && !trust) {
1610 			_rtld_error("Absolute pathname required "
1611 			    "for shared object \"%s\"", name);
1612 			return (NULL);
1613 		}
1614 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1615 		    __DECONST(char *, name)));
1616 	}
1617 
1618 	dbg(" Searching for \"%s\"", name);
1619 	refobj_path = objgiven ? refobj->path : NULL;
1620 
1621 	/*
1622 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1623 	 * back to pre-conforming behaviour if user requested so with
1624 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1625 	 * nodeflib.
1626 	 */
1627 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1628 		pathname = search_library_path(name, ld_library_path,
1629 		    refobj_path, fdp);
1630 		if (pathname != NULL)
1631 			return (pathname);
1632 		if (refobj != NULL) {
1633 			pathname = search_library_path(name, refobj->rpath,
1634 			    refobj_path, fdp);
1635 			if (pathname != NULL)
1636 				return (pathname);
1637 		}
1638 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1639 		if (pathname != NULL)
1640 			return (pathname);
1641 		pathname = search_library_path(name, gethints(false),
1642 		    refobj_path, fdp);
1643 		if (pathname != NULL)
1644 			return (pathname);
1645 		pathname = search_library_path(name, ld_standard_library_path,
1646 		    refobj_path, fdp);
1647 		if (pathname != NULL)
1648 			return (pathname);
1649 	} else {
1650 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1651 		if (objgiven) {
1652 			pathname = search_library_path(name, refobj->rpath,
1653 			    refobj->path, fdp);
1654 			if (pathname != NULL)
1655 				return (pathname);
1656 		}
1657 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1658 			pathname = search_library_path(name, obj_main->rpath,
1659 			    refobj_path, fdp);
1660 			if (pathname != NULL)
1661 				return (pathname);
1662 		}
1663 		pathname = search_library_path(name, ld_library_path,
1664 		    refobj_path, fdp);
1665 		if (pathname != NULL)
1666 			return (pathname);
1667 		if (objgiven) {
1668 			pathname = search_library_path(name, refobj->runpath,
1669 			    refobj_path, fdp);
1670 			if (pathname != NULL)
1671 				return (pathname);
1672 		}
1673 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1674 		if (pathname != NULL)
1675 			return (pathname);
1676 		pathname = search_library_path(name, gethints(nodeflib),
1677 		    refobj_path, fdp);
1678 		if (pathname != NULL)
1679 			return (pathname);
1680 		if (objgiven && !nodeflib) {
1681 			pathname = search_library_path(name,
1682 			    ld_standard_library_path, refobj_path, fdp);
1683 			if (pathname != NULL)
1684 				return (pathname);
1685 		}
1686 	}
1687 
1688 	if (objgiven && refobj->path != NULL) {
1689 		_rtld_error("Shared object \"%s\" not found, "
1690 		    "required by \"%s\"", name, basename(refobj->path));
1691 	} else {
1692 		_rtld_error("Shared object \"%s\" not found", name);
1693 	}
1694 	return (NULL);
1695 }
1696 
1697 /*
1698  * Given a symbol number in a referencing object, find the corresponding
1699  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1700  * no definition was found.  Returns a pointer to the Obj_Entry of the
1701  * defining object via the reference parameter DEFOBJ_OUT.
1702  */
1703 const Elf_Sym *
1704 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1705     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1706     RtldLockState *lockstate)
1707 {
1708     const Elf_Sym *ref;
1709     const Elf_Sym *def;
1710     const Obj_Entry *defobj;
1711     const Ver_Entry *ve;
1712     SymLook req;
1713     const char *name;
1714     int res;
1715 
1716     /*
1717      * If we have already found this symbol, get the information from
1718      * the cache.
1719      */
1720     if (symnum >= refobj->dynsymcount)
1721 	return NULL;	/* Bad object */
1722     if (cache != NULL && cache[symnum].sym != NULL) {
1723 	*defobj_out = cache[symnum].obj;
1724 	return cache[symnum].sym;
1725     }
1726 
1727     ref = refobj->symtab + symnum;
1728     name = refobj->strtab + ref->st_name;
1729     def = NULL;
1730     defobj = NULL;
1731     ve = NULL;
1732 
1733     /*
1734      * We don't have to do a full scale lookup if the symbol is local.
1735      * We know it will bind to the instance in this load module; to
1736      * which we already have a pointer (ie ref). By not doing a lookup,
1737      * we not only improve performance, but it also avoids unresolvable
1738      * symbols when local symbols are not in the hash table. This has
1739      * been seen with the ia64 toolchain.
1740      */
1741     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1742 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1743 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1744 		symnum);
1745 	}
1746 	symlook_init(&req, name);
1747 	req.flags = flags;
1748 	ve = req.ventry = fetch_ventry(refobj, symnum);
1749 	req.lockstate = lockstate;
1750 	res = symlook_default(&req, refobj);
1751 	if (res == 0) {
1752 	    def = req.sym_out;
1753 	    defobj = req.defobj_out;
1754 	}
1755     } else {
1756 	def = ref;
1757 	defobj = refobj;
1758     }
1759 
1760     /*
1761      * If we found no definition and the reference is weak, treat the
1762      * symbol as having the value zero.
1763      */
1764     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1765 	def = &sym_zero;
1766 	defobj = obj_main;
1767     }
1768 
1769     if (def != NULL) {
1770 	*defobj_out = defobj;
1771 	/* Record the information in the cache to avoid subsequent lookups. */
1772 	if (cache != NULL) {
1773 	    cache[symnum].sym = def;
1774 	    cache[symnum].obj = defobj;
1775 	}
1776     } else {
1777 	if (refobj != &obj_rtld)
1778 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1779 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1780     }
1781     return def;
1782 }
1783 
1784 /*
1785  * Return the search path from the ldconfig hints file, reading it if
1786  * necessary.  If nostdlib is true, then the default search paths are
1787  * not added to result.
1788  *
1789  * Returns NULL if there are problems with the hints file,
1790  * or if the search path there is empty.
1791  */
1792 static const char *
1793 gethints(bool nostdlib)
1794 {
1795 	static char *filtered_path;
1796 	static const char *hints;
1797 	static struct elfhints_hdr hdr;
1798 	struct fill_search_info_args sargs, hargs;
1799 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1800 	struct dl_serpath *SLPpath, *hintpath;
1801 	char *p;
1802 	struct stat hint_stat;
1803 	unsigned int SLPndx, hintndx, fndx, fcount;
1804 	int fd;
1805 	size_t flen;
1806 	uint32_t dl;
1807 	bool skip;
1808 
1809 	/* First call, read the hints file */
1810 	if (hints == NULL) {
1811 		/* Keep from trying again in case the hints file is bad. */
1812 		hints = "";
1813 
1814 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1815 			return (NULL);
1816 
1817 		/*
1818 		 * Check of hdr.dirlistlen value against type limit
1819 		 * intends to pacify static analyzers.  Further
1820 		 * paranoia leads to checks that dirlist is fully
1821 		 * contained in the file range.
1822 		 */
1823 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1824 		    hdr.magic != ELFHINTS_MAGIC ||
1825 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1826 		    fstat(fd, &hint_stat) == -1) {
1827 cleanup1:
1828 			close(fd);
1829 			hdr.dirlistlen = 0;
1830 			return (NULL);
1831 		}
1832 		dl = hdr.strtab;
1833 		if (dl + hdr.dirlist < dl)
1834 			goto cleanup1;
1835 		dl += hdr.dirlist;
1836 		if (dl + hdr.dirlistlen < dl)
1837 			goto cleanup1;
1838 		dl += hdr.dirlistlen;
1839 		if (dl > hint_stat.st_size)
1840 			goto cleanup1;
1841 		p = xmalloc(hdr.dirlistlen + 1);
1842 		if (pread(fd, p, hdr.dirlistlen + 1,
1843 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1844 		    p[hdr.dirlistlen] != '\0') {
1845 			free(p);
1846 			goto cleanup1;
1847 		}
1848 		hints = p;
1849 		close(fd);
1850 	}
1851 
1852 	/*
1853 	 * If caller agreed to receive list which includes the default
1854 	 * paths, we are done. Otherwise, if we still did not
1855 	 * calculated filtered result, do it now.
1856 	 */
1857 	if (!nostdlib)
1858 		return (hints[0] != '\0' ? hints : NULL);
1859 	if (filtered_path != NULL)
1860 		goto filt_ret;
1861 
1862 	/*
1863 	 * Obtain the list of all configured search paths, and the
1864 	 * list of the default paths.
1865 	 *
1866 	 * First estimate the size of the results.
1867 	 */
1868 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1869 	smeta.dls_cnt = 0;
1870 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1871 	hmeta.dls_cnt = 0;
1872 
1873 	sargs.request = RTLD_DI_SERINFOSIZE;
1874 	sargs.serinfo = &smeta;
1875 	hargs.request = RTLD_DI_SERINFOSIZE;
1876 	hargs.serinfo = &hmeta;
1877 
1878 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1879 	    &sargs);
1880 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1881 
1882 	SLPinfo = xmalloc(smeta.dls_size);
1883 	hintinfo = xmalloc(hmeta.dls_size);
1884 
1885 	/*
1886 	 * Next fetch both sets of paths.
1887 	 */
1888 	sargs.request = RTLD_DI_SERINFO;
1889 	sargs.serinfo = SLPinfo;
1890 	sargs.serpath = &SLPinfo->dls_serpath[0];
1891 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1892 
1893 	hargs.request = RTLD_DI_SERINFO;
1894 	hargs.serinfo = hintinfo;
1895 	hargs.serpath = &hintinfo->dls_serpath[0];
1896 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1897 
1898 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1899 	    &sargs);
1900 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1901 
1902 	/*
1903 	 * Now calculate the difference between two sets, by excluding
1904 	 * standard paths from the full set.
1905 	 */
1906 	fndx = 0;
1907 	fcount = 0;
1908 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1909 	hintpath = &hintinfo->dls_serpath[0];
1910 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1911 		skip = false;
1912 		SLPpath = &SLPinfo->dls_serpath[0];
1913 		/*
1914 		 * Check each standard path against current.
1915 		 */
1916 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1917 			/* matched, skip the path */
1918 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1919 				skip = true;
1920 				break;
1921 			}
1922 		}
1923 		if (skip)
1924 			continue;
1925 		/*
1926 		 * Not matched against any standard path, add the path
1927 		 * to result. Separate consequtive paths with ':'.
1928 		 */
1929 		if (fcount > 0) {
1930 			filtered_path[fndx] = ':';
1931 			fndx++;
1932 		}
1933 		fcount++;
1934 		flen = strlen(hintpath->dls_name);
1935 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1936 		fndx += flen;
1937 	}
1938 	filtered_path[fndx] = '\0';
1939 
1940 	free(SLPinfo);
1941 	free(hintinfo);
1942 
1943 filt_ret:
1944 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1945 }
1946 
1947 static void
1948 init_dag(Obj_Entry *root)
1949 {
1950     const Needed_Entry *needed;
1951     const Objlist_Entry *elm;
1952     DoneList donelist;
1953 
1954     if (root->dag_inited)
1955 	return;
1956     donelist_init(&donelist);
1957 
1958     /* Root object belongs to own DAG. */
1959     objlist_push_tail(&root->dldags, root);
1960     objlist_push_tail(&root->dagmembers, root);
1961     donelist_check(&donelist, root);
1962 
1963     /*
1964      * Add dependencies of root object to DAG in breadth order
1965      * by exploiting the fact that each new object get added
1966      * to the tail of the dagmembers list.
1967      */
1968     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1969 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1970 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1971 		continue;
1972 	    objlist_push_tail(&needed->obj->dldags, root);
1973 	    objlist_push_tail(&root->dagmembers, needed->obj);
1974 	}
1975     }
1976     root->dag_inited = true;
1977 }
1978 
1979 static void
1980 init_marker(Obj_Entry *marker)
1981 {
1982 
1983 	bzero(marker, sizeof(*marker));
1984 	marker->marker = true;
1985 }
1986 
1987 Obj_Entry *
1988 globallist_curr(const Obj_Entry *obj)
1989 {
1990 
1991 	for (;;) {
1992 		if (obj == NULL)
1993 			return (NULL);
1994 		if (!obj->marker)
1995 			return (__DECONST(Obj_Entry *, obj));
1996 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1997 	}
1998 }
1999 
2000 Obj_Entry *
2001 globallist_next(const Obj_Entry *obj)
2002 {
2003 
2004 	for (;;) {
2005 		obj = TAILQ_NEXT(obj, next);
2006 		if (obj == NULL)
2007 			return (NULL);
2008 		if (!obj->marker)
2009 			return (__DECONST(Obj_Entry *, obj));
2010 	}
2011 }
2012 
2013 /* Prevent the object from being unmapped while the bind lock is dropped. */
2014 static void
2015 hold_object(Obj_Entry *obj)
2016 {
2017 
2018 	obj->holdcount++;
2019 }
2020 
2021 static void
2022 unhold_object(Obj_Entry *obj)
2023 {
2024 
2025 	assert(obj->holdcount > 0);
2026 	if (--obj->holdcount == 0 && obj->unholdfree)
2027 		release_object(obj);
2028 }
2029 
2030 static void
2031 process_z(Obj_Entry *root)
2032 {
2033 	const Objlist_Entry *elm;
2034 	Obj_Entry *obj;
2035 
2036 	/*
2037 	 * Walk over object DAG and process every dependent object
2038 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2039 	 * to grow their own DAG.
2040 	 *
2041 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2042 	 * symlook_global() to work.
2043 	 *
2044 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2045 	 */
2046 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2047 		obj = elm->obj;
2048 		if (obj == NULL)
2049 			continue;
2050 		if (obj->z_nodelete && !obj->ref_nodel) {
2051 			dbg("obj %s -z nodelete", obj->path);
2052 			init_dag(obj);
2053 			ref_dag(obj);
2054 			obj->ref_nodel = true;
2055 		}
2056 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2057 			dbg("obj %s -z global", obj->path);
2058 			objlist_push_tail(&list_global, obj);
2059 			init_dag(obj);
2060 		}
2061 	}
2062 }
2063 /*
2064  * Initialize the dynamic linker.  The argument is the address at which
2065  * the dynamic linker has been mapped into memory.  The primary task of
2066  * this function is to relocate the dynamic linker.
2067  */
2068 static void
2069 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2070 {
2071     Obj_Entry objtmp;	/* Temporary rtld object */
2072     const Elf_Ehdr *ehdr;
2073     const Elf_Dyn *dyn_rpath;
2074     const Elf_Dyn *dyn_soname;
2075     const Elf_Dyn *dyn_runpath;
2076 
2077 #ifdef RTLD_INIT_PAGESIZES_EARLY
2078     /* The page size is required by the dynamic memory allocator. */
2079     init_pagesizes(aux_info);
2080 #endif
2081 
2082     /*
2083      * Conjure up an Obj_Entry structure for the dynamic linker.
2084      *
2085      * The "path" member can't be initialized yet because string constants
2086      * cannot yet be accessed. Below we will set it correctly.
2087      */
2088     memset(&objtmp, 0, sizeof(objtmp));
2089     objtmp.path = NULL;
2090     objtmp.rtld = true;
2091     objtmp.mapbase = mapbase;
2092 #ifdef PIC
2093     objtmp.relocbase = mapbase;
2094 #endif
2095 
2096     objtmp.dynamic = rtld_dynamic(&objtmp);
2097     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2098     assert(objtmp.needed == NULL);
2099 #if !defined(__mips__)
2100     /* MIPS has a bogus DT_TEXTREL. */
2101     assert(!objtmp.textrel);
2102 #endif
2103     /*
2104      * Temporarily put the dynamic linker entry into the object list, so
2105      * that symbols can be found.
2106      */
2107     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2108 
2109     ehdr = (Elf_Ehdr *)mapbase;
2110     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2111     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2112 
2113     /* Initialize the object list. */
2114     TAILQ_INIT(&obj_list);
2115 
2116     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2117     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2118 
2119 #ifndef RTLD_INIT_PAGESIZES_EARLY
2120     /* The page size is required by the dynamic memory allocator. */
2121     init_pagesizes(aux_info);
2122 #endif
2123 
2124     if (aux_info[AT_OSRELDATE] != NULL)
2125 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2126 
2127     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2128 
2129     /* Replace the path with a dynamically allocated copy. */
2130     obj_rtld.path = xstrdup(ld_path_rtld);
2131 
2132     r_debug.r_brk = r_debug_state;
2133     r_debug.r_state = RT_CONSISTENT;
2134 }
2135 
2136 /*
2137  * Retrieve the array of supported page sizes.  The kernel provides the page
2138  * sizes in increasing order.
2139  */
2140 static void
2141 init_pagesizes(Elf_Auxinfo **aux_info)
2142 {
2143 	static size_t psa[MAXPAGESIZES];
2144 	int mib[2];
2145 	size_t len, size;
2146 
2147 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2148 	    NULL) {
2149 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2150 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2151 	} else {
2152 		len = 2;
2153 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2154 			size = sizeof(psa);
2155 		else {
2156 			/* As a fallback, retrieve the base page size. */
2157 			size = sizeof(psa[0]);
2158 			if (aux_info[AT_PAGESZ] != NULL) {
2159 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2160 				goto psa_filled;
2161 			} else {
2162 				mib[0] = CTL_HW;
2163 				mib[1] = HW_PAGESIZE;
2164 				len = 2;
2165 			}
2166 		}
2167 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2168 			_rtld_error("sysctl for hw.pagesize(s) failed");
2169 			rtld_die();
2170 		}
2171 psa_filled:
2172 		pagesizes = psa;
2173 	}
2174 	npagesizes = size / sizeof(pagesizes[0]);
2175 	/* Discard any invalid entries at the end of the array. */
2176 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2177 		npagesizes--;
2178 }
2179 
2180 /*
2181  * Add the init functions from a needed object list (and its recursive
2182  * needed objects) to "list".  This is not used directly; it is a helper
2183  * function for initlist_add_objects().  The write lock must be held
2184  * when this function is called.
2185  */
2186 static void
2187 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2188 {
2189     /* Recursively process the successor needed objects. */
2190     if (needed->next != NULL)
2191 	initlist_add_neededs(needed->next, list);
2192 
2193     /* Process the current needed object. */
2194     if (needed->obj != NULL)
2195 	initlist_add_objects(needed->obj, needed->obj, list);
2196 }
2197 
2198 /*
2199  * Scan all of the DAGs rooted in the range of objects from "obj" to
2200  * "tail" and add their init functions to "list".  This recurses over
2201  * the DAGs and ensure the proper init ordering such that each object's
2202  * needed libraries are initialized before the object itself.  At the
2203  * same time, this function adds the objects to the global finalization
2204  * list "list_fini" in the opposite order.  The write lock must be
2205  * held when this function is called.
2206  */
2207 static void
2208 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2209 {
2210     Obj_Entry *nobj;
2211 
2212     if (obj->init_scanned || obj->init_done)
2213 	return;
2214     obj->init_scanned = true;
2215 
2216     /* Recursively process the successor objects. */
2217     nobj = globallist_next(obj);
2218     if (nobj != NULL && obj != tail)
2219 	initlist_add_objects(nobj, tail, list);
2220 
2221     /* Recursively process the needed objects. */
2222     if (obj->needed != NULL)
2223 	initlist_add_neededs(obj->needed, list);
2224     if (obj->needed_filtees != NULL)
2225 	initlist_add_neededs(obj->needed_filtees, list);
2226     if (obj->needed_aux_filtees != NULL)
2227 	initlist_add_neededs(obj->needed_aux_filtees, list);
2228 
2229     /* Add the object to the init list. */
2230     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2231       obj->init_array != (Elf_Addr)NULL)
2232 	objlist_push_tail(list, obj);
2233 
2234     /* Add the object to the global fini list in the reverse order. */
2235     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2236       && !obj->on_fini_list) {
2237 	objlist_push_head(&list_fini, obj);
2238 	obj->on_fini_list = true;
2239     }
2240 }
2241 
2242 #ifndef FPTR_TARGET
2243 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2244 #endif
2245 
2246 static void
2247 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2248 {
2249     Needed_Entry *needed, *needed1;
2250 
2251     for (needed = n; needed != NULL; needed = needed->next) {
2252 	if (needed->obj != NULL) {
2253 	    dlclose_locked(needed->obj, lockstate);
2254 	    needed->obj = NULL;
2255 	}
2256     }
2257     for (needed = n; needed != NULL; needed = needed1) {
2258 	needed1 = needed->next;
2259 	free(needed);
2260     }
2261 }
2262 
2263 static void
2264 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2265 {
2266 
2267 	free_needed_filtees(obj->needed_filtees, lockstate);
2268 	obj->needed_filtees = NULL;
2269 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2270 	obj->needed_aux_filtees = NULL;
2271 	obj->filtees_loaded = false;
2272 }
2273 
2274 static void
2275 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2276     RtldLockState *lockstate)
2277 {
2278 
2279     for (; needed != NULL; needed = needed->next) {
2280 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2281 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2282 	  RTLD_LOCAL, lockstate);
2283     }
2284 }
2285 
2286 static void
2287 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2288 {
2289 
2290     lock_restart_for_upgrade(lockstate);
2291     if (!obj->filtees_loaded) {
2292 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2293 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2294 	obj->filtees_loaded = true;
2295     }
2296 }
2297 
2298 static int
2299 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2300 {
2301     Obj_Entry *obj1;
2302 
2303     for (; needed != NULL; needed = needed->next) {
2304 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2305 	  flags & ~RTLD_LO_NOLOAD);
2306 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2307 	    return (-1);
2308     }
2309     return (0);
2310 }
2311 
2312 /*
2313  * Given a shared object, traverse its list of needed objects, and load
2314  * each of them.  Returns 0 on success.  Generates an error message and
2315  * returns -1 on failure.
2316  */
2317 static int
2318 load_needed_objects(Obj_Entry *first, int flags)
2319 {
2320     Obj_Entry *obj;
2321 
2322     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2323 	if (obj->marker)
2324 	    continue;
2325 	if (process_needed(obj, obj->needed, flags) == -1)
2326 	    return (-1);
2327     }
2328     return (0);
2329 }
2330 
2331 static int
2332 load_preload_objects(void)
2333 {
2334     char *p = ld_preload;
2335     Obj_Entry *obj;
2336     static const char delim[] = " \t:;";
2337 
2338     if (p == NULL)
2339 	return 0;
2340 
2341     p += strspn(p, delim);
2342     while (*p != '\0') {
2343 	size_t len = strcspn(p, delim);
2344 	char savech;
2345 
2346 	savech = p[len];
2347 	p[len] = '\0';
2348 	obj = load_object(p, -1, NULL, 0);
2349 	if (obj == NULL)
2350 	    return -1;	/* XXX - cleanup */
2351 	obj->z_interpose = true;
2352 	p[len] = savech;
2353 	p += len;
2354 	p += strspn(p, delim);
2355     }
2356     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2357     return 0;
2358 }
2359 
2360 static const char *
2361 printable_path(const char *path)
2362 {
2363 
2364 	return (path == NULL ? "<unknown>" : path);
2365 }
2366 
2367 /*
2368  * Load a shared object into memory, if it is not already loaded.  The
2369  * object may be specified by name or by user-supplied file descriptor
2370  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2371  * duplicate is.
2372  *
2373  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2374  * on failure.
2375  */
2376 static Obj_Entry *
2377 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2378 {
2379     Obj_Entry *obj;
2380     int fd;
2381     struct stat sb;
2382     char *path;
2383 
2384     fd = -1;
2385     if (name != NULL) {
2386 	TAILQ_FOREACH(obj, &obj_list, next) {
2387 	    if (obj->marker || obj->doomed)
2388 		continue;
2389 	    if (object_match_name(obj, name))
2390 		return (obj);
2391 	}
2392 
2393 	path = find_library(name, refobj, &fd);
2394 	if (path == NULL)
2395 	    return (NULL);
2396     } else
2397 	path = NULL;
2398 
2399     if (fd >= 0) {
2400 	/*
2401 	 * search_library_pathfds() opens a fresh file descriptor for the
2402 	 * library, so there is no need to dup().
2403 	 */
2404     } else if (fd_u == -1) {
2405 	/*
2406 	 * If we didn't find a match by pathname, or the name is not
2407 	 * supplied, open the file and check again by device and inode.
2408 	 * This avoids false mismatches caused by multiple links or ".."
2409 	 * in pathnames.
2410 	 *
2411 	 * To avoid a race, we open the file and use fstat() rather than
2412 	 * using stat().
2413 	 */
2414 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2415 	    _rtld_error("Cannot open \"%s\"", path);
2416 	    free(path);
2417 	    return (NULL);
2418 	}
2419     } else {
2420 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2421 	if (fd == -1) {
2422 	    _rtld_error("Cannot dup fd");
2423 	    free(path);
2424 	    return (NULL);
2425 	}
2426     }
2427     if (fstat(fd, &sb) == -1) {
2428 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2429 	close(fd);
2430 	free(path);
2431 	return NULL;
2432     }
2433     TAILQ_FOREACH(obj, &obj_list, next) {
2434 	if (obj->marker || obj->doomed)
2435 	    continue;
2436 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2437 	    break;
2438     }
2439     if (obj != NULL && name != NULL) {
2440 	object_add_name(obj, name);
2441 	free(path);
2442 	close(fd);
2443 	return obj;
2444     }
2445     if (flags & RTLD_LO_NOLOAD) {
2446 	free(path);
2447 	close(fd);
2448 	return (NULL);
2449     }
2450 
2451     /* First use of this object, so we must map it in */
2452     obj = do_load_object(fd, name, path, &sb, flags);
2453     if (obj == NULL)
2454 	free(path);
2455     close(fd);
2456 
2457     return obj;
2458 }
2459 
2460 static Obj_Entry *
2461 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2462   int flags)
2463 {
2464     Obj_Entry *obj;
2465     struct statfs fs;
2466 
2467     /*
2468      * but first, make sure that environment variables haven't been
2469      * used to circumvent the noexec flag on a filesystem.
2470      */
2471     if (dangerous_ld_env) {
2472 	if (fstatfs(fd, &fs) != 0) {
2473 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2474 	    return NULL;
2475 	}
2476 	if (fs.f_flags & MNT_NOEXEC) {
2477 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2478 	    return NULL;
2479 	}
2480     }
2481     dbg("loading \"%s\"", printable_path(path));
2482     obj = map_object(fd, printable_path(path), sbp);
2483     if (obj == NULL)
2484         return NULL;
2485 
2486     /*
2487      * If DT_SONAME is present in the object, digest_dynamic2 already
2488      * added it to the object names.
2489      */
2490     if (name != NULL)
2491 	object_add_name(obj, name);
2492     obj->path = path;
2493     digest_dynamic(obj, 0);
2494     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2495 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2496     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2497       RTLD_LO_DLOPEN) {
2498 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2499 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2500 	munmap(obj->mapbase, obj->mapsize);
2501 	obj_free(obj);
2502 	return (NULL);
2503     }
2504 
2505     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2506     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2507     obj_count++;
2508     obj_loads++;
2509     linkmap_add(obj);	/* for GDB & dlinfo() */
2510     max_stack_flags |= obj->stack_flags;
2511 
2512     dbg("  %p .. %p: %s", obj->mapbase,
2513          obj->mapbase + obj->mapsize - 1, obj->path);
2514     if (obj->textrel)
2515 	dbg("  WARNING: %s has impure text", obj->path);
2516     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2517 	obj->path);
2518 
2519     return obj;
2520 }
2521 
2522 static Obj_Entry *
2523 obj_from_addr(const void *addr)
2524 {
2525     Obj_Entry *obj;
2526 
2527     TAILQ_FOREACH(obj, &obj_list, next) {
2528 	if (obj->marker)
2529 	    continue;
2530 	if (addr < (void *) obj->mapbase)
2531 	    continue;
2532 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2533 	    return obj;
2534     }
2535     return NULL;
2536 }
2537 
2538 static void
2539 preinit_main(void)
2540 {
2541     Elf_Addr *preinit_addr;
2542     int index;
2543 
2544     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2545     if (preinit_addr == NULL)
2546 	return;
2547 
2548     for (index = 0; index < obj_main->preinit_array_num; index++) {
2549 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2550 	    dbg("calling preinit function for %s at %p", obj_main->path,
2551 	      (void *)preinit_addr[index]);
2552 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2553 	      0, 0, obj_main->path);
2554 	    call_init_pointer(obj_main, preinit_addr[index]);
2555 	}
2556     }
2557 }
2558 
2559 /*
2560  * Call the finalization functions for each of the objects in "list"
2561  * belonging to the DAG of "root" and referenced once. If NULL "root"
2562  * is specified, every finalization function will be called regardless
2563  * of the reference count and the list elements won't be freed. All of
2564  * the objects are expected to have non-NULL fini functions.
2565  */
2566 static void
2567 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2568 {
2569     Objlist_Entry *elm;
2570     char *saved_msg;
2571     Elf_Addr *fini_addr;
2572     int index;
2573 
2574     assert(root == NULL || root->refcount == 1);
2575 
2576     if (root != NULL)
2577 	root->doomed = true;
2578 
2579     /*
2580      * Preserve the current error message since a fini function might
2581      * call into the dynamic linker and overwrite it.
2582      */
2583     saved_msg = errmsg_save();
2584     do {
2585 	STAILQ_FOREACH(elm, list, link) {
2586 	    if (root != NULL && (elm->obj->refcount != 1 ||
2587 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2588 		continue;
2589 	    /* Remove object from fini list to prevent recursive invocation. */
2590 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2591 	    /* Ensure that new references cannot be acquired. */
2592 	    elm->obj->doomed = true;
2593 
2594 	    hold_object(elm->obj);
2595 	    lock_release(rtld_bind_lock, lockstate);
2596 	    /*
2597 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2598 	     * When this happens, DT_FINI_ARRAY is processed first.
2599 	     */
2600 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2601 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2602 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2603 		  index--) {
2604 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2605 			dbg("calling fini function for %s at %p",
2606 			    elm->obj->path, (void *)fini_addr[index]);
2607 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2608 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2609 			call_initfini_pointer(elm->obj, fini_addr[index]);
2610 		    }
2611 		}
2612 	    }
2613 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2614 		dbg("calling fini function for %s at %p", elm->obj->path,
2615 		    (void *)elm->obj->fini);
2616 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2617 		    0, 0, elm->obj->path);
2618 		call_initfini_pointer(elm->obj, elm->obj->fini);
2619 	    }
2620 	    wlock_acquire(rtld_bind_lock, lockstate);
2621 	    unhold_object(elm->obj);
2622 	    /* No need to free anything if process is going down. */
2623 	    if (root != NULL)
2624 	    	free(elm);
2625 	    /*
2626 	     * We must restart the list traversal after every fini call
2627 	     * because a dlclose() call from the fini function or from
2628 	     * another thread might have modified the reference counts.
2629 	     */
2630 	    break;
2631 	}
2632     } while (elm != NULL);
2633     errmsg_restore(saved_msg);
2634 }
2635 
2636 /*
2637  * Call the initialization functions for each of the objects in
2638  * "list".  All of the objects are expected to have non-NULL init
2639  * functions.
2640  */
2641 static void
2642 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2643 {
2644     Objlist_Entry *elm;
2645     Obj_Entry *obj;
2646     char *saved_msg;
2647     Elf_Addr *init_addr;
2648     int index;
2649 
2650     /*
2651      * Clean init_scanned flag so that objects can be rechecked and
2652      * possibly initialized earlier if any of vectors called below
2653      * cause the change by using dlopen.
2654      */
2655     TAILQ_FOREACH(obj, &obj_list, next) {
2656 	if (obj->marker)
2657 	    continue;
2658 	obj->init_scanned = false;
2659     }
2660 
2661     /*
2662      * Preserve the current error message since an init function might
2663      * call into the dynamic linker and overwrite it.
2664      */
2665     saved_msg = errmsg_save();
2666     STAILQ_FOREACH(elm, list, link) {
2667 	if (elm->obj->init_done) /* Initialized early. */
2668 	    continue;
2669 	/*
2670 	 * Race: other thread might try to use this object before current
2671 	 * one completes the initialization. Not much can be done here
2672 	 * without better locking.
2673 	 */
2674 	elm->obj->init_done = true;
2675 	hold_object(elm->obj);
2676 	lock_release(rtld_bind_lock, lockstate);
2677 
2678         /*
2679          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2680          * When this happens, DT_INIT is processed first.
2681          */
2682 	if (elm->obj->init != (Elf_Addr)NULL) {
2683 	    dbg("calling init function for %s at %p", elm->obj->path,
2684 	        (void *)elm->obj->init);
2685 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2686 	        0, 0, elm->obj->path);
2687 	    call_initfini_pointer(elm->obj, elm->obj->init);
2688 	}
2689 	init_addr = (Elf_Addr *)elm->obj->init_array;
2690 	if (init_addr != NULL) {
2691 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2692 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2693 		    dbg("calling init function for %s at %p", elm->obj->path,
2694 			(void *)init_addr[index]);
2695 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2696 			(void *)init_addr[index], 0, 0, elm->obj->path);
2697 		    call_init_pointer(elm->obj, init_addr[index]);
2698 		}
2699 	    }
2700 	}
2701 	wlock_acquire(rtld_bind_lock, lockstate);
2702 	unhold_object(elm->obj);
2703     }
2704     errmsg_restore(saved_msg);
2705 }
2706 
2707 static void
2708 objlist_clear(Objlist *list)
2709 {
2710     Objlist_Entry *elm;
2711 
2712     while (!STAILQ_EMPTY(list)) {
2713 	elm = STAILQ_FIRST(list);
2714 	STAILQ_REMOVE_HEAD(list, link);
2715 	free(elm);
2716     }
2717 }
2718 
2719 static Objlist_Entry *
2720 objlist_find(Objlist *list, const Obj_Entry *obj)
2721 {
2722     Objlist_Entry *elm;
2723 
2724     STAILQ_FOREACH(elm, list, link)
2725 	if (elm->obj == obj)
2726 	    return elm;
2727     return NULL;
2728 }
2729 
2730 static void
2731 objlist_init(Objlist *list)
2732 {
2733     STAILQ_INIT(list);
2734 }
2735 
2736 static void
2737 objlist_push_head(Objlist *list, Obj_Entry *obj)
2738 {
2739     Objlist_Entry *elm;
2740 
2741     elm = NEW(Objlist_Entry);
2742     elm->obj = obj;
2743     STAILQ_INSERT_HEAD(list, elm, link);
2744 }
2745 
2746 static void
2747 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2748 {
2749     Objlist_Entry *elm;
2750 
2751     elm = NEW(Objlist_Entry);
2752     elm->obj = obj;
2753     STAILQ_INSERT_TAIL(list, elm, link);
2754 }
2755 
2756 static void
2757 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2758 {
2759 	Objlist_Entry *elm, *listelm;
2760 
2761 	STAILQ_FOREACH(listelm, list, link) {
2762 		if (listelm->obj == listobj)
2763 			break;
2764 	}
2765 	elm = NEW(Objlist_Entry);
2766 	elm->obj = obj;
2767 	if (listelm != NULL)
2768 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2769 	else
2770 		STAILQ_INSERT_TAIL(list, elm, link);
2771 }
2772 
2773 static void
2774 objlist_remove(Objlist *list, Obj_Entry *obj)
2775 {
2776     Objlist_Entry *elm;
2777 
2778     if ((elm = objlist_find(list, obj)) != NULL) {
2779 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2780 	free(elm);
2781     }
2782 }
2783 
2784 /*
2785  * Relocate dag rooted in the specified object.
2786  * Returns 0 on success, or -1 on failure.
2787  */
2788 
2789 static int
2790 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2791     int flags, RtldLockState *lockstate)
2792 {
2793 	Objlist_Entry *elm;
2794 	int error;
2795 
2796 	error = 0;
2797 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2798 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2799 		    lockstate);
2800 		if (error == -1)
2801 			break;
2802 	}
2803 	return (error);
2804 }
2805 
2806 /*
2807  * Prepare for, or clean after, relocating an object marked with
2808  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2809  * segments are remapped read-write.  After relocations are done, the
2810  * segment's permissions are returned back to the modes specified in
2811  * the phdrs.  If any relocation happened, or always for wired
2812  * program, COW is triggered.
2813  */
2814 static int
2815 reloc_textrel_prot(Obj_Entry *obj, bool before)
2816 {
2817 	const Elf_Phdr *ph;
2818 	void *base;
2819 	size_t l, sz;
2820 	int prot;
2821 
2822 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2823 	    l--, ph++) {
2824 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2825 			continue;
2826 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2827 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2828 		    trunc_page(ph->p_vaddr);
2829 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2830 		if (mprotect(base, sz, prot) == -1) {
2831 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2832 			    obj->path, before ? "en" : "dis",
2833 			    rtld_strerror(errno));
2834 			return (-1);
2835 		}
2836 	}
2837 	return (0);
2838 }
2839 
2840 /*
2841  * Relocate single object.
2842  * Returns 0 on success, or -1 on failure.
2843  */
2844 static int
2845 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2846     int flags, RtldLockState *lockstate)
2847 {
2848 
2849 	if (obj->relocated)
2850 		return (0);
2851 	obj->relocated = true;
2852 	if (obj != rtldobj)
2853 		dbg("relocating \"%s\"", obj->path);
2854 
2855 	if (obj->symtab == NULL || obj->strtab == NULL ||
2856 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2857 		_rtld_error("%s: Shared object has no run-time symbol table",
2858 			    obj->path);
2859 		return (-1);
2860 	}
2861 
2862 	/* There are relocations to the write-protected text segment. */
2863 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2864 		return (-1);
2865 
2866 	/* Process the non-PLT non-IFUNC relocations. */
2867 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2868 		return (-1);
2869 
2870 	/* Re-protected the text segment. */
2871 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2872 		return (-1);
2873 
2874 	/* Set the special PLT or GOT entries. */
2875 	init_pltgot(obj);
2876 
2877 	/* Process the PLT relocations. */
2878 	if (reloc_plt(obj) == -1)
2879 		return (-1);
2880 	/* Relocate the jump slots if we are doing immediate binding. */
2881 	if (obj->bind_now || bind_now)
2882 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2883 			return (-1);
2884 
2885 	/*
2886 	 * Process the non-PLT IFUNC relocations.  The relocations are
2887 	 * processed in two phases, because IFUNC resolvers may
2888 	 * reference other symbols, which must be readily processed
2889 	 * before resolvers are called.
2890 	 */
2891 	if (obj->non_plt_gnu_ifunc &&
2892 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2893 		return (-1);
2894 
2895 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2896 		return (-1);
2897 
2898 	/*
2899 	 * Set up the magic number and version in the Obj_Entry.  These
2900 	 * were checked in the crt1.o from the original ElfKit, so we
2901 	 * set them for backward compatibility.
2902 	 */
2903 	obj->magic = RTLD_MAGIC;
2904 	obj->version = RTLD_VERSION;
2905 
2906 	return (0);
2907 }
2908 
2909 /*
2910  * Relocate newly-loaded shared objects.  The argument is a pointer to
2911  * the Obj_Entry for the first such object.  All objects from the first
2912  * to the end of the list of objects are relocated.  Returns 0 on success,
2913  * or -1 on failure.
2914  */
2915 static int
2916 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2917     int flags, RtldLockState *lockstate)
2918 {
2919 	Obj_Entry *obj;
2920 	int error;
2921 
2922 	for (error = 0, obj = first;  obj != NULL;
2923 	    obj = TAILQ_NEXT(obj, next)) {
2924 		if (obj->marker)
2925 			continue;
2926 		error = relocate_object(obj, bind_now, rtldobj, flags,
2927 		    lockstate);
2928 		if (error == -1)
2929 			break;
2930 	}
2931 	return (error);
2932 }
2933 
2934 /*
2935  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2936  * referencing STT_GNU_IFUNC symbols is postponed till the other
2937  * relocations are done.  The indirect functions specified as
2938  * ifunc are allowed to call other symbols, so we need to have
2939  * objects relocated before asking for resolution from indirects.
2940  *
2941  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2942  * instead of the usual lazy handling of PLT slots.  It is
2943  * consistent with how GNU does it.
2944  */
2945 static int
2946 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2947     RtldLockState *lockstate)
2948 {
2949 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2950 		return (-1);
2951 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2952 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2953 		return (-1);
2954 	return (0);
2955 }
2956 
2957 static int
2958 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2959     RtldLockState *lockstate)
2960 {
2961 	Obj_Entry *obj;
2962 
2963 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2964 		if (obj->marker)
2965 			continue;
2966 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2967 			return (-1);
2968 	}
2969 	return (0);
2970 }
2971 
2972 static int
2973 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2974     RtldLockState *lockstate)
2975 {
2976 	Objlist_Entry *elm;
2977 
2978 	STAILQ_FOREACH(elm, list, link) {
2979 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2980 		    lockstate) == -1)
2981 			return (-1);
2982 	}
2983 	return (0);
2984 }
2985 
2986 /*
2987  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2988  * before the process exits.
2989  */
2990 static void
2991 rtld_exit(void)
2992 {
2993     RtldLockState lockstate;
2994 
2995     wlock_acquire(rtld_bind_lock, &lockstate);
2996     dbg("rtld_exit()");
2997     objlist_call_fini(&list_fini, NULL, &lockstate);
2998     /* No need to remove the items from the list, since we are exiting. */
2999     if (!libmap_disable)
3000         lm_fini();
3001     lock_release(rtld_bind_lock, &lockstate);
3002 }
3003 
3004 /*
3005  * Iterate over a search path, translate each element, and invoke the
3006  * callback on the result.
3007  */
3008 static void *
3009 path_enumerate(const char *path, path_enum_proc callback,
3010     const char *refobj_path, void *arg)
3011 {
3012     const char *trans;
3013     if (path == NULL)
3014 	return (NULL);
3015 
3016     path += strspn(path, ":;");
3017     while (*path != '\0') {
3018 	size_t len;
3019 	char  *res;
3020 
3021 	len = strcspn(path, ":;");
3022 	trans = lm_findn(refobj_path, path, len);
3023 	if (trans)
3024 	    res = callback(trans, strlen(trans), arg);
3025 	else
3026 	    res = callback(path, len, arg);
3027 
3028 	if (res != NULL)
3029 	    return (res);
3030 
3031 	path += len;
3032 	path += strspn(path, ":;");
3033     }
3034 
3035     return (NULL);
3036 }
3037 
3038 struct try_library_args {
3039     const char	*name;
3040     size_t	 namelen;
3041     char	*buffer;
3042     size_t	 buflen;
3043     int		 fd;
3044 };
3045 
3046 static void *
3047 try_library_path(const char *dir, size_t dirlen, void *param)
3048 {
3049     struct try_library_args *arg;
3050     int fd;
3051 
3052     arg = param;
3053     if (*dir == '/' || trust) {
3054 	char *pathname;
3055 
3056 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3057 		return (NULL);
3058 
3059 	pathname = arg->buffer;
3060 	strncpy(pathname, dir, dirlen);
3061 	pathname[dirlen] = '/';
3062 	strcpy(pathname + dirlen + 1, arg->name);
3063 
3064 	dbg("  Trying \"%s\"", pathname);
3065 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3066 	if (fd >= 0) {
3067 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3068 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3069 	    strcpy(pathname, arg->buffer);
3070 	    arg->fd = fd;
3071 	    return (pathname);
3072 	} else {
3073 	    dbg("  Failed to open \"%s\": %s",
3074 		pathname, rtld_strerror(errno));
3075 	}
3076     }
3077     return (NULL);
3078 }
3079 
3080 static char *
3081 search_library_path(const char *name, const char *path,
3082     const char *refobj_path, int *fdp)
3083 {
3084     char *p;
3085     struct try_library_args arg;
3086 
3087     if (path == NULL)
3088 	return NULL;
3089 
3090     arg.name = name;
3091     arg.namelen = strlen(name);
3092     arg.buffer = xmalloc(PATH_MAX);
3093     arg.buflen = PATH_MAX;
3094     arg.fd = -1;
3095 
3096     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3097     *fdp = arg.fd;
3098 
3099     free(arg.buffer);
3100 
3101     return (p);
3102 }
3103 
3104 
3105 /*
3106  * Finds the library with the given name using the directory descriptors
3107  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3108  *
3109  * Returns a freshly-opened close-on-exec file descriptor for the library,
3110  * or -1 if the library cannot be found.
3111  */
3112 static char *
3113 search_library_pathfds(const char *name, const char *path, int *fdp)
3114 {
3115 	char *envcopy, *fdstr, *found, *last_token;
3116 	size_t len;
3117 	int dirfd, fd;
3118 
3119 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3120 
3121 	/* Don't load from user-specified libdirs into setuid binaries. */
3122 	if (!trust)
3123 		return (NULL);
3124 
3125 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3126 	if (path == NULL)
3127 		return (NULL);
3128 
3129 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3130 	if (name[0] == '/') {
3131 		dbg("Absolute path (%s) passed to %s", name, __func__);
3132 		return (NULL);
3133 	}
3134 
3135 	/*
3136 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3137 	 * copy of the path, as strtok_r rewrites separator tokens
3138 	 * with '\0'.
3139 	 */
3140 	found = NULL;
3141 	envcopy = xstrdup(path);
3142 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3143 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3144 		dirfd = parse_integer(fdstr);
3145 		if (dirfd < 0) {
3146 			_rtld_error("failed to parse directory FD: '%s'",
3147 				fdstr);
3148 			break;
3149 		}
3150 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3151 		if (fd >= 0) {
3152 			*fdp = fd;
3153 			len = strlen(fdstr) + strlen(name) + 3;
3154 			found = xmalloc(len);
3155 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3156 				_rtld_error("error generating '%d/%s'",
3157 				    dirfd, name);
3158 				rtld_die();
3159 			}
3160 			dbg("open('%s') => %d", found, fd);
3161 			break;
3162 		}
3163 	}
3164 	free(envcopy);
3165 
3166 	return (found);
3167 }
3168 
3169 
3170 int
3171 dlclose(void *handle)
3172 {
3173 	RtldLockState lockstate;
3174 	int error;
3175 
3176 	wlock_acquire(rtld_bind_lock, &lockstate);
3177 	error = dlclose_locked(handle, &lockstate);
3178 	lock_release(rtld_bind_lock, &lockstate);
3179 	return (error);
3180 }
3181 
3182 static int
3183 dlclose_locked(void *handle, RtldLockState *lockstate)
3184 {
3185     Obj_Entry *root;
3186 
3187     root = dlcheck(handle);
3188     if (root == NULL)
3189 	return -1;
3190     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3191 	root->path);
3192 
3193     /* Unreference the object and its dependencies. */
3194     root->dl_refcount--;
3195 
3196     if (root->refcount == 1) {
3197 	/*
3198 	 * The object will be no longer referenced, so we must unload it.
3199 	 * First, call the fini functions.
3200 	 */
3201 	objlist_call_fini(&list_fini, root, lockstate);
3202 
3203 	unref_dag(root);
3204 
3205 	/* Finish cleaning up the newly-unreferenced objects. */
3206 	GDB_STATE(RT_DELETE,&root->linkmap);
3207 	unload_object(root, lockstate);
3208 	GDB_STATE(RT_CONSISTENT,NULL);
3209     } else
3210 	unref_dag(root);
3211 
3212     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3213     return 0;
3214 }
3215 
3216 char *
3217 dlerror(void)
3218 {
3219     char *msg = error_message;
3220     error_message = NULL;
3221     return msg;
3222 }
3223 
3224 /*
3225  * This function is deprecated and has no effect.
3226  */
3227 void
3228 dllockinit(void *context,
3229     void *(*_lock_create)(void *context) __unused,
3230     void (*_rlock_acquire)(void *lock) __unused,
3231     void (*_wlock_acquire)(void *lock)  __unused,
3232     void (*_lock_release)(void *lock) __unused,
3233     void (*_lock_destroy)(void *lock) __unused,
3234     void (*context_destroy)(void *context))
3235 {
3236     static void *cur_context;
3237     static void (*cur_context_destroy)(void *);
3238 
3239     /* Just destroy the context from the previous call, if necessary. */
3240     if (cur_context_destroy != NULL)
3241 	cur_context_destroy(cur_context);
3242     cur_context = context;
3243     cur_context_destroy = context_destroy;
3244 }
3245 
3246 void *
3247 dlopen(const char *name, int mode)
3248 {
3249 
3250 	return (rtld_dlopen(name, -1, mode));
3251 }
3252 
3253 void *
3254 fdlopen(int fd, int mode)
3255 {
3256 
3257 	return (rtld_dlopen(NULL, fd, mode));
3258 }
3259 
3260 static void *
3261 rtld_dlopen(const char *name, int fd, int mode)
3262 {
3263     RtldLockState lockstate;
3264     int lo_flags;
3265 
3266     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3267     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3268     if (ld_tracing != NULL) {
3269 	rlock_acquire(rtld_bind_lock, &lockstate);
3270 	if (sigsetjmp(lockstate.env, 0) != 0)
3271 	    lock_upgrade(rtld_bind_lock, &lockstate);
3272 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3273 	lock_release(rtld_bind_lock, &lockstate);
3274     }
3275     lo_flags = RTLD_LO_DLOPEN;
3276     if (mode & RTLD_NODELETE)
3277 	    lo_flags |= RTLD_LO_NODELETE;
3278     if (mode & RTLD_NOLOAD)
3279 	    lo_flags |= RTLD_LO_NOLOAD;
3280     if (ld_tracing != NULL)
3281 	    lo_flags |= RTLD_LO_TRACE;
3282 
3283     return (dlopen_object(name, fd, obj_main, lo_flags,
3284       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3285 }
3286 
3287 static void
3288 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3289 {
3290 
3291 	obj->dl_refcount--;
3292 	unref_dag(obj);
3293 	if (obj->refcount == 0)
3294 		unload_object(obj, lockstate);
3295 }
3296 
3297 static Obj_Entry *
3298 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3299     int mode, RtldLockState *lockstate)
3300 {
3301     Obj_Entry *old_obj_tail;
3302     Obj_Entry *obj;
3303     Objlist initlist;
3304     RtldLockState mlockstate;
3305     int result;
3306 
3307     objlist_init(&initlist);
3308 
3309     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3310 	wlock_acquire(rtld_bind_lock, &mlockstate);
3311 	lockstate = &mlockstate;
3312     }
3313     GDB_STATE(RT_ADD,NULL);
3314 
3315     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3316     obj = NULL;
3317     if (name == NULL && fd == -1) {
3318 	obj = obj_main;
3319 	obj->refcount++;
3320     } else {
3321 	obj = load_object(name, fd, refobj, lo_flags);
3322     }
3323 
3324     if (obj) {
3325 	obj->dl_refcount++;
3326 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3327 	    objlist_push_tail(&list_global, obj);
3328 	if (globallist_next(old_obj_tail) != NULL) {
3329 	    /* We loaded something new. */
3330 	    assert(globallist_next(old_obj_tail) == obj);
3331 	    result = load_needed_objects(obj,
3332 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3333 	    init_dag(obj);
3334 	    ref_dag(obj);
3335 	    if (result != -1)
3336 		result = rtld_verify_versions(&obj->dagmembers);
3337 	    if (result != -1 && ld_tracing)
3338 		goto trace;
3339 	    if (result == -1 || relocate_object_dag(obj,
3340 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3341 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3342 	      lockstate) == -1) {
3343 		dlopen_cleanup(obj, lockstate);
3344 		obj = NULL;
3345 	    } else if (lo_flags & RTLD_LO_EARLY) {
3346 		/*
3347 		 * Do not call the init functions for early loaded
3348 		 * filtees.  The image is still not initialized enough
3349 		 * for them to work.
3350 		 *
3351 		 * Our object is found by the global object list and
3352 		 * will be ordered among all init calls done right
3353 		 * before transferring control to main.
3354 		 */
3355 	    } else {
3356 		/* Make list of init functions to call. */
3357 		initlist_add_objects(obj, obj, &initlist);
3358 	    }
3359 	    /*
3360 	     * Process all no_delete or global objects here, given
3361 	     * them own DAGs to prevent their dependencies from being
3362 	     * unloaded.  This has to be done after we have loaded all
3363 	     * of the dependencies, so that we do not miss any.
3364 	     */
3365 	    if (obj != NULL)
3366 		process_z(obj);
3367 	} else {
3368 	    /*
3369 	     * Bump the reference counts for objects on this DAG.  If
3370 	     * this is the first dlopen() call for the object that was
3371 	     * already loaded as a dependency, initialize the dag
3372 	     * starting at it.
3373 	     */
3374 	    init_dag(obj);
3375 	    ref_dag(obj);
3376 
3377 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3378 		goto trace;
3379 	}
3380 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3381 	  obj->z_nodelete) && !obj->ref_nodel) {
3382 	    dbg("obj %s nodelete", obj->path);
3383 	    ref_dag(obj);
3384 	    obj->z_nodelete = obj->ref_nodel = true;
3385 	}
3386     }
3387 
3388     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3389 	name);
3390     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3391 
3392     if (!(lo_flags & RTLD_LO_EARLY)) {
3393 	map_stacks_exec(lockstate);
3394     }
3395 
3396     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3397       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3398       lockstate) == -1) {
3399 	objlist_clear(&initlist);
3400 	dlopen_cleanup(obj, lockstate);
3401 	if (lockstate == &mlockstate)
3402 	    lock_release(rtld_bind_lock, lockstate);
3403 	return (NULL);
3404     }
3405 
3406     if (!(lo_flags & RTLD_LO_EARLY)) {
3407 	/* Call the init functions. */
3408 	objlist_call_init(&initlist, lockstate);
3409     }
3410     objlist_clear(&initlist);
3411     if (lockstate == &mlockstate)
3412 	lock_release(rtld_bind_lock, lockstate);
3413     return obj;
3414 trace:
3415     trace_loaded_objects(obj);
3416     if (lockstate == &mlockstate)
3417 	lock_release(rtld_bind_lock, lockstate);
3418     exit(0);
3419 }
3420 
3421 static void *
3422 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3423     int flags)
3424 {
3425     DoneList donelist;
3426     const Obj_Entry *obj, *defobj;
3427     const Elf_Sym *def;
3428     SymLook req;
3429     RtldLockState lockstate;
3430     tls_index ti;
3431     void *sym;
3432     int res;
3433 
3434     def = NULL;
3435     defobj = NULL;
3436     symlook_init(&req, name);
3437     req.ventry = ve;
3438     req.flags = flags | SYMLOOK_IN_PLT;
3439     req.lockstate = &lockstate;
3440 
3441     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3442     rlock_acquire(rtld_bind_lock, &lockstate);
3443     if (sigsetjmp(lockstate.env, 0) != 0)
3444 	    lock_upgrade(rtld_bind_lock, &lockstate);
3445     if (handle == NULL || handle == RTLD_NEXT ||
3446 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3447 
3448 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3449 	    _rtld_error("Cannot determine caller's shared object");
3450 	    lock_release(rtld_bind_lock, &lockstate);
3451 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3452 	    return NULL;
3453 	}
3454 	if (handle == NULL) {	/* Just the caller's shared object. */
3455 	    res = symlook_obj(&req, obj);
3456 	    if (res == 0) {
3457 		def = req.sym_out;
3458 		defobj = req.defobj_out;
3459 	    }
3460 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3461 		   handle == RTLD_SELF) { /* ... caller included */
3462 	    if (handle == RTLD_NEXT)
3463 		obj = globallist_next(obj);
3464 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3465 		if (obj->marker)
3466 		    continue;
3467 		res = symlook_obj(&req, obj);
3468 		if (res == 0) {
3469 		    if (def == NULL ||
3470 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3471 			def = req.sym_out;
3472 			defobj = req.defobj_out;
3473 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3474 			    break;
3475 		    }
3476 		}
3477 	    }
3478 	    /*
3479 	     * Search the dynamic linker itself, and possibly resolve the
3480 	     * symbol from there.  This is how the application links to
3481 	     * dynamic linker services such as dlopen.
3482 	     */
3483 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3484 		res = symlook_obj(&req, &obj_rtld);
3485 		if (res == 0) {
3486 		    def = req.sym_out;
3487 		    defobj = req.defobj_out;
3488 		}
3489 	    }
3490 	} else {
3491 	    assert(handle == RTLD_DEFAULT);
3492 	    res = symlook_default(&req, obj);
3493 	    if (res == 0) {
3494 		defobj = req.defobj_out;
3495 		def = req.sym_out;
3496 	    }
3497 	}
3498     } else {
3499 	if ((obj = dlcheck(handle)) == NULL) {
3500 	    lock_release(rtld_bind_lock, &lockstate);
3501 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3502 	    return NULL;
3503 	}
3504 
3505 	donelist_init(&donelist);
3506 	if (obj->mainprog) {
3507             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3508 	    res = symlook_global(&req, &donelist);
3509 	    if (res == 0) {
3510 		def = req.sym_out;
3511 		defobj = req.defobj_out;
3512 	    }
3513 	    /*
3514 	     * Search the dynamic linker itself, and possibly resolve the
3515 	     * symbol from there.  This is how the application links to
3516 	     * dynamic linker services such as dlopen.
3517 	     */
3518 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3519 		res = symlook_obj(&req, &obj_rtld);
3520 		if (res == 0) {
3521 		    def = req.sym_out;
3522 		    defobj = req.defobj_out;
3523 		}
3524 	    }
3525 	}
3526 	else {
3527 	    /* Search the whole DAG rooted at the given object. */
3528 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3529 	    if (res == 0) {
3530 		def = req.sym_out;
3531 		defobj = req.defobj_out;
3532 	    }
3533 	}
3534     }
3535 
3536     if (def != NULL) {
3537 	lock_release(rtld_bind_lock, &lockstate);
3538 
3539 	/*
3540 	 * The value required by the caller is derived from the value
3541 	 * of the symbol. this is simply the relocated value of the
3542 	 * symbol.
3543 	 */
3544 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3545 	    sym = make_function_pointer(def, defobj);
3546 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3547 	    sym = rtld_resolve_ifunc(defobj, def);
3548 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3549 	    ti.ti_module = defobj->tlsindex;
3550 	    ti.ti_offset = def->st_value;
3551 	    sym = __tls_get_addr(&ti);
3552 	} else
3553 	    sym = defobj->relocbase + def->st_value;
3554 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3555 	return (sym);
3556     }
3557 
3558     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3559       ve != NULL ? ve->name : "");
3560     lock_release(rtld_bind_lock, &lockstate);
3561     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3562     return NULL;
3563 }
3564 
3565 void *
3566 dlsym(void *handle, const char *name)
3567 {
3568 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3569 	    SYMLOOK_DLSYM);
3570 }
3571 
3572 dlfunc_t
3573 dlfunc(void *handle, const char *name)
3574 {
3575 	union {
3576 		void *d;
3577 		dlfunc_t f;
3578 	} rv;
3579 
3580 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3581 	    SYMLOOK_DLSYM);
3582 	return (rv.f);
3583 }
3584 
3585 void *
3586 dlvsym(void *handle, const char *name, const char *version)
3587 {
3588 	Ver_Entry ventry;
3589 
3590 	ventry.name = version;
3591 	ventry.file = NULL;
3592 	ventry.hash = elf_hash(version);
3593 	ventry.flags= 0;
3594 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3595 	    SYMLOOK_DLSYM);
3596 }
3597 
3598 int
3599 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3600 {
3601     const Obj_Entry *obj;
3602     RtldLockState lockstate;
3603 
3604     rlock_acquire(rtld_bind_lock, &lockstate);
3605     obj = obj_from_addr(addr);
3606     if (obj == NULL) {
3607         _rtld_error("No shared object contains address");
3608 	lock_release(rtld_bind_lock, &lockstate);
3609         return (0);
3610     }
3611     rtld_fill_dl_phdr_info(obj, phdr_info);
3612     lock_release(rtld_bind_lock, &lockstate);
3613     return (1);
3614 }
3615 
3616 int
3617 dladdr(const void *addr, Dl_info *info)
3618 {
3619     const Obj_Entry *obj;
3620     const Elf_Sym *def;
3621     void *symbol_addr;
3622     unsigned long symoffset;
3623     RtldLockState lockstate;
3624 
3625     rlock_acquire(rtld_bind_lock, &lockstate);
3626     obj = obj_from_addr(addr);
3627     if (obj == NULL) {
3628         _rtld_error("No shared object contains address");
3629 	lock_release(rtld_bind_lock, &lockstate);
3630         return 0;
3631     }
3632     info->dli_fname = obj->path;
3633     info->dli_fbase = obj->mapbase;
3634     info->dli_saddr = (void *)0;
3635     info->dli_sname = NULL;
3636 
3637     /*
3638      * Walk the symbol list looking for the symbol whose address is
3639      * closest to the address sent in.
3640      */
3641     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3642         def = obj->symtab + symoffset;
3643 
3644         /*
3645          * For skip the symbol if st_shndx is either SHN_UNDEF or
3646          * SHN_COMMON.
3647          */
3648         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3649             continue;
3650 
3651         /*
3652          * If the symbol is greater than the specified address, or if it
3653          * is further away from addr than the current nearest symbol,
3654          * then reject it.
3655          */
3656         symbol_addr = obj->relocbase + def->st_value;
3657         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3658             continue;
3659 
3660         /* Update our idea of the nearest symbol. */
3661         info->dli_sname = obj->strtab + def->st_name;
3662         info->dli_saddr = symbol_addr;
3663 
3664         /* Exact match? */
3665         if (info->dli_saddr == addr)
3666             break;
3667     }
3668     lock_release(rtld_bind_lock, &lockstate);
3669     return 1;
3670 }
3671 
3672 int
3673 dlinfo(void *handle, int request, void *p)
3674 {
3675     const Obj_Entry *obj;
3676     RtldLockState lockstate;
3677     int error;
3678 
3679     rlock_acquire(rtld_bind_lock, &lockstate);
3680 
3681     if (handle == NULL || handle == RTLD_SELF) {
3682 	void *retaddr;
3683 
3684 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3685 	if ((obj = obj_from_addr(retaddr)) == NULL)
3686 	    _rtld_error("Cannot determine caller's shared object");
3687     } else
3688 	obj = dlcheck(handle);
3689 
3690     if (obj == NULL) {
3691 	lock_release(rtld_bind_lock, &lockstate);
3692 	return (-1);
3693     }
3694 
3695     error = 0;
3696     switch (request) {
3697     case RTLD_DI_LINKMAP:
3698 	*((struct link_map const **)p) = &obj->linkmap;
3699 	break;
3700     case RTLD_DI_ORIGIN:
3701 	error = rtld_dirname(obj->path, p);
3702 	break;
3703 
3704     case RTLD_DI_SERINFOSIZE:
3705     case RTLD_DI_SERINFO:
3706 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3707 	break;
3708 
3709     default:
3710 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3711 	error = -1;
3712     }
3713 
3714     lock_release(rtld_bind_lock, &lockstate);
3715 
3716     return (error);
3717 }
3718 
3719 static void
3720 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3721 {
3722 
3723 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3724 	phdr_info->dlpi_name = obj->path;
3725 	phdr_info->dlpi_phdr = obj->phdr;
3726 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3727 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3728 	phdr_info->dlpi_tls_data = obj->tlsinit;
3729 	phdr_info->dlpi_adds = obj_loads;
3730 	phdr_info->dlpi_subs = obj_loads - obj_count;
3731 }
3732 
3733 int
3734 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3735 {
3736 	struct dl_phdr_info phdr_info;
3737 	Obj_Entry *obj, marker;
3738 	RtldLockState bind_lockstate, phdr_lockstate;
3739 	int error;
3740 
3741 	init_marker(&marker);
3742 	error = 0;
3743 
3744 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3745 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3746 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3747 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3748 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3749 		hold_object(obj);
3750 		lock_release(rtld_bind_lock, &bind_lockstate);
3751 
3752 		error = callback(&phdr_info, sizeof phdr_info, param);
3753 
3754 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3755 		unhold_object(obj);
3756 		obj = globallist_next(&marker);
3757 		TAILQ_REMOVE(&obj_list, &marker, next);
3758 		if (error != 0) {
3759 			lock_release(rtld_bind_lock, &bind_lockstate);
3760 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3761 			return (error);
3762 		}
3763 	}
3764 
3765 	if (error == 0) {
3766 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3767 		lock_release(rtld_bind_lock, &bind_lockstate);
3768 		error = callback(&phdr_info, sizeof(phdr_info), param);
3769 	}
3770 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3771 	return (error);
3772 }
3773 
3774 static void *
3775 fill_search_info(const char *dir, size_t dirlen, void *param)
3776 {
3777     struct fill_search_info_args *arg;
3778 
3779     arg = param;
3780 
3781     if (arg->request == RTLD_DI_SERINFOSIZE) {
3782 	arg->serinfo->dls_cnt ++;
3783 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3784     } else {
3785 	struct dl_serpath *s_entry;
3786 
3787 	s_entry = arg->serpath;
3788 	s_entry->dls_name  = arg->strspace;
3789 	s_entry->dls_flags = arg->flags;
3790 
3791 	strncpy(arg->strspace, dir, dirlen);
3792 	arg->strspace[dirlen] = '\0';
3793 
3794 	arg->strspace += dirlen + 1;
3795 	arg->serpath++;
3796     }
3797 
3798     return (NULL);
3799 }
3800 
3801 static int
3802 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3803 {
3804     struct dl_serinfo _info;
3805     struct fill_search_info_args args;
3806 
3807     args.request = RTLD_DI_SERINFOSIZE;
3808     args.serinfo = &_info;
3809 
3810     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3811     _info.dls_cnt  = 0;
3812 
3813     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3814     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3815     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3816     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3817     if (!obj->z_nodeflib)
3818       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3819 
3820 
3821     if (request == RTLD_DI_SERINFOSIZE) {
3822 	info->dls_size = _info.dls_size;
3823 	info->dls_cnt = _info.dls_cnt;
3824 	return (0);
3825     }
3826 
3827     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3828 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3829 	return (-1);
3830     }
3831 
3832     args.request  = RTLD_DI_SERINFO;
3833     args.serinfo  = info;
3834     args.serpath  = &info->dls_serpath[0];
3835     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3836 
3837     args.flags = LA_SER_RUNPATH;
3838     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3839 	return (-1);
3840 
3841     args.flags = LA_SER_LIBPATH;
3842     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3843 	return (-1);
3844 
3845     args.flags = LA_SER_RUNPATH;
3846     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3847 	return (-1);
3848 
3849     args.flags = LA_SER_CONFIG;
3850     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3851       != NULL)
3852 	return (-1);
3853 
3854     args.flags = LA_SER_DEFAULT;
3855     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3856       fill_search_info, NULL, &args) != NULL)
3857 	return (-1);
3858     return (0);
3859 }
3860 
3861 static int
3862 rtld_dirname(const char *path, char *bname)
3863 {
3864     const char *endp;
3865 
3866     /* Empty or NULL string gets treated as "." */
3867     if (path == NULL || *path == '\0') {
3868 	bname[0] = '.';
3869 	bname[1] = '\0';
3870 	return (0);
3871     }
3872 
3873     /* Strip trailing slashes */
3874     endp = path + strlen(path) - 1;
3875     while (endp > path && *endp == '/')
3876 	endp--;
3877 
3878     /* Find the start of the dir */
3879     while (endp > path && *endp != '/')
3880 	endp--;
3881 
3882     /* Either the dir is "/" or there are no slashes */
3883     if (endp == path) {
3884 	bname[0] = *endp == '/' ? '/' : '.';
3885 	bname[1] = '\0';
3886 	return (0);
3887     } else {
3888 	do {
3889 	    endp--;
3890 	} while (endp > path && *endp == '/');
3891     }
3892 
3893     if (endp - path + 2 > PATH_MAX)
3894     {
3895 	_rtld_error("Filename is too long: %s", path);
3896 	return(-1);
3897     }
3898 
3899     strncpy(bname, path, endp - path + 1);
3900     bname[endp - path + 1] = '\0';
3901     return (0);
3902 }
3903 
3904 static int
3905 rtld_dirname_abs(const char *path, char *base)
3906 {
3907 	char *last;
3908 
3909 	if (realpath(path, base) == NULL)
3910 		return (-1);
3911 	dbg("%s -> %s", path, base);
3912 	last = strrchr(base, '/');
3913 	if (last == NULL)
3914 		return (-1);
3915 	if (last != base)
3916 		*last = '\0';
3917 	return (0);
3918 }
3919 
3920 static void
3921 linkmap_add(Obj_Entry *obj)
3922 {
3923     struct link_map *l = &obj->linkmap;
3924     struct link_map *prev;
3925 
3926     obj->linkmap.l_name = obj->path;
3927     obj->linkmap.l_addr = obj->mapbase;
3928     obj->linkmap.l_ld = obj->dynamic;
3929 #ifdef __mips__
3930     /* GDB needs load offset on MIPS to use the symbols */
3931     obj->linkmap.l_offs = obj->relocbase;
3932 #endif
3933 
3934     if (r_debug.r_map == NULL) {
3935 	r_debug.r_map = l;
3936 	return;
3937     }
3938 
3939     /*
3940      * Scan to the end of the list, but not past the entry for the
3941      * dynamic linker, which we want to keep at the very end.
3942      */
3943     for (prev = r_debug.r_map;
3944       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3945       prev = prev->l_next)
3946 	;
3947 
3948     /* Link in the new entry. */
3949     l->l_prev = prev;
3950     l->l_next = prev->l_next;
3951     if (l->l_next != NULL)
3952 	l->l_next->l_prev = l;
3953     prev->l_next = l;
3954 }
3955 
3956 static void
3957 linkmap_delete(Obj_Entry *obj)
3958 {
3959     struct link_map *l = &obj->linkmap;
3960 
3961     if (l->l_prev == NULL) {
3962 	if ((r_debug.r_map = l->l_next) != NULL)
3963 	    l->l_next->l_prev = NULL;
3964 	return;
3965     }
3966 
3967     if ((l->l_prev->l_next = l->l_next) != NULL)
3968 	l->l_next->l_prev = l->l_prev;
3969 }
3970 
3971 /*
3972  * Function for the debugger to set a breakpoint on to gain control.
3973  *
3974  * The two parameters allow the debugger to easily find and determine
3975  * what the runtime loader is doing and to whom it is doing it.
3976  *
3977  * When the loadhook trap is hit (r_debug_state, set at program
3978  * initialization), the arguments can be found on the stack:
3979  *
3980  *  +8   struct link_map *m
3981  *  +4   struct r_debug  *rd
3982  *  +0   RetAddr
3983  */
3984 void
3985 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
3986 {
3987     /*
3988      * The following is a hack to force the compiler to emit calls to
3989      * this function, even when optimizing.  If the function is empty,
3990      * the compiler is not obliged to emit any code for calls to it,
3991      * even when marked __noinline.  However, gdb depends on those
3992      * calls being made.
3993      */
3994     __compiler_membar();
3995 }
3996 
3997 /*
3998  * A function called after init routines have completed. This can be used to
3999  * break before a program's entry routine is called, and can be used when
4000  * main is not available in the symbol table.
4001  */
4002 void
4003 _r_debug_postinit(struct link_map *m __unused)
4004 {
4005 
4006 	/* See r_debug_state(). */
4007 	__compiler_membar();
4008 }
4009 
4010 static void
4011 release_object(Obj_Entry *obj)
4012 {
4013 
4014 	if (obj->holdcount > 0) {
4015 		obj->unholdfree = true;
4016 		return;
4017 	}
4018 	munmap(obj->mapbase, obj->mapsize);
4019 	linkmap_delete(obj);
4020 	obj_free(obj);
4021 }
4022 
4023 /*
4024  * Get address of the pointer variable in the main program.
4025  * Prefer non-weak symbol over the weak one.
4026  */
4027 static const void **
4028 get_program_var_addr(const char *name, RtldLockState *lockstate)
4029 {
4030     SymLook req;
4031     DoneList donelist;
4032 
4033     symlook_init(&req, name);
4034     req.lockstate = lockstate;
4035     donelist_init(&donelist);
4036     if (symlook_global(&req, &donelist) != 0)
4037 	return (NULL);
4038     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4039 	return ((const void **)make_function_pointer(req.sym_out,
4040 	  req.defobj_out));
4041     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4042 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4043     else
4044 	return ((const void **)(req.defobj_out->relocbase +
4045 	  req.sym_out->st_value));
4046 }
4047 
4048 /*
4049  * Set a pointer variable in the main program to the given value.  This
4050  * is used to set key variables such as "environ" before any of the
4051  * init functions are called.
4052  */
4053 static void
4054 set_program_var(const char *name, const void *value)
4055 {
4056     const void **addr;
4057 
4058     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4059 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4060 	*addr = value;
4061     }
4062 }
4063 
4064 /*
4065  * Search the global objects, including dependencies and main object,
4066  * for the given symbol.
4067  */
4068 static int
4069 symlook_global(SymLook *req, DoneList *donelist)
4070 {
4071     SymLook req1;
4072     const Objlist_Entry *elm;
4073     int res;
4074 
4075     symlook_init_from_req(&req1, req);
4076 
4077     /* Search all objects loaded at program start up. */
4078     if (req->defobj_out == NULL ||
4079       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4080 	res = symlook_list(&req1, &list_main, donelist);
4081 	if (res == 0 && (req->defobj_out == NULL ||
4082 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4083 	    req->sym_out = req1.sym_out;
4084 	    req->defobj_out = req1.defobj_out;
4085 	    assert(req->defobj_out != NULL);
4086 	}
4087     }
4088 
4089     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4090     STAILQ_FOREACH(elm, &list_global, link) {
4091 	if (req->defobj_out != NULL &&
4092 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4093 	    break;
4094 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4095 	if (res == 0 && (req->defobj_out == NULL ||
4096 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4097 	    req->sym_out = req1.sym_out;
4098 	    req->defobj_out = req1.defobj_out;
4099 	    assert(req->defobj_out != NULL);
4100 	}
4101     }
4102 
4103     return (req->sym_out != NULL ? 0 : ESRCH);
4104 }
4105 
4106 /*
4107  * Given a symbol name in a referencing object, find the corresponding
4108  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4109  * no definition was found.  Returns a pointer to the Obj_Entry of the
4110  * defining object via the reference parameter DEFOBJ_OUT.
4111  */
4112 static int
4113 symlook_default(SymLook *req, const Obj_Entry *refobj)
4114 {
4115     DoneList donelist;
4116     const Objlist_Entry *elm;
4117     SymLook req1;
4118     int res;
4119 
4120     donelist_init(&donelist);
4121     symlook_init_from_req(&req1, req);
4122 
4123     /*
4124      * Look first in the referencing object if linked symbolically,
4125      * and similarly handle protected symbols.
4126      */
4127     res = symlook_obj(&req1, refobj);
4128     if (res == 0 && (refobj->symbolic ||
4129       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4130 	req->sym_out = req1.sym_out;
4131 	req->defobj_out = req1.defobj_out;
4132 	assert(req->defobj_out != NULL);
4133     }
4134     if (refobj->symbolic || req->defobj_out != NULL)
4135 	donelist_check(&donelist, refobj);
4136 
4137     symlook_global(req, &donelist);
4138 
4139     /* Search all dlopened DAGs containing the referencing object. */
4140     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4141 	if (req->sym_out != NULL &&
4142 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4143 	    break;
4144 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4145 	if (res == 0 && (req->sym_out == NULL ||
4146 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4147 	    req->sym_out = req1.sym_out;
4148 	    req->defobj_out = req1.defobj_out;
4149 	    assert(req->defobj_out != NULL);
4150 	}
4151     }
4152 
4153     /*
4154      * Search the dynamic linker itself, and possibly resolve the
4155      * symbol from there.  This is how the application links to
4156      * dynamic linker services such as dlopen.
4157      */
4158     if (req->sym_out == NULL ||
4159       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4160 	res = symlook_obj(&req1, &obj_rtld);
4161 	if (res == 0) {
4162 	    req->sym_out = req1.sym_out;
4163 	    req->defobj_out = req1.defobj_out;
4164 	    assert(req->defobj_out != NULL);
4165 	}
4166     }
4167 
4168     return (req->sym_out != NULL ? 0 : ESRCH);
4169 }
4170 
4171 static int
4172 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4173 {
4174     const Elf_Sym *def;
4175     const Obj_Entry *defobj;
4176     const Objlist_Entry *elm;
4177     SymLook req1;
4178     int res;
4179 
4180     def = NULL;
4181     defobj = NULL;
4182     STAILQ_FOREACH(elm, objlist, link) {
4183 	if (donelist_check(dlp, elm->obj))
4184 	    continue;
4185 	symlook_init_from_req(&req1, req);
4186 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4187 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4188 		def = req1.sym_out;
4189 		defobj = req1.defobj_out;
4190 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4191 		    break;
4192 	    }
4193 	}
4194     }
4195     if (def != NULL) {
4196 	req->sym_out = def;
4197 	req->defobj_out = defobj;
4198 	return (0);
4199     }
4200     return (ESRCH);
4201 }
4202 
4203 /*
4204  * Search the chain of DAGS cointed to by the given Needed_Entry
4205  * for a symbol of the given name.  Each DAG is scanned completely
4206  * before advancing to the next one.  Returns a pointer to the symbol,
4207  * or NULL if no definition was found.
4208  */
4209 static int
4210 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4211 {
4212     const Elf_Sym *def;
4213     const Needed_Entry *n;
4214     const Obj_Entry *defobj;
4215     SymLook req1;
4216     int res;
4217 
4218     def = NULL;
4219     defobj = NULL;
4220     symlook_init_from_req(&req1, req);
4221     for (n = needed; n != NULL; n = n->next) {
4222 	if (n->obj == NULL ||
4223 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4224 	    continue;
4225 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4226 	    def = req1.sym_out;
4227 	    defobj = req1.defobj_out;
4228 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4229 		break;
4230 	}
4231     }
4232     if (def != NULL) {
4233 	req->sym_out = def;
4234 	req->defobj_out = defobj;
4235 	return (0);
4236     }
4237     return (ESRCH);
4238 }
4239 
4240 /*
4241  * Search the symbol table of a single shared object for a symbol of
4242  * the given name and version, if requested.  Returns a pointer to the
4243  * symbol, or NULL if no definition was found.  If the object is
4244  * filter, return filtered symbol from filtee.
4245  *
4246  * The symbol's hash value is passed in for efficiency reasons; that
4247  * eliminates many recomputations of the hash value.
4248  */
4249 int
4250 symlook_obj(SymLook *req, const Obj_Entry *obj)
4251 {
4252     DoneList donelist;
4253     SymLook req1;
4254     int flags, res, mres;
4255 
4256     /*
4257      * If there is at least one valid hash at this point, we prefer to
4258      * use the faster GNU version if available.
4259      */
4260     if (obj->valid_hash_gnu)
4261 	mres = symlook_obj1_gnu(req, obj);
4262     else if (obj->valid_hash_sysv)
4263 	mres = symlook_obj1_sysv(req, obj);
4264     else
4265 	return (EINVAL);
4266 
4267     if (mres == 0) {
4268 	if (obj->needed_filtees != NULL) {
4269 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4270 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4271 	    donelist_init(&donelist);
4272 	    symlook_init_from_req(&req1, req);
4273 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4274 	    if (res == 0) {
4275 		req->sym_out = req1.sym_out;
4276 		req->defobj_out = req1.defobj_out;
4277 	    }
4278 	    return (res);
4279 	}
4280 	if (obj->needed_aux_filtees != NULL) {
4281 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4282 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4283 	    donelist_init(&donelist);
4284 	    symlook_init_from_req(&req1, req);
4285 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4286 	    if (res == 0) {
4287 		req->sym_out = req1.sym_out;
4288 		req->defobj_out = req1.defobj_out;
4289 		return (res);
4290 	    }
4291 	}
4292     }
4293     return (mres);
4294 }
4295 
4296 /* Symbol match routine common to both hash functions */
4297 static bool
4298 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4299     const unsigned long symnum)
4300 {
4301 	Elf_Versym verndx;
4302 	const Elf_Sym *symp;
4303 	const char *strp;
4304 
4305 	symp = obj->symtab + symnum;
4306 	strp = obj->strtab + symp->st_name;
4307 
4308 	switch (ELF_ST_TYPE(symp->st_info)) {
4309 	case STT_FUNC:
4310 	case STT_NOTYPE:
4311 	case STT_OBJECT:
4312 	case STT_COMMON:
4313 	case STT_GNU_IFUNC:
4314 		if (symp->st_value == 0)
4315 			return (false);
4316 		/* fallthrough */
4317 	case STT_TLS:
4318 		if (symp->st_shndx != SHN_UNDEF)
4319 			break;
4320 #ifndef __mips__
4321 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4322 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4323 			break;
4324 #endif
4325 		/* fallthrough */
4326 	default:
4327 		return (false);
4328 	}
4329 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4330 		return (false);
4331 
4332 	if (req->ventry == NULL) {
4333 		if (obj->versyms != NULL) {
4334 			verndx = VER_NDX(obj->versyms[symnum]);
4335 			if (verndx > obj->vernum) {
4336 				_rtld_error(
4337 				    "%s: symbol %s references wrong version %d",
4338 				    obj->path, obj->strtab + symnum, verndx);
4339 				return (false);
4340 			}
4341 			/*
4342 			 * If we are not called from dlsym (i.e. this
4343 			 * is a normal relocation from unversioned
4344 			 * binary), accept the symbol immediately if
4345 			 * it happens to have first version after this
4346 			 * shared object became versioned.  Otherwise,
4347 			 * if symbol is versioned and not hidden,
4348 			 * remember it. If it is the only symbol with
4349 			 * this name exported by the shared object, it
4350 			 * will be returned as a match by the calling
4351 			 * function. If symbol is global (verndx < 2)
4352 			 * accept it unconditionally.
4353 			 */
4354 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4355 			    verndx == VER_NDX_GIVEN) {
4356 				result->sym_out = symp;
4357 				return (true);
4358 			}
4359 			else if (verndx >= VER_NDX_GIVEN) {
4360 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4361 				    == 0) {
4362 					if (result->vsymp == NULL)
4363 						result->vsymp = symp;
4364 					result->vcount++;
4365 				}
4366 				return (false);
4367 			}
4368 		}
4369 		result->sym_out = symp;
4370 		return (true);
4371 	}
4372 	if (obj->versyms == NULL) {
4373 		if (object_match_name(obj, req->ventry->name)) {
4374 			_rtld_error("%s: object %s should provide version %s "
4375 			    "for symbol %s", obj_rtld.path, obj->path,
4376 			    req->ventry->name, obj->strtab + symnum);
4377 			return (false);
4378 		}
4379 	} else {
4380 		verndx = VER_NDX(obj->versyms[symnum]);
4381 		if (verndx > obj->vernum) {
4382 			_rtld_error("%s: symbol %s references wrong version %d",
4383 			    obj->path, obj->strtab + symnum, verndx);
4384 			return (false);
4385 		}
4386 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4387 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4388 			/*
4389 			 * Version does not match. Look if this is a
4390 			 * global symbol and if it is not hidden. If
4391 			 * global symbol (verndx < 2) is available,
4392 			 * use it. Do not return symbol if we are
4393 			 * called by dlvsym, because dlvsym looks for
4394 			 * a specific version and default one is not
4395 			 * what dlvsym wants.
4396 			 */
4397 			if ((req->flags & SYMLOOK_DLSYM) ||
4398 			    (verndx >= VER_NDX_GIVEN) ||
4399 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4400 				return (false);
4401 		}
4402 	}
4403 	result->sym_out = symp;
4404 	return (true);
4405 }
4406 
4407 /*
4408  * Search for symbol using SysV hash function.
4409  * obj->buckets is known not to be NULL at this point; the test for this was
4410  * performed with the obj->valid_hash_sysv assignment.
4411  */
4412 static int
4413 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4414 {
4415 	unsigned long symnum;
4416 	Sym_Match_Result matchres;
4417 
4418 	matchres.sym_out = NULL;
4419 	matchres.vsymp = NULL;
4420 	matchres.vcount = 0;
4421 
4422 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4423 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4424 		if (symnum >= obj->nchains)
4425 			return (ESRCH);	/* Bad object */
4426 
4427 		if (matched_symbol(req, obj, &matchres, symnum)) {
4428 			req->sym_out = matchres.sym_out;
4429 			req->defobj_out = obj;
4430 			return (0);
4431 		}
4432 	}
4433 	if (matchres.vcount == 1) {
4434 		req->sym_out = matchres.vsymp;
4435 		req->defobj_out = obj;
4436 		return (0);
4437 	}
4438 	return (ESRCH);
4439 }
4440 
4441 /* Search for symbol using GNU hash function */
4442 static int
4443 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4444 {
4445 	Elf_Addr bloom_word;
4446 	const Elf32_Word *hashval;
4447 	Elf32_Word bucket;
4448 	Sym_Match_Result matchres;
4449 	unsigned int h1, h2;
4450 	unsigned long symnum;
4451 
4452 	matchres.sym_out = NULL;
4453 	matchres.vsymp = NULL;
4454 	matchres.vcount = 0;
4455 
4456 	/* Pick right bitmask word from Bloom filter array */
4457 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4458 	    obj->maskwords_bm_gnu];
4459 
4460 	/* Calculate modulus word size of gnu hash and its derivative */
4461 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4462 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4463 
4464 	/* Filter out the "definitely not in set" queries */
4465 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4466 		return (ESRCH);
4467 
4468 	/* Locate hash chain and corresponding value element*/
4469 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4470 	if (bucket == 0)
4471 		return (ESRCH);
4472 	hashval = &obj->chain_zero_gnu[bucket];
4473 	do {
4474 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4475 			symnum = hashval - obj->chain_zero_gnu;
4476 			if (matched_symbol(req, obj, &matchres, symnum)) {
4477 				req->sym_out = matchres.sym_out;
4478 				req->defobj_out = obj;
4479 				return (0);
4480 			}
4481 		}
4482 	} while ((*hashval++ & 1) == 0);
4483 	if (matchres.vcount == 1) {
4484 		req->sym_out = matchres.vsymp;
4485 		req->defobj_out = obj;
4486 		return (0);
4487 	}
4488 	return (ESRCH);
4489 }
4490 
4491 static void
4492 trace_loaded_objects(Obj_Entry *obj)
4493 {
4494     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4495     int c;
4496 
4497     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4498 	main_local = "";
4499 
4500     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4501 	fmt1 = "\t%o => %p (%x)\n";
4502 
4503     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4504 	fmt2 = "\t%o (%x)\n";
4505 
4506     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4507 
4508     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4509 	Needed_Entry *needed;
4510 	const char *name, *path;
4511 	bool is_lib;
4512 
4513 	if (obj->marker)
4514 	    continue;
4515 	if (list_containers && obj->needed != NULL)
4516 	    rtld_printf("%s:\n", obj->path);
4517 	for (needed = obj->needed; needed; needed = needed->next) {
4518 	    if (needed->obj != NULL) {
4519 		if (needed->obj->traced && !list_containers)
4520 		    continue;
4521 		needed->obj->traced = true;
4522 		path = needed->obj->path;
4523 	    } else
4524 		path = "not found";
4525 
4526 	    name = obj->strtab + needed->name;
4527 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4528 
4529 	    fmt = is_lib ? fmt1 : fmt2;
4530 	    while ((c = *fmt++) != '\0') {
4531 		switch (c) {
4532 		default:
4533 		    rtld_putchar(c);
4534 		    continue;
4535 		case '\\':
4536 		    switch (c = *fmt) {
4537 		    case '\0':
4538 			continue;
4539 		    case 'n':
4540 			rtld_putchar('\n');
4541 			break;
4542 		    case 't':
4543 			rtld_putchar('\t');
4544 			break;
4545 		    }
4546 		    break;
4547 		case '%':
4548 		    switch (c = *fmt) {
4549 		    case '\0':
4550 			continue;
4551 		    case '%':
4552 		    default:
4553 			rtld_putchar(c);
4554 			break;
4555 		    case 'A':
4556 			rtld_putstr(main_local);
4557 			break;
4558 		    case 'a':
4559 			rtld_putstr(obj_main->path);
4560 			break;
4561 		    case 'o':
4562 			rtld_putstr(name);
4563 			break;
4564 #if 0
4565 		    case 'm':
4566 			rtld_printf("%d", sodp->sod_major);
4567 			break;
4568 		    case 'n':
4569 			rtld_printf("%d", sodp->sod_minor);
4570 			break;
4571 #endif
4572 		    case 'p':
4573 			rtld_putstr(path);
4574 			break;
4575 		    case 'x':
4576 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4577 			  0);
4578 			break;
4579 		    }
4580 		    break;
4581 		}
4582 		++fmt;
4583 	    }
4584 	}
4585     }
4586 }
4587 
4588 /*
4589  * Unload a dlopened object and its dependencies from memory and from
4590  * our data structures.  It is assumed that the DAG rooted in the
4591  * object has already been unreferenced, and that the object has a
4592  * reference count of 0.
4593  */
4594 static void
4595 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4596 {
4597 	Obj_Entry marker, *obj, *next;
4598 
4599 	assert(root->refcount == 0);
4600 
4601 	/*
4602 	 * Pass over the DAG removing unreferenced objects from
4603 	 * appropriate lists.
4604 	 */
4605 	unlink_object(root);
4606 
4607 	/* Unmap all objects that are no longer referenced. */
4608 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4609 		next = TAILQ_NEXT(obj, next);
4610 		if (obj->marker || obj->refcount != 0)
4611 			continue;
4612 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4613 		    obj->mapsize, 0, obj->path);
4614 		dbg("unloading \"%s\"", obj->path);
4615 		/*
4616 		 * Unlink the object now to prevent new references from
4617 		 * being acquired while the bind lock is dropped in
4618 		 * recursive dlclose() invocations.
4619 		 */
4620 		TAILQ_REMOVE(&obj_list, obj, next);
4621 		obj_count--;
4622 
4623 		if (obj->filtees_loaded) {
4624 			if (next != NULL) {
4625 				init_marker(&marker);
4626 				TAILQ_INSERT_BEFORE(next, &marker, next);
4627 				unload_filtees(obj, lockstate);
4628 				next = TAILQ_NEXT(&marker, next);
4629 				TAILQ_REMOVE(&obj_list, &marker, next);
4630 			} else
4631 				unload_filtees(obj, lockstate);
4632 		}
4633 		release_object(obj);
4634 	}
4635 }
4636 
4637 static void
4638 unlink_object(Obj_Entry *root)
4639 {
4640     Objlist_Entry *elm;
4641 
4642     if (root->refcount == 0) {
4643 	/* Remove the object from the RTLD_GLOBAL list. */
4644 	objlist_remove(&list_global, root);
4645 
4646     	/* Remove the object from all objects' DAG lists. */
4647     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4648 	    objlist_remove(&elm->obj->dldags, root);
4649 	    if (elm->obj != root)
4650 		unlink_object(elm->obj);
4651 	}
4652     }
4653 }
4654 
4655 static void
4656 ref_dag(Obj_Entry *root)
4657 {
4658     Objlist_Entry *elm;
4659 
4660     assert(root->dag_inited);
4661     STAILQ_FOREACH(elm, &root->dagmembers, link)
4662 	elm->obj->refcount++;
4663 }
4664 
4665 static void
4666 unref_dag(Obj_Entry *root)
4667 {
4668     Objlist_Entry *elm;
4669 
4670     assert(root->dag_inited);
4671     STAILQ_FOREACH(elm, &root->dagmembers, link)
4672 	elm->obj->refcount--;
4673 }
4674 
4675 /*
4676  * Common code for MD __tls_get_addr().
4677  */
4678 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4679 static void *
4680 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4681 {
4682     Elf_Addr *newdtv, *dtv;
4683     RtldLockState lockstate;
4684     int to_copy;
4685 
4686     dtv = *dtvp;
4687     /* Check dtv generation in case new modules have arrived */
4688     if (dtv[0] != tls_dtv_generation) {
4689 	wlock_acquire(rtld_bind_lock, &lockstate);
4690 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4691 	to_copy = dtv[1];
4692 	if (to_copy > tls_max_index)
4693 	    to_copy = tls_max_index;
4694 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4695 	newdtv[0] = tls_dtv_generation;
4696 	newdtv[1] = tls_max_index;
4697 	free(dtv);
4698 	lock_release(rtld_bind_lock, &lockstate);
4699 	dtv = *dtvp = newdtv;
4700     }
4701 
4702     /* Dynamically allocate module TLS if necessary */
4703     if (dtv[index + 1] == 0) {
4704 	/* Signal safe, wlock will block out signals. */
4705 	wlock_acquire(rtld_bind_lock, &lockstate);
4706 	if (!dtv[index + 1])
4707 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4708 	lock_release(rtld_bind_lock, &lockstate);
4709     }
4710     return ((void *)(dtv[index + 1] + offset));
4711 }
4712 
4713 void *
4714 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4715 {
4716 	Elf_Addr *dtv;
4717 
4718 	dtv = *dtvp;
4719 	/* Check dtv generation in case new modules have arrived */
4720 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4721 	    dtv[index + 1] != 0))
4722 		return ((void *)(dtv[index + 1] + offset));
4723 	return (tls_get_addr_slow(dtvp, index, offset));
4724 }
4725 
4726 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4727     defined(__powerpc__) || defined(__riscv)
4728 
4729 /*
4730  * Return pointer to allocated TLS block
4731  */
4732 static void *
4733 get_tls_block_ptr(void *tcb, size_t tcbsize)
4734 {
4735     size_t extra_size, post_size, pre_size, tls_block_size;
4736     size_t tls_init_align;
4737 
4738     tls_init_align = MAX(obj_main->tlsalign, 1);
4739 
4740     /* Compute fragments sizes. */
4741     extra_size = tcbsize - TLS_TCB_SIZE;
4742     post_size = calculate_tls_post_size(tls_init_align);
4743     tls_block_size = tcbsize + post_size;
4744     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4745 
4746     return ((char *)tcb - pre_size - extra_size);
4747 }
4748 
4749 /*
4750  * Allocate Static TLS using the Variant I method.
4751  *
4752  * For details on the layout, see lib/libc/gen/tls.c.
4753  *
4754  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4755  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4756  *     offsets, whereas libc's tls_static_space is just the executable's static
4757  *     TLS segment.
4758  */
4759 void *
4760 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4761 {
4762     Obj_Entry *obj;
4763     char *tls_block;
4764     Elf_Addr *dtv, **tcb;
4765     Elf_Addr addr;
4766     Elf_Addr i;
4767     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4768     size_t tls_init_align;
4769 
4770     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4771 	return (oldtcb);
4772 
4773     assert(tcbsize >= TLS_TCB_SIZE);
4774     maxalign = MAX(tcbalign, tls_static_max_align);
4775     tls_init_align = MAX(obj_main->tlsalign, 1);
4776 
4777     /* Compute fragmets sizes. */
4778     extra_size = tcbsize - TLS_TCB_SIZE;
4779     post_size = calculate_tls_post_size(tls_init_align);
4780     tls_block_size = tcbsize + post_size;
4781     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4782     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4783 
4784     /* Allocate whole TLS block */
4785     tls_block = malloc_aligned(tls_block_size, maxalign);
4786     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4787 
4788     if (oldtcb != NULL) {
4789 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4790 	    tls_static_space);
4791 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4792 
4793 	/* Adjust the DTV. */
4794 	dtv = tcb[0];
4795 	for (i = 0; i < dtv[1]; i++) {
4796 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4797 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4798 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4799 	    }
4800 	}
4801     } else {
4802 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4803 	tcb[0] = dtv;
4804 	dtv[0] = tls_dtv_generation;
4805 	dtv[1] = tls_max_index;
4806 
4807 	for (obj = globallist_curr(objs); obj != NULL;
4808 	  obj = globallist_next(obj)) {
4809 	    if (obj->tlsoffset > 0) {
4810 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4811 		if (obj->tlsinitsize > 0)
4812 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4813 		if (obj->tlssize > obj->tlsinitsize)
4814 		    memset((void*)(addr + obj->tlsinitsize), 0,
4815 			   obj->tlssize - obj->tlsinitsize);
4816 		dtv[obj->tlsindex + 1] = addr;
4817 	    }
4818 	}
4819     }
4820 
4821     return (tcb);
4822 }
4823 
4824 void
4825 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4826 {
4827     Elf_Addr *dtv;
4828     Elf_Addr tlsstart, tlsend;
4829     size_t post_size;
4830     size_t dtvsize, i, tls_init_align;
4831 
4832     assert(tcbsize >= TLS_TCB_SIZE);
4833     tls_init_align = MAX(obj_main->tlsalign, 1);
4834 
4835     /* Compute fragments sizes. */
4836     post_size = calculate_tls_post_size(tls_init_align);
4837 
4838     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4839     tlsend = (Elf_Addr)tcb + tls_static_space;
4840 
4841     dtv = *(Elf_Addr **)tcb;
4842     dtvsize = dtv[1];
4843     for (i = 0; i < dtvsize; i++) {
4844 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4845 	    free((void*)dtv[i+2]);
4846 	}
4847     }
4848     free(dtv);
4849     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4850 }
4851 
4852 #endif
4853 
4854 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4855 
4856 /*
4857  * Allocate Static TLS using the Variant II method.
4858  */
4859 void *
4860 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4861 {
4862     Obj_Entry *obj;
4863     size_t size, ralign;
4864     char *tls;
4865     Elf_Addr *dtv, *olddtv;
4866     Elf_Addr segbase, oldsegbase, addr;
4867     size_t i;
4868 
4869     ralign = tcbalign;
4870     if (tls_static_max_align > ralign)
4871 	    ralign = tls_static_max_align;
4872     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4873 
4874     assert(tcbsize >= 2*sizeof(Elf_Addr));
4875     tls = malloc_aligned(size, ralign);
4876     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4877 
4878     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4879     ((Elf_Addr*)segbase)[0] = segbase;
4880     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4881 
4882     dtv[0] = tls_dtv_generation;
4883     dtv[1] = tls_max_index;
4884 
4885     if (oldtls) {
4886 	/*
4887 	 * Copy the static TLS block over whole.
4888 	 */
4889 	oldsegbase = (Elf_Addr) oldtls;
4890 	memcpy((void *)(segbase - tls_static_space),
4891 	       (const void *)(oldsegbase - tls_static_space),
4892 	       tls_static_space);
4893 
4894 	/*
4895 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4896 	 * move them over.
4897 	 */
4898 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4899 	for (i = 0; i < olddtv[1]; i++) {
4900 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4901 		dtv[i+2] = olddtv[i+2];
4902 		olddtv[i+2] = 0;
4903 	    }
4904 	}
4905 
4906 	/*
4907 	 * We assume that this block was the one we created with
4908 	 * allocate_initial_tls().
4909 	 */
4910 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4911     } else {
4912 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4913 		if (obj->marker || obj->tlsoffset == 0)
4914 			continue;
4915 		addr = segbase - obj->tlsoffset;
4916 		memset((void*)(addr + obj->tlsinitsize),
4917 		       0, obj->tlssize - obj->tlsinitsize);
4918 		if (obj->tlsinit)
4919 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4920 		dtv[obj->tlsindex + 1] = addr;
4921 	}
4922     }
4923 
4924     return (void*) segbase;
4925 }
4926 
4927 void
4928 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4929 {
4930     Elf_Addr* dtv;
4931     size_t size, ralign;
4932     int dtvsize, i;
4933     Elf_Addr tlsstart, tlsend;
4934 
4935     /*
4936      * Figure out the size of the initial TLS block so that we can
4937      * find stuff which ___tls_get_addr() allocated dynamically.
4938      */
4939     ralign = tcbalign;
4940     if (tls_static_max_align > ralign)
4941 	    ralign = tls_static_max_align;
4942     size = round(tls_static_space, ralign);
4943 
4944     dtv = ((Elf_Addr**)tls)[1];
4945     dtvsize = dtv[1];
4946     tlsend = (Elf_Addr) tls;
4947     tlsstart = tlsend - size;
4948     for (i = 0; i < dtvsize; i++) {
4949 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4950 		free_aligned((void *)dtv[i + 2]);
4951 	}
4952     }
4953 
4954     free_aligned((void *)tlsstart);
4955     free((void*) dtv);
4956 }
4957 
4958 #endif
4959 
4960 /*
4961  * Allocate TLS block for module with given index.
4962  */
4963 void *
4964 allocate_module_tls(int index)
4965 {
4966     Obj_Entry* obj;
4967     char* p;
4968 
4969     TAILQ_FOREACH(obj, &obj_list, next) {
4970 	if (obj->marker)
4971 	    continue;
4972 	if (obj->tlsindex == index)
4973 	    break;
4974     }
4975     if (!obj) {
4976 	_rtld_error("Can't find module with TLS index %d", index);
4977 	rtld_die();
4978     }
4979 
4980     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4981     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4982     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4983 
4984     return p;
4985 }
4986 
4987 bool
4988 allocate_tls_offset(Obj_Entry *obj)
4989 {
4990     size_t off;
4991 
4992     if (obj->tls_done)
4993 	return true;
4994 
4995     if (obj->tlssize == 0) {
4996 	obj->tls_done = true;
4997 	return true;
4998     }
4999 
5000     if (tls_last_offset == 0)
5001 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5002     else
5003 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5004 				   obj->tlssize, obj->tlsalign);
5005 
5006     /*
5007      * If we have already fixed the size of the static TLS block, we
5008      * must stay within that size. When allocating the static TLS, we
5009      * leave a small amount of space spare to be used for dynamically
5010      * loading modules which use static TLS.
5011      */
5012     if (tls_static_space != 0) {
5013 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5014 	    return false;
5015     } else if (obj->tlsalign > tls_static_max_align) {
5016 	    tls_static_max_align = obj->tlsalign;
5017     }
5018 
5019     tls_last_offset = obj->tlsoffset = off;
5020     tls_last_size = obj->tlssize;
5021     obj->tls_done = true;
5022 
5023     return true;
5024 }
5025 
5026 void
5027 free_tls_offset(Obj_Entry *obj)
5028 {
5029 
5030     /*
5031      * If we were the last thing to allocate out of the static TLS
5032      * block, we give our space back to the 'allocator'. This is a
5033      * simplistic workaround to allow libGL.so.1 to be loaded and
5034      * unloaded multiple times.
5035      */
5036     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5037 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5038 	tls_last_offset -= obj->tlssize;
5039 	tls_last_size = 0;
5040     }
5041 }
5042 
5043 void *
5044 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5045 {
5046     void *ret;
5047     RtldLockState lockstate;
5048 
5049     wlock_acquire(rtld_bind_lock, &lockstate);
5050     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5051       tcbsize, tcbalign);
5052     lock_release(rtld_bind_lock, &lockstate);
5053     return (ret);
5054 }
5055 
5056 void
5057 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5058 {
5059     RtldLockState lockstate;
5060 
5061     wlock_acquire(rtld_bind_lock, &lockstate);
5062     free_tls(tcb, tcbsize, tcbalign);
5063     lock_release(rtld_bind_lock, &lockstate);
5064 }
5065 
5066 static void
5067 object_add_name(Obj_Entry *obj, const char *name)
5068 {
5069     Name_Entry *entry;
5070     size_t len;
5071 
5072     len = strlen(name);
5073     entry = malloc(sizeof(Name_Entry) + len);
5074 
5075     if (entry != NULL) {
5076 	strcpy(entry->name, name);
5077 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5078     }
5079 }
5080 
5081 static int
5082 object_match_name(const Obj_Entry *obj, const char *name)
5083 {
5084     Name_Entry *entry;
5085 
5086     STAILQ_FOREACH(entry, &obj->names, link) {
5087 	if (strcmp(name, entry->name) == 0)
5088 	    return (1);
5089     }
5090     return (0);
5091 }
5092 
5093 static Obj_Entry *
5094 locate_dependency(const Obj_Entry *obj, const char *name)
5095 {
5096     const Objlist_Entry *entry;
5097     const Needed_Entry *needed;
5098 
5099     STAILQ_FOREACH(entry, &list_main, link) {
5100 	if (object_match_name(entry->obj, name))
5101 	    return entry->obj;
5102     }
5103 
5104     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5105 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5106 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5107 	    /*
5108 	     * If there is DT_NEEDED for the name we are looking for,
5109 	     * we are all set.  Note that object might not be found if
5110 	     * dependency was not loaded yet, so the function can
5111 	     * return NULL here.  This is expected and handled
5112 	     * properly by the caller.
5113 	     */
5114 	    return (needed->obj);
5115 	}
5116     }
5117     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5118 	obj->path, name);
5119     rtld_die();
5120 }
5121 
5122 static int
5123 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5124     const Elf_Vernaux *vna)
5125 {
5126     const Elf_Verdef *vd;
5127     const char *vername;
5128 
5129     vername = refobj->strtab + vna->vna_name;
5130     vd = depobj->verdef;
5131     if (vd == NULL) {
5132 	_rtld_error("%s: version %s required by %s not defined",
5133 	    depobj->path, vername, refobj->path);
5134 	return (-1);
5135     }
5136     for (;;) {
5137 	if (vd->vd_version != VER_DEF_CURRENT) {
5138 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5139 		depobj->path, vd->vd_version);
5140 	    return (-1);
5141 	}
5142 	if (vna->vna_hash == vd->vd_hash) {
5143 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5144 		((const char *)vd + vd->vd_aux);
5145 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5146 		return (0);
5147 	}
5148 	if (vd->vd_next == 0)
5149 	    break;
5150 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5151     }
5152     if (vna->vna_flags & VER_FLG_WEAK)
5153 	return (0);
5154     _rtld_error("%s: version %s required by %s not found",
5155 	depobj->path, vername, refobj->path);
5156     return (-1);
5157 }
5158 
5159 static int
5160 rtld_verify_object_versions(Obj_Entry *obj)
5161 {
5162     const Elf_Verneed *vn;
5163     const Elf_Verdef  *vd;
5164     const Elf_Verdaux *vda;
5165     const Elf_Vernaux *vna;
5166     const Obj_Entry *depobj;
5167     int maxvernum, vernum;
5168 
5169     if (obj->ver_checked)
5170 	return (0);
5171     obj->ver_checked = true;
5172 
5173     maxvernum = 0;
5174     /*
5175      * Walk over defined and required version records and figure out
5176      * max index used by any of them. Do very basic sanity checking
5177      * while there.
5178      */
5179     vn = obj->verneed;
5180     while (vn != NULL) {
5181 	if (vn->vn_version != VER_NEED_CURRENT) {
5182 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5183 		obj->path, vn->vn_version);
5184 	    return (-1);
5185 	}
5186 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5187 	for (;;) {
5188 	    vernum = VER_NEED_IDX(vna->vna_other);
5189 	    if (vernum > maxvernum)
5190 		maxvernum = vernum;
5191 	    if (vna->vna_next == 0)
5192 		 break;
5193 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5194 	}
5195 	if (vn->vn_next == 0)
5196 	    break;
5197 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5198     }
5199 
5200     vd = obj->verdef;
5201     while (vd != NULL) {
5202 	if (vd->vd_version != VER_DEF_CURRENT) {
5203 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5204 		obj->path, vd->vd_version);
5205 	    return (-1);
5206 	}
5207 	vernum = VER_DEF_IDX(vd->vd_ndx);
5208 	if (vernum > maxvernum)
5209 		maxvernum = vernum;
5210 	if (vd->vd_next == 0)
5211 	    break;
5212 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5213     }
5214 
5215     if (maxvernum == 0)
5216 	return (0);
5217 
5218     /*
5219      * Store version information in array indexable by version index.
5220      * Verify that object version requirements are satisfied along the
5221      * way.
5222      */
5223     obj->vernum = maxvernum + 1;
5224     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5225 
5226     vd = obj->verdef;
5227     while (vd != NULL) {
5228 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5229 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5230 	    assert(vernum <= maxvernum);
5231 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5232 	    obj->vertab[vernum].hash = vd->vd_hash;
5233 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5234 	    obj->vertab[vernum].file = NULL;
5235 	    obj->vertab[vernum].flags = 0;
5236 	}
5237 	if (vd->vd_next == 0)
5238 	    break;
5239 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5240     }
5241 
5242     vn = obj->verneed;
5243     while (vn != NULL) {
5244 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5245 	if (depobj == NULL)
5246 	    return (-1);
5247 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5248 	for (;;) {
5249 	    if (check_object_provided_version(obj, depobj, vna))
5250 		return (-1);
5251 	    vernum = VER_NEED_IDX(vna->vna_other);
5252 	    assert(vernum <= maxvernum);
5253 	    obj->vertab[vernum].hash = vna->vna_hash;
5254 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5255 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5256 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5257 		VER_INFO_HIDDEN : 0;
5258 	    if (vna->vna_next == 0)
5259 		 break;
5260 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5261 	}
5262 	if (vn->vn_next == 0)
5263 	    break;
5264 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5265     }
5266     return 0;
5267 }
5268 
5269 static int
5270 rtld_verify_versions(const Objlist *objlist)
5271 {
5272     Objlist_Entry *entry;
5273     int rc;
5274 
5275     rc = 0;
5276     STAILQ_FOREACH(entry, objlist, link) {
5277 	/*
5278 	 * Skip dummy objects or objects that have their version requirements
5279 	 * already checked.
5280 	 */
5281 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5282 	    continue;
5283 	if (rtld_verify_object_versions(entry->obj) == -1) {
5284 	    rc = -1;
5285 	    if (ld_tracing == NULL)
5286 		break;
5287 	}
5288     }
5289     if (rc == 0 || ld_tracing != NULL)
5290     	rc = rtld_verify_object_versions(&obj_rtld);
5291     return rc;
5292 }
5293 
5294 const Ver_Entry *
5295 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5296 {
5297     Elf_Versym vernum;
5298 
5299     if (obj->vertab) {
5300 	vernum = VER_NDX(obj->versyms[symnum]);
5301 	if (vernum >= obj->vernum) {
5302 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5303 		obj->path, obj->strtab + symnum, vernum);
5304 	} else if (obj->vertab[vernum].hash != 0) {
5305 	    return &obj->vertab[vernum];
5306 	}
5307     }
5308     return NULL;
5309 }
5310 
5311 int
5312 _rtld_get_stack_prot(void)
5313 {
5314 
5315 	return (stack_prot);
5316 }
5317 
5318 int
5319 _rtld_is_dlopened(void *arg)
5320 {
5321 	Obj_Entry *obj;
5322 	RtldLockState lockstate;
5323 	int res;
5324 
5325 	rlock_acquire(rtld_bind_lock, &lockstate);
5326 	obj = dlcheck(arg);
5327 	if (obj == NULL)
5328 		obj = obj_from_addr(arg);
5329 	if (obj == NULL) {
5330 		_rtld_error("No shared object contains address");
5331 		lock_release(rtld_bind_lock, &lockstate);
5332 		return (-1);
5333 	}
5334 	res = obj->dlopened ? 1 : 0;
5335 	lock_release(rtld_bind_lock, &lockstate);
5336 	return (res);
5337 }
5338 
5339 int
5340 obj_enforce_relro(Obj_Entry *obj)
5341 {
5342 
5343 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5344 	    PROT_READ) == -1) {
5345 		_rtld_error("%s: Cannot enforce relro protection: %s",
5346 		    obj->path, rtld_strerror(errno));
5347 		return (-1);
5348 	}
5349 	return (0);
5350 }
5351 
5352 static void
5353 map_stacks_exec(RtldLockState *lockstate)
5354 {
5355 	void (*thr_map_stacks_exec)(void);
5356 
5357 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5358 		return;
5359 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5360 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5361 	if (thr_map_stacks_exec != NULL) {
5362 		stack_prot |= PROT_EXEC;
5363 		thr_map_stacks_exec();
5364 	}
5365 }
5366 
5367 void
5368 symlook_init(SymLook *dst, const char *name)
5369 {
5370 
5371 	bzero(dst, sizeof(*dst));
5372 	dst->name = name;
5373 	dst->hash = elf_hash(name);
5374 	dst->hash_gnu = gnu_hash(name);
5375 }
5376 
5377 static void
5378 symlook_init_from_req(SymLook *dst, const SymLook *src)
5379 {
5380 
5381 	dst->name = src->name;
5382 	dst->hash = src->hash;
5383 	dst->hash_gnu = src->hash_gnu;
5384 	dst->ventry = src->ventry;
5385 	dst->flags = src->flags;
5386 	dst->defobj_out = NULL;
5387 	dst->sym_out = NULL;
5388 	dst->lockstate = src->lockstate;
5389 }
5390 
5391 static int
5392 open_binary_fd(const char *argv0, bool search_in_path)
5393 {
5394 	char *pathenv, *pe, binpath[PATH_MAX];
5395 	int fd;
5396 
5397 	if (search_in_path && strchr(argv0, '/') == NULL) {
5398 		pathenv = getenv("PATH");
5399 		if (pathenv == NULL) {
5400 			_rtld_error("-p and no PATH environment variable");
5401 			rtld_die();
5402 		}
5403 		pathenv = strdup(pathenv);
5404 		if (pathenv == NULL) {
5405 			_rtld_error("Cannot allocate memory");
5406 			rtld_die();
5407 		}
5408 		fd = -1;
5409 		errno = ENOENT;
5410 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5411 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5412 			    sizeof(binpath))
5413 				continue;
5414 			if (binpath[0] != '\0' &&
5415 			    strlcat(binpath, "/", sizeof(binpath)) >=
5416 			    sizeof(binpath))
5417 				continue;
5418 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5419 			    sizeof(binpath))
5420 				continue;
5421 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5422 			if (fd != -1 || errno != ENOENT)
5423 				break;
5424 		}
5425 		free(pathenv);
5426 	} else {
5427 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5428 	}
5429 
5430 	if (fd == -1) {
5431 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5432 		rtld_die();
5433 	}
5434 	return (fd);
5435 }
5436 
5437 /*
5438  * Parse a set of command-line arguments.
5439  */
5440 static int
5441 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5442 {
5443 	const char *arg;
5444 	int fd, i, j, arglen;
5445 	char opt;
5446 
5447 	dbg("Parsing command-line arguments");
5448 	*use_pathp = false;
5449 	*fdp = -1;
5450 
5451 	for (i = 1; i < argc; i++ ) {
5452 		arg = argv[i];
5453 		dbg("argv[%d]: '%s'", i, arg);
5454 
5455 		/*
5456 		 * rtld arguments end with an explicit "--" or with the first
5457 		 * non-prefixed argument.
5458 		 */
5459 		if (strcmp(arg, "--") == 0) {
5460 			i++;
5461 			break;
5462 		}
5463 		if (arg[0] != '-')
5464 			break;
5465 
5466 		/*
5467 		 * All other arguments are single-character options that can
5468 		 * be combined, so we need to search through `arg` for them.
5469 		 */
5470 		arglen = strlen(arg);
5471 		for (j = 1; j < arglen; j++) {
5472 			opt = arg[j];
5473 			if (opt == 'h') {
5474 				print_usage(argv[0]);
5475 				_exit(0);
5476 			} else if (opt == 'f') {
5477 			/*
5478 			 * -f XX can be used to specify a descriptor for the
5479 			 * binary named at the command line (i.e., the later
5480 			 * argument will specify the process name but the
5481 			 * descriptor is what will actually be executed)
5482 			 */
5483 			if (j != arglen - 1) {
5484 				/* -f must be the last option in, e.g., -abcf */
5485 				_rtld_error("Invalid options: %s", arg);
5486 				rtld_die();
5487 			}
5488 			i++;
5489 			fd = parse_integer(argv[i]);
5490 			if (fd == -1) {
5491 				_rtld_error("Invalid file descriptor: '%s'",
5492 				    argv[i]);
5493 				rtld_die();
5494 			}
5495 			*fdp = fd;
5496 			break;
5497 			} else if (opt == 'p') {
5498 				*use_pathp = true;
5499 			} else {
5500 				_rtld_error("Invalid argument: '%s'", arg);
5501 				print_usage(argv[0]);
5502 				rtld_die();
5503 			}
5504 		}
5505 	}
5506 
5507 	return (i);
5508 }
5509 
5510 /*
5511  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5512  */
5513 static int
5514 parse_integer(const char *str)
5515 {
5516 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5517 	const char *orig;
5518 	int n;
5519 	char c;
5520 
5521 	orig = str;
5522 	n = 0;
5523 	for (c = *str; c != '\0'; c = *++str) {
5524 		if (c < '0' || c > '9')
5525 			return (-1);
5526 
5527 		n *= RADIX;
5528 		n += c - '0';
5529 	}
5530 
5531 	/* Make sure we actually parsed something. */
5532 	if (str == orig)
5533 		return (-1);
5534 	return (n);
5535 }
5536 
5537 static void
5538 print_usage(const char *argv0)
5539 {
5540 
5541 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5542 		"\n"
5543 		"Options:\n"
5544 		"  -h        Display this help message\n"
5545 		"  -p        Search in PATH for named binary\n"
5546 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5547 		"  --        End of RTLD options\n"
5548 		"  <binary>  Name of process to execute\n"
5549 		"  <args>    Arguments to the executed process\n", argv0);
5550 }
5551 
5552 /*
5553  * Overrides for libc_pic-provided functions.
5554  */
5555 
5556 int
5557 __getosreldate(void)
5558 {
5559 	size_t len;
5560 	int oid[2];
5561 	int error, osrel;
5562 
5563 	if (osreldate != 0)
5564 		return (osreldate);
5565 
5566 	oid[0] = CTL_KERN;
5567 	oid[1] = KERN_OSRELDATE;
5568 	osrel = 0;
5569 	len = sizeof(osrel);
5570 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5571 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5572 		osreldate = osrel;
5573 	return (osreldate);
5574 }
5575 
5576 void
5577 exit(int status)
5578 {
5579 
5580 	_exit(status);
5581 }
5582 
5583 void (*__cleanup)(void);
5584 int __isthreaded = 0;
5585 int _thread_autoinit_dummy_decl = 1;
5586 
5587 /*
5588  * No unresolved symbols for rtld.
5589  */
5590 void
5591 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5592 {
5593 }
5594 
5595 const char *
5596 rtld_strerror(int errnum)
5597 {
5598 
5599 	if (errnum < 0 || errnum >= sys_nerr)
5600 		return ("Unknown error");
5601 	return (sys_errlist[errnum]);
5602 }
5603