xref: /freebsd/libexec/rtld-elf/rtld.c (revision d876124d6ae9d56da5b4ff4c6015efd1d0c9222a)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mount.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/uio.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "rtld_tls.h"
60 
61 #ifndef COMPAT_32BIT
62 #define PATH_RTLD	"/libexec/ld-elf.so.1"
63 #else
64 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
65 #endif
66 
67 /* Types. */
68 typedef void (*func_ptr_type)();
69 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
70 
71 /*
72  * This structure provides a reentrant way to keep a list of objects and
73  * check which ones have already been processed in some way.
74  */
75 typedef struct Struct_DoneList {
76     const Obj_Entry **objs;		/* Array of object pointers */
77     unsigned int num_alloc;		/* Allocated size of the array */
78     unsigned int num_used;		/* Number of array slots used */
79 } DoneList;
80 
81 /*
82  * Function declarations.
83  */
84 static const char *basename(const char *);
85 static void die(void) __dead2;
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *);
90 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91 static bool donelist_check(DoneList *, const Obj_Entry *);
92 static void errmsg_restore(char *);
93 static char *errmsg_save(void);
94 static void *fill_search_info(const char *, size_t, void *);
95 static char *find_library(const char *, const Obj_Entry *);
96 static const char *gethints(void);
97 static void init_dag(Obj_Entry *);
98 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
99 static void init_rtld(caddr_t);
100 static void initlist_add_neededs(Needed_Entry *, Objlist *);
101 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
102 static bool is_exported(const Elf_Sym *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, const Obj_Entry *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *);
110 static void objlist_call_init(Objlist *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void objlist_remove_unref(Objlist *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *);
124 static void set_program_var(const char *, const void *);
125 static const Elf_Sym *symlook_default(const char *, unsigned long,
126   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
127 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
128   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
129 static const Elf_Sym *symlook_needed(const char *, unsigned long,
130   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
131   int, DoneList *);
132 static void trace_loaded_objects(Obj_Entry *);
133 static void unlink_object(Obj_Entry *);
134 static void unload_object(Obj_Entry *);
135 static void unref_dag(Obj_Entry *);
136 static void ref_dag(Obj_Entry *);
137 static int  rtld_verify_versions(const Objlist *);
138 static int  rtld_verify_object_versions(Obj_Entry *);
139 static void object_add_name(Obj_Entry *, const char *);
140 static int  object_match_name(const Obj_Entry *, const char *);
141 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
142 
143 void r_debug_state(struct r_debug *, struct link_map *);
144 
145 /*
146  * Data declarations.
147  */
148 static char *error_message;	/* Message for dlerror(), or NULL */
149 struct r_debug r_debug;		/* for GDB; */
150 static bool libmap_disable;	/* Disable libmap */
151 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
152 static bool trust;		/* False for setuid and setgid programs */
153 static bool dangerous_ld_env;	/* True if environment variables have been
154 				   used to affect the libraries loaded */
155 static char *ld_bind_now;	/* Environment variable for immediate binding */
156 static char *ld_debug;		/* Environment variable for debugging */
157 static char *ld_library_path;	/* Environment variable for search path */
158 static char *ld_preload;	/* Environment variable for libraries to
159 				   load first */
160 static char *ld_tracing;	/* Called from ldd to print libs */
161 static char *ld_utrace;		/* Use utrace() to log events. */
162 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
163 static Obj_Entry **obj_tail;	/* Link field of last object in list */
164 static Obj_Entry *obj_main;	/* The main program shared object */
165 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
166 static unsigned int obj_count;	/* Number of objects in obj_list */
167 static unsigned int obj_loads;	/* Number of objects in obj_list */
168 
169 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
170   STAILQ_HEAD_INITIALIZER(list_global);
171 static Objlist list_main =	/* Objects loaded at program startup */
172   STAILQ_HEAD_INITIALIZER(list_main);
173 static Objlist list_fini =	/* Objects needing fini() calls */
174   STAILQ_HEAD_INITIALIZER(list_fini);
175 
176 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
177 
178 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
179 
180 extern Elf_Dyn _DYNAMIC;
181 #pragma weak _DYNAMIC
182 #ifndef RTLD_IS_DYNAMIC
183 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
184 #endif
185 
186 /*
187  * These are the functions the dynamic linker exports to application
188  * programs.  They are the only symbols the dynamic linker is willing
189  * to export from itself.
190  */
191 static func_ptr_type exports[] = {
192     (func_ptr_type) &_rtld_error,
193     (func_ptr_type) &dlclose,
194     (func_ptr_type) &dlerror,
195     (func_ptr_type) &dlopen,
196     (func_ptr_type) &dlsym,
197     (func_ptr_type) &dlvsym,
198     (func_ptr_type) &dladdr,
199     (func_ptr_type) &dllockinit,
200     (func_ptr_type) &dlinfo,
201     (func_ptr_type) &_rtld_thread_init,
202 #ifdef __i386__
203     (func_ptr_type) &___tls_get_addr,
204 #endif
205     (func_ptr_type) &__tls_get_addr,
206     (func_ptr_type) &_rtld_allocate_tls,
207     (func_ptr_type) &_rtld_free_tls,
208     (func_ptr_type) &dl_iterate_phdr,
209     NULL
210 };
211 
212 /*
213  * Global declarations normally provided by crt1.  The dynamic linker is
214  * not built with crt1, so we have to provide them ourselves.
215  */
216 char *__progname;
217 char **environ;
218 
219 /*
220  * Globals to control TLS allocation.
221  */
222 size_t tls_last_offset;		/* Static TLS offset of last module */
223 size_t tls_last_size;		/* Static TLS size of last module */
224 size_t tls_static_space;	/* Static TLS space allocated */
225 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
226 int tls_max_index = 1;		/* Largest module index allocated */
227 
228 /*
229  * Fill in a DoneList with an allocation large enough to hold all of
230  * the currently-loaded objects.  Keep this as a macro since it calls
231  * alloca and we want that to occur within the scope of the caller.
232  */
233 #define donelist_init(dlp)					\
234     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
235     assert((dlp)->objs != NULL),				\
236     (dlp)->num_alloc = obj_count,				\
237     (dlp)->num_used = 0)
238 
239 #define	UTRACE_DLOPEN_START		1
240 #define	UTRACE_DLOPEN_STOP		2
241 #define	UTRACE_DLCLOSE_START		3
242 #define	UTRACE_DLCLOSE_STOP		4
243 #define	UTRACE_LOAD_OBJECT		5
244 #define	UTRACE_UNLOAD_OBJECT		6
245 #define	UTRACE_ADD_RUNDEP		7
246 #define	UTRACE_PRELOAD_FINISHED		8
247 #define	UTRACE_INIT_CALL		9
248 #define	UTRACE_FINI_CALL		10
249 
250 struct utrace_rtld {
251 	char sig[4];			/* 'RTLD' */
252 	int event;
253 	void *handle;
254 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
255 	size_t mapsize;
256 	int refcnt;			/* Used for 'mode' */
257 	char name[MAXPATHLEN];
258 };
259 
260 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
261 	if (ld_utrace != NULL)					\
262 		ld_utrace_log(e, h, mb, ms, r, n);		\
263 } while (0)
264 
265 static void
266 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
267     int refcnt, const char *name)
268 {
269 	struct utrace_rtld ut;
270 
271 	ut.sig[0] = 'R';
272 	ut.sig[1] = 'T';
273 	ut.sig[2] = 'L';
274 	ut.sig[3] = 'D';
275 	ut.event = event;
276 	ut.handle = handle;
277 	ut.mapbase = mapbase;
278 	ut.mapsize = mapsize;
279 	ut.refcnt = refcnt;
280 	bzero(ut.name, sizeof(ut.name));
281 	if (name)
282 		strlcpy(ut.name, name, sizeof(ut.name));
283 	utrace(&ut, sizeof(ut));
284 }
285 
286 /*
287  * Main entry point for dynamic linking.  The first argument is the
288  * stack pointer.  The stack is expected to be laid out as described
289  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
290  * Specifically, the stack pointer points to a word containing
291  * ARGC.  Following that in the stack is a null-terminated sequence
292  * of pointers to argument strings.  Then comes a null-terminated
293  * sequence of pointers to environment strings.  Finally, there is a
294  * sequence of "auxiliary vector" entries.
295  *
296  * The second argument points to a place to store the dynamic linker's
297  * exit procedure pointer and the third to a place to store the main
298  * program's object.
299  *
300  * The return value is the main program's entry point.
301  */
302 func_ptr_type
303 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
304 {
305     Elf_Auxinfo *aux_info[AT_COUNT];
306     int i;
307     int argc;
308     char **argv;
309     char **env;
310     Elf_Auxinfo *aux;
311     Elf_Auxinfo *auxp;
312     const char *argv0;
313     Objlist_Entry *entry;
314     Obj_Entry *obj;
315     Obj_Entry **preload_tail;
316     Objlist initlist;
317     int lockstate;
318 
319     /*
320      * On entry, the dynamic linker itself has not been relocated yet.
321      * Be very careful not to reference any global data until after
322      * init_rtld has returned.  It is OK to reference file-scope statics
323      * and string constants, and to call static and global functions.
324      */
325 
326     /* Find the auxiliary vector on the stack. */
327     argc = *sp++;
328     argv = (char **) sp;
329     sp += argc + 1;	/* Skip over arguments and NULL terminator */
330     env = (char **) sp;
331     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
332 	;
333     aux = (Elf_Auxinfo *) sp;
334 
335     /* Digest the auxiliary vector. */
336     for (i = 0;  i < AT_COUNT;  i++)
337 	aux_info[i] = NULL;
338     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
339 	if (auxp->a_type < AT_COUNT)
340 	    aux_info[auxp->a_type] = auxp;
341     }
342 
343     /* Initialize and relocate ourselves. */
344     assert(aux_info[AT_BASE] != NULL);
345     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
346 
347     __progname = obj_rtld.path;
348     argv0 = argv[0] != NULL ? argv[0] : "(null)";
349     environ = env;
350 
351     trust = !issetugid();
352 
353     ld_bind_now = getenv(LD_ "BIND_NOW");
354     /*
355      * If the process is tainted, then we un-set the dangerous environment
356      * variables.  The process will be marked as tainted until setuid(2)
357      * is called.  If any child process calls setuid(2) we do not want any
358      * future processes to honor the potentially un-safe variables.
359      */
360     if (!trust) {
361         unsetenv(LD_ "PRELOAD");
362         unsetenv(LD_ "LIBMAP");
363         unsetenv(LD_ "LIBRARY_PATH");
364         unsetenv(LD_ "LIBMAP_DISABLE");
365         unsetenv(LD_ "DEBUG");
366     }
367     ld_debug = getenv(LD_ "DEBUG");
368     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
369     libmap_override = getenv(LD_ "LIBMAP");
370     ld_library_path = getenv(LD_ "LIBRARY_PATH");
371     ld_preload = getenv(LD_ "PRELOAD");
372     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
373 	(ld_library_path != NULL) || (ld_preload != NULL);
374     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
375     ld_utrace = getenv(LD_ "UTRACE");
376 
377     if (ld_debug != NULL && *ld_debug != '\0')
378 	debug = 1;
379     dbg("%s is initialized, base address = %p", __progname,
380 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
381     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
382     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
383 
384     /*
385      * Load the main program, or process its program header if it is
386      * already loaded.
387      */
388     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
389 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
390 	dbg("loading main program");
391 	obj_main = map_object(fd, argv0, NULL);
392 	close(fd);
393 	if (obj_main == NULL)
394 	    die();
395     } else {				/* Main program already loaded. */
396 	const Elf_Phdr *phdr;
397 	int phnum;
398 	caddr_t entry;
399 
400 	dbg("processing main program's program header");
401 	assert(aux_info[AT_PHDR] != NULL);
402 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
403 	assert(aux_info[AT_PHNUM] != NULL);
404 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
405 	assert(aux_info[AT_PHENT] != NULL);
406 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
407 	assert(aux_info[AT_ENTRY] != NULL);
408 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
409 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
410 	    die();
411     }
412 
413     obj_main->path = xstrdup(argv0);
414     obj_main->mainprog = true;
415 
416     /*
417      * Get the actual dynamic linker pathname from the executable if
418      * possible.  (It should always be possible.)  That ensures that
419      * gdb will find the right dynamic linker even if a non-standard
420      * one is being used.
421      */
422     if (obj_main->interp != NULL &&
423       strcmp(obj_main->interp, obj_rtld.path) != 0) {
424 	free(obj_rtld.path);
425 	obj_rtld.path = xstrdup(obj_main->interp);
426         __progname = obj_rtld.path;
427     }
428 
429     digest_dynamic(obj_main, 0);
430 
431     linkmap_add(obj_main);
432     linkmap_add(&obj_rtld);
433 
434     /* Link the main program into the list of objects. */
435     *obj_tail = obj_main;
436     obj_tail = &obj_main->next;
437     obj_count++;
438     obj_loads++;
439     /* Make sure we don't call the main program's init and fini functions. */
440     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
441 
442     /* Initialize a fake symbol for resolving undefined weak references. */
443     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
444     sym_zero.st_shndx = SHN_UNDEF;
445 
446     if (!libmap_disable)
447         libmap_disable = (bool)lm_init(libmap_override);
448 
449     dbg("loading LD_PRELOAD libraries");
450     if (load_preload_objects() == -1)
451 	die();
452     preload_tail = obj_tail;
453 
454     dbg("loading needed objects");
455     if (load_needed_objects(obj_main) == -1)
456 	die();
457 
458     /* Make a list of all objects loaded at startup. */
459     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
460 	objlist_push_tail(&list_main, obj);
461     	obj->refcount++;
462     }
463 
464     dbg("checking for required versions");
465     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
466 	die();
467 
468     if (ld_tracing) {		/* We're done */
469 	trace_loaded_objects(obj_main);
470 	exit(0);
471     }
472 
473     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
474        dump_relocations(obj_main);
475        exit (0);
476     }
477 
478     /* setup TLS for main thread */
479     dbg("initializing initial thread local storage");
480     STAILQ_FOREACH(entry, &list_main, link) {
481 	/*
482 	 * Allocate all the initial objects out of the static TLS
483 	 * block even if they didn't ask for it.
484 	 */
485 	allocate_tls_offset(entry->obj);
486     }
487     allocate_initial_tls(obj_list);
488 
489     if (relocate_objects(obj_main,
490 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
491 	die();
492 
493     dbg("doing copy relocations");
494     if (do_copy_relocations(obj_main) == -1)
495 	die();
496 
497     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
498        dump_relocations(obj_main);
499        exit (0);
500     }
501 
502     dbg("initializing key program variables");
503     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
504     set_program_var("environ", env);
505 
506     dbg("initializing thread locks");
507     lockdflt_init();
508 
509     /* Make a list of init functions to call. */
510     objlist_init(&initlist);
511     initlist_add_objects(obj_list, preload_tail, &initlist);
512 
513     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
514 
515     objlist_call_init(&initlist);
516     lockstate = wlock_acquire(rtld_bind_lock);
517     objlist_clear(&initlist);
518     wlock_release(rtld_bind_lock, lockstate);
519 
520     dbg("transferring control to program entry point = %p", obj_main->entry);
521 
522     /* Return the exit procedure and the program entry point. */
523     *exit_proc = rtld_exit;
524     *objp = obj_main;
525     return (func_ptr_type) obj_main->entry;
526 }
527 
528 Elf_Addr
529 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
530 {
531     const Elf_Rel *rel;
532     const Elf_Sym *def;
533     const Obj_Entry *defobj;
534     Elf_Addr *where;
535     Elf_Addr target;
536     int lockstate;
537 
538     lockstate = rlock_acquire(rtld_bind_lock);
539     if (obj->pltrel)
540 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
541     else
542 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
543 
544     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
545     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
546     if (def == NULL)
547 	die();
548 
549     target = (Elf_Addr)(defobj->relocbase + def->st_value);
550 
551     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
552       defobj->strtab + def->st_name, basename(obj->path),
553       (void *)target, basename(defobj->path));
554 
555     /*
556      * Write the new contents for the jmpslot. Note that depending on
557      * architecture, the value which we need to return back to the
558      * lazy binding trampoline may or may not be the target
559      * address. The value returned from reloc_jmpslot() is the value
560      * that the trampoline needs.
561      */
562     target = reloc_jmpslot(where, target, defobj, obj, rel);
563     rlock_release(rtld_bind_lock, lockstate);
564     return target;
565 }
566 
567 /*
568  * Error reporting function.  Use it like printf.  If formats the message
569  * into a buffer, and sets things up so that the next call to dlerror()
570  * will return the message.
571  */
572 void
573 _rtld_error(const char *fmt, ...)
574 {
575     static char buf[512];
576     va_list ap;
577 
578     va_start(ap, fmt);
579     vsnprintf(buf, sizeof buf, fmt, ap);
580     error_message = buf;
581     va_end(ap);
582 }
583 
584 /*
585  * Return a dynamically-allocated copy of the current error message, if any.
586  */
587 static char *
588 errmsg_save(void)
589 {
590     return error_message == NULL ? NULL : xstrdup(error_message);
591 }
592 
593 /*
594  * Restore the current error message from a copy which was previously saved
595  * by errmsg_save().  The copy is freed.
596  */
597 static void
598 errmsg_restore(char *saved_msg)
599 {
600     if (saved_msg == NULL)
601 	error_message = NULL;
602     else {
603 	_rtld_error("%s", saved_msg);
604 	free(saved_msg);
605     }
606 }
607 
608 static const char *
609 basename(const char *name)
610 {
611     const char *p = strrchr(name, '/');
612     return p != NULL ? p + 1 : name;
613 }
614 
615 static void
616 die(void)
617 {
618     const char *msg = dlerror();
619 
620     if (msg == NULL)
621 	msg = "Fatal error";
622     errx(1, "%s", msg);
623 }
624 
625 /*
626  * Process a shared object's DYNAMIC section, and save the important
627  * information in its Obj_Entry structure.
628  */
629 static void
630 digest_dynamic(Obj_Entry *obj, int early)
631 {
632     const Elf_Dyn *dynp;
633     Needed_Entry **needed_tail = &obj->needed;
634     const Elf_Dyn *dyn_rpath = NULL;
635     const Elf_Dyn *dyn_soname = NULL;
636     int plttype = DT_REL;
637 
638     obj->bind_now = false;
639     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
640 	switch (dynp->d_tag) {
641 
642 	case DT_REL:
643 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
644 	    break;
645 
646 	case DT_RELSZ:
647 	    obj->relsize = dynp->d_un.d_val;
648 	    break;
649 
650 	case DT_RELENT:
651 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
652 	    break;
653 
654 	case DT_JMPREL:
655 	    obj->pltrel = (const Elf_Rel *)
656 	      (obj->relocbase + dynp->d_un.d_ptr);
657 	    break;
658 
659 	case DT_PLTRELSZ:
660 	    obj->pltrelsize = dynp->d_un.d_val;
661 	    break;
662 
663 	case DT_RELA:
664 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
665 	    break;
666 
667 	case DT_RELASZ:
668 	    obj->relasize = dynp->d_un.d_val;
669 	    break;
670 
671 	case DT_RELAENT:
672 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
673 	    break;
674 
675 	case DT_PLTREL:
676 	    plttype = dynp->d_un.d_val;
677 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
678 	    break;
679 
680 	case DT_SYMTAB:
681 	    obj->symtab = (const Elf_Sym *)
682 	      (obj->relocbase + dynp->d_un.d_ptr);
683 	    break;
684 
685 	case DT_SYMENT:
686 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
687 	    break;
688 
689 	case DT_STRTAB:
690 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
691 	    break;
692 
693 	case DT_STRSZ:
694 	    obj->strsize = dynp->d_un.d_val;
695 	    break;
696 
697 	case DT_VERNEED:
698 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
699 		dynp->d_un.d_val);
700 	    break;
701 
702 	case DT_VERNEEDNUM:
703 	    obj->verneednum = dynp->d_un.d_val;
704 	    break;
705 
706 	case DT_VERDEF:
707 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
708 		dynp->d_un.d_val);
709 	    break;
710 
711 	case DT_VERDEFNUM:
712 	    obj->verdefnum = dynp->d_un.d_val;
713 	    break;
714 
715 	case DT_VERSYM:
716 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
717 		dynp->d_un.d_val);
718 	    break;
719 
720 	case DT_HASH:
721 	    {
722 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
723 		  (obj->relocbase + dynp->d_un.d_ptr);
724 		obj->nbuckets = hashtab[0];
725 		obj->nchains = hashtab[1];
726 		obj->buckets = hashtab + 2;
727 		obj->chains = obj->buckets + obj->nbuckets;
728 	    }
729 	    break;
730 
731 	case DT_NEEDED:
732 	    if (!obj->rtld) {
733 		Needed_Entry *nep = NEW(Needed_Entry);
734 		nep->name = dynp->d_un.d_val;
735 		nep->obj = NULL;
736 		nep->next = NULL;
737 
738 		*needed_tail = nep;
739 		needed_tail = &nep->next;
740 	    }
741 	    break;
742 
743 	case DT_PLTGOT:
744 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
745 	    break;
746 
747 	case DT_TEXTREL:
748 	    obj->textrel = true;
749 	    break;
750 
751 	case DT_SYMBOLIC:
752 	    obj->symbolic = true;
753 	    break;
754 
755 	case DT_RPATH:
756 	case DT_RUNPATH:	/* XXX: process separately */
757 	    /*
758 	     * We have to wait until later to process this, because we
759 	     * might not have gotten the address of the string table yet.
760 	     */
761 	    dyn_rpath = dynp;
762 	    break;
763 
764 	case DT_SONAME:
765 	    dyn_soname = dynp;
766 	    break;
767 
768 	case DT_INIT:
769 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
770 	    break;
771 
772 	case DT_FINI:
773 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
774 	    break;
775 
776 	/*
777 	 * Don't process DT_DEBUG on MIPS as the dynamic section
778 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
779 	 */
780 
781 #ifndef __mips__
782 	case DT_DEBUG:
783 	    /* XXX - not implemented yet */
784 	    if (!early)
785 		dbg("Filling in DT_DEBUG entry");
786 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
787 	    break;
788 #endif
789 
790 	case DT_FLAGS:
791 		if (dynp->d_un.d_val & DF_ORIGIN) {
792 		    obj->origin_path = xmalloc(PATH_MAX);
793 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
794 			die();
795 		}
796 		if (dynp->d_un.d_val & DF_SYMBOLIC)
797 		    obj->symbolic = true;
798 		if (dynp->d_un.d_val & DF_TEXTREL)
799 		    obj->textrel = true;
800 		if (dynp->d_un.d_val & DF_BIND_NOW)
801 		    obj->bind_now = true;
802 		if (dynp->d_un.d_val & DF_STATIC_TLS)
803 		    ;
804 	    break;
805 #ifdef __mips__
806 	case DT_MIPS_LOCAL_GOTNO:
807 		obj->local_gotno = dynp->d_un.d_val;
808 	    break;
809 
810 	case DT_MIPS_SYMTABNO:
811 		obj->symtabno = dynp->d_un.d_val;
812 		break;
813 
814 	case DT_MIPS_GOTSYM:
815 		obj->gotsym = dynp->d_un.d_val;
816 		break;
817 
818 	case DT_MIPS_RLD_MAP:
819 #ifdef notyet
820 		if (!early)
821 			dbg("Filling in DT_DEBUG entry");
822 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
823 #endif
824 		break;
825 #endif
826 
827 	default:
828 	    if (!early) {
829 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
830 		    (long)dynp->d_tag);
831 	    }
832 	    break;
833 	}
834     }
835 
836     obj->traced = false;
837 
838     if (plttype == DT_RELA) {
839 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
840 	obj->pltrel = NULL;
841 	obj->pltrelasize = obj->pltrelsize;
842 	obj->pltrelsize = 0;
843     }
844 
845     if (dyn_rpath != NULL)
846 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
847 
848     if (dyn_soname != NULL)
849 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
850 }
851 
852 /*
853  * Process a shared object's program header.  This is used only for the
854  * main program, when the kernel has already loaded the main program
855  * into memory before calling the dynamic linker.  It creates and
856  * returns an Obj_Entry structure.
857  */
858 static Obj_Entry *
859 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
860 {
861     Obj_Entry *obj;
862     const Elf_Phdr *phlimit = phdr + phnum;
863     const Elf_Phdr *ph;
864     int nsegs = 0;
865 
866     obj = obj_new();
867     for (ph = phdr;  ph < phlimit;  ph++) {
868 	switch (ph->p_type) {
869 
870 	case PT_PHDR:
871 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
872 		_rtld_error("%s: invalid PT_PHDR", path);
873 		return NULL;
874 	    }
875 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
876 	    obj->phsize = ph->p_memsz;
877 	    break;
878 
879 	case PT_INTERP:
880 	    obj->interp = (const char *) ph->p_vaddr;
881 	    break;
882 
883 	case PT_LOAD:
884 	    if (nsegs == 0) {	/* First load segment */
885 		obj->vaddrbase = trunc_page(ph->p_vaddr);
886 		obj->mapbase = (caddr_t) obj->vaddrbase;
887 		obj->relocbase = obj->mapbase - obj->vaddrbase;
888 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
889 		  obj->vaddrbase;
890 	    } else {		/* Last load segment */
891 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
892 		  obj->vaddrbase;
893 	    }
894 	    nsegs++;
895 	    break;
896 
897 	case PT_DYNAMIC:
898 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
899 	    break;
900 
901 	case PT_TLS:
902 	    obj->tlsindex = 1;
903 	    obj->tlssize = ph->p_memsz;
904 	    obj->tlsalign = ph->p_align;
905 	    obj->tlsinitsize = ph->p_filesz;
906 	    obj->tlsinit = (void*) ph->p_vaddr;
907 	    break;
908 	}
909     }
910     if (nsegs < 1) {
911 	_rtld_error("%s: too few PT_LOAD segments", path);
912 	return NULL;
913     }
914 
915     obj->entry = entry;
916     return obj;
917 }
918 
919 static Obj_Entry *
920 dlcheck(void *handle)
921 {
922     Obj_Entry *obj;
923 
924     for (obj = obj_list;  obj != NULL;  obj = obj->next)
925 	if (obj == (Obj_Entry *) handle)
926 	    break;
927 
928     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
929 	_rtld_error("Invalid shared object handle %p", handle);
930 	return NULL;
931     }
932     return obj;
933 }
934 
935 /*
936  * If the given object is already in the donelist, return true.  Otherwise
937  * add the object to the list and return false.
938  */
939 static bool
940 donelist_check(DoneList *dlp, const Obj_Entry *obj)
941 {
942     unsigned int i;
943 
944     for (i = 0;  i < dlp->num_used;  i++)
945 	if (dlp->objs[i] == obj)
946 	    return true;
947     /*
948      * Our donelist allocation should always be sufficient.  But if
949      * our threads locking isn't working properly, more shared objects
950      * could have been loaded since we allocated the list.  That should
951      * never happen, but we'll handle it properly just in case it does.
952      */
953     if (dlp->num_used < dlp->num_alloc)
954 	dlp->objs[dlp->num_used++] = obj;
955     return false;
956 }
957 
958 /*
959  * Hash function for symbol table lookup.  Don't even think about changing
960  * this.  It is specified by the System V ABI.
961  */
962 unsigned long
963 elf_hash(const char *name)
964 {
965     const unsigned char *p = (const unsigned char *) name;
966     unsigned long h = 0;
967     unsigned long g;
968 
969     while (*p != '\0') {
970 	h = (h << 4) + *p++;
971 	if ((g = h & 0xf0000000) != 0)
972 	    h ^= g >> 24;
973 	h &= ~g;
974     }
975     return h;
976 }
977 
978 /*
979  * Find the library with the given name, and return its full pathname.
980  * The returned string is dynamically allocated.  Generates an error
981  * message and returns NULL if the library cannot be found.
982  *
983  * If the second argument is non-NULL, then it refers to an already-
984  * loaded shared object, whose library search path will be searched.
985  *
986  * The search order is:
987  *   LD_LIBRARY_PATH
988  *   rpath in the referencing file
989  *   ldconfig hints
990  *   /lib:/usr/lib
991  */
992 static char *
993 find_library(const char *xname, const Obj_Entry *refobj)
994 {
995     char *pathname;
996     char *name;
997 
998     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
999 	if (xname[0] != '/' && !trust) {
1000 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1001 	      xname);
1002 	    return NULL;
1003 	}
1004 	return xstrdup(xname);
1005     }
1006 
1007     if (libmap_disable || (refobj == NULL) ||
1008 	(name = lm_find(refobj->path, xname)) == NULL)
1009 	name = (char *)xname;
1010 
1011     dbg(" Searching for \"%s\"", name);
1012 
1013     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1014       (refobj != NULL &&
1015       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1016       (pathname = search_library_path(name, gethints())) != NULL ||
1017       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1018 	return pathname;
1019 
1020     if(refobj != NULL && refobj->path != NULL) {
1021 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1022 	  name, basename(refobj->path));
1023     } else {
1024 	_rtld_error("Shared object \"%s\" not found", name);
1025     }
1026     return NULL;
1027 }
1028 
1029 /*
1030  * Given a symbol number in a referencing object, find the corresponding
1031  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1032  * no definition was found.  Returns a pointer to the Obj_Entry of the
1033  * defining object via the reference parameter DEFOBJ_OUT.
1034  */
1035 const Elf_Sym *
1036 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1037     const Obj_Entry **defobj_out, int flags, SymCache *cache)
1038 {
1039     const Elf_Sym *ref;
1040     const Elf_Sym *def;
1041     const Obj_Entry *defobj;
1042     const Ver_Entry *ventry;
1043     const char *name;
1044     unsigned long hash;
1045 
1046     /*
1047      * If we have already found this symbol, get the information from
1048      * the cache.
1049      */
1050     if (symnum >= refobj->nchains)
1051 	return NULL;	/* Bad object */
1052     if (cache != NULL && cache[symnum].sym != NULL) {
1053 	*defobj_out = cache[symnum].obj;
1054 	return cache[symnum].sym;
1055     }
1056 
1057     ref = refobj->symtab + symnum;
1058     name = refobj->strtab + ref->st_name;
1059     defobj = NULL;
1060 
1061     /*
1062      * We don't have to do a full scale lookup if the symbol is local.
1063      * We know it will bind to the instance in this load module; to
1064      * which we already have a pointer (ie ref). By not doing a lookup,
1065      * we not only improve performance, but it also avoids unresolvable
1066      * symbols when local symbols are not in the hash table. This has
1067      * been seen with the ia64 toolchain.
1068      */
1069     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1070 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1071 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1072 		symnum);
1073 	}
1074 	ventry = fetch_ventry(refobj, symnum);
1075 	hash = elf_hash(name);
1076 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1077     } else {
1078 	def = ref;
1079 	defobj = refobj;
1080     }
1081 
1082     /*
1083      * If we found no definition and the reference is weak, treat the
1084      * symbol as having the value zero.
1085      */
1086     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1087 	def = &sym_zero;
1088 	defobj = obj_main;
1089     }
1090 
1091     if (def != NULL) {
1092 	*defobj_out = defobj;
1093 	/* Record the information in the cache to avoid subsequent lookups. */
1094 	if (cache != NULL) {
1095 	    cache[symnum].sym = def;
1096 	    cache[symnum].obj = defobj;
1097 	}
1098     } else {
1099 	if (refobj != &obj_rtld)
1100 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1101     }
1102     return def;
1103 }
1104 
1105 /*
1106  * Return the search path from the ldconfig hints file, reading it if
1107  * necessary.  Returns NULL if there are problems with the hints file,
1108  * or if the search path there is empty.
1109  */
1110 static const char *
1111 gethints(void)
1112 {
1113     static char *hints;
1114 
1115     if (hints == NULL) {
1116 	int fd;
1117 	struct elfhints_hdr hdr;
1118 	char *p;
1119 
1120 	/* Keep from trying again in case the hints file is bad. */
1121 	hints = "";
1122 
1123 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
1124 	    return NULL;
1125 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1126 	  hdr.magic != ELFHINTS_MAGIC ||
1127 	  hdr.version != 1) {
1128 	    close(fd);
1129 	    return NULL;
1130 	}
1131 	p = xmalloc(hdr.dirlistlen + 1);
1132 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1133 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1134 	    free(p);
1135 	    close(fd);
1136 	    return NULL;
1137 	}
1138 	hints = p;
1139 	close(fd);
1140     }
1141     return hints[0] != '\0' ? hints : NULL;
1142 }
1143 
1144 static void
1145 init_dag(Obj_Entry *root)
1146 {
1147     DoneList donelist;
1148 
1149     donelist_init(&donelist);
1150     init_dag1(root, root, &donelist);
1151 }
1152 
1153 static void
1154 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1155 {
1156     const Needed_Entry *needed;
1157 
1158     if (donelist_check(dlp, obj))
1159 	return;
1160 
1161     obj->refcount++;
1162     objlist_push_tail(&obj->dldags, root);
1163     objlist_push_tail(&root->dagmembers, obj);
1164     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1165 	if (needed->obj != NULL)
1166 	    init_dag1(root, needed->obj, dlp);
1167 }
1168 
1169 /*
1170  * Initialize the dynamic linker.  The argument is the address at which
1171  * the dynamic linker has been mapped into memory.  The primary task of
1172  * this function is to relocate the dynamic linker.
1173  */
1174 static void
1175 init_rtld(caddr_t mapbase)
1176 {
1177     Obj_Entry objtmp;	/* Temporary rtld object */
1178 
1179     /*
1180      * Conjure up an Obj_Entry structure for the dynamic linker.
1181      *
1182      * The "path" member can't be initialized yet because string constatns
1183      * cannot yet be acessed. Below we will set it correctly.
1184      */
1185     memset(&objtmp, 0, sizeof(objtmp));
1186     objtmp.path = NULL;
1187     objtmp.rtld = true;
1188     objtmp.mapbase = mapbase;
1189 #ifdef PIC
1190     objtmp.relocbase = mapbase;
1191 #endif
1192     if (RTLD_IS_DYNAMIC()) {
1193 	objtmp.dynamic = rtld_dynamic(&objtmp);
1194 	digest_dynamic(&objtmp, 1);
1195 	assert(objtmp.needed == NULL);
1196 #if !defined(__mips__)
1197 	/* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1198 	assert(!objtmp.textrel);
1199 #endif
1200 
1201 	/*
1202 	 * Temporarily put the dynamic linker entry into the object list, so
1203 	 * that symbols can be found.
1204 	 */
1205 
1206 	relocate_objects(&objtmp, true, &objtmp);
1207     }
1208 
1209     /* Initialize the object list. */
1210     obj_tail = &obj_list;
1211 
1212     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1213     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1214 
1215     /* Replace the path with a dynamically allocated copy. */
1216     obj_rtld.path = xstrdup(PATH_RTLD);
1217 
1218     r_debug.r_brk = r_debug_state;
1219     r_debug.r_state = RT_CONSISTENT;
1220 }
1221 
1222 /*
1223  * Add the init functions from a needed object list (and its recursive
1224  * needed objects) to "list".  This is not used directly; it is a helper
1225  * function for initlist_add_objects().  The write lock must be held
1226  * when this function is called.
1227  */
1228 static void
1229 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1230 {
1231     /* Recursively process the successor needed objects. */
1232     if (needed->next != NULL)
1233 	initlist_add_neededs(needed->next, list);
1234 
1235     /* Process the current needed object. */
1236     if (needed->obj != NULL)
1237 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1238 }
1239 
1240 /*
1241  * Scan all of the DAGs rooted in the range of objects from "obj" to
1242  * "tail" and add their init functions to "list".  This recurses over
1243  * the DAGs and ensure the proper init ordering such that each object's
1244  * needed libraries are initialized before the object itself.  At the
1245  * same time, this function adds the objects to the global finalization
1246  * list "list_fini" in the opposite order.  The write lock must be
1247  * held when this function is called.
1248  */
1249 static void
1250 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1251 {
1252     if (obj->init_done)
1253 	return;
1254     obj->init_done = true;
1255 
1256     /* Recursively process the successor objects. */
1257     if (&obj->next != tail)
1258 	initlist_add_objects(obj->next, tail, list);
1259 
1260     /* Recursively process the needed objects. */
1261     if (obj->needed != NULL)
1262 	initlist_add_neededs(obj->needed, list);
1263 
1264     /* Add the object to the init list. */
1265     if (obj->init != (Elf_Addr)NULL)
1266 	objlist_push_tail(list, obj);
1267 
1268     /* Add the object to the global fini list in the reverse order. */
1269     if (obj->fini != (Elf_Addr)NULL)
1270 	objlist_push_head(&list_fini, obj);
1271 }
1272 
1273 #ifndef FPTR_TARGET
1274 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1275 #endif
1276 
1277 static bool
1278 is_exported(const Elf_Sym *def)
1279 {
1280     Elf_Addr value;
1281     const func_ptr_type *p;
1282 
1283     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1284     for (p = exports;  *p != NULL;  p++)
1285 	if (FPTR_TARGET(*p) == value)
1286 	    return true;
1287     return false;
1288 }
1289 
1290 /*
1291  * Given a shared object, traverse its list of needed objects, and load
1292  * each of them.  Returns 0 on success.  Generates an error message and
1293  * returns -1 on failure.
1294  */
1295 static int
1296 load_needed_objects(Obj_Entry *first)
1297 {
1298     Obj_Entry *obj;
1299 
1300     for (obj = first;  obj != NULL;  obj = obj->next) {
1301 	Needed_Entry *needed;
1302 
1303 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1304 	    needed->obj = load_object(obj->strtab + needed->name, obj);
1305 	    if (needed->obj == NULL && !ld_tracing)
1306 		return -1;
1307 	}
1308     }
1309 
1310     return 0;
1311 }
1312 
1313 static int
1314 load_preload_objects(void)
1315 {
1316     char *p = ld_preload;
1317     static const char delim[] = " \t:;";
1318 
1319     if (p == NULL)
1320 	return 0;
1321 
1322     p += strspn(p, delim);
1323     while (*p != '\0') {
1324 	size_t len = strcspn(p, delim);
1325 	char savech;
1326 
1327 	savech = p[len];
1328 	p[len] = '\0';
1329 	if (load_object(p, NULL) == NULL)
1330 	    return -1;	/* XXX - cleanup */
1331 	p[len] = savech;
1332 	p += len;
1333 	p += strspn(p, delim);
1334     }
1335     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1336     return 0;
1337 }
1338 
1339 /*
1340  * Load a shared object into memory, if it is not already loaded.
1341  *
1342  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1343  * on failure.
1344  */
1345 static Obj_Entry *
1346 load_object(const char *name, const Obj_Entry *refobj)
1347 {
1348     Obj_Entry *obj;
1349     int fd = -1;
1350     struct stat sb;
1351     char *path;
1352 
1353     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1354 	if (object_match_name(obj, name))
1355 	    return obj;
1356 
1357     path = find_library(name, refobj);
1358     if (path == NULL)
1359 	return NULL;
1360 
1361     /*
1362      * If we didn't find a match by pathname, open the file and check
1363      * again by device and inode.  This avoids false mismatches caused
1364      * by multiple links or ".." in pathnames.
1365      *
1366      * To avoid a race, we open the file and use fstat() rather than
1367      * using stat().
1368      */
1369     if ((fd = open(path, O_RDONLY)) == -1) {
1370 	_rtld_error("Cannot open \"%s\"", path);
1371 	free(path);
1372 	return NULL;
1373     }
1374     if (fstat(fd, &sb) == -1) {
1375 	_rtld_error("Cannot fstat \"%s\"", path);
1376 	close(fd);
1377 	free(path);
1378 	return NULL;
1379     }
1380     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1381 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1382 	    close(fd);
1383 	    break;
1384 	}
1385     }
1386     if (obj != NULL) {
1387 	object_add_name(obj, name);
1388 	free(path);
1389 	close(fd);
1390 	return obj;
1391     }
1392 
1393     /* First use of this object, so we must map it in */
1394     obj = do_load_object(fd, name, path, &sb);
1395     if (obj == NULL)
1396 	free(path);
1397     close(fd);
1398 
1399     return obj;
1400 }
1401 
1402 static Obj_Entry *
1403 do_load_object(int fd, const char *name, char *path, struct stat *sbp)
1404 {
1405     Obj_Entry *obj;
1406     struct statfs fs;
1407 
1408     /*
1409      * but first, make sure that environment variables haven't been
1410      * used to circumvent the noexec flag on a filesystem.
1411      */
1412     if (dangerous_ld_env) {
1413 	if (fstatfs(fd, &fs) != 0) {
1414 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1415 		return NULL;
1416 	}
1417 	if (fs.f_flags & MNT_NOEXEC) {
1418 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1419 	    return NULL;
1420 	}
1421     }
1422     dbg("loading \"%s\"", path);
1423     obj = map_object(fd, path, sbp);
1424     if (obj == NULL)
1425         return NULL;
1426 
1427     object_add_name(obj, name);
1428     obj->path = path;
1429     digest_dynamic(obj, 0);
1430 
1431     *obj_tail = obj;
1432     obj_tail = &obj->next;
1433     obj_count++;
1434     obj_loads++;
1435     linkmap_add(obj);	/* for GDB & dlinfo() */
1436 
1437     dbg("  %p .. %p: %s", obj->mapbase,
1438          obj->mapbase + obj->mapsize - 1, obj->path);
1439     if (obj->textrel)
1440 	dbg("  WARNING: %s has impure text", obj->path);
1441     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1442 	obj->path);
1443 
1444     return obj;
1445 }
1446 
1447 static Obj_Entry *
1448 obj_from_addr(const void *addr)
1449 {
1450     Obj_Entry *obj;
1451 
1452     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1453 	if (addr < (void *) obj->mapbase)
1454 	    continue;
1455 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1456 	    return obj;
1457     }
1458     return NULL;
1459 }
1460 
1461 /*
1462  * Call the finalization functions for each of the objects in "list"
1463  * which are unreferenced.  All of the objects are expected to have
1464  * non-NULL fini functions.
1465  */
1466 static void
1467 objlist_call_fini(Objlist *list)
1468 {
1469     Objlist_Entry *elm;
1470     char *saved_msg;
1471 
1472     /*
1473      * Preserve the current error message since a fini function might
1474      * call into the dynamic linker and overwrite it.
1475      */
1476     saved_msg = errmsg_save();
1477     STAILQ_FOREACH(elm, list, link) {
1478 	if (elm->obj->refcount == 0) {
1479 	    dbg("calling fini function for %s at %p", elm->obj->path,
1480 	        (void *)elm->obj->fini);
1481 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1482 		elm->obj->path);
1483 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1484 	}
1485     }
1486     errmsg_restore(saved_msg);
1487 }
1488 
1489 /*
1490  * Call the initialization functions for each of the objects in
1491  * "list".  All of the objects are expected to have non-NULL init
1492  * functions.
1493  */
1494 static void
1495 objlist_call_init(Objlist *list)
1496 {
1497     Objlist_Entry *elm;
1498     char *saved_msg;
1499 
1500     /*
1501      * Preserve the current error message since an init function might
1502      * call into the dynamic linker and overwrite it.
1503      */
1504     saved_msg = errmsg_save();
1505     STAILQ_FOREACH(elm, list, link) {
1506 	dbg("calling init function for %s at %p", elm->obj->path,
1507 	    (void *)elm->obj->init);
1508 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1509 	    elm->obj->path);
1510 	call_initfini_pointer(elm->obj, elm->obj->init);
1511     }
1512     errmsg_restore(saved_msg);
1513 }
1514 
1515 static void
1516 objlist_clear(Objlist *list)
1517 {
1518     Objlist_Entry *elm;
1519 
1520     while (!STAILQ_EMPTY(list)) {
1521 	elm = STAILQ_FIRST(list);
1522 	STAILQ_REMOVE_HEAD(list, link);
1523 	free(elm);
1524     }
1525 }
1526 
1527 static Objlist_Entry *
1528 objlist_find(Objlist *list, const Obj_Entry *obj)
1529 {
1530     Objlist_Entry *elm;
1531 
1532     STAILQ_FOREACH(elm, list, link)
1533 	if (elm->obj == obj)
1534 	    return elm;
1535     return NULL;
1536 }
1537 
1538 static void
1539 objlist_init(Objlist *list)
1540 {
1541     STAILQ_INIT(list);
1542 }
1543 
1544 static void
1545 objlist_push_head(Objlist *list, Obj_Entry *obj)
1546 {
1547     Objlist_Entry *elm;
1548 
1549     elm = NEW(Objlist_Entry);
1550     elm->obj = obj;
1551     STAILQ_INSERT_HEAD(list, elm, link);
1552 }
1553 
1554 static void
1555 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1556 {
1557     Objlist_Entry *elm;
1558 
1559     elm = NEW(Objlist_Entry);
1560     elm->obj = obj;
1561     STAILQ_INSERT_TAIL(list, elm, link);
1562 }
1563 
1564 static void
1565 objlist_remove(Objlist *list, Obj_Entry *obj)
1566 {
1567     Objlist_Entry *elm;
1568 
1569     if ((elm = objlist_find(list, obj)) != NULL) {
1570 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1571 	free(elm);
1572     }
1573 }
1574 
1575 /*
1576  * Remove all of the unreferenced objects from "list".
1577  */
1578 static void
1579 objlist_remove_unref(Objlist *list)
1580 {
1581     Objlist newlist;
1582     Objlist_Entry *elm;
1583 
1584     STAILQ_INIT(&newlist);
1585     while (!STAILQ_EMPTY(list)) {
1586 	elm = STAILQ_FIRST(list);
1587 	STAILQ_REMOVE_HEAD(list, link);
1588 	if (elm->obj->refcount == 0)
1589 	    free(elm);
1590 	else
1591 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1592     }
1593     *list = newlist;
1594 }
1595 
1596 /*
1597  * Relocate newly-loaded shared objects.  The argument is a pointer to
1598  * the Obj_Entry for the first such object.  All objects from the first
1599  * to the end of the list of objects are relocated.  Returns 0 on success,
1600  * or -1 on failure.
1601  */
1602 static int
1603 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1604 {
1605     Obj_Entry *obj;
1606 
1607     for (obj = first;  obj != NULL;  obj = obj->next) {
1608 	if (obj != rtldobj)
1609 	    dbg("relocating \"%s\"", obj->path);
1610 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1611 	    obj->symtab == NULL || obj->strtab == NULL) {
1612 	    _rtld_error("%s: Shared object has no run-time symbol table",
1613 	      obj->path);
1614 	    return -1;
1615 	}
1616 
1617 	if (obj->textrel) {
1618 	    /* There are relocations to the write-protected text segment. */
1619 	    if (mprotect(obj->mapbase, obj->textsize,
1620 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1621 		_rtld_error("%s: Cannot write-enable text segment: %s",
1622 		  obj->path, strerror(errno));
1623 		return -1;
1624 	    }
1625 	}
1626 
1627 	/* Process the non-PLT relocations. */
1628 	if (reloc_non_plt(obj, rtldobj))
1629 		return -1;
1630 
1631 	if (obj->textrel) {	/* Re-protected the text segment. */
1632 	    if (mprotect(obj->mapbase, obj->textsize,
1633 	      PROT_READ|PROT_EXEC) == -1) {
1634 		_rtld_error("%s: Cannot write-protect text segment: %s",
1635 		  obj->path, strerror(errno));
1636 		return -1;
1637 	    }
1638 	}
1639 
1640 	/* Process the PLT relocations. */
1641 	if (reloc_plt(obj) == -1)
1642 	    return -1;
1643 	/* Relocate the jump slots if we are doing immediate binding. */
1644 	if (obj->bind_now || bind_now)
1645 	    if (reloc_jmpslots(obj) == -1)
1646 		return -1;
1647 
1648 
1649 	/*
1650 	 * Set up the magic number and version in the Obj_Entry.  These
1651 	 * were checked in the crt1.o from the original ElfKit, so we
1652 	 * set them for backward compatibility.
1653 	 */
1654 	obj->magic = RTLD_MAGIC;
1655 	obj->version = RTLD_VERSION;
1656 
1657 	/* Set the special PLT or GOT entries. */
1658 	init_pltgot(obj);
1659     }
1660 
1661     return 0;
1662 }
1663 
1664 /*
1665  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1666  * before the process exits.
1667  */
1668 static void
1669 rtld_exit(void)
1670 {
1671     Obj_Entry *obj;
1672 
1673     dbg("rtld_exit()");
1674     /* Clear all the reference counts so the fini functions will be called. */
1675     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1676 	obj->refcount = 0;
1677     objlist_call_fini(&list_fini);
1678     /* No need to remove the items from the list, since we are exiting. */
1679     if (!libmap_disable)
1680         lm_fini();
1681 }
1682 
1683 static void *
1684 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1685 {
1686 #ifdef COMPAT_32BIT
1687     const char *trans;
1688 #endif
1689     if (path == NULL)
1690 	return (NULL);
1691 
1692     path += strspn(path, ":;");
1693     while (*path != '\0') {
1694 	size_t len;
1695 	char  *res;
1696 
1697 	len = strcspn(path, ":;");
1698 #ifdef COMPAT_32BIT
1699 	trans = lm_findn(NULL, path, len);
1700 	if (trans)
1701 	    res = callback(trans, strlen(trans), arg);
1702 	else
1703 #endif
1704 	res = callback(path, len, arg);
1705 
1706 	if (res != NULL)
1707 	    return (res);
1708 
1709 	path += len;
1710 	path += strspn(path, ":;");
1711     }
1712 
1713     return (NULL);
1714 }
1715 
1716 struct try_library_args {
1717     const char	*name;
1718     size_t	 namelen;
1719     char	*buffer;
1720     size_t	 buflen;
1721 };
1722 
1723 static void *
1724 try_library_path(const char *dir, size_t dirlen, void *param)
1725 {
1726     struct try_library_args *arg;
1727 
1728     arg = param;
1729     if (*dir == '/' || trust) {
1730 	char *pathname;
1731 
1732 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1733 		return (NULL);
1734 
1735 	pathname = arg->buffer;
1736 	strncpy(pathname, dir, dirlen);
1737 	pathname[dirlen] = '/';
1738 	strcpy(pathname + dirlen + 1, arg->name);
1739 
1740 	dbg("  Trying \"%s\"", pathname);
1741 	if (access(pathname, F_OK) == 0) {		/* We found it */
1742 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1743 	    strcpy(pathname, arg->buffer);
1744 	    return (pathname);
1745 	}
1746     }
1747     return (NULL);
1748 }
1749 
1750 static char *
1751 search_library_path(const char *name, const char *path)
1752 {
1753     char *p;
1754     struct try_library_args arg;
1755 
1756     if (path == NULL)
1757 	return NULL;
1758 
1759     arg.name = name;
1760     arg.namelen = strlen(name);
1761     arg.buffer = xmalloc(PATH_MAX);
1762     arg.buflen = PATH_MAX;
1763 
1764     p = path_enumerate(path, try_library_path, &arg);
1765 
1766     free(arg.buffer);
1767 
1768     return (p);
1769 }
1770 
1771 int
1772 dlclose(void *handle)
1773 {
1774     Obj_Entry *root;
1775     int lockstate;
1776 
1777     lockstate = wlock_acquire(rtld_bind_lock);
1778     root = dlcheck(handle);
1779     if (root == NULL) {
1780 	wlock_release(rtld_bind_lock, lockstate);
1781 	return -1;
1782     }
1783     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1784 	root->path);
1785 
1786     /* Unreference the object and its dependencies. */
1787     root->dl_refcount--;
1788 
1789     unref_dag(root);
1790 
1791     if (root->refcount == 0) {
1792 	/*
1793 	 * The object is no longer referenced, so we must unload it.
1794 	 * First, call the fini functions with no locks held.
1795 	 */
1796 	wlock_release(rtld_bind_lock, lockstate);
1797 	objlist_call_fini(&list_fini);
1798 	lockstate = wlock_acquire(rtld_bind_lock);
1799 	objlist_remove_unref(&list_fini);
1800 
1801 	/* Finish cleaning up the newly-unreferenced objects. */
1802 	GDB_STATE(RT_DELETE,&root->linkmap);
1803 	unload_object(root);
1804 	GDB_STATE(RT_CONSISTENT,NULL);
1805     }
1806     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1807     wlock_release(rtld_bind_lock, lockstate);
1808     return 0;
1809 }
1810 
1811 const char *
1812 dlerror(void)
1813 {
1814     char *msg = error_message;
1815     error_message = NULL;
1816     return msg;
1817 }
1818 
1819 /*
1820  * This function is deprecated and has no effect.
1821  */
1822 void
1823 dllockinit(void *context,
1824 	   void *(*lock_create)(void *context),
1825            void (*rlock_acquire)(void *lock),
1826            void (*wlock_acquire)(void *lock),
1827            void (*lock_release)(void *lock),
1828            void (*lock_destroy)(void *lock),
1829 	   void (*context_destroy)(void *context))
1830 {
1831     static void *cur_context;
1832     static void (*cur_context_destroy)(void *);
1833 
1834     /* Just destroy the context from the previous call, if necessary. */
1835     if (cur_context_destroy != NULL)
1836 	cur_context_destroy(cur_context);
1837     cur_context = context;
1838     cur_context_destroy = context_destroy;
1839 }
1840 
1841 void *
1842 dlopen(const char *name, int mode)
1843 {
1844     Obj_Entry **old_obj_tail;
1845     Obj_Entry *obj;
1846     Objlist initlist;
1847     int result, lockstate;
1848 
1849     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
1850     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1851     if (ld_tracing != NULL)
1852 	environ = (char **)*get_program_var_addr("environ");
1853 
1854     objlist_init(&initlist);
1855 
1856     lockstate = wlock_acquire(rtld_bind_lock);
1857     GDB_STATE(RT_ADD,NULL);
1858 
1859     old_obj_tail = obj_tail;
1860     obj = NULL;
1861     if (name == NULL) {
1862 	obj = obj_main;
1863 	obj->refcount++;
1864     } else {
1865 	obj = load_object(name, obj_main);
1866     }
1867 
1868     if (obj) {
1869 	obj->dl_refcount++;
1870 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1871 	    objlist_push_tail(&list_global, obj);
1872 	mode &= RTLD_MODEMASK;
1873 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1874 	    assert(*old_obj_tail == obj);
1875 	    result = load_needed_objects(obj);
1876 	    init_dag(obj);
1877 	    if (result != -1)
1878 		result = rtld_verify_versions(&obj->dagmembers);
1879 	    if (result != -1 && ld_tracing)
1880 		goto trace;
1881 	    if (result == -1 ||
1882 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
1883 		obj->dl_refcount--;
1884 		unref_dag(obj);
1885 		if (obj->refcount == 0)
1886 		    unload_object(obj);
1887 		obj = NULL;
1888 	    } else {
1889 		/* Make list of init functions to call. */
1890 		initlist_add_objects(obj, &obj->next, &initlist);
1891 	    }
1892 	} else {
1893 
1894 	    /* Bump the reference counts for objects on this DAG. */
1895 	    ref_dag(obj);
1896 
1897 	    if (ld_tracing)
1898 		goto trace;
1899 	}
1900     }
1901 
1902     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
1903 	name);
1904     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1905 
1906     /* Call the init functions with no locks held. */
1907     wlock_release(rtld_bind_lock, lockstate);
1908     objlist_call_init(&initlist);
1909     lockstate = wlock_acquire(rtld_bind_lock);
1910     objlist_clear(&initlist);
1911     wlock_release(rtld_bind_lock, lockstate);
1912     return obj;
1913 trace:
1914     trace_loaded_objects(obj);
1915     wlock_release(rtld_bind_lock, lockstate);
1916     exit(0);
1917 }
1918 
1919 static void *
1920 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
1921     int flags)
1922 {
1923     DoneList donelist;
1924     const Obj_Entry *obj, *defobj;
1925     const Elf_Sym *def;
1926     unsigned long hash;
1927     int lockstate;
1928 
1929     hash = elf_hash(name);
1930     def = NULL;
1931     defobj = NULL;
1932     flags |= SYMLOOK_IN_PLT;
1933 
1934     lockstate = rlock_acquire(rtld_bind_lock);
1935     if (handle == NULL || handle == RTLD_NEXT ||
1936 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1937 
1938 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1939 	    _rtld_error("Cannot determine caller's shared object");
1940 	    rlock_release(rtld_bind_lock, lockstate);
1941 	    return NULL;
1942 	}
1943 	if (handle == NULL) {	/* Just the caller's shared object. */
1944 	    def = symlook_obj(name, hash, obj, ve, flags);
1945 	    defobj = obj;
1946 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1947 		   handle == RTLD_SELF) { /* ... caller included */
1948 	    if (handle == RTLD_NEXT)
1949 		obj = obj->next;
1950 	    for (; obj != NULL; obj = obj->next) {
1951 		if ((def = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
1952 		    defobj = obj;
1953 		    break;
1954 		}
1955 	    }
1956 	} else {
1957 	    assert(handle == RTLD_DEFAULT);
1958 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
1959 	}
1960     } else {
1961 	if ((obj = dlcheck(handle)) == NULL) {
1962 	    rlock_release(rtld_bind_lock, lockstate);
1963 	    return NULL;
1964 	}
1965 
1966 	donelist_init(&donelist);
1967 	if (obj->mainprog) {
1968 	    /* Search main program and all libraries loaded by it. */
1969 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
1970 			       &donelist);
1971 	} else {
1972 	    Needed_Entry fake;
1973 
1974 	    /* Search the whole DAG rooted at the given object. */
1975 	    fake.next = NULL;
1976 	    fake.obj = (Obj_Entry *)obj;
1977 	    fake.name = 0;
1978 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
1979 				 &donelist);
1980 	}
1981     }
1982 
1983     if (def != NULL) {
1984 	rlock_release(rtld_bind_lock, lockstate);
1985 
1986 	/*
1987 	 * The value required by the caller is derived from the value
1988 	 * of the symbol. For the ia64 architecture, we need to
1989 	 * construct a function descriptor which the caller can use to
1990 	 * call the function with the right 'gp' value. For other
1991 	 * architectures and for non-functions, the value is simply
1992 	 * the relocated value of the symbol.
1993 	 */
1994 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1995 	    return make_function_pointer(def, defobj);
1996 	else
1997 	    return defobj->relocbase + def->st_value;
1998     }
1999 
2000     _rtld_error("Undefined symbol \"%s\"", name);
2001     rlock_release(rtld_bind_lock, lockstate);
2002     return NULL;
2003 }
2004 
2005 void *
2006 dlsym(void *handle, const char *name)
2007 {
2008 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2009 	    SYMLOOK_DLSYM);
2010 }
2011 
2012 void *
2013 dlvsym(void *handle, const char *name, const char *version)
2014 {
2015 	Ver_Entry ventry;
2016 
2017 	ventry.name = version;
2018 	ventry.file = NULL;
2019 	ventry.hash = elf_hash(version);
2020 	ventry.flags= 0;
2021 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2022 	    SYMLOOK_DLSYM);
2023 }
2024 
2025 int
2026 dladdr(const void *addr, Dl_info *info)
2027 {
2028     const Obj_Entry *obj;
2029     const Elf_Sym *def;
2030     void *symbol_addr;
2031     unsigned long symoffset;
2032     int lockstate;
2033 
2034     lockstate = rlock_acquire(rtld_bind_lock);
2035     obj = obj_from_addr(addr);
2036     if (obj == NULL) {
2037         _rtld_error("No shared object contains address");
2038 	rlock_release(rtld_bind_lock, lockstate);
2039         return 0;
2040     }
2041     info->dli_fname = obj->path;
2042     info->dli_fbase = obj->mapbase;
2043     info->dli_saddr = (void *)0;
2044     info->dli_sname = NULL;
2045 
2046     /*
2047      * Walk the symbol list looking for the symbol whose address is
2048      * closest to the address sent in.
2049      */
2050     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2051         def = obj->symtab + symoffset;
2052 
2053         /*
2054          * For skip the symbol if st_shndx is either SHN_UNDEF or
2055          * SHN_COMMON.
2056          */
2057         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2058             continue;
2059 
2060         /*
2061          * If the symbol is greater than the specified address, or if it
2062          * is further away from addr than the current nearest symbol,
2063          * then reject it.
2064          */
2065         symbol_addr = obj->relocbase + def->st_value;
2066         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2067             continue;
2068 
2069         /* Update our idea of the nearest symbol. */
2070         info->dli_sname = obj->strtab + def->st_name;
2071         info->dli_saddr = symbol_addr;
2072 
2073         /* Exact match? */
2074         if (info->dli_saddr == addr)
2075             break;
2076     }
2077     rlock_release(rtld_bind_lock, lockstate);
2078     return 1;
2079 }
2080 
2081 int
2082 dlinfo(void *handle, int request, void *p)
2083 {
2084     const Obj_Entry *obj;
2085     int error, lockstate;
2086 
2087     lockstate = rlock_acquire(rtld_bind_lock);
2088 
2089     if (handle == NULL || handle == RTLD_SELF) {
2090 	void *retaddr;
2091 
2092 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2093 	if ((obj = obj_from_addr(retaddr)) == NULL)
2094 	    _rtld_error("Cannot determine caller's shared object");
2095     } else
2096 	obj = dlcheck(handle);
2097 
2098     if (obj == NULL) {
2099 	rlock_release(rtld_bind_lock, lockstate);
2100 	return (-1);
2101     }
2102 
2103     error = 0;
2104     switch (request) {
2105     case RTLD_DI_LINKMAP:
2106 	*((struct link_map const **)p) = &obj->linkmap;
2107 	break;
2108     case RTLD_DI_ORIGIN:
2109 	error = rtld_dirname(obj->path, p);
2110 	break;
2111 
2112     case RTLD_DI_SERINFOSIZE:
2113     case RTLD_DI_SERINFO:
2114 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2115 	break;
2116 
2117     default:
2118 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2119 	error = -1;
2120     }
2121 
2122     rlock_release(rtld_bind_lock, lockstate);
2123 
2124     return (error);
2125 }
2126 
2127 int
2128 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2129 {
2130     struct dl_phdr_info phdr_info;
2131     const Obj_Entry *obj;
2132     int error, lockstate;
2133 
2134     lockstate = rlock_acquire(rtld_bind_lock);
2135 
2136     error = 0;
2137 
2138     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2139 	phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
2140 	phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
2141 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2142 	phdr_info.dlpi_phdr = obj->phdr;
2143 	phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2144 	phdr_info.dlpi_tls_modid = obj->tlsindex;
2145 	phdr_info.dlpi_tls_data = obj->tlsinit;
2146 	phdr_info.dlpi_adds = obj_loads;
2147 	phdr_info.dlpi_subs = obj_loads - obj_count;
2148 
2149 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2150 		break;
2151 
2152     }
2153     rlock_release(rtld_bind_lock, lockstate);
2154 
2155     return (error);
2156 }
2157 
2158 struct fill_search_info_args {
2159     int		 request;
2160     unsigned int flags;
2161     Dl_serinfo  *serinfo;
2162     Dl_serpath  *serpath;
2163     char	*strspace;
2164 };
2165 
2166 static void *
2167 fill_search_info(const char *dir, size_t dirlen, void *param)
2168 {
2169     struct fill_search_info_args *arg;
2170 
2171     arg = param;
2172 
2173     if (arg->request == RTLD_DI_SERINFOSIZE) {
2174 	arg->serinfo->dls_cnt ++;
2175 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2176     } else {
2177 	struct dl_serpath *s_entry;
2178 
2179 	s_entry = arg->serpath;
2180 	s_entry->dls_name  = arg->strspace;
2181 	s_entry->dls_flags = arg->flags;
2182 
2183 	strncpy(arg->strspace, dir, dirlen);
2184 	arg->strspace[dirlen] = '\0';
2185 
2186 	arg->strspace += dirlen + 1;
2187 	arg->serpath++;
2188     }
2189 
2190     return (NULL);
2191 }
2192 
2193 static int
2194 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2195 {
2196     struct dl_serinfo _info;
2197     struct fill_search_info_args args;
2198 
2199     args.request = RTLD_DI_SERINFOSIZE;
2200     args.serinfo = &_info;
2201 
2202     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2203     _info.dls_cnt  = 0;
2204 
2205     path_enumerate(ld_library_path, fill_search_info, &args);
2206     path_enumerate(obj->rpath, fill_search_info, &args);
2207     path_enumerate(gethints(), fill_search_info, &args);
2208     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2209 
2210 
2211     if (request == RTLD_DI_SERINFOSIZE) {
2212 	info->dls_size = _info.dls_size;
2213 	info->dls_cnt = _info.dls_cnt;
2214 	return (0);
2215     }
2216 
2217     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2218 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2219 	return (-1);
2220     }
2221 
2222     args.request  = RTLD_DI_SERINFO;
2223     args.serinfo  = info;
2224     args.serpath  = &info->dls_serpath[0];
2225     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2226 
2227     args.flags = LA_SER_LIBPATH;
2228     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2229 	return (-1);
2230 
2231     args.flags = LA_SER_RUNPATH;
2232     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2233 	return (-1);
2234 
2235     args.flags = LA_SER_CONFIG;
2236     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2237 	return (-1);
2238 
2239     args.flags = LA_SER_DEFAULT;
2240     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2241 	return (-1);
2242     return (0);
2243 }
2244 
2245 static int
2246 rtld_dirname(const char *path, char *bname)
2247 {
2248     const char *endp;
2249 
2250     /* Empty or NULL string gets treated as "." */
2251     if (path == NULL || *path == '\0') {
2252 	bname[0] = '.';
2253 	bname[1] = '\0';
2254 	return (0);
2255     }
2256 
2257     /* Strip trailing slashes */
2258     endp = path + strlen(path) - 1;
2259     while (endp > path && *endp == '/')
2260 	endp--;
2261 
2262     /* Find the start of the dir */
2263     while (endp > path && *endp != '/')
2264 	endp--;
2265 
2266     /* Either the dir is "/" or there are no slashes */
2267     if (endp == path) {
2268 	bname[0] = *endp == '/' ? '/' : '.';
2269 	bname[1] = '\0';
2270 	return (0);
2271     } else {
2272 	do {
2273 	    endp--;
2274 	} while (endp > path && *endp == '/');
2275     }
2276 
2277     if (endp - path + 2 > PATH_MAX)
2278     {
2279 	_rtld_error("Filename is too long: %s", path);
2280 	return(-1);
2281     }
2282 
2283     strncpy(bname, path, endp - path + 1);
2284     bname[endp - path + 1] = '\0';
2285     return (0);
2286 }
2287 
2288 static void
2289 linkmap_add(Obj_Entry *obj)
2290 {
2291     struct link_map *l = &obj->linkmap;
2292     struct link_map *prev;
2293 
2294     obj->linkmap.l_name = obj->path;
2295     obj->linkmap.l_addr = obj->mapbase;
2296     obj->linkmap.l_ld = obj->dynamic;
2297 #ifdef __mips__
2298     /* GDB needs load offset on MIPS to use the symbols */
2299     obj->linkmap.l_offs = obj->relocbase;
2300 #endif
2301 
2302     if (r_debug.r_map == NULL) {
2303 	r_debug.r_map = l;
2304 	return;
2305     }
2306 
2307     /*
2308      * Scan to the end of the list, but not past the entry for the
2309      * dynamic linker, which we want to keep at the very end.
2310      */
2311     for (prev = r_debug.r_map;
2312       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2313       prev = prev->l_next)
2314 	;
2315 
2316     /* Link in the new entry. */
2317     l->l_prev = prev;
2318     l->l_next = prev->l_next;
2319     if (l->l_next != NULL)
2320 	l->l_next->l_prev = l;
2321     prev->l_next = l;
2322 }
2323 
2324 static void
2325 linkmap_delete(Obj_Entry *obj)
2326 {
2327     struct link_map *l = &obj->linkmap;
2328 
2329     if (l->l_prev == NULL) {
2330 	if ((r_debug.r_map = l->l_next) != NULL)
2331 	    l->l_next->l_prev = NULL;
2332 	return;
2333     }
2334 
2335     if ((l->l_prev->l_next = l->l_next) != NULL)
2336 	l->l_next->l_prev = l->l_prev;
2337 }
2338 
2339 /*
2340  * Function for the debugger to set a breakpoint on to gain control.
2341  *
2342  * The two parameters allow the debugger to easily find and determine
2343  * what the runtime loader is doing and to whom it is doing it.
2344  *
2345  * When the loadhook trap is hit (r_debug_state, set at program
2346  * initialization), the arguments can be found on the stack:
2347  *
2348  *  +8   struct link_map *m
2349  *  +4   struct r_debug  *rd
2350  *  +0   RetAddr
2351  */
2352 void
2353 r_debug_state(struct r_debug* rd, struct link_map *m)
2354 {
2355 }
2356 
2357 /*
2358  * Get address of the pointer variable in the main program.
2359  */
2360 static const void **
2361 get_program_var_addr(const char *name)
2362 {
2363     const Obj_Entry *obj;
2364     unsigned long hash;
2365 
2366     hash = elf_hash(name);
2367     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2368 	const Elf_Sym *def;
2369 
2370 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2371 	    const void **addr;
2372 
2373 	    addr = (const void **)(obj->relocbase + def->st_value);
2374 	    return addr;
2375 	}
2376     }
2377     return NULL;
2378 }
2379 
2380 /*
2381  * Set a pointer variable in the main program to the given value.  This
2382  * is used to set key variables such as "environ" before any of the
2383  * init functions are called.
2384  */
2385 static void
2386 set_program_var(const char *name, const void *value)
2387 {
2388     const void **addr;
2389 
2390     if ((addr = get_program_var_addr(name)) != NULL) {
2391 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2392 	*addr = value;
2393     }
2394 }
2395 
2396 /*
2397  * Given a symbol name in a referencing object, find the corresponding
2398  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2399  * no definition was found.  Returns a pointer to the Obj_Entry of the
2400  * defining object via the reference parameter DEFOBJ_OUT.
2401  */
2402 static const Elf_Sym *
2403 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2404     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2405 {
2406     DoneList donelist;
2407     const Elf_Sym *def;
2408     const Elf_Sym *symp;
2409     const Obj_Entry *obj;
2410     const Obj_Entry *defobj;
2411     const Objlist_Entry *elm;
2412     def = NULL;
2413     defobj = NULL;
2414     donelist_init(&donelist);
2415 
2416     /* Look first in the referencing object if linked symbolically. */
2417     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2418 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2419 	if (symp != NULL) {
2420 	    def = symp;
2421 	    defobj = refobj;
2422 	}
2423     }
2424 
2425     /* Search all objects loaded at program start up. */
2426     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2427 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2428 	    &donelist);
2429 	if (symp != NULL &&
2430 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2431 	    def = symp;
2432 	    defobj = obj;
2433 	}
2434     }
2435 
2436     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2437     STAILQ_FOREACH(elm, &list_global, link) {
2438        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2439            break;
2440        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2441 	   flags, &donelist);
2442 	if (symp != NULL &&
2443 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2444 	    def = symp;
2445 	    defobj = obj;
2446 	}
2447     }
2448 
2449     /* Search all dlopened DAGs containing the referencing object. */
2450     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2451 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2452 	    break;
2453 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2454 	    flags, &donelist);
2455 	if (symp != NULL &&
2456 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2457 	    def = symp;
2458 	    defobj = obj;
2459 	}
2460     }
2461 
2462     /*
2463      * Search the dynamic linker itself, and possibly resolve the
2464      * symbol from there.  This is how the application links to
2465      * dynamic linker services such as dlopen.  Only the values listed
2466      * in the "exports" array can be resolved from the dynamic linker.
2467      */
2468     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2469 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2470 	if (symp != NULL && is_exported(symp)) {
2471 	    def = symp;
2472 	    defobj = &obj_rtld;
2473 	}
2474     }
2475 
2476     if (def != NULL)
2477 	*defobj_out = defobj;
2478     return def;
2479 }
2480 
2481 static const Elf_Sym *
2482 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2483   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2484   DoneList *dlp)
2485 {
2486     const Elf_Sym *symp;
2487     const Elf_Sym *def;
2488     const Obj_Entry *defobj;
2489     const Objlist_Entry *elm;
2490 
2491     def = NULL;
2492     defobj = NULL;
2493     STAILQ_FOREACH(elm, objlist, link) {
2494 	if (donelist_check(dlp, elm->obj))
2495 	    continue;
2496 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2497 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2498 		def = symp;
2499 		defobj = elm->obj;
2500 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2501 		    break;
2502 	    }
2503 	}
2504     }
2505     if (def != NULL)
2506 	*defobj_out = defobj;
2507     return def;
2508 }
2509 
2510 /*
2511  * Search the symbol table of a shared object and all objects needed
2512  * by it for a symbol of the given name.  Search order is
2513  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2514  * definition was found.
2515  */
2516 static const Elf_Sym *
2517 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2518   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2519   DoneList *dlp)
2520 {
2521     const Elf_Sym *def, *def_w;
2522     const Needed_Entry *n;
2523     const Obj_Entry *obj, *defobj, *defobj1;
2524 
2525     def = def_w = NULL;
2526     defobj = NULL;
2527     for (n = needed; n != NULL; n = n->next) {
2528 	if ((obj = n->obj) == NULL ||
2529 	    donelist_check(dlp, obj) ||
2530 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2531 	    continue;
2532 	defobj = obj;
2533 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2534 	    *defobj_out = defobj;
2535 	    return (def);
2536 	}
2537     }
2538     /*
2539      * There we come when either symbol definition is not found in
2540      * directly needed objects, or found symbol is weak.
2541      */
2542     for (n = needed; n != NULL; n = n->next) {
2543 	if ((obj = n->obj) == NULL)
2544 	    continue;
2545 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2546 			       ventry, flags, dlp);
2547 	if (def_w == NULL)
2548 	    continue;
2549 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2550 	    def = def_w;
2551 	    defobj = defobj1;
2552 	}
2553 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2554 	    break;
2555     }
2556     if (def != NULL)
2557 	*defobj_out = defobj;
2558     return (def);
2559 }
2560 
2561 /*
2562  * Search the symbol table of a single shared object for a symbol of
2563  * the given name and version, if requested.  Returns a pointer to the
2564  * symbol, or NULL if no definition was found.
2565  *
2566  * The symbol's hash value is passed in for efficiency reasons; that
2567  * eliminates many recomputations of the hash value.
2568  */
2569 const Elf_Sym *
2570 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2571     const Ver_Entry *ventry, int flags)
2572 {
2573     unsigned long symnum;
2574     const Elf_Sym *vsymp;
2575     Elf_Versym verndx;
2576     int vcount;
2577 
2578     if (obj->buckets == NULL)
2579 	return NULL;
2580 
2581     vsymp = NULL;
2582     vcount = 0;
2583     symnum = obj->buckets[hash % obj->nbuckets];
2584 
2585     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2586 	const Elf_Sym *symp;
2587 	const char *strp;
2588 
2589 	if (symnum >= obj->nchains)
2590 		return NULL;	/* Bad object */
2591 
2592 	symp = obj->symtab + symnum;
2593 	strp = obj->strtab + symp->st_name;
2594 
2595 	switch (ELF_ST_TYPE(symp->st_info)) {
2596 	case STT_FUNC:
2597 	case STT_NOTYPE:
2598 	case STT_OBJECT:
2599 	    if (symp->st_value == 0)
2600 		continue;
2601 		/* fallthrough */
2602 	case STT_TLS:
2603 	    if (symp->st_shndx != SHN_UNDEF)
2604 		break;
2605 #ifndef __mips__
2606 	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2607 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2608 		break;
2609 		/* fallthrough */
2610 #endif
2611 	default:
2612 	    continue;
2613 	}
2614 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2615 	    continue;
2616 
2617 	if (ventry == NULL) {
2618 	    if (obj->versyms != NULL) {
2619 		verndx = VER_NDX(obj->versyms[symnum]);
2620 		if (verndx > obj->vernum) {
2621 		    _rtld_error("%s: symbol %s references wrong version %d",
2622 			obj->path, obj->strtab + symnum, verndx);
2623 		    continue;
2624 		}
2625 		/*
2626 		 * If we are not called from dlsym (i.e. this is a normal
2627 		 * relocation from unversioned binary, accept the symbol
2628 		 * immediately if it happens to have first version after
2629 		 * this shared object became versioned. Otherwise, if
2630 		 * symbol is versioned and not hidden, remember it. If it
2631 		 * is the only symbol with this name exported by the
2632 		 * shared object, it will be returned as a match at the
2633 		 * end of the function. If symbol is global (verndx < 2)
2634 		 * accept it unconditionally.
2635 		 */
2636 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2637 		    return symp;
2638 	        else if (verndx >= VER_NDX_GIVEN) {
2639 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2640 			if (vsymp == NULL)
2641 			    vsymp = symp;
2642 			vcount ++;
2643 		    }
2644 		    continue;
2645 		}
2646 	    }
2647 	    return symp;
2648 	} else {
2649 	    if (obj->versyms == NULL) {
2650 		if (object_match_name(obj, ventry->name)) {
2651 		    _rtld_error("%s: object %s should provide version %s for "
2652 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2653 			obj->strtab + symnum);
2654 		    continue;
2655 		}
2656 	    } else {
2657 		verndx = VER_NDX(obj->versyms[symnum]);
2658 		if (verndx > obj->vernum) {
2659 		    _rtld_error("%s: symbol %s references wrong version %d",
2660 			obj->path, obj->strtab + symnum, verndx);
2661 		    continue;
2662 		}
2663 		if (obj->vertab[verndx].hash != ventry->hash ||
2664 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2665 		    /*
2666 		     * Version does not match. Look if this is a global symbol
2667 		     * and if it is not hidden. If global symbol (verndx < 2)
2668 		     * is available, use it. Do not return symbol if we are
2669 		     * called by dlvsym, because dlvsym looks for a specific
2670 		     * version and default one is not what dlvsym wants.
2671 		     */
2672 		    if ((flags & SYMLOOK_DLSYM) ||
2673 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2674 			(verndx >= VER_NDX_GIVEN))
2675 			continue;
2676 		}
2677 	    }
2678 	    return symp;
2679 	}
2680     }
2681     return (vcount == 1) ? vsymp : NULL;
2682 }
2683 
2684 static void
2685 trace_loaded_objects(Obj_Entry *obj)
2686 {
2687     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2688     int		c;
2689 
2690     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2691 	main_local = "";
2692 
2693     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2694 	fmt1 = "\t%o => %p (%x)\n";
2695 
2696     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2697 	fmt2 = "\t%o (%x)\n";
2698 
2699     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2700 
2701     for (; obj; obj = obj->next) {
2702 	Needed_Entry		*needed;
2703 	char			*name, *path;
2704 	bool			is_lib;
2705 
2706 	if (list_containers && obj->needed != NULL)
2707 	    printf("%s:\n", obj->path);
2708 	for (needed = obj->needed; needed; needed = needed->next) {
2709 	    if (needed->obj != NULL) {
2710 		if (needed->obj->traced && !list_containers)
2711 		    continue;
2712 		needed->obj->traced = true;
2713 		path = needed->obj->path;
2714 	    } else
2715 		path = "not found";
2716 
2717 	    name = (char *)obj->strtab + needed->name;
2718 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2719 
2720 	    fmt = is_lib ? fmt1 : fmt2;
2721 	    while ((c = *fmt++) != '\0') {
2722 		switch (c) {
2723 		default:
2724 		    putchar(c);
2725 		    continue;
2726 		case '\\':
2727 		    switch (c = *fmt) {
2728 		    case '\0':
2729 			continue;
2730 		    case 'n':
2731 			putchar('\n');
2732 			break;
2733 		    case 't':
2734 			putchar('\t');
2735 			break;
2736 		    }
2737 		    break;
2738 		case '%':
2739 		    switch (c = *fmt) {
2740 		    case '\0':
2741 			continue;
2742 		    case '%':
2743 		    default:
2744 			putchar(c);
2745 			break;
2746 		    case 'A':
2747 			printf("%s", main_local);
2748 			break;
2749 		    case 'a':
2750 			printf("%s", obj_main->path);
2751 			break;
2752 		    case 'o':
2753 			printf("%s", name);
2754 			break;
2755 #if 0
2756 		    case 'm':
2757 			printf("%d", sodp->sod_major);
2758 			break;
2759 		    case 'n':
2760 			printf("%d", sodp->sod_minor);
2761 			break;
2762 #endif
2763 		    case 'p':
2764 			printf("%s", path);
2765 			break;
2766 		    case 'x':
2767 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2768 			break;
2769 		    }
2770 		    break;
2771 		}
2772 		++fmt;
2773 	    }
2774 	}
2775     }
2776 }
2777 
2778 /*
2779  * Unload a dlopened object and its dependencies from memory and from
2780  * our data structures.  It is assumed that the DAG rooted in the
2781  * object has already been unreferenced, and that the object has a
2782  * reference count of 0.
2783  */
2784 static void
2785 unload_object(Obj_Entry *root)
2786 {
2787     Obj_Entry *obj;
2788     Obj_Entry **linkp;
2789 
2790     assert(root->refcount == 0);
2791 
2792     /*
2793      * Pass over the DAG removing unreferenced objects from
2794      * appropriate lists.
2795      */
2796     unlink_object(root);
2797 
2798     /* Unmap all objects that are no longer referenced. */
2799     linkp = &obj_list->next;
2800     while ((obj = *linkp) != NULL) {
2801 	if (obj->refcount == 0) {
2802 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2803 		obj->path);
2804 	    dbg("unloading \"%s\"", obj->path);
2805 	    munmap(obj->mapbase, obj->mapsize);
2806 	    linkmap_delete(obj);
2807 	    *linkp = obj->next;
2808 	    obj_count--;
2809 	    obj_free(obj);
2810 	} else
2811 	    linkp = &obj->next;
2812     }
2813     obj_tail = linkp;
2814 }
2815 
2816 static void
2817 unlink_object(Obj_Entry *root)
2818 {
2819     Objlist_Entry *elm;
2820 
2821     if (root->refcount == 0) {
2822 	/* Remove the object from the RTLD_GLOBAL list. */
2823 	objlist_remove(&list_global, root);
2824 
2825     	/* Remove the object from all objects' DAG lists. */
2826     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2827 	    objlist_remove(&elm->obj->dldags, root);
2828 	    if (elm->obj != root)
2829 		unlink_object(elm->obj);
2830 	}
2831     }
2832 }
2833 
2834 static void
2835 ref_dag(Obj_Entry *root)
2836 {
2837     Objlist_Entry *elm;
2838 
2839     STAILQ_FOREACH(elm, &root->dagmembers, link)
2840 	elm->obj->refcount++;
2841 }
2842 
2843 static void
2844 unref_dag(Obj_Entry *root)
2845 {
2846     Objlist_Entry *elm;
2847 
2848     STAILQ_FOREACH(elm, &root->dagmembers, link)
2849 	elm->obj->refcount--;
2850 }
2851 
2852 /*
2853  * Common code for MD __tls_get_addr().
2854  */
2855 void *
2856 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
2857 {
2858     Elf_Addr* dtv = *dtvp;
2859     int lockstate;
2860 
2861     /* Check dtv generation in case new modules have arrived */
2862     if (dtv[0] != tls_dtv_generation) {
2863 	Elf_Addr* newdtv;
2864 	int to_copy;
2865 
2866 	lockstate = wlock_acquire(rtld_bind_lock);
2867 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2868 	to_copy = dtv[1];
2869 	if (to_copy > tls_max_index)
2870 	    to_copy = tls_max_index;
2871 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2872 	newdtv[0] = tls_dtv_generation;
2873 	newdtv[1] = tls_max_index;
2874 	free(dtv);
2875 	wlock_release(rtld_bind_lock, lockstate);
2876 	*dtvp = newdtv;
2877     }
2878 
2879     /* Dynamically allocate module TLS if necessary */
2880     if (!dtv[index + 1]) {
2881 	/* Signal safe, wlock will block out signals. */
2882 	lockstate = wlock_acquire(rtld_bind_lock);
2883 	if (!dtv[index + 1])
2884 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2885 	wlock_release(rtld_bind_lock, lockstate);
2886     }
2887     return (void*) (dtv[index + 1] + offset);
2888 }
2889 
2890 /* XXX not sure what variants to use for arm. */
2891 
2892 #if defined(__ia64__) || defined(__powerpc__)
2893 
2894 /*
2895  * Allocate Static TLS using the Variant I method.
2896  */
2897 void *
2898 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
2899 {
2900     Obj_Entry *obj;
2901     char *tcb;
2902     Elf_Addr **tls;
2903     Elf_Addr *dtv;
2904     Elf_Addr addr;
2905     int i;
2906 
2907     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
2908 	return (oldtcb);
2909 
2910     assert(tcbsize >= TLS_TCB_SIZE);
2911     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
2912     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
2913 
2914     if (oldtcb != NULL) {
2915 	memcpy(tls, oldtcb, tls_static_space);
2916 	free(oldtcb);
2917 
2918 	/* Adjust the DTV. */
2919 	dtv = tls[0];
2920 	for (i = 0; i < dtv[1]; i++) {
2921 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
2922 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
2923 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
2924 	    }
2925 	}
2926     } else {
2927 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
2928 	tls[0] = dtv;
2929 	dtv[0] = tls_dtv_generation;
2930 	dtv[1] = tls_max_index;
2931 
2932 	for (obj = objs; obj; obj = obj->next) {
2933 	    if (obj->tlsoffset) {
2934 		addr = (Elf_Addr)tls + obj->tlsoffset;
2935 		memset((void*) (addr + obj->tlsinitsize),
2936 		       0, obj->tlssize - obj->tlsinitsize);
2937 		if (obj->tlsinit)
2938 		    memcpy((void*) addr, obj->tlsinit,
2939 			   obj->tlsinitsize);
2940 		dtv[obj->tlsindex + 1] = addr;
2941 	    }
2942 	}
2943     }
2944 
2945     return (tcb);
2946 }
2947 
2948 void
2949 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
2950 {
2951     Elf_Addr *dtv;
2952     Elf_Addr tlsstart, tlsend;
2953     int dtvsize, i;
2954 
2955     assert(tcbsize >= TLS_TCB_SIZE);
2956 
2957     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
2958     tlsend = tlsstart + tls_static_space;
2959 
2960     dtv = *(Elf_Addr **)tlsstart;
2961     dtvsize = dtv[1];
2962     for (i = 0; i < dtvsize; i++) {
2963 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
2964 	    free((void*)dtv[i+2]);
2965 	}
2966     }
2967     free(dtv);
2968     free(tcb);
2969 }
2970 
2971 #endif
2972 
2973 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
2974     defined(__arm__) || defined(__mips__)
2975 
2976 /*
2977  * Allocate Static TLS using the Variant II method.
2978  */
2979 void *
2980 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2981 {
2982     Obj_Entry *obj;
2983     size_t size;
2984     char *tls;
2985     Elf_Addr *dtv, *olddtv;
2986     Elf_Addr segbase, oldsegbase, addr;
2987     int i;
2988 
2989     size = round(tls_static_space, tcbalign);
2990 
2991     assert(tcbsize >= 2*sizeof(Elf_Addr));
2992     tls = calloc(1, size + tcbsize);
2993     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2994 
2995     segbase = (Elf_Addr)(tls + size);
2996     ((Elf_Addr*)segbase)[0] = segbase;
2997     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
2998 
2999     dtv[0] = tls_dtv_generation;
3000     dtv[1] = tls_max_index;
3001 
3002     if (oldtls) {
3003 	/*
3004 	 * Copy the static TLS block over whole.
3005 	 */
3006 	oldsegbase = (Elf_Addr) oldtls;
3007 	memcpy((void *)(segbase - tls_static_space),
3008 	       (const void *)(oldsegbase - tls_static_space),
3009 	       tls_static_space);
3010 
3011 	/*
3012 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3013 	 * move them over.
3014 	 */
3015 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3016 	for (i = 0; i < olddtv[1]; i++) {
3017 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3018 		dtv[i+2] = olddtv[i+2];
3019 		olddtv[i+2] = 0;
3020 	    }
3021 	}
3022 
3023 	/*
3024 	 * We assume that this block was the one we created with
3025 	 * allocate_initial_tls().
3026 	 */
3027 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3028     } else {
3029 	for (obj = objs; obj; obj = obj->next) {
3030 	    if (obj->tlsoffset) {
3031 		addr = segbase - obj->tlsoffset;
3032 		memset((void*) (addr + obj->tlsinitsize),
3033 		       0, obj->tlssize - obj->tlsinitsize);
3034 		if (obj->tlsinit)
3035 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3036 		dtv[obj->tlsindex + 1] = addr;
3037 	    }
3038 	}
3039     }
3040 
3041     return (void*) segbase;
3042 }
3043 
3044 void
3045 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3046 {
3047     size_t size;
3048     Elf_Addr* dtv;
3049     int dtvsize, i;
3050     Elf_Addr tlsstart, tlsend;
3051 
3052     /*
3053      * Figure out the size of the initial TLS block so that we can
3054      * find stuff which ___tls_get_addr() allocated dynamically.
3055      */
3056     size = round(tls_static_space, tcbalign);
3057 
3058     dtv = ((Elf_Addr**)tls)[1];
3059     dtvsize = dtv[1];
3060     tlsend = (Elf_Addr) tls;
3061     tlsstart = tlsend - size;
3062     for (i = 0; i < dtvsize; i++) {
3063 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3064 	    free((void*) dtv[i+2]);
3065 	}
3066     }
3067 
3068     free((void*) tlsstart);
3069     free((void*) dtv);
3070 }
3071 
3072 #endif
3073 
3074 /*
3075  * Allocate TLS block for module with given index.
3076  */
3077 void *
3078 allocate_module_tls(int index)
3079 {
3080     Obj_Entry* obj;
3081     char* p;
3082 
3083     for (obj = obj_list; obj; obj = obj->next) {
3084 	if (obj->tlsindex == index)
3085 	    break;
3086     }
3087     if (!obj) {
3088 	_rtld_error("Can't find module with TLS index %d", index);
3089 	die();
3090     }
3091 
3092     p = malloc(obj->tlssize);
3093     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3094     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3095 
3096     return p;
3097 }
3098 
3099 bool
3100 allocate_tls_offset(Obj_Entry *obj)
3101 {
3102     size_t off;
3103 
3104     if (obj->tls_done)
3105 	return true;
3106 
3107     if (obj->tlssize == 0) {
3108 	obj->tls_done = true;
3109 	return true;
3110     }
3111 
3112     if (obj->tlsindex == 1)
3113 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3114     else
3115 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3116 				   obj->tlssize, obj->tlsalign);
3117 
3118     /*
3119      * If we have already fixed the size of the static TLS block, we
3120      * must stay within that size. When allocating the static TLS, we
3121      * leave a small amount of space spare to be used for dynamically
3122      * loading modules which use static TLS.
3123      */
3124     if (tls_static_space) {
3125 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3126 	    return false;
3127     }
3128 
3129     tls_last_offset = obj->tlsoffset = off;
3130     tls_last_size = obj->tlssize;
3131     obj->tls_done = true;
3132 
3133     return true;
3134 }
3135 
3136 void
3137 free_tls_offset(Obj_Entry *obj)
3138 {
3139 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3140     defined(__arm__) || defined(__mips__)
3141     /*
3142      * If we were the last thing to allocate out of the static TLS
3143      * block, we give our space back to the 'allocator'. This is a
3144      * simplistic workaround to allow libGL.so.1 to be loaded and
3145      * unloaded multiple times. We only handle the Variant II
3146      * mechanism for now - this really needs a proper allocator.
3147      */
3148     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3149 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3150 	tls_last_offset -= obj->tlssize;
3151 	tls_last_size = 0;
3152     }
3153 #endif
3154 }
3155 
3156 void *
3157 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3158 {
3159     void *ret;
3160     int lockstate;
3161 
3162     lockstate = wlock_acquire(rtld_bind_lock);
3163     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3164     wlock_release(rtld_bind_lock, lockstate);
3165     return (ret);
3166 }
3167 
3168 void
3169 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3170 {
3171     int lockstate;
3172 
3173     lockstate = wlock_acquire(rtld_bind_lock);
3174     free_tls(tcb, tcbsize, tcbalign);
3175     wlock_release(rtld_bind_lock, lockstate);
3176 }
3177 
3178 static void
3179 object_add_name(Obj_Entry *obj, const char *name)
3180 {
3181     Name_Entry *entry;
3182     size_t len;
3183 
3184     len = strlen(name);
3185     entry = malloc(sizeof(Name_Entry) + len);
3186 
3187     if (entry != NULL) {
3188 	strcpy(entry->name, name);
3189 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3190     }
3191 }
3192 
3193 static int
3194 object_match_name(const Obj_Entry *obj, const char *name)
3195 {
3196     Name_Entry *entry;
3197 
3198     STAILQ_FOREACH(entry, &obj->names, link) {
3199 	if (strcmp(name, entry->name) == 0)
3200 	    return (1);
3201     }
3202     return (0);
3203 }
3204 
3205 static Obj_Entry *
3206 locate_dependency(const Obj_Entry *obj, const char *name)
3207 {
3208     const Objlist_Entry *entry;
3209     const Needed_Entry *needed;
3210 
3211     STAILQ_FOREACH(entry, &list_main, link) {
3212 	if (object_match_name(entry->obj, name))
3213 	    return entry->obj;
3214     }
3215 
3216     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3217 	if (needed->obj == NULL)
3218 	    continue;
3219 	if (object_match_name(needed->obj, name))
3220 	    return needed->obj;
3221     }
3222     _rtld_error("%s: Unexpected  inconsistency: dependency %s not found",
3223 	obj->path, name);
3224     die();
3225 }
3226 
3227 static int
3228 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3229     const Elf_Vernaux *vna)
3230 {
3231     const Elf_Verdef *vd;
3232     const char *vername;
3233 
3234     vername = refobj->strtab + vna->vna_name;
3235     vd = depobj->verdef;
3236     if (vd == NULL) {
3237 	_rtld_error("%s: version %s required by %s not defined",
3238 	    depobj->path, vername, refobj->path);
3239 	return (-1);
3240     }
3241     for (;;) {
3242 	if (vd->vd_version != VER_DEF_CURRENT) {
3243 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3244 		depobj->path, vd->vd_version);
3245 	    return (-1);
3246 	}
3247 	if (vna->vna_hash == vd->vd_hash) {
3248 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3249 		((char *)vd + vd->vd_aux);
3250 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3251 		return (0);
3252 	}
3253 	if (vd->vd_next == 0)
3254 	    break;
3255 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3256     }
3257     if (vna->vna_flags & VER_FLG_WEAK)
3258 	return (0);
3259     _rtld_error("%s: version %s required by %s not found",
3260 	depobj->path, vername, refobj->path);
3261     return (-1);
3262 }
3263 
3264 static int
3265 rtld_verify_object_versions(Obj_Entry *obj)
3266 {
3267     const Elf_Verneed *vn;
3268     const Elf_Verdef  *vd;
3269     const Elf_Verdaux *vda;
3270     const Elf_Vernaux *vna;
3271     const Obj_Entry *depobj;
3272     int maxvernum, vernum;
3273 
3274     maxvernum = 0;
3275     /*
3276      * Walk over defined and required version records and figure out
3277      * max index used by any of them. Do very basic sanity checking
3278      * while there.
3279      */
3280     vn = obj->verneed;
3281     while (vn != NULL) {
3282 	if (vn->vn_version != VER_NEED_CURRENT) {
3283 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3284 		obj->path, vn->vn_version);
3285 	    return (-1);
3286 	}
3287 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3288 	for (;;) {
3289 	    vernum = VER_NEED_IDX(vna->vna_other);
3290 	    if (vernum > maxvernum)
3291 		maxvernum = vernum;
3292 	    if (vna->vna_next == 0)
3293 		 break;
3294 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3295 	}
3296 	if (vn->vn_next == 0)
3297 	    break;
3298 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3299     }
3300 
3301     vd = obj->verdef;
3302     while (vd != NULL) {
3303 	if (vd->vd_version != VER_DEF_CURRENT) {
3304 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3305 		obj->path, vd->vd_version);
3306 	    return (-1);
3307 	}
3308 	vernum = VER_DEF_IDX(vd->vd_ndx);
3309 	if (vernum > maxvernum)
3310 		maxvernum = vernum;
3311 	if (vd->vd_next == 0)
3312 	    break;
3313 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3314     }
3315 
3316     if (maxvernum == 0)
3317 	return (0);
3318 
3319     /*
3320      * Store version information in array indexable by version index.
3321      * Verify that object version requirements are satisfied along the
3322      * way.
3323      */
3324     obj->vernum = maxvernum + 1;
3325     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3326 
3327     vd = obj->verdef;
3328     while (vd != NULL) {
3329 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3330 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3331 	    assert(vernum <= maxvernum);
3332 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3333 	    obj->vertab[vernum].hash = vd->vd_hash;
3334 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3335 	    obj->vertab[vernum].file = NULL;
3336 	    obj->vertab[vernum].flags = 0;
3337 	}
3338 	if (vd->vd_next == 0)
3339 	    break;
3340 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3341     }
3342 
3343     vn = obj->verneed;
3344     while (vn != NULL) {
3345 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3346 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3347 	for (;;) {
3348 	    if (check_object_provided_version(obj, depobj, vna))
3349 		return (-1);
3350 	    vernum = VER_NEED_IDX(vna->vna_other);
3351 	    assert(vernum <= maxvernum);
3352 	    obj->vertab[vernum].hash = vna->vna_hash;
3353 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3354 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3355 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3356 		VER_INFO_HIDDEN : 0;
3357 	    if (vna->vna_next == 0)
3358 		 break;
3359 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3360 	}
3361 	if (vn->vn_next == 0)
3362 	    break;
3363 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3364     }
3365     return 0;
3366 }
3367 
3368 static int
3369 rtld_verify_versions(const Objlist *objlist)
3370 {
3371     Objlist_Entry *entry;
3372     int rc;
3373 
3374     rc = 0;
3375     STAILQ_FOREACH(entry, objlist, link) {
3376 	/*
3377 	 * Skip dummy objects or objects that have their version requirements
3378 	 * already checked.
3379 	 */
3380 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3381 	    continue;
3382 	if (rtld_verify_object_versions(entry->obj) == -1) {
3383 	    rc = -1;
3384 	    if (ld_tracing == NULL)
3385 		break;
3386 	}
3387     }
3388     if (rc == 0 || ld_tracing != NULL)
3389     	rc = rtld_verify_object_versions(&obj_rtld);
3390     return rc;
3391 }
3392 
3393 const Ver_Entry *
3394 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3395 {
3396     Elf_Versym vernum;
3397 
3398     if (obj->vertab) {
3399 	vernum = VER_NDX(obj->versyms[symnum]);
3400 	if (vernum >= obj->vernum) {
3401 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3402 		obj->path, obj->strtab + symnum, vernum);
3403 	} else if (obj->vertab[vernum].hash != 0) {
3404 	    return &obj->vertab[vernum];
3405 	}
3406     }
3407     return NULL;
3408 }
3409