xref: /freebsd/libexec/rtld-elf/rtld.c (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
140     const char **argv0);
141 static int parse_integer(const char *);
142 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
143 static void print_usage(const char *argv0);
144 static void release_object(Obj_Entry *);
145 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
146     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
147 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
148     int flags, RtldLockState *lockstate);
149 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
150     RtldLockState *);
151 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
152 static int rtld_dirname(const char *, char *);
153 static int rtld_dirname_abs(const char *, char *);
154 static void *rtld_dlopen(const char *name, int fd, int mode);
155 static void rtld_exit(void);
156 static void rtld_nop_exit(void);
157 static char *search_library_path(const char *, const char *, const char *,
158     int *);
159 static char *search_library_pathfds(const char *, const char *, int *);
160 static const void **get_program_var_addr(const char *, RtldLockState *);
161 static void set_program_var(const char *, const void *);
162 static int symlook_default(SymLook *, const Obj_Entry *refobj);
163 static int symlook_global(SymLook *, DoneList *);
164 static void symlook_init_from_req(SymLook *, const SymLook *);
165 static int symlook_list(SymLook *, const Objlist *, DoneList *);
166 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
167 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
168 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
169 static void trace_loaded_objects(Obj_Entry *);
170 static void unlink_object(Obj_Entry *);
171 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
172 static void unref_dag(Obj_Entry *);
173 static void ref_dag(Obj_Entry *);
174 static char *origin_subst_one(Obj_Entry *, char *, const char *,
175     const char *, bool);
176 static char *origin_subst(Obj_Entry *, const char *);
177 static bool obj_resolve_origin(Obj_Entry *obj);
178 static void preinit_main(void);
179 static int  rtld_verify_versions(const Objlist *);
180 static int  rtld_verify_object_versions(Obj_Entry *);
181 static void object_add_name(Obj_Entry *, const char *);
182 static int  object_match_name(const Obj_Entry *, const char *);
183 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
184 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
185     struct dl_phdr_info *phdr_info);
186 static uint32_t gnu_hash(const char *);
187 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
188     const unsigned long);
189 
190 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
191 void _r_debug_postinit(struct link_map *) __noinline __exported;
192 
193 int __sys_openat(int, const char *, int, ...);
194 
195 /*
196  * Data declarations.
197  */
198 static char *error_message;	/* Message for dlerror(), or NULL */
199 struct r_debug r_debug __exported;	/* for GDB; */
200 static bool libmap_disable;	/* Disable libmap */
201 static bool ld_loadfltr;	/* Immediate filters processing */
202 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
203 static bool trust;		/* False for setuid and setgid programs */
204 static bool dangerous_ld_env;	/* True if environment variables have been
205 				   used to affect the libraries loaded */
206 bool ld_bind_not;		/* Disable PLT update */
207 static char *ld_bind_now;	/* Environment variable for immediate binding */
208 static char *ld_debug;		/* Environment variable for debugging */
209 static char *ld_library_path;	/* Environment variable for search path */
210 static char *ld_library_dirs;	/* Environment variable for library descriptors */
211 static char *ld_preload;	/* Environment variable for libraries to
212 				   load first */
213 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
214 static const char *ld_tracing;	/* Called from ldd to print libs */
215 static char *ld_utrace;		/* Use utrace() to log events. */
216 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
217 static Obj_Entry *obj_main;	/* The main program shared object */
218 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
219 static unsigned int obj_count;	/* Number of objects in obj_list */
220 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
221 
222 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
223   STAILQ_HEAD_INITIALIZER(list_global);
224 static Objlist list_main =	/* Objects loaded at program startup */
225   STAILQ_HEAD_INITIALIZER(list_main);
226 static Objlist list_fini =	/* Objects needing fini() calls */
227   STAILQ_HEAD_INITIALIZER(list_fini);
228 
229 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
230 
231 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
232 
233 extern Elf_Dyn _DYNAMIC;
234 #pragma weak _DYNAMIC
235 
236 int dlclose(void *) __exported;
237 char *dlerror(void) __exported;
238 void *dlopen(const char *, int) __exported;
239 void *fdlopen(int, int) __exported;
240 void *dlsym(void *, const char *) __exported;
241 dlfunc_t dlfunc(void *, const char *) __exported;
242 void *dlvsym(void *, const char *, const char *) __exported;
243 int dladdr(const void *, Dl_info *) __exported;
244 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
245     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
246 int dlinfo(void *, int , void *) __exported;
247 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
248 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
249 int _rtld_get_stack_prot(void) __exported;
250 int _rtld_is_dlopened(void *) __exported;
251 void _rtld_error(const char *, ...) __exported;
252 
253 /* Only here to fix -Wmissing-prototypes warnings */
254 int __getosreldate(void);
255 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
256 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
257 
258 
259 int npagesizes;
260 static int osreldate;
261 size_t *pagesizes;
262 
263 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
264 static int max_stack_flags;
265 
266 /*
267  * Global declarations normally provided by crt1.  The dynamic linker is
268  * not built with crt1, so we have to provide them ourselves.
269  */
270 char *__progname;
271 char **environ;
272 
273 /*
274  * Used to pass argc, argv to init functions.
275  */
276 int main_argc;
277 char **main_argv;
278 
279 /*
280  * Globals to control TLS allocation.
281  */
282 size_t tls_last_offset;		/* Static TLS offset of last module */
283 size_t tls_last_size;		/* Static TLS size of last module */
284 size_t tls_static_space;	/* Static TLS space allocated */
285 static size_t tls_static_max_align;
286 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
287 int tls_max_index = 1;		/* Largest module index allocated */
288 
289 static bool ld_library_path_rpath = false;
290 bool ld_fast_sigblock = false;
291 
292 /*
293  * Globals for path names, and such
294  */
295 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
296 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
297 const char *ld_path_rtld = _PATH_RTLD;
298 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
299 const char *ld_env_prefix = LD_;
300 
301 static void (*rtld_exit_ptr)(void);
302 
303 /*
304  * Fill in a DoneList with an allocation large enough to hold all of
305  * the currently-loaded objects.  Keep this as a macro since it calls
306  * alloca and we want that to occur within the scope of the caller.
307  */
308 #define donelist_init(dlp)					\
309     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
310     assert((dlp)->objs != NULL),				\
311     (dlp)->num_alloc = obj_count,				\
312     (dlp)->num_used = 0)
313 
314 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
315 	if (ld_utrace != NULL)					\
316 		ld_utrace_log(e, h, mb, ms, r, n);		\
317 } while (0)
318 
319 static void
320 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
321     int refcnt, const char *name)
322 {
323 	struct utrace_rtld ut;
324 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
325 
326 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
327 	ut.event = event;
328 	ut.handle = handle;
329 	ut.mapbase = mapbase;
330 	ut.mapsize = mapsize;
331 	ut.refcnt = refcnt;
332 	bzero(ut.name, sizeof(ut.name));
333 	if (name)
334 		strlcpy(ut.name, name, sizeof(ut.name));
335 	utrace(&ut, sizeof(ut));
336 }
337 
338 #ifdef RTLD_VARIANT_ENV_NAMES
339 /*
340  * construct the env variable based on the type of binary that's
341  * running.
342  */
343 static inline const char *
344 _LD(const char *var)
345 {
346 	static char buffer[128];
347 
348 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
349 	strlcat(buffer, var, sizeof(buffer));
350 	return (buffer);
351 }
352 #else
353 #define _LD(x)	LD_ x
354 #endif
355 
356 /*
357  * Main entry point for dynamic linking.  The first argument is the
358  * stack pointer.  The stack is expected to be laid out as described
359  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
360  * Specifically, the stack pointer points to a word containing
361  * ARGC.  Following that in the stack is a null-terminated sequence
362  * of pointers to argument strings.  Then comes a null-terminated
363  * sequence of pointers to environment strings.  Finally, there is a
364  * sequence of "auxiliary vector" entries.
365  *
366  * The second argument points to a place to store the dynamic linker's
367  * exit procedure pointer and the third to a place to store the main
368  * program's object.
369  *
370  * The return value is the main program's entry point.
371  */
372 func_ptr_type
373 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
374 {
375     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
376     Objlist_Entry *entry;
377     Obj_Entry *last_interposer, *obj, *preload_tail;
378     const Elf_Phdr *phdr;
379     Objlist initlist;
380     RtldLockState lockstate;
381     struct stat st;
382     Elf_Addr *argcp;
383     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
384     const char *argv0, *binpath;
385     caddr_t imgentry;
386     char buf[MAXPATHLEN];
387     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
388     size_t sz;
389 #ifdef __powerpc__
390     int old_auxv_format = 1;
391 #endif
392     bool dir_enable, direct_exec, explicit_fd, search_in_path;
393 
394     /*
395      * On entry, the dynamic linker itself has not been relocated yet.
396      * Be very careful not to reference any global data until after
397      * init_rtld has returned.  It is OK to reference file-scope statics
398      * and string constants, and to call static and global functions.
399      */
400 
401     /* Find the auxiliary vector on the stack. */
402     argcp = sp;
403     argc = *sp++;
404     argv = (char **) sp;
405     sp += argc + 1;	/* Skip over arguments and NULL terminator */
406     env = (char **) sp;
407     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
408 	;
409     aux = (Elf_Auxinfo *) sp;
410 
411     /* Digest the auxiliary vector. */
412     for (i = 0;  i < AT_COUNT;  i++)
413 	aux_info[i] = NULL;
414     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
415 	if (auxp->a_type < AT_COUNT)
416 	    aux_info[auxp->a_type] = auxp;
417 #ifdef __powerpc__
418 	if (auxp->a_type == 23) /* AT_STACKPROT */
419 	    old_auxv_format = 0;
420 #endif
421     }
422 
423 #ifdef __powerpc__
424     if (old_auxv_format) {
425 	/* Remap from old-style auxv numbers. */
426 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
427 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
428 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
429 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
430 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
431 	aux_info[13] = NULL;		/* AT_GID */
432 
433 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
434 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
435 	aux_info[16] = aux_info[14];	/* AT_CANARY */
436 	aux_info[14] = NULL;		/* AT_EGID */
437     }
438 #endif
439 
440     /* Initialize and relocate ourselves. */
441     assert(aux_info[AT_BASE] != NULL);
442     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
443 
444     __progname = obj_rtld.path;
445     argv0 = argv[0] != NULL ? argv[0] : "(null)";
446     environ = env;
447     main_argc = argc;
448     main_argv = argv;
449 
450     if (aux_info[AT_BSDFLAGS] != NULL &&
451 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
452 	    ld_fast_sigblock = true;
453 
454     trust = !issetugid();
455     direct_exec = false;
456 
457     md_abi_variant_hook(aux_info);
458 
459     fd = -1;
460     if (aux_info[AT_EXECFD] != NULL) {
461 	fd = aux_info[AT_EXECFD]->a_un.a_val;
462     } else {
463 	assert(aux_info[AT_PHDR] != NULL);
464 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
465 	if (phdr == obj_rtld.phdr) {
466 	    if (!trust) {
467 		_rtld_error("Tainted process refusing to run binary %s",
468 		    argv0);
469 		rtld_die();
470 	    }
471 	    direct_exec = true;
472 
473 	    dbg("opening main program in direct exec mode");
474 	    if (argc >= 2) {
475 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
476 		explicit_fd = (fd != -1);
477 		binpath = NULL;
478 		if (!explicit_fd)
479 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
480 		if (fstat(fd, &st) == -1) {
481 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
482 		      explicit_fd ? "user-provided descriptor" : argv0,
483 		      rtld_strerror(errno));
484 		    rtld_die();
485 		}
486 
487 		/*
488 		 * Rough emulation of the permission checks done by
489 		 * execve(2), only Unix DACs are checked, ACLs are
490 		 * ignored.  Preserve the semantic of disabling owner
491 		 * to execute if owner x bit is cleared, even if
492 		 * others x bit is enabled.
493 		 * mmap(2) does not allow to mmap with PROT_EXEC if
494 		 * binary' file comes from noexec mount.  We cannot
495 		 * set a text reference on the binary.
496 		 */
497 		dir_enable = false;
498 		if (st.st_uid == geteuid()) {
499 		    if ((st.st_mode & S_IXUSR) != 0)
500 			dir_enable = true;
501 		} else if (st.st_gid == getegid()) {
502 		    if ((st.st_mode & S_IXGRP) != 0)
503 			dir_enable = true;
504 		} else if ((st.st_mode & S_IXOTH) != 0) {
505 		    dir_enable = true;
506 		}
507 		if (!dir_enable) {
508 		    _rtld_error("No execute permission for binary %s",
509 		        argv0);
510 		    rtld_die();
511 		}
512 
513 		/*
514 		 * For direct exec mode, argv[0] is the interpreter
515 		 * name, we must remove it and shift arguments left
516 		 * before invoking binary main.  Since stack layout
517 		 * places environment pointers and aux vectors right
518 		 * after the terminating NULL, we must shift
519 		 * environment and aux as well.
520 		 */
521 		main_argc = argc - rtld_argc;
522 		for (i = 0; i <= main_argc; i++)
523 		    argv[i] = argv[i + rtld_argc];
524 		*argcp -= rtld_argc;
525 		environ = env = envp = argv + main_argc + 1;
526 		dbg("move env from %p to %p", envp + rtld_argc, envp);
527 		do {
528 		    *envp = *(envp + rtld_argc);
529 		}  while (*envp++ != NULL);
530 		aux = auxp = (Elf_Auxinfo *)envp;
531 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
532 		dbg("move aux from %p to %p", auxpf, aux);
533 		/* XXXKIB insert place for AT_EXECPATH if not present */
534 		for (;; auxp++, auxpf++) {
535 		    *auxp = *auxpf;
536 		    if (auxp->a_type == AT_NULL)
537 			    break;
538 		}
539 		/* Since the auxiliary vector has moved, redigest it. */
540 		for (i = 0;  i < AT_COUNT;  i++)
541 		    aux_info[i] = NULL;
542 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
543 		    if (auxp->a_type < AT_COUNT)
544 			aux_info[auxp->a_type] = auxp;
545 		}
546 
547 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
548 		if (binpath == NULL) {
549 		    aux_info[AT_EXECPATH] = NULL;
550 		} else {
551 		    if (aux_info[AT_EXECPATH] == NULL) {
552 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
553 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
554 		    }
555 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
556 		      binpath);
557 		}
558 	    } else {
559 		_rtld_error("No binary");
560 		rtld_die();
561 	    }
562 	}
563     }
564 
565     ld_bind_now = getenv(_LD("BIND_NOW"));
566 
567     /*
568      * If the process is tainted, then we un-set the dangerous environment
569      * variables.  The process will be marked as tainted until setuid(2)
570      * is called.  If any child process calls setuid(2) we do not want any
571      * future processes to honor the potentially un-safe variables.
572      */
573     if (!trust) {
574 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
575 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
576 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
577 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
578 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
579 		_rtld_error("environment corrupt; aborting");
580 		rtld_die();
581 	}
582     }
583     ld_debug = getenv(_LD("DEBUG"));
584     if (ld_bind_now == NULL)
585 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
586     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
587     libmap_override = getenv(_LD("LIBMAP"));
588     ld_library_path = getenv(_LD("LIBRARY_PATH"));
589     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
590     ld_preload = getenv(_LD("PRELOAD"));
591     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
592     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
593     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
594     if (library_path_rpath != NULL) {
595 	    if (library_path_rpath[0] == 'y' ||
596 		library_path_rpath[0] == 'Y' ||
597 		library_path_rpath[0] == '1')
598 		    ld_library_path_rpath = true;
599 	    else
600 		    ld_library_path_rpath = false;
601     }
602     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
603 	(ld_library_path != NULL) || (ld_preload != NULL) ||
604 	(ld_elf_hints_path != NULL) || ld_loadfltr;
605     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
606     ld_utrace = getenv(_LD("UTRACE"));
607 
608     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
609 	ld_elf_hints_path = ld_elf_hints_default;
610 
611     if (ld_debug != NULL && *ld_debug != '\0')
612 	debug = 1;
613     dbg("%s is initialized, base address = %p", __progname,
614 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
615     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
616     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
617 
618     dbg("initializing thread locks");
619     lockdflt_init();
620 
621     /*
622      * Load the main program, or process its program header if it is
623      * already loaded.
624      */
625     if (fd != -1) {	/* Load the main program. */
626 	dbg("loading main program");
627 	obj_main = map_object(fd, argv0, NULL);
628 	close(fd);
629 	if (obj_main == NULL)
630 	    rtld_die();
631 	max_stack_flags = obj_main->stack_flags;
632     } else {				/* Main program already loaded. */
633 	dbg("processing main program's program header");
634 	assert(aux_info[AT_PHDR] != NULL);
635 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
636 	assert(aux_info[AT_PHNUM] != NULL);
637 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
638 	assert(aux_info[AT_PHENT] != NULL);
639 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
640 	assert(aux_info[AT_ENTRY] != NULL);
641 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
642 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
643 	    rtld_die();
644     }
645 
646     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
647 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
648 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
649 	    if (kexecpath[0] == '/')
650 		    obj_main->path = kexecpath;
651 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
652 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
653 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
654 		    obj_main->path = xstrdup(argv0);
655 	    else
656 		    obj_main->path = xstrdup(buf);
657     } else {
658 	    dbg("No AT_EXECPATH or direct exec");
659 	    obj_main->path = xstrdup(argv0);
660     }
661     dbg("obj_main path %s", obj_main->path);
662     obj_main->mainprog = true;
663 
664     if (aux_info[AT_STACKPROT] != NULL &&
665       aux_info[AT_STACKPROT]->a_un.a_val != 0)
666 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
667 
668 #ifndef COMPAT_32BIT
669     /*
670      * Get the actual dynamic linker pathname from the executable if
671      * possible.  (It should always be possible.)  That ensures that
672      * gdb will find the right dynamic linker even if a non-standard
673      * one is being used.
674      */
675     if (obj_main->interp != NULL &&
676       strcmp(obj_main->interp, obj_rtld.path) != 0) {
677 	free(obj_rtld.path);
678 	obj_rtld.path = xstrdup(obj_main->interp);
679         __progname = obj_rtld.path;
680     }
681 #endif
682 
683     if (!digest_dynamic(obj_main, 0))
684 	rtld_die();
685     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
686 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
687 	obj_main->dynsymcount);
688 
689     linkmap_add(obj_main);
690     linkmap_add(&obj_rtld);
691 
692     /* Link the main program into the list of objects. */
693     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
694     obj_count++;
695     obj_loads++;
696 
697     /* Initialize a fake symbol for resolving undefined weak references. */
698     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
699     sym_zero.st_shndx = SHN_UNDEF;
700     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
701 
702     if (!libmap_disable)
703         libmap_disable = (bool)lm_init(libmap_override);
704 
705     dbg("loading LD_PRELOAD libraries");
706     if (load_preload_objects() == -1)
707 	rtld_die();
708     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
709 
710     dbg("loading needed objects");
711     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
712       0) == -1)
713 	rtld_die();
714 
715     /* Make a list of all objects loaded at startup. */
716     last_interposer = obj_main;
717     TAILQ_FOREACH(obj, &obj_list, next) {
718 	if (obj->marker)
719 	    continue;
720 	if (obj->z_interpose && obj != obj_main) {
721 	    objlist_put_after(&list_main, last_interposer, obj);
722 	    last_interposer = obj;
723 	} else {
724 	    objlist_push_tail(&list_main, obj);
725 	}
726     	obj->refcount++;
727     }
728 
729     dbg("checking for required versions");
730     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
731 	rtld_die();
732 
733     if (ld_tracing) {		/* We're done */
734 	trace_loaded_objects(obj_main);
735 	exit(0);
736     }
737 
738     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
739        dump_relocations(obj_main);
740        exit (0);
741     }
742 
743     /*
744      * Processing tls relocations requires having the tls offsets
745      * initialized.  Prepare offsets before starting initial
746      * relocation processing.
747      */
748     dbg("initializing initial thread local storage offsets");
749     STAILQ_FOREACH(entry, &list_main, link) {
750 	/*
751 	 * Allocate all the initial objects out of the static TLS
752 	 * block even if they didn't ask for it.
753 	 */
754 	allocate_tls_offset(entry->obj);
755     }
756 
757     if (relocate_objects(obj_main,
758       ld_bind_now != NULL && *ld_bind_now != '\0',
759       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
760 	rtld_die();
761 
762     dbg("doing copy relocations");
763     if (do_copy_relocations(obj_main) == -1)
764 	rtld_die();
765 
766     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
767        dump_relocations(obj_main);
768        exit (0);
769     }
770 
771     ifunc_init(aux);
772 
773     /*
774      * Setup TLS for main thread.  This must be done after the
775      * relocations are processed, since tls initialization section
776      * might be the subject for relocations.
777      */
778     dbg("initializing initial thread local storage");
779     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
780 
781     dbg("initializing key program variables");
782     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
783     set_program_var("environ", env);
784     set_program_var("__elf_aux_vector", aux);
785 
786     /* Make a list of init functions to call. */
787     objlist_init(&initlist);
788     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
789       preload_tail, &initlist);
790 
791     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
792 
793     map_stacks_exec(NULL);
794 
795     if (!obj_main->crt_no_init) {
796 	/*
797 	 * Make sure we don't call the main program's init and fini
798 	 * functions for binaries linked with old crt1 which calls
799 	 * _init itself.
800 	 */
801 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
802 	obj_main->preinit_array = obj_main->init_array =
803 	    obj_main->fini_array = (Elf_Addr)NULL;
804     }
805 
806     if (direct_exec) {
807 	/* Set osrel for direct-execed binary */
808 	mib[0] = CTL_KERN;
809 	mib[1] = KERN_PROC;
810 	mib[2] = KERN_PROC_OSREL;
811 	mib[3] = getpid();
812 	osrel = obj_main->osrel;
813 	sz = sizeof(old_osrel);
814 	dbg("setting osrel to %d", osrel);
815 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
816     }
817 
818     wlock_acquire(rtld_bind_lock, &lockstate);
819 
820     dbg("resolving ifuncs");
821     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
822       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
823 	rtld_die();
824 
825     rtld_exit_ptr = rtld_exit;
826     if (obj_main->crt_no_init)
827 	preinit_main();
828     objlist_call_init(&initlist, &lockstate);
829     _r_debug_postinit(&obj_main->linkmap);
830     objlist_clear(&initlist);
831     dbg("loading filtees");
832     TAILQ_FOREACH(obj, &obj_list, next) {
833 	if (obj->marker)
834 	    continue;
835 	if (ld_loadfltr || obj->z_loadfltr)
836 	    load_filtees(obj, 0, &lockstate);
837     }
838 
839     dbg("enforcing main obj relro");
840     if (obj_enforce_relro(obj_main) == -1)
841 	rtld_die();
842 
843     lock_release(rtld_bind_lock, &lockstate);
844 
845     dbg("transferring control to program entry point = %p", obj_main->entry);
846 
847     /* Return the exit procedure and the program entry point. */
848     *exit_proc = rtld_exit_ptr;
849     *objp = obj_main;
850     return (func_ptr_type) obj_main->entry;
851 }
852 
853 void *
854 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
855 {
856 	void *ptr;
857 	Elf_Addr target;
858 
859 	ptr = (void *)make_function_pointer(def, obj);
860 	target = call_ifunc_resolver(ptr);
861 	return ((void *)target);
862 }
863 
864 /*
865  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
866  * Changes to this function should be applied there as well.
867  */
868 Elf_Addr
869 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
870 {
871     const Elf_Rel *rel;
872     const Elf_Sym *def;
873     const Obj_Entry *defobj;
874     Elf_Addr *where;
875     Elf_Addr target;
876     RtldLockState lockstate;
877 
878     rlock_acquire(rtld_bind_lock, &lockstate);
879     if (sigsetjmp(lockstate.env, 0) != 0)
880 	    lock_upgrade(rtld_bind_lock, &lockstate);
881     if (obj->pltrel)
882 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
883     else
884 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
885 
886     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
887     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
888 	NULL, &lockstate);
889     if (def == NULL)
890 	rtld_die();
891     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
892 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
893     else
894 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
895 
896     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
897       defobj->strtab + def->st_name, basename(obj->path),
898       (void *)target, basename(defobj->path));
899 
900     /*
901      * Write the new contents for the jmpslot. Note that depending on
902      * architecture, the value which we need to return back to the
903      * lazy binding trampoline may or may not be the target
904      * address. The value returned from reloc_jmpslot() is the value
905      * that the trampoline needs.
906      */
907     target = reloc_jmpslot(where, target, defobj, obj, rel);
908     lock_release(rtld_bind_lock, &lockstate);
909     return target;
910 }
911 
912 /*
913  * Error reporting function.  Use it like printf.  If formats the message
914  * into a buffer, and sets things up so that the next call to dlerror()
915  * will return the message.
916  */
917 void
918 _rtld_error(const char *fmt, ...)
919 {
920     static char buf[512];
921     va_list ap;
922 
923     va_start(ap, fmt);
924     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
925     error_message = buf;
926     va_end(ap);
927     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
928 }
929 
930 /*
931  * Return a dynamically-allocated copy of the current error message, if any.
932  */
933 static char *
934 errmsg_save(void)
935 {
936     return error_message == NULL ? NULL : xstrdup(error_message);
937 }
938 
939 /*
940  * Restore the current error message from a copy which was previously saved
941  * by errmsg_save().  The copy is freed.
942  */
943 static void
944 errmsg_restore(char *saved_msg)
945 {
946     if (saved_msg == NULL)
947 	error_message = NULL;
948     else {
949 	_rtld_error("%s", saved_msg);
950 	free(saved_msg);
951     }
952 }
953 
954 static const char *
955 basename(const char *name)
956 {
957     const char *p = strrchr(name, '/');
958     return p != NULL ? p + 1 : name;
959 }
960 
961 static struct utsname uts;
962 
963 static char *
964 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
965     const char *subst, bool may_free)
966 {
967 	char *p, *p1, *res, *resp;
968 	int subst_len, kw_len, subst_count, old_len, new_len;
969 
970 	kw_len = strlen(kw);
971 
972 	/*
973 	 * First, count the number of the keyword occurrences, to
974 	 * preallocate the final string.
975 	 */
976 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
977 		p1 = strstr(p, kw);
978 		if (p1 == NULL)
979 			break;
980 	}
981 
982 	/*
983 	 * If the keyword is not found, just return.
984 	 *
985 	 * Return non-substituted string if resolution failed.  We
986 	 * cannot do anything more reasonable, the failure mode of the
987 	 * caller is unresolved library anyway.
988 	 */
989 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
990 		return (may_free ? real : xstrdup(real));
991 	if (obj != NULL)
992 		subst = obj->origin_path;
993 
994 	/*
995 	 * There is indeed something to substitute.  Calculate the
996 	 * length of the resulting string, and allocate it.
997 	 */
998 	subst_len = strlen(subst);
999 	old_len = strlen(real);
1000 	new_len = old_len + (subst_len - kw_len) * subst_count;
1001 	res = xmalloc(new_len + 1);
1002 
1003 	/*
1004 	 * Now, execute the substitution loop.
1005 	 */
1006 	for (p = real, resp = res, *resp = '\0';;) {
1007 		p1 = strstr(p, kw);
1008 		if (p1 != NULL) {
1009 			/* Copy the prefix before keyword. */
1010 			memcpy(resp, p, p1 - p);
1011 			resp += p1 - p;
1012 			/* Keyword replacement. */
1013 			memcpy(resp, subst, subst_len);
1014 			resp += subst_len;
1015 			*resp = '\0';
1016 			p = p1 + kw_len;
1017 		} else
1018 			break;
1019 	}
1020 
1021 	/* Copy to the end of string and finish. */
1022 	strcat(resp, p);
1023 	if (may_free)
1024 		free(real);
1025 	return (res);
1026 }
1027 
1028 static char *
1029 origin_subst(Obj_Entry *obj, const char *real)
1030 {
1031 	char *res1, *res2, *res3, *res4;
1032 
1033 	if (obj == NULL || !trust)
1034 		return (xstrdup(real));
1035 	if (uts.sysname[0] == '\0') {
1036 		if (uname(&uts) != 0) {
1037 			_rtld_error("utsname failed: %d", errno);
1038 			return (NULL);
1039 		}
1040 	}
1041 	/* __DECONST is safe here since without may_free real is unchanged */
1042 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1043 	    false);
1044 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1045 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1046 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1047 	return (res4);
1048 }
1049 
1050 void
1051 rtld_die(void)
1052 {
1053     const char *msg = dlerror();
1054 
1055     if (msg == NULL)
1056 	msg = "Fatal error";
1057     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1058     rtld_fdputstr(STDERR_FILENO, msg);
1059     rtld_fdputchar(STDERR_FILENO, '\n');
1060     _exit(1);
1061 }
1062 
1063 /*
1064  * Process a shared object's DYNAMIC section, and save the important
1065  * information in its Obj_Entry structure.
1066  */
1067 static void
1068 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1069     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1070 {
1071     const Elf_Dyn *dynp;
1072     Needed_Entry **needed_tail = &obj->needed;
1073     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1074     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1075     const Elf_Hashelt *hashtab;
1076     const Elf32_Word *hashval;
1077     Elf32_Word bkt, nmaskwords;
1078     int bloom_size32;
1079     int plttype = DT_REL;
1080 
1081     *dyn_rpath = NULL;
1082     *dyn_soname = NULL;
1083     *dyn_runpath = NULL;
1084 
1085     obj->bind_now = false;
1086     dynp = obj->dynamic;
1087     if (dynp == NULL)
1088 	return;
1089     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1090 	switch (dynp->d_tag) {
1091 
1092 	case DT_REL:
1093 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1094 	    break;
1095 
1096 	case DT_RELSZ:
1097 	    obj->relsize = dynp->d_un.d_val;
1098 	    break;
1099 
1100 	case DT_RELENT:
1101 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1102 	    break;
1103 
1104 	case DT_JMPREL:
1105 	    obj->pltrel = (const Elf_Rel *)
1106 	      (obj->relocbase + dynp->d_un.d_ptr);
1107 	    break;
1108 
1109 	case DT_PLTRELSZ:
1110 	    obj->pltrelsize = dynp->d_un.d_val;
1111 	    break;
1112 
1113 	case DT_RELA:
1114 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1115 	    break;
1116 
1117 	case DT_RELASZ:
1118 	    obj->relasize = dynp->d_un.d_val;
1119 	    break;
1120 
1121 	case DT_RELAENT:
1122 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1123 	    break;
1124 
1125 	case DT_PLTREL:
1126 	    plttype = dynp->d_un.d_val;
1127 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1128 	    break;
1129 
1130 	case DT_SYMTAB:
1131 	    obj->symtab = (const Elf_Sym *)
1132 	      (obj->relocbase + dynp->d_un.d_ptr);
1133 	    break;
1134 
1135 	case DT_SYMENT:
1136 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1137 	    break;
1138 
1139 	case DT_STRTAB:
1140 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1141 	    break;
1142 
1143 	case DT_STRSZ:
1144 	    obj->strsize = dynp->d_un.d_val;
1145 	    break;
1146 
1147 	case DT_VERNEED:
1148 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1149 		dynp->d_un.d_val);
1150 	    break;
1151 
1152 	case DT_VERNEEDNUM:
1153 	    obj->verneednum = dynp->d_un.d_val;
1154 	    break;
1155 
1156 	case DT_VERDEF:
1157 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1158 		dynp->d_un.d_val);
1159 	    break;
1160 
1161 	case DT_VERDEFNUM:
1162 	    obj->verdefnum = dynp->d_un.d_val;
1163 	    break;
1164 
1165 	case DT_VERSYM:
1166 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1167 		dynp->d_un.d_val);
1168 	    break;
1169 
1170 	case DT_HASH:
1171 	    {
1172 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1173 		    dynp->d_un.d_ptr);
1174 		obj->nbuckets = hashtab[0];
1175 		obj->nchains = hashtab[1];
1176 		obj->buckets = hashtab + 2;
1177 		obj->chains = obj->buckets + obj->nbuckets;
1178 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1179 		  obj->buckets != NULL;
1180 	    }
1181 	    break;
1182 
1183 	case DT_GNU_HASH:
1184 	    {
1185 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1186 		    dynp->d_un.d_ptr);
1187 		obj->nbuckets_gnu = hashtab[0];
1188 		obj->symndx_gnu = hashtab[1];
1189 		nmaskwords = hashtab[2];
1190 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1191 		obj->maskwords_bm_gnu = nmaskwords - 1;
1192 		obj->shift2_gnu = hashtab[3];
1193 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1194 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1195 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1196 		  obj->symndx_gnu;
1197 		/* Number of bitmask words is required to be power of 2 */
1198 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1199 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1200 	    }
1201 	    break;
1202 
1203 	case DT_NEEDED:
1204 	    if (!obj->rtld) {
1205 		Needed_Entry *nep = NEW(Needed_Entry);
1206 		nep->name = dynp->d_un.d_val;
1207 		nep->obj = NULL;
1208 		nep->next = NULL;
1209 
1210 		*needed_tail = nep;
1211 		needed_tail = &nep->next;
1212 	    }
1213 	    break;
1214 
1215 	case DT_FILTER:
1216 	    if (!obj->rtld) {
1217 		Needed_Entry *nep = NEW(Needed_Entry);
1218 		nep->name = dynp->d_un.d_val;
1219 		nep->obj = NULL;
1220 		nep->next = NULL;
1221 
1222 		*needed_filtees_tail = nep;
1223 		needed_filtees_tail = &nep->next;
1224 
1225 		if (obj->linkmap.l_refname == NULL)
1226 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1227 	    }
1228 	    break;
1229 
1230 	case DT_AUXILIARY:
1231 	    if (!obj->rtld) {
1232 		Needed_Entry *nep = NEW(Needed_Entry);
1233 		nep->name = dynp->d_un.d_val;
1234 		nep->obj = NULL;
1235 		nep->next = NULL;
1236 
1237 		*needed_aux_filtees_tail = nep;
1238 		needed_aux_filtees_tail = &nep->next;
1239 	    }
1240 	    break;
1241 
1242 	case DT_PLTGOT:
1243 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1244 	    break;
1245 
1246 	case DT_TEXTREL:
1247 	    obj->textrel = true;
1248 	    break;
1249 
1250 	case DT_SYMBOLIC:
1251 	    obj->symbolic = true;
1252 	    break;
1253 
1254 	case DT_RPATH:
1255 	    /*
1256 	     * We have to wait until later to process this, because we
1257 	     * might not have gotten the address of the string table yet.
1258 	     */
1259 	    *dyn_rpath = dynp;
1260 	    break;
1261 
1262 	case DT_SONAME:
1263 	    *dyn_soname = dynp;
1264 	    break;
1265 
1266 	case DT_RUNPATH:
1267 	    *dyn_runpath = dynp;
1268 	    break;
1269 
1270 	case DT_INIT:
1271 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1272 	    break;
1273 
1274 	case DT_PREINIT_ARRAY:
1275 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1276 	    break;
1277 
1278 	case DT_PREINIT_ARRAYSZ:
1279 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1280 	    break;
1281 
1282 	case DT_INIT_ARRAY:
1283 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1284 	    break;
1285 
1286 	case DT_INIT_ARRAYSZ:
1287 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1288 	    break;
1289 
1290 	case DT_FINI:
1291 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1292 	    break;
1293 
1294 	case DT_FINI_ARRAY:
1295 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1296 	    break;
1297 
1298 	case DT_FINI_ARRAYSZ:
1299 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1300 	    break;
1301 
1302 	/*
1303 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1304 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1305 	 */
1306 
1307 #ifndef __mips__
1308 	case DT_DEBUG:
1309 	    if (!early)
1310 		dbg("Filling in DT_DEBUG entry");
1311 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1312 	    break;
1313 #endif
1314 
1315 	case DT_FLAGS:
1316 		if (dynp->d_un.d_val & DF_ORIGIN)
1317 		    obj->z_origin = true;
1318 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1319 		    obj->symbolic = true;
1320 		if (dynp->d_un.d_val & DF_TEXTREL)
1321 		    obj->textrel = true;
1322 		if (dynp->d_un.d_val & DF_BIND_NOW)
1323 		    obj->bind_now = true;
1324 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1325 		    obj->static_tls = true;
1326 	    break;
1327 #ifdef __mips__
1328 	case DT_MIPS_LOCAL_GOTNO:
1329 		obj->local_gotno = dynp->d_un.d_val;
1330 		break;
1331 
1332 	case DT_MIPS_SYMTABNO:
1333 		obj->symtabno = dynp->d_un.d_val;
1334 		break;
1335 
1336 	case DT_MIPS_GOTSYM:
1337 		obj->gotsym = dynp->d_un.d_val;
1338 		break;
1339 
1340 	case DT_MIPS_RLD_MAP:
1341 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1342 		break;
1343 
1344 	case DT_MIPS_RLD_MAP_REL:
1345 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1346 		// section relative to the address of the tag itself.
1347 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1348 		    (Elf_Addr) &r_debug;
1349 		break;
1350 
1351 	case DT_MIPS_PLTGOT:
1352 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1353 		    dynp->d_un.d_ptr);
1354 		break;
1355 
1356 #endif
1357 
1358 #ifdef __powerpc__
1359 #ifdef __powerpc64__
1360 	case DT_PPC64_GLINK:
1361 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1362 		break;
1363 #else
1364 	case DT_PPC_GOT:
1365 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1366 		break;
1367 #endif
1368 #endif
1369 
1370 	case DT_FLAGS_1:
1371 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1372 		    obj->z_noopen = true;
1373 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1374 		    obj->z_origin = true;
1375 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1376 		    obj->z_global = true;
1377 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1378 		    obj->bind_now = true;
1379 		if (dynp->d_un.d_val & DF_1_NODELETE)
1380 		    obj->z_nodelete = true;
1381 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1382 		    obj->z_loadfltr = true;
1383 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1384 		    obj->z_interpose = true;
1385 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1386 		    obj->z_nodeflib = true;
1387 		if (dynp->d_un.d_val & DF_1_PIE)
1388 		    obj->z_pie = true;
1389 	    break;
1390 
1391 	default:
1392 	    if (!early) {
1393 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1394 		    (long)dynp->d_tag);
1395 	    }
1396 	    break;
1397 	}
1398     }
1399 
1400     obj->traced = false;
1401 
1402     if (plttype == DT_RELA) {
1403 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1404 	obj->pltrel = NULL;
1405 	obj->pltrelasize = obj->pltrelsize;
1406 	obj->pltrelsize = 0;
1407     }
1408 
1409     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1410     if (obj->valid_hash_sysv)
1411 	obj->dynsymcount = obj->nchains;
1412     else if (obj->valid_hash_gnu) {
1413 	obj->dynsymcount = 0;
1414 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1415 	    if (obj->buckets_gnu[bkt] == 0)
1416 		continue;
1417 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1418 	    do
1419 		obj->dynsymcount++;
1420 	    while ((*hashval++ & 1u) == 0);
1421 	}
1422 	obj->dynsymcount += obj->symndx_gnu;
1423     }
1424 
1425     if (obj->linkmap.l_refname != NULL)
1426 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1427 	  linkmap.l_refname;
1428 }
1429 
1430 static bool
1431 obj_resolve_origin(Obj_Entry *obj)
1432 {
1433 
1434 	if (obj->origin_path != NULL)
1435 		return (true);
1436 	obj->origin_path = xmalloc(PATH_MAX);
1437 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1438 }
1439 
1440 static bool
1441 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1442     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1443 {
1444 
1445 	if (obj->z_origin && !obj_resolve_origin(obj))
1446 		return (false);
1447 
1448 	if (dyn_runpath != NULL) {
1449 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1450 		obj->runpath = origin_subst(obj, obj->runpath);
1451 	} else if (dyn_rpath != NULL) {
1452 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1453 		obj->rpath = origin_subst(obj, obj->rpath);
1454 	}
1455 	if (dyn_soname != NULL)
1456 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1457 	return (true);
1458 }
1459 
1460 static bool
1461 digest_dynamic(Obj_Entry *obj, int early)
1462 {
1463 	const Elf_Dyn *dyn_rpath;
1464 	const Elf_Dyn *dyn_soname;
1465 	const Elf_Dyn *dyn_runpath;
1466 
1467 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1468 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1469 }
1470 
1471 /*
1472  * Process a shared object's program header.  This is used only for the
1473  * main program, when the kernel has already loaded the main program
1474  * into memory before calling the dynamic linker.  It creates and
1475  * returns an Obj_Entry structure.
1476  */
1477 static Obj_Entry *
1478 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1479 {
1480     Obj_Entry *obj;
1481     const Elf_Phdr *phlimit = phdr + phnum;
1482     const Elf_Phdr *ph;
1483     Elf_Addr note_start, note_end;
1484     int nsegs = 0;
1485 
1486     obj = obj_new();
1487     for (ph = phdr;  ph < phlimit;  ph++) {
1488 	if (ph->p_type != PT_PHDR)
1489 	    continue;
1490 
1491 	obj->phdr = phdr;
1492 	obj->phsize = ph->p_memsz;
1493 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1494 	break;
1495     }
1496 
1497     obj->stack_flags = PF_X | PF_R | PF_W;
1498 
1499     for (ph = phdr;  ph < phlimit;  ph++) {
1500 	switch (ph->p_type) {
1501 
1502 	case PT_INTERP:
1503 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1504 	    break;
1505 
1506 	case PT_LOAD:
1507 	    if (nsegs == 0) {	/* First load segment */
1508 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1509 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1510 	    } else {		/* Last load segment */
1511 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1512 		  obj->vaddrbase;
1513 	    }
1514 	    nsegs++;
1515 	    break;
1516 
1517 	case PT_DYNAMIC:
1518 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1519 	    break;
1520 
1521 	case PT_TLS:
1522 	    obj->tlsindex = 1;
1523 	    obj->tlssize = ph->p_memsz;
1524 	    obj->tlsalign = ph->p_align;
1525 	    obj->tlsinitsize = ph->p_filesz;
1526 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1527 	    obj->tlspoffset = ph->p_offset;
1528 	    break;
1529 
1530 	case PT_GNU_STACK:
1531 	    obj->stack_flags = ph->p_flags;
1532 	    break;
1533 
1534 	case PT_GNU_RELRO:
1535 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1536 	    obj->relro_size = round_page(ph->p_memsz);
1537 	    break;
1538 
1539 	case PT_NOTE:
1540 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1541 	    note_end = note_start + ph->p_filesz;
1542 	    digest_notes(obj, note_start, note_end);
1543 	    break;
1544 	}
1545     }
1546     if (nsegs < 1) {
1547 	_rtld_error("%s: too few PT_LOAD segments", path);
1548 	return NULL;
1549     }
1550 
1551     obj->entry = entry;
1552     return obj;
1553 }
1554 
1555 void
1556 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1557 {
1558 	const Elf_Note *note;
1559 	const char *note_name;
1560 	uintptr_t p;
1561 
1562 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1563 	    note = (const Elf_Note *)((const char *)(note + 1) +
1564 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1565 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1566 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1567 		    note->n_descsz != sizeof(int32_t))
1568 			continue;
1569 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1570 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1571 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1572 			continue;
1573 		note_name = (const char *)(note + 1);
1574 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1575 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1576 			continue;
1577 		switch (note->n_type) {
1578 		case NT_FREEBSD_ABI_TAG:
1579 			/* FreeBSD osrel note */
1580 			p = (uintptr_t)(note + 1);
1581 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1582 			obj->osrel = *(const int32_t *)(p);
1583 			dbg("note osrel %d", obj->osrel);
1584 			break;
1585 		case NT_FREEBSD_FEATURE_CTL:
1586 			/* FreeBSD ABI feature control note */
1587 			p = (uintptr_t)(note + 1);
1588 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1589 			obj->fctl0 = *(const uint32_t *)(p);
1590 			dbg("note fctl0 %#x", obj->fctl0);
1591 			break;
1592 		case NT_FREEBSD_NOINIT_TAG:
1593 			/* FreeBSD 'crt does not call init' note */
1594 			obj->crt_no_init = true;
1595 			dbg("note crt_no_init");
1596 			break;
1597 		}
1598 	}
1599 }
1600 
1601 static Obj_Entry *
1602 dlcheck(void *handle)
1603 {
1604     Obj_Entry *obj;
1605 
1606     TAILQ_FOREACH(obj, &obj_list, next) {
1607 	if (obj == (Obj_Entry *) handle)
1608 	    break;
1609     }
1610 
1611     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1612 	_rtld_error("Invalid shared object handle %p", handle);
1613 	return NULL;
1614     }
1615     return obj;
1616 }
1617 
1618 /*
1619  * If the given object is already in the donelist, return true.  Otherwise
1620  * add the object to the list and return false.
1621  */
1622 static bool
1623 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1624 {
1625     unsigned int i;
1626 
1627     for (i = 0;  i < dlp->num_used;  i++)
1628 	if (dlp->objs[i] == obj)
1629 	    return true;
1630     /*
1631      * Our donelist allocation should always be sufficient.  But if
1632      * our threads locking isn't working properly, more shared objects
1633      * could have been loaded since we allocated the list.  That should
1634      * never happen, but we'll handle it properly just in case it does.
1635      */
1636     if (dlp->num_used < dlp->num_alloc)
1637 	dlp->objs[dlp->num_used++] = obj;
1638     return false;
1639 }
1640 
1641 /*
1642  * Hash function for symbol table lookup.  Don't even think about changing
1643  * this.  It is specified by the System V ABI.
1644  */
1645 unsigned long
1646 elf_hash(const char *name)
1647 {
1648     const unsigned char *p = (const unsigned char *) name;
1649     unsigned long h = 0;
1650     unsigned long g;
1651 
1652     while (*p != '\0') {
1653 	h = (h << 4) + *p++;
1654 	if ((g = h & 0xf0000000) != 0)
1655 	    h ^= g >> 24;
1656 	h &= ~g;
1657     }
1658     return h;
1659 }
1660 
1661 /*
1662  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1663  * unsigned in case it's implemented with a wider type.
1664  */
1665 static uint32_t
1666 gnu_hash(const char *s)
1667 {
1668 	uint32_t h;
1669 	unsigned char c;
1670 
1671 	h = 5381;
1672 	for (c = *s; c != '\0'; c = *++s)
1673 		h = h * 33 + c;
1674 	return (h & 0xffffffff);
1675 }
1676 
1677 
1678 /*
1679  * Find the library with the given name, and return its full pathname.
1680  * The returned string is dynamically allocated.  Generates an error
1681  * message and returns NULL if the library cannot be found.
1682  *
1683  * If the second argument is non-NULL, then it refers to an already-
1684  * loaded shared object, whose library search path will be searched.
1685  *
1686  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1687  * descriptor (which is close-on-exec) will be passed out via the third
1688  * argument.
1689  *
1690  * The search order is:
1691  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1692  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1693  *   LD_LIBRARY_PATH
1694  *   DT_RUNPATH in the referencing file
1695  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1696  *	 from list)
1697  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1698  *
1699  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1700  */
1701 static char *
1702 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1703 {
1704 	char *pathname, *refobj_path;
1705 	const char *name;
1706 	bool nodeflib, objgiven;
1707 
1708 	objgiven = refobj != NULL;
1709 
1710 	if (libmap_disable || !objgiven ||
1711 	    (name = lm_find(refobj->path, xname)) == NULL)
1712 		name = xname;
1713 
1714 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1715 		if (name[0] != '/' && !trust) {
1716 			_rtld_error("Absolute pathname required "
1717 			    "for shared object \"%s\"", name);
1718 			return (NULL);
1719 		}
1720 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1721 		    __DECONST(char *, name)));
1722 	}
1723 
1724 	dbg(" Searching for \"%s\"", name);
1725 	refobj_path = objgiven ? refobj->path : NULL;
1726 
1727 	/*
1728 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1729 	 * back to pre-conforming behaviour if user requested so with
1730 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1731 	 * nodeflib.
1732 	 */
1733 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1734 		pathname = search_library_path(name, ld_library_path,
1735 		    refobj_path, fdp);
1736 		if (pathname != NULL)
1737 			return (pathname);
1738 		if (refobj != NULL) {
1739 			pathname = search_library_path(name, refobj->rpath,
1740 			    refobj_path, fdp);
1741 			if (pathname != NULL)
1742 				return (pathname);
1743 		}
1744 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1745 		if (pathname != NULL)
1746 			return (pathname);
1747 		pathname = search_library_path(name, gethints(false),
1748 		    refobj_path, fdp);
1749 		if (pathname != NULL)
1750 			return (pathname);
1751 		pathname = search_library_path(name, ld_standard_library_path,
1752 		    refobj_path, fdp);
1753 		if (pathname != NULL)
1754 			return (pathname);
1755 	} else {
1756 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1757 		if (objgiven) {
1758 			pathname = search_library_path(name, refobj->rpath,
1759 			    refobj->path, fdp);
1760 			if (pathname != NULL)
1761 				return (pathname);
1762 		}
1763 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1764 			pathname = search_library_path(name, obj_main->rpath,
1765 			    refobj_path, fdp);
1766 			if (pathname != NULL)
1767 				return (pathname);
1768 		}
1769 		pathname = search_library_path(name, ld_library_path,
1770 		    refobj_path, fdp);
1771 		if (pathname != NULL)
1772 			return (pathname);
1773 		if (objgiven) {
1774 			pathname = search_library_path(name, refobj->runpath,
1775 			    refobj_path, fdp);
1776 			if (pathname != NULL)
1777 				return (pathname);
1778 		}
1779 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1780 		if (pathname != NULL)
1781 			return (pathname);
1782 		pathname = search_library_path(name, gethints(nodeflib),
1783 		    refobj_path, fdp);
1784 		if (pathname != NULL)
1785 			return (pathname);
1786 		if (objgiven && !nodeflib) {
1787 			pathname = search_library_path(name,
1788 			    ld_standard_library_path, refobj_path, fdp);
1789 			if (pathname != NULL)
1790 				return (pathname);
1791 		}
1792 	}
1793 
1794 	if (objgiven && refobj->path != NULL) {
1795 		_rtld_error("Shared object \"%s\" not found, "
1796 		    "required by \"%s\"", name, basename(refobj->path));
1797 	} else {
1798 		_rtld_error("Shared object \"%s\" not found", name);
1799 	}
1800 	return (NULL);
1801 }
1802 
1803 /*
1804  * Given a symbol number in a referencing object, find the corresponding
1805  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1806  * no definition was found.  Returns a pointer to the Obj_Entry of the
1807  * defining object via the reference parameter DEFOBJ_OUT.
1808  */
1809 const Elf_Sym *
1810 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1811     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1812     RtldLockState *lockstate)
1813 {
1814     const Elf_Sym *ref;
1815     const Elf_Sym *def;
1816     const Obj_Entry *defobj;
1817     const Ver_Entry *ve;
1818     SymLook req;
1819     const char *name;
1820     int res;
1821 
1822     /*
1823      * If we have already found this symbol, get the information from
1824      * the cache.
1825      */
1826     if (symnum >= refobj->dynsymcount)
1827 	return NULL;	/* Bad object */
1828     if (cache != NULL && cache[symnum].sym != NULL) {
1829 	*defobj_out = cache[symnum].obj;
1830 	return cache[symnum].sym;
1831     }
1832 
1833     ref = refobj->symtab + symnum;
1834     name = refobj->strtab + ref->st_name;
1835     def = NULL;
1836     defobj = NULL;
1837     ve = NULL;
1838 
1839     /*
1840      * We don't have to do a full scale lookup if the symbol is local.
1841      * We know it will bind to the instance in this load module; to
1842      * which we already have a pointer (ie ref). By not doing a lookup,
1843      * we not only improve performance, but it also avoids unresolvable
1844      * symbols when local symbols are not in the hash table. This has
1845      * been seen with the ia64 toolchain.
1846      */
1847     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1848 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1849 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1850 		symnum);
1851 	}
1852 	symlook_init(&req, name);
1853 	req.flags = flags;
1854 	ve = req.ventry = fetch_ventry(refobj, symnum);
1855 	req.lockstate = lockstate;
1856 	res = symlook_default(&req, refobj);
1857 	if (res == 0) {
1858 	    def = req.sym_out;
1859 	    defobj = req.defobj_out;
1860 	}
1861     } else {
1862 	def = ref;
1863 	defobj = refobj;
1864     }
1865 
1866     /*
1867      * If we found no definition and the reference is weak, treat the
1868      * symbol as having the value zero.
1869      */
1870     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1871 	def = &sym_zero;
1872 	defobj = obj_main;
1873     }
1874 
1875     if (def != NULL) {
1876 	*defobj_out = defobj;
1877 	/* Record the information in the cache to avoid subsequent lookups. */
1878 	if (cache != NULL) {
1879 	    cache[symnum].sym = def;
1880 	    cache[symnum].obj = defobj;
1881 	}
1882     } else {
1883 	if (refobj != &obj_rtld)
1884 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1885 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1886     }
1887     return def;
1888 }
1889 
1890 /*
1891  * Return the search path from the ldconfig hints file, reading it if
1892  * necessary.  If nostdlib is true, then the default search paths are
1893  * not added to result.
1894  *
1895  * Returns NULL if there are problems with the hints file,
1896  * or if the search path there is empty.
1897  */
1898 static const char *
1899 gethints(bool nostdlib)
1900 {
1901 	static char *filtered_path;
1902 	static const char *hints;
1903 	static struct elfhints_hdr hdr;
1904 	struct fill_search_info_args sargs, hargs;
1905 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1906 	struct dl_serpath *SLPpath, *hintpath;
1907 	char *p;
1908 	struct stat hint_stat;
1909 	unsigned int SLPndx, hintndx, fndx, fcount;
1910 	int fd;
1911 	size_t flen;
1912 	uint32_t dl;
1913 	bool skip;
1914 
1915 	/* First call, read the hints file */
1916 	if (hints == NULL) {
1917 		/* Keep from trying again in case the hints file is bad. */
1918 		hints = "";
1919 
1920 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1921 			return (NULL);
1922 
1923 		/*
1924 		 * Check of hdr.dirlistlen value against type limit
1925 		 * intends to pacify static analyzers.  Further
1926 		 * paranoia leads to checks that dirlist is fully
1927 		 * contained in the file range.
1928 		 */
1929 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1930 		    hdr.magic != ELFHINTS_MAGIC ||
1931 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1932 		    fstat(fd, &hint_stat) == -1) {
1933 cleanup1:
1934 			close(fd);
1935 			hdr.dirlistlen = 0;
1936 			return (NULL);
1937 		}
1938 		dl = hdr.strtab;
1939 		if (dl + hdr.dirlist < dl)
1940 			goto cleanup1;
1941 		dl += hdr.dirlist;
1942 		if (dl + hdr.dirlistlen < dl)
1943 			goto cleanup1;
1944 		dl += hdr.dirlistlen;
1945 		if (dl > hint_stat.st_size)
1946 			goto cleanup1;
1947 		p = xmalloc(hdr.dirlistlen + 1);
1948 		if (pread(fd, p, hdr.dirlistlen + 1,
1949 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1950 		    p[hdr.dirlistlen] != '\0') {
1951 			free(p);
1952 			goto cleanup1;
1953 		}
1954 		hints = p;
1955 		close(fd);
1956 	}
1957 
1958 	/*
1959 	 * If caller agreed to receive list which includes the default
1960 	 * paths, we are done. Otherwise, if we still did not
1961 	 * calculated filtered result, do it now.
1962 	 */
1963 	if (!nostdlib)
1964 		return (hints[0] != '\0' ? hints : NULL);
1965 	if (filtered_path != NULL)
1966 		goto filt_ret;
1967 
1968 	/*
1969 	 * Obtain the list of all configured search paths, and the
1970 	 * list of the default paths.
1971 	 *
1972 	 * First estimate the size of the results.
1973 	 */
1974 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1975 	smeta.dls_cnt = 0;
1976 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1977 	hmeta.dls_cnt = 0;
1978 
1979 	sargs.request = RTLD_DI_SERINFOSIZE;
1980 	sargs.serinfo = &smeta;
1981 	hargs.request = RTLD_DI_SERINFOSIZE;
1982 	hargs.serinfo = &hmeta;
1983 
1984 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1985 	    &sargs);
1986 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1987 
1988 	SLPinfo = xmalloc(smeta.dls_size);
1989 	hintinfo = xmalloc(hmeta.dls_size);
1990 
1991 	/*
1992 	 * Next fetch both sets of paths.
1993 	 */
1994 	sargs.request = RTLD_DI_SERINFO;
1995 	sargs.serinfo = SLPinfo;
1996 	sargs.serpath = &SLPinfo->dls_serpath[0];
1997 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1998 
1999 	hargs.request = RTLD_DI_SERINFO;
2000 	hargs.serinfo = hintinfo;
2001 	hargs.serpath = &hintinfo->dls_serpath[0];
2002 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2003 
2004 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2005 	    &sargs);
2006 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2007 
2008 	/*
2009 	 * Now calculate the difference between two sets, by excluding
2010 	 * standard paths from the full set.
2011 	 */
2012 	fndx = 0;
2013 	fcount = 0;
2014 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2015 	hintpath = &hintinfo->dls_serpath[0];
2016 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2017 		skip = false;
2018 		SLPpath = &SLPinfo->dls_serpath[0];
2019 		/*
2020 		 * Check each standard path against current.
2021 		 */
2022 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2023 			/* matched, skip the path */
2024 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2025 				skip = true;
2026 				break;
2027 			}
2028 		}
2029 		if (skip)
2030 			continue;
2031 		/*
2032 		 * Not matched against any standard path, add the path
2033 		 * to result. Separate consequtive paths with ':'.
2034 		 */
2035 		if (fcount > 0) {
2036 			filtered_path[fndx] = ':';
2037 			fndx++;
2038 		}
2039 		fcount++;
2040 		flen = strlen(hintpath->dls_name);
2041 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2042 		fndx += flen;
2043 	}
2044 	filtered_path[fndx] = '\0';
2045 
2046 	free(SLPinfo);
2047 	free(hintinfo);
2048 
2049 filt_ret:
2050 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2051 }
2052 
2053 static void
2054 init_dag(Obj_Entry *root)
2055 {
2056     const Needed_Entry *needed;
2057     const Objlist_Entry *elm;
2058     DoneList donelist;
2059 
2060     if (root->dag_inited)
2061 	return;
2062     donelist_init(&donelist);
2063 
2064     /* Root object belongs to own DAG. */
2065     objlist_push_tail(&root->dldags, root);
2066     objlist_push_tail(&root->dagmembers, root);
2067     donelist_check(&donelist, root);
2068 
2069     /*
2070      * Add dependencies of root object to DAG in breadth order
2071      * by exploiting the fact that each new object get added
2072      * to the tail of the dagmembers list.
2073      */
2074     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2075 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2076 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2077 		continue;
2078 	    objlist_push_tail(&needed->obj->dldags, root);
2079 	    objlist_push_tail(&root->dagmembers, needed->obj);
2080 	}
2081     }
2082     root->dag_inited = true;
2083 }
2084 
2085 static void
2086 init_marker(Obj_Entry *marker)
2087 {
2088 
2089 	bzero(marker, sizeof(*marker));
2090 	marker->marker = true;
2091 }
2092 
2093 Obj_Entry *
2094 globallist_curr(const Obj_Entry *obj)
2095 {
2096 
2097 	for (;;) {
2098 		if (obj == NULL)
2099 			return (NULL);
2100 		if (!obj->marker)
2101 			return (__DECONST(Obj_Entry *, obj));
2102 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2103 	}
2104 }
2105 
2106 Obj_Entry *
2107 globallist_next(const Obj_Entry *obj)
2108 {
2109 
2110 	for (;;) {
2111 		obj = TAILQ_NEXT(obj, next);
2112 		if (obj == NULL)
2113 			return (NULL);
2114 		if (!obj->marker)
2115 			return (__DECONST(Obj_Entry *, obj));
2116 	}
2117 }
2118 
2119 /* Prevent the object from being unmapped while the bind lock is dropped. */
2120 static void
2121 hold_object(Obj_Entry *obj)
2122 {
2123 
2124 	obj->holdcount++;
2125 }
2126 
2127 static void
2128 unhold_object(Obj_Entry *obj)
2129 {
2130 
2131 	assert(obj->holdcount > 0);
2132 	if (--obj->holdcount == 0 && obj->unholdfree)
2133 		release_object(obj);
2134 }
2135 
2136 static void
2137 process_z(Obj_Entry *root)
2138 {
2139 	const Objlist_Entry *elm;
2140 	Obj_Entry *obj;
2141 
2142 	/*
2143 	 * Walk over object DAG and process every dependent object
2144 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2145 	 * to grow their own DAG.
2146 	 *
2147 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2148 	 * symlook_global() to work.
2149 	 *
2150 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2151 	 */
2152 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2153 		obj = elm->obj;
2154 		if (obj == NULL)
2155 			continue;
2156 		if (obj->z_nodelete && !obj->ref_nodel) {
2157 			dbg("obj %s -z nodelete", obj->path);
2158 			init_dag(obj);
2159 			ref_dag(obj);
2160 			obj->ref_nodel = true;
2161 		}
2162 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2163 			dbg("obj %s -z global", obj->path);
2164 			objlist_push_tail(&list_global, obj);
2165 			init_dag(obj);
2166 		}
2167 	}
2168 }
2169 
2170 static void
2171 parse_rtld_phdr(Obj_Entry *obj)
2172 {
2173 	const Elf_Phdr *ph;
2174 	Elf_Addr note_start, note_end;
2175 
2176 	obj->stack_flags = PF_X | PF_R | PF_W;
2177 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2178 	    obj->phsize; ph++) {
2179 		switch (ph->p_type) {
2180 		case PT_GNU_STACK:
2181 			obj->stack_flags = ph->p_flags;
2182 			break;
2183 		case PT_GNU_RELRO:
2184 			obj->relro_page = obj->relocbase +
2185 			    trunc_page(ph->p_vaddr);
2186 			obj->relro_size = round_page(ph->p_memsz);
2187 			break;
2188 		case PT_NOTE:
2189 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2190 			note_end = note_start + ph->p_filesz;
2191 			digest_notes(obj, note_start, note_end);
2192 			break;
2193 		}
2194 	}
2195 }
2196 
2197 /*
2198  * Initialize the dynamic linker.  The argument is the address at which
2199  * the dynamic linker has been mapped into memory.  The primary task of
2200  * this function is to relocate the dynamic linker.
2201  */
2202 static void
2203 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2204 {
2205     Obj_Entry objtmp;	/* Temporary rtld object */
2206     const Elf_Ehdr *ehdr;
2207     const Elf_Dyn *dyn_rpath;
2208     const Elf_Dyn *dyn_soname;
2209     const Elf_Dyn *dyn_runpath;
2210 
2211 #ifdef RTLD_INIT_PAGESIZES_EARLY
2212     /* The page size is required by the dynamic memory allocator. */
2213     init_pagesizes(aux_info);
2214 #endif
2215 
2216     /*
2217      * Conjure up an Obj_Entry structure for the dynamic linker.
2218      *
2219      * The "path" member can't be initialized yet because string constants
2220      * cannot yet be accessed. Below we will set it correctly.
2221      */
2222     memset(&objtmp, 0, sizeof(objtmp));
2223     objtmp.path = NULL;
2224     objtmp.rtld = true;
2225     objtmp.mapbase = mapbase;
2226 #ifdef PIC
2227     objtmp.relocbase = mapbase;
2228 #endif
2229 
2230     objtmp.dynamic = rtld_dynamic(&objtmp);
2231     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2232     assert(objtmp.needed == NULL);
2233 #if !defined(__mips__)
2234     /* MIPS has a bogus DT_TEXTREL. */
2235     assert(!objtmp.textrel);
2236 #endif
2237     /*
2238      * Temporarily put the dynamic linker entry into the object list, so
2239      * that symbols can be found.
2240      */
2241     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2242 
2243     ehdr = (Elf_Ehdr *)mapbase;
2244     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2245     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2246 
2247     /* Initialize the object list. */
2248     TAILQ_INIT(&obj_list);
2249 
2250     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2251     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2252 
2253 #ifndef RTLD_INIT_PAGESIZES_EARLY
2254     /* The page size is required by the dynamic memory allocator. */
2255     init_pagesizes(aux_info);
2256 #endif
2257 
2258     if (aux_info[AT_OSRELDATE] != NULL)
2259 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2260 
2261     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2262 
2263     /* Replace the path with a dynamically allocated copy. */
2264     obj_rtld.path = xstrdup(ld_path_rtld);
2265 
2266     parse_rtld_phdr(&obj_rtld);
2267     obj_enforce_relro(&obj_rtld);
2268 
2269     r_debug.r_version = R_DEBUG_VERSION;
2270     r_debug.r_brk = r_debug_state;
2271     r_debug.r_state = RT_CONSISTENT;
2272     r_debug.r_ldbase = obj_rtld.relocbase;
2273 }
2274 
2275 /*
2276  * Retrieve the array of supported page sizes.  The kernel provides the page
2277  * sizes in increasing order.
2278  */
2279 static void
2280 init_pagesizes(Elf_Auxinfo **aux_info)
2281 {
2282 	static size_t psa[MAXPAGESIZES];
2283 	int mib[2];
2284 	size_t len, size;
2285 
2286 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2287 	    NULL) {
2288 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2289 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2290 	} else {
2291 		len = 2;
2292 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2293 			size = sizeof(psa);
2294 		else {
2295 			/* As a fallback, retrieve the base page size. */
2296 			size = sizeof(psa[0]);
2297 			if (aux_info[AT_PAGESZ] != NULL) {
2298 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2299 				goto psa_filled;
2300 			} else {
2301 				mib[0] = CTL_HW;
2302 				mib[1] = HW_PAGESIZE;
2303 				len = 2;
2304 			}
2305 		}
2306 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2307 			_rtld_error("sysctl for hw.pagesize(s) failed");
2308 			rtld_die();
2309 		}
2310 psa_filled:
2311 		pagesizes = psa;
2312 	}
2313 	npagesizes = size / sizeof(pagesizes[0]);
2314 	/* Discard any invalid entries at the end of the array. */
2315 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2316 		npagesizes--;
2317 }
2318 
2319 /*
2320  * Add the init functions from a needed object list (and its recursive
2321  * needed objects) to "list".  This is not used directly; it is a helper
2322  * function for initlist_add_objects().  The write lock must be held
2323  * when this function is called.
2324  */
2325 static void
2326 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2327 {
2328     /* Recursively process the successor needed objects. */
2329     if (needed->next != NULL)
2330 	initlist_add_neededs(needed->next, list);
2331 
2332     /* Process the current needed object. */
2333     if (needed->obj != NULL)
2334 	initlist_add_objects(needed->obj, needed->obj, list);
2335 }
2336 
2337 /*
2338  * Scan all of the DAGs rooted in the range of objects from "obj" to
2339  * "tail" and add their init functions to "list".  This recurses over
2340  * the DAGs and ensure the proper init ordering such that each object's
2341  * needed libraries are initialized before the object itself.  At the
2342  * same time, this function adds the objects to the global finalization
2343  * list "list_fini" in the opposite order.  The write lock must be
2344  * held when this function is called.
2345  */
2346 static void
2347 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2348 {
2349     Obj_Entry *nobj;
2350 
2351     if (obj->init_scanned || obj->init_done)
2352 	return;
2353     obj->init_scanned = true;
2354 
2355     /* Recursively process the successor objects. */
2356     nobj = globallist_next(obj);
2357     if (nobj != NULL && obj != tail)
2358 	initlist_add_objects(nobj, tail, list);
2359 
2360     /* Recursively process the needed objects. */
2361     if (obj->needed != NULL)
2362 	initlist_add_neededs(obj->needed, list);
2363     if (obj->needed_filtees != NULL)
2364 	initlist_add_neededs(obj->needed_filtees, list);
2365     if (obj->needed_aux_filtees != NULL)
2366 	initlist_add_neededs(obj->needed_aux_filtees, list);
2367 
2368     /* Add the object to the init list. */
2369     objlist_push_tail(list, obj);
2370 
2371     /* Add the object to the global fini list in the reverse order. */
2372     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2373       && !obj->on_fini_list) {
2374 	objlist_push_head(&list_fini, obj);
2375 	obj->on_fini_list = true;
2376     }
2377 }
2378 
2379 #ifndef FPTR_TARGET
2380 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2381 #endif
2382 
2383 static void
2384 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2385 {
2386     Needed_Entry *needed, *needed1;
2387 
2388     for (needed = n; needed != NULL; needed = needed->next) {
2389 	if (needed->obj != NULL) {
2390 	    dlclose_locked(needed->obj, lockstate);
2391 	    needed->obj = NULL;
2392 	}
2393     }
2394     for (needed = n; needed != NULL; needed = needed1) {
2395 	needed1 = needed->next;
2396 	free(needed);
2397     }
2398 }
2399 
2400 static void
2401 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2402 {
2403 
2404 	free_needed_filtees(obj->needed_filtees, lockstate);
2405 	obj->needed_filtees = NULL;
2406 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2407 	obj->needed_aux_filtees = NULL;
2408 	obj->filtees_loaded = false;
2409 }
2410 
2411 static void
2412 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2413     RtldLockState *lockstate)
2414 {
2415 
2416     for (; needed != NULL; needed = needed->next) {
2417 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2418 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2419 	  RTLD_LOCAL, lockstate);
2420     }
2421 }
2422 
2423 static void
2424 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2425 {
2426 
2427     lock_restart_for_upgrade(lockstate);
2428     if (!obj->filtees_loaded) {
2429 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2430 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2431 	obj->filtees_loaded = true;
2432     }
2433 }
2434 
2435 static int
2436 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2437 {
2438     Obj_Entry *obj1;
2439 
2440     for (; needed != NULL; needed = needed->next) {
2441 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2442 	  flags & ~RTLD_LO_NOLOAD);
2443 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2444 	    return (-1);
2445     }
2446     return (0);
2447 }
2448 
2449 /*
2450  * Given a shared object, traverse its list of needed objects, and load
2451  * each of them.  Returns 0 on success.  Generates an error message and
2452  * returns -1 on failure.
2453  */
2454 static int
2455 load_needed_objects(Obj_Entry *first, int flags)
2456 {
2457     Obj_Entry *obj;
2458 
2459     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2460 	if (obj->marker)
2461 	    continue;
2462 	if (process_needed(obj, obj->needed, flags) == -1)
2463 	    return (-1);
2464     }
2465     return (0);
2466 }
2467 
2468 static int
2469 load_preload_objects(void)
2470 {
2471     char *p = ld_preload;
2472     Obj_Entry *obj;
2473     static const char delim[] = " \t:;";
2474 
2475     if (p == NULL)
2476 	return 0;
2477 
2478     p += strspn(p, delim);
2479     while (*p != '\0') {
2480 	size_t len = strcspn(p, delim);
2481 	char savech;
2482 
2483 	savech = p[len];
2484 	p[len] = '\0';
2485 	obj = load_object(p, -1, NULL, 0);
2486 	if (obj == NULL)
2487 	    return -1;	/* XXX - cleanup */
2488 	obj->z_interpose = true;
2489 	p[len] = savech;
2490 	p += len;
2491 	p += strspn(p, delim);
2492     }
2493     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2494     return 0;
2495 }
2496 
2497 static const char *
2498 printable_path(const char *path)
2499 {
2500 
2501 	return (path == NULL ? "<unknown>" : path);
2502 }
2503 
2504 /*
2505  * Load a shared object into memory, if it is not already loaded.  The
2506  * object may be specified by name or by user-supplied file descriptor
2507  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2508  * duplicate is.
2509  *
2510  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2511  * on failure.
2512  */
2513 static Obj_Entry *
2514 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2515 {
2516     Obj_Entry *obj;
2517     int fd;
2518     struct stat sb;
2519     char *path;
2520 
2521     fd = -1;
2522     if (name != NULL) {
2523 	TAILQ_FOREACH(obj, &obj_list, next) {
2524 	    if (obj->marker || obj->doomed)
2525 		continue;
2526 	    if (object_match_name(obj, name))
2527 		return (obj);
2528 	}
2529 
2530 	path = find_library(name, refobj, &fd);
2531 	if (path == NULL)
2532 	    return (NULL);
2533     } else
2534 	path = NULL;
2535 
2536     if (fd >= 0) {
2537 	/*
2538 	 * search_library_pathfds() opens a fresh file descriptor for the
2539 	 * library, so there is no need to dup().
2540 	 */
2541     } else if (fd_u == -1) {
2542 	/*
2543 	 * If we didn't find a match by pathname, or the name is not
2544 	 * supplied, open the file and check again by device and inode.
2545 	 * This avoids false mismatches caused by multiple links or ".."
2546 	 * in pathnames.
2547 	 *
2548 	 * To avoid a race, we open the file and use fstat() rather than
2549 	 * using stat().
2550 	 */
2551 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2552 	    _rtld_error("Cannot open \"%s\"", path);
2553 	    free(path);
2554 	    return (NULL);
2555 	}
2556     } else {
2557 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2558 	if (fd == -1) {
2559 	    _rtld_error("Cannot dup fd");
2560 	    free(path);
2561 	    return (NULL);
2562 	}
2563     }
2564     if (fstat(fd, &sb) == -1) {
2565 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2566 	close(fd);
2567 	free(path);
2568 	return NULL;
2569     }
2570     TAILQ_FOREACH(obj, &obj_list, next) {
2571 	if (obj->marker || obj->doomed)
2572 	    continue;
2573 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2574 	    break;
2575     }
2576     if (obj != NULL && name != NULL) {
2577 	object_add_name(obj, name);
2578 	free(path);
2579 	close(fd);
2580 	return obj;
2581     }
2582     if (flags & RTLD_LO_NOLOAD) {
2583 	free(path);
2584 	close(fd);
2585 	return (NULL);
2586     }
2587 
2588     /* First use of this object, so we must map it in */
2589     obj = do_load_object(fd, name, path, &sb, flags);
2590     if (obj == NULL)
2591 	free(path);
2592     close(fd);
2593 
2594     return obj;
2595 }
2596 
2597 static Obj_Entry *
2598 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2599   int flags)
2600 {
2601     Obj_Entry *obj;
2602     struct statfs fs;
2603 
2604     /*
2605      * but first, make sure that environment variables haven't been
2606      * used to circumvent the noexec flag on a filesystem.
2607      */
2608     if (dangerous_ld_env) {
2609 	if (fstatfs(fd, &fs) != 0) {
2610 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2611 	    return NULL;
2612 	}
2613 	if (fs.f_flags & MNT_NOEXEC) {
2614 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2615 	    return NULL;
2616 	}
2617     }
2618     dbg("loading \"%s\"", printable_path(path));
2619     obj = map_object(fd, printable_path(path), sbp);
2620     if (obj == NULL)
2621         return NULL;
2622 
2623     /*
2624      * If DT_SONAME is present in the object, digest_dynamic2 already
2625      * added it to the object names.
2626      */
2627     if (name != NULL)
2628 	object_add_name(obj, name);
2629     obj->path = path;
2630     if (!digest_dynamic(obj, 0))
2631 	goto errp;
2632     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2633 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2634     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2635 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2636 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2637 	goto errp;
2638     }
2639     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2640       RTLD_LO_DLOPEN) {
2641 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2642 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2643 	goto errp;
2644     }
2645 
2646     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2647     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2648     obj_count++;
2649     obj_loads++;
2650     linkmap_add(obj);	/* for GDB & dlinfo() */
2651     max_stack_flags |= obj->stack_flags;
2652 
2653     dbg("  %p .. %p: %s", obj->mapbase,
2654          obj->mapbase + obj->mapsize - 1, obj->path);
2655     if (obj->textrel)
2656 	dbg("  WARNING: %s has impure text", obj->path);
2657     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2658 	obj->path);
2659 
2660     return (obj);
2661 
2662 errp:
2663     munmap(obj->mapbase, obj->mapsize);
2664     obj_free(obj);
2665     return (NULL);
2666 }
2667 
2668 static Obj_Entry *
2669 obj_from_addr(const void *addr)
2670 {
2671     Obj_Entry *obj;
2672 
2673     TAILQ_FOREACH(obj, &obj_list, next) {
2674 	if (obj->marker)
2675 	    continue;
2676 	if (addr < (void *) obj->mapbase)
2677 	    continue;
2678 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2679 	    return obj;
2680     }
2681     return NULL;
2682 }
2683 
2684 static void
2685 preinit_main(void)
2686 {
2687     Elf_Addr *preinit_addr;
2688     int index;
2689 
2690     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2691     if (preinit_addr == NULL)
2692 	return;
2693 
2694     for (index = 0; index < obj_main->preinit_array_num; index++) {
2695 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2696 	    dbg("calling preinit function for %s at %p", obj_main->path,
2697 	      (void *)preinit_addr[index]);
2698 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2699 	      0, 0, obj_main->path);
2700 	    call_init_pointer(obj_main, preinit_addr[index]);
2701 	}
2702     }
2703 }
2704 
2705 /*
2706  * Call the finalization functions for each of the objects in "list"
2707  * belonging to the DAG of "root" and referenced once. If NULL "root"
2708  * is specified, every finalization function will be called regardless
2709  * of the reference count and the list elements won't be freed. All of
2710  * the objects are expected to have non-NULL fini functions.
2711  */
2712 static void
2713 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2714 {
2715     Objlist_Entry *elm;
2716     char *saved_msg;
2717     Elf_Addr *fini_addr;
2718     int index;
2719 
2720     assert(root == NULL || root->refcount == 1);
2721 
2722     if (root != NULL)
2723 	root->doomed = true;
2724 
2725     /*
2726      * Preserve the current error message since a fini function might
2727      * call into the dynamic linker and overwrite it.
2728      */
2729     saved_msg = errmsg_save();
2730     do {
2731 	STAILQ_FOREACH(elm, list, link) {
2732 	    if (root != NULL && (elm->obj->refcount != 1 ||
2733 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2734 		continue;
2735 	    /* Remove object from fini list to prevent recursive invocation. */
2736 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2737 	    /* Ensure that new references cannot be acquired. */
2738 	    elm->obj->doomed = true;
2739 
2740 	    hold_object(elm->obj);
2741 	    lock_release(rtld_bind_lock, lockstate);
2742 	    /*
2743 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2744 	     * When this happens, DT_FINI_ARRAY is processed first.
2745 	     */
2746 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2747 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2748 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2749 		  index--) {
2750 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2751 			dbg("calling fini function for %s at %p",
2752 			    elm->obj->path, (void *)fini_addr[index]);
2753 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2754 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2755 			call_initfini_pointer(elm->obj, fini_addr[index]);
2756 		    }
2757 		}
2758 	    }
2759 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2760 		dbg("calling fini function for %s at %p", elm->obj->path,
2761 		    (void *)elm->obj->fini);
2762 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2763 		    0, 0, elm->obj->path);
2764 		call_initfini_pointer(elm->obj, elm->obj->fini);
2765 	    }
2766 	    wlock_acquire(rtld_bind_lock, lockstate);
2767 	    unhold_object(elm->obj);
2768 	    /* No need to free anything if process is going down. */
2769 	    if (root != NULL)
2770 	    	free(elm);
2771 	    /*
2772 	     * We must restart the list traversal after every fini call
2773 	     * because a dlclose() call from the fini function or from
2774 	     * another thread might have modified the reference counts.
2775 	     */
2776 	    break;
2777 	}
2778     } while (elm != NULL);
2779     errmsg_restore(saved_msg);
2780 }
2781 
2782 /*
2783  * Call the initialization functions for each of the objects in
2784  * "list".  All of the objects are expected to have non-NULL init
2785  * functions.
2786  */
2787 static void
2788 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2789 {
2790     Objlist_Entry *elm;
2791     Obj_Entry *obj;
2792     char *saved_msg;
2793     Elf_Addr *init_addr;
2794     void (*reg)(void (*)(void));
2795     int index;
2796 
2797     /*
2798      * Clean init_scanned flag so that objects can be rechecked and
2799      * possibly initialized earlier if any of vectors called below
2800      * cause the change by using dlopen.
2801      */
2802     TAILQ_FOREACH(obj, &obj_list, next) {
2803 	if (obj->marker)
2804 	    continue;
2805 	obj->init_scanned = false;
2806     }
2807 
2808     /*
2809      * Preserve the current error message since an init function might
2810      * call into the dynamic linker and overwrite it.
2811      */
2812     saved_msg = errmsg_save();
2813     STAILQ_FOREACH(elm, list, link) {
2814 	if (elm->obj->init_done) /* Initialized early. */
2815 	    continue;
2816 	/*
2817 	 * Race: other thread might try to use this object before current
2818 	 * one completes the initialization. Not much can be done here
2819 	 * without better locking.
2820 	 */
2821 	elm->obj->init_done = true;
2822 	hold_object(elm->obj);
2823 	reg = NULL;
2824 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2825 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2826 		    "__libc_atexit", lockstate);
2827 	}
2828 	lock_release(rtld_bind_lock, lockstate);
2829 	if (reg != NULL) {
2830 		reg(rtld_exit);
2831 		rtld_exit_ptr = rtld_nop_exit;
2832 	}
2833 
2834         /*
2835          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2836          * When this happens, DT_INIT is processed first.
2837          */
2838 	if (elm->obj->init != (Elf_Addr)NULL) {
2839 	    dbg("calling init function for %s at %p", elm->obj->path,
2840 	        (void *)elm->obj->init);
2841 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2842 	        0, 0, elm->obj->path);
2843 	    call_init_pointer(elm->obj, elm->obj->init);
2844 	}
2845 	init_addr = (Elf_Addr *)elm->obj->init_array;
2846 	if (init_addr != NULL) {
2847 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2848 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2849 		    dbg("calling init function for %s at %p", elm->obj->path,
2850 			(void *)init_addr[index]);
2851 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2852 			(void *)init_addr[index], 0, 0, elm->obj->path);
2853 		    call_init_pointer(elm->obj, init_addr[index]);
2854 		}
2855 	    }
2856 	}
2857 	wlock_acquire(rtld_bind_lock, lockstate);
2858 	unhold_object(elm->obj);
2859     }
2860     errmsg_restore(saved_msg);
2861 }
2862 
2863 static void
2864 objlist_clear(Objlist *list)
2865 {
2866     Objlist_Entry *elm;
2867 
2868     while (!STAILQ_EMPTY(list)) {
2869 	elm = STAILQ_FIRST(list);
2870 	STAILQ_REMOVE_HEAD(list, link);
2871 	free(elm);
2872     }
2873 }
2874 
2875 static Objlist_Entry *
2876 objlist_find(Objlist *list, const Obj_Entry *obj)
2877 {
2878     Objlist_Entry *elm;
2879 
2880     STAILQ_FOREACH(elm, list, link)
2881 	if (elm->obj == obj)
2882 	    return elm;
2883     return NULL;
2884 }
2885 
2886 static void
2887 objlist_init(Objlist *list)
2888 {
2889     STAILQ_INIT(list);
2890 }
2891 
2892 static void
2893 objlist_push_head(Objlist *list, Obj_Entry *obj)
2894 {
2895     Objlist_Entry *elm;
2896 
2897     elm = NEW(Objlist_Entry);
2898     elm->obj = obj;
2899     STAILQ_INSERT_HEAD(list, elm, link);
2900 }
2901 
2902 static void
2903 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2904 {
2905     Objlist_Entry *elm;
2906 
2907     elm = NEW(Objlist_Entry);
2908     elm->obj = obj;
2909     STAILQ_INSERT_TAIL(list, elm, link);
2910 }
2911 
2912 static void
2913 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2914 {
2915 	Objlist_Entry *elm, *listelm;
2916 
2917 	STAILQ_FOREACH(listelm, list, link) {
2918 		if (listelm->obj == listobj)
2919 			break;
2920 	}
2921 	elm = NEW(Objlist_Entry);
2922 	elm->obj = obj;
2923 	if (listelm != NULL)
2924 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2925 	else
2926 		STAILQ_INSERT_TAIL(list, elm, link);
2927 }
2928 
2929 static void
2930 objlist_remove(Objlist *list, Obj_Entry *obj)
2931 {
2932     Objlist_Entry *elm;
2933 
2934     if ((elm = objlist_find(list, obj)) != NULL) {
2935 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2936 	free(elm);
2937     }
2938 }
2939 
2940 /*
2941  * Relocate dag rooted in the specified object.
2942  * Returns 0 on success, or -1 on failure.
2943  */
2944 
2945 static int
2946 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2947     int flags, RtldLockState *lockstate)
2948 {
2949 	Objlist_Entry *elm;
2950 	int error;
2951 
2952 	error = 0;
2953 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2954 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2955 		    lockstate);
2956 		if (error == -1)
2957 			break;
2958 	}
2959 	return (error);
2960 }
2961 
2962 /*
2963  * Prepare for, or clean after, relocating an object marked with
2964  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2965  * segments are remapped read-write.  After relocations are done, the
2966  * segment's permissions are returned back to the modes specified in
2967  * the phdrs.  If any relocation happened, or always for wired
2968  * program, COW is triggered.
2969  */
2970 static int
2971 reloc_textrel_prot(Obj_Entry *obj, bool before)
2972 {
2973 	const Elf_Phdr *ph;
2974 	void *base;
2975 	size_t l, sz;
2976 	int prot;
2977 
2978 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2979 	    l--, ph++) {
2980 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2981 			continue;
2982 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2983 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2984 		    trunc_page(ph->p_vaddr);
2985 		prot = before ? (PROT_READ | PROT_WRITE) :
2986 		    convert_prot(ph->p_flags);
2987 		if (mprotect(base, sz, prot) == -1) {
2988 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2989 			    obj->path, before ? "en" : "dis",
2990 			    rtld_strerror(errno));
2991 			return (-1);
2992 		}
2993 	}
2994 	return (0);
2995 }
2996 
2997 /*
2998  * Relocate single object.
2999  * Returns 0 on success, or -1 on failure.
3000  */
3001 static int
3002 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3003     int flags, RtldLockState *lockstate)
3004 {
3005 
3006 	if (obj->relocated)
3007 		return (0);
3008 	obj->relocated = true;
3009 	if (obj != rtldobj)
3010 		dbg("relocating \"%s\"", obj->path);
3011 
3012 	if (obj->symtab == NULL || obj->strtab == NULL ||
3013 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3014 		dbg("object %s has no run-time symbol table", obj->path);
3015 
3016 	/* There are relocations to the write-protected text segment. */
3017 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3018 		return (-1);
3019 
3020 	/* Process the non-PLT non-IFUNC relocations. */
3021 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3022 		return (-1);
3023 
3024 	/* Re-protected the text segment. */
3025 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3026 		return (-1);
3027 
3028 	/* Set the special PLT or GOT entries. */
3029 	init_pltgot(obj);
3030 
3031 	/* Process the PLT relocations. */
3032 	if (reloc_plt(obj, flags, lockstate) == -1)
3033 		return (-1);
3034 	/* Relocate the jump slots if we are doing immediate binding. */
3035 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3036 	    lockstate) == -1)
3037 		return (-1);
3038 
3039 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3040 		return (-1);
3041 
3042 	/*
3043 	 * Set up the magic number and version in the Obj_Entry.  These
3044 	 * were checked in the crt1.o from the original ElfKit, so we
3045 	 * set them for backward compatibility.
3046 	 */
3047 	obj->magic = RTLD_MAGIC;
3048 	obj->version = RTLD_VERSION;
3049 
3050 	return (0);
3051 }
3052 
3053 /*
3054  * Relocate newly-loaded shared objects.  The argument is a pointer to
3055  * the Obj_Entry for the first such object.  All objects from the first
3056  * to the end of the list of objects are relocated.  Returns 0 on success,
3057  * or -1 on failure.
3058  */
3059 static int
3060 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3061     int flags, RtldLockState *lockstate)
3062 {
3063 	Obj_Entry *obj;
3064 	int error;
3065 
3066 	for (error = 0, obj = first;  obj != NULL;
3067 	    obj = TAILQ_NEXT(obj, next)) {
3068 		if (obj->marker)
3069 			continue;
3070 		error = relocate_object(obj, bind_now, rtldobj, flags,
3071 		    lockstate);
3072 		if (error == -1)
3073 			break;
3074 	}
3075 	return (error);
3076 }
3077 
3078 /*
3079  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3080  * referencing STT_GNU_IFUNC symbols is postponed till the other
3081  * relocations are done.  The indirect functions specified as
3082  * ifunc are allowed to call other symbols, so we need to have
3083  * objects relocated before asking for resolution from indirects.
3084  *
3085  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3086  * instead of the usual lazy handling of PLT slots.  It is
3087  * consistent with how GNU does it.
3088  */
3089 static int
3090 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3091     RtldLockState *lockstate)
3092 {
3093 
3094 	if (obj->ifuncs_resolved)
3095 		return (0);
3096 	obj->ifuncs_resolved = true;
3097 	if (!obj->irelative && !obj->irelative_nonplt &&
3098 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3099 	    !obj->non_plt_gnu_ifunc)
3100 		return (0);
3101 	if (obj_disable_relro(obj) == -1 ||
3102 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3103 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3104 	    lockstate) == -1) ||
3105 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3106 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3107 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3108 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3109 	    obj_enforce_relro(obj) == -1)
3110 		return (-1);
3111 	return (0);
3112 }
3113 
3114 static int
3115 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3116     RtldLockState *lockstate)
3117 {
3118 	Objlist_Entry *elm;
3119 	Obj_Entry *obj;
3120 
3121 	STAILQ_FOREACH(elm, list, link) {
3122 		obj = elm->obj;
3123 		if (obj->marker)
3124 			continue;
3125 		if (resolve_object_ifunc(obj, bind_now, flags,
3126 		    lockstate) == -1)
3127 			return (-1);
3128 	}
3129 	return (0);
3130 }
3131 
3132 /*
3133  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3134  * before the process exits.
3135  */
3136 static void
3137 rtld_exit(void)
3138 {
3139     RtldLockState lockstate;
3140 
3141     wlock_acquire(rtld_bind_lock, &lockstate);
3142     dbg("rtld_exit()");
3143     objlist_call_fini(&list_fini, NULL, &lockstate);
3144     /* No need to remove the items from the list, since we are exiting. */
3145     if (!libmap_disable)
3146         lm_fini();
3147     lock_release(rtld_bind_lock, &lockstate);
3148 }
3149 
3150 static void
3151 rtld_nop_exit(void)
3152 {
3153 }
3154 
3155 /*
3156  * Iterate over a search path, translate each element, and invoke the
3157  * callback on the result.
3158  */
3159 static void *
3160 path_enumerate(const char *path, path_enum_proc callback,
3161     const char *refobj_path, void *arg)
3162 {
3163     const char *trans;
3164     if (path == NULL)
3165 	return (NULL);
3166 
3167     path += strspn(path, ":;");
3168     while (*path != '\0') {
3169 	size_t len;
3170 	char  *res;
3171 
3172 	len = strcspn(path, ":;");
3173 	trans = lm_findn(refobj_path, path, len);
3174 	if (trans)
3175 	    res = callback(trans, strlen(trans), arg);
3176 	else
3177 	    res = callback(path, len, arg);
3178 
3179 	if (res != NULL)
3180 	    return (res);
3181 
3182 	path += len;
3183 	path += strspn(path, ":;");
3184     }
3185 
3186     return (NULL);
3187 }
3188 
3189 struct try_library_args {
3190     const char	*name;
3191     size_t	 namelen;
3192     char	*buffer;
3193     size_t	 buflen;
3194     int		 fd;
3195 };
3196 
3197 static void *
3198 try_library_path(const char *dir, size_t dirlen, void *param)
3199 {
3200     struct try_library_args *arg;
3201     int fd;
3202 
3203     arg = param;
3204     if (*dir == '/' || trust) {
3205 	char *pathname;
3206 
3207 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3208 		return (NULL);
3209 
3210 	pathname = arg->buffer;
3211 	strncpy(pathname, dir, dirlen);
3212 	pathname[dirlen] = '/';
3213 	strcpy(pathname + dirlen + 1, arg->name);
3214 
3215 	dbg("  Trying \"%s\"", pathname);
3216 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3217 	if (fd >= 0) {
3218 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3219 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3220 	    strcpy(pathname, arg->buffer);
3221 	    arg->fd = fd;
3222 	    return (pathname);
3223 	} else {
3224 	    dbg("  Failed to open \"%s\": %s",
3225 		pathname, rtld_strerror(errno));
3226 	}
3227     }
3228     return (NULL);
3229 }
3230 
3231 static char *
3232 search_library_path(const char *name, const char *path,
3233     const char *refobj_path, int *fdp)
3234 {
3235     char *p;
3236     struct try_library_args arg;
3237 
3238     if (path == NULL)
3239 	return NULL;
3240 
3241     arg.name = name;
3242     arg.namelen = strlen(name);
3243     arg.buffer = xmalloc(PATH_MAX);
3244     arg.buflen = PATH_MAX;
3245     arg.fd = -1;
3246 
3247     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3248     *fdp = arg.fd;
3249 
3250     free(arg.buffer);
3251 
3252     return (p);
3253 }
3254 
3255 
3256 /*
3257  * Finds the library with the given name using the directory descriptors
3258  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3259  *
3260  * Returns a freshly-opened close-on-exec file descriptor for the library,
3261  * or -1 if the library cannot be found.
3262  */
3263 static char *
3264 search_library_pathfds(const char *name, const char *path, int *fdp)
3265 {
3266 	char *envcopy, *fdstr, *found, *last_token;
3267 	size_t len;
3268 	int dirfd, fd;
3269 
3270 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3271 
3272 	/* Don't load from user-specified libdirs into setuid binaries. */
3273 	if (!trust)
3274 		return (NULL);
3275 
3276 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3277 	if (path == NULL)
3278 		return (NULL);
3279 
3280 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3281 	if (name[0] == '/') {
3282 		dbg("Absolute path (%s) passed to %s", name, __func__);
3283 		return (NULL);
3284 	}
3285 
3286 	/*
3287 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3288 	 * copy of the path, as strtok_r rewrites separator tokens
3289 	 * with '\0'.
3290 	 */
3291 	found = NULL;
3292 	envcopy = xstrdup(path);
3293 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3294 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3295 		dirfd = parse_integer(fdstr);
3296 		if (dirfd < 0) {
3297 			_rtld_error("failed to parse directory FD: '%s'",
3298 				fdstr);
3299 			break;
3300 		}
3301 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3302 		if (fd >= 0) {
3303 			*fdp = fd;
3304 			len = strlen(fdstr) + strlen(name) + 3;
3305 			found = xmalloc(len);
3306 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3307 				_rtld_error("error generating '%d/%s'",
3308 				    dirfd, name);
3309 				rtld_die();
3310 			}
3311 			dbg("open('%s') => %d", found, fd);
3312 			break;
3313 		}
3314 	}
3315 	free(envcopy);
3316 
3317 	return (found);
3318 }
3319 
3320 
3321 int
3322 dlclose(void *handle)
3323 {
3324 	RtldLockState lockstate;
3325 	int error;
3326 
3327 	wlock_acquire(rtld_bind_lock, &lockstate);
3328 	error = dlclose_locked(handle, &lockstate);
3329 	lock_release(rtld_bind_lock, &lockstate);
3330 	return (error);
3331 }
3332 
3333 static int
3334 dlclose_locked(void *handle, RtldLockState *lockstate)
3335 {
3336     Obj_Entry *root;
3337 
3338     root = dlcheck(handle);
3339     if (root == NULL)
3340 	return -1;
3341     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3342 	root->path);
3343 
3344     /* Unreference the object and its dependencies. */
3345     root->dl_refcount--;
3346 
3347     if (root->refcount == 1) {
3348 	/*
3349 	 * The object will be no longer referenced, so we must unload it.
3350 	 * First, call the fini functions.
3351 	 */
3352 	objlist_call_fini(&list_fini, root, lockstate);
3353 
3354 	unref_dag(root);
3355 
3356 	/* Finish cleaning up the newly-unreferenced objects. */
3357 	GDB_STATE(RT_DELETE,&root->linkmap);
3358 	unload_object(root, lockstate);
3359 	GDB_STATE(RT_CONSISTENT,NULL);
3360     } else
3361 	unref_dag(root);
3362 
3363     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3364     return 0;
3365 }
3366 
3367 char *
3368 dlerror(void)
3369 {
3370     char *msg = error_message;
3371     error_message = NULL;
3372     return msg;
3373 }
3374 
3375 /*
3376  * This function is deprecated and has no effect.
3377  */
3378 void
3379 dllockinit(void *context,
3380     void *(*_lock_create)(void *context) __unused,
3381     void (*_rlock_acquire)(void *lock) __unused,
3382     void (*_wlock_acquire)(void *lock)  __unused,
3383     void (*_lock_release)(void *lock) __unused,
3384     void (*_lock_destroy)(void *lock) __unused,
3385     void (*context_destroy)(void *context))
3386 {
3387     static void *cur_context;
3388     static void (*cur_context_destroy)(void *);
3389 
3390     /* Just destroy the context from the previous call, if necessary. */
3391     if (cur_context_destroy != NULL)
3392 	cur_context_destroy(cur_context);
3393     cur_context = context;
3394     cur_context_destroy = context_destroy;
3395 }
3396 
3397 void *
3398 dlopen(const char *name, int mode)
3399 {
3400 
3401 	return (rtld_dlopen(name, -1, mode));
3402 }
3403 
3404 void *
3405 fdlopen(int fd, int mode)
3406 {
3407 
3408 	return (rtld_dlopen(NULL, fd, mode));
3409 }
3410 
3411 static void *
3412 rtld_dlopen(const char *name, int fd, int mode)
3413 {
3414     RtldLockState lockstate;
3415     int lo_flags;
3416 
3417     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3418     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3419     if (ld_tracing != NULL) {
3420 	rlock_acquire(rtld_bind_lock, &lockstate);
3421 	if (sigsetjmp(lockstate.env, 0) != 0)
3422 	    lock_upgrade(rtld_bind_lock, &lockstate);
3423 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3424 	lock_release(rtld_bind_lock, &lockstate);
3425     }
3426     lo_flags = RTLD_LO_DLOPEN;
3427     if (mode & RTLD_NODELETE)
3428 	    lo_flags |= RTLD_LO_NODELETE;
3429     if (mode & RTLD_NOLOAD)
3430 	    lo_flags |= RTLD_LO_NOLOAD;
3431     if (mode & RTLD_DEEPBIND)
3432 	    lo_flags |= RTLD_LO_DEEPBIND;
3433     if (ld_tracing != NULL)
3434 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3435 
3436     return (dlopen_object(name, fd, obj_main, lo_flags,
3437       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3438 }
3439 
3440 static void
3441 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3442 {
3443 
3444 	obj->dl_refcount--;
3445 	unref_dag(obj);
3446 	if (obj->refcount == 0)
3447 		unload_object(obj, lockstate);
3448 }
3449 
3450 static Obj_Entry *
3451 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3452     int mode, RtldLockState *lockstate)
3453 {
3454     Obj_Entry *old_obj_tail;
3455     Obj_Entry *obj;
3456     Objlist initlist;
3457     RtldLockState mlockstate;
3458     int result;
3459 
3460     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3461       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3462       refobj->path, lo_flags, mode);
3463     objlist_init(&initlist);
3464 
3465     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3466 	wlock_acquire(rtld_bind_lock, &mlockstate);
3467 	lockstate = &mlockstate;
3468     }
3469     GDB_STATE(RT_ADD,NULL);
3470 
3471     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3472     obj = NULL;
3473     if (name == NULL && fd == -1) {
3474 	obj = obj_main;
3475 	obj->refcount++;
3476     } else {
3477 	obj = load_object(name, fd, refobj, lo_flags);
3478     }
3479 
3480     if (obj) {
3481 	obj->dl_refcount++;
3482 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3483 	    objlist_push_tail(&list_global, obj);
3484 	if (globallist_next(old_obj_tail) != NULL) {
3485 	    /* We loaded something new. */
3486 	    assert(globallist_next(old_obj_tail) == obj);
3487 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3488 		obj->symbolic = true;
3489 	    result = 0;
3490 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3491 	      obj->static_tls && !allocate_tls_offset(obj)) {
3492 		_rtld_error("%s: No space available "
3493 		  "for static Thread Local Storage", obj->path);
3494 		result = -1;
3495 	    }
3496 	    if (result != -1)
3497 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3498 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3499 	    init_dag(obj);
3500 	    ref_dag(obj);
3501 	    if (result != -1)
3502 		result = rtld_verify_versions(&obj->dagmembers);
3503 	    if (result != -1 && ld_tracing)
3504 		goto trace;
3505 	    if (result == -1 || relocate_object_dag(obj,
3506 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3507 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3508 	      lockstate) == -1) {
3509 		dlopen_cleanup(obj, lockstate);
3510 		obj = NULL;
3511 	    } else if (lo_flags & RTLD_LO_EARLY) {
3512 		/*
3513 		 * Do not call the init functions for early loaded
3514 		 * filtees.  The image is still not initialized enough
3515 		 * for them to work.
3516 		 *
3517 		 * Our object is found by the global object list and
3518 		 * will be ordered among all init calls done right
3519 		 * before transferring control to main.
3520 		 */
3521 	    } else {
3522 		/* Make list of init functions to call. */
3523 		initlist_add_objects(obj, obj, &initlist);
3524 	    }
3525 	    /*
3526 	     * Process all no_delete or global objects here, given
3527 	     * them own DAGs to prevent their dependencies from being
3528 	     * unloaded.  This has to be done after we have loaded all
3529 	     * of the dependencies, so that we do not miss any.
3530 	     */
3531 	    if (obj != NULL)
3532 		process_z(obj);
3533 	} else {
3534 	    /*
3535 	     * Bump the reference counts for objects on this DAG.  If
3536 	     * this is the first dlopen() call for the object that was
3537 	     * already loaded as a dependency, initialize the dag
3538 	     * starting at it.
3539 	     */
3540 	    init_dag(obj);
3541 	    ref_dag(obj);
3542 
3543 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3544 		goto trace;
3545 	}
3546 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3547 	  obj->z_nodelete) && !obj->ref_nodel) {
3548 	    dbg("obj %s nodelete", obj->path);
3549 	    ref_dag(obj);
3550 	    obj->z_nodelete = obj->ref_nodel = true;
3551 	}
3552     }
3553 
3554     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3555 	name);
3556     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3557 
3558     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3559 	map_stacks_exec(lockstate);
3560 	if (obj != NULL)
3561 	    distribute_static_tls(&initlist, lockstate);
3562     }
3563 
3564     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3565       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3566       lockstate) == -1) {
3567 	objlist_clear(&initlist);
3568 	dlopen_cleanup(obj, lockstate);
3569 	if (lockstate == &mlockstate)
3570 	    lock_release(rtld_bind_lock, lockstate);
3571 	return (NULL);
3572     }
3573 
3574     if (!(lo_flags & RTLD_LO_EARLY)) {
3575 	/* Call the init functions. */
3576 	objlist_call_init(&initlist, lockstate);
3577     }
3578     objlist_clear(&initlist);
3579     if (lockstate == &mlockstate)
3580 	lock_release(rtld_bind_lock, lockstate);
3581     return obj;
3582 trace:
3583     trace_loaded_objects(obj);
3584     if (lockstate == &mlockstate)
3585 	lock_release(rtld_bind_lock, lockstate);
3586     exit(0);
3587 }
3588 
3589 static void *
3590 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3591     int flags)
3592 {
3593     DoneList donelist;
3594     const Obj_Entry *obj, *defobj;
3595     const Elf_Sym *def;
3596     SymLook req;
3597     RtldLockState lockstate;
3598     tls_index ti;
3599     void *sym;
3600     int res;
3601 
3602     def = NULL;
3603     defobj = NULL;
3604     symlook_init(&req, name);
3605     req.ventry = ve;
3606     req.flags = flags | SYMLOOK_IN_PLT;
3607     req.lockstate = &lockstate;
3608 
3609     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3610     rlock_acquire(rtld_bind_lock, &lockstate);
3611     if (sigsetjmp(lockstate.env, 0) != 0)
3612 	    lock_upgrade(rtld_bind_lock, &lockstate);
3613     if (handle == NULL || handle == RTLD_NEXT ||
3614 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3615 
3616 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3617 	    _rtld_error("Cannot determine caller's shared object");
3618 	    lock_release(rtld_bind_lock, &lockstate);
3619 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3620 	    return NULL;
3621 	}
3622 	if (handle == NULL) {	/* Just the caller's shared object. */
3623 	    res = symlook_obj(&req, obj);
3624 	    if (res == 0) {
3625 		def = req.sym_out;
3626 		defobj = req.defobj_out;
3627 	    }
3628 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3629 		   handle == RTLD_SELF) { /* ... caller included */
3630 	    if (handle == RTLD_NEXT)
3631 		obj = globallist_next(obj);
3632 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3633 		if (obj->marker)
3634 		    continue;
3635 		res = symlook_obj(&req, obj);
3636 		if (res == 0) {
3637 		    if (def == NULL ||
3638 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3639 			def = req.sym_out;
3640 			defobj = req.defobj_out;
3641 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3642 			    break;
3643 		    }
3644 		}
3645 	    }
3646 	    /*
3647 	     * Search the dynamic linker itself, and possibly resolve the
3648 	     * symbol from there.  This is how the application links to
3649 	     * dynamic linker services such as dlopen.
3650 	     */
3651 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3652 		res = symlook_obj(&req, &obj_rtld);
3653 		if (res == 0) {
3654 		    def = req.sym_out;
3655 		    defobj = req.defobj_out;
3656 		}
3657 	    }
3658 	} else {
3659 	    assert(handle == RTLD_DEFAULT);
3660 	    res = symlook_default(&req, obj);
3661 	    if (res == 0) {
3662 		defobj = req.defobj_out;
3663 		def = req.sym_out;
3664 	    }
3665 	}
3666     } else {
3667 	if ((obj = dlcheck(handle)) == NULL) {
3668 	    lock_release(rtld_bind_lock, &lockstate);
3669 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3670 	    return NULL;
3671 	}
3672 
3673 	donelist_init(&donelist);
3674 	if (obj->mainprog) {
3675             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3676 	    res = symlook_global(&req, &donelist);
3677 	    if (res == 0) {
3678 		def = req.sym_out;
3679 		defobj = req.defobj_out;
3680 	    }
3681 	    /*
3682 	     * Search the dynamic linker itself, and possibly resolve the
3683 	     * symbol from there.  This is how the application links to
3684 	     * dynamic linker services such as dlopen.
3685 	     */
3686 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3687 		res = symlook_obj(&req, &obj_rtld);
3688 		if (res == 0) {
3689 		    def = req.sym_out;
3690 		    defobj = req.defobj_out;
3691 		}
3692 	    }
3693 	}
3694 	else {
3695 	    /* Search the whole DAG rooted at the given object. */
3696 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3697 	    if (res == 0) {
3698 		def = req.sym_out;
3699 		defobj = req.defobj_out;
3700 	    }
3701 	}
3702     }
3703 
3704     if (def != NULL) {
3705 	lock_release(rtld_bind_lock, &lockstate);
3706 
3707 	/*
3708 	 * The value required by the caller is derived from the value
3709 	 * of the symbol. this is simply the relocated value of the
3710 	 * symbol.
3711 	 */
3712 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3713 	    sym = make_function_pointer(def, defobj);
3714 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3715 	    sym = rtld_resolve_ifunc(defobj, def);
3716 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3717 	    ti.ti_module = defobj->tlsindex;
3718 	    ti.ti_offset = def->st_value;
3719 	    sym = __tls_get_addr(&ti);
3720 	} else
3721 	    sym = defobj->relocbase + def->st_value;
3722 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3723 	return (sym);
3724     }
3725 
3726     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3727       ve != NULL ? ve->name : "");
3728     lock_release(rtld_bind_lock, &lockstate);
3729     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3730     return NULL;
3731 }
3732 
3733 void *
3734 dlsym(void *handle, const char *name)
3735 {
3736 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3737 	    SYMLOOK_DLSYM);
3738 }
3739 
3740 dlfunc_t
3741 dlfunc(void *handle, const char *name)
3742 {
3743 	union {
3744 		void *d;
3745 		dlfunc_t f;
3746 	} rv;
3747 
3748 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3749 	    SYMLOOK_DLSYM);
3750 	return (rv.f);
3751 }
3752 
3753 void *
3754 dlvsym(void *handle, const char *name, const char *version)
3755 {
3756 	Ver_Entry ventry;
3757 
3758 	ventry.name = version;
3759 	ventry.file = NULL;
3760 	ventry.hash = elf_hash(version);
3761 	ventry.flags= 0;
3762 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3763 	    SYMLOOK_DLSYM);
3764 }
3765 
3766 int
3767 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3768 {
3769     const Obj_Entry *obj;
3770     RtldLockState lockstate;
3771 
3772     rlock_acquire(rtld_bind_lock, &lockstate);
3773     obj = obj_from_addr(addr);
3774     if (obj == NULL) {
3775         _rtld_error("No shared object contains address");
3776 	lock_release(rtld_bind_lock, &lockstate);
3777         return (0);
3778     }
3779     rtld_fill_dl_phdr_info(obj, phdr_info);
3780     lock_release(rtld_bind_lock, &lockstate);
3781     return (1);
3782 }
3783 
3784 int
3785 dladdr(const void *addr, Dl_info *info)
3786 {
3787     const Obj_Entry *obj;
3788     const Elf_Sym *def;
3789     void *symbol_addr;
3790     unsigned long symoffset;
3791     RtldLockState lockstate;
3792 
3793     rlock_acquire(rtld_bind_lock, &lockstate);
3794     obj = obj_from_addr(addr);
3795     if (obj == NULL) {
3796         _rtld_error("No shared object contains address");
3797 	lock_release(rtld_bind_lock, &lockstate);
3798         return 0;
3799     }
3800     info->dli_fname = obj->path;
3801     info->dli_fbase = obj->mapbase;
3802     info->dli_saddr = (void *)0;
3803     info->dli_sname = NULL;
3804 
3805     /*
3806      * Walk the symbol list looking for the symbol whose address is
3807      * closest to the address sent in.
3808      */
3809     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3810         def = obj->symtab + symoffset;
3811 
3812         /*
3813          * For skip the symbol if st_shndx is either SHN_UNDEF or
3814          * SHN_COMMON.
3815          */
3816         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3817             continue;
3818 
3819         /*
3820          * If the symbol is greater than the specified address, or if it
3821          * is further away from addr than the current nearest symbol,
3822          * then reject it.
3823          */
3824         symbol_addr = obj->relocbase + def->st_value;
3825         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3826             continue;
3827 
3828         /* Update our idea of the nearest symbol. */
3829         info->dli_sname = obj->strtab + def->st_name;
3830         info->dli_saddr = symbol_addr;
3831 
3832         /* Exact match? */
3833         if (info->dli_saddr == addr)
3834             break;
3835     }
3836     lock_release(rtld_bind_lock, &lockstate);
3837     return 1;
3838 }
3839 
3840 int
3841 dlinfo(void *handle, int request, void *p)
3842 {
3843     const Obj_Entry *obj;
3844     RtldLockState lockstate;
3845     int error;
3846 
3847     rlock_acquire(rtld_bind_lock, &lockstate);
3848 
3849     if (handle == NULL || handle == RTLD_SELF) {
3850 	void *retaddr;
3851 
3852 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3853 	if ((obj = obj_from_addr(retaddr)) == NULL)
3854 	    _rtld_error("Cannot determine caller's shared object");
3855     } else
3856 	obj = dlcheck(handle);
3857 
3858     if (obj == NULL) {
3859 	lock_release(rtld_bind_lock, &lockstate);
3860 	return (-1);
3861     }
3862 
3863     error = 0;
3864     switch (request) {
3865     case RTLD_DI_LINKMAP:
3866 	*((struct link_map const **)p) = &obj->linkmap;
3867 	break;
3868     case RTLD_DI_ORIGIN:
3869 	error = rtld_dirname(obj->path, p);
3870 	break;
3871 
3872     case RTLD_DI_SERINFOSIZE:
3873     case RTLD_DI_SERINFO:
3874 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3875 	break;
3876 
3877     default:
3878 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3879 	error = -1;
3880     }
3881 
3882     lock_release(rtld_bind_lock, &lockstate);
3883 
3884     return (error);
3885 }
3886 
3887 static void
3888 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3889 {
3890 
3891 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3892 	phdr_info->dlpi_name = obj->path;
3893 	phdr_info->dlpi_phdr = obj->phdr;
3894 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3895 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3896 	phdr_info->dlpi_tls_data = obj->tlsinit;
3897 	phdr_info->dlpi_adds = obj_loads;
3898 	phdr_info->dlpi_subs = obj_loads - obj_count;
3899 }
3900 
3901 int
3902 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3903 {
3904 	struct dl_phdr_info phdr_info;
3905 	Obj_Entry *obj, marker;
3906 	RtldLockState bind_lockstate, phdr_lockstate;
3907 	int error;
3908 
3909 	init_marker(&marker);
3910 	error = 0;
3911 
3912 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3913 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3914 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3915 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3916 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3917 		hold_object(obj);
3918 		lock_release(rtld_bind_lock, &bind_lockstate);
3919 
3920 		error = callback(&phdr_info, sizeof phdr_info, param);
3921 
3922 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3923 		unhold_object(obj);
3924 		obj = globallist_next(&marker);
3925 		TAILQ_REMOVE(&obj_list, &marker, next);
3926 		if (error != 0) {
3927 			lock_release(rtld_bind_lock, &bind_lockstate);
3928 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3929 			return (error);
3930 		}
3931 	}
3932 
3933 	if (error == 0) {
3934 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3935 		lock_release(rtld_bind_lock, &bind_lockstate);
3936 		error = callback(&phdr_info, sizeof(phdr_info), param);
3937 	}
3938 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3939 	return (error);
3940 }
3941 
3942 static void *
3943 fill_search_info(const char *dir, size_t dirlen, void *param)
3944 {
3945     struct fill_search_info_args *arg;
3946 
3947     arg = param;
3948 
3949     if (arg->request == RTLD_DI_SERINFOSIZE) {
3950 	arg->serinfo->dls_cnt ++;
3951 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3952     } else {
3953 	struct dl_serpath *s_entry;
3954 
3955 	s_entry = arg->serpath;
3956 	s_entry->dls_name  = arg->strspace;
3957 	s_entry->dls_flags = arg->flags;
3958 
3959 	strncpy(arg->strspace, dir, dirlen);
3960 	arg->strspace[dirlen] = '\0';
3961 
3962 	arg->strspace += dirlen + 1;
3963 	arg->serpath++;
3964     }
3965 
3966     return (NULL);
3967 }
3968 
3969 static int
3970 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3971 {
3972     struct dl_serinfo _info;
3973     struct fill_search_info_args args;
3974 
3975     args.request = RTLD_DI_SERINFOSIZE;
3976     args.serinfo = &_info;
3977 
3978     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3979     _info.dls_cnt  = 0;
3980 
3981     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3982     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3983     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3984     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3985     if (!obj->z_nodeflib)
3986       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3987 
3988 
3989     if (request == RTLD_DI_SERINFOSIZE) {
3990 	info->dls_size = _info.dls_size;
3991 	info->dls_cnt = _info.dls_cnt;
3992 	return (0);
3993     }
3994 
3995     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3996 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3997 	return (-1);
3998     }
3999 
4000     args.request  = RTLD_DI_SERINFO;
4001     args.serinfo  = info;
4002     args.serpath  = &info->dls_serpath[0];
4003     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4004 
4005     args.flags = LA_SER_RUNPATH;
4006     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4007 	return (-1);
4008 
4009     args.flags = LA_SER_LIBPATH;
4010     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4011 	return (-1);
4012 
4013     args.flags = LA_SER_RUNPATH;
4014     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4015 	return (-1);
4016 
4017     args.flags = LA_SER_CONFIG;
4018     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4019       != NULL)
4020 	return (-1);
4021 
4022     args.flags = LA_SER_DEFAULT;
4023     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4024       fill_search_info, NULL, &args) != NULL)
4025 	return (-1);
4026     return (0);
4027 }
4028 
4029 static int
4030 rtld_dirname(const char *path, char *bname)
4031 {
4032     const char *endp;
4033 
4034     /* Empty or NULL string gets treated as "." */
4035     if (path == NULL || *path == '\0') {
4036 	bname[0] = '.';
4037 	bname[1] = '\0';
4038 	return (0);
4039     }
4040 
4041     /* Strip trailing slashes */
4042     endp = path + strlen(path) - 1;
4043     while (endp > path && *endp == '/')
4044 	endp--;
4045 
4046     /* Find the start of the dir */
4047     while (endp > path && *endp != '/')
4048 	endp--;
4049 
4050     /* Either the dir is "/" or there are no slashes */
4051     if (endp == path) {
4052 	bname[0] = *endp == '/' ? '/' : '.';
4053 	bname[1] = '\0';
4054 	return (0);
4055     } else {
4056 	do {
4057 	    endp--;
4058 	} while (endp > path && *endp == '/');
4059     }
4060 
4061     if (endp - path + 2 > PATH_MAX)
4062     {
4063 	_rtld_error("Filename is too long: %s", path);
4064 	return(-1);
4065     }
4066 
4067     strncpy(bname, path, endp - path + 1);
4068     bname[endp - path + 1] = '\0';
4069     return (0);
4070 }
4071 
4072 static int
4073 rtld_dirname_abs(const char *path, char *base)
4074 {
4075 	char *last;
4076 
4077 	if (realpath(path, base) == NULL) {
4078 		_rtld_error("realpath \"%s\" failed (%s)", path,
4079 		    rtld_strerror(errno));
4080 		return (-1);
4081 	}
4082 	dbg("%s -> %s", path, base);
4083 	last = strrchr(base, '/');
4084 	if (last == NULL) {
4085 		_rtld_error("non-abs result from realpath \"%s\"", path);
4086 		return (-1);
4087 	}
4088 	if (last != base)
4089 		*last = '\0';
4090 	return (0);
4091 }
4092 
4093 static void
4094 linkmap_add(Obj_Entry *obj)
4095 {
4096 	struct link_map *l, *prev;
4097 
4098 	l = &obj->linkmap;
4099 	l->l_name = obj->path;
4100 	l->l_base = obj->mapbase;
4101 	l->l_ld = obj->dynamic;
4102 	l->l_addr = obj->relocbase;
4103 
4104 	if (r_debug.r_map == NULL) {
4105 		r_debug.r_map = l;
4106 		return;
4107 	}
4108 
4109 	/*
4110 	 * Scan to the end of the list, but not past the entry for the
4111 	 * dynamic linker, which we want to keep at the very end.
4112 	 */
4113 	for (prev = r_debug.r_map;
4114 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4115 	     prev = prev->l_next)
4116 		;
4117 
4118 	/* Link in the new entry. */
4119 	l->l_prev = prev;
4120 	l->l_next = prev->l_next;
4121 	if (l->l_next != NULL)
4122 		l->l_next->l_prev = l;
4123 	prev->l_next = l;
4124 }
4125 
4126 static void
4127 linkmap_delete(Obj_Entry *obj)
4128 {
4129 	struct link_map *l;
4130 
4131 	l = &obj->linkmap;
4132 	if (l->l_prev == NULL) {
4133 		if ((r_debug.r_map = l->l_next) != NULL)
4134 			l->l_next->l_prev = NULL;
4135 		return;
4136 	}
4137 
4138 	if ((l->l_prev->l_next = l->l_next) != NULL)
4139 		l->l_next->l_prev = l->l_prev;
4140 }
4141 
4142 /*
4143  * Function for the debugger to set a breakpoint on to gain control.
4144  *
4145  * The two parameters allow the debugger to easily find and determine
4146  * what the runtime loader is doing and to whom it is doing it.
4147  *
4148  * When the loadhook trap is hit (r_debug_state, set at program
4149  * initialization), the arguments can be found on the stack:
4150  *
4151  *  +8   struct link_map *m
4152  *  +4   struct r_debug  *rd
4153  *  +0   RetAddr
4154  */
4155 void
4156 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4157 {
4158     /*
4159      * The following is a hack to force the compiler to emit calls to
4160      * this function, even when optimizing.  If the function is empty,
4161      * the compiler is not obliged to emit any code for calls to it,
4162      * even when marked __noinline.  However, gdb depends on those
4163      * calls being made.
4164      */
4165     __compiler_membar();
4166 }
4167 
4168 /*
4169  * A function called after init routines have completed. This can be used to
4170  * break before a program's entry routine is called, and can be used when
4171  * main is not available in the symbol table.
4172  */
4173 void
4174 _r_debug_postinit(struct link_map *m __unused)
4175 {
4176 
4177 	/* See r_debug_state(). */
4178 	__compiler_membar();
4179 }
4180 
4181 static void
4182 release_object(Obj_Entry *obj)
4183 {
4184 
4185 	if (obj->holdcount > 0) {
4186 		obj->unholdfree = true;
4187 		return;
4188 	}
4189 	munmap(obj->mapbase, obj->mapsize);
4190 	linkmap_delete(obj);
4191 	obj_free(obj);
4192 }
4193 
4194 /*
4195  * Get address of the pointer variable in the main program.
4196  * Prefer non-weak symbol over the weak one.
4197  */
4198 static const void **
4199 get_program_var_addr(const char *name, RtldLockState *lockstate)
4200 {
4201     SymLook req;
4202     DoneList donelist;
4203 
4204     symlook_init(&req, name);
4205     req.lockstate = lockstate;
4206     donelist_init(&donelist);
4207     if (symlook_global(&req, &donelist) != 0)
4208 	return (NULL);
4209     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4210 	return ((const void **)make_function_pointer(req.sym_out,
4211 	  req.defobj_out));
4212     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4213 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4214     else
4215 	return ((const void **)(req.defobj_out->relocbase +
4216 	  req.sym_out->st_value));
4217 }
4218 
4219 /*
4220  * Set a pointer variable in the main program to the given value.  This
4221  * is used to set key variables such as "environ" before any of the
4222  * init functions are called.
4223  */
4224 static void
4225 set_program_var(const char *name, const void *value)
4226 {
4227     const void **addr;
4228 
4229     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4230 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4231 	*addr = value;
4232     }
4233 }
4234 
4235 /*
4236  * Search the global objects, including dependencies and main object,
4237  * for the given symbol.
4238  */
4239 static int
4240 symlook_global(SymLook *req, DoneList *donelist)
4241 {
4242     SymLook req1;
4243     const Objlist_Entry *elm;
4244     int res;
4245 
4246     symlook_init_from_req(&req1, req);
4247 
4248     /* Search all objects loaded at program start up. */
4249     if (req->defobj_out == NULL ||
4250       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4251 	res = symlook_list(&req1, &list_main, donelist);
4252 	if (res == 0 && (req->defobj_out == NULL ||
4253 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4254 	    req->sym_out = req1.sym_out;
4255 	    req->defobj_out = req1.defobj_out;
4256 	    assert(req->defobj_out != NULL);
4257 	}
4258     }
4259 
4260     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4261     STAILQ_FOREACH(elm, &list_global, link) {
4262 	if (req->defobj_out != NULL &&
4263 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4264 	    break;
4265 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4266 	if (res == 0 && (req->defobj_out == NULL ||
4267 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4268 	    req->sym_out = req1.sym_out;
4269 	    req->defobj_out = req1.defobj_out;
4270 	    assert(req->defobj_out != NULL);
4271 	}
4272     }
4273 
4274     return (req->sym_out != NULL ? 0 : ESRCH);
4275 }
4276 
4277 /*
4278  * Given a symbol name in a referencing object, find the corresponding
4279  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4280  * no definition was found.  Returns a pointer to the Obj_Entry of the
4281  * defining object via the reference parameter DEFOBJ_OUT.
4282  */
4283 static int
4284 symlook_default(SymLook *req, const Obj_Entry *refobj)
4285 {
4286     DoneList donelist;
4287     const Objlist_Entry *elm;
4288     SymLook req1;
4289     int res;
4290 
4291     donelist_init(&donelist);
4292     symlook_init_from_req(&req1, req);
4293 
4294     /*
4295      * Look first in the referencing object if linked symbolically,
4296      * and similarly handle protected symbols.
4297      */
4298     res = symlook_obj(&req1, refobj);
4299     if (res == 0 && (refobj->symbolic ||
4300       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4301 	req->sym_out = req1.sym_out;
4302 	req->defobj_out = req1.defobj_out;
4303 	assert(req->defobj_out != NULL);
4304     }
4305     if (refobj->symbolic || req->defobj_out != NULL)
4306 	donelist_check(&donelist, refobj);
4307 
4308     symlook_global(req, &donelist);
4309 
4310     /* Search all dlopened DAGs containing the referencing object. */
4311     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4312 	if (req->sym_out != NULL &&
4313 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4314 	    break;
4315 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4316 	if (res == 0 && (req->sym_out == NULL ||
4317 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4318 	    req->sym_out = req1.sym_out;
4319 	    req->defobj_out = req1.defobj_out;
4320 	    assert(req->defobj_out != NULL);
4321 	}
4322     }
4323 
4324     /*
4325      * Search the dynamic linker itself, and possibly resolve the
4326      * symbol from there.  This is how the application links to
4327      * dynamic linker services such as dlopen.
4328      */
4329     if (req->sym_out == NULL ||
4330       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4331 	res = symlook_obj(&req1, &obj_rtld);
4332 	if (res == 0) {
4333 	    req->sym_out = req1.sym_out;
4334 	    req->defobj_out = req1.defobj_out;
4335 	    assert(req->defobj_out != NULL);
4336 	}
4337     }
4338 
4339     return (req->sym_out != NULL ? 0 : ESRCH);
4340 }
4341 
4342 static int
4343 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4344 {
4345     const Elf_Sym *def;
4346     const Obj_Entry *defobj;
4347     const Objlist_Entry *elm;
4348     SymLook req1;
4349     int res;
4350 
4351     def = NULL;
4352     defobj = NULL;
4353     STAILQ_FOREACH(elm, objlist, link) {
4354 	if (donelist_check(dlp, elm->obj))
4355 	    continue;
4356 	symlook_init_from_req(&req1, req);
4357 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4358 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4359 		def = req1.sym_out;
4360 		defobj = req1.defobj_out;
4361 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4362 		    break;
4363 	    }
4364 	}
4365     }
4366     if (def != NULL) {
4367 	req->sym_out = def;
4368 	req->defobj_out = defobj;
4369 	return (0);
4370     }
4371     return (ESRCH);
4372 }
4373 
4374 /*
4375  * Search the chain of DAGS cointed to by the given Needed_Entry
4376  * for a symbol of the given name.  Each DAG is scanned completely
4377  * before advancing to the next one.  Returns a pointer to the symbol,
4378  * or NULL if no definition was found.
4379  */
4380 static int
4381 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4382 {
4383     const Elf_Sym *def;
4384     const Needed_Entry *n;
4385     const Obj_Entry *defobj;
4386     SymLook req1;
4387     int res;
4388 
4389     def = NULL;
4390     defobj = NULL;
4391     symlook_init_from_req(&req1, req);
4392     for (n = needed; n != NULL; n = n->next) {
4393 	if (n->obj == NULL ||
4394 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4395 	    continue;
4396 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4397 	    def = req1.sym_out;
4398 	    defobj = req1.defobj_out;
4399 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4400 		break;
4401 	}
4402     }
4403     if (def != NULL) {
4404 	req->sym_out = def;
4405 	req->defobj_out = defobj;
4406 	return (0);
4407     }
4408     return (ESRCH);
4409 }
4410 
4411 /*
4412  * Search the symbol table of a single shared object for a symbol of
4413  * the given name and version, if requested.  Returns a pointer to the
4414  * symbol, or NULL if no definition was found.  If the object is
4415  * filter, return filtered symbol from filtee.
4416  *
4417  * The symbol's hash value is passed in for efficiency reasons; that
4418  * eliminates many recomputations of the hash value.
4419  */
4420 int
4421 symlook_obj(SymLook *req, const Obj_Entry *obj)
4422 {
4423     DoneList donelist;
4424     SymLook req1;
4425     int flags, res, mres;
4426 
4427     /*
4428      * If there is at least one valid hash at this point, we prefer to
4429      * use the faster GNU version if available.
4430      */
4431     if (obj->valid_hash_gnu)
4432 	mres = symlook_obj1_gnu(req, obj);
4433     else if (obj->valid_hash_sysv)
4434 	mres = symlook_obj1_sysv(req, obj);
4435     else
4436 	return (EINVAL);
4437 
4438     if (mres == 0) {
4439 	if (obj->needed_filtees != NULL) {
4440 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4441 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4442 	    donelist_init(&donelist);
4443 	    symlook_init_from_req(&req1, req);
4444 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4445 	    if (res == 0) {
4446 		req->sym_out = req1.sym_out;
4447 		req->defobj_out = req1.defobj_out;
4448 	    }
4449 	    return (res);
4450 	}
4451 	if (obj->needed_aux_filtees != NULL) {
4452 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4453 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4454 	    donelist_init(&donelist);
4455 	    symlook_init_from_req(&req1, req);
4456 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4457 	    if (res == 0) {
4458 		req->sym_out = req1.sym_out;
4459 		req->defobj_out = req1.defobj_out;
4460 		return (res);
4461 	    }
4462 	}
4463     }
4464     return (mres);
4465 }
4466 
4467 /* Symbol match routine common to both hash functions */
4468 static bool
4469 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4470     const unsigned long symnum)
4471 {
4472 	Elf_Versym verndx;
4473 	const Elf_Sym *symp;
4474 	const char *strp;
4475 
4476 	symp = obj->symtab + symnum;
4477 	strp = obj->strtab + symp->st_name;
4478 
4479 	switch (ELF_ST_TYPE(symp->st_info)) {
4480 	case STT_FUNC:
4481 	case STT_NOTYPE:
4482 	case STT_OBJECT:
4483 	case STT_COMMON:
4484 	case STT_GNU_IFUNC:
4485 		if (symp->st_value == 0)
4486 			return (false);
4487 		/* fallthrough */
4488 	case STT_TLS:
4489 		if (symp->st_shndx != SHN_UNDEF)
4490 			break;
4491 #ifndef __mips__
4492 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4493 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4494 			break;
4495 #endif
4496 		/* fallthrough */
4497 	default:
4498 		return (false);
4499 	}
4500 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4501 		return (false);
4502 
4503 	if (req->ventry == NULL) {
4504 		if (obj->versyms != NULL) {
4505 			verndx = VER_NDX(obj->versyms[symnum]);
4506 			if (verndx > obj->vernum) {
4507 				_rtld_error(
4508 				    "%s: symbol %s references wrong version %d",
4509 				    obj->path, obj->strtab + symnum, verndx);
4510 				return (false);
4511 			}
4512 			/*
4513 			 * If we are not called from dlsym (i.e. this
4514 			 * is a normal relocation from unversioned
4515 			 * binary), accept the symbol immediately if
4516 			 * it happens to have first version after this
4517 			 * shared object became versioned.  Otherwise,
4518 			 * if symbol is versioned and not hidden,
4519 			 * remember it. If it is the only symbol with
4520 			 * this name exported by the shared object, it
4521 			 * will be returned as a match by the calling
4522 			 * function. If symbol is global (verndx < 2)
4523 			 * accept it unconditionally.
4524 			 */
4525 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4526 			    verndx == VER_NDX_GIVEN) {
4527 				result->sym_out = symp;
4528 				return (true);
4529 			}
4530 			else if (verndx >= VER_NDX_GIVEN) {
4531 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4532 				    == 0) {
4533 					if (result->vsymp == NULL)
4534 						result->vsymp = symp;
4535 					result->vcount++;
4536 				}
4537 				return (false);
4538 			}
4539 		}
4540 		result->sym_out = symp;
4541 		return (true);
4542 	}
4543 	if (obj->versyms == NULL) {
4544 		if (object_match_name(obj, req->ventry->name)) {
4545 			_rtld_error("%s: object %s should provide version %s "
4546 			    "for symbol %s", obj_rtld.path, obj->path,
4547 			    req->ventry->name, obj->strtab + symnum);
4548 			return (false);
4549 		}
4550 	} else {
4551 		verndx = VER_NDX(obj->versyms[symnum]);
4552 		if (verndx > obj->vernum) {
4553 			_rtld_error("%s: symbol %s references wrong version %d",
4554 			    obj->path, obj->strtab + symnum, verndx);
4555 			return (false);
4556 		}
4557 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4558 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4559 			/*
4560 			 * Version does not match. Look if this is a
4561 			 * global symbol and if it is not hidden. If
4562 			 * global symbol (verndx < 2) is available,
4563 			 * use it. Do not return symbol if we are
4564 			 * called by dlvsym, because dlvsym looks for
4565 			 * a specific version and default one is not
4566 			 * what dlvsym wants.
4567 			 */
4568 			if ((req->flags & SYMLOOK_DLSYM) ||
4569 			    (verndx >= VER_NDX_GIVEN) ||
4570 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4571 				return (false);
4572 		}
4573 	}
4574 	result->sym_out = symp;
4575 	return (true);
4576 }
4577 
4578 /*
4579  * Search for symbol using SysV hash function.
4580  * obj->buckets is known not to be NULL at this point; the test for this was
4581  * performed with the obj->valid_hash_sysv assignment.
4582  */
4583 static int
4584 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4585 {
4586 	unsigned long symnum;
4587 	Sym_Match_Result matchres;
4588 
4589 	matchres.sym_out = NULL;
4590 	matchres.vsymp = NULL;
4591 	matchres.vcount = 0;
4592 
4593 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4594 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4595 		if (symnum >= obj->nchains)
4596 			return (ESRCH);	/* Bad object */
4597 
4598 		if (matched_symbol(req, obj, &matchres, symnum)) {
4599 			req->sym_out = matchres.sym_out;
4600 			req->defobj_out = obj;
4601 			return (0);
4602 		}
4603 	}
4604 	if (matchres.vcount == 1) {
4605 		req->sym_out = matchres.vsymp;
4606 		req->defobj_out = obj;
4607 		return (0);
4608 	}
4609 	return (ESRCH);
4610 }
4611 
4612 /* Search for symbol using GNU hash function */
4613 static int
4614 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4615 {
4616 	Elf_Addr bloom_word;
4617 	const Elf32_Word *hashval;
4618 	Elf32_Word bucket;
4619 	Sym_Match_Result matchres;
4620 	unsigned int h1, h2;
4621 	unsigned long symnum;
4622 
4623 	matchres.sym_out = NULL;
4624 	matchres.vsymp = NULL;
4625 	matchres.vcount = 0;
4626 
4627 	/* Pick right bitmask word from Bloom filter array */
4628 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4629 	    obj->maskwords_bm_gnu];
4630 
4631 	/* Calculate modulus word size of gnu hash and its derivative */
4632 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4633 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4634 
4635 	/* Filter out the "definitely not in set" queries */
4636 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4637 		return (ESRCH);
4638 
4639 	/* Locate hash chain and corresponding value element*/
4640 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4641 	if (bucket == 0)
4642 		return (ESRCH);
4643 	hashval = &obj->chain_zero_gnu[bucket];
4644 	do {
4645 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4646 			symnum = hashval - obj->chain_zero_gnu;
4647 			if (matched_symbol(req, obj, &matchres, symnum)) {
4648 				req->sym_out = matchres.sym_out;
4649 				req->defobj_out = obj;
4650 				return (0);
4651 			}
4652 		}
4653 	} while ((*hashval++ & 1) == 0);
4654 	if (matchres.vcount == 1) {
4655 		req->sym_out = matchres.vsymp;
4656 		req->defobj_out = obj;
4657 		return (0);
4658 	}
4659 	return (ESRCH);
4660 }
4661 
4662 static void
4663 trace_loaded_objects(Obj_Entry *obj)
4664 {
4665     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4666     int c;
4667 
4668     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4669 	main_local = "";
4670 
4671     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4672 	fmt1 = "\t%o => %p (%x)\n";
4673 
4674     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4675 	fmt2 = "\t%o (%x)\n";
4676 
4677     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4678 
4679     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4680 	Needed_Entry *needed;
4681 	const char *name, *path;
4682 	bool is_lib;
4683 
4684 	if (obj->marker)
4685 	    continue;
4686 	if (list_containers && obj->needed != NULL)
4687 	    rtld_printf("%s:\n", obj->path);
4688 	for (needed = obj->needed; needed; needed = needed->next) {
4689 	    if (needed->obj != NULL) {
4690 		if (needed->obj->traced && !list_containers)
4691 		    continue;
4692 		needed->obj->traced = true;
4693 		path = needed->obj->path;
4694 	    } else
4695 		path = "not found";
4696 
4697 	    name = obj->strtab + needed->name;
4698 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4699 
4700 	    fmt = is_lib ? fmt1 : fmt2;
4701 	    while ((c = *fmt++) != '\0') {
4702 		switch (c) {
4703 		default:
4704 		    rtld_putchar(c);
4705 		    continue;
4706 		case '\\':
4707 		    switch (c = *fmt) {
4708 		    case '\0':
4709 			continue;
4710 		    case 'n':
4711 			rtld_putchar('\n');
4712 			break;
4713 		    case 't':
4714 			rtld_putchar('\t');
4715 			break;
4716 		    }
4717 		    break;
4718 		case '%':
4719 		    switch (c = *fmt) {
4720 		    case '\0':
4721 			continue;
4722 		    case '%':
4723 		    default:
4724 			rtld_putchar(c);
4725 			break;
4726 		    case 'A':
4727 			rtld_putstr(main_local);
4728 			break;
4729 		    case 'a':
4730 			rtld_putstr(obj_main->path);
4731 			break;
4732 		    case 'o':
4733 			rtld_putstr(name);
4734 			break;
4735 #if 0
4736 		    case 'm':
4737 			rtld_printf("%d", sodp->sod_major);
4738 			break;
4739 		    case 'n':
4740 			rtld_printf("%d", sodp->sod_minor);
4741 			break;
4742 #endif
4743 		    case 'p':
4744 			rtld_putstr(path);
4745 			break;
4746 		    case 'x':
4747 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4748 			  0);
4749 			break;
4750 		    }
4751 		    break;
4752 		}
4753 		++fmt;
4754 	    }
4755 	}
4756     }
4757 }
4758 
4759 /*
4760  * Unload a dlopened object and its dependencies from memory and from
4761  * our data structures.  It is assumed that the DAG rooted in the
4762  * object has already been unreferenced, and that the object has a
4763  * reference count of 0.
4764  */
4765 static void
4766 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4767 {
4768 	Obj_Entry marker, *obj, *next;
4769 
4770 	assert(root->refcount == 0);
4771 
4772 	/*
4773 	 * Pass over the DAG removing unreferenced objects from
4774 	 * appropriate lists.
4775 	 */
4776 	unlink_object(root);
4777 
4778 	/* Unmap all objects that are no longer referenced. */
4779 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4780 		next = TAILQ_NEXT(obj, next);
4781 		if (obj->marker || obj->refcount != 0)
4782 			continue;
4783 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4784 		    obj->mapsize, 0, obj->path);
4785 		dbg("unloading \"%s\"", obj->path);
4786 		/*
4787 		 * Unlink the object now to prevent new references from
4788 		 * being acquired while the bind lock is dropped in
4789 		 * recursive dlclose() invocations.
4790 		 */
4791 		TAILQ_REMOVE(&obj_list, obj, next);
4792 		obj_count--;
4793 
4794 		if (obj->filtees_loaded) {
4795 			if (next != NULL) {
4796 				init_marker(&marker);
4797 				TAILQ_INSERT_BEFORE(next, &marker, next);
4798 				unload_filtees(obj, lockstate);
4799 				next = TAILQ_NEXT(&marker, next);
4800 				TAILQ_REMOVE(&obj_list, &marker, next);
4801 			} else
4802 				unload_filtees(obj, lockstate);
4803 		}
4804 		release_object(obj);
4805 	}
4806 }
4807 
4808 static void
4809 unlink_object(Obj_Entry *root)
4810 {
4811     Objlist_Entry *elm;
4812 
4813     if (root->refcount == 0) {
4814 	/* Remove the object from the RTLD_GLOBAL list. */
4815 	objlist_remove(&list_global, root);
4816 
4817     	/* Remove the object from all objects' DAG lists. */
4818     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4819 	    objlist_remove(&elm->obj->dldags, root);
4820 	    if (elm->obj != root)
4821 		unlink_object(elm->obj);
4822 	}
4823     }
4824 }
4825 
4826 static void
4827 ref_dag(Obj_Entry *root)
4828 {
4829     Objlist_Entry *elm;
4830 
4831     assert(root->dag_inited);
4832     STAILQ_FOREACH(elm, &root->dagmembers, link)
4833 	elm->obj->refcount++;
4834 }
4835 
4836 static void
4837 unref_dag(Obj_Entry *root)
4838 {
4839     Objlist_Entry *elm;
4840 
4841     assert(root->dag_inited);
4842     STAILQ_FOREACH(elm, &root->dagmembers, link)
4843 	elm->obj->refcount--;
4844 }
4845 
4846 /*
4847  * Common code for MD __tls_get_addr().
4848  */
4849 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4850 static void *
4851 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4852 {
4853     Elf_Addr *newdtv, *dtv;
4854     RtldLockState lockstate;
4855     int to_copy;
4856 
4857     dtv = *dtvp;
4858     /* Check dtv generation in case new modules have arrived */
4859     if (dtv[0] != tls_dtv_generation) {
4860 	wlock_acquire(rtld_bind_lock, &lockstate);
4861 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4862 	to_copy = dtv[1];
4863 	if (to_copy > tls_max_index)
4864 	    to_copy = tls_max_index;
4865 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4866 	newdtv[0] = tls_dtv_generation;
4867 	newdtv[1] = tls_max_index;
4868 	free(dtv);
4869 	lock_release(rtld_bind_lock, &lockstate);
4870 	dtv = *dtvp = newdtv;
4871     }
4872 
4873     /* Dynamically allocate module TLS if necessary */
4874     if (dtv[index + 1] == 0) {
4875 	/* Signal safe, wlock will block out signals. */
4876 	wlock_acquire(rtld_bind_lock, &lockstate);
4877 	if (!dtv[index + 1])
4878 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4879 	lock_release(rtld_bind_lock, &lockstate);
4880     }
4881     return ((void *)(dtv[index + 1] + offset));
4882 }
4883 
4884 void *
4885 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4886 {
4887 	Elf_Addr *dtv;
4888 
4889 	dtv = *dtvp;
4890 	/* Check dtv generation in case new modules have arrived */
4891 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4892 	    dtv[index + 1] != 0))
4893 		return ((void *)(dtv[index + 1] + offset));
4894 	return (tls_get_addr_slow(dtvp, index, offset));
4895 }
4896 
4897 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4898     defined(__powerpc__) || defined(__riscv)
4899 
4900 /*
4901  * Return pointer to allocated TLS block
4902  */
4903 static void *
4904 get_tls_block_ptr(void *tcb, size_t tcbsize)
4905 {
4906     size_t extra_size, post_size, pre_size, tls_block_size;
4907     size_t tls_init_align;
4908 
4909     tls_init_align = MAX(obj_main->tlsalign, 1);
4910 
4911     /* Compute fragments sizes. */
4912     extra_size = tcbsize - TLS_TCB_SIZE;
4913     post_size = calculate_tls_post_size(tls_init_align);
4914     tls_block_size = tcbsize + post_size;
4915     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4916 
4917     return ((char *)tcb - pre_size - extra_size);
4918 }
4919 
4920 /*
4921  * Allocate Static TLS using the Variant I method.
4922  *
4923  * For details on the layout, see lib/libc/gen/tls.c.
4924  *
4925  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4926  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4927  *     offsets, whereas libc's tls_static_space is just the executable's static
4928  *     TLS segment.
4929  */
4930 void *
4931 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4932 {
4933     Obj_Entry *obj;
4934     char *tls_block;
4935     Elf_Addr *dtv, **tcb;
4936     Elf_Addr addr;
4937     Elf_Addr i;
4938     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4939     size_t tls_init_align, tls_init_offset;
4940 
4941     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4942 	return (oldtcb);
4943 
4944     assert(tcbsize >= TLS_TCB_SIZE);
4945     maxalign = MAX(tcbalign, tls_static_max_align);
4946     tls_init_align = MAX(obj_main->tlsalign, 1);
4947 
4948     /* Compute fragmets sizes. */
4949     extra_size = tcbsize - TLS_TCB_SIZE;
4950     post_size = calculate_tls_post_size(tls_init_align);
4951     tls_block_size = tcbsize + post_size;
4952     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4953     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4954 
4955     /* Allocate whole TLS block */
4956     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4957     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4958 
4959     if (oldtcb != NULL) {
4960 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4961 	    tls_static_space);
4962 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4963 
4964 	/* Adjust the DTV. */
4965 	dtv = tcb[0];
4966 	for (i = 0; i < dtv[1]; i++) {
4967 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4968 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4969 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4970 	    }
4971 	}
4972     } else {
4973 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4974 	tcb[0] = dtv;
4975 	dtv[0] = tls_dtv_generation;
4976 	dtv[1] = tls_max_index;
4977 
4978 	for (obj = globallist_curr(objs); obj != NULL;
4979 	  obj = globallist_next(obj)) {
4980 	    if (obj->tlsoffset == 0)
4981 		continue;
4982 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4983 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4984 	    if (tls_init_offset > 0)
4985 		memset((void *)addr, 0, tls_init_offset);
4986 	    if (obj->tlsinitsize > 0) {
4987 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4988 		    obj->tlsinitsize);
4989 	    }
4990 	    if (obj->tlssize > obj->tlsinitsize) {
4991 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4992 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4993 	    }
4994 	    dtv[obj->tlsindex + 1] = addr;
4995 	}
4996     }
4997 
4998     return (tcb);
4999 }
5000 
5001 void
5002 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5003 {
5004     Elf_Addr *dtv;
5005     Elf_Addr tlsstart, tlsend;
5006     size_t post_size;
5007     size_t dtvsize, i, tls_init_align;
5008 
5009     assert(tcbsize >= TLS_TCB_SIZE);
5010     tls_init_align = MAX(obj_main->tlsalign, 1);
5011 
5012     /* Compute fragments sizes. */
5013     post_size = calculate_tls_post_size(tls_init_align);
5014 
5015     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5016     tlsend = (Elf_Addr)tcb + tls_static_space;
5017 
5018     dtv = *(Elf_Addr **)tcb;
5019     dtvsize = dtv[1];
5020     for (i = 0; i < dtvsize; i++) {
5021 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5022 	    free((void*)dtv[i+2]);
5023 	}
5024     }
5025     free(dtv);
5026     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5027 }
5028 
5029 #endif
5030 
5031 #if defined(__i386__) || defined(__amd64__)
5032 
5033 /*
5034  * Allocate Static TLS using the Variant II method.
5035  */
5036 void *
5037 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5038 {
5039     Obj_Entry *obj;
5040     size_t size, ralign;
5041     char *tls;
5042     Elf_Addr *dtv, *olddtv;
5043     Elf_Addr segbase, oldsegbase, addr;
5044     size_t i;
5045 
5046     ralign = tcbalign;
5047     if (tls_static_max_align > ralign)
5048 	    ralign = tls_static_max_align;
5049     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5050 
5051     assert(tcbsize >= 2*sizeof(Elf_Addr));
5052     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5053     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5054 
5055     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5056     ((Elf_Addr*)segbase)[0] = segbase;
5057     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5058 
5059     dtv[0] = tls_dtv_generation;
5060     dtv[1] = tls_max_index;
5061 
5062     if (oldtls) {
5063 	/*
5064 	 * Copy the static TLS block over whole.
5065 	 */
5066 	oldsegbase = (Elf_Addr) oldtls;
5067 	memcpy((void *)(segbase - tls_static_space),
5068 	       (const void *)(oldsegbase - tls_static_space),
5069 	       tls_static_space);
5070 
5071 	/*
5072 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5073 	 * move them over.
5074 	 */
5075 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5076 	for (i = 0; i < olddtv[1]; i++) {
5077 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5078 		dtv[i+2] = olddtv[i+2];
5079 		olddtv[i+2] = 0;
5080 	    }
5081 	}
5082 
5083 	/*
5084 	 * We assume that this block was the one we created with
5085 	 * allocate_initial_tls().
5086 	 */
5087 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5088     } else {
5089 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5090 		if (obj->marker || obj->tlsoffset == 0)
5091 			continue;
5092 		addr = segbase - obj->tlsoffset;
5093 		memset((void*)(addr + obj->tlsinitsize),
5094 		       0, obj->tlssize - obj->tlsinitsize);
5095 		if (obj->tlsinit) {
5096 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5097 		    obj->static_tls_copied = true;
5098 		}
5099 		dtv[obj->tlsindex + 1] = addr;
5100 	}
5101     }
5102 
5103     return (void*) segbase;
5104 }
5105 
5106 void
5107 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5108 {
5109     Elf_Addr* dtv;
5110     size_t size, ralign;
5111     int dtvsize, i;
5112     Elf_Addr tlsstart, tlsend;
5113 
5114     /*
5115      * Figure out the size of the initial TLS block so that we can
5116      * find stuff which ___tls_get_addr() allocated dynamically.
5117      */
5118     ralign = tcbalign;
5119     if (tls_static_max_align > ralign)
5120 	    ralign = tls_static_max_align;
5121     size = roundup(tls_static_space, ralign);
5122 
5123     dtv = ((Elf_Addr**)tls)[1];
5124     dtvsize = dtv[1];
5125     tlsend = (Elf_Addr) tls;
5126     tlsstart = tlsend - size;
5127     for (i = 0; i < dtvsize; i++) {
5128 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5129 		free_aligned((void *)dtv[i + 2]);
5130 	}
5131     }
5132 
5133     free_aligned((void *)tlsstart);
5134     free((void*) dtv);
5135 }
5136 
5137 #endif
5138 
5139 /*
5140  * Allocate TLS block for module with given index.
5141  */
5142 void *
5143 allocate_module_tls(int index)
5144 {
5145 	Obj_Entry *obj;
5146 	char *p;
5147 
5148 	TAILQ_FOREACH(obj, &obj_list, next) {
5149 		if (obj->marker)
5150 			continue;
5151 		if (obj->tlsindex == index)
5152 			break;
5153 	}
5154 	if (obj == NULL) {
5155 		_rtld_error("Can't find module with TLS index %d", index);
5156 		rtld_die();
5157 	}
5158 
5159 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5160 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5161 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5162 	return (p);
5163 }
5164 
5165 bool
5166 allocate_tls_offset(Obj_Entry *obj)
5167 {
5168     size_t off;
5169 
5170     if (obj->tls_done)
5171 	return true;
5172 
5173     if (obj->tlssize == 0) {
5174 	obj->tls_done = true;
5175 	return true;
5176     }
5177 
5178     if (tls_last_offset == 0)
5179 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5180 	  obj->tlspoffset);
5181     else
5182 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5183 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5184 
5185     /*
5186      * If we have already fixed the size of the static TLS block, we
5187      * must stay within that size. When allocating the static TLS, we
5188      * leave a small amount of space spare to be used for dynamically
5189      * loading modules which use static TLS.
5190      */
5191     if (tls_static_space != 0) {
5192 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5193 	    return false;
5194     } else if (obj->tlsalign > tls_static_max_align) {
5195 	    tls_static_max_align = obj->tlsalign;
5196     }
5197 
5198     tls_last_offset = obj->tlsoffset = off;
5199     tls_last_size = obj->tlssize;
5200     obj->tls_done = true;
5201 
5202     return true;
5203 }
5204 
5205 void
5206 free_tls_offset(Obj_Entry *obj)
5207 {
5208 
5209     /*
5210      * If we were the last thing to allocate out of the static TLS
5211      * block, we give our space back to the 'allocator'. This is a
5212      * simplistic workaround to allow libGL.so.1 to be loaded and
5213      * unloaded multiple times.
5214      */
5215     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5216 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5217 	tls_last_offset -= obj->tlssize;
5218 	tls_last_size = 0;
5219     }
5220 }
5221 
5222 void *
5223 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5224 {
5225     void *ret;
5226     RtldLockState lockstate;
5227 
5228     wlock_acquire(rtld_bind_lock, &lockstate);
5229     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5230       tcbsize, tcbalign);
5231     lock_release(rtld_bind_lock, &lockstate);
5232     return (ret);
5233 }
5234 
5235 void
5236 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5237 {
5238     RtldLockState lockstate;
5239 
5240     wlock_acquire(rtld_bind_lock, &lockstate);
5241     free_tls(tcb, tcbsize, tcbalign);
5242     lock_release(rtld_bind_lock, &lockstate);
5243 }
5244 
5245 static void
5246 object_add_name(Obj_Entry *obj, const char *name)
5247 {
5248     Name_Entry *entry;
5249     size_t len;
5250 
5251     len = strlen(name);
5252     entry = malloc(sizeof(Name_Entry) + len);
5253 
5254     if (entry != NULL) {
5255 	strcpy(entry->name, name);
5256 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5257     }
5258 }
5259 
5260 static int
5261 object_match_name(const Obj_Entry *obj, const char *name)
5262 {
5263     Name_Entry *entry;
5264 
5265     STAILQ_FOREACH(entry, &obj->names, link) {
5266 	if (strcmp(name, entry->name) == 0)
5267 	    return (1);
5268     }
5269     return (0);
5270 }
5271 
5272 static Obj_Entry *
5273 locate_dependency(const Obj_Entry *obj, const char *name)
5274 {
5275     const Objlist_Entry *entry;
5276     const Needed_Entry *needed;
5277 
5278     STAILQ_FOREACH(entry, &list_main, link) {
5279 	if (object_match_name(entry->obj, name))
5280 	    return entry->obj;
5281     }
5282 
5283     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5284 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5285 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5286 	    /*
5287 	     * If there is DT_NEEDED for the name we are looking for,
5288 	     * we are all set.  Note that object might not be found if
5289 	     * dependency was not loaded yet, so the function can
5290 	     * return NULL here.  This is expected and handled
5291 	     * properly by the caller.
5292 	     */
5293 	    return (needed->obj);
5294 	}
5295     }
5296     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5297 	obj->path, name);
5298     rtld_die();
5299 }
5300 
5301 static int
5302 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5303     const Elf_Vernaux *vna)
5304 {
5305     const Elf_Verdef *vd;
5306     const char *vername;
5307 
5308     vername = refobj->strtab + vna->vna_name;
5309     vd = depobj->verdef;
5310     if (vd == NULL) {
5311 	_rtld_error("%s: version %s required by %s not defined",
5312 	    depobj->path, vername, refobj->path);
5313 	return (-1);
5314     }
5315     for (;;) {
5316 	if (vd->vd_version != VER_DEF_CURRENT) {
5317 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5318 		depobj->path, vd->vd_version);
5319 	    return (-1);
5320 	}
5321 	if (vna->vna_hash == vd->vd_hash) {
5322 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5323 		((const char *)vd + vd->vd_aux);
5324 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5325 		return (0);
5326 	}
5327 	if (vd->vd_next == 0)
5328 	    break;
5329 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5330     }
5331     if (vna->vna_flags & VER_FLG_WEAK)
5332 	return (0);
5333     _rtld_error("%s: version %s required by %s not found",
5334 	depobj->path, vername, refobj->path);
5335     return (-1);
5336 }
5337 
5338 static int
5339 rtld_verify_object_versions(Obj_Entry *obj)
5340 {
5341     const Elf_Verneed *vn;
5342     const Elf_Verdef  *vd;
5343     const Elf_Verdaux *vda;
5344     const Elf_Vernaux *vna;
5345     const Obj_Entry *depobj;
5346     int maxvernum, vernum;
5347 
5348     if (obj->ver_checked)
5349 	return (0);
5350     obj->ver_checked = true;
5351 
5352     maxvernum = 0;
5353     /*
5354      * Walk over defined and required version records and figure out
5355      * max index used by any of them. Do very basic sanity checking
5356      * while there.
5357      */
5358     vn = obj->verneed;
5359     while (vn != NULL) {
5360 	if (vn->vn_version != VER_NEED_CURRENT) {
5361 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5362 		obj->path, vn->vn_version);
5363 	    return (-1);
5364 	}
5365 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5366 	for (;;) {
5367 	    vernum = VER_NEED_IDX(vna->vna_other);
5368 	    if (vernum > maxvernum)
5369 		maxvernum = vernum;
5370 	    if (vna->vna_next == 0)
5371 		 break;
5372 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5373 	}
5374 	if (vn->vn_next == 0)
5375 	    break;
5376 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5377     }
5378 
5379     vd = obj->verdef;
5380     while (vd != NULL) {
5381 	if (vd->vd_version != VER_DEF_CURRENT) {
5382 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5383 		obj->path, vd->vd_version);
5384 	    return (-1);
5385 	}
5386 	vernum = VER_DEF_IDX(vd->vd_ndx);
5387 	if (vernum > maxvernum)
5388 		maxvernum = vernum;
5389 	if (vd->vd_next == 0)
5390 	    break;
5391 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5392     }
5393 
5394     if (maxvernum == 0)
5395 	return (0);
5396 
5397     /*
5398      * Store version information in array indexable by version index.
5399      * Verify that object version requirements are satisfied along the
5400      * way.
5401      */
5402     obj->vernum = maxvernum + 1;
5403     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5404 
5405     vd = obj->verdef;
5406     while (vd != NULL) {
5407 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5408 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5409 	    assert(vernum <= maxvernum);
5410 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5411 	    obj->vertab[vernum].hash = vd->vd_hash;
5412 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5413 	    obj->vertab[vernum].file = NULL;
5414 	    obj->vertab[vernum].flags = 0;
5415 	}
5416 	if (vd->vd_next == 0)
5417 	    break;
5418 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5419     }
5420 
5421     vn = obj->verneed;
5422     while (vn != NULL) {
5423 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5424 	if (depobj == NULL)
5425 	    return (-1);
5426 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5427 	for (;;) {
5428 	    if (check_object_provided_version(obj, depobj, vna))
5429 		return (-1);
5430 	    vernum = VER_NEED_IDX(vna->vna_other);
5431 	    assert(vernum <= maxvernum);
5432 	    obj->vertab[vernum].hash = vna->vna_hash;
5433 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5434 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5435 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5436 		VER_INFO_HIDDEN : 0;
5437 	    if (vna->vna_next == 0)
5438 		 break;
5439 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5440 	}
5441 	if (vn->vn_next == 0)
5442 	    break;
5443 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5444     }
5445     return 0;
5446 }
5447 
5448 static int
5449 rtld_verify_versions(const Objlist *objlist)
5450 {
5451     Objlist_Entry *entry;
5452     int rc;
5453 
5454     rc = 0;
5455     STAILQ_FOREACH(entry, objlist, link) {
5456 	/*
5457 	 * Skip dummy objects or objects that have their version requirements
5458 	 * already checked.
5459 	 */
5460 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5461 	    continue;
5462 	if (rtld_verify_object_versions(entry->obj) == -1) {
5463 	    rc = -1;
5464 	    if (ld_tracing == NULL)
5465 		break;
5466 	}
5467     }
5468     if (rc == 0 || ld_tracing != NULL)
5469     	rc = rtld_verify_object_versions(&obj_rtld);
5470     return rc;
5471 }
5472 
5473 const Ver_Entry *
5474 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5475 {
5476     Elf_Versym vernum;
5477 
5478     if (obj->vertab) {
5479 	vernum = VER_NDX(obj->versyms[symnum]);
5480 	if (vernum >= obj->vernum) {
5481 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5482 		obj->path, obj->strtab + symnum, vernum);
5483 	} else if (obj->vertab[vernum].hash != 0) {
5484 	    return &obj->vertab[vernum];
5485 	}
5486     }
5487     return NULL;
5488 }
5489 
5490 int
5491 _rtld_get_stack_prot(void)
5492 {
5493 
5494 	return (stack_prot);
5495 }
5496 
5497 int
5498 _rtld_is_dlopened(void *arg)
5499 {
5500 	Obj_Entry *obj;
5501 	RtldLockState lockstate;
5502 	int res;
5503 
5504 	rlock_acquire(rtld_bind_lock, &lockstate);
5505 	obj = dlcheck(arg);
5506 	if (obj == NULL)
5507 		obj = obj_from_addr(arg);
5508 	if (obj == NULL) {
5509 		_rtld_error("No shared object contains address");
5510 		lock_release(rtld_bind_lock, &lockstate);
5511 		return (-1);
5512 	}
5513 	res = obj->dlopened ? 1 : 0;
5514 	lock_release(rtld_bind_lock, &lockstate);
5515 	return (res);
5516 }
5517 
5518 static int
5519 obj_remap_relro(Obj_Entry *obj, int prot)
5520 {
5521 
5522 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5523 	    prot) == -1) {
5524 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5525 		    obj->path, prot, rtld_strerror(errno));
5526 		return (-1);
5527 	}
5528 	return (0);
5529 }
5530 
5531 static int
5532 obj_disable_relro(Obj_Entry *obj)
5533 {
5534 
5535 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5536 }
5537 
5538 static int
5539 obj_enforce_relro(Obj_Entry *obj)
5540 {
5541 
5542 	return (obj_remap_relro(obj, PROT_READ));
5543 }
5544 
5545 static void
5546 map_stacks_exec(RtldLockState *lockstate)
5547 {
5548 	void (*thr_map_stacks_exec)(void);
5549 
5550 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5551 		return;
5552 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5553 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5554 	if (thr_map_stacks_exec != NULL) {
5555 		stack_prot |= PROT_EXEC;
5556 		thr_map_stacks_exec();
5557 	}
5558 }
5559 
5560 static void
5561 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5562 {
5563 	Objlist_Entry *elm;
5564 	Obj_Entry *obj;
5565 	void (*distrib)(size_t, void *, size_t, size_t);
5566 
5567 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5568 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5569 	if (distrib == NULL)
5570 		return;
5571 	STAILQ_FOREACH(elm, list, link) {
5572 		obj = elm->obj;
5573 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5574 			continue;
5575 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5576 		    obj->tlssize);
5577 		obj->static_tls_copied = true;
5578 	}
5579 }
5580 
5581 void
5582 symlook_init(SymLook *dst, const char *name)
5583 {
5584 
5585 	bzero(dst, sizeof(*dst));
5586 	dst->name = name;
5587 	dst->hash = elf_hash(name);
5588 	dst->hash_gnu = gnu_hash(name);
5589 }
5590 
5591 static void
5592 symlook_init_from_req(SymLook *dst, const SymLook *src)
5593 {
5594 
5595 	dst->name = src->name;
5596 	dst->hash = src->hash;
5597 	dst->hash_gnu = src->hash_gnu;
5598 	dst->ventry = src->ventry;
5599 	dst->flags = src->flags;
5600 	dst->defobj_out = NULL;
5601 	dst->sym_out = NULL;
5602 	dst->lockstate = src->lockstate;
5603 }
5604 
5605 static int
5606 open_binary_fd(const char *argv0, bool search_in_path,
5607     const char **binpath_res)
5608 {
5609 	char *binpath, *pathenv, *pe, *res1;
5610 	const char *res;
5611 	int fd;
5612 
5613 	binpath = NULL;
5614 	res = NULL;
5615 	if (search_in_path && strchr(argv0, '/') == NULL) {
5616 		binpath = xmalloc(PATH_MAX);
5617 		pathenv = getenv("PATH");
5618 		if (pathenv == NULL) {
5619 			_rtld_error("-p and no PATH environment variable");
5620 			rtld_die();
5621 		}
5622 		pathenv = strdup(pathenv);
5623 		if (pathenv == NULL) {
5624 			_rtld_error("Cannot allocate memory");
5625 			rtld_die();
5626 		}
5627 		fd = -1;
5628 		errno = ENOENT;
5629 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5630 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5631 				continue;
5632 			if (binpath[0] != '\0' &&
5633 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5634 				continue;
5635 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5636 				continue;
5637 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5638 			if (fd != -1 || errno != ENOENT) {
5639 				res = binpath;
5640 				break;
5641 			}
5642 		}
5643 		free(pathenv);
5644 	} else {
5645 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5646 		res = argv0;
5647 	}
5648 
5649 	if (fd == -1) {
5650 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5651 		rtld_die();
5652 	}
5653 	if (res != NULL && res[0] != '/') {
5654 		res1 = xmalloc(PATH_MAX);
5655 		if (realpath(res, res1) != NULL) {
5656 			if (res != argv0)
5657 				free(__DECONST(char *, res));
5658 			res = res1;
5659 		} else {
5660 			free(res1);
5661 		}
5662 	}
5663 	*binpath_res = res;
5664 	return (fd);
5665 }
5666 
5667 /*
5668  * Parse a set of command-line arguments.
5669  */
5670 static int
5671 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5672     const char **argv0)
5673 {
5674 	const char *arg;
5675 	char machine[64];
5676 	size_t sz;
5677 	int arglen, fd, i, j, mib[2];
5678 	char opt;
5679 	bool seen_b, seen_f;
5680 
5681 	dbg("Parsing command-line arguments");
5682 	*use_pathp = false;
5683 	*fdp = -1;
5684 	seen_b = seen_f = false;
5685 
5686 	for (i = 1; i < argc; i++ ) {
5687 		arg = argv[i];
5688 		dbg("argv[%d]: '%s'", i, arg);
5689 
5690 		/*
5691 		 * rtld arguments end with an explicit "--" or with the first
5692 		 * non-prefixed argument.
5693 		 */
5694 		if (strcmp(arg, "--") == 0) {
5695 			i++;
5696 			break;
5697 		}
5698 		if (arg[0] != '-')
5699 			break;
5700 
5701 		/*
5702 		 * All other arguments are single-character options that can
5703 		 * be combined, so we need to search through `arg` for them.
5704 		 */
5705 		arglen = strlen(arg);
5706 		for (j = 1; j < arglen; j++) {
5707 			opt = arg[j];
5708 			if (opt == 'h') {
5709 				print_usage(argv[0]);
5710 				_exit(0);
5711 			} else if (opt == 'b') {
5712 				if (seen_f) {
5713 					_rtld_error("Both -b and -f specified");
5714 					rtld_die();
5715 				}
5716 				i++;
5717 				*argv0 = argv[i];
5718 				seen_b = true;
5719 				break;
5720 			} else if (opt == 'f') {
5721 				if (seen_b) {
5722 					_rtld_error("Both -b and -f specified");
5723 					rtld_die();
5724 				}
5725 
5726 				/*
5727 				 * -f XX can be used to specify a
5728 				 * descriptor for the binary named at
5729 				 * the command line (i.e., the later
5730 				 * argument will specify the process
5731 				 * name but the descriptor is what
5732 				 * will actually be executed).
5733 				 *
5734 				 * -f must be the last option in, e.g., -abcf.
5735 				 */
5736 				if (j != arglen - 1) {
5737 					_rtld_error("Invalid options: %s", arg);
5738 					rtld_die();
5739 				}
5740 				i++;
5741 				fd = parse_integer(argv[i]);
5742 				if (fd == -1) {
5743 					_rtld_error(
5744 					    "Invalid file descriptor: '%s'",
5745 					    argv[i]);
5746 					rtld_die();
5747 				}
5748 				*fdp = fd;
5749 				seen_f = true;
5750 				break;
5751 			} else if (opt == 'p') {
5752 				*use_pathp = true;
5753 			} else if (opt == 'v') {
5754 				machine[0] = '\0';
5755 				mib[0] = CTL_HW;
5756 				mib[1] = HW_MACHINE;
5757 				sz = sizeof(machine);
5758 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5759 				rtld_printf(
5760 				    "FreeBSD ld-elf.so.1 %s\n"
5761 				    "FreeBSD_version %d\n"
5762 				    "Default lib path %s\n"
5763 				    "Env prefix %s\n"
5764 				    "Hint file %s\n"
5765 				    "libmap file %s\n",
5766 				    machine,
5767 				    __FreeBSD_version, ld_standard_library_path,
5768 				    ld_env_prefix, ld_elf_hints_default,
5769 				    ld_path_libmap_conf);
5770 				_exit(0);
5771 			} else {
5772 				_rtld_error("Invalid argument: '%s'", arg);
5773 				print_usage(argv[0]);
5774 				rtld_die();
5775 			}
5776 		}
5777 	}
5778 
5779 	if (!seen_b)
5780 		*argv0 = argv[i];
5781 	return (i);
5782 }
5783 
5784 /*
5785  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5786  */
5787 static int
5788 parse_integer(const char *str)
5789 {
5790 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5791 	const char *orig;
5792 	int n;
5793 	char c;
5794 
5795 	orig = str;
5796 	n = 0;
5797 	for (c = *str; c != '\0'; c = *++str) {
5798 		if (c < '0' || c > '9')
5799 			return (-1);
5800 
5801 		n *= RADIX;
5802 		n += c - '0';
5803 	}
5804 
5805 	/* Make sure we actually parsed something. */
5806 	if (str == orig)
5807 		return (-1);
5808 	return (n);
5809 }
5810 
5811 static void
5812 print_usage(const char *argv0)
5813 {
5814 
5815 	rtld_printf(
5816 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5817 	    "\n"
5818 	    "Options:\n"
5819 	    "  -h        Display this help message\n"
5820 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5821 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5822 	    "  -p        Search in PATH for named binary\n"
5823 	    "  -v        Display identification information\n"
5824 	    "  --        End of RTLD options\n"
5825 	    "  <binary>  Name of process to execute\n"
5826 	    "  <args>    Arguments to the executed process\n", argv0);
5827 }
5828 
5829 /*
5830  * Overrides for libc_pic-provided functions.
5831  */
5832 
5833 int
5834 __getosreldate(void)
5835 {
5836 	size_t len;
5837 	int oid[2];
5838 	int error, osrel;
5839 
5840 	if (osreldate != 0)
5841 		return (osreldate);
5842 
5843 	oid[0] = CTL_KERN;
5844 	oid[1] = KERN_OSRELDATE;
5845 	osrel = 0;
5846 	len = sizeof(osrel);
5847 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5848 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5849 		osreldate = osrel;
5850 	return (osreldate);
5851 }
5852 const char *
5853 rtld_strerror(int errnum)
5854 {
5855 
5856 	if (errnum < 0 || errnum >= sys_nerr)
5857 		return ("Unknown error");
5858 	return (sys_errlist[errnum]);
5859 }
5860 
5861 /* malloc */
5862 void *
5863 malloc(size_t nbytes)
5864 {
5865 
5866 	return (__crt_malloc(nbytes));
5867 }
5868 
5869 void *
5870 calloc(size_t num, size_t size)
5871 {
5872 
5873 	return (__crt_calloc(num, size));
5874 }
5875 
5876 void
5877 free(void *cp)
5878 {
5879 
5880 	__crt_free(cp);
5881 }
5882 
5883 void *
5884 realloc(void *cp, size_t nbytes)
5885 {
5886 
5887 	return (__crt_realloc(cp, nbytes));
5888 }
5889 
5890 extern int _rtld_version__FreeBSD_version __exported;
5891 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5892 
5893 extern char _rtld_version_laddr_offset __exported;
5894 char _rtld_version_laddr_offset;
5895