xref: /freebsd/libexec/rtld-elf/rtld.c (revision cddbc3b40812213ff00041f79174cac0be360a2a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 
73 /* Types. */
74 typedef void (*func_ptr_type)(void);
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 
78 /* Variables that cannot be static: */
79 extern struct r_debug r_debug; /* For GDB */
80 extern int _thread_autoinit_dummy_decl;
81 extern char* __progname;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path);
138 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
139 static int parse_integer(const char *);
140 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
141 static void print_usage(const char *argv0);
142 static void release_object(Obj_Entry *);
143 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
144     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
145 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
146     int flags, RtldLockState *lockstate);
147 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
148     RtldLockState *);
149 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
150 static int rtld_dirname(const char *, char *);
151 static int rtld_dirname_abs(const char *, char *);
152 static void *rtld_dlopen(const char *name, int fd, int mode);
153 static void rtld_exit(void);
154 static void rtld_nop_exit(void);
155 static char *search_library_path(const char *, const char *, const char *,
156     int *);
157 static char *search_library_pathfds(const char *, const char *, int *);
158 static const void **get_program_var_addr(const char *, RtldLockState *);
159 static void set_program_var(const char *, const void *);
160 static int symlook_default(SymLook *, const Obj_Entry *refobj);
161 static int symlook_global(SymLook *, DoneList *);
162 static void symlook_init_from_req(SymLook *, const SymLook *);
163 static int symlook_list(SymLook *, const Objlist *, DoneList *);
164 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
165 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
166 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
167 static void trace_loaded_objects(Obj_Entry *);
168 static void unlink_object(Obj_Entry *);
169 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
170 static void unref_dag(Obj_Entry *);
171 static void ref_dag(Obj_Entry *);
172 static char *origin_subst_one(Obj_Entry *, char *, const char *,
173     const char *, bool);
174 static char *origin_subst(Obj_Entry *, const char *);
175 static bool obj_resolve_origin(Obj_Entry *obj);
176 static void preinit_main(void);
177 static int  rtld_verify_versions(const Objlist *);
178 static int  rtld_verify_object_versions(Obj_Entry *);
179 static void object_add_name(Obj_Entry *, const char *);
180 static int  object_match_name(const Obj_Entry *, const char *);
181 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
182 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
183     struct dl_phdr_info *phdr_info);
184 static uint32_t gnu_hash(const char *);
185 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
186     const unsigned long);
187 
188 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
189 void _r_debug_postinit(struct link_map *) __noinline __exported;
190 
191 int __sys_openat(int, const char *, int, ...);
192 
193 /*
194  * Data declarations.
195  */
196 static char *error_message;	/* Message for dlerror(), or NULL */
197 struct r_debug r_debug __exported;	/* for GDB; */
198 static bool libmap_disable;	/* Disable libmap */
199 static bool ld_loadfltr;	/* Immediate filters processing */
200 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
201 static bool trust;		/* False for setuid and setgid programs */
202 static bool dangerous_ld_env;	/* True if environment variables have been
203 				   used to affect the libraries loaded */
204 bool ld_bind_not;		/* Disable PLT update */
205 static char *ld_bind_now;	/* Environment variable for immediate binding */
206 static char *ld_debug;		/* Environment variable for debugging */
207 static char *ld_library_path;	/* Environment variable for search path */
208 static char *ld_library_dirs;	/* Environment variable for library descriptors */
209 static char *ld_preload;	/* Environment variable for libraries to
210 				   load first */
211 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
212 static const char *ld_tracing;	/* Called from ldd to print libs */
213 static char *ld_utrace;		/* Use utrace() to log events. */
214 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
215 static Obj_Entry *obj_main;	/* The main program shared object */
216 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
217 static unsigned int obj_count;	/* Number of objects in obj_list */
218 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
219 
220 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
221   STAILQ_HEAD_INITIALIZER(list_global);
222 static Objlist list_main =	/* Objects loaded at program startup */
223   STAILQ_HEAD_INITIALIZER(list_main);
224 static Objlist list_fini =	/* Objects needing fini() calls */
225   STAILQ_HEAD_INITIALIZER(list_fini);
226 
227 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
228 
229 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
230 
231 extern Elf_Dyn _DYNAMIC;
232 #pragma weak _DYNAMIC
233 
234 int dlclose(void *) __exported;
235 char *dlerror(void) __exported;
236 void *dlopen(const char *, int) __exported;
237 void *fdlopen(int, int) __exported;
238 void *dlsym(void *, const char *) __exported;
239 dlfunc_t dlfunc(void *, const char *) __exported;
240 void *dlvsym(void *, const char *, const char *) __exported;
241 int dladdr(const void *, Dl_info *) __exported;
242 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
243     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
244 int dlinfo(void *, int , void *) __exported;
245 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
246 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
247 int _rtld_get_stack_prot(void) __exported;
248 int _rtld_is_dlopened(void *) __exported;
249 void _rtld_error(const char *, ...) __exported;
250 
251 /* Only here to fix -Wmissing-prototypes warnings */
252 int __getosreldate(void);
253 void __pthread_cxa_finalize(struct dl_phdr_info *a);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 
290 /*
291  * Globals for path names, and such
292  */
293 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
294 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
295 const char *ld_path_rtld = _PATH_RTLD;
296 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
297 const char *ld_env_prefix = LD_;
298 
299 static void (*rtld_exit_ptr)(void);
300 
301 /*
302  * Fill in a DoneList with an allocation large enough to hold all of
303  * the currently-loaded objects.  Keep this as a macro since it calls
304  * alloca and we want that to occur within the scope of the caller.
305  */
306 #define donelist_init(dlp)					\
307     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
308     assert((dlp)->objs != NULL),				\
309     (dlp)->num_alloc = obj_count,				\
310     (dlp)->num_used = 0)
311 
312 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
313 	if (ld_utrace != NULL)					\
314 		ld_utrace_log(e, h, mb, ms, r, n);		\
315 } while (0)
316 
317 static void
318 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
319     int refcnt, const char *name)
320 {
321 	struct utrace_rtld ut;
322 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
323 
324 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
325 	ut.event = event;
326 	ut.handle = handle;
327 	ut.mapbase = mapbase;
328 	ut.mapsize = mapsize;
329 	ut.refcnt = refcnt;
330 	bzero(ut.name, sizeof(ut.name));
331 	if (name)
332 		strlcpy(ut.name, name, sizeof(ut.name));
333 	utrace(&ut, sizeof(ut));
334 }
335 
336 #ifdef RTLD_VARIANT_ENV_NAMES
337 /*
338  * construct the env variable based on the type of binary that's
339  * running.
340  */
341 static inline const char *
342 _LD(const char *var)
343 {
344 	static char buffer[128];
345 
346 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
347 	strlcat(buffer, var, sizeof(buffer));
348 	return (buffer);
349 }
350 #else
351 #define _LD(x)	LD_ x
352 #endif
353 
354 /*
355  * Main entry point for dynamic linking.  The first argument is the
356  * stack pointer.  The stack is expected to be laid out as described
357  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
358  * Specifically, the stack pointer points to a word containing
359  * ARGC.  Following that in the stack is a null-terminated sequence
360  * of pointers to argument strings.  Then comes a null-terminated
361  * sequence of pointers to environment strings.  Finally, there is a
362  * sequence of "auxiliary vector" entries.
363  *
364  * The second argument points to a place to store the dynamic linker's
365  * exit procedure pointer and the third to a place to store the main
366  * program's object.
367  *
368  * The return value is the main program's entry point.
369  */
370 func_ptr_type
371 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
372 {
373     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
374     Objlist_Entry *entry;
375     Obj_Entry *last_interposer, *obj, *preload_tail;
376     const Elf_Phdr *phdr;
377     Objlist initlist;
378     RtldLockState lockstate;
379     struct stat st;
380     Elf_Addr *argcp;
381     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
382     const char *argv0;
383     caddr_t imgentry;
384     char buf[MAXPATHLEN];
385     int argc, fd, i, phnum, rtld_argc;
386     bool dir_enable, explicit_fd, search_in_path;
387 
388     /*
389      * On entry, the dynamic linker itself has not been relocated yet.
390      * Be very careful not to reference any global data until after
391      * init_rtld has returned.  It is OK to reference file-scope statics
392      * and string constants, and to call static and global functions.
393      */
394 
395     /* Find the auxiliary vector on the stack. */
396     argcp = sp;
397     argc = *sp++;
398     argv = (char **) sp;
399     sp += argc + 1;	/* Skip over arguments and NULL terminator */
400     env = (char **) sp;
401     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
402 	;
403     aux = (Elf_Auxinfo *) sp;
404 
405     /* Digest the auxiliary vector. */
406     for (i = 0;  i < AT_COUNT;  i++)
407 	aux_info[i] = NULL;
408     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
409 	if (auxp->a_type < AT_COUNT)
410 	    aux_info[auxp->a_type] = auxp;
411     }
412 
413     /* Initialize and relocate ourselves. */
414     assert(aux_info[AT_BASE] != NULL);
415     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
416 
417     __progname = obj_rtld.path;
418     argv0 = argv[0] != NULL ? argv[0] : "(null)";
419     environ = env;
420     main_argc = argc;
421     main_argv = argv;
422 
423     trust = !issetugid();
424 
425     md_abi_variant_hook(aux_info);
426 
427     fd = -1;
428     if (aux_info[AT_EXECFD] != NULL) {
429 	fd = aux_info[AT_EXECFD]->a_un.a_val;
430     } else {
431 	assert(aux_info[AT_PHDR] != NULL);
432 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
433 	if (phdr == obj_rtld.phdr) {
434 	    if (!trust) {
435 		_rtld_error("Tainted process refusing to run binary %s",
436 		    argv0);
437 		rtld_die();
438 	    }
439 	    dbg("opening main program in direct exec mode");
440 	    if (argc >= 2) {
441 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
442 		argv0 = argv[rtld_argc];
443 		explicit_fd = (fd != -1);
444 		if (!explicit_fd)
445 		    fd = open_binary_fd(argv0, search_in_path);
446 		if (fstat(fd, &st) == -1) {
447 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
448 		      explicit_fd ? "user-provided descriptor" : argv0,
449 		      rtld_strerror(errno));
450 		    rtld_die();
451 		}
452 
453 		/*
454 		 * Rough emulation of the permission checks done by
455 		 * execve(2), only Unix DACs are checked, ACLs are
456 		 * ignored.  Preserve the semantic of disabling owner
457 		 * to execute if owner x bit is cleared, even if
458 		 * others x bit is enabled.
459 		 * mmap(2) does not allow to mmap with PROT_EXEC if
460 		 * binary' file comes from noexec mount.  We cannot
461 		 * set VV_TEXT on the binary.
462 		 */
463 		dir_enable = false;
464 		if (st.st_uid == geteuid()) {
465 		    if ((st.st_mode & S_IXUSR) != 0)
466 			dir_enable = true;
467 		} else if (st.st_gid == getegid()) {
468 		    if ((st.st_mode & S_IXGRP) != 0)
469 			dir_enable = true;
470 		} else if ((st.st_mode & S_IXOTH) != 0) {
471 		    dir_enable = true;
472 		}
473 		if (!dir_enable) {
474 		    _rtld_error("No execute permission for binary %s",
475 		        argv0);
476 		    rtld_die();
477 		}
478 
479 		/*
480 		 * For direct exec mode, argv[0] is the interpreter
481 		 * name, we must remove it and shift arguments left
482 		 * before invoking binary main.  Since stack layout
483 		 * places environment pointers and aux vectors right
484 		 * after the terminating NULL, we must shift
485 		 * environment and aux as well.
486 		 */
487 		main_argc = argc - rtld_argc;
488 		for (i = 0; i <= main_argc; i++)
489 		    argv[i] = argv[i + rtld_argc];
490 		*argcp -= rtld_argc;
491 		environ = env = envp = argv + main_argc + 1;
492 		do {
493 		    *envp = *(envp + rtld_argc);
494 		    envp++;
495 		} while (*envp != NULL);
496 		aux = auxp = (Elf_Auxinfo *)envp;
497 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
498 		for (;; auxp++, auxpf++) {
499 		    *auxp = *auxpf;
500 		    if (auxp->a_type == AT_NULL)
501 			    break;
502 		}
503 	    } else {
504 		_rtld_error("No binary");
505 		rtld_die();
506 	    }
507 	}
508     }
509 
510     ld_bind_now = getenv(_LD("BIND_NOW"));
511 
512     /*
513      * If the process is tainted, then we un-set the dangerous environment
514      * variables.  The process will be marked as tainted until setuid(2)
515      * is called.  If any child process calls setuid(2) we do not want any
516      * future processes to honor the potentially un-safe variables.
517      */
518     if (!trust) {
519 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
520 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
521 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
522 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
523 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
524 		_rtld_error("environment corrupt; aborting");
525 		rtld_die();
526 	}
527     }
528     ld_debug = getenv(_LD("DEBUG"));
529     if (ld_bind_now == NULL)
530 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
531     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
532     libmap_override = getenv(_LD("LIBMAP"));
533     ld_library_path = getenv(_LD("LIBRARY_PATH"));
534     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
535     ld_preload = getenv(_LD("PRELOAD"));
536     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
537     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
538     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
539     if (library_path_rpath != NULL) {
540 	    if (library_path_rpath[0] == 'y' ||
541 		library_path_rpath[0] == 'Y' ||
542 		library_path_rpath[0] == '1')
543 		    ld_library_path_rpath = true;
544 	    else
545 		    ld_library_path_rpath = false;
546     }
547     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
548 	(ld_library_path != NULL) || (ld_preload != NULL) ||
549 	(ld_elf_hints_path != NULL) || ld_loadfltr;
550     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
551     ld_utrace = getenv(_LD("UTRACE"));
552 
553     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
554 	ld_elf_hints_path = ld_elf_hints_default;
555 
556     if (ld_debug != NULL && *ld_debug != '\0')
557 	debug = 1;
558     dbg("%s is initialized, base address = %p", __progname,
559 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
560     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
561     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
562 
563     dbg("initializing thread locks");
564     lockdflt_init();
565 
566     /*
567      * Load the main program, or process its program header if it is
568      * already loaded.
569      */
570     if (fd != -1) {	/* Load the main program. */
571 	dbg("loading main program");
572 	obj_main = map_object(fd, argv0, NULL);
573 	close(fd);
574 	if (obj_main == NULL)
575 	    rtld_die();
576 	max_stack_flags = obj_main->stack_flags;
577     } else {				/* Main program already loaded. */
578 	dbg("processing main program's program header");
579 	assert(aux_info[AT_PHDR] != NULL);
580 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
581 	assert(aux_info[AT_PHNUM] != NULL);
582 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
583 	assert(aux_info[AT_PHENT] != NULL);
584 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
585 	assert(aux_info[AT_ENTRY] != NULL);
586 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
587 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
588 	    rtld_die();
589     }
590 
591     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
592 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
593 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
594 	    if (kexecpath[0] == '/')
595 		    obj_main->path = kexecpath;
596 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
597 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
598 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
599 		    obj_main->path = xstrdup(argv0);
600 	    else
601 		    obj_main->path = xstrdup(buf);
602     } else {
603 	    dbg("No AT_EXECPATH or direct exec");
604 	    obj_main->path = xstrdup(argv0);
605     }
606     dbg("obj_main path %s", obj_main->path);
607     obj_main->mainprog = true;
608 
609     if (aux_info[AT_STACKPROT] != NULL &&
610       aux_info[AT_STACKPROT]->a_un.a_val != 0)
611 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
612 
613 #ifndef COMPAT_32BIT
614     /*
615      * Get the actual dynamic linker pathname from the executable if
616      * possible.  (It should always be possible.)  That ensures that
617      * gdb will find the right dynamic linker even if a non-standard
618      * one is being used.
619      */
620     if (obj_main->interp != NULL &&
621       strcmp(obj_main->interp, obj_rtld.path) != 0) {
622 	free(obj_rtld.path);
623 	obj_rtld.path = xstrdup(obj_main->interp);
624         __progname = obj_rtld.path;
625     }
626 #endif
627 
628     digest_dynamic(obj_main, 0);
629     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
630 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
631 	obj_main->dynsymcount);
632 
633     linkmap_add(obj_main);
634     linkmap_add(&obj_rtld);
635 
636     /* Link the main program into the list of objects. */
637     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
638     obj_count++;
639     obj_loads++;
640 
641     /* Initialize a fake symbol for resolving undefined weak references. */
642     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
643     sym_zero.st_shndx = SHN_UNDEF;
644     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
645 
646     if (!libmap_disable)
647         libmap_disable = (bool)lm_init(libmap_override);
648 
649     dbg("loading LD_PRELOAD libraries");
650     if (load_preload_objects() == -1)
651 	rtld_die();
652     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
653 
654     dbg("loading needed objects");
655     if (load_needed_objects(obj_main, 0) == -1)
656 	rtld_die();
657 
658     /* Make a list of all objects loaded at startup. */
659     last_interposer = obj_main;
660     TAILQ_FOREACH(obj, &obj_list, next) {
661 	if (obj->marker)
662 	    continue;
663 	if (obj->z_interpose && obj != obj_main) {
664 	    objlist_put_after(&list_main, last_interposer, obj);
665 	    last_interposer = obj;
666 	} else {
667 	    objlist_push_tail(&list_main, obj);
668 	}
669     	obj->refcount++;
670     }
671 
672     dbg("checking for required versions");
673     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
674 	rtld_die();
675 
676     if (ld_tracing) {		/* We're done */
677 	trace_loaded_objects(obj_main);
678 	exit(0);
679     }
680 
681     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
682        dump_relocations(obj_main);
683        exit (0);
684     }
685 
686     /*
687      * Processing tls relocations requires having the tls offsets
688      * initialized.  Prepare offsets before starting initial
689      * relocation processing.
690      */
691     dbg("initializing initial thread local storage offsets");
692     STAILQ_FOREACH(entry, &list_main, link) {
693 	/*
694 	 * Allocate all the initial objects out of the static TLS
695 	 * block even if they didn't ask for it.
696 	 */
697 	allocate_tls_offset(entry->obj);
698     }
699 
700     if (relocate_objects(obj_main,
701       ld_bind_now != NULL && *ld_bind_now != '\0',
702       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
703 	rtld_die();
704 
705     dbg("doing copy relocations");
706     if (do_copy_relocations(obj_main) == -1)
707 	rtld_die();
708 
709     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
710        dump_relocations(obj_main);
711        exit (0);
712     }
713 
714     ifunc_init(aux);
715 
716     /*
717      * Setup TLS for main thread.  This must be done after the
718      * relocations are processed, since tls initialization section
719      * might be the subject for relocations.
720      */
721     dbg("initializing initial thread local storage");
722     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
723 
724     dbg("initializing key program variables");
725     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
726     set_program_var("environ", env);
727     set_program_var("__elf_aux_vector", aux);
728 
729     /* Make a list of init functions to call. */
730     objlist_init(&initlist);
731     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
732       preload_tail, &initlist);
733 
734     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
735 
736     map_stacks_exec(NULL);
737 
738     if (!obj_main->crt_no_init) {
739 	/*
740 	 * Make sure we don't call the main program's init and fini
741 	 * functions for binaries linked with old crt1 which calls
742 	 * _init itself.
743 	 */
744 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
745 	obj_main->preinit_array = obj_main->init_array =
746 	    obj_main->fini_array = (Elf_Addr)NULL;
747     }
748 
749     /*
750      * Execute MD initializers required before we call the objects'
751      * init functions.
752      */
753     pre_init();
754 
755     wlock_acquire(rtld_bind_lock, &lockstate);
756 
757     dbg("resolving ifuncs");
758     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
759       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
760 	rtld_die();
761 
762     rtld_exit_ptr = rtld_exit;
763     if (obj_main->crt_no_init)
764 	preinit_main();
765     objlist_call_init(&initlist, &lockstate);
766     _r_debug_postinit(&obj_main->linkmap);
767     objlist_clear(&initlist);
768     dbg("loading filtees");
769     TAILQ_FOREACH(obj, &obj_list, next) {
770 	if (obj->marker)
771 	    continue;
772 	if (ld_loadfltr || obj->z_loadfltr)
773 	    load_filtees(obj, 0, &lockstate);
774     }
775 
776     dbg("enforcing main obj relro");
777     if (obj_enforce_relro(obj_main) == -1)
778 	rtld_die();
779 
780     lock_release(rtld_bind_lock, &lockstate);
781 
782     dbg("transferring control to program entry point = %p", obj_main->entry);
783 
784     /* Return the exit procedure and the program entry point. */
785     *exit_proc = rtld_exit_ptr;
786     *objp = obj_main;
787     return (func_ptr_type) obj_main->entry;
788 }
789 
790 void *
791 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
792 {
793 	void *ptr;
794 	Elf_Addr target;
795 
796 	ptr = (void *)make_function_pointer(def, obj);
797 	target = call_ifunc_resolver(ptr);
798 	return ((void *)target);
799 }
800 
801 /*
802  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
803  * Changes to this function should be applied there as well.
804  */
805 Elf_Addr
806 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
807 {
808     const Elf_Rel *rel;
809     const Elf_Sym *def;
810     const Obj_Entry *defobj;
811     Elf_Addr *where;
812     Elf_Addr target;
813     RtldLockState lockstate;
814 
815     rlock_acquire(rtld_bind_lock, &lockstate);
816     if (sigsetjmp(lockstate.env, 0) != 0)
817 	    lock_upgrade(rtld_bind_lock, &lockstate);
818     if (obj->pltrel)
819 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
820     else
821 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
822 
823     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
824     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
825 	NULL, &lockstate);
826     if (def == NULL)
827 	rtld_die();
828     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
829 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
830     else
831 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
832 
833     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
834       defobj->strtab + def->st_name, basename(obj->path),
835       (void *)target, basename(defobj->path));
836 
837     /*
838      * Write the new contents for the jmpslot. Note that depending on
839      * architecture, the value which we need to return back to the
840      * lazy binding trampoline may or may not be the target
841      * address. The value returned from reloc_jmpslot() is the value
842      * that the trampoline needs.
843      */
844     target = reloc_jmpslot(where, target, defobj, obj, rel);
845     lock_release(rtld_bind_lock, &lockstate);
846     return target;
847 }
848 
849 /*
850  * Error reporting function.  Use it like printf.  If formats the message
851  * into a buffer, and sets things up so that the next call to dlerror()
852  * will return the message.
853  */
854 void
855 _rtld_error(const char *fmt, ...)
856 {
857     static char buf[512];
858     va_list ap;
859 
860     va_start(ap, fmt);
861     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
862     error_message = buf;
863     va_end(ap);
864     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
865 }
866 
867 /*
868  * Return a dynamically-allocated copy of the current error message, if any.
869  */
870 static char *
871 errmsg_save(void)
872 {
873     return error_message == NULL ? NULL : xstrdup(error_message);
874 }
875 
876 /*
877  * Restore the current error message from a copy which was previously saved
878  * by errmsg_save().  The copy is freed.
879  */
880 static void
881 errmsg_restore(char *saved_msg)
882 {
883     if (saved_msg == NULL)
884 	error_message = NULL;
885     else {
886 	_rtld_error("%s", saved_msg);
887 	free(saved_msg);
888     }
889 }
890 
891 static const char *
892 basename(const char *name)
893 {
894     const char *p = strrchr(name, '/');
895     return p != NULL ? p + 1 : name;
896 }
897 
898 static struct utsname uts;
899 
900 static char *
901 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
902     const char *subst, bool may_free)
903 {
904 	char *p, *p1, *res, *resp;
905 	int subst_len, kw_len, subst_count, old_len, new_len;
906 
907 	kw_len = strlen(kw);
908 
909 	/*
910 	 * First, count the number of the keyword occurrences, to
911 	 * preallocate the final string.
912 	 */
913 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
914 		p1 = strstr(p, kw);
915 		if (p1 == NULL)
916 			break;
917 	}
918 
919 	/*
920 	 * If the keyword is not found, just return.
921 	 *
922 	 * Return non-substituted string if resolution failed.  We
923 	 * cannot do anything more reasonable, the failure mode of the
924 	 * caller is unresolved library anyway.
925 	 */
926 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
927 		return (may_free ? real : xstrdup(real));
928 	if (obj != NULL)
929 		subst = obj->origin_path;
930 
931 	/*
932 	 * There is indeed something to substitute.  Calculate the
933 	 * length of the resulting string, and allocate it.
934 	 */
935 	subst_len = strlen(subst);
936 	old_len = strlen(real);
937 	new_len = old_len + (subst_len - kw_len) * subst_count;
938 	res = xmalloc(new_len + 1);
939 
940 	/*
941 	 * Now, execute the substitution loop.
942 	 */
943 	for (p = real, resp = res, *resp = '\0';;) {
944 		p1 = strstr(p, kw);
945 		if (p1 != NULL) {
946 			/* Copy the prefix before keyword. */
947 			memcpy(resp, p, p1 - p);
948 			resp += p1 - p;
949 			/* Keyword replacement. */
950 			memcpy(resp, subst, subst_len);
951 			resp += subst_len;
952 			*resp = '\0';
953 			p = p1 + kw_len;
954 		} else
955 			break;
956 	}
957 
958 	/* Copy to the end of string and finish. */
959 	strcat(resp, p);
960 	if (may_free)
961 		free(real);
962 	return (res);
963 }
964 
965 static char *
966 origin_subst(Obj_Entry *obj, const char *real)
967 {
968 	char *res1, *res2, *res3, *res4;
969 
970 	if (obj == NULL || !trust)
971 		return (xstrdup(real));
972 	if (uts.sysname[0] == '\0') {
973 		if (uname(&uts) != 0) {
974 			_rtld_error("utsname failed: %d", errno);
975 			return (NULL);
976 		}
977 	}
978 	/* __DECONST is safe here since without may_free real is unchanged */
979 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
980 	    false);
981 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
982 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
983 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
984 	return (res4);
985 }
986 
987 void
988 rtld_die(void)
989 {
990     const char *msg = dlerror();
991 
992     if (msg == NULL)
993 	msg = "Fatal error";
994     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
995     rtld_fdputstr(STDERR_FILENO, msg);
996     rtld_fdputchar(STDERR_FILENO, '\n');
997     _exit(1);
998 }
999 
1000 /*
1001  * Process a shared object's DYNAMIC section, and save the important
1002  * information in its Obj_Entry structure.
1003  */
1004 static void
1005 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1006     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1007 {
1008     const Elf_Dyn *dynp;
1009     Needed_Entry **needed_tail = &obj->needed;
1010     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1011     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1012     const Elf_Hashelt *hashtab;
1013     const Elf32_Word *hashval;
1014     Elf32_Word bkt, nmaskwords;
1015     int bloom_size32;
1016     int plttype = DT_REL;
1017 
1018     *dyn_rpath = NULL;
1019     *dyn_soname = NULL;
1020     *dyn_runpath = NULL;
1021 
1022     obj->bind_now = false;
1023     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1024 	switch (dynp->d_tag) {
1025 
1026 	case DT_REL:
1027 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1028 	    break;
1029 
1030 	case DT_RELSZ:
1031 	    obj->relsize = dynp->d_un.d_val;
1032 	    break;
1033 
1034 	case DT_RELENT:
1035 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1036 	    break;
1037 
1038 	case DT_JMPREL:
1039 	    obj->pltrel = (const Elf_Rel *)
1040 	      (obj->relocbase + dynp->d_un.d_ptr);
1041 	    break;
1042 
1043 	case DT_PLTRELSZ:
1044 	    obj->pltrelsize = dynp->d_un.d_val;
1045 	    break;
1046 
1047 	case DT_RELA:
1048 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1049 	    break;
1050 
1051 	case DT_RELASZ:
1052 	    obj->relasize = dynp->d_un.d_val;
1053 	    break;
1054 
1055 	case DT_RELAENT:
1056 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1057 	    break;
1058 
1059 	case DT_PLTREL:
1060 	    plttype = dynp->d_un.d_val;
1061 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1062 	    break;
1063 
1064 	case DT_SYMTAB:
1065 	    obj->symtab = (const Elf_Sym *)
1066 	      (obj->relocbase + dynp->d_un.d_ptr);
1067 	    break;
1068 
1069 	case DT_SYMENT:
1070 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1071 	    break;
1072 
1073 	case DT_STRTAB:
1074 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1075 	    break;
1076 
1077 	case DT_STRSZ:
1078 	    obj->strsize = dynp->d_un.d_val;
1079 	    break;
1080 
1081 	case DT_VERNEED:
1082 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1083 		dynp->d_un.d_val);
1084 	    break;
1085 
1086 	case DT_VERNEEDNUM:
1087 	    obj->verneednum = dynp->d_un.d_val;
1088 	    break;
1089 
1090 	case DT_VERDEF:
1091 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1092 		dynp->d_un.d_val);
1093 	    break;
1094 
1095 	case DT_VERDEFNUM:
1096 	    obj->verdefnum = dynp->d_un.d_val;
1097 	    break;
1098 
1099 	case DT_VERSYM:
1100 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1101 		dynp->d_un.d_val);
1102 	    break;
1103 
1104 	case DT_HASH:
1105 	    {
1106 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1107 		    dynp->d_un.d_ptr);
1108 		obj->nbuckets = hashtab[0];
1109 		obj->nchains = hashtab[1];
1110 		obj->buckets = hashtab + 2;
1111 		obj->chains = obj->buckets + obj->nbuckets;
1112 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1113 		  obj->buckets != NULL;
1114 	    }
1115 	    break;
1116 
1117 	case DT_GNU_HASH:
1118 	    {
1119 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1120 		    dynp->d_un.d_ptr);
1121 		obj->nbuckets_gnu = hashtab[0];
1122 		obj->symndx_gnu = hashtab[1];
1123 		nmaskwords = hashtab[2];
1124 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1125 		obj->maskwords_bm_gnu = nmaskwords - 1;
1126 		obj->shift2_gnu = hashtab[3];
1127 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1128 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1129 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1130 		  obj->symndx_gnu;
1131 		/* Number of bitmask words is required to be power of 2 */
1132 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1133 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1134 	    }
1135 	    break;
1136 
1137 	case DT_NEEDED:
1138 	    if (!obj->rtld) {
1139 		Needed_Entry *nep = NEW(Needed_Entry);
1140 		nep->name = dynp->d_un.d_val;
1141 		nep->obj = NULL;
1142 		nep->next = NULL;
1143 
1144 		*needed_tail = nep;
1145 		needed_tail = &nep->next;
1146 	    }
1147 	    break;
1148 
1149 	case DT_FILTER:
1150 	    if (!obj->rtld) {
1151 		Needed_Entry *nep = NEW(Needed_Entry);
1152 		nep->name = dynp->d_un.d_val;
1153 		nep->obj = NULL;
1154 		nep->next = NULL;
1155 
1156 		*needed_filtees_tail = nep;
1157 		needed_filtees_tail = &nep->next;
1158 	    }
1159 	    break;
1160 
1161 	case DT_AUXILIARY:
1162 	    if (!obj->rtld) {
1163 		Needed_Entry *nep = NEW(Needed_Entry);
1164 		nep->name = dynp->d_un.d_val;
1165 		nep->obj = NULL;
1166 		nep->next = NULL;
1167 
1168 		*needed_aux_filtees_tail = nep;
1169 		needed_aux_filtees_tail = &nep->next;
1170 	    }
1171 	    break;
1172 
1173 	case DT_PLTGOT:
1174 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1175 	    break;
1176 
1177 	case DT_TEXTREL:
1178 	    obj->textrel = true;
1179 	    break;
1180 
1181 	case DT_SYMBOLIC:
1182 	    obj->symbolic = true;
1183 	    break;
1184 
1185 	case DT_RPATH:
1186 	    /*
1187 	     * We have to wait until later to process this, because we
1188 	     * might not have gotten the address of the string table yet.
1189 	     */
1190 	    *dyn_rpath = dynp;
1191 	    break;
1192 
1193 	case DT_SONAME:
1194 	    *dyn_soname = dynp;
1195 	    break;
1196 
1197 	case DT_RUNPATH:
1198 	    *dyn_runpath = dynp;
1199 	    break;
1200 
1201 	case DT_INIT:
1202 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1203 	    break;
1204 
1205 	case DT_PREINIT_ARRAY:
1206 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1207 	    break;
1208 
1209 	case DT_PREINIT_ARRAYSZ:
1210 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1211 	    break;
1212 
1213 	case DT_INIT_ARRAY:
1214 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1215 	    break;
1216 
1217 	case DT_INIT_ARRAYSZ:
1218 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1219 	    break;
1220 
1221 	case DT_FINI:
1222 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1223 	    break;
1224 
1225 	case DT_FINI_ARRAY:
1226 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1227 	    break;
1228 
1229 	case DT_FINI_ARRAYSZ:
1230 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1231 	    break;
1232 
1233 	/*
1234 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1235 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1236 	 */
1237 
1238 #ifndef __mips__
1239 	case DT_DEBUG:
1240 	    if (!early)
1241 		dbg("Filling in DT_DEBUG entry");
1242 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1243 	    break;
1244 #endif
1245 
1246 	case DT_FLAGS:
1247 		if (dynp->d_un.d_val & DF_ORIGIN)
1248 		    obj->z_origin = true;
1249 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1250 		    obj->symbolic = true;
1251 		if (dynp->d_un.d_val & DF_TEXTREL)
1252 		    obj->textrel = true;
1253 		if (dynp->d_un.d_val & DF_BIND_NOW)
1254 		    obj->bind_now = true;
1255 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1256 		    obj->static_tls = true;
1257 	    break;
1258 #ifdef __mips__
1259 	case DT_MIPS_LOCAL_GOTNO:
1260 		obj->local_gotno = dynp->d_un.d_val;
1261 		break;
1262 
1263 	case DT_MIPS_SYMTABNO:
1264 		obj->symtabno = dynp->d_un.d_val;
1265 		break;
1266 
1267 	case DT_MIPS_GOTSYM:
1268 		obj->gotsym = dynp->d_un.d_val;
1269 		break;
1270 
1271 	case DT_MIPS_RLD_MAP:
1272 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1273 		break;
1274 
1275 	case DT_MIPS_RLD_MAP_REL:
1276 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1277 		// section relative to the address of the tag itself.
1278 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1279 		    (Elf_Addr) &r_debug;
1280 		break;
1281 
1282 	case DT_MIPS_PLTGOT:
1283 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1284 		    dynp->d_un.d_ptr);
1285 		break;
1286 
1287 #endif
1288 
1289 #ifdef __powerpc64__
1290 	case DT_PPC64_GLINK:
1291 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1292 		break;
1293 #endif
1294 
1295 	case DT_FLAGS_1:
1296 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1297 		    obj->z_noopen = true;
1298 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1299 		    obj->z_origin = true;
1300 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1301 		    obj->z_global = true;
1302 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1303 		    obj->bind_now = true;
1304 		if (dynp->d_un.d_val & DF_1_NODELETE)
1305 		    obj->z_nodelete = true;
1306 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1307 		    obj->z_loadfltr = true;
1308 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1309 		    obj->z_interpose = true;
1310 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1311 		    obj->z_nodeflib = true;
1312 	    break;
1313 
1314 	default:
1315 	    if (!early) {
1316 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1317 		    (long)dynp->d_tag);
1318 	    }
1319 	    break;
1320 	}
1321     }
1322 
1323     obj->traced = false;
1324 
1325     if (plttype == DT_RELA) {
1326 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1327 	obj->pltrel = NULL;
1328 	obj->pltrelasize = obj->pltrelsize;
1329 	obj->pltrelsize = 0;
1330     }
1331 
1332     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1333     if (obj->valid_hash_sysv)
1334 	obj->dynsymcount = obj->nchains;
1335     else if (obj->valid_hash_gnu) {
1336 	obj->dynsymcount = 0;
1337 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1338 	    if (obj->buckets_gnu[bkt] == 0)
1339 		continue;
1340 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1341 	    do
1342 		obj->dynsymcount++;
1343 	    while ((*hashval++ & 1u) == 0);
1344 	}
1345 	obj->dynsymcount += obj->symndx_gnu;
1346     }
1347 }
1348 
1349 static bool
1350 obj_resolve_origin(Obj_Entry *obj)
1351 {
1352 
1353 	if (obj->origin_path != NULL)
1354 		return (true);
1355 	obj->origin_path = xmalloc(PATH_MAX);
1356 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1357 }
1358 
1359 static void
1360 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1361     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1362 {
1363 
1364 	if (obj->z_origin && !obj_resolve_origin(obj))
1365 		rtld_die();
1366 
1367 	if (dyn_runpath != NULL) {
1368 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1369 		obj->runpath = origin_subst(obj, obj->runpath);
1370 	} else if (dyn_rpath != NULL) {
1371 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1372 		obj->rpath = origin_subst(obj, obj->rpath);
1373 	}
1374 	if (dyn_soname != NULL)
1375 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1376 }
1377 
1378 static void
1379 digest_dynamic(Obj_Entry *obj, int early)
1380 {
1381 	const Elf_Dyn *dyn_rpath;
1382 	const Elf_Dyn *dyn_soname;
1383 	const Elf_Dyn *dyn_runpath;
1384 
1385 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1386 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1387 }
1388 
1389 /*
1390  * Process a shared object's program header.  This is used only for the
1391  * main program, when the kernel has already loaded the main program
1392  * into memory before calling the dynamic linker.  It creates and
1393  * returns an Obj_Entry structure.
1394  */
1395 static Obj_Entry *
1396 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1397 {
1398     Obj_Entry *obj;
1399     const Elf_Phdr *phlimit = phdr + phnum;
1400     const Elf_Phdr *ph;
1401     Elf_Addr note_start, note_end;
1402     int nsegs = 0;
1403 
1404     obj = obj_new();
1405     for (ph = phdr;  ph < phlimit;  ph++) {
1406 	if (ph->p_type != PT_PHDR)
1407 	    continue;
1408 
1409 	obj->phdr = phdr;
1410 	obj->phsize = ph->p_memsz;
1411 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1412 	break;
1413     }
1414 
1415     obj->stack_flags = PF_X | PF_R | PF_W;
1416 
1417     for (ph = phdr;  ph < phlimit;  ph++) {
1418 	switch (ph->p_type) {
1419 
1420 	case PT_INTERP:
1421 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1422 	    break;
1423 
1424 	case PT_LOAD:
1425 	    if (nsegs == 0) {	/* First load segment */
1426 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1427 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1428 	    } else {		/* Last load segment */
1429 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1430 		  obj->vaddrbase;
1431 	    }
1432 	    nsegs++;
1433 	    break;
1434 
1435 	case PT_DYNAMIC:
1436 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1437 	    break;
1438 
1439 	case PT_TLS:
1440 	    obj->tlsindex = 1;
1441 	    obj->tlssize = ph->p_memsz;
1442 	    obj->tlsalign = ph->p_align;
1443 	    obj->tlsinitsize = ph->p_filesz;
1444 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1445 	    break;
1446 
1447 	case PT_GNU_STACK:
1448 	    obj->stack_flags = ph->p_flags;
1449 	    break;
1450 
1451 	case PT_GNU_RELRO:
1452 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1453 	    obj->relro_size = round_page(ph->p_memsz);
1454 	    break;
1455 
1456 	case PT_NOTE:
1457 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1458 	    note_end = note_start + ph->p_filesz;
1459 	    digest_notes(obj, note_start, note_end);
1460 	    break;
1461 	}
1462     }
1463     if (nsegs < 1) {
1464 	_rtld_error("%s: too few PT_LOAD segments", path);
1465 	return NULL;
1466     }
1467 
1468     obj->entry = entry;
1469     return obj;
1470 }
1471 
1472 void
1473 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1474 {
1475 	const Elf_Note *note;
1476 	const char *note_name;
1477 	uintptr_t p;
1478 
1479 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1480 	    note = (const Elf_Note *)((const char *)(note + 1) +
1481 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1482 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1483 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1484 		    note->n_descsz != sizeof(int32_t))
1485 			continue;
1486 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1487 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1488 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1489 			continue;
1490 		note_name = (const char *)(note + 1);
1491 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1492 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1493 			continue;
1494 		switch (note->n_type) {
1495 		case NT_FREEBSD_ABI_TAG:
1496 			/* FreeBSD osrel note */
1497 			p = (uintptr_t)(note + 1);
1498 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1499 			obj->osrel = *(const int32_t *)(p);
1500 			dbg("note osrel %d", obj->osrel);
1501 			break;
1502 		case NT_FREEBSD_FEATURE_CTL:
1503 			/* FreeBSD ABI feature control note */
1504 			p = (uintptr_t)(note + 1);
1505 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1506 			obj->fctl0 = *(const uint32_t *)(p);
1507 			dbg("note fctl0 %#x", obj->fctl0);
1508 			break;
1509 		case NT_FREEBSD_NOINIT_TAG:
1510 			/* FreeBSD 'crt does not call init' note */
1511 			obj->crt_no_init = true;
1512 			dbg("note crt_no_init");
1513 			break;
1514 		}
1515 	}
1516 }
1517 
1518 static Obj_Entry *
1519 dlcheck(void *handle)
1520 {
1521     Obj_Entry *obj;
1522 
1523     TAILQ_FOREACH(obj, &obj_list, next) {
1524 	if (obj == (Obj_Entry *) handle)
1525 	    break;
1526     }
1527 
1528     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1529 	_rtld_error("Invalid shared object handle %p", handle);
1530 	return NULL;
1531     }
1532     return obj;
1533 }
1534 
1535 /*
1536  * If the given object is already in the donelist, return true.  Otherwise
1537  * add the object to the list and return false.
1538  */
1539 static bool
1540 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1541 {
1542     unsigned int i;
1543 
1544     for (i = 0;  i < dlp->num_used;  i++)
1545 	if (dlp->objs[i] == obj)
1546 	    return true;
1547     /*
1548      * Our donelist allocation should always be sufficient.  But if
1549      * our threads locking isn't working properly, more shared objects
1550      * could have been loaded since we allocated the list.  That should
1551      * never happen, but we'll handle it properly just in case it does.
1552      */
1553     if (dlp->num_used < dlp->num_alloc)
1554 	dlp->objs[dlp->num_used++] = obj;
1555     return false;
1556 }
1557 
1558 /*
1559  * Hash function for symbol table lookup.  Don't even think about changing
1560  * this.  It is specified by the System V ABI.
1561  */
1562 unsigned long
1563 elf_hash(const char *name)
1564 {
1565     const unsigned char *p = (const unsigned char *) name;
1566     unsigned long h = 0;
1567     unsigned long g;
1568 
1569     while (*p != '\0') {
1570 	h = (h << 4) + *p++;
1571 	if ((g = h & 0xf0000000) != 0)
1572 	    h ^= g >> 24;
1573 	h &= ~g;
1574     }
1575     return h;
1576 }
1577 
1578 /*
1579  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1580  * unsigned in case it's implemented with a wider type.
1581  */
1582 static uint32_t
1583 gnu_hash(const char *s)
1584 {
1585 	uint32_t h;
1586 	unsigned char c;
1587 
1588 	h = 5381;
1589 	for (c = *s; c != '\0'; c = *++s)
1590 		h = h * 33 + c;
1591 	return (h & 0xffffffff);
1592 }
1593 
1594 
1595 /*
1596  * Find the library with the given name, and return its full pathname.
1597  * The returned string is dynamically allocated.  Generates an error
1598  * message and returns NULL if the library cannot be found.
1599  *
1600  * If the second argument is non-NULL, then it refers to an already-
1601  * loaded shared object, whose library search path will be searched.
1602  *
1603  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1604  * descriptor (which is close-on-exec) will be passed out via the third
1605  * argument.
1606  *
1607  * The search order is:
1608  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1609  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1610  *   LD_LIBRARY_PATH
1611  *   DT_RUNPATH in the referencing file
1612  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1613  *	 from list)
1614  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1615  *
1616  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1617  */
1618 static char *
1619 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1620 {
1621 	char *pathname, *refobj_path;
1622 	const char *name;
1623 	bool nodeflib, objgiven;
1624 
1625 	objgiven = refobj != NULL;
1626 
1627 	if (libmap_disable || !objgiven ||
1628 	    (name = lm_find(refobj->path, xname)) == NULL)
1629 		name = xname;
1630 
1631 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1632 		if (name[0] != '/' && !trust) {
1633 			_rtld_error("Absolute pathname required "
1634 			    "for shared object \"%s\"", name);
1635 			return (NULL);
1636 		}
1637 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1638 		    __DECONST(char *, name)));
1639 	}
1640 
1641 	dbg(" Searching for \"%s\"", name);
1642 	refobj_path = objgiven ? refobj->path : NULL;
1643 
1644 	/*
1645 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1646 	 * back to pre-conforming behaviour if user requested so with
1647 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1648 	 * nodeflib.
1649 	 */
1650 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1651 		pathname = search_library_path(name, ld_library_path,
1652 		    refobj_path, fdp);
1653 		if (pathname != NULL)
1654 			return (pathname);
1655 		if (refobj != NULL) {
1656 			pathname = search_library_path(name, refobj->rpath,
1657 			    refobj_path, fdp);
1658 			if (pathname != NULL)
1659 				return (pathname);
1660 		}
1661 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1662 		if (pathname != NULL)
1663 			return (pathname);
1664 		pathname = search_library_path(name, gethints(false),
1665 		    refobj_path, fdp);
1666 		if (pathname != NULL)
1667 			return (pathname);
1668 		pathname = search_library_path(name, ld_standard_library_path,
1669 		    refobj_path, fdp);
1670 		if (pathname != NULL)
1671 			return (pathname);
1672 	} else {
1673 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1674 		if (objgiven) {
1675 			pathname = search_library_path(name, refobj->rpath,
1676 			    refobj->path, fdp);
1677 			if (pathname != NULL)
1678 				return (pathname);
1679 		}
1680 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1681 			pathname = search_library_path(name, obj_main->rpath,
1682 			    refobj_path, fdp);
1683 			if (pathname != NULL)
1684 				return (pathname);
1685 		}
1686 		pathname = search_library_path(name, ld_library_path,
1687 		    refobj_path, fdp);
1688 		if (pathname != NULL)
1689 			return (pathname);
1690 		if (objgiven) {
1691 			pathname = search_library_path(name, refobj->runpath,
1692 			    refobj_path, fdp);
1693 			if (pathname != NULL)
1694 				return (pathname);
1695 		}
1696 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1697 		if (pathname != NULL)
1698 			return (pathname);
1699 		pathname = search_library_path(name, gethints(nodeflib),
1700 		    refobj_path, fdp);
1701 		if (pathname != NULL)
1702 			return (pathname);
1703 		if (objgiven && !nodeflib) {
1704 			pathname = search_library_path(name,
1705 			    ld_standard_library_path, refobj_path, fdp);
1706 			if (pathname != NULL)
1707 				return (pathname);
1708 		}
1709 	}
1710 
1711 	if (objgiven && refobj->path != NULL) {
1712 		_rtld_error("Shared object \"%s\" not found, "
1713 		    "required by \"%s\"", name, basename(refobj->path));
1714 	} else {
1715 		_rtld_error("Shared object \"%s\" not found", name);
1716 	}
1717 	return (NULL);
1718 }
1719 
1720 /*
1721  * Given a symbol number in a referencing object, find the corresponding
1722  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1723  * no definition was found.  Returns a pointer to the Obj_Entry of the
1724  * defining object via the reference parameter DEFOBJ_OUT.
1725  */
1726 const Elf_Sym *
1727 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1728     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1729     RtldLockState *lockstate)
1730 {
1731     const Elf_Sym *ref;
1732     const Elf_Sym *def;
1733     const Obj_Entry *defobj;
1734     const Ver_Entry *ve;
1735     SymLook req;
1736     const char *name;
1737     int res;
1738 
1739     /*
1740      * If we have already found this symbol, get the information from
1741      * the cache.
1742      */
1743     if (symnum >= refobj->dynsymcount)
1744 	return NULL;	/* Bad object */
1745     if (cache != NULL && cache[symnum].sym != NULL) {
1746 	*defobj_out = cache[symnum].obj;
1747 	return cache[symnum].sym;
1748     }
1749 
1750     ref = refobj->symtab + symnum;
1751     name = refobj->strtab + ref->st_name;
1752     def = NULL;
1753     defobj = NULL;
1754     ve = NULL;
1755 
1756     /*
1757      * We don't have to do a full scale lookup if the symbol is local.
1758      * We know it will bind to the instance in this load module; to
1759      * which we already have a pointer (ie ref). By not doing a lookup,
1760      * we not only improve performance, but it also avoids unresolvable
1761      * symbols when local symbols are not in the hash table. This has
1762      * been seen with the ia64 toolchain.
1763      */
1764     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1765 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1766 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1767 		symnum);
1768 	}
1769 	symlook_init(&req, name);
1770 	req.flags = flags;
1771 	ve = req.ventry = fetch_ventry(refobj, symnum);
1772 	req.lockstate = lockstate;
1773 	res = symlook_default(&req, refobj);
1774 	if (res == 0) {
1775 	    def = req.sym_out;
1776 	    defobj = req.defobj_out;
1777 	}
1778     } else {
1779 	def = ref;
1780 	defobj = refobj;
1781     }
1782 
1783     /*
1784      * If we found no definition and the reference is weak, treat the
1785      * symbol as having the value zero.
1786      */
1787     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1788 	def = &sym_zero;
1789 	defobj = obj_main;
1790     }
1791 
1792     if (def != NULL) {
1793 	*defobj_out = defobj;
1794 	/* Record the information in the cache to avoid subsequent lookups. */
1795 	if (cache != NULL) {
1796 	    cache[symnum].sym = def;
1797 	    cache[symnum].obj = defobj;
1798 	}
1799     } else {
1800 	if (refobj != &obj_rtld)
1801 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1802 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1803     }
1804     return def;
1805 }
1806 
1807 /*
1808  * Return the search path from the ldconfig hints file, reading it if
1809  * necessary.  If nostdlib is true, then the default search paths are
1810  * not added to result.
1811  *
1812  * Returns NULL if there are problems with the hints file,
1813  * or if the search path there is empty.
1814  */
1815 static const char *
1816 gethints(bool nostdlib)
1817 {
1818 	static char *filtered_path;
1819 	static const char *hints;
1820 	static struct elfhints_hdr hdr;
1821 	struct fill_search_info_args sargs, hargs;
1822 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1823 	struct dl_serpath *SLPpath, *hintpath;
1824 	char *p;
1825 	struct stat hint_stat;
1826 	unsigned int SLPndx, hintndx, fndx, fcount;
1827 	int fd;
1828 	size_t flen;
1829 	uint32_t dl;
1830 	bool skip;
1831 
1832 	/* First call, read the hints file */
1833 	if (hints == NULL) {
1834 		/* Keep from trying again in case the hints file is bad. */
1835 		hints = "";
1836 
1837 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1838 			return (NULL);
1839 
1840 		/*
1841 		 * Check of hdr.dirlistlen value against type limit
1842 		 * intends to pacify static analyzers.  Further
1843 		 * paranoia leads to checks that dirlist is fully
1844 		 * contained in the file range.
1845 		 */
1846 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1847 		    hdr.magic != ELFHINTS_MAGIC ||
1848 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1849 		    fstat(fd, &hint_stat) == -1) {
1850 cleanup1:
1851 			close(fd);
1852 			hdr.dirlistlen = 0;
1853 			return (NULL);
1854 		}
1855 		dl = hdr.strtab;
1856 		if (dl + hdr.dirlist < dl)
1857 			goto cleanup1;
1858 		dl += hdr.dirlist;
1859 		if (dl + hdr.dirlistlen < dl)
1860 			goto cleanup1;
1861 		dl += hdr.dirlistlen;
1862 		if (dl > hint_stat.st_size)
1863 			goto cleanup1;
1864 		p = xmalloc(hdr.dirlistlen + 1);
1865 		if (pread(fd, p, hdr.dirlistlen + 1,
1866 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1867 		    p[hdr.dirlistlen] != '\0') {
1868 			free(p);
1869 			goto cleanup1;
1870 		}
1871 		hints = p;
1872 		close(fd);
1873 	}
1874 
1875 	/*
1876 	 * If caller agreed to receive list which includes the default
1877 	 * paths, we are done. Otherwise, if we still did not
1878 	 * calculated filtered result, do it now.
1879 	 */
1880 	if (!nostdlib)
1881 		return (hints[0] != '\0' ? hints : NULL);
1882 	if (filtered_path != NULL)
1883 		goto filt_ret;
1884 
1885 	/*
1886 	 * Obtain the list of all configured search paths, and the
1887 	 * list of the default paths.
1888 	 *
1889 	 * First estimate the size of the results.
1890 	 */
1891 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1892 	smeta.dls_cnt = 0;
1893 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1894 	hmeta.dls_cnt = 0;
1895 
1896 	sargs.request = RTLD_DI_SERINFOSIZE;
1897 	sargs.serinfo = &smeta;
1898 	hargs.request = RTLD_DI_SERINFOSIZE;
1899 	hargs.serinfo = &hmeta;
1900 
1901 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1902 	    &sargs);
1903 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1904 
1905 	SLPinfo = xmalloc(smeta.dls_size);
1906 	hintinfo = xmalloc(hmeta.dls_size);
1907 
1908 	/*
1909 	 * Next fetch both sets of paths.
1910 	 */
1911 	sargs.request = RTLD_DI_SERINFO;
1912 	sargs.serinfo = SLPinfo;
1913 	sargs.serpath = &SLPinfo->dls_serpath[0];
1914 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1915 
1916 	hargs.request = RTLD_DI_SERINFO;
1917 	hargs.serinfo = hintinfo;
1918 	hargs.serpath = &hintinfo->dls_serpath[0];
1919 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1920 
1921 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1922 	    &sargs);
1923 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1924 
1925 	/*
1926 	 * Now calculate the difference between two sets, by excluding
1927 	 * standard paths from the full set.
1928 	 */
1929 	fndx = 0;
1930 	fcount = 0;
1931 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1932 	hintpath = &hintinfo->dls_serpath[0];
1933 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1934 		skip = false;
1935 		SLPpath = &SLPinfo->dls_serpath[0];
1936 		/*
1937 		 * Check each standard path against current.
1938 		 */
1939 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1940 			/* matched, skip the path */
1941 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1942 				skip = true;
1943 				break;
1944 			}
1945 		}
1946 		if (skip)
1947 			continue;
1948 		/*
1949 		 * Not matched against any standard path, add the path
1950 		 * to result. Separate consequtive paths with ':'.
1951 		 */
1952 		if (fcount > 0) {
1953 			filtered_path[fndx] = ':';
1954 			fndx++;
1955 		}
1956 		fcount++;
1957 		flen = strlen(hintpath->dls_name);
1958 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1959 		fndx += flen;
1960 	}
1961 	filtered_path[fndx] = '\0';
1962 
1963 	free(SLPinfo);
1964 	free(hintinfo);
1965 
1966 filt_ret:
1967 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1968 }
1969 
1970 static void
1971 init_dag(Obj_Entry *root)
1972 {
1973     const Needed_Entry *needed;
1974     const Objlist_Entry *elm;
1975     DoneList donelist;
1976 
1977     if (root->dag_inited)
1978 	return;
1979     donelist_init(&donelist);
1980 
1981     /* Root object belongs to own DAG. */
1982     objlist_push_tail(&root->dldags, root);
1983     objlist_push_tail(&root->dagmembers, root);
1984     donelist_check(&donelist, root);
1985 
1986     /*
1987      * Add dependencies of root object to DAG in breadth order
1988      * by exploiting the fact that each new object get added
1989      * to the tail of the dagmembers list.
1990      */
1991     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1992 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1993 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1994 		continue;
1995 	    objlist_push_tail(&needed->obj->dldags, root);
1996 	    objlist_push_tail(&root->dagmembers, needed->obj);
1997 	}
1998     }
1999     root->dag_inited = true;
2000 }
2001 
2002 static void
2003 init_marker(Obj_Entry *marker)
2004 {
2005 
2006 	bzero(marker, sizeof(*marker));
2007 	marker->marker = true;
2008 }
2009 
2010 Obj_Entry *
2011 globallist_curr(const Obj_Entry *obj)
2012 {
2013 
2014 	for (;;) {
2015 		if (obj == NULL)
2016 			return (NULL);
2017 		if (!obj->marker)
2018 			return (__DECONST(Obj_Entry *, obj));
2019 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2020 	}
2021 }
2022 
2023 Obj_Entry *
2024 globallist_next(const Obj_Entry *obj)
2025 {
2026 
2027 	for (;;) {
2028 		obj = TAILQ_NEXT(obj, next);
2029 		if (obj == NULL)
2030 			return (NULL);
2031 		if (!obj->marker)
2032 			return (__DECONST(Obj_Entry *, obj));
2033 	}
2034 }
2035 
2036 /* Prevent the object from being unmapped while the bind lock is dropped. */
2037 static void
2038 hold_object(Obj_Entry *obj)
2039 {
2040 
2041 	obj->holdcount++;
2042 }
2043 
2044 static void
2045 unhold_object(Obj_Entry *obj)
2046 {
2047 
2048 	assert(obj->holdcount > 0);
2049 	if (--obj->holdcount == 0 && obj->unholdfree)
2050 		release_object(obj);
2051 }
2052 
2053 static void
2054 process_z(Obj_Entry *root)
2055 {
2056 	const Objlist_Entry *elm;
2057 	Obj_Entry *obj;
2058 
2059 	/*
2060 	 * Walk over object DAG and process every dependent object
2061 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2062 	 * to grow their own DAG.
2063 	 *
2064 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2065 	 * symlook_global() to work.
2066 	 *
2067 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2068 	 */
2069 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2070 		obj = elm->obj;
2071 		if (obj == NULL)
2072 			continue;
2073 		if (obj->z_nodelete && !obj->ref_nodel) {
2074 			dbg("obj %s -z nodelete", obj->path);
2075 			init_dag(obj);
2076 			ref_dag(obj);
2077 			obj->ref_nodel = true;
2078 		}
2079 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2080 			dbg("obj %s -z global", obj->path);
2081 			objlist_push_tail(&list_global, obj);
2082 			init_dag(obj);
2083 		}
2084 	}
2085 }
2086 /*
2087  * Initialize the dynamic linker.  The argument is the address at which
2088  * the dynamic linker has been mapped into memory.  The primary task of
2089  * this function is to relocate the dynamic linker.
2090  */
2091 static void
2092 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2093 {
2094     Obj_Entry objtmp;	/* Temporary rtld object */
2095     const Elf_Ehdr *ehdr;
2096     const Elf_Dyn *dyn_rpath;
2097     const Elf_Dyn *dyn_soname;
2098     const Elf_Dyn *dyn_runpath;
2099 
2100 #ifdef RTLD_INIT_PAGESIZES_EARLY
2101     /* The page size is required by the dynamic memory allocator. */
2102     init_pagesizes(aux_info);
2103 #endif
2104 
2105     /*
2106      * Conjure up an Obj_Entry structure for the dynamic linker.
2107      *
2108      * The "path" member can't be initialized yet because string constants
2109      * cannot yet be accessed. Below we will set it correctly.
2110      */
2111     memset(&objtmp, 0, sizeof(objtmp));
2112     objtmp.path = NULL;
2113     objtmp.rtld = true;
2114     objtmp.mapbase = mapbase;
2115 #ifdef PIC
2116     objtmp.relocbase = mapbase;
2117 #endif
2118 
2119     objtmp.dynamic = rtld_dynamic(&objtmp);
2120     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2121     assert(objtmp.needed == NULL);
2122 #if !defined(__mips__)
2123     /* MIPS has a bogus DT_TEXTREL. */
2124     assert(!objtmp.textrel);
2125 #endif
2126     /*
2127      * Temporarily put the dynamic linker entry into the object list, so
2128      * that symbols can be found.
2129      */
2130     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2131 
2132     ehdr = (Elf_Ehdr *)mapbase;
2133     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2134     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2135 
2136     /* Initialize the object list. */
2137     TAILQ_INIT(&obj_list);
2138 
2139     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2140     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2141 
2142 #ifndef RTLD_INIT_PAGESIZES_EARLY
2143     /* The page size is required by the dynamic memory allocator. */
2144     init_pagesizes(aux_info);
2145 #endif
2146 
2147     if (aux_info[AT_OSRELDATE] != NULL)
2148 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2149 
2150     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2151 
2152     /* Replace the path with a dynamically allocated copy. */
2153     obj_rtld.path = xstrdup(ld_path_rtld);
2154 
2155     r_debug.r_brk = r_debug_state;
2156     r_debug.r_state = RT_CONSISTENT;
2157 }
2158 
2159 /*
2160  * Retrieve the array of supported page sizes.  The kernel provides the page
2161  * sizes in increasing order.
2162  */
2163 static void
2164 init_pagesizes(Elf_Auxinfo **aux_info)
2165 {
2166 	static size_t psa[MAXPAGESIZES];
2167 	int mib[2];
2168 	size_t len, size;
2169 
2170 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2171 	    NULL) {
2172 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2173 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2174 	} else {
2175 		len = 2;
2176 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2177 			size = sizeof(psa);
2178 		else {
2179 			/* As a fallback, retrieve the base page size. */
2180 			size = sizeof(psa[0]);
2181 			if (aux_info[AT_PAGESZ] != NULL) {
2182 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2183 				goto psa_filled;
2184 			} else {
2185 				mib[0] = CTL_HW;
2186 				mib[1] = HW_PAGESIZE;
2187 				len = 2;
2188 			}
2189 		}
2190 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2191 			_rtld_error("sysctl for hw.pagesize(s) failed");
2192 			rtld_die();
2193 		}
2194 psa_filled:
2195 		pagesizes = psa;
2196 	}
2197 	npagesizes = size / sizeof(pagesizes[0]);
2198 	/* Discard any invalid entries at the end of the array. */
2199 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2200 		npagesizes--;
2201 }
2202 
2203 /*
2204  * Add the init functions from a needed object list (and its recursive
2205  * needed objects) to "list".  This is not used directly; it is a helper
2206  * function for initlist_add_objects().  The write lock must be held
2207  * when this function is called.
2208  */
2209 static void
2210 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2211 {
2212     /* Recursively process the successor needed objects. */
2213     if (needed->next != NULL)
2214 	initlist_add_neededs(needed->next, list);
2215 
2216     /* Process the current needed object. */
2217     if (needed->obj != NULL)
2218 	initlist_add_objects(needed->obj, needed->obj, list);
2219 }
2220 
2221 /*
2222  * Scan all of the DAGs rooted in the range of objects from "obj" to
2223  * "tail" and add their init functions to "list".  This recurses over
2224  * the DAGs and ensure the proper init ordering such that each object's
2225  * needed libraries are initialized before the object itself.  At the
2226  * same time, this function adds the objects to the global finalization
2227  * list "list_fini" in the opposite order.  The write lock must be
2228  * held when this function is called.
2229  */
2230 static void
2231 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2232 {
2233     Obj_Entry *nobj;
2234 
2235     if (obj->init_scanned || obj->init_done)
2236 	return;
2237     obj->init_scanned = true;
2238 
2239     /* Recursively process the successor objects. */
2240     nobj = globallist_next(obj);
2241     if (nobj != NULL && obj != tail)
2242 	initlist_add_objects(nobj, tail, list);
2243 
2244     /* Recursively process the needed objects. */
2245     if (obj->needed != NULL)
2246 	initlist_add_neededs(obj->needed, list);
2247     if (obj->needed_filtees != NULL)
2248 	initlist_add_neededs(obj->needed_filtees, list);
2249     if (obj->needed_aux_filtees != NULL)
2250 	initlist_add_neededs(obj->needed_aux_filtees, list);
2251 
2252     /* Add the object to the init list. */
2253     objlist_push_tail(list, obj);
2254 
2255     /* Add the object to the global fini list in the reverse order. */
2256     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2257       && !obj->on_fini_list) {
2258 	objlist_push_head(&list_fini, obj);
2259 	obj->on_fini_list = true;
2260     }
2261 }
2262 
2263 #ifndef FPTR_TARGET
2264 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2265 #endif
2266 
2267 static void
2268 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2269 {
2270     Needed_Entry *needed, *needed1;
2271 
2272     for (needed = n; needed != NULL; needed = needed->next) {
2273 	if (needed->obj != NULL) {
2274 	    dlclose_locked(needed->obj, lockstate);
2275 	    needed->obj = NULL;
2276 	}
2277     }
2278     for (needed = n; needed != NULL; needed = needed1) {
2279 	needed1 = needed->next;
2280 	free(needed);
2281     }
2282 }
2283 
2284 static void
2285 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2286 {
2287 
2288 	free_needed_filtees(obj->needed_filtees, lockstate);
2289 	obj->needed_filtees = NULL;
2290 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2291 	obj->needed_aux_filtees = NULL;
2292 	obj->filtees_loaded = false;
2293 }
2294 
2295 static void
2296 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2297     RtldLockState *lockstate)
2298 {
2299 
2300     for (; needed != NULL; needed = needed->next) {
2301 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2302 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2303 	  RTLD_LOCAL, lockstate);
2304     }
2305 }
2306 
2307 static void
2308 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2309 {
2310 
2311     lock_restart_for_upgrade(lockstate);
2312     if (!obj->filtees_loaded) {
2313 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2314 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2315 	obj->filtees_loaded = true;
2316     }
2317 }
2318 
2319 static int
2320 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2321 {
2322     Obj_Entry *obj1;
2323 
2324     for (; needed != NULL; needed = needed->next) {
2325 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2326 	  flags & ~RTLD_LO_NOLOAD);
2327 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2328 	    return (-1);
2329     }
2330     return (0);
2331 }
2332 
2333 /*
2334  * Given a shared object, traverse its list of needed objects, and load
2335  * each of them.  Returns 0 on success.  Generates an error message and
2336  * returns -1 on failure.
2337  */
2338 static int
2339 load_needed_objects(Obj_Entry *first, int flags)
2340 {
2341     Obj_Entry *obj;
2342 
2343     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2344 	if (obj->marker)
2345 	    continue;
2346 	if (process_needed(obj, obj->needed, flags) == -1)
2347 	    return (-1);
2348     }
2349     return (0);
2350 }
2351 
2352 static int
2353 load_preload_objects(void)
2354 {
2355     char *p = ld_preload;
2356     Obj_Entry *obj;
2357     static const char delim[] = " \t:;";
2358 
2359     if (p == NULL)
2360 	return 0;
2361 
2362     p += strspn(p, delim);
2363     while (*p != '\0') {
2364 	size_t len = strcspn(p, delim);
2365 	char savech;
2366 
2367 	savech = p[len];
2368 	p[len] = '\0';
2369 	obj = load_object(p, -1, NULL, 0);
2370 	if (obj == NULL)
2371 	    return -1;	/* XXX - cleanup */
2372 	obj->z_interpose = true;
2373 	p[len] = savech;
2374 	p += len;
2375 	p += strspn(p, delim);
2376     }
2377     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2378     return 0;
2379 }
2380 
2381 static const char *
2382 printable_path(const char *path)
2383 {
2384 
2385 	return (path == NULL ? "<unknown>" : path);
2386 }
2387 
2388 /*
2389  * Load a shared object into memory, if it is not already loaded.  The
2390  * object may be specified by name or by user-supplied file descriptor
2391  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2392  * duplicate is.
2393  *
2394  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2395  * on failure.
2396  */
2397 static Obj_Entry *
2398 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2399 {
2400     Obj_Entry *obj;
2401     int fd;
2402     struct stat sb;
2403     char *path;
2404 
2405     fd = -1;
2406     if (name != NULL) {
2407 	TAILQ_FOREACH(obj, &obj_list, next) {
2408 	    if (obj->marker || obj->doomed)
2409 		continue;
2410 	    if (object_match_name(obj, name))
2411 		return (obj);
2412 	}
2413 
2414 	path = find_library(name, refobj, &fd);
2415 	if (path == NULL)
2416 	    return (NULL);
2417     } else
2418 	path = NULL;
2419 
2420     if (fd >= 0) {
2421 	/*
2422 	 * search_library_pathfds() opens a fresh file descriptor for the
2423 	 * library, so there is no need to dup().
2424 	 */
2425     } else if (fd_u == -1) {
2426 	/*
2427 	 * If we didn't find a match by pathname, or the name is not
2428 	 * supplied, open the file and check again by device and inode.
2429 	 * This avoids false mismatches caused by multiple links or ".."
2430 	 * in pathnames.
2431 	 *
2432 	 * To avoid a race, we open the file and use fstat() rather than
2433 	 * using stat().
2434 	 */
2435 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2436 	    _rtld_error("Cannot open \"%s\"", path);
2437 	    free(path);
2438 	    return (NULL);
2439 	}
2440     } else {
2441 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2442 	if (fd == -1) {
2443 	    _rtld_error("Cannot dup fd");
2444 	    free(path);
2445 	    return (NULL);
2446 	}
2447     }
2448     if (fstat(fd, &sb) == -1) {
2449 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2450 	close(fd);
2451 	free(path);
2452 	return NULL;
2453     }
2454     TAILQ_FOREACH(obj, &obj_list, next) {
2455 	if (obj->marker || obj->doomed)
2456 	    continue;
2457 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2458 	    break;
2459     }
2460     if (obj != NULL && name != NULL) {
2461 	object_add_name(obj, name);
2462 	free(path);
2463 	close(fd);
2464 	return obj;
2465     }
2466     if (flags & RTLD_LO_NOLOAD) {
2467 	free(path);
2468 	close(fd);
2469 	return (NULL);
2470     }
2471 
2472     /* First use of this object, so we must map it in */
2473     obj = do_load_object(fd, name, path, &sb, flags);
2474     if (obj == NULL)
2475 	free(path);
2476     close(fd);
2477 
2478     return obj;
2479 }
2480 
2481 static Obj_Entry *
2482 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2483   int flags)
2484 {
2485     Obj_Entry *obj;
2486     struct statfs fs;
2487 
2488     /*
2489      * but first, make sure that environment variables haven't been
2490      * used to circumvent the noexec flag on a filesystem.
2491      */
2492     if (dangerous_ld_env) {
2493 	if (fstatfs(fd, &fs) != 0) {
2494 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2495 	    return NULL;
2496 	}
2497 	if (fs.f_flags & MNT_NOEXEC) {
2498 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2499 	    return NULL;
2500 	}
2501     }
2502     dbg("loading \"%s\"", printable_path(path));
2503     obj = map_object(fd, printable_path(path), sbp);
2504     if (obj == NULL)
2505         return NULL;
2506 
2507     /*
2508      * If DT_SONAME is present in the object, digest_dynamic2 already
2509      * added it to the object names.
2510      */
2511     if (name != NULL)
2512 	object_add_name(obj, name);
2513     obj->path = path;
2514     digest_dynamic(obj, 0);
2515     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2516 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2517     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2518       RTLD_LO_DLOPEN) {
2519 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2520 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2521 	munmap(obj->mapbase, obj->mapsize);
2522 	obj_free(obj);
2523 	return (NULL);
2524     }
2525 
2526     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2527     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2528     obj_count++;
2529     obj_loads++;
2530     linkmap_add(obj);	/* for GDB & dlinfo() */
2531     max_stack_flags |= obj->stack_flags;
2532 
2533     dbg("  %p .. %p: %s", obj->mapbase,
2534          obj->mapbase + obj->mapsize - 1, obj->path);
2535     if (obj->textrel)
2536 	dbg("  WARNING: %s has impure text", obj->path);
2537     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2538 	obj->path);
2539 
2540     return obj;
2541 }
2542 
2543 static Obj_Entry *
2544 obj_from_addr(const void *addr)
2545 {
2546     Obj_Entry *obj;
2547 
2548     TAILQ_FOREACH(obj, &obj_list, next) {
2549 	if (obj->marker)
2550 	    continue;
2551 	if (addr < (void *) obj->mapbase)
2552 	    continue;
2553 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2554 	    return obj;
2555     }
2556     return NULL;
2557 }
2558 
2559 static void
2560 preinit_main(void)
2561 {
2562     Elf_Addr *preinit_addr;
2563     int index;
2564 
2565     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2566     if (preinit_addr == NULL)
2567 	return;
2568 
2569     for (index = 0; index < obj_main->preinit_array_num; index++) {
2570 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2571 	    dbg("calling preinit function for %s at %p", obj_main->path,
2572 	      (void *)preinit_addr[index]);
2573 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2574 	      0, 0, obj_main->path);
2575 	    call_init_pointer(obj_main, preinit_addr[index]);
2576 	}
2577     }
2578 }
2579 
2580 /*
2581  * Call the finalization functions for each of the objects in "list"
2582  * belonging to the DAG of "root" and referenced once. If NULL "root"
2583  * is specified, every finalization function will be called regardless
2584  * of the reference count and the list elements won't be freed. All of
2585  * the objects are expected to have non-NULL fini functions.
2586  */
2587 static void
2588 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2589 {
2590     Objlist_Entry *elm;
2591     char *saved_msg;
2592     Elf_Addr *fini_addr;
2593     int index;
2594 
2595     assert(root == NULL || root->refcount == 1);
2596 
2597     if (root != NULL)
2598 	root->doomed = true;
2599 
2600     /*
2601      * Preserve the current error message since a fini function might
2602      * call into the dynamic linker and overwrite it.
2603      */
2604     saved_msg = errmsg_save();
2605     do {
2606 	STAILQ_FOREACH(elm, list, link) {
2607 	    if (root != NULL && (elm->obj->refcount != 1 ||
2608 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2609 		continue;
2610 	    /* Remove object from fini list to prevent recursive invocation. */
2611 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2612 	    /* Ensure that new references cannot be acquired. */
2613 	    elm->obj->doomed = true;
2614 
2615 	    hold_object(elm->obj);
2616 	    lock_release(rtld_bind_lock, lockstate);
2617 	    /*
2618 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2619 	     * When this happens, DT_FINI_ARRAY is processed first.
2620 	     */
2621 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2622 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2623 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2624 		  index--) {
2625 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2626 			dbg("calling fini function for %s at %p",
2627 			    elm->obj->path, (void *)fini_addr[index]);
2628 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2629 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2630 			call_initfini_pointer(elm->obj, fini_addr[index]);
2631 		    }
2632 		}
2633 	    }
2634 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2635 		dbg("calling fini function for %s at %p", elm->obj->path,
2636 		    (void *)elm->obj->fini);
2637 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2638 		    0, 0, elm->obj->path);
2639 		call_initfini_pointer(elm->obj, elm->obj->fini);
2640 	    }
2641 	    wlock_acquire(rtld_bind_lock, lockstate);
2642 	    unhold_object(elm->obj);
2643 	    /* No need to free anything if process is going down. */
2644 	    if (root != NULL)
2645 	    	free(elm);
2646 	    /*
2647 	     * We must restart the list traversal after every fini call
2648 	     * because a dlclose() call from the fini function or from
2649 	     * another thread might have modified the reference counts.
2650 	     */
2651 	    break;
2652 	}
2653     } while (elm != NULL);
2654     errmsg_restore(saved_msg);
2655 }
2656 
2657 /*
2658  * Call the initialization functions for each of the objects in
2659  * "list".  All of the objects are expected to have non-NULL init
2660  * functions.
2661  */
2662 static void
2663 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2664 {
2665     Objlist_Entry *elm;
2666     Obj_Entry *obj;
2667     char *saved_msg;
2668     Elf_Addr *init_addr;
2669     void (*reg)(void (*)(void));
2670     int index;
2671 
2672     /*
2673      * Clean init_scanned flag so that objects can be rechecked and
2674      * possibly initialized earlier if any of vectors called below
2675      * cause the change by using dlopen.
2676      */
2677     TAILQ_FOREACH(obj, &obj_list, next) {
2678 	if (obj->marker)
2679 	    continue;
2680 	obj->init_scanned = false;
2681     }
2682 
2683     /*
2684      * Preserve the current error message since an init function might
2685      * call into the dynamic linker and overwrite it.
2686      */
2687     saved_msg = errmsg_save();
2688     STAILQ_FOREACH(elm, list, link) {
2689 	if (elm->obj->init_done) /* Initialized early. */
2690 	    continue;
2691 	/*
2692 	 * Race: other thread might try to use this object before current
2693 	 * one completes the initialization. Not much can be done here
2694 	 * without better locking.
2695 	 */
2696 	elm->obj->init_done = true;
2697 	hold_object(elm->obj);
2698 	reg = NULL;
2699 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2700 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2701 		    "__libc_atexit", lockstate);
2702 	}
2703 	lock_release(rtld_bind_lock, lockstate);
2704 	if (reg != NULL) {
2705 		reg(rtld_exit);
2706 		rtld_exit_ptr = rtld_nop_exit;
2707 	}
2708 
2709         /*
2710          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2711          * When this happens, DT_INIT is processed first.
2712          */
2713 	if (elm->obj->init != (Elf_Addr)NULL) {
2714 	    dbg("calling init function for %s at %p", elm->obj->path,
2715 	        (void *)elm->obj->init);
2716 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2717 	        0, 0, elm->obj->path);
2718 	    call_initfini_pointer(elm->obj, elm->obj->init);
2719 	}
2720 	init_addr = (Elf_Addr *)elm->obj->init_array;
2721 	if (init_addr != NULL) {
2722 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2723 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2724 		    dbg("calling init function for %s at %p", elm->obj->path,
2725 			(void *)init_addr[index]);
2726 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2727 			(void *)init_addr[index], 0, 0, elm->obj->path);
2728 		    call_init_pointer(elm->obj, init_addr[index]);
2729 		}
2730 	    }
2731 	}
2732 	wlock_acquire(rtld_bind_lock, lockstate);
2733 	unhold_object(elm->obj);
2734     }
2735     errmsg_restore(saved_msg);
2736 }
2737 
2738 static void
2739 objlist_clear(Objlist *list)
2740 {
2741     Objlist_Entry *elm;
2742 
2743     while (!STAILQ_EMPTY(list)) {
2744 	elm = STAILQ_FIRST(list);
2745 	STAILQ_REMOVE_HEAD(list, link);
2746 	free(elm);
2747     }
2748 }
2749 
2750 static Objlist_Entry *
2751 objlist_find(Objlist *list, const Obj_Entry *obj)
2752 {
2753     Objlist_Entry *elm;
2754 
2755     STAILQ_FOREACH(elm, list, link)
2756 	if (elm->obj == obj)
2757 	    return elm;
2758     return NULL;
2759 }
2760 
2761 static void
2762 objlist_init(Objlist *list)
2763 {
2764     STAILQ_INIT(list);
2765 }
2766 
2767 static void
2768 objlist_push_head(Objlist *list, Obj_Entry *obj)
2769 {
2770     Objlist_Entry *elm;
2771 
2772     elm = NEW(Objlist_Entry);
2773     elm->obj = obj;
2774     STAILQ_INSERT_HEAD(list, elm, link);
2775 }
2776 
2777 static void
2778 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2779 {
2780     Objlist_Entry *elm;
2781 
2782     elm = NEW(Objlist_Entry);
2783     elm->obj = obj;
2784     STAILQ_INSERT_TAIL(list, elm, link);
2785 }
2786 
2787 static void
2788 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2789 {
2790 	Objlist_Entry *elm, *listelm;
2791 
2792 	STAILQ_FOREACH(listelm, list, link) {
2793 		if (listelm->obj == listobj)
2794 			break;
2795 	}
2796 	elm = NEW(Objlist_Entry);
2797 	elm->obj = obj;
2798 	if (listelm != NULL)
2799 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2800 	else
2801 		STAILQ_INSERT_TAIL(list, elm, link);
2802 }
2803 
2804 static void
2805 objlist_remove(Objlist *list, Obj_Entry *obj)
2806 {
2807     Objlist_Entry *elm;
2808 
2809     if ((elm = objlist_find(list, obj)) != NULL) {
2810 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2811 	free(elm);
2812     }
2813 }
2814 
2815 /*
2816  * Relocate dag rooted in the specified object.
2817  * Returns 0 on success, or -1 on failure.
2818  */
2819 
2820 static int
2821 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2822     int flags, RtldLockState *lockstate)
2823 {
2824 	Objlist_Entry *elm;
2825 	int error;
2826 
2827 	error = 0;
2828 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2829 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2830 		    lockstate);
2831 		if (error == -1)
2832 			break;
2833 	}
2834 	return (error);
2835 }
2836 
2837 /*
2838  * Prepare for, or clean after, relocating an object marked with
2839  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2840  * segments are remapped read-write.  After relocations are done, the
2841  * segment's permissions are returned back to the modes specified in
2842  * the phdrs.  If any relocation happened, or always for wired
2843  * program, COW is triggered.
2844  */
2845 static int
2846 reloc_textrel_prot(Obj_Entry *obj, bool before)
2847 {
2848 	const Elf_Phdr *ph;
2849 	void *base;
2850 	size_t l, sz;
2851 	int prot;
2852 
2853 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2854 	    l--, ph++) {
2855 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2856 			continue;
2857 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2858 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2859 		    trunc_page(ph->p_vaddr);
2860 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2861 		if (mprotect(base, sz, prot) == -1) {
2862 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2863 			    obj->path, before ? "en" : "dis",
2864 			    rtld_strerror(errno));
2865 			return (-1);
2866 		}
2867 	}
2868 	return (0);
2869 }
2870 
2871 /*
2872  * Relocate single object.
2873  * Returns 0 on success, or -1 on failure.
2874  */
2875 static int
2876 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2877     int flags, RtldLockState *lockstate)
2878 {
2879 
2880 	if (obj->relocated)
2881 		return (0);
2882 	obj->relocated = true;
2883 	if (obj != rtldobj)
2884 		dbg("relocating \"%s\"", obj->path);
2885 
2886 	if (obj->symtab == NULL || obj->strtab == NULL ||
2887 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2888 		_rtld_error("%s: Shared object has no run-time symbol table",
2889 			    obj->path);
2890 		return (-1);
2891 	}
2892 
2893 	/* There are relocations to the write-protected text segment. */
2894 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2895 		return (-1);
2896 
2897 	/* Process the non-PLT non-IFUNC relocations. */
2898 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2899 		return (-1);
2900 
2901 	/* Re-protected the text segment. */
2902 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2903 		return (-1);
2904 
2905 	/* Set the special PLT or GOT entries. */
2906 	init_pltgot(obj);
2907 
2908 	/* Process the PLT relocations. */
2909 	if (reloc_plt(obj, flags, lockstate) == -1)
2910 		return (-1);
2911 	/* Relocate the jump slots if we are doing immediate binding. */
2912 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2913 	    lockstate) == -1)
2914 		return (-1);
2915 
2916 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2917 		return (-1);
2918 
2919 	/*
2920 	 * Set up the magic number and version in the Obj_Entry.  These
2921 	 * were checked in the crt1.o from the original ElfKit, so we
2922 	 * set them for backward compatibility.
2923 	 */
2924 	obj->magic = RTLD_MAGIC;
2925 	obj->version = RTLD_VERSION;
2926 
2927 	return (0);
2928 }
2929 
2930 /*
2931  * Relocate newly-loaded shared objects.  The argument is a pointer to
2932  * the Obj_Entry for the first such object.  All objects from the first
2933  * to the end of the list of objects are relocated.  Returns 0 on success,
2934  * or -1 on failure.
2935  */
2936 static int
2937 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2938     int flags, RtldLockState *lockstate)
2939 {
2940 	Obj_Entry *obj;
2941 	int error;
2942 
2943 	for (error = 0, obj = first;  obj != NULL;
2944 	    obj = TAILQ_NEXT(obj, next)) {
2945 		if (obj->marker)
2946 			continue;
2947 		error = relocate_object(obj, bind_now, rtldobj, flags,
2948 		    lockstate);
2949 		if (error == -1)
2950 			break;
2951 	}
2952 	return (error);
2953 }
2954 
2955 /*
2956  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2957  * referencing STT_GNU_IFUNC symbols is postponed till the other
2958  * relocations are done.  The indirect functions specified as
2959  * ifunc are allowed to call other symbols, so we need to have
2960  * objects relocated before asking for resolution from indirects.
2961  *
2962  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2963  * instead of the usual lazy handling of PLT slots.  It is
2964  * consistent with how GNU does it.
2965  */
2966 static int
2967 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2968     RtldLockState *lockstate)
2969 {
2970 
2971 	if (obj->ifuncs_resolved)
2972 		return (0);
2973 	obj->ifuncs_resolved = true;
2974 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
2975 		return (0);
2976 	if (obj_disable_relro(obj) == -1 ||
2977 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
2978 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2979 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
2980 	    obj_enforce_relro(obj) == -1)
2981 		return (-1);
2982 	return (0);
2983 }
2984 
2985 static int
2986 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2987     RtldLockState *lockstate)
2988 {
2989 	Objlist_Entry *elm;
2990 	Obj_Entry *obj;
2991 
2992 	STAILQ_FOREACH(elm, list, link) {
2993 		obj = elm->obj;
2994 		if (obj->marker)
2995 			continue;
2996 		if (resolve_object_ifunc(obj, bind_now, flags,
2997 		    lockstate) == -1)
2998 			return (-1);
2999 	}
3000 	return (0);
3001 }
3002 
3003 /*
3004  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3005  * before the process exits.
3006  */
3007 static void
3008 rtld_exit(void)
3009 {
3010     RtldLockState lockstate;
3011 
3012     wlock_acquire(rtld_bind_lock, &lockstate);
3013     dbg("rtld_exit()");
3014     objlist_call_fini(&list_fini, NULL, &lockstate);
3015     /* No need to remove the items from the list, since we are exiting. */
3016     if (!libmap_disable)
3017         lm_fini();
3018     lock_release(rtld_bind_lock, &lockstate);
3019 }
3020 
3021 static void
3022 rtld_nop_exit(void)
3023 {
3024 }
3025 
3026 /*
3027  * Iterate over a search path, translate each element, and invoke the
3028  * callback on the result.
3029  */
3030 static void *
3031 path_enumerate(const char *path, path_enum_proc callback,
3032     const char *refobj_path, void *arg)
3033 {
3034     const char *trans;
3035     if (path == NULL)
3036 	return (NULL);
3037 
3038     path += strspn(path, ":;");
3039     while (*path != '\0') {
3040 	size_t len;
3041 	char  *res;
3042 
3043 	len = strcspn(path, ":;");
3044 	trans = lm_findn(refobj_path, path, len);
3045 	if (trans)
3046 	    res = callback(trans, strlen(trans), arg);
3047 	else
3048 	    res = callback(path, len, arg);
3049 
3050 	if (res != NULL)
3051 	    return (res);
3052 
3053 	path += len;
3054 	path += strspn(path, ":;");
3055     }
3056 
3057     return (NULL);
3058 }
3059 
3060 struct try_library_args {
3061     const char	*name;
3062     size_t	 namelen;
3063     char	*buffer;
3064     size_t	 buflen;
3065     int		 fd;
3066 };
3067 
3068 static void *
3069 try_library_path(const char *dir, size_t dirlen, void *param)
3070 {
3071     struct try_library_args *arg;
3072     int fd;
3073 
3074     arg = param;
3075     if (*dir == '/' || trust) {
3076 	char *pathname;
3077 
3078 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3079 		return (NULL);
3080 
3081 	pathname = arg->buffer;
3082 	strncpy(pathname, dir, dirlen);
3083 	pathname[dirlen] = '/';
3084 	strcpy(pathname + dirlen + 1, arg->name);
3085 
3086 	dbg("  Trying \"%s\"", pathname);
3087 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3088 	if (fd >= 0) {
3089 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3090 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3091 	    strcpy(pathname, arg->buffer);
3092 	    arg->fd = fd;
3093 	    return (pathname);
3094 	} else {
3095 	    dbg("  Failed to open \"%s\": %s",
3096 		pathname, rtld_strerror(errno));
3097 	}
3098     }
3099     return (NULL);
3100 }
3101 
3102 static char *
3103 search_library_path(const char *name, const char *path,
3104     const char *refobj_path, int *fdp)
3105 {
3106     char *p;
3107     struct try_library_args arg;
3108 
3109     if (path == NULL)
3110 	return NULL;
3111 
3112     arg.name = name;
3113     arg.namelen = strlen(name);
3114     arg.buffer = xmalloc(PATH_MAX);
3115     arg.buflen = PATH_MAX;
3116     arg.fd = -1;
3117 
3118     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3119     *fdp = arg.fd;
3120 
3121     free(arg.buffer);
3122 
3123     return (p);
3124 }
3125 
3126 
3127 /*
3128  * Finds the library with the given name using the directory descriptors
3129  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3130  *
3131  * Returns a freshly-opened close-on-exec file descriptor for the library,
3132  * or -1 if the library cannot be found.
3133  */
3134 static char *
3135 search_library_pathfds(const char *name, const char *path, int *fdp)
3136 {
3137 	char *envcopy, *fdstr, *found, *last_token;
3138 	size_t len;
3139 	int dirfd, fd;
3140 
3141 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3142 
3143 	/* Don't load from user-specified libdirs into setuid binaries. */
3144 	if (!trust)
3145 		return (NULL);
3146 
3147 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3148 	if (path == NULL)
3149 		return (NULL);
3150 
3151 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3152 	if (name[0] == '/') {
3153 		dbg("Absolute path (%s) passed to %s", name, __func__);
3154 		return (NULL);
3155 	}
3156 
3157 	/*
3158 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3159 	 * copy of the path, as strtok_r rewrites separator tokens
3160 	 * with '\0'.
3161 	 */
3162 	found = NULL;
3163 	envcopy = xstrdup(path);
3164 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3165 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3166 		dirfd = parse_integer(fdstr);
3167 		if (dirfd < 0) {
3168 			_rtld_error("failed to parse directory FD: '%s'",
3169 				fdstr);
3170 			break;
3171 		}
3172 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3173 		if (fd >= 0) {
3174 			*fdp = fd;
3175 			len = strlen(fdstr) + strlen(name) + 3;
3176 			found = xmalloc(len);
3177 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3178 				_rtld_error("error generating '%d/%s'",
3179 				    dirfd, name);
3180 				rtld_die();
3181 			}
3182 			dbg("open('%s') => %d", found, fd);
3183 			break;
3184 		}
3185 	}
3186 	free(envcopy);
3187 
3188 	return (found);
3189 }
3190 
3191 
3192 int
3193 dlclose(void *handle)
3194 {
3195 	RtldLockState lockstate;
3196 	int error;
3197 
3198 	wlock_acquire(rtld_bind_lock, &lockstate);
3199 	error = dlclose_locked(handle, &lockstate);
3200 	lock_release(rtld_bind_lock, &lockstate);
3201 	return (error);
3202 }
3203 
3204 static int
3205 dlclose_locked(void *handle, RtldLockState *lockstate)
3206 {
3207     Obj_Entry *root;
3208 
3209     root = dlcheck(handle);
3210     if (root == NULL)
3211 	return -1;
3212     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3213 	root->path);
3214 
3215     /* Unreference the object and its dependencies. */
3216     root->dl_refcount--;
3217 
3218     if (root->refcount == 1) {
3219 	/*
3220 	 * The object will be no longer referenced, so we must unload it.
3221 	 * First, call the fini functions.
3222 	 */
3223 	objlist_call_fini(&list_fini, root, lockstate);
3224 
3225 	unref_dag(root);
3226 
3227 	/* Finish cleaning up the newly-unreferenced objects. */
3228 	GDB_STATE(RT_DELETE,&root->linkmap);
3229 	unload_object(root, lockstate);
3230 	GDB_STATE(RT_CONSISTENT,NULL);
3231     } else
3232 	unref_dag(root);
3233 
3234     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3235     return 0;
3236 }
3237 
3238 char *
3239 dlerror(void)
3240 {
3241     char *msg = error_message;
3242     error_message = NULL;
3243     return msg;
3244 }
3245 
3246 /*
3247  * This function is deprecated and has no effect.
3248  */
3249 void
3250 dllockinit(void *context,
3251     void *(*_lock_create)(void *context) __unused,
3252     void (*_rlock_acquire)(void *lock) __unused,
3253     void (*_wlock_acquire)(void *lock)  __unused,
3254     void (*_lock_release)(void *lock) __unused,
3255     void (*_lock_destroy)(void *lock) __unused,
3256     void (*context_destroy)(void *context))
3257 {
3258     static void *cur_context;
3259     static void (*cur_context_destroy)(void *);
3260 
3261     /* Just destroy the context from the previous call, if necessary. */
3262     if (cur_context_destroy != NULL)
3263 	cur_context_destroy(cur_context);
3264     cur_context = context;
3265     cur_context_destroy = context_destroy;
3266 }
3267 
3268 void *
3269 dlopen(const char *name, int mode)
3270 {
3271 
3272 	return (rtld_dlopen(name, -1, mode));
3273 }
3274 
3275 void *
3276 fdlopen(int fd, int mode)
3277 {
3278 
3279 	return (rtld_dlopen(NULL, fd, mode));
3280 }
3281 
3282 static void *
3283 rtld_dlopen(const char *name, int fd, int mode)
3284 {
3285     RtldLockState lockstate;
3286     int lo_flags;
3287 
3288     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3289     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3290     if (ld_tracing != NULL) {
3291 	rlock_acquire(rtld_bind_lock, &lockstate);
3292 	if (sigsetjmp(lockstate.env, 0) != 0)
3293 	    lock_upgrade(rtld_bind_lock, &lockstate);
3294 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3295 	lock_release(rtld_bind_lock, &lockstate);
3296     }
3297     lo_flags = RTLD_LO_DLOPEN;
3298     if (mode & RTLD_NODELETE)
3299 	    lo_flags |= RTLD_LO_NODELETE;
3300     if (mode & RTLD_NOLOAD)
3301 	    lo_flags |= RTLD_LO_NOLOAD;
3302     if (ld_tracing != NULL)
3303 	    lo_flags |= RTLD_LO_TRACE;
3304 
3305     return (dlopen_object(name, fd, obj_main, lo_flags,
3306       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3307 }
3308 
3309 static void
3310 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3311 {
3312 
3313 	obj->dl_refcount--;
3314 	unref_dag(obj);
3315 	if (obj->refcount == 0)
3316 		unload_object(obj, lockstate);
3317 }
3318 
3319 static Obj_Entry *
3320 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3321     int mode, RtldLockState *lockstate)
3322 {
3323     Obj_Entry *old_obj_tail;
3324     Obj_Entry *obj;
3325     Objlist initlist;
3326     RtldLockState mlockstate;
3327     int result;
3328 
3329     objlist_init(&initlist);
3330 
3331     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3332 	wlock_acquire(rtld_bind_lock, &mlockstate);
3333 	lockstate = &mlockstate;
3334     }
3335     GDB_STATE(RT_ADD,NULL);
3336 
3337     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3338     obj = NULL;
3339     if (name == NULL && fd == -1) {
3340 	obj = obj_main;
3341 	obj->refcount++;
3342     } else {
3343 	obj = load_object(name, fd, refobj, lo_flags);
3344     }
3345 
3346     if (obj) {
3347 	obj->dl_refcount++;
3348 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3349 	    objlist_push_tail(&list_global, obj);
3350 	if (globallist_next(old_obj_tail) != NULL) {
3351 	    /* We loaded something new. */
3352 	    assert(globallist_next(old_obj_tail) == obj);
3353 	    result = 0;
3354 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3355 	      !allocate_tls_offset(obj)) {
3356 		_rtld_error("%s: No space available "
3357 		  "for static Thread Local Storage", obj->path);
3358 		result = -1;
3359 	    }
3360 	    if (result != -1)
3361 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3362 		    RTLD_LO_EARLY));
3363 	    init_dag(obj);
3364 	    ref_dag(obj);
3365 	    if (result != -1)
3366 		result = rtld_verify_versions(&obj->dagmembers);
3367 	    if (result != -1 && ld_tracing)
3368 		goto trace;
3369 	    if (result == -1 || relocate_object_dag(obj,
3370 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3371 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3372 	      lockstate) == -1) {
3373 		dlopen_cleanup(obj, lockstate);
3374 		obj = NULL;
3375 	    } else if (lo_flags & RTLD_LO_EARLY) {
3376 		/*
3377 		 * Do not call the init functions for early loaded
3378 		 * filtees.  The image is still not initialized enough
3379 		 * for them to work.
3380 		 *
3381 		 * Our object is found by the global object list and
3382 		 * will be ordered among all init calls done right
3383 		 * before transferring control to main.
3384 		 */
3385 	    } else {
3386 		/* Make list of init functions to call. */
3387 		initlist_add_objects(obj, obj, &initlist);
3388 	    }
3389 	    /*
3390 	     * Process all no_delete or global objects here, given
3391 	     * them own DAGs to prevent their dependencies from being
3392 	     * unloaded.  This has to be done after we have loaded all
3393 	     * of the dependencies, so that we do not miss any.
3394 	     */
3395 	    if (obj != NULL)
3396 		process_z(obj);
3397 	} else {
3398 	    /*
3399 	     * Bump the reference counts for objects on this DAG.  If
3400 	     * this is the first dlopen() call for the object that was
3401 	     * already loaded as a dependency, initialize the dag
3402 	     * starting at it.
3403 	     */
3404 	    init_dag(obj);
3405 	    ref_dag(obj);
3406 
3407 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3408 		goto trace;
3409 	}
3410 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3411 	  obj->z_nodelete) && !obj->ref_nodel) {
3412 	    dbg("obj %s nodelete", obj->path);
3413 	    ref_dag(obj);
3414 	    obj->z_nodelete = obj->ref_nodel = true;
3415 	}
3416     }
3417 
3418     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3419 	name);
3420     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3421 
3422     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3423 	map_stacks_exec(lockstate);
3424 	if (obj != NULL)
3425 	    distribute_static_tls(&initlist, lockstate);
3426     }
3427 
3428     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3429       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3430       lockstate) == -1) {
3431 	objlist_clear(&initlist);
3432 	dlopen_cleanup(obj, lockstate);
3433 	if (lockstate == &mlockstate)
3434 	    lock_release(rtld_bind_lock, lockstate);
3435 	return (NULL);
3436     }
3437 
3438     if (!(lo_flags & RTLD_LO_EARLY)) {
3439 	/* Call the init functions. */
3440 	objlist_call_init(&initlist, lockstate);
3441     }
3442     objlist_clear(&initlist);
3443     if (lockstate == &mlockstate)
3444 	lock_release(rtld_bind_lock, lockstate);
3445     return obj;
3446 trace:
3447     trace_loaded_objects(obj);
3448     if (lockstate == &mlockstate)
3449 	lock_release(rtld_bind_lock, lockstate);
3450     exit(0);
3451 }
3452 
3453 static void *
3454 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3455     int flags)
3456 {
3457     DoneList donelist;
3458     const Obj_Entry *obj, *defobj;
3459     const Elf_Sym *def;
3460     SymLook req;
3461     RtldLockState lockstate;
3462     tls_index ti;
3463     void *sym;
3464     int res;
3465 
3466     def = NULL;
3467     defobj = NULL;
3468     symlook_init(&req, name);
3469     req.ventry = ve;
3470     req.flags = flags | SYMLOOK_IN_PLT;
3471     req.lockstate = &lockstate;
3472 
3473     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3474     rlock_acquire(rtld_bind_lock, &lockstate);
3475     if (sigsetjmp(lockstate.env, 0) != 0)
3476 	    lock_upgrade(rtld_bind_lock, &lockstate);
3477     if (handle == NULL || handle == RTLD_NEXT ||
3478 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3479 
3480 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3481 	    _rtld_error("Cannot determine caller's shared object");
3482 	    lock_release(rtld_bind_lock, &lockstate);
3483 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3484 	    return NULL;
3485 	}
3486 	if (handle == NULL) {	/* Just the caller's shared object. */
3487 	    res = symlook_obj(&req, obj);
3488 	    if (res == 0) {
3489 		def = req.sym_out;
3490 		defobj = req.defobj_out;
3491 	    }
3492 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3493 		   handle == RTLD_SELF) { /* ... caller included */
3494 	    if (handle == RTLD_NEXT)
3495 		obj = globallist_next(obj);
3496 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3497 		if (obj->marker)
3498 		    continue;
3499 		res = symlook_obj(&req, obj);
3500 		if (res == 0) {
3501 		    if (def == NULL ||
3502 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3503 			def = req.sym_out;
3504 			defobj = req.defobj_out;
3505 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3506 			    break;
3507 		    }
3508 		}
3509 	    }
3510 	    /*
3511 	     * Search the dynamic linker itself, and possibly resolve the
3512 	     * symbol from there.  This is how the application links to
3513 	     * dynamic linker services such as dlopen.
3514 	     */
3515 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3516 		res = symlook_obj(&req, &obj_rtld);
3517 		if (res == 0) {
3518 		    def = req.sym_out;
3519 		    defobj = req.defobj_out;
3520 		}
3521 	    }
3522 	} else {
3523 	    assert(handle == RTLD_DEFAULT);
3524 	    res = symlook_default(&req, obj);
3525 	    if (res == 0) {
3526 		defobj = req.defobj_out;
3527 		def = req.sym_out;
3528 	    }
3529 	}
3530     } else {
3531 	if ((obj = dlcheck(handle)) == NULL) {
3532 	    lock_release(rtld_bind_lock, &lockstate);
3533 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3534 	    return NULL;
3535 	}
3536 
3537 	donelist_init(&donelist);
3538 	if (obj->mainprog) {
3539             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3540 	    res = symlook_global(&req, &donelist);
3541 	    if (res == 0) {
3542 		def = req.sym_out;
3543 		defobj = req.defobj_out;
3544 	    }
3545 	    /*
3546 	     * Search the dynamic linker itself, and possibly resolve the
3547 	     * symbol from there.  This is how the application links to
3548 	     * dynamic linker services such as dlopen.
3549 	     */
3550 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3551 		res = symlook_obj(&req, &obj_rtld);
3552 		if (res == 0) {
3553 		    def = req.sym_out;
3554 		    defobj = req.defobj_out;
3555 		}
3556 	    }
3557 	}
3558 	else {
3559 	    /* Search the whole DAG rooted at the given object. */
3560 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3561 	    if (res == 0) {
3562 		def = req.sym_out;
3563 		defobj = req.defobj_out;
3564 	    }
3565 	}
3566     }
3567 
3568     if (def != NULL) {
3569 	lock_release(rtld_bind_lock, &lockstate);
3570 
3571 	/*
3572 	 * The value required by the caller is derived from the value
3573 	 * of the symbol. this is simply the relocated value of the
3574 	 * symbol.
3575 	 */
3576 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3577 	    sym = make_function_pointer(def, defobj);
3578 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3579 	    sym = rtld_resolve_ifunc(defobj, def);
3580 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3581 	    ti.ti_module = defobj->tlsindex;
3582 	    ti.ti_offset = def->st_value;
3583 	    sym = __tls_get_addr(&ti);
3584 	} else
3585 	    sym = defobj->relocbase + def->st_value;
3586 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3587 	return (sym);
3588     }
3589 
3590     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3591       ve != NULL ? ve->name : "");
3592     lock_release(rtld_bind_lock, &lockstate);
3593     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3594     return NULL;
3595 }
3596 
3597 void *
3598 dlsym(void *handle, const char *name)
3599 {
3600 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3601 	    SYMLOOK_DLSYM);
3602 }
3603 
3604 dlfunc_t
3605 dlfunc(void *handle, const char *name)
3606 {
3607 	union {
3608 		void *d;
3609 		dlfunc_t f;
3610 	} rv;
3611 
3612 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3613 	    SYMLOOK_DLSYM);
3614 	return (rv.f);
3615 }
3616 
3617 void *
3618 dlvsym(void *handle, const char *name, const char *version)
3619 {
3620 	Ver_Entry ventry;
3621 
3622 	ventry.name = version;
3623 	ventry.file = NULL;
3624 	ventry.hash = elf_hash(version);
3625 	ventry.flags= 0;
3626 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3627 	    SYMLOOK_DLSYM);
3628 }
3629 
3630 int
3631 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3632 {
3633     const Obj_Entry *obj;
3634     RtldLockState lockstate;
3635 
3636     rlock_acquire(rtld_bind_lock, &lockstate);
3637     obj = obj_from_addr(addr);
3638     if (obj == NULL) {
3639         _rtld_error("No shared object contains address");
3640 	lock_release(rtld_bind_lock, &lockstate);
3641         return (0);
3642     }
3643     rtld_fill_dl_phdr_info(obj, phdr_info);
3644     lock_release(rtld_bind_lock, &lockstate);
3645     return (1);
3646 }
3647 
3648 int
3649 dladdr(const void *addr, Dl_info *info)
3650 {
3651     const Obj_Entry *obj;
3652     const Elf_Sym *def;
3653     void *symbol_addr;
3654     unsigned long symoffset;
3655     RtldLockState lockstate;
3656 
3657     rlock_acquire(rtld_bind_lock, &lockstate);
3658     obj = obj_from_addr(addr);
3659     if (obj == NULL) {
3660         _rtld_error("No shared object contains address");
3661 	lock_release(rtld_bind_lock, &lockstate);
3662         return 0;
3663     }
3664     info->dli_fname = obj->path;
3665     info->dli_fbase = obj->mapbase;
3666     info->dli_saddr = (void *)0;
3667     info->dli_sname = NULL;
3668 
3669     /*
3670      * Walk the symbol list looking for the symbol whose address is
3671      * closest to the address sent in.
3672      */
3673     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3674         def = obj->symtab + symoffset;
3675 
3676         /*
3677          * For skip the symbol if st_shndx is either SHN_UNDEF or
3678          * SHN_COMMON.
3679          */
3680         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3681             continue;
3682 
3683         /*
3684          * If the symbol is greater than the specified address, or if it
3685          * is further away from addr than the current nearest symbol,
3686          * then reject it.
3687          */
3688         symbol_addr = obj->relocbase + def->st_value;
3689         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3690             continue;
3691 
3692         /* Update our idea of the nearest symbol. */
3693         info->dli_sname = obj->strtab + def->st_name;
3694         info->dli_saddr = symbol_addr;
3695 
3696         /* Exact match? */
3697         if (info->dli_saddr == addr)
3698             break;
3699     }
3700     lock_release(rtld_bind_lock, &lockstate);
3701     return 1;
3702 }
3703 
3704 int
3705 dlinfo(void *handle, int request, void *p)
3706 {
3707     const Obj_Entry *obj;
3708     RtldLockState lockstate;
3709     int error;
3710 
3711     rlock_acquire(rtld_bind_lock, &lockstate);
3712 
3713     if (handle == NULL || handle == RTLD_SELF) {
3714 	void *retaddr;
3715 
3716 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3717 	if ((obj = obj_from_addr(retaddr)) == NULL)
3718 	    _rtld_error("Cannot determine caller's shared object");
3719     } else
3720 	obj = dlcheck(handle);
3721 
3722     if (obj == NULL) {
3723 	lock_release(rtld_bind_lock, &lockstate);
3724 	return (-1);
3725     }
3726 
3727     error = 0;
3728     switch (request) {
3729     case RTLD_DI_LINKMAP:
3730 	*((struct link_map const **)p) = &obj->linkmap;
3731 	break;
3732     case RTLD_DI_ORIGIN:
3733 	error = rtld_dirname(obj->path, p);
3734 	break;
3735 
3736     case RTLD_DI_SERINFOSIZE:
3737     case RTLD_DI_SERINFO:
3738 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3739 	break;
3740 
3741     default:
3742 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3743 	error = -1;
3744     }
3745 
3746     lock_release(rtld_bind_lock, &lockstate);
3747 
3748     return (error);
3749 }
3750 
3751 static void
3752 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3753 {
3754 
3755 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3756 	phdr_info->dlpi_name = obj->path;
3757 	phdr_info->dlpi_phdr = obj->phdr;
3758 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3759 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3760 	phdr_info->dlpi_tls_data = obj->tlsinit;
3761 	phdr_info->dlpi_adds = obj_loads;
3762 	phdr_info->dlpi_subs = obj_loads - obj_count;
3763 }
3764 
3765 int
3766 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3767 {
3768 	struct dl_phdr_info phdr_info;
3769 	Obj_Entry *obj, marker;
3770 	RtldLockState bind_lockstate, phdr_lockstate;
3771 	int error;
3772 
3773 	init_marker(&marker);
3774 	error = 0;
3775 
3776 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3777 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3778 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3779 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3780 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3781 		hold_object(obj);
3782 		lock_release(rtld_bind_lock, &bind_lockstate);
3783 
3784 		error = callback(&phdr_info, sizeof phdr_info, param);
3785 
3786 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3787 		unhold_object(obj);
3788 		obj = globallist_next(&marker);
3789 		TAILQ_REMOVE(&obj_list, &marker, next);
3790 		if (error != 0) {
3791 			lock_release(rtld_bind_lock, &bind_lockstate);
3792 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3793 			return (error);
3794 		}
3795 	}
3796 
3797 	if (error == 0) {
3798 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3799 		lock_release(rtld_bind_lock, &bind_lockstate);
3800 		error = callback(&phdr_info, sizeof(phdr_info), param);
3801 	}
3802 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3803 	return (error);
3804 }
3805 
3806 static void *
3807 fill_search_info(const char *dir, size_t dirlen, void *param)
3808 {
3809     struct fill_search_info_args *arg;
3810 
3811     arg = param;
3812 
3813     if (arg->request == RTLD_DI_SERINFOSIZE) {
3814 	arg->serinfo->dls_cnt ++;
3815 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3816     } else {
3817 	struct dl_serpath *s_entry;
3818 
3819 	s_entry = arg->serpath;
3820 	s_entry->dls_name  = arg->strspace;
3821 	s_entry->dls_flags = arg->flags;
3822 
3823 	strncpy(arg->strspace, dir, dirlen);
3824 	arg->strspace[dirlen] = '\0';
3825 
3826 	arg->strspace += dirlen + 1;
3827 	arg->serpath++;
3828     }
3829 
3830     return (NULL);
3831 }
3832 
3833 static int
3834 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3835 {
3836     struct dl_serinfo _info;
3837     struct fill_search_info_args args;
3838 
3839     args.request = RTLD_DI_SERINFOSIZE;
3840     args.serinfo = &_info;
3841 
3842     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3843     _info.dls_cnt  = 0;
3844 
3845     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3846     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3847     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3848     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3849     if (!obj->z_nodeflib)
3850       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3851 
3852 
3853     if (request == RTLD_DI_SERINFOSIZE) {
3854 	info->dls_size = _info.dls_size;
3855 	info->dls_cnt = _info.dls_cnt;
3856 	return (0);
3857     }
3858 
3859     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3860 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3861 	return (-1);
3862     }
3863 
3864     args.request  = RTLD_DI_SERINFO;
3865     args.serinfo  = info;
3866     args.serpath  = &info->dls_serpath[0];
3867     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3868 
3869     args.flags = LA_SER_RUNPATH;
3870     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3871 	return (-1);
3872 
3873     args.flags = LA_SER_LIBPATH;
3874     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3875 	return (-1);
3876 
3877     args.flags = LA_SER_RUNPATH;
3878     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3879 	return (-1);
3880 
3881     args.flags = LA_SER_CONFIG;
3882     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3883       != NULL)
3884 	return (-1);
3885 
3886     args.flags = LA_SER_DEFAULT;
3887     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3888       fill_search_info, NULL, &args) != NULL)
3889 	return (-1);
3890     return (0);
3891 }
3892 
3893 static int
3894 rtld_dirname(const char *path, char *bname)
3895 {
3896     const char *endp;
3897 
3898     /* Empty or NULL string gets treated as "." */
3899     if (path == NULL || *path == '\0') {
3900 	bname[0] = '.';
3901 	bname[1] = '\0';
3902 	return (0);
3903     }
3904 
3905     /* Strip trailing slashes */
3906     endp = path + strlen(path) - 1;
3907     while (endp > path && *endp == '/')
3908 	endp--;
3909 
3910     /* Find the start of the dir */
3911     while (endp > path && *endp != '/')
3912 	endp--;
3913 
3914     /* Either the dir is "/" or there are no slashes */
3915     if (endp == path) {
3916 	bname[0] = *endp == '/' ? '/' : '.';
3917 	bname[1] = '\0';
3918 	return (0);
3919     } else {
3920 	do {
3921 	    endp--;
3922 	} while (endp > path && *endp == '/');
3923     }
3924 
3925     if (endp - path + 2 > PATH_MAX)
3926     {
3927 	_rtld_error("Filename is too long: %s", path);
3928 	return(-1);
3929     }
3930 
3931     strncpy(bname, path, endp - path + 1);
3932     bname[endp - path + 1] = '\0';
3933     return (0);
3934 }
3935 
3936 static int
3937 rtld_dirname_abs(const char *path, char *base)
3938 {
3939 	char *last;
3940 
3941 	if (realpath(path, base) == NULL)
3942 		return (-1);
3943 	dbg("%s -> %s", path, base);
3944 	last = strrchr(base, '/');
3945 	if (last == NULL)
3946 		return (-1);
3947 	if (last != base)
3948 		*last = '\0';
3949 	return (0);
3950 }
3951 
3952 static void
3953 linkmap_add(Obj_Entry *obj)
3954 {
3955     struct link_map *l = &obj->linkmap;
3956     struct link_map *prev;
3957 
3958     obj->linkmap.l_name = obj->path;
3959     obj->linkmap.l_addr = obj->mapbase;
3960     obj->linkmap.l_ld = obj->dynamic;
3961 #ifdef __mips__
3962     /* GDB needs load offset on MIPS to use the symbols */
3963     obj->linkmap.l_offs = obj->relocbase;
3964 #endif
3965 
3966     if (r_debug.r_map == NULL) {
3967 	r_debug.r_map = l;
3968 	return;
3969     }
3970 
3971     /*
3972      * Scan to the end of the list, but not past the entry for the
3973      * dynamic linker, which we want to keep at the very end.
3974      */
3975     for (prev = r_debug.r_map;
3976       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3977       prev = prev->l_next)
3978 	;
3979 
3980     /* Link in the new entry. */
3981     l->l_prev = prev;
3982     l->l_next = prev->l_next;
3983     if (l->l_next != NULL)
3984 	l->l_next->l_prev = l;
3985     prev->l_next = l;
3986 }
3987 
3988 static void
3989 linkmap_delete(Obj_Entry *obj)
3990 {
3991     struct link_map *l = &obj->linkmap;
3992 
3993     if (l->l_prev == NULL) {
3994 	if ((r_debug.r_map = l->l_next) != NULL)
3995 	    l->l_next->l_prev = NULL;
3996 	return;
3997     }
3998 
3999     if ((l->l_prev->l_next = l->l_next) != NULL)
4000 	l->l_next->l_prev = l->l_prev;
4001 }
4002 
4003 /*
4004  * Function for the debugger to set a breakpoint on to gain control.
4005  *
4006  * The two parameters allow the debugger to easily find and determine
4007  * what the runtime loader is doing and to whom it is doing it.
4008  *
4009  * When the loadhook trap is hit (r_debug_state, set at program
4010  * initialization), the arguments can be found on the stack:
4011  *
4012  *  +8   struct link_map *m
4013  *  +4   struct r_debug  *rd
4014  *  +0   RetAddr
4015  */
4016 void
4017 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4018 {
4019     /*
4020      * The following is a hack to force the compiler to emit calls to
4021      * this function, even when optimizing.  If the function is empty,
4022      * the compiler is not obliged to emit any code for calls to it,
4023      * even when marked __noinline.  However, gdb depends on those
4024      * calls being made.
4025      */
4026     __compiler_membar();
4027 }
4028 
4029 /*
4030  * A function called after init routines have completed. This can be used to
4031  * break before a program's entry routine is called, and can be used when
4032  * main is not available in the symbol table.
4033  */
4034 void
4035 _r_debug_postinit(struct link_map *m __unused)
4036 {
4037 
4038 	/* See r_debug_state(). */
4039 	__compiler_membar();
4040 }
4041 
4042 static void
4043 release_object(Obj_Entry *obj)
4044 {
4045 
4046 	if (obj->holdcount > 0) {
4047 		obj->unholdfree = true;
4048 		return;
4049 	}
4050 	munmap(obj->mapbase, obj->mapsize);
4051 	linkmap_delete(obj);
4052 	obj_free(obj);
4053 }
4054 
4055 /*
4056  * Get address of the pointer variable in the main program.
4057  * Prefer non-weak symbol over the weak one.
4058  */
4059 static const void **
4060 get_program_var_addr(const char *name, RtldLockState *lockstate)
4061 {
4062     SymLook req;
4063     DoneList donelist;
4064 
4065     symlook_init(&req, name);
4066     req.lockstate = lockstate;
4067     donelist_init(&donelist);
4068     if (symlook_global(&req, &donelist) != 0)
4069 	return (NULL);
4070     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4071 	return ((const void **)make_function_pointer(req.sym_out,
4072 	  req.defobj_out));
4073     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4074 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4075     else
4076 	return ((const void **)(req.defobj_out->relocbase +
4077 	  req.sym_out->st_value));
4078 }
4079 
4080 /*
4081  * Set a pointer variable in the main program to the given value.  This
4082  * is used to set key variables such as "environ" before any of the
4083  * init functions are called.
4084  */
4085 static void
4086 set_program_var(const char *name, const void *value)
4087 {
4088     const void **addr;
4089 
4090     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4091 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4092 	*addr = value;
4093     }
4094 }
4095 
4096 /*
4097  * Search the global objects, including dependencies and main object,
4098  * for the given symbol.
4099  */
4100 static int
4101 symlook_global(SymLook *req, DoneList *donelist)
4102 {
4103     SymLook req1;
4104     const Objlist_Entry *elm;
4105     int res;
4106 
4107     symlook_init_from_req(&req1, req);
4108 
4109     /* Search all objects loaded at program start up. */
4110     if (req->defobj_out == NULL ||
4111       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4112 	res = symlook_list(&req1, &list_main, donelist);
4113 	if (res == 0 && (req->defobj_out == NULL ||
4114 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4115 	    req->sym_out = req1.sym_out;
4116 	    req->defobj_out = req1.defobj_out;
4117 	    assert(req->defobj_out != NULL);
4118 	}
4119     }
4120 
4121     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4122     STAILQ_FOREACH(elm, &list_global, link) {
4123 	if (req->defobj_out != NULL &&
4124 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4125 	    break;
4126 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4127 	if (res == 0 && (req->defobj_out == NULL ||
4128 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4129 	    req->sym_out = req1.sym_out;
4130 	    req->defobj_out = req1.defobj_out;
4131 	    assert(req->defobj_out != NULL);
4132 	}
4133     }
4134 
4135     return (req->sym_out != NULL ? 0 : ESRCH);
4136 }
4137 
4138 /*
4139  * Given a symbol name in a referencing object, find the corresponding
4140  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4141  * no definition was found.  Returns a pointer to the Obj_Entry of the
4142  * defining object via the reference parameter DEFOBJ_OUT.
4143  */
4144 static int
4145 symlook_default(SymLook *req, const Obj_Entry *refobj)
4146 {
4147     DoneList donelist;
4148     const Objlist_Entry *elm;
4149     SymLook req1;
4150     int res;
4151 
4152     donelist_init(&donelist);
4153     symlook_init_from_req(&req1, req);
4154 
4155     /*
4156      * Look first in the referencing object if linked symbolically,
4157      * and similarly handle protected symbols.
4158      */
4159     res = symlook_obj(&req1, refobj);
4160     if (res == 0 && (refobj->symbolic ||
4161       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4162 	req->sym_out = req1.sym_out;
4163 	req->defobj_out = req1.defobj_out;
4164 	assert(req->defobj_out != NULL);
4165     }
4166     if (refobj->symbolic || req->defobj_out != NULL)
4167 	donelist_check(&donelist, refobj);
4168 
4169     symlook_global(req, &donelist);
4170 
4171     /* Search all dlopened DAGs containing the referencing object. */
4172     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4173 	if (req->sym_out != NULL &&
4174 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4175 	    break;
4176 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4177 	if (res == 0 && (req->sym_out == NULL ||
4178 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4179 	    req->sym_out = req1.sym_out;
4180 	    req->defobj_out = req1.defobj_out;
4181 	    assert(req->defobj_out != NULL);
4182 	}
4183     }
4184 
4185     /*
4186      * Search the dynamic linker itself, and possibly resolve the
4187      * symbol from there.  This is how the application links to
4188      * dynamic linker services such as dlopen.
4189      */
4190     if (req->sym_out == NULL ||
4191       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4192 	res = symlook_obj(&req1, &obj_rtld);
4193 	if (res == 0) {
4194 	    req->sym_out = req1.sym_out;
4195 	    req->defobj_out = req1.defobj_out;
4196 	    assert(req->defobj_out != NULL);
4197 	}
4198     }
4199 
4200     return (req->sym_out != NULL ? 0 : ESRCH);
4201 }
4202 
4203 static int
4204 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4205 {
4206     const Elf_Sym *def;
4207     const Obj_Entry *defobj;
4208     const Objlist_Entry *elm;
4209     SymLook req1;
4210     int res;
4211 
4212     def = NULL;
4213     defobj = NULL;
4214     STAILQ_FOREACH(elm, objlist, link) {
4215 	if (donelist_check(dlp, elm->obj))
4216 	    continue;
4217 	symlook_init_from_req(&req1, req);
4218 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4219 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4220 		def = req1.sym_out;
4221 		defobj = req1.defobj_out;
4222 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4223 		    break;
4224 	    }
4225 	}
4226     }
4227     if (def != NULL) {
4228 	req->sym_out = def;
4229 	req->defobj_out = defobj;
4230 	return (0);
4231     }
4232     return (ESRCH);
4233 }
4234 
4235 /*
4236  * Search the chain of DAGS cointed to by the given Needed_Entry
4237  * for a symbol of the given name.  Each DAG is scanned completely
4238  * before advancing to the next one.  Returns a pointer to the symbol,
4239  * or NULL if no definition was found.
4240  */
4241 static int
4242 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4243 {
4244     const Elf_Sym *def;
4245     const Needed_Entry *n;
4246     const Obj_Entry *defobj;
4247     SymLook req1;
4248     int res;
4249 
4250     def = NULL;
4251     defobj = NULL;
4252     symlook_init_from_req(&req1, req);
4253     for (n = needed; n != NULL; n = n->next) {
4254 	if (n->obj == NULL ||
4255 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4256 	    continue;
4257 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4258 	    def = req1.sym_out;
4259 	    defobj = req1.defobj_out;
4260 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4261 		break;
4262 	}
4263     }
4264     if (def != NULL) {
4265 	req->sym_out = def;
4266 	req->defobj_out = defobj;
4267 	return (0);
4268     }
4269     return (ESRCH);
4270 }
4271 
4272 /*
4273  * Search the symbol table of a single shared object for a symbol of
4274  * the given name and version, if requested.  Returns a pointer to the
4275  * symbol, or NULL if no definition was found.  If the object is
4276  * filter, return filtered symbol from filtee.
4277  *
4278  * The symbol's hash value is passed in for efficiency reasons; that
4279  * eliminates many recomputations of the hash value.
4280  */
4281 int
4282 symlook_obj(SymLook *req, const Obj_Entry *obj)
4283 {
4284     DoneList donelist;
4285     SymLook req1;
4286     int flags, res, mres;
4287 
4288     /*
4289      * If there is at least one valid hash at this point, we prefer to
4290      * use the faster GNU version if available.
4291      */
4292     if (obj->valid_hash_gnu)
4293 	mres = symlook_obj1_gnu(req, obj);
4294     else if (obj->valid_hash_sysv)
4295 	mres = symlook_obj1_sysv(req, obj);
4296     else
4297 	return (EINVAL);
4298 
4299     if (mres == 0) {
4300 	if (obj->needed_filtees != NULL) {
4301 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4302 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4303 	    donelist_init(&donelist);
4304 	    symlook_init_from_req(&req1, req);
4305 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4306 	    if (res == 0) {
4307 		req->sym_out = req1.sym_out;
4308 		req->defobj_out = req1.defobj_out;
4309 	    }
4310 	    return (res);
4311 	}
4312 	if (obj->needed_aux_filtees != NULL) {
4313 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4314 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4315 	    donelist_init(&donelist);
4316 	    symlook_init_from_req(&req1, req);
4317 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4318 	    if (res == 0) {
4319 		req->sym_out = req1.sym_out;
4320 		req->defobj_out = req1.defobj_out;
4321 		return (res);
4322 	    }
4323 	}
4324     }
4325     return (mres);
4326 }
4327 
4328 /* Symbol match routine common to both hash functions */
4329 static bool
4330 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4331     const unsigned long symnum)
4332 {
4333 	Elf_Versym verndx;
4334 	const Elf_Sym *symp;
4335 	const char *strp;
4336 
4337 	symp = obj->symtab + symnum;
4338 	strp = obj->strtab + symp->st_name;
4339 
4340 	switch (ELF_ST_TYPE(symp->st_info)) {
4341 	case STT_FUNC:
4342 	case STT_NOTYPE:
4343 	case STT_OBJECT:
4344 	case STT_COMMON:
4345 	case STT_GNU_IFUNC:
4346 		if (symp->st_value == 0)
4347 			return (false);
4348 		/* fallthrough */
4349 	case STT_TLS:
4350 		if (symp->st_shndx != SHN_UNDEF)
4351 			break;
4352 #ifndef __mips__
4353 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4354 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4355 			break;
4356 #endif
4357 		/* fallthrough */
4358 	default:
4359 		return (false);
4360 	}
4361 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4362 		return (false);
4363 
4364 	if (req->ventry == NULL) {
4365 		if (obj->versyms != NULL) {
4366 			verndx = VER_NDX(obj->versyms[symnum]);
4367 			if (verndx > obj->vernum) {
4368 				_rtld_error(
4369 				    "%s: symbol %s references wrong version %d",
4370 				    obj->path, obj->strtab + symnum, verndx);
4371 				return (false);
4372 			}
4373 			/*
4374 			 * If we are not called from dlsym (i.e. this
4375 			 * is a normal relocation from unversioned
4376 			 * binary), accept the symbol immediately if
4377 			 * it happens to have first version after this
4378 			 * shared object became versioned.  Otherwise,
4379 			 * if symbol is versioned and not hidden,
4380 			 * remember it. If it is the only symbol with
4381 			 * this name exported by the shared object, it
4382 			 * will be returned as a match by the calling
4383 			 * function. If symbol is global (verndx < 2)
4384 			 * accept it unconditionally.
4385 			 */
4386 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4387 			    verndx == VER_NDX_GIVEN) {
4388 				result->sym_out = symp;
4389 				return (true);
4390 			}
4391 			else if (verndx >= VER_NDX_GIVEN) {
4392 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4393 				    == 0) {
4394 					if (result->vsymp == NULL)
4395 						result->vsymp = symp;
4396 					result->vcount++;
4397 				}
4398 				return (false);
4399 			}
4400 		}
4401 		result->sym_out = symp;
4402 		return (true);
4403 	}
4404 	if (obj->versyms == NULL) {
4405 		if (object_match_name(obj, req->ventry->name)) {
4406 			_rtld_error("%s: object %s should provide version %s "
4407 			    "for symbol %s", obj_rtld.path, obj->path,
4408 			    req->ventry->name, obj->strtab + symnum);
4409 			return (false);
4410 		}
4411 	} else {
4412 		verndx = VER_NDX(obj->versyms[symnum]);
4413 		if (verndx > obj->vernum) {
4414 			_rtld_error("%s: symbol %s references wrong version %d",
4415 			    obj->path, obj->strtab + symnum, verndx);
4416 			return (false);
4417 		}
4418 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4419 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4420 			/*
4421 			 * Version does not match. Look if this is a
4422 			 * global symbol and if it is not hidden. If
4423 			 * global symbol (verndx < 2) is available,
4424 			 * use it. Do not return symbol if we are
4425 			 * called by dlvsym, because dlvsym looks for
4426 			 * a specific version and default one is not
4427 			 * what dlvsym wants.
4428 			 */
4429 			if ((req->flags & SYMLOOK_DLSYM) ||
4430 			    (verndx >= VER_NDX_GIVEN) ||
4431 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4432 				return (false);
4433 		}
4434 	}
4435 	result->sym_out = symp;
4436 	return (true);
4437 }
4438 
4439 /*
4440  * Search for symbol using SysV hash function.
4441  * obj->buckets is known not to be NULL at this point; the test for this was
4442  * performed with the obj->valid_hash_sysv assignment.
4443  */
4444 static int
4445 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4446 {
4447 	unsigned long symnum;
4448 	Sym_Match_Result matchres;
4449 
4450 	matchres.sym_out = NULL;
4451 	matchres.vsymp = NULL;
4452 	matchres.vcount = 0;
4453 
4454 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4455 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4456 		if (symnum >= obj->nchains)
4457 			return (ESRCH);	/* Bad object */
4458 
4459 		if (matched_symbol(req, obj, &matchres, symnum)) {
4460 			req->sym_out = matchres.sym_out;
4461 			req->defobj_out = obj;
4462 			return (0);
4463 		}
4464 	}
4465 	if (matchres.vcount == 1) {
4466 		req->sym_out = matchres.vsymp;
4467 		req->defobj_out = obj;
4468 		return (0);
4469 	}
4470 	return (ESRCH);
4471 }
4472 
4473 /* Search for symbol using GNU hash function */
4474 static int
4475 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4476 {
4477 	Elf_Addr bloom_word;
4478 	const Elf32_Word *hashval;
4479 	Elf32_Word bucket;
4480 	Sym_Match_Result matchres;
4481 	unsigned int h1, h2;
4482 	unsigned long symnum;
4483 
4484 	matchres.sym_out = NULL;
4485 	matchres.vsymp = NULL;
4486 	matchres.vcount = 0;
4487 
4488 	/* Pick right bitmask word from Bloom filter array */
4489 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4490 	    obj->maskwords_bm_gnu];
4491 
4492 	/* Calculate modulus word size of gnu hash and its derivative */
4493 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4494 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4495 
4496 	/* Filter out the "definitely not in set" queries */
4497 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4498 		return (ESRCH);
4499 
4500 	/* Locate hash chain and corresponding value element*/
4501 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4502 	if (bucket == 0)
4503 		return (ESRCH);
4504 	hashval = &obj->chain_zero_gnu[bucket];
4505 	do {
4506 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4507 			symnum = hashval - obj->chain_zero_gnu;
4508 			if (matched_symbol(req, obj, &matchres, symnum)) {
4509 				req->sym_out = matchres.sym_out;
4510 				req->defobj_out = obj;
4511 				return (0);
4512 			}
4513 		}
4514 	} while ((*hashval++ & 1) == 0);
4515 	if (matchres.vcount == 1) {
4516 		req->sym_out = matchres.vsymp;
4517 		req->defobj_out = obj;
4518 		return (0);
4519 	}
4520 	return (ESRCH);
4521 }
4522 
4523 static void
4524 trace_loaded_objects(Obj_Entry *obj)
4525 {
4526     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4527     int c;
4528 
4529     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4530 	main_local = "";
4531 
4532     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4533 	fmt1 = "\t%o => %p (%x)\n";
4534 
4535     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4536 	fmt2 = "\t%o (%x)\n";
4537 
4538     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4539 
4540     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4541 	Needed_Entry *needed;
4542 	const char *name, *path;
4543 	bool is_lib;
4544 
4545 	if (obj->marker)
4546 	    continue;
4547 	if (list_containers && obj->needed != NULL)
4548 	    rtld_printf("%s:\n", obj->path);
4549 	for (needed = obj->needed; needed; needed = needed->next) {
4550 	    if (needed->obj != NULL) {
4551 		if (needed->obj->traced && !list_containers)
4552 		    continue;
4553 		needed->obj->traced = true;
4554 		path = needed->obj->path;
4555 	    } else
4556 		path = "not found";
4557 
4558 	    name = obj->strtab + needed->name;
4559 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4560 
4561 	    fmt = is_lib ? fmt1 : fmt2;
4562 	    while ((c = *fmt++) != '\0') {
4563 		switch (c) {
4564 		default:
4565 		    rtld_putchar(c);
4566 		    continue;
4567 		case '\\':
4568 		    switch (c = *fmt) {
4569 		    case '\0':
4570 			continue;
4571 		    case 'n':
4572 			rtld_putchar('\n');
4573 			break;
4574 		    case 't':
4575 			rtld_putchar('\t');
4576 			break;
4577 		    }
4578 		    break;
4579 		case '%':
4580 		    switch (c = *fmt) {
4581 		    case '\0':
4582 			continue;
4583 		    case '%':
4584 		    default:
4585 			rtld_putchar(c);
4586 			break;
4587 		    case 'A':
4588 			rtld_putstr(main_local);
4589 			break;
4590 		    case 'a':
4591 			rtld_putstr(obj_main->path);
4592 			break;
4593 		    case 'o':
4594 			rtld_putstr(name);
4595 			break;
4596 #if 0
4597 		    case 'm':
4598 			rtld_printf("%d", sodp->sod_major);
4599 			break;
4600 		    case 'n':
4601 			rtld_printf("%d", sodp->sod_minor);
4602 			break;
4603 #endif
4604 		    case 'p':
4605 			rtld_putstr(path);
4606 			break;
4607 		    case 'x':
4608 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4609 			  0);
4610 			break;
4611 		    }
4612 		    break;
4613 		}
4614 		++fmt;
4615 	    }
4616 	}
4617     }
4618 }
4619 
4620 /*
4621  * Unload a dlopened object and its dependencies from memory and from
4622  * our data structures.  It is assumed that the DAG rooted in the
4623  * object has already been unreferenced, and that the object has a
4624  * reference count of 0.
4625  */
4626 static void
4627 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4628 {
4629 	Obj_Entry marker, *obj, *next;
4630 
4631 	assert(root->refcount == 0);
4632 
4633 	/*
4634 	 * Pass over the DAG removing unreferenced objects from
4635 	 * appropriate lists.
4636 	 */
4637 	unlink_object(root);
4638 
4639 	/* Unmap all objects that are no longer referenced. */
4640 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4641 		next = TAILQ_NEXT(obj, next);
4642 		if (obj->marker || obj->refcount != 0)
4643 			continue;
4644 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4645 		    obj->mapsize, 0, obj->path);
4646 		dbg("unloading \"%s\"", obj->path);
4647 		/*
4648 		 * Unlink the object now to prevent new references from
4649 		 * being acquired while the bind lock is dropped in
4650 		 * recursive dlclose() invocations.
4651 		 */
4652 		TAILQ_REMOVE(&obj_list, obj, next);
4653 		obj_count--;
4654 
4655 		if (obj->filtees_loaded) {
4656 			if (next != NULL) {
4657 				init_marker(&marker);
4658 				TAILQ_INSERT_BEFORE(next, &marker, next);
4659 				unload_filtees(obj, lockstate);
4660 				next = TAILQ_NEXT(&marker, next);
4661 				TAILQ_REMOVE(&obj_list, &marker, next);
4662 			} else
4663 				unload_filtees(obj, lockstate);
4664 		}
4665 		release_object(obj);
4666 	}
4667 }
4668 
4669 static void
4670 unlink_object(Obj_Entry *root)
4671 {
4672     Objlist_Entry *elm;
4673 
4674     if (root->refcount == 0) {
4675 	/* Remove the object from the RTLD_GLOBAL list. */
4676 	objlist_remove(&list_global, root);
4677 
4678     	/* Remove the object from all objects' DAG lists. */
4679     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4680 	    objlist_remove(&elm->obj->dldags, root);
4681 	    if (elm->obj != root)
4682 		unlink_object(elm->obj);
4683 	}
4684     }
4685 }
4686 
4687 static void
4688 ref_dag(Obj_Entry *root)
4689 {
4690     Objlist_Entry *elm;
4691 
4692     assert(root->dag_inited);
4693     STAILQ_FOREACH(elm, &root->dagmembers, link)
4694 	elm->obj->refcount++;
4695 }
4696 
4697 static void
4698 unref_dag(Obj_Entry *root)
4699 {
4700     Objlist_Entry *elm;
4701 
4702     assert(root->dag_inited);
4703     STAILQ_FOREACH(elm, &root->dagmembers, link)
4704 	elm->obj->refcount--;
4705 }
4706 
4707 /*
4708  * Common code for MD __tls_get_addr().
4709  */
4710 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4711 static void *
4712 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4713 {
4714     Elf_Addr *newdtv, *dtv;
4715     RtldLockState lockstate;
4716     int to_copy;
4717 
4718     dtv = *dtvp;
4719     /* Check dtv generation in case new modules have arrived */
4720     if (dtv[0] != tls_dtv_generation) {
4721 	wlock_acquire(rtld_bind_lock, &lockstate);
4722 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4723 	to_copy = dtv[1];
4724 	if (to_copy > tls_max_index)
4725 	    to_copy = tls_max_index;
4726 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4727 	newdtv[0] = tls_dtv_generation;
4728 	newdtv[1] = tls_max_index;
4729 	free(dtv);
4730 	lock_release(rtld_bind_lock, &lockstate);
4731 	dtv = *dtvp = newdtv;
4732     }
4733 
4734     /* Dynamically allocate module TLS if necessary */
4735     if (dtv[index + 1] == 0) {
4736 	/* Signal safe, wlock will block out signals. */
4737 	wlock_acquire(rtld_bind_lock, &lockstate);
4738 	if (!dtv[index + 1])
4739 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4740 	lock_release(rtld_bind_lock, &lockstate);
4741     }
4742     return ((void *)(dtv[index + 1] + offset));
4743 }
4744 
4745 void *
4746 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4747 {
4748 	Elf_Addr *dtv;
4749 
4750 	dtv = *dtvp;
4751 	/* Check dtv generation in case new modules have arrived */
4752 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4753 	    dtv[index + 1] != 0))
4754 		return ((void *)(dtv[index + 1] + offset));
4755 	return (tls_get_addr_slow(dtvp, index, offset));
4756 }
4757 
4758 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4759     defined(__powerpc__) || defined(__riscv)
4760 
4761 /*
4762  * Return pointer to allocated TLS block
4763  */
4764 static void *
4765 get_tls_block_ptr(void *tcb, size_t tcbsize)
4766 {
4767     size_t extra_size, post_size, pre_size, tls_block_size;
4768     size_t tls_init_align;
4769 
4770     tls_init_align = MAX(obj_main->tlsalign, 1);
4771 
4772     /* Compute fragments sizes. */
4773     extra_size = tcbsize - TLS_TCB_SIZE;
4774     post_size = calculate_tls_post_size(tls_init_align);
4775     tls_block_size = tcbsize + post_size;
4776     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4777 
4778     return ((char *)tcb - pre_size - extra_size);
4779 }
4780 
4781 /*
4782  * Allocate Static TLS using the Variant I method.
4783  *
4784  * For details on the layout, see lib/libc/gen/tls.c.
4785  *
4786  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4787  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4788  *     offsets, whereas libc's tls_static_space is just the executable's static
4789  *     TLS segment.
4790  */
4791 void *
4792 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4793 {
4794     Obj_Entry *obj;
4795     char *tls_block;
4796     Elf_Addr *dtv, **tcb;
4797     Elf_Addr addr;
4798     Elf_Addr i;
4799     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4800     size_t tls_init_align;
4801 
4802     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4803 	return (oldtcb);
4804 
4805     assert(tcbsize >= TLS_TCB_SIZE);
4806     maxalign = MAX(tcbalign, tls_static_max_align);
4807     tls_init_align = MAX(obj_main->tlsalign, 1);
4808 
4809     /* Compute fragmets sizes. */
4810     extra_size = tcbsize - TLS_TCB_SIZE;
4811     post_size = calculate_tls_post_size(tls_init_align);
4812     tls_block_size = tcbsize + post_size;
4813     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4814     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4815 
4816     /* Allocate whole TLS block */
4817     tls_block = malloc_aligned(tls_block_size, maxalign);
4818     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4819 
4820     if (oldtcb != NULL) {
4821 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4822 	    tls_static_space);
4823 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4824 
4825 	/* Adjust the DTV. */
4826 	dtv = tcb[0];
4827 	for (i = 0; i < dtv[1]; i++) {
4828 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4829 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4830 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4831 	    }
4832 	}
4833     } else {
4834 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4835 	tcb[0] = dtv;
4836 	dtv[0] = tls_dtv_generation;
4837 	dtv[1] = tls_max_index;
4838 
4839 	for (obj = globallist_curr(objs); obj != NULL;
4840 	  obj = globallist_next(obj)) {
4841 	    if (obj->tlsoffset > 0) {
4842 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4843 		if (obj->tlsinitsize > 0)
4844 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4845 		if (obj->tlssize > obj->tlsinitsize)
4846 		    memset((void*)(addr + obj->tlsinitsize), 0,
4847 			   obj->tlssize - obj->tlsinitsize);
4848 		dtv[obj->tlsindex + 1] = addr;
4849 	    }
4850 	}
4851     }
4852 
4853     return (tcb);
4854 }
4855 
4856 void
4857 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4858 {
4859     Elf_Addr *dtv;
4860     Elf_Addr tlsstart, tlsend;
4861     size_t post_size;
4862     size_t dtvsize, i, tls_init_align;
4863 
4864     assert(tcbsize >= TLS_TCB_SIZE);
4865     tls_init_align = MAX(obj_main->tlsalign, 1);
4866 
4867     /* Compute fragments sizes. */
4868     post_size = calculate_tls_post_size(tls_init_align);
4869 
4870     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4871     tlsend = (Elf_Addr)tcb + tls_static_space;
4872 
4873     dtv = *(Elf_Addr **)tcb;
4874     dtvsize = dtv[1];
4875     for (i = 0; i < dtvsize; i++) {
4876 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4877 	    free((void*)dtv[i+2]);
4878 	}
4879     }
4880     free(dtv);
4881     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4882 }
4883 
4884 #endif
4885 
4886 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4887 
4888 /*
4889  * Allocate Static TLS using the Variant II method.
4890  */
4891 void *
4892 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4893 {
4894     Obj_Entry *obj;
4895     size_t size, ralign;
4896     char *tls;
4897     Elf_Addr *dtv, *olddtv;
4898     Elf_Addr segbase, oldsegbase, addr;
4899     size_t i;
4900 
4901     ralign = tcbalign;
4902     if (tls_static_max_align > ralign)
4903 	    ralign = tls_static_max_align;
4904     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4905 
4906     assert(tcbsize >= 2*sizeof(Elf_Addr));
4907     tls = malloc_aligned(size, ralign);
4908     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4909 
4910     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4911     ((Elf_Addr*)segbase)[0] = segbase;
4912     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4913 
4914     dtv[0] = tls_dtv_generation;
4915     dtv[1] = tls_max_index;
4916 
4917     if (oldtls) {
4918 	/*
4919 	 * Copy the static TLS block over whole.
4920 	 */
4921 	oldsegbase = (Elf_Addr) oldtls;
4922 	memcpy((void *)(segbase - tls_static_space),
4923 	       (const void *)(oldsegbase - tls_static_space),
4924 	       tls_static_space);
4925 
4926 	/*
4927 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4928 	 * move them over.
4929 	 */
4930 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4931 	for (i = 0; i < olddtv[1]; i++) {
4932 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4933 		dtv[i+2] = olddtv[i+2];
4934 		olddtv[i+2] = 0;
4935 	    }
4936 	}
4937 
4938 	/*
4939 	 * We assume that this block was the one we created with
4940 	 * allocate_initial_tls().
4941 	 */
4942 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4943     } else {
4944 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4945 		if (obj->marker || obj->tlsoffset == 0)
4946 			continue;
4947 		addr = segbase - obj->tlsoffset;
4948 		memset((void*)(addr + obj->tlsinitsize),
4949 		       0, obj->tlssize - obj->tlsinitsize);
4950 		if (obj->tlsinit) {
4951 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4952 		    obj->static_tls_copied = true;
4953 		}
4954 		dtv[obj->tlsindex + 1] = addr;
4955 	}
4956     }
4957 
4958     return (void*) segbase;
4959 }
4960 
4961 void
4962 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4963 {
4964     Elf_Addr* dtv;
4965     size_t size, ralign;
4966     int dtvsize, i;
4967     Elf_Addr tlsstart, tlsend;
4968 
4969     /*
4970      * Figure out the size of the initial TLS block so that we can
4971      * find stuff which ___tls_get_addr() allocated dynamically.
4972      */
4973     ralign = tcbalign;
4974     if (tls_static_max_align > ralign)
4975 	    ralign = tls_static_max_align;
4976     size = round(tls_static_space, ralign);
4977 
4978     dtv = ((Elf_Addr**)tls)[1];
4979     dtvsize = dtv[1];
4980     tlsend = (Elf_Addr) tls;
4981     tlsstart = tlsend - size;
4982     for (i = 0; i < dtvsize; i++) {
4983 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4984 		free_aligned((void *)dtv[i + 2]);
4985 	}
4986     }
4987 
4988     free_aligned((void *)tlsstart);
4989     free((void*) dtv);
4990 }
4991 
4992 #endif
4993 
4994 /*
4995  * Allocate TLS block for module with given index.
4996  */
4997 void *
4998 allocate_module_tls(int index)
4999 {
5000     Obj_Entry* obj;
5001     char* p;
5002 
5003     TAILQ_FOREACH(obj, &obj_list, next) {
5004 	if (obj->marker)
5005 	    continue;
5006 	if (obj->tlsindex == index)
5007 	    break;
5008     }
5009     if (!obj) {
5010 	_rtld_error("Can't find module with TLS index %d", index);
5011 	rtld_die();
5012     }
5013 
5014     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5015     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5016     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5017 
5018     return p;
5019 }
5020 
5021 bool
5022 allocate_tls_offset(Obj_Entry *obj)
5023 {
5024     size_t off;
5025 
5026     if (obj->tls_done)
5027 	return true;
5028 
5029     if (obj->tlssize == 0) {
5030 	obj->tls_done = true;
5031 	return true;
5032     }
5033 
5034     if (tls_last_offset == 0)
5035 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5036     else
5037 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5038 				   obj->tlssize, obj->tlsalign);
5039 
5040     /*
5041      * If we have already fixed the size of the static TLS block, we
5042      * must stay within that size. When allocating the static TLS, we
5043      * leave a small amount of space spare to be used for dynamically
5044      * loading modules which use static TLS.
5045      */
5046     if (tls_static_space != 0) {
5047 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5048 	    return false;
5049     } else if (obj->tlsalign > tls_static_max_align) {
5050 	    tls_static_max_align = obj->tlsalign;
5051     }
5052 
5053     tls_last_offset = obj->tlsoffset = off;
5054     tls_last_size = obj->tlssize;
5055     obj->tls_done = true;
5056 
5057     return true;
5058 }
5059 
5060 void
5061 free_tls_offset(Obj_Entry *obj)
5062 {
5063 
5064     /*
5065      * If we were the last thing to allocate out of the static TLS
5066      * block, we give our space back to the 'allocator'. This is a
5067      * simplistic workaround to allow libGL.so.1 to be loaded and
5068      * unloaded multiple times.
5069      */
5070     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5071 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5072 	tls_last_offset -= obj->tlssize;
5073 	tls_last_size = 0;
5074     }
5075 }
5076 
5077 void *
5078 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5079 {
5080     void *ret;
5081     RtldLockState lockstate;
5082 
5083     wlock_acquire(rtld_bind_lock, &lockstate);
5084     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5085       tcbsize, tcbalign);
5086     lock_release(rtld_bind_lock, &lockstate);
5087     return (ret);
5088 }
5089 
5090 void
5091 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5092 {
5093     RtldLockState lockstate;
5094 
5095     wlock_acquire(rtld_bind_lock, &lockstate);
5096     free_tls(tcb, tcbsize, tcbalign);
5097     lock_release(rtld_bind_lock, &lockstate);
5098 }
5099 
5100 static void
5101 object_add_name(Obj_Entry *obj, const char *name)
5102 {
5103     Name_Entry *entry;
5104     size_t len;
5105 
5106     len = strlen(name);
5107     entry = malloc(sizeof(Name_Entry) + len);
5108 
5109     if (entry != NULL) {
5110 	strcpy(entry->name, name);
5111 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5112     }
5113 }
5114 
5115 static int
5116 object_match_name(const Obj_Entry *obj, const char *name)
5117 {
5118     Name_Entry *entry;
5119 
5120     STAILQ_FOREACH(entry, &obj->names, link) {
5121 	if (strcmp(name, entry->name) == 0)
5122 	    return (1);
5123     }
5124     return (0);
5125 }
5126 
5127 static Obj_Entry *
5128 locate_dependency(const Obj_Entry *obj, const char *name)
5129 {
5130     const Objlist_Entry *entry;
5131     const Needed_Entry *needed;
5132 
5133     STAILQ_FOREACH(entry, &list_main, link) {
5134 	if (object_match_name(entry->obj, name))
5135 	    return entry->obj;
5136     }
5137 
5138     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5139 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5140 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5141 	    /*
5142 	     * If there is DT_NEEDED for the name we are looking for,
5143 	     * we are all set.  Note that object might not be found if
5144 	     * dependency was not loaded yet, so the function can
5145 	     * return NULL here.  This is expected and handled
5146 	     * properly by the caller.
5147 	     */
5148 	    return (needed->obj);
5149 	}
5150     }
5151     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5152 	obj->path, name);
5153     rtld_die();
5154 }
5155 
5156 static int
5157 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5158     const Elf_Vernaux *vna)
5159 {
5160     const Elf_Verdef *vd;
5161     const char *vername;
5162 
5163     vername = refobj->strtab + vna->vna_name;
5164     vd = depobj->verdef;
5165     if (vd == NULL) {
5166 	_rtld_error("%s: version %s required by %s not defined",
5167 	    depobj->path, vername, refobj->path);
5168 	return (-1);
5169     }
5170     for (;;) {
5171 	if (vd->vd_version != VER_DEF_CURRENT) {
5172 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5173 		depobj->path, vd->vd_version);
5174 	    return (-1);
5175 	}
5176 	if (vna->vna_hash == vd->vd_hash) {
5177 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5178 		((const char *)vd + vd->vd_aux);
5179 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5180 		return (0);
5181 	}
5182 	if (vd->vd_next == 0)
5183 	    break;
5184 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5185     }
5186     if (vna->vna_flags & VER_FLG_WEAK)
5187 	return (0);
5188     _rtld_error("%s: version %s required by %s not found",
5189 	depobj->path, vername, refobj->path);
5190     return (-1);
5191 }
5192 
5193 static int
5194 rtld_verify_object_versions(Obj_Entry *obj)
5195 {
5196     const Elf_Verneed *vn;
5197     const Elf_Verdef  *vd;
5198     const Elf_Verdaux *vda;
5199     const Elf_Vernaux *vna;
5200     const Obj_Entry *depobj;
5201     int maxvernum, vernum;
5202 
5203     if (obj->ver_checked)
5204 	return (0);
5205     obj->ver_checked = true;
5206 
5207     maxvernum = 0;
5208     /*
5209      * Walk over defined and required version records and figure out
5210      * max index used by any of them. Do very basic sanity checking
5211      * while there.
5212      */
5213     vn = obj->verneed;
5214     while (vn != NULL) {
5215 	if (vn->vn_version != VER_NEED_CURRENT) {
5216 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5217 		obj->path, vn->vn_version);
5218 	    return (-1);
5219 	}
5220 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5221 	for (;;) {
5222 	    vernum = VER_NEED_IDX(vna->vna_other);
5223 	    if (vernum > maxvernum)
5224 		maxvernum = vernum;
5225 	    if (vna->vna_next == 0)
5226 		 break;
5227 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5228 	}
5229 	if (vn->vn_next == 0)
5230 	    break;
5231 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5232     }
5233 
5234     vd = obj->verdef;
5235     while (vd != NULL) {
5236 	if (vd->vd_version != VER_DEF_CURRENT) {
5237 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5238 		obj->path, vd->vd_version);
5239 	    return (-1);
5240 	}
5241 	vernum = VER_DEF_IDX(vd->vd_ndx);
5242 	if (vernum > maxvernum)
5243 		maxvernum = vernum;
5244 	if (vd->vd_next == 0)
5245 	    break;
5246 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5247     }
5248 
5249     if (maxvernum == 0)
5250 	return (0);
5251 
5252     /*
5253      * Store version information in array indexable by version index.
5254      * Verify that object version requirements are satisfied along the
5255      * way.
5256      */
5257     obj->vernum = maxvernum + 1;
5258     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5259 
5260     vd = obj->verdef;
5261     while (vd != NULL) {
5262 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5263 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5264 	    assert(vernum <= maxvernum);
5265 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5266 	    obj->vertab[vernum].hash = vd->vd_hash;
5267 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5268 	    obj->vertab[vernum].file = NULL;
5269 	    obj->vertab[vernum].flags = 0;
5270 	}
5271 	if (vd->vd_next == 0)
5272 	    break;
5273 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5274     }
5275 
5276     vn = obj->verneed;
5277     while (vn != NULL) {
5278 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5279 	if (depobj == NULL)
5280 	    return (-1);
5281 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5282 	for (;;) {
5283 	    if (check_object_provided_version(obj, depobj, vna))
5284 		return (-1);
5285 	    vernum = VER_NEED_IDX(vna->vna_other);
5286 	    assert(vernum <= maxvernum);
5287 	    obj->vertab[vernum].hash = vna->vna_hash;
5288 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5289 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5290 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5291 		VER_INFO_HIDDEN : 0;
5292 	    if (vna->vna_next == 0)
5293 		 break;
5294 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5295 	}
5296 	if (vn->vn_next == 0)
5297 	    break;
5298 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5299     }
5300     return 0;
5301 }
5302 
5303 static int
5304 rtld_verify_versions(const Objlist *objlist)
5305 {
5306     Objlist_Entry *entry;
5307     int rc;
5308 
5309     rc = 0;
5310     STAILQ_FOREACH(entry, objlist, link) {
5311 	/*
5312 	 * Skip dummy objects or objects that have their version requirements
5313 	 * already checked.
5314 	 */
5315 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5316 	    continue;
5317 	if (rtld_verify_object_versions(entry->obj) == -1) {
5318 	    rc = -1;
5319 	    if (ld_tracing == NULL)
5320 		break;
5321 	}
5322     }
5323     if (rc == 0 || ld_tracing != NULL)
5324     	rc = rtld_verify_object_versions(&obj_rtld);
5325     return rc;
5326 }
5327 
5328 const Ver_Entry *
5329 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5330 {
5331     Elf_Versym vernum;
5332 
5333     if (obj->vertab) {
5334 	vernum = VER_NDX(obj->versyms[symnum]);
5335 	if (vernum >= obj->vernum) {
5336 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5337 		obj->path, obj->strtab + symnum, vernum);
5338 	} else if (obj->vertab[vernum].hash != 0) {
5339 	    return &obj->vertab[vernum];
5340 	}
5341     }
5342     return NULL;
5343 }
5344 
5345 int
5346 _rtld_get_stack_prot(void)
5347 {
5348 
5349 	return (stack_prot);
5350 }
5351 
5352 int
5353 _rtld_is_dlopened(void *arg)
5354 {
5355 	Obj_Entry *obj;
5356 	RtldLockState lockstate;
5357 	int res;
5358 
5359 	rlock_acquire(rtld_bind_lock, &lockstate);
5360 	obj = dlcheck(arg);
5361 	if (obj == NULL)
5362 		obj = obj_from_addr(arg);
5363 	if (obj == NULL) {
5364 		_rtld_error("No shared object contains address");
5365 		lock_release(rtld_bind_lock, &lockstate);
5366 		return (-1);
5367 	}
5368 	res = obj->dlopened ? 1 : 0;
5369 	lock_release(rtld_bind_lock, &lockstate);
5370 	return (res);
5371 }
5372 
5373 static int
5374 obj_remap_relro(Obj_Entry *obj, int prot)
5375 {
5376 
5377 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5378 	    prot) == -1) {
5379 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5380 		    obj->path, prot, rtld_strerror(errno));
5381 		return (-1);
5382 	}
5383 	return (0);
5384 }
5385 
5386 static int
5387 obj_disable_relro(Obj_Entry *obj)
5388 {
5389 
5390 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5391 }
5392 
5393 static int
5394 obj_enforce_relro(Obj_Entry *obj)
5395 {
5396 
5397 	return (obj_remap_relro(obj, PROT_READ));
5398 }
5399 
5400 static void
5401 map_stacks_exec(RtldLockState *lockstate)
5402 {
5403 	void (*thr_map_stacks_exec)(void);
5404 
5405 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5406 		return;
5407 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5408 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5409 	if (thr_map_stacks_exec != NULL) {
5410 		stack_prot |= PROT_EXEC;
5411 		thr_map_stacks_exec();
5412 	}
5413 }
5414 
5415 static void
5416 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5417 {
5418 	Objlist_Entry *elm;
5419 	Obj_Entry *obj;
5420 	void (*distrib)(size_t, void *, size_t, size_t);
5421 
5422 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5423 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5424 	if (distrib == NULL)
5425 		return;
5426 	STAILQ_FOREACH(elm, list, link) {
5427 		obj = elm->obj;
5428 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5429 			continue;
5430 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5431 		    obj->tlssize);
5432 		obj->static_tls_copied = true;
5433 	}
5434 }
5435 
5436 void
5437 symlook_init(SymLook *dst, const char *name)
5438 {
5439 
5440 	bzero(dst, sizeof(*dst));
5441 	dst->name = name;
5442 	dst->hash = elf_hash(name);
5443 	dst->hash_gnu = gnu_hash(name);
5444 }
5445 
5446 static void
5447 symlook_init_from_req(SymLook *dst, const SymLook *src)
5448 {
5449 
5450 	dst->name = src->name;
5451 	dst->hash = src->hash;
5452 	dst->hash_gnu = src->hash_gnu;
5453 	dst->ventry = src->ventry;
5454 	dst->flags = src->flags;
5455 	dst->defobj_out = NULL;
5456 	dst->sym_out = NULL;
5457 	dst->lockstate = src->lockstate;
5458 }
5459 
5460 static int
5461 open_binary_fd(const char *argv0, bool search_in_path)
5462 {
5463 	char *pathenv, *pe, binpath[PATH_MAX];
5464 	int fd;
5465 
5466 	if (search_in_path && strchr(argv0, '/') == NULL) {
5467 		pathenv = getenv("PATH");
5468 		if (pathenv == NULL) {
5469 			_rtld_error("-p and no PATH environment variable");
5470 			rtld_die();
5471 		}
5472 		pathenv = strdup(pathenv);
5473 		if (pathenv == NULL) {
5474 			_rtld_error("Cannot allocate memory");
5475 			rtld_die();
5476 		}
5477 		fd = -1;
5478 		errno = ENOENT;
5479 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5480 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5481 			    sizeof(binpath))
5482 				continue;
5483 			if (binpath[0] != '\0' &&
5484 			    strlcat(binpath, "/", sizeof(binpath)) >=
5485 			    sizeof(binpath))
5486 				continue;
5487 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5488 			    sizeof(binpath))
5489 				continue;
5490 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5491 			if (fd != -1 || errno != ENOENT)
5492 				break;
5493 		}
5494 		free(pathenv);
5495 	} else {
5496 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5497 	}
5498 
5499 	if (fd == -1) {
5500 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5501 		rtld_die();
5502 	}
5503 	return (fd);
5504 }
5505 
5506 /*
5507  * Parse a set of command-line arguments.
5508  */
5509 static int
5510 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5511 {
5512 	const char *arg;
5513 	int fd, i, j, arglen;
5514 	char opt;
5515 
5516 	dbg("Parsing command-line arguments");
5517 	*use_pathp = false;
5518 	*fdp = -1;
5519 
5520 	for (i = 1; i < argc; i++ ) {
5521 		arg = argv[i];
5522 		dbg("argv[%d]: '%s'", i, arg);
5523 
5524 		/*
5525 		 * rtld arguments end with an explicit "--" or with the first
5526 		 * non-prefixed argument.
5527 		 */
5528 		if (strcmp(arg, "--") == 0) {
5529 			i++;
5530 			break;
5531 		}
5532 		if (arg[0] != '-')
5533 			break;
5534 
5535 		/*
5536 		 * All other arguments are single-character options that can
5537 		 * be combined, so we need to search through `arg` for them.
5538 		 */
5539 		arglen = strlen(arg);
5540 		for (j = 1; j < arglen; j++) {
5541 			opt = arg[j];
5542 			if (opt == 'h') {
5543 				print_usage(argv[0]);
5544 				_exit(0);
5545 			} else if (opt == 'f') {
5546 			/*
5547 			 * -f XX can be used to specify a descriptor for the
5548 			 * binary named at the command line (i.e., the later
5549 			 * argument will specify the process name but the
5550 			 * descriptor is what will actually be executed)
5551 			 */
5552 			if (j != arglen - 1) {
5553 				/* -f must be the last option in, e.g., -abcf */
5554 				_rtld_error("Invalid options: %s", arg);
5555 				rtld_die();
5556 			}
5557 			i++;
5558 			fd = parse_integer(argv[i]);
5559 			if (fd == -1) {
5560 				_rtld_error("Invalid file descriptor: '%s'",
5561 				    argv[i]);
5562 				rtld_die();
5563 			}
5564 			*fdp = fd;
5565 			break;
5566 			} else if (opt == 'p') {
5567 				*use_pathp = true;
5568 			} else {
5569 				_rtld_error("Invalid argument: '%s'", arg);
5570 				print_usage(argv[0]);
5571 				rtld_die();
5572 			}
5573 		}
5574 	}
5575 
5576 	return (i);
5577 }
5578 
5579 /*
5580  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5581  */
5582 static int
5583 parse_integer(const char *str)
5584 {
5585 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5586 	const char *orig;
5587 	int n;
5588 	char c;
5589 
5590 	orig = str;
5591 	n = 0;
5592 	for (c = *str; c != '\0'; c = *++str) {
5593 		if (c < '0' || c > '9')
5594 			return (-1);
5595 
5596 		n *= RADIX;
5597 		n += c - '0';
5598 	}
5599 
5600 	/* Make sure we actually parsed something. */
5601 	if (str == orig)
5602 		return (-1);
5603 	return (n);
5604 }
5605 
5606 static void
5607 print_usage(const char *argv0)
5608 {
5609 
5610 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5611 		"\n"
5612 		"Options:\n"
5613 		"  -h        Display this help message\n"
5614 		"  -p        Search in PATH for named binary\n"
5615 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5616 		"  --        End of RTLD options\n"
5617 		"  <binary>  Name of process to execute\n"
5618 		"  <args>    Arguments to the executed process\n", argv0);
5619 }
5620 
5621 /*
5622  * Overrides for libc_pic-provided functions.
5623  */
5624 
5625 int
5626 __getosreldate(void)
5627 {
5628 	size_t len;
5629 	int oid[2];
5630 	int error, osrel;
5631 
5632 	if (osreldate != 0)
5633 		return (osreldate);
5634 
5635 	oid[0] = CTL_KERN;
5636 	oid[1] = KERN_OSRELDATE;
5637 	osrel = 0;
5638 	len = sizeof(osrel);
5639 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5640 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5641 		osreldate = osrel;
5642 	return (osreldate);
5643 }
5644 
5645 void
5646 exit(int status)
5647 {
5648 
5649 	_exit(status);
5650 }
5651 
5652 void (*__cleanup)(void);
5653 int __isthreaded = 0;
5654 int _thread_autoinit_dummy_decl = 1;
5655 
5656 /*
5657  * No unresolved symbols for rtld.
5658  */
5659 void
5660 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5661 {
5662 }
5663 
5664 const char *
5665 rtld_strerror(int errnum)
5666 {
5667 
5668 	if (errnum < 0 || errnum >= sys_nerr)
5669 		return ("Unknown error");
5670 	return (sys_errlist[errnum]);
5671 }
5672 
5673 /*
5674  * No ifunc relocations.
5675  */
5676 void *
5677 memset(void *dest, int c, size_t len)
5678 {
5679 	size_t i;
5680 
5681 	for (i = 0; i < len; i++)
5682 		((char *)dest)[i] = c;
5683 	return (dest);
5684 }
5685 
5686 void
5687 bzero(void *dest, size_t len)
5688 {
5689 	size_t i;
5690 
5691 	for (i = 0; i < len; i++)
5692 		((char *)dest)[i] = 0;
5693 }
5694 
5695 /* malloc */
5696 void *
5697 malloc(size_t nbytes)
5698 {
5699 
5700 	return (__crt_malloc(nbytes));
5701 }
5702 
5703 void *
5704 calloc(size_t num, size_t size)
5705 {
5706 
5707 	return (__crt_calloc(num, size));
5708 }
5709 
5710 void
5711 free(void *cp)
5712 {
5713 
5714 	__crt_free(cp);
5715 }
5716 
5717 void *
5718 realloc(void *cp, size_t nbytes)
5719 {
5720 
5721 	return (__crt_realloc(cp, nbytes));
5722 }
5723