xref: /freebsd/libexec/rtld-elf/rtld.c (revision c7d813a93eeb447470734c9bc0c140d90a54c271)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "rtld_utrace.h"
63 #include "notes.h"
64 
65 /* Types. */
66 typedef void (*func_ptr_type)();
67 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
68 
69 /*
70  * Function declarations.
71  */
72 static const char *basename(const char *);
73 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
74     const Elf_Dyn **, const Elf_Dyn **);
75 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
76     const Elf_Dyn *);
77 static void digest_dynamic(Obj_Entry *, int);
78 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
79 static Obj_Entry *dlcheck(void *);
80 static int dlclose_locked(void *, RtldLockState *);
81 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
82     int lo_flags, int mode, RtldLockState *lockstate);
83 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
84 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
85 static bool donelist_check(DoneList *, const Obj_Entry *);
86 static void errmsg_restore(char *);
87 static char *errmsg_save(void);
88 static void *fill_search_info(const char *, size_t, void *);
89 static char *find_library(const char *, const Obj_Entry *, int *);
90 static const char *gethints(bool);
91 static void hold_object(Obj_Entry *);
92 static void unhold_object(Obj_Entry *);
93 static void init_dag(Obj_Entry *);
94 static void init_marker(Obj_Entry *);
95 static void init_pagesizes(Elf_Auxinfo **aux_info);
96 static void init_rtld(caddr_t, Elf_Auxinfo **);
97 static void initlist_add_neededs(Needed_Entry *, Objlist *);
98 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
99 static void linkmap_add(Obj_Entry *);
100 static void linkmap_delete(Obj_Entry *);
101 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
102 static void unload_filtees(Obj_Entry *, RtldLockState *);
103 static int load_needed_objects(Obj_Entry *, int);
104 static int load_preload_objects(void);
105 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
106 static void map_stacks_exec(RtldLockState *);
107 static int obj_enforce_relro(Obj_Entry *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110 static void objlist_call_init(Objlist *, RtldLockState *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static int parse_libdir(const char *);
119 static void *path_enumerate(const char *, path_enum_proc, void *);
120 static void release_object(Obj_Entry *);
121 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
122     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
123 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
124     int flags, RtldLockState *lockstate);
125 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
126     RtldLockState *);
127 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
128     int flags, RtldLockState *lockstate);
129 static int rtld_dirname(const char *, char *);
130 static int rtld_dirname_abs(const char *, char *);
131 static void *rtld_dlopen(const char *name, int fd, int mode);
132 static void rtld_exit(void);
133 static char *search_library_path(const char *, const char *);
134 static char *search_library_pathfds(const char *, const char *, int *);
135 static const void **get_program_var_addr(const char *, RtldLockState *);
136 static void set_program_var(const char *, const void *);
137 static int symlook_default(SymLook *, const Obj_Entry *refobj);
138 static int symlook_global(SymLook *, DoneList *);
139 static void symlook_init_from_req(SymLook *, const SymLook *);
140 static int symlook_list(SymLook *, const Objlist *, DoneList *);
141 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144 static void trace_loaded_objects(Obj_Entry *);
145 static void unlink_object(Obj_Entry *);
146 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
147 static void unref_dag(Obj_Entry *);
148 static void ref_dag(Obj_Entry *);
149 static char *origin_subst_one(Obj_Entry *, char *, const char *,
150     const char *, bool);
151 static char *origin_subst(Obj_Entry *, char *);
152 static bool obj_resolve_origin(Obj_Entry *obj);
153 static void preinit_main(void);
154 static int  rtld_verify_versions(const Objlist *);
155 static int  rtld_verify_object_versions(Obj_Entry *);
156 static void object_add_name(Obj_Entry *, const char *);
157 static int  object_match_name(const Obj_Entry *, const char *);
158 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
159 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
160     struct dl_phdr_info *phdr_info);
161 static uint32_t gnu_hash(const char *);
162 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
163     const unsigned long);
164 
165 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
166 void _r_debug_postinit(struct link_map *) __noinline __exported;
167 
168 int __sys_openat(int, const char *, int, ...);
169 
170 /*
171  * Data declarations.
172  */
173 static char *error_message;	/* Message for dlerror(), or NULL */
174 struct r_debug r_debug __exported;	/* for GDB; */
175 static bool libmap_disable;	/* Disable libmap */
176 static bool ld_loadfltr;	/* Immediate filters processing */
177 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
178 static bool trust;		/* False for setuid and setgid programs */
179 static bool dangerous_ld_env;	/* True if environment variables have been
180 				   used to affect the libraries loaded */
181 bool ld_bind_not;		/* Disable PLT update */
182 static char *ld_bind_now;	/* Environment variable for immediate binding */
183 static char *ld_debug;		/* Environment variable for debugging */
184 static char *ld_library_path;	/* Environment variable for search path */
185 static char *ld_library_dirs;	/* Environment variable for library descriptors */
186 static char *ld_preload;	/* Environment variable for libraries to
187 				   load first */
188 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
189 static char *ld_tracing;	/* Called from ldd to print libs */
190 static char *ld_utrace;		/* Use utrace() to log events. */
191 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
192 static Obj_Entry *obj_main;	/* The main program shared object */
193 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
194 static unsigned int obj_count;	/* Number of objects in obj_list */
195 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
196 
197 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
198   STAILQ_HEAD_INITIALIZER(list_global);
199 static Objlist list_main =	/* Objects loaded at program startup */
200   STAILQ_HEAD_INITIALIZER(list_main);
201 static Objlist list_fini =	/* Objects needing fini() calls */
202   STAILQ_HEAD_INITIALIZER(list_fini);
203 
204 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
205 
206 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
207 
208 extern Elf_Dyn _DYNAMIC;
209 #pragma weak _DYNAMIC
210 
211 int dlclose(void *) __exported;
212 char *dlerror(void) __exported;
213 void *dlopen(const char *, int) __exported;
214 void *fdlopen(int, int) __exported;
215 void *dlsym(void *, const char *) __exported;
216 dlfunc_t dlfunc(void *, const char *) __exported;
217 void *dlvsym(void *, const char *, const char *) __exported;
218 int dladdr(const void *, Dl_info *) __exported;
219 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
220     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
221 int dlinfo(void *, int , void *) __exported;
222 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
223 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
224 int _rtld_get_stack_prot(void) __exported;
225 int _rtld_is_dlopened(void *) __exported;
226 void _rtld_error(const char *, ...) __exported;
227 
228 int npagesizes, osreldate;
229 size_t *pagesizes;
230 
231 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
232 
233 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
234 static int max_stack_flags;
235 
236 /*
237  * Global declarations normally provided by crt1.  The dynamic linker is
238  * not built with crt1, so we have to provide them ourselves.
239  */
240 char *__progname;
241 char **environ;
242 
243 /*
244  * Used to pass argc, argv to init functions.
245  */
246 int main_argc;
247 char **main_argv;
248 
249 /*
250  * Globals to control TLS allocation.
251  */
252 size_t tls_last_offset;		/* Static TLS offset of last module */
253 size_t tls_last_size;		/* Static TLS size of last module */
254 size_t tls_static_space;	/* Static TLS space allocated */
255 size_t tls_static_max_align;
256 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
257 int tls_max_index = 1;		/* Largest module index allocated */
258 
259 bool ld_library_path_rpath = false;
260 
261 /*
262  * Globals for path names, and such
263  */
264 char *ld_elf_hints_default = _PATH_ELF_HINTS;
265 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
266 char *ld_path_rtld = _PATH_RTLD;
267 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
268 char *ld_env_prefix = LD_;
269 
270 /*
271  * Fill in a DoneList with an allocation large enough to hold all of
272  * the currently-loaded objects.  Keep this as a macro since it calls
273  * alloca and we want that to occur within the scope of the caller.
274  */
275 #define donelist_init(dlp)					\
276     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
277     assert((dlp)->objs != NULL),				\
278     (dlp)->num_alloc = obj_count,				\
279     (dlp)->num_used = 0)
280 
281 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
282 	if (ld_utrace != NULL)					\
283 		ld_utrace_log(e, h, mb, ms, r, n);		\
284 } while (0)
285 
286 static void
287 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
288     int refcnt, const char *name)
289 {
290 	struct utrace_rtld ut;
291 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
292 
293 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
294 	ut.event = event;
295 	ut.handle = handle;
296 	ut.mapbase = mapbase;
297 	ut.mapsize = mapsize;
298 	ut.refcnt = refcnt;
299 	bzero(ut.name, sizeof(ut.name));
300 	if (name)
301 		strlcpy(ut.name, name, sizeof(ut.name));
302 	utrace(&ut, sizeof(ut));
303 }
304 
305 #ifdef RTLD_VARIANT_ENV_NAMES
306 /*
307  * construct the env variable based on the type of binary that's
308  * running.
309  */
310 static inline const char *
311 _LD(const char *var)
312 {
313 	static char buffer[128];
314 
315 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
316 	strlcat(buffer, var, sizeof(buffer));
317 	return (buffer);
318 }
319 #else
320 #define _LD(x)	LD_ x
321 #endif
322 
323 /*
324  * Main entry point for dynamic linking.  The first argument is the
325  * stack pointer.  The stack is expected to be laid out as described
326  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
327  * Specifically, the stack pointer points to a word containing
328  * ARGC.  Following that in the stack is a null-terminated sequence
329  * of pointers to argument strings.  Then comes a null-terminated
330  * sequence of pointers to environment strings.  Finally, there is a
331  * sequence of "auxiliary vector" entries.
332  *
333  * The second argument points to a place to store the dynamic linker's
334  * exit procedure pointer and the third to a place to store the main
335  * program's object.
336  *
337  * The return value is the main program's entry point.
338  */
339 func_ptr_type
340 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
341 {
342     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
343     Objlist_Entry *entry;
344     Obj_Entry *last_interposer, *obj, *preload_tail;
345     const Elf_Phdr *phdr;
346     Objlist initlist;
347     RtldLockState lockstate;
348     Elf_Addr *argcp;
349     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
350     caddr_t imgentry;
351     char buf[MAXPATHLEN];
352     int argc, fd, i, mib[2], phnum;
353     size_t len;
354 
355     /*
356      * On entry, the dynamic linker itself has not been relocated yet.
357      * Be very careful not to reference any global data until after
358      * init_rtld has returned.  It is OK to reference file-scope statics
359      * and string constants, and to call static and global functions.
360      */
361 
362     /* Find the auxiliary vector on the stack. */
363     argcp = sp;
364     argc = *sp++;
365     argv = (char **) sp;
366     sp += argc + 1;	/* Skip over arguments and NULL terminator */
367     env = (char **) sp;
368     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
369 	;
370     aux = (Elf_Auxinfo *) sp;
371 
372     /* Digest the auxiliary vector. */
373     for (i = 0;  i < AT_COUNT;  i++)
374 	aux_info[i] = NULL;
375     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
376 	if (auxp->a_type < AT_COUNT)
377 	    aux_info[auxp->a_type] = auxp;
378     }
379 
380     /* Initialize and relocate ourselves. */
381     assert(aux_info[AT_BASE] != NULL);
382     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
383 
384     __progname = obj_rtld.path;
385     argv0 = argv[0] != NULL ? argv[0] : "(null)";
386     environ = env;
387     main_argc = argc;
388     main_argv = argv;
389 
390     if (aux_info[AT_CANARY] != NULL &&
391 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
392 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
393 	    if (i > sizeof(__stack_chk_guard))
394 		    i = sizeof(__stack_chk_guard);
395 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
396     } else {
397 	mib[0] = CTL_KERN;
398 	mib[1] = KERN_ARND;
399 
400 	len = sizeof(__stack_chk_guard);
401 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
402 	    len != sizeof(__stack_chk_guard)) {
403 		/* If sysctl was unsuccessful, use the "terminator canary". */
404 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
405 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
406 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
407 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
408 	}
409     }
410 
411     trust = !issetugid();
412 
413     md_abi_variant_hook(aux_info);
414 
415     fd = -1;
416     if (aux_info[AT_EXECFD] != NULL) {
417 	fd = aux_info[AT_EXECFD]->a_un.a_val;
418     } else {
419 	assert(aux_info[AT_PHDR] != NULL);
420 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
421 	if (phdr == obj_rtld.phdr) {
422 	    dbg("opening main program in direct exec mode");
423 	    if (argc >= 2) {
424 		argv0 = argv[1];
425 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
426 		if (fd == -1) {
427 		    rtld_printf("Opening %s: %s\n", argv0,
428 		      rtld_strerror(errno));
429 		    rtld_die();
430 		}
431 
432 		/*
433 		 * For direct exec mode, argv[0] is the interpreter
434 		 * name, we must remove it and shift arguments left by
435 		 * 1 before invoking binary main.  Since stack layout
436 		 * places environment pointers and aux vectors right
437 		 * after the terminating NULL, we must shift
438 		 * environment and aux as well.
439 		 * XXX Shift will be > 1 when options are implemented.
440 		 */
441 		do {
442 		    *argv = *(argv + 1);
443 		    argv++;
444 		} while (*argv != NULL);
445 		*argcp -= 1;
446 		main_argc = argc - 1;
447 		environ = env = envp = argv;
448 		do {
449 		    *envp = *(envp + 1);
450 		    envp++;
451 		} while (*envp != NULL);
452 		aux = auxp = (Elf_Auxinfo *)envp;
453 		auxpf = (Elf_Auxinfo *)(envp + 1);
454 		for (;; auxp++, auxpf++) {
455 		    *auxp = *auxpf;
456 		    if (auxp->a_type == AT_NULL)
457 			    break;
458 		}
459 	    } else {
460 		rtld_printf("no binary\n");
461 		rtld_die();
462 	    }
463 	}
464     }
465 
466     ld_bind_now = getenv(_LD("BIND_NOW"));
467 
468     /*
469      * If the process is tainted, then we un-set the dangerous environment
470      * variables.  The process will be marked as tainted until setuid(2)
471      * is called.  If any child process calls setuid(2) we do not want any
472      * future processes to honor the potentially un-safe variables.
473      */
474     if (!trust) {
475 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
476 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
477 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
478 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
479 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
480 		_rtld_error("environment corrupt; aborting");
481 		rtld_die();
482 	}
483     }
484     ld_debug = getenv(_LD("DEBUG"));
485     if (ld_bind_now == NULL)
486 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
487     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
488     libmap_override = getenv(_LD("LIBMAP"));
489     ld_library_path = getenv(_LD("LIBRARY_PATH"));
490     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
491     ld_preload = getenv(_LD("PRELOAD"));
492     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
493     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
494     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
495     if (library_path_rpath != NULL) {
496 	    if (library_path_rpath[0] == 'y' ||
497 		library_path_rpath[0] == 'Y' ||
498 		library_path_rpath[0] == '1')
499 		    ld_library_path_rpath = true;
500 	    else
501 		    ld_library_path_rpath = false;
502     }
503     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
504 	(ld_library_path != NULL) || (ld_preload != NULL) ||
505 	(ld_elf_hints_path != NULL) || ld_loadfltr;
506     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
507     ld_utrace = getenv(_LD("UTRACE"));
508 
509     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
510 	ld_elf_hints_path = ld_elf_hints_default;
511 
512     if (ld_debug != NULL && *ld_debug != '\0')
513 	debug = 1;
514     dbg("%s is initialized, base address = %p", __progname,
515 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
516     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
517     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
518 
519     dbg("initializing thread locks");
520     lockdflt_init();
521 
522     /*
523      * Load the main program, or process its program header if it is
524      * already loaded.
525      */
526     if (fd != -1) {	/* Load the main program. */
527 	dbg("loading main program");
528 	obj_main = map_object(fd, argv0, NULL);
529 	close(fd);
530 	if (obj_main == NULL)
531 	    rtld_die();
532 	max_stack_flags = obj->stack_flags;
533     } else {				/* Main program already loaded. */
534 	dbg("processing main program's program header");
535 	assert(aux_info[AT_PHDR] != NULL);
536 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
537 	assert(aux_info[AT_PHNUM] != NULL);
538 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
539 	assert(aux_info[AT_PHENT] != NULL);
540 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
541 	assert(aux_info[AT_ENTRY] != NULL);
542 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
543 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
544 	    rtld_die();
545     }
546 
547     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
548 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
549 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
550 	    if (kexecpath[0] == '/')
551 		    obj_main->path = kexecpath;
552 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
553 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
554 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
555 		    obj_main->path = xstrdup(argv0);
556 	    else
557 		    obj_main->path = xstrdup(buf);
558     } else {
559 	    dbg("No AT_EXECPATH or direct exec");
560 	    obj_main->path = xstrdup(argv0);
561     }
562     dbg("obj_main path %s", obj_main->path);
563     obj_main->mainprog = true;
564 
565     if (aux_info[AT_STACKPROT] != NULL &&
566       aux_info[AT_STACKPROT]->a_un.a_val != 0)
567 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
568 
569 #ifndef COMPAT_32BIT
570     /*
571      * Get the actual dynamic linker pathname from the executable if
572      * possible.  (It should always be possible.)  That ensures that
573      * gdb will find the right dynamic linker even if a non-standard
574      * one is being used.
575      */
576     if (obj_main->interp != NULL &&
577       strcmp(obj_main->interp, obj_rtld.path) != 0) {
578 	free(obj_rtld.path);
579 	obj_rtld.path = xstrdup(obj_main->interp);
580         __progname = obj_rtld.path;
581     }
582 #endif
583 
584     digest_dynamic(obj_main, 0);
585     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
586 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
587 	obj_main->dynsymcount);
588 
589     linkmap_add(obj_main);
590     linkmap_add(&obj_rtld);
591 
592     /* Link the main program into the list of objects. */
593     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
594     obj_count++;
595     obj_loads++;
596 
597     /* Initialize a fake symbol for resolving undefined weak references. */
598     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
599     sym_zero.st_shndx = SHN_UNDEF;
600     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
601 
602     if (!libmap_disable)
603         libmap_disable = (bool)lm_init(libmap_override);
604 
605     dbg("loading LD_PRELOAD libraries");
606     if (load_preload_objects() == -1)
607 	rtld_die();
608     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
609 
610     dbg("loading needed objects");
611     if (load_needed_objects(obj_main, 0) == -1)
612 	rtld_die();
613 
614     /* Make a list of all objects loaded at startup. */
615     last_interposer = obj_main;
616     TAILQ_FOREACH(obj, &obj_list, next) {
617 	if (obj->marker)
618 	    continue;
619 	if (obj->z_interpose && obj != obj_main) {
620 	    objlist_put_after(&list_main, last_interposer, obj);
621 	    last_interposer = obj;
622 	} else {
623 	    objlist_push_tail(&list_main, obj);
624 	}
625     	obj->refcount++;
626     }
627 
628     dbg("checking for required versions");
629     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
630 	rtld_die();
631 
632     if (ld_tracing) {		/* We're done */
633 	trace_loaded_objects(obj_main);
634 	exit(0);
635     }
636 
637     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
638        dump_relocations(obj_main);
639        exit (0);
640     }
641 
642     /*
643      * Processing tls relocations requires having the tls offsets
644      * initialized.  Prepare offsets before starting initial
645      * relocation processing.
646      */
647     dbg("initializing initial thread local storage offsets");
648     STAILQ_FOREACH(entry, &list_main, link) {
649 	/*
650 	 * Allocate all the initial objects out of the static TLS
651 	 * block even if they didn't ask for it.
652 	 */
653 	allocate_tls_offset(entry->obj);
654     }
655 
656     if (relocate_objects(obj_main,
657       ld_bind_now != NULL && *ld_bind_now != '\0',
658       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
659 	rtld_die();
660 
661     dbg("doing copy relocations");
662     if (do_copy_relocations(obj_main) == -1)
663 	rtld_die();
664 
665     dbg("enforcing main obj relro");
666     if (obj_enforce_relro(obj_main) == -1)
667 	rtld_die();
668 
669     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
670        dump_relocations(obj_main);
671        exit (0);
672     }
673 
674     /*
675      * Setup TLS for main thread.  This must be done after the
676      * relocations are processed, since tls initialization section
677      * might be the subject for relocations.
678      */
679     dbg("initializing initial thread local storage");
680     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
681 
682     dbg("initializing key program variables");
683     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
684     set_program_var("environ", env);
685     set_program_var("__elf_aux_vector", aux);
686 
687     /* Make a list of init functions to call. */
688     objlist_init(&initlist);
689     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
690       preload_tail, &initlist);
691 
692     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
693 
694     map_stacks_exec(NULL);
695     ifunc_init(aux);
696 
697     dbg("resolving ifuncs");
698     if (resolve_objects_ifunc(obj_main,
699       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
700       NULL) == -1)
701 	rtld_die();
702 
703     if (!obj_main->crt_no_init) {
704 	/*
705 	 * Make sure we don't call the main program's init and fini
706 	 * functions for binaries linked with old crt1 which calls
707 	 * _init itself.
708 	 */
709 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
710 	obj_main->preinit_array = obj_main->init_array =
711 	    obj_main->fini_array = (Elf_Addr)NULL;
712     }
713 
714     wlock_acquire(rtld_bind_lock, &lockstate);
715     if (obj_main->crt_no_init)
716 	preinit_main();
717     objlist_call_init(&initlist, &lockstate);
718     _r_debug_postinit(&obj_main->linkmap);
719     objlist_clear(&initlist);
720     dbg("loading filtees");
721     TAILQ_FOREACH(obj, &obj_list, next) {
722 	if (obj->marker)
723 	    continue;
724 	if (ld_loadfltr || obj->z_loadfltr)
725 	    load_filtees(obj, 0, &lockstate);
726     }
727     lock_release(rtld_bind_lock, &lockstate);
728 
729     dbg("transferring control to program entry point = %p", obj_main->entry);
730 
731     /* Return the exit procedure and the program entry point. */
732     *exit_proc = rtld_exit;
733     *objp = obj_main;
734     return (func_ptr_type) obj_main->entry;
735 }
736 
737 void *
738 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
739 {
740 	void *ptr;
741 	Elf_Addr target;
742 
743 	ptr = (void *)make_function_pointer(def, obj);
744 	target = call_ifunc_resolver(ptr);
745 	return ((void *)target);
746 }
747 
748 /*
749  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
750  * Changes to this function should be applied there as well.
751  */
752 Elf_Addr
753 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
754 {
755     const Elf_Rel *rel;
756     const Elf_Sym *def;
757     const Obj_Entry *defobj;
758     Elf_Addr *where;
759     Elf_Addr target;
760     RtldLockState lockstate;
761 
762     rlock_acquire(rtld_bind_lock, &lockstate);
763     if (sigsetjmp(lockstate.env, 0) != 0)
764 	    lock_upgrade(rtld_bind_lock, &lockstate);
765     if (obj->pltrel)
766 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
767     else
768 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
769 
770     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
771     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
772 	NULL, &lockstate);
773     if (def == NULL)
774 	rtld_die();
775     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
776 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
777     else
778 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
779 
780     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
781       defobj->strtab + def->st_name, basename(obj->path),
782       (void *)target, basename(defobj->path));
783 
784     /*
785      * Write the new contents for the jmpslot. Note that depending on
786      * architecture, the value which we need to return back to the
787      * lazy binding trampoline may or may not be the target
788      * address. The value returned from reloc_jmpslot() is the value
789      * that the trampoline needs.
790      */
791     target = reloc_jmpslot(where, target, defobj, obj, rel);
792     lock_release(rtld_bind_lock, &lockstate);
793     return target;
794 }
795 
796 /*
797  * Error reporting function.  Use it like printf.  If formats the message
798  * into a buffer, and sets things up so that the next call to dlerror()
799  * will return the message.
800  */
801 void
802 _rtld_error(const char *fmt, ...)
803 {
804     static char buf[512];
805     va_list ap;
806 
807     va_start(ap, fmt);
808     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
809     error_message = buf;
810     va_end(ap);
811     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
812 }
813 
814 /*
815  * Return a dynamically-allocated copy of the current error message, if any.
816  */
817 static char *
818 errmsg_save(void)
819 {
820     return error_message == NULL ? NULL : xstrdup(error_message);
821 }
822 
823 /*
824  * Restore the current error message from a copy which was previously saved
825  * by errmsg_save().  The copy is freed.
826  */
827 static void
828 errmsg_restore(char *saved_msg)
829 {
830     if (saved_msg == NULL)
831 	error_message = NULL;
832     else {
833 	_rtld_error("%s", saved_msg);
834 	free(saved_msg);
835     }
836 }
837 
838 static const char *
839 basename(const char *name)
840 {
841     const char *p = strrchr(name, '/');
842     return p != NULL ? p + 1 : name;
843 }
844 
845 static struct utsname uts;
846 
847 static char *
848 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
849     const char *subst, bool may_free)
850 {
851 	char *p, *p1, *res, *resp;
852 	int subst_len, kw_len, subst_count, old_len, new_len;
853 
854 	kw_len = strlen(kw);
855 
856 	/*
857 	 * First, count the number of the keyword occurrences, to
858 	 * preallocate the final string.
859 	 */
860 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
861 		p1 = strstr(p, kw);
862 		if (p1 == NULL)
863 			break;
864 	}
865 
866 	/*
867 	 * If the keyword is not found, just return.
868 	 *
869 	 * Return non-substituted string if resolution failed.  We
870 	 * cannot do anything more reasonable, the failure mode of the
871 	 * caller is unresolved library anyway.
872 	 */
873 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
874 		return (may_free ? real : xstrdup(real));
875 	if (obj != NULL)
876 		subst = obj->origin_path;
877 
878 	/*
879 	 * There is indeed something to substitute.  Calculate the
880 	 * length of the resulting string, and allocate it.
881 	 */
882 	subst_len = strlen(subst);
883 	old_len = strlen(real);
884 	new_len = old_len + (subst_len - kw_len) * subst_count;
885 	res = xmalloc(new_len + 1);
886 
887 	/*
888 	 * Now, execute the substitution loop.
889 	 */
890 	for (p = real, resp = res, *resp = '\0';;) {
891 		p1 = strstr(p, kw);
892 		if (p1 != NULL) {
893 			/* Copy the prefix before keyword. */
894 			memcpy(resp, p, p1 - p);
895 			resp += p1 - p;
896 			/* Keyword replacement. */
897 			memcpy(resp, subst, subst_len);
898 			resp += subst_len;
899 			*resp = '\0';
900 			p = p1 + kw_len;
901 		} else
902 			break;
903 	}
904 
905 	/* Copy to the end of string and finish. */
906 	strcat(resp, p);
907 	if (may_free)
908 		free(real);
909 	return (res);
910 }
911 
912 static char *
913 origin_subst(Obj_Entry *obj, char *real)
914 {
915 	char *res1, *res2, *res3, *res4;
916 
917 	if (obj == NULL || !trust)
918 		return (xstrdup(real));
919 	if (uts.sysname[0] == '\0') {
920 		if (uname(&uts) != 0) {
921 			_rtld_error("utsname failed: %d", errno);
922 			return (NULL);
923 		}
924 	}
925 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
926 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
927 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
928 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
929 	return (res4);
930 }
931 
932 void
933 rtld_die(void)
934 {
935     const char *msg = dlerror();
936 
937     if (msg == NULL)
938 	msg = "Fatal error";
939     rtld_fdputstr(STDERR_FILENO, msg);
940     rtld_fdputchar(STDERR_FILENO, '\n');
941     _exit(1);
942 }
943 
944 /*
945  * Process a shared object's DYNAMIC section, and save the important
946  * information in its Obj_Entry structure.
947  */
948 static void
949 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
950     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
951 {
952     const Elf_Dyn *dynp;
953     Needed_Entry **needed_tail = &obj->needed;
954     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
955     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
956     const Elf_Hashelt *hashtab;
957     const Elf32_Word *hashval;
958     Elf32_Word bkt, nmaskwords;
959     int bloom_size32;
960     int plttype = DT_REL;
961 
962     *dyn_rpath = NULL;
963     *dyn_soname = NULL;
964     *dyn_runpath = NULL;
965 
966     obj->bind_now = false;
967     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
968 	switch (dynp->d_tag) {
969 
970 	case DT_REL:
971 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
972 	    break;
973 
974 	case DT_RELSZ:
975 	    obj->relsize = dynp->d_un.d_val;
976 	    break;
977 
978 	case DT_RELENT:
979 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
980 	    break;
981 
982 	case DT_JMPREL:
983 	    obj->pltrel = (const Elf_Rel *)
984 	      (obj->relocbase + dynp->d_un.d_ptr);
985 	    break;
986 
987 	case DT_PLTRELSZ:
988 	    obj->pltrelsize = dynp->d_un.d_val;
989 	    break;
990 
991 	case DT_RELA:
992 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
993 	    break;
994 
995 	case DT_RELASZ:
996 	    obj->relasize = dynp->d_un.d_val;
997 	    break;
998 
999 	case DT_RELAENT:
1000 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1001 	    break;
1002 
1003 	case DT_PLTREL:
1004 	    plttype = dynp->d_un.d_val;
1005 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1006 	    break;
1007 
1008 	case DT_SYMTAB:
1009 	    obj->symtab = (const Elf_Sym *)
1010 	      (obj->relocbase + dynp->d_un.d_ptr);
1011 	    break;
1012 
1013 	case DT_SYMENT:
1014 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1015 	    break;
1016 
1017 	case DT_STRTAB:
1018 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1019 	    break;
1020 
1021 	case DT_STRSZ:
1022 	    obj->strsize = dynp->d_un.d_val;
1023 	    break;
1024 
1025 	case DT_VERNEED:
1026 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1027 		dynp->d_un.d_val);
1028 	    break;
1029 
1030 	case DT_VERNEEDNUM:
1031 	    obj->verneednum = dynp->d_un.d_val;
1032 	    break;
1033 
1034 	case DT_VERDEF:
1035 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1036 		dynp->d_un.d_val);
1037 	    break;
1038 
1039 	case DT_VERDEFNUM:
1040 	    obj->verdefnum = dynp->d_un.d_val;
1041 	    break;
1042 
1043 	case DT_VERSYM:
1044 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1045 		dynp->d_un.d_val);
1046 	    break;
1047 
1048 	case DT_HASH:
1049 	    {
1050 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1051 		    dynp->d_un.d_ptr);
1052 		obj->nbuckets = hashtab[0];
1053 		obj->nchains = hashtab[1];
1054 		obj->buckets = hashtab + 2;
1055 		obj->chains = obj->buckets + obj->nbuckets;
1056 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1057 		  obj->buckets != NULL;
1058 	    }
1059 	    break;
1060 
1061 	case DT_GNU_HASH:
1062 	    {
1063 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1064 		    dynp->d_un.d_ptr);
1065 		obj->nbuckets_gnu = hashtab[0];
1066 		obj->symndx_gnu = hashtab[1];
1067 		nmaskwords = hashtab[2];
1068 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1069 		obj->maskwords_bm_gnu = nmaskwords - 1;
1070 		obj->shift2_gnu = hashtab[3];
1071 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1072 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1073 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1074 		  obj->symndx_gnu;
1075 		/* Number of bitmask words is required to be power of 2 */
1076 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1077 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1078 	    }
1079 	    break;
1080 
1081 	case DT_NEEDED:
1082 	    if (!obj->rtld) {
1083 		Needed_Entry *nep = NEW(Needed_Entry);
1084 		nep->name = dynp->d_un.d_val;
1085 		nep->obj = NULL;
1086 		nep->next = NULL;
1087 
1088 		*needed_tail = nep;
1089 		needed_tail = &nep->next;
1090 	    }
1091 	    break;
1092 
1093 	case DT_FILTER:
1094 	    if (!obj->rtld) {
1095 		Needed_Entry *nep = NEW(Needed_Entry);
1096 		nep->name = dynp->d_un.d_val;
1097 		nep->obj = NULL;
1098 		nep->next = NULL;
1099 
1100 		*needed_filtees_tail = nep;
1101 		needed_filtees_tail = &nep->next;
1102 	    }
1103 	    break;
1104 
1105 	case DT_AUXILIARY:
1106 	    if (!obj->rtld) {
1107 		Needed_Entry *nep = NEW(Needed_Entry);
1108 		nep->name = dynp->d_un.d_val;
1109 		nep->obj = NULL;
1110 		nep->next = NULL;
1111 
1112 		*needed_aux_filtees_tail = nep;
1113 		needed_aux_filtees_tail = &nep->next;
1114 	    }
1115 	    break;
1116 
1117 	case DT_PLTGOT:
1118 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1119 	    break;
1120 
1121 	case DT_TEXTREL:
1122 	    obj->textrel = true;
1123 	    break;
1124 
1125 	case DT_SYMBOLIC:
1126 	    obj->symbolic = true;
1127 	    break;
1128 
1129 	case DT_RPATH:
1130 	    /*
1131 	     * We have to wait until later to process this, because we
1132 	     * might not have gotten the address of the string table yet.
1133 	     */
1134 	    *dyn_rpath = dynp;
1135 	    break;
1136 
1137 	case DT_SONAME:
1138 	    *dyn_soname = dynp;
1139 	    break;
1140 
1141 	case DT_RUNPATH:
1142 	    *dyn_runpath = dynp;
1143 	    break;
1144 
1145 	case DT_INIT:
1146 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1147 	    break;
1148 
1149 	case DT_PREINIT_ARRAY:
1150 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1151 	    break;
1152 
1153 	case DT_PREINIT_ARRAYSZ:
1154 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1155 	    break;
1156 
1157 	case DT_INIT_ARRAY:
1158 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1159 	    break;
1160 
1161 	case DT_INIT_ARRAYSZ:
1162 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1163 	    break;
1164 
1165 	case DT_FINI:
1166 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1167 	    break;
1168 
1169 	case DT_FINI_ARRAY:
1170 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1171 	    break;
1172 
1173 	case DT_FINI_ARRAYSZ:
1174 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1175 	    break;
1176 
1177 	/*
1178 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1179 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1180 	 */
1181 
1182 #ifndef __mips__
1183 	case DT_DEBUG:
1184 	    if (!early)
1185 		dbg("Filling in DT_DEBUG entry");
1186 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1187 	    break;
1188 #endif
1189 
1190 	case DT_FLAGS:
1191 		if (dynp->d_un.d_val & DF_ORIGIN)
1192 		    obj->z_origin = true;
1193 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1194 		    obj->symbolic = true;
1195 		if (dynp->d_un.d_val & DF_TEXTREL)
1196 		    obj->textrel = true;
1197 		if (dynp->d_un.d_val & DF_BIND_NOW)
1198 		    obj->bind_now = true;
1199 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1200 		    ;*/
1201 	    break;
1202 #ifdef __mips__
1203 	case DT_MIPS_LOCAL_GOTNO:
1204 		obj->local_gotno = dynp->d_un.d_val;
1205 		break;
1206 
1207 	case DT_MIPS_SYMTABNO:
1208 		obj->symtabno = dynp->d_un.d_val;
1209 		break;
1210 
1211 	case DT_MIPS_GOTSYM:
1212 		obj->gotsym = dynp->d_un.d_val;
1213 		break;
1214 
1215 	case DT_MIPS_RLD_MAP:
1216 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1217 		break;
1218 #endif
1219 
1220 #ifdef __powerpc64__
1221 	case DT_PPC64_GLINK:
1222 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1223 		break;
1224 #endif
1225 
1226 	case DT_FLAGS_1:
1227 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1228 		    obj->z_noopen = true;
1229 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1230 		    obj->z_origin = true;
1231 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1232 		    obj->z_global = true;
1233 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1234 		    obj->bind_now = true;
1235 		if (dynp->d_un.d_val & DF_1_NODELETE)
1236 		    obj->z_nodelete = true;
1237 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1238 		    obj->z_loadfltr = true;
1239 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1240 		    obj->z_interpose = true;
1241 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1242 		    obj->z_nodeflib = true;
1243 	    break;
1244 
1245 	default:
1246 	    if (!early) {
1247 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1248 		    (long)dynp->d_tag);
1249 	    }
1250 	    break;
1251 	}
1252     }
1253 
1254     obj->traced = false;
1255 
1256     if (plttype == DT_RELA) {
1257 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1258 	obj->pltrel = NULL;
1259 	obj->pltrelasize = obj->pltrelsize;
1260 	obj->pltrelsize = 0;
1261     }
1262 
1263     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1264     if (obj->valid_hash_sysv)
1265 	obj->dynsymcount = obj->nchains;
1266     else if (obj->valid_hash_gnu) {
1267 	obj->dynsymcount = 0;
1268 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1269 	    if (obj->buckets_gnu[bkt] == 0)
1270 		continue;
1271 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1272 	    do
1273 		obj->dynsymcount++;
1274 	    while ((*hashval++ & 1u) == 0);
1275 	}
1276 	obj->dynsymcount += obj->symndx_gnu;
1277     }
1278 }
1279 
1280 static bool
1281 obj_resolve_origin(Obj_Entry *obj)
1282 {
1283 
1284 	if (obj->origin_path != NULL)
1285 		return (true);
1286 	obj->origin_path = xmalloc(PATH_MAX);
1287 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1288 }
1289 
1290 static void
1291 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1292     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1293 {
1294 
1295 	if (obj->z_origin && !obj_resolve_origin(obj))
1296 		rtld_die();
1297 
1298 	if (dyn_runpath != NULL) {
1299 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1300 		obj->runpath = origin_subst(obj, obj->runpath);
1301 	} else if (dyn_rpath != NULL) {
1302 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1303 		obj->rpath = origin_subst(obj, obj->rpath);
1304 	}
1305 	if (dyn_soname != NULL)
1306 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1307 }
1308 
1309 static void
1310 digest_dynamic(Obj_Entry *obj, int early)
1311 {
1312 	const Elf_Dyn *dyn_rpath;
1313 	const Elf_Dyn *dyn_soname;
1314 	const Elf_Dyn *dyn_runpath;
1315 
1316 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1317 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1318 }
1319 
1320 /*
1321  * Process a shared object's program header.  This is used only for the
1322  * main program, when the kernel has already loaded the main program
1323  * into memory before calling the dynamic linker.  It creates and
1324  * returns an Obj_Entry structure.
1325  */
1326 static Obj_Entry *
1327 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1328 {
1329     Obj_Entry *obj;
1330     const Elf_Phdr *phlimit = phdr + phnum;
1331     const Elf_Phdr *ph;
1332     Elf_Addr note_start, note_end;
1333     int nsegs = 0;
1334 
1335     obj = obj_new();
1336     for (ph = phdr;  ph < phlimit;  ph++) {
1337 	if (ph->p_type != PT_PHDR)
1338 	    continue;
1339 
1340 	obj->phdr = phdr;
1341 	obj->phsize = ph->p_memsz;
1342 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1343 	break;
1344     }
1345 
1346     obj->stack_flags = PF_X | PF_R | PF_W;
1347 
1348     for (ph = phdr;  ph < phlimit;  ph++) {
1349 	switch (ph->p_type) {
1350 
1351 	case PT_INTERP:
1352 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1353 	    break;
1354 
1355 	case PT_LOAD:
1356 	    if (nsegs == 0) {	/* First load segment */
1357 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1358 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1359 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1360 		  obj->vaddrbase;
1361 	    } else {		/* Last load segment */
1362 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1363 		  obj->vaddrbase;
1364 	    }
1365 	    nsegs++;
1366 	    break;
1367 
1368 	case PT_DYNAMIC:
1369 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1370 	    break;
1371 
1372 	case PT_TLS:
1373 	    obj->tlsindex = 1;
1374 	    obj->tlssize = ph->p_memsz;
1375 	    obj->tlsalign = ph->p_align;
1376 	    obj->tlsinitsize = ph->p_filesz;
1377 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1378 	    break;
1379 
1380 	case PT_GNU_STACK:
1381 	    obj->stack_flags = ph->p_flags;
1382 	    break;
1383 
1384 	case PT_GNU_RELRO:
1385 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1386 	    obj->relro_size = round_page(ph->p_memsz);
1387 	    break;
1388 
1389 	case PT_NOTE:
1390 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1391 	    note_end = note_start + ph->p_filesz;
1392 	    digest_notes(obj, note_start, note_end);
1393 	    break;
1394 	}
1395     }
1396     if (nsegs < 1) {
1397 	_rtld_error("%s: too few PT_LOAD segments", path);
1398 	return NULL;
1399     }
1400 
1401     obj->entry = entry;
1402     return obj;
1403 }
1404 
1405 void
1406 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1407 {
1408 	const Elf_Note *note;
1409 	const char *note_name;
1410 	uintptr_t p;
1411 
1412 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1413 	    note = (const Elf_Note *)((const char *)(note + 1) +
1414 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1415 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1416 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1417 		    note->n_descsz != sizeof(int32_t))
1418 			continue;
1419 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1420 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1421 			continue;
1422 		note_name = (const char *)(note + 1);
1423 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1424 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1425 			continue;
1426 		switch (note->n_type) {
1427 		case NT_FREEBSD_ABI_TAG:
1428 			/* FreeBSD osrel note */
1429 			p = (uintptr_t)(note + 1);
1430 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1431 			obj->osrel = *(const int32_t *)(p);
1432 			dbg("note osrel %d", obj->osrel);
1433 			break;
1434 		case NT_FREEBSD_NOINIT_TAG:
1435 			/* FreeBSD 'crt does not call init' note */
1436 			obj->crt_no_init = true;
1437 			dbg("note crt_no_init");
1438 			break;
1439 		}
1440 	}
1441 }
1442 
1443 static Obj_Entry *
1444 dlcheck(void *handle)
1445 {
1446     Obj_Entry *obj;
1447 
1448     TAILQ_FOREACH(obj, &obj_list, next) {
1449 	if (obj == (Obj_Entry *) handle)
1450 	    break;
1451     }
1452 
1453     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1454 	_rtld_error("Invalid shared object handle %p", handle);
1455 	return NULL;
1456     }
1457     return obj;
1458 }
1459 
1460 /*
1461  * If the given object is already in the donelist, return true.  Otherwise
1462  * add the object to the list and return false.
1463  */
1464 static bool
1465 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1466 {
1467     unsigned int i;
1468 
1469     for (i = 0;  i < dlp->num_used;  i++)
1470 	if (dlp->objs[i] == obj)
1471 	    return true;
1472     /*
1473      * Our donelist allocation should always be sufficient.  But if
1474      * our threads locking isn't working properly, more shared objects
1475      * could have been loaded since we allocated the list.  That should
1476      * never happen, but we'll handle it properly just in case it does.
1477      */
1478     if (dlp->num_used < dlp->num_alloc)
1479 	dlp->objs[dlp->num_used++] = obj;
1480     return false;
1481 }
1482 
1483 /*
1484  * Hash function for symbol table lookup.  Don't even think about changing
1485  * this.  It is specified by the System V ABI.
1486  */
1487 unsigned long
1488 elf_hash(const char *name)
1489 {
1490     const unsigned char *p = (const unsigned char *) name;
1491     unsigned long h = 0;
1492     unsigned long g;
1493 
1494     while (*p != '\0') {
1495 	h = (h << 4) + *p++;
1496 	if ((g = h & 0xf0000000) != 0)
1497 	    h ^= g >> 24;
1498 	h &= ~g;
1499     }
1500     return h;
1501 }
1502 
1503 /*
1504  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1505  * unsigned in case it's implemented with a wider type.
1506  */
1507 static uint32_t
1508 gnu_hash(const char *s)
1509 {
1510 	uint32_t h;
1511 	unsigned char c;
1512 
1513 	h = 5381;
1514 	for (c = *s; c != '\0'; c = *++s)
1515 		h = h * 33 + c;
1516 	return (h & 0xffffffff);
1517 }
1518 
1519 
1520 /*
1521  * Find the library with the given name, and return its full pathname.
1522  * The returned string is dynamically allocated.  Generates an error
1523  * message and returns NULL if the library cannot be found.
1524  *
1525  * If the second argument is non-NULL, then it refers to an already-
1526  * loaded shared object, whose library search path will be searched.
1527  *
1528  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1529  * descriptor (which is close-on-exec) will be passed out via the third
1530  * argument.
1531  *
1532  * The search order is:
1533  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1534  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1535  *   LD_LIBRARY_PATH
1536  *   DT_RUNPATH in the referencing file
1537  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1538  *	 from list)
1539  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1540  *
1541  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1542  */
1543 static char *
1544 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1545 {
1546     char *pathname;
1547     char *name;
1548     bool nodeflib, objgiven;
1549 
1550     objgiven = refobj != NULL;
1551     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1552 	if (xname[0] != '/' && !trust) {
1553 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1554 	      xname);
1555 	    return NULL;
1556 	}
1557 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1558 	  __DECONST(char *, xname)));
1559     }
1560 
1561     if (libmap_disable || !objgiven ||
1562 	(name = lm_find(refobj->path, xname)) == NULL)
1563 	name = (char *)xname;
1564 
1565     dbg(" Searching for \"%s\"", name);
1566 
1567     /*
1568      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1569      * back to pre-conforming behaviour if user requested so with
1570      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1571      * nodeflib.
1572      */
1573     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1574 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1575 	  (refobj != NULL &&
1576 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1577 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1578           (pathname = search_library_path(name, gethints(false))) != NULL ||
1579 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1580 	    return (pathname);
1581     } else {
1582 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1583 	if ((objgiven &&
1584 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1585 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1586 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1587 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1588 	  (objgiven &&
1589 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1590 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1591 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1592 	  (objgiven && !nodeflib &&
1593 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1594 	    return (pathname);
1595     }
1596 
1597     if (objgiven && refobj->path != NULL) {
1598 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1599 	  name, basename(refobj->path));
1600     } else {
1601 	_rtld_error("Shared object \"%s\" not found", name);
1602     }
1603     return NULL;
1604 }
1605 
1606 /*
1607  * Given a symbol number in a referencing object, find the corresponding
1608  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1609  * no definition was found.  Returns a pointer to the Obj_Entry of the
1610  * defining object via the reference parameter DEFOBJ_OUT.
1611  */
1612 const Elf_Sym *
1613 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1614     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1615     RtldLockState *lockstate)
1616 {
1617     const Elf_Sym *ref;
1618     const Elf_Sym *def;
1619     const Obj_Entry *defobj;
1620     SymLook req;
1621     const char *name;
1622     int res;
1623 
1624     /*
1625      * If we have already found this symbol, get the information from
1626      * the cache.
1627      */
1628     if (symnum >= refobj->dynsymcount)
1629 	return NULL;	/* Bad object */
1630     if (cache != NULL && cache[symnum].sym != NULL) {
1631 	*defobj_out = cache[symnum].obj;
1632 	return cache[symnum].sym;
1633     }
1634 
1635     ref = refobj->symtab + symnum;
1636     name = refobj->strtab + ref->st_name;
1637     def = NULL;
1638     defobj = NULL;
1639 
1640     /*
1641      * We don't have to do a full scale lookup if the symbol is local.
1642      * We know it will bind to the instance in this load module; to
1643      * which we already have a pointer (ie ref). By not doing a lookup,
1644      * we not only improve performance, but it also avoids unresolvable
1645      * symbols when local symbols are not in the hash table. This has
1646      * been seen with the ia64 toolchain.
1647      */
1648     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1649 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1650 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1651 		symnum);
1652 	}
1653 	symlook_init(&req, name);
1654 	req.flags = flags;
1655 	req.ventry = fetch_ventry(refobj, symnum);
1656 	req.lockstate = lockstate;
1657 	res = symlook_default(&req, refobj);
1658 	if (res == 0) {
1659 	    def = req.sym_out;
1660 	    defobj = req.defobj_out;
1661 	}
1662     } else {
1663 	def = ref;
1664 	defobj = refobj;
1665     }
1666 
1667     /*
1668      * If we found no definition and the reference is weak, treat the
1669      * symbol as having the value zero.
1670      */
1671     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1672 	def = &sym_zero;
1673 	defobj = obj_main;
1674     }
1675 
1676     if (def != NULL) {
1677 	*defobj_out = defobj;
1678 	/* Record the information in the cache to avoid subsequent lookups. */
1679 	if (cache != NULL) {
1680 	    cache[symnum].sym = def;
1681 	    cache[symnum].obj = defobj;
1682 	}
1683     } else {
1684 	if (refobj != &obj_rtld)
1685 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1686     }
1687     return def;
1688 }
1689 
1690 /*
1691  * Return the search path from the ldconfig hints file, reading it if
1692  * necessary.  If nostdlib is true, then the default search paths are
1693  * not added to result.
1694  *
1695  * Returns NULL if there are problems with the hints file,
1696  * or if the search path there is empty.
1697  */
1698 static const char *
1699 gethints(bool nostdlib)
1700 {
1701 	static char *hints, *filtered_path;
1702 	static struct elfhints_hdr hdr;
1703 	struct fill_search_info_args sargs, hargs;
1704 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1705 	struct dl_serpath *SLPpath, *hintpath;
1706 	char *p;
1707 	struct stat hint_stat;
1708 	unsigned int SLPndx, hintndx, fndx, fcount;
1709 	int fd;
1710 	size_t flen;
1711 	uint32_t dl;
1712 	bool skip;
1713 
1714 	/* First call, read the hints file */
1715 	if (hints == NULL) {
1716 		/* Keep from trying again in case the hints file is bad. */
1717 		hints = "";
1718 
1719 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1720 			return (NULL);
1721 
1722 		/*
1723 		 * Check of hdr.dirlistlen value against type limit
1724 		 * intends to pacify static analyzers.  Further
1725 		 * paranoia leads to checks that dirlist is fully
1726 		 * contained in the file range.
1727 		 */
1728 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1729 		    hdr.magic != ELFHINTS_MAGIC ||
1730 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1731 		    fstat(fd, &hint_stat) == -1) {
1732 cleanup1:
1733 			close(fd);
1734 			hdr.dirlistlen = 0;
1735 			return (NULL);
1736 		}
1737 		dl = hdr.strtab;
1738 		if (dl + hdr.dirlist < dl)
1739 			goto cleanup1;
1740 		dl += hdr.dirlist;
1741 		if (dl + hdr.dirlistlen < dl)
1742 			goto cleanup1;
1743 		dl += hdr.dirlistlen;
1744 		if (dl > hint_stat.st_size)
1745 			goto cleanup1;
1746 		p = xmalloc(hdr.dirlistlen + 1);
1747 
1748 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1749 		    read(fd, p, hdr.dirlistlen + 1) !=
1750 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1751 			free(p);
1752 			goto cleanup1;
1753 		}
1754 		hints = p;
1755 		close(fd);
1756 	}
1757 
1758 	/*
1759 	 * If caller agreed to receive list which includes the default
1760 	 * paths, we are done. Otherwise, if we still did not
1761 	 * calculated filtered result, do it now.
1762 	 */
1763 	if (!nostdlib)
1764 		return (hints[0] != '\0' ? hints : NULL);
1765 	if (filtered_path != NULL)
1766 		goto filt_ret;
1767 
1768 	/*
1769 	 * Obtain the list of all configured search paths, and the
1770 	 * list of the default paths.
1771 	 *
1772 	 * First estimate the size of the results.
1773 	 */
1774 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1775 	smeta.dls_cnt = 0;
1776 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1777 	hmeta.dls_cnt = 0;
1778 
1779 	sargs.request = RTLD_DI_SERINFOSIZE;
1780 	sargs.serinfo = &smeta;
1781 	hargs.request = RTLD_DI_SERINFOSIZE;
1782 	hargs.serinfo = &hmeta;
1783 
1784 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1785 	path_enumerate(hints, fill_search_info, &hargs);
1786 
1787 	SLPinfo = xmalloc(smeta.dls_size);
1788 	hintinfo = xmalloc(hmeta.dls_size);
1789 
1790 	/*
1791 	 * Next fetch both sets of paths.
1792 	 */
1793 	sargs.request = RTLD_DI_SERINFO;
1794 	sargs.serinfo = SLPinfo;
1795 	sargs.serpath = &SLPinfo->dls_serpath[0];
1796 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1797 
1798 	hargs.request = RTLD_DI_SERINFO;
1799 	hargs.serinfo = hintinfo;
1800 	hargs.serpath = &hintinfo->dls_serpath[0];
1801 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1802 
1803 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1804 	path_enumerate(hints, fill_search_info, &hargs);
1805 
1806 	/*
1807 	 * Now calculate the difference between two sets, by excluding
1808 	 * standard paths from the full set.
1809 	 */
1810 	fndx = 0;
1811 	fcount = 0;
1812 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1813 	hintpath = &hintinfo->dls_serpath[0];
1814 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1815 		skip = false;
1816 		SLPpath = &SLPinfo->dls_serpath[0];
1817 		/*
1818 		 * Check each standard path against current.
1819 		 */
1820 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1821 			/* matched, skip the path */
1822 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1823 				skip = true;
1824 				break;
1825 			}
1826 		}
1827 		if (skip)
1828 			continue;
1829 		/*
1830 		 * Not matched against any standard path, add the path
1831 		 * to result. Separate consequtive paths with ':'.
1832 		 */
1833 		if (fcount > 0) {
1834 			filtered_path[fndx] = ':';
1835 			fndx++;
1836 		}
1837 		fcount++;
1838 		flen = strlen(hintpath->dls_name);
1839 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1840 		fndx += flen;
1841 	}
1842 	filtered_path[fndx] = '\0';
1843 
1844 	free(SLPinfo);
1845 	free(hintinfo);
1846 
1847 filt_ret:
1848 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1849 }
1850 
1851 static void
1852 init_dag(Obj_Entry *root)
1853 {
1854     const Needed_Entry *needed;
1855     const Objlist_Entry *elm;
1856     DoneList donelist;
1857 
1858     if (root->dag_inited)
1859 	return;
1860     donelist_init(&donelist);
1861 
1862     /* Root object belongs to own DAG. */
1863     objlist_push_tail(&root->dldags, root);
1864     objlist_push_tail(&root->dagmembers, root);
1865     donelist_check(&donelist, root);
1866 
1867     /*
1868      * Add dependencies of root object to DAG in breadth order
1869      * by exploiting the fact that each new object get added
1870      * to the tail of the dagmembers list.
1871      */
1872     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1873 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1874 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1875 		continue;
1876 	    objlist_push_tail(&needed->obj->dldags, root);
1877 	    objlist_push_tail(&root->dagmembers, needed->obj);
1878 	}
1879     }
1880     root->dag_inited = true;
1881 }
1882 
1883 static void
1884 init_marker(Obj_Entry *marker)
1885 {
1886 
1887 	bzero(marker, sizeof(*marker));
1888 	marker->marker = true;
1889 }
1890 
1891 Obj_Entry *
1892 globallist_curr(const Obj_Entry *obj)
1893 {
1894 
1895 	for (;;) {
1896 		if (obj == NULL)
1897 			return (NULL);
1898 		if (!obj->marker)
1899 			return (__DECONST(Obj_Entry *, obj));
1900 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1901 	}
1902 }
1903 
1904 Obj_Entry *
1905 globallist_next(const Obj_Entry *obj)
1906 {
1907 
1908 	for (;;) {
1909 		obj = TAILQ_NEXT(obj, next);
1910 		if (obj == NULL)
1911 			return (NULL);
1912 		if (!obj->marker)
1913 			return (__DECONST(Obj_Entry *, obj));
1914 	}
1915 }
1916 
1917 /* Prevent the object from being unmapped while the bind lock is dropped. */
1918 static void
1919 hold_object(Obj_Entry *obj)
1920 {
1921 
1922 	obj->holdcount++;
1923 }
1924 
1925 static void
1926 unhold_object(Obj_Entry *obj)
1927 {
1928 
1929 	assert(obj->holdcount > 0);
1930 	if (--obj->holdcount == 0 && obj->unholdfree)
1931 		release_object(obj);
1932 }
1933 
1934 static void
1935 process_z(Obj_Entry *root)
1936 {
1937 	const Objlist_Entry *elm;
1938 	Obj_Entry *obj;
1939 
1940 	/*
1941 	 * Walk over object DAG and process every dependent object
1942 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1943 	 * to grow their own DAG.
1944 	 *
1945 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1946 	 * symlook_global() to work.
1947 	 *
1948 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1949 	 */
1950 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1951 		obj = elm->obj;
1952 		if (obj == NULL)
1953 			continue;
1954 		if (obj->z_nodelete && !obj->ref_nodel) {
1955 			dbg("obj %s -z nodelete", obj->path);
1956 			init_dag(obj);
1957 			ref_dag(obj);
1958 			obj->ref_nodel = true;
1959 		}
1960 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1961 			dbg("obj %s -z global", obj->path);
1962 			objlist_push_tail(&list_global, obj);
1963 			init_dag(obj);
1964 		}
1965 	}
1966 }
1967 /*
1968  * Initialize the dynamic linker.  The argument is the address at which
1969  * the dynamic linker has been mapped into memory.  The primary task of
1970  * this function is to relocate the dynamic linker.
1971  */
1972 static void
1973 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1974 {
1975     Obj_Entry objtmp;	/* Temporary rtld object */
1976     const Elf_Ehdr *ehdr;
1977     const Elf_Dyn *dyn_rpath;
1978     const Elf_Dyn *dyn_soname;
1979     const Elf_Dyn *dyn_runpath;
1980 
1981 #ifdef RTLD_INIT_PAGESIZES_EARLY
1982     /* The page size is required by the dynamic memory allocator. */
1983     init_pagesizes(aux_info);
1984 #endif
1985 
1986     /*
1987      * Conjure up an Obj_Entry structure for the dynamic linker.
1988      *
1989      * The "path" member can't be initialized yet because string constants
1990      * cannot yet be accessed. Below we will set it correctly.
1991      */
1992     memset(&objtmp, 0, sizeof(objtmp));
1993     objtmp.path = NULL;
1994     objtmp.rtld = true;
1995     objtmp.mapbase = mapbase;
1996 #ifdef PIC
1997     objtmp.relocbase = mapbase;
1998 #endif
1999 
2000     objtmp.dynamic = rtld_dynamic(&objtmp);
2001     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2002     assert(objtmp.needed == NULL);
2003 #if !defined(__mips__)
2004     /* MIPS has a bogus DT_TEXTREL. */
2005     assert(!objtmp.textrel);
2006 #endif
2007     /*
2008      * Temporarily put the dynamic linker entry into the object list, so
2009      * that symbols can be found.
2010      */
2011     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2012 
2013     ehdr = (Elf_Ehdr *)mapbase;
2014     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2015     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2016 
2017     /* Initialize the object list. */
2018     TAILQ_INIT(&obj_list);
2019 
2020     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2021     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2022 
2023 #ifndef RTLD_INIT_PAGESIZES_EARLY
2024     /* The page size is required by the dynamic memory allocator. */
2025     init_pagesizes(aux_info);
2026 #endif
2027 
2028     if (aux_info[AT_OSRELDATE] != NULL)
2029 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2030 
2031     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2032 
2033     /* Replace the path with a dynamically allocated copy. */
2034     obj_rtld.path = xstrdup(ld_path_rtld);
2035 
2036     r_debug.r_brk = r_debug_state;
2037     r_debug.r_state = RT_CONSISTENT;
2038 }
2039 
2040 /*
2041  * Retrieve the array of supported page sizes.  The kernel provides the page
2042  * sizes in increasing order.
2043  */
2044 static void
2045 init_pagesizes(Elf_Auxinfo **aux_info)
2046 {
2047 	static size_t psa[MAXPAGESIZES];
2048 	int mib[2];
2049 	size_t len, size;
2050 
2051 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2052 	    NULL) {
2053 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2054 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2055 	} else {
2056 		len = 2;
2057 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2058 			size = sizeof(psa);
2059 		else {
2060 			/* As a fallback, retrieve the base page size. */
2061 			size = sizeof(psa[0]);
2062 			if (aux_info[AT_PAGESZ] != NULL) {
2063 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2064 				goto psa_filled;
2065 			} else {
2066 				mib[0] = CTL_HW;
2067 				mib[1] = HW_PAGESIZE;
2068 				len = 2;
2069 			}
2070 		}
2071 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2072 			_rtld_error("sysctl for hw.pagesize(s) failed");
2073 			rtld_die();
2074 		}
2075 psa_filled:
2076 		pagesizes = psa;
2077 	}
2078 	npagesizes = size / sizeof(pagesizes[0]);
2079 	/* Discard any invalid entries at the end of the array. */
2080 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2081 		npagesizes--;
2082 }
2083 
2084 /*
2085  * Add the init functions from a needed object list (and its recursive
2086  * needed objects) to "list".  This is not used directly; it is a helper
2087  * function for initlist_add_objects().  The write lock must be held
2088  * when this function is called.
2089  */
2090 static void
2091 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2092 {
2093     /* Recursively process the successor needed objects. */
2094     if (needed->next != NULL)
2095 	initlist_add_neededs(needed->next, list);
2096 
2097     /* Process the current needed object. */
2098     if (needed->obj != NULL)
2099 	initlist_add_objects(needed->obj, needed->obj, list);
2100 }
2101 
2102 /*
2103  * Scan all of the DAGs rooted in the range of objects from "obj" to
2104  * "tail" and add their init functions to "list".  This recurses over
2105  * the DAGs and ensure the proper init ordering such that each object's
2106  * needed libraries are initialized before the object itself.  At the
2107  * same time, this function adds the objects to the global finalization
2108  * list "list_fini" in the opposite order.  The write lock must be
2109  * held when this function is called.
2110  */
2111 static void
2112 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2113 {
2114     Obj_Entry *nobj;
2115 
2116     if (obj->init_scanned || obj->init_done)
2117 	return;
2118     obj->init_scanned = true;
2119 
2120     /* Recursively process the successor objects. */
2121     nobj = globallist_next(obj);
2122     if (nobj != NULL && obj != tail)
2123 	initlist_add_objects(nobj, tail, list);
2124 
2125     /* Recursively process the needed objects. */
2126     if (obj->needed != NULL)
2127 	initlist_add_neededs(obj->needed, list);
2128     if (obj->needed_filtees != NULL)
2129 	initlist_add_neededs(obj->needed_filtees, list);
2130     if (obj->needed_aux_filtees != NULL)
2131 	initlist_add_neededs(obj->needed_aux_filtees, list);
2132 
2133     /* Add the object to the init list. */
2134     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2135       obj->init_array != (Elf_Addr)NULL)
2136 	objlist_push_tail(list, obj);
2137 
2138     /* Add the object to the global fini list in the reverse order. */
2139     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2140       && !obj->on_fini_list) {
2141 	objlist_push_head(&list_fini, obj);
2142 	obj->on_fini_list = true;
2143     }
2144 }
2145 
2146 #ifndef FPTR_TARGET
2147 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2148 #endif
2149 
2150 static void
2151 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2152 {
2153     Needed_Entry *needed, *needed1;
2154 
2155     for (needed = n; needed != NULL; needed = needed->next) {
2156 	if (needed->obj != NULL) {
2157 	    dlclose_locked(needed->obj, lockstate);
2158 	    needed->obj = NULL;
2159 	}
2160     }
2161     for (needed = n; needed != NULL; needed = needed1) {
2162 	needed1 = needed->next;
2163 	free(needed);
2164     }
2165 }
2166 
2167 static void
2168 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2169 {
2170 
2171 	free_needed_filtees(obj->needed_filtees, lockstate);
2172 	obj->needed_filtees = NULL;
2173 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2174 	obj->needed_aux_filtees = NULL;
2175 	obj->filtees_loaded = false;
2176 }
2177 
2178 static void
2179 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2180     RtldLockState *lockstate)
2181 {
2182 
2183     for (; needed != NULL; needed = needed->next) {
2184 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2185 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2186 	  RTLD_LOCAL, lockstate);
2187     }
2188 }
2189 
2190 static void
2191 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2192 {
2193 
2194     lock_restart_for_upgrade(lockstate);
2195     if (!obj->filtees_loaded) {
2196 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2197 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2198 	obj->filtees_loaded = true;
2199     }
2200 }
2201 
2202 static int
2203 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2204 {
2205     Obj_Entry *obj1;
2206 
2207     for (; needed != NULL; needed = needed->next) {
2208 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2209 	  flags & ~RTLD_LO_NOLOAD);
2210 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2211 	    return (-1);
2212     }
2213     return (0);
2214 }
2215 
2216 /*
2217  * Given a shared object, traverse its list of needed objects, and load
2218  * each of them.  Returns 0 on success.  Generates an error message and
2219  * returns -1 on failure.
2220  */
2221 static int
2222 load_needed_objects(Obj_Entry *first, int flags)
2223 {
2224     Obj_Entry *obj;
2225 
2226     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2227 	if (obj->marker)
2228 	    continue;
2229 	if (process_needed(obj, obj->needed, flags) == -1)
2230 	    return (-1);
2231     }
2232     return (0);
2233 }
2234 
2235 static int
2236 load_preload_objects(void)
2237 {
2238     char *p = ld_preload;
2239     Obj_Entry *obj;
2240     static const char delim[] = " \t:;";
2241 
2242     if (p == NULL)
2243 	return 0;
2244 
2245     p += strspn(p, delim);
2246     while (*p != '\0') {
2247 	size_t len = strcspn(p, delim);
2248 	char savech;
2249 
2250 	savech = p[len];
2251 	p[len] = '\0';
2252 	obj = load_object(p, -1, NULL, 0);
2253 	if (obj == NULL)
2254 	    return -1;	/* XXX - cleanup */
2255 	obj->z_interpose = true;
2256 	p[len] = savech;
2257 	p += len;
2258 	p += strspn(p, delim);
2259     }
2260     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2261     return 0;
2262 }
2263 
2264 static const char *
2265 printable_path(const char *path)
2266 {
2267 
2268 	return (path == NULL ? "<unknown>" : path);
2269 }
2270 
2271 /*
2272  * Load a shared object into memory, if it is not already loaded.  The
2273  * object may be specified by name or by user-supplied file descriptor
2274  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2275  * duplicate is.
2276  *
2277  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2278  * on failure.
2279  */
2280 static Obj_Entry *
2281 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2282 {
2283     Obj_Entry *obj;
2284     int fd;
2285     struct stat sb;
2286     char *path;
2287 
2288     fd = -1;
2289     if (name != NULL) {
2290 	TAILQ_FOREACH(obj, &obj_list, next) {
2291 	    if (obj->marker || obj->doomed)
2292 		continue;
2293 	    if (object_match_name(obj, name))
2294 		return (obj);
2295 	}
2296 
2297 	path = find_library(name, refobj, &fd);
2298 	if (path == NULL)
2299 	    return (NULL);
2300     } else
2301 	path = NULL;
2302 
2303     if (fd >= 0) {
2304 	/*
2305 	 * search_library_pathfds() opens a fresh file descriptor for the
2306 	 * library, so there is no need to dup().
2307 	 */
2308     } else if (fd_u == -1) {
2309 	/*
2310 	 * If we didn't find a match by pathname, or the name is not
2311 	 * supplied, open the file and check again by device and inode.
2312 	 * This avoids false mismatches caused by multiple links or ".."
2313 	 * in pathnames.
2314 	 *
2315 	 * To avoid a race, we open the file and use fstat() rather than
2316 	 * using stat().
2317 	 */
2318 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2319 	    _rtld_error("Cannot open \"%s\"", path);
2320 	    free(path);
2321 	    return (NULL);
2322 	}
2323     } else {
2324 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2325 	if (fd == -1) {
2326 	    _rtld_error("Cannot dup fd");
2327 	    free(path);
2328 	    return (NULL);
2329 	}
2330     }
2331     if (fstat(fd, &sb) == -1) {
2332 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2333 	close(fd);
2334 	free(path);
2335 	return NULL;
2336     }
2337     TAILQ_FOREACH(obj, &obj_list, next) {
2338 	if (obj->marker || obj->doomed)
2339 	    continue;
2340 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2341 	    break;
2342     }
2343     if (obj != NULL && name != NULL) {
2344 	object_add_name(obj, name);
2345 	free(path);
2346 	close(fd);
2347 	return obj;
2348     }
2349     if (flags & RTLD_LO_NOLOAD) {
2350 	free(path);
2351 	close(fd);
2352 	return (NULL);
2353     }
2354 
2355     /* First use of this object, so we must map it in */
2356     obj = do_load_object(fd, name, path, &sb, flags);
2357     if (obj == NULL)
2358 	free(path);
2359     close(fd);
2360 
2361     return obj;
2362 }
2363 
2364 static Obj_Entry *
2365 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2366   int flags)
2367 {
2368     Obj_Entry *obj;
2369     struct statfs fs;
2370 
2371     /*
2372      * but first, make sure that environment variables haven't been
2373      * used to circumvent the noexec flag on a filesystem.
2374      */
2375     if (dangerous_ld_env) {
2376 	if (fstatfs(fd, &fs) != 0) {
2377 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2378 	    return NULL;
2379 	}
2380 	if (fs.f_flags & MNT_NOEXEC) {
2381 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2382 	    return NULL;
2383 	}
2384     }
2385     dbg("loading \"%s\"", printable_path(path));
2386     obj = map_object(fd, printable_path(path), sbp);
2387     if (obj == NULL)
2388         return NULL;
2389 
2390     /*
2391      * If DT_SONAME is present in the object, digest_dynamic2 already
2392      * added it to the object names.
2393      */
2394     if (name != NULL)
2395 	object_add_name(obj, name);
2396     obj->path = path;
2397     digest_dynamic(obj, 0);
2398     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2399 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2400     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2401       RTLD_LO_DLOPEN) {
2402 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2403 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2404 	munmap(obj->mapbase, obj->mapsize);
2405 	obj_free(obj);
2406 	return (NULL);
2407     }
2408 
2409     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2410     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2411     obj_count++;
2412     obj_loads++;
2413     linkmap_add(obj);	/* for GDB & dlinfo() */
2414     max_stack_flags |= obj->stack_flags;
2415 
2416     dbg("  %p .. %p: %s", obj->mapbase,
2417          obj->mapbase + obj->mapsize - 1, obj->path);
2418     if (obj->textrel)
2419 	dbg("  WARNING: %s has impure text", obj->path);
2420     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2421 	obj->path);
2422 
2423     return obj;
2424 }
2425 
2426 static Obj_Entry *
2427 obj_from_addr(const void *addr)
2428 {
2429     Obj_Entry *obj;
2430 
2431     TAILQ_FOREACH(obj, &obj_list, next) {
2432 	if (obj->marker)
2433 	    continue;
2434 	if (addr < (void *) obj->mapbase)
2435 	    continue;
2436 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2437 	    return obj;
2438     }
2439     return NULL;
2440 }
2441 
2442 static void
2443 preinit_main(void)
2444 {
2445     Elf_Addr *preinit_addr;
2446     int index;
2447 
2448     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2449     if (preinit_addr == NULL)
2450 	return;
2451 
2452     for (index = 0; index < obj_main->preinit_array_num; index++) {
2453 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2454 	    dbg("calling preinit function for %s at %p", obj_main->path,
2455 	      (void *)preinit_addr[index]);
2456 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2457 	      0, 0, obj_main->path);
2458 	    call_init_pointer(obj_main, preinit_addr[index]);
2459 	}
2460     }
2461 }
2462 
2463 /*
2464  * Call the finalization functions for each of the objects in "list"
2465  * belonging to the DAG of "root" and referenced once. If NULL "root"
2466  * is specified, every finalization function will be called regardless
2467  * of the reference count and the list elements won't be freed. All of
2468  * the objects are expected to have non-NULL fini functions.
2469  */
2470 static void
2471 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2472 {
2473     Objlist_Entry *elm;
2474     char *saved_msg;
2475     Elf_Addr *fini_addr;
2476     int index;
2477 
2478     assert(root == NULL || root->refcount == 1);
2479 
2480     if (root != NULL)
2481 	root->doomed = true;
2482 
2483     /*
2484      * Preserve the current error message since a fini function might
2485      * call into the dynamic linker and overwrite it.
2486      */
2487     saved_msg = errmsg_save();
2488     do {
2489 	STAILQ_FOREACH(elm, list, link) {
2490 	    if (root != NULL && (elm->obj->refcount != 1 ||
2491 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2492 		continue;
2493 	    /* Remove object from fini list to prevent recursive invocation. */
2494 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2495 	    /* Ensure that new references cannot be acquired. */
2496 	    elm->obj->doomed = true;
2497 
2498 	    hold_object(elm->obj);
2499 	    lock_release(rtld_bind_lock, lockstate);
2500 	    /*
2501 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2502 	     * When this happens, DT_FINI_ARRAY is processed first.
2503 	     */
2504 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2505 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2506 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2507 		  index--) {
2508 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2509 			dbg("calling fini function for %s at %p",
2510 			    elm->obj->path, (void *)fini_addr[index]);
2511 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2512 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2513 			call_initfini_pointer(elm->obj, fini_addr[index]);
2514 		    }
2515 		}
2516 	    }
2517 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2518 		dbg("calling fini function for %s at %p", elm->obj->path,
2519 		    (void *)elm->obj->fini);
2520 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2521 		    0, 0, elm->obj->path);
2522 		call_initfini_pointer(elm->obj, elm->obj->fini);
2523 	    }
2524 	    wlock_acquire(rtld_bind_lock, lockstate);
2525 	    unhold_object(elm->obj);
2526 	    /* No need to free anything if process is going down. */
2527 	    if (root != NULL)
2528 	    	free(elm);
2529 	    /*
2530 	     * We must restart the list traversal after every fini call
2531 	     * because a dlclose() call from the fini function or from
2532 	     * another thread might have modified the reference counts.
2533 	     */
2534 	    break;
2535 	}
2536     } while (elm != NULL);
2537     errmsg_restore(saved_msg);
2538 }
2539 
2540 /*
2541  * Call the initialization functions for each of the objects in
2542  * "list".  All of the objects are expected to have non-NULL init
2543  * functions.
2544  */
2545 static void
2546 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2547 {
2548     Objlist_Entry *elm;
2549     Obj_Entry *obj;
2550     char *saved_msg;
2551     Elf_Addr *init_addr;
2552     int index;
2553 
2554     /*
2555      * Clean init_scanned flag so that objects can be rechecked and
2556      * possibly initialized earlier if any of vectors called below
2557      * cause the change by using dlopen.
2558      */
2559     TAILQ_FOREACH(obj, &obj_list, next) {
2560 	if (obj->marker)
2561 	    continue;
2562 	obj->init_scanned = false;
2563     }
2564 
2565     /*
2566      * Preserve the current error message since an init function might
2567      * call into the dynamic linker and overwrite it.
2568      */
2569     saved_msg = errmsg_save();
2570     STAILQ_FOREACH(elm, list, link) {
2571 	if (elm->obj->init_done) /* Initialized early. */
2572 	    continue;
2573 	/*
2574 	 * Race: other thread might try to use this object before current
2575 	 * one completes the initialization. Not much can be done here
2576 	 * without better locking.
2577 	 */
2578 	elm->obj->init_done = true;
2579 	hold_object(elm->obj);
2580 	lock_release(rtld_bind_lock, lockstate);
2581 
2582         /*
2583          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2584          * When this happens, DT_INIT is processed first.
2585          */
2586 	if (elm->obj->init != (Elf_Addr)NULL) {
2587 	    dbg("calling init function for %s at %p", elm->obj->path,
2588 	        (void *)elm->obj->init);
2589 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2590 	        0, 0, elm->obj->path);
2591 	    call_initfini_pointer(elm->obj, elm->obj->init);
2592 	}
2593 	init_addr = (Elf_Addr *)elm->obj->init_array;
2594 	if (init_addr != NULL) {
2595 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2596 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2597 		    dbg("calling init function for %s at %p", elm->obj->path,
2598 			(void *)init_addr[index]);
2599 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2600 			(void *)init_addr[index], 0, 0, elm->obj->path);
2601 		    call_init_pointer(elm->obj, init_addr[index]);
2602 		}
2603 	    }
2604 	}
2605 	wlock_acquire(rtld_bind_lock, lockstate);
2606 	unhold_object(elm->obj);
2607     }
2608     errmsg_restore(saved_msg);
2609 }
2610 
2611 static void
2612 objlist_clear(Objlist *list)
2613 {
2614     Objlist_Entry *elm;
2615 
2616     while (!STAILQ_EMPTY(list)) {
2617 	elm = STAILQ_FIRST(list);
2618 	STAILQ_REMOVE_HEAD(list, link);
2619 	free(elm);
2620     }
2621 }
2622 
2623 static Objlist_Entry *
2624 objlist_find(Objlist *list, const Obj_Entry *obj)
2625 {
2626     Objlist_Entry *elm;
2627 
2628     STAILQ_FOREACH(elm, list, link)
2629 	if (elm->obj == obj)
2630 	    return elm;
2631     return NULL;
2632 }
2633 
2634 static void
2635 objlist_init(Objlist *list)
2636 {
2637     STAILQ_INIT(list);
2638 }
2639 
2640 static void
2641 objlist_push_head(Objlist *list, Obj_Entry *obj)
2642 {
2643     Objlist_Entry *elm;
2644 
2645     elm = NEW(Objlist_Entry);
2646     elm->obj = obj;
2647     STAILQ_INSERT_HEAD(list, elm, link);
2648 }
2649 
2650 static void
2651 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2652 {
2653     Objlist_Entry *elm;
2654 
2655     elm = NEW(Objlist_Entry);
2656     elm->obj = obj;
2657     STAILQ_INSERT_TAIL(list, elm, link);
2658 }
2659 
2660 static void
2661 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2662 {
2663 	Objlist_Entry *elm, *listelm;
2664 
2665 	STAILQ_FOREACH(listelm, list, link) {
2666 		if (listelm->obj == listobj)
2667 			break;
2668 	}
2669 	elm = NEW(Objlist_Entry);
2670 	elm->obj = obj;
2671 	if (listelm != NULL)
2672 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2673 	else
2674 		STAILQ_INSERT_TAIL(list, elm, link);
2675 }
2676 
2677 static void
2678 objlist_remove(Objlist *list, Obj_Entry *obj)
2679 {
2680     Objlist_Entry *elm;
2681 
2682     if ((elm = objlist_find(list, obj)) != NULL) {
2683 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2684 	free(elm);
2685     }
2686 }
2687 
2688 /*
2689  * Relocate dag rooted in the specified object.
2690  * Returns 0 on success, or -1 on failure.
2691  */
2692 
2693 static int
2694 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2695     int flags, RtldLockState *lockstate)
2696 {
2697 	Objlist_Entry *elm;
2698 	int error;
2699 
2700 	error = 0;
2701 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2702 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2703 		    lockstate);
2704 		if (error == -1)
2705 			break;
2706 	}
2707 	return (error);
2708 }
2709 
2710 /*
2711  * Prepare for, or clean after, relocating an object marked with
2712  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2713  * segments are remapped read-write.  After relocations are done, the
2714  * segment's permissions are returned back to the modes specified in
2715  * the phdrs.  If any relocation happened, or always for wired
2716  * program, COW is triggered.
2717  */
2718 static int
2719 reloc_textrel_prot(Obj_Entry *obj, bool before)
2720 {
2721 	const Elf_Phdr *ph;
2722 	void *base;
2723 	size_t l, sz;
2724 	int prot;
2725 
2726 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2727 	    l--, ph++) {
2728 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2729 			continue;
2730 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2731 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2732 		    trunc_page(ph->p_vaddr);
2733 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2734 		if (mprotect(base, sz, prot) == -1) {
2735 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2736 			    obj->path, before ? "en" : "dis",
2737 			    rtld_strerror(errno));
2738 			return (-1);
2739 		}
2740 	}
2741 	return (0);
2742 }
2743 
2744 /*
2745  * Relocate single object.
2746  * Returns 0 on success, or -1 on failure.
2747  */
2748 static int
2749 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2750     int flags, RtldLockState *lockstate)
2751 {
2752 
2753 	if (obj->relocated)
2754 		return (0);
2755 	obj->relocated = true;
2756 	if (obj != rtldobj)
2757 		dbg("relocating \"%s\"", obj->path);
2758 
2759 	if (obj->symtab == NULL || obj->strtab == NULL ||
2760 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2761 		_rtld_error("%s: Shared object has no run-time symbol table",
2762 			    obj->path);
2763 		return (-1);
2764 	}
2765 
2766 	/* There are relocations to the write-protected text segment. */
2767 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2768 		return (-1);
2769 
2770 	/* Process the non-PLT non-IFUNC relocations. */
2771 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2772 		return (-1);
2773 
2774 	/* Re-protected the text segment. */
2775 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2776 		return (-1);
2777 
2778 	/* Set the special PLT or GOT entries. */
2779 	init_pltgot(obj);
2780 
2781 	/* Process the PLT relocations. */
2782 	if (reloc_plt(obj) == -1)
2783 		return (-1);
2784 	/* Relocate the jump slots if we are doing immediate binding. */
2785 	if (obj->bind_now || bind_now)
2786 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2787 			return (-1);
2788 
2789 	/*
2790 	 * Process the non-PLT IFUNC relocations.  The relocations are
2791 	 * processed in two phases, because IFUNC resolvers may
2792 	 * reference other symbols, which must be readily processed
2793 	 * before resolvers are called.
2794 	 */
2795 	if (obj->non_plt_gnu_ifunc &&
2796 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2797 		return (-1);
2798 
2799 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2800 		return (-1);
2801 
2802 	/*
2803 	 * Set up the magic number and version in the Obj_Entry.  These
2804 	 * were checked in the crt1.o from the original ElfKit, so we
2805 	 * set them for backward compatibility.
2806 	 */
2807 	obj->magic = RTLD_MAGIC;
2808 	obj->version = RTLD_VERSION;
2809 
2810 	return (0);
2811 }
2812 
2813 /*
2814  * Relocate newly-loaded shared objects.  The argument is a pointer to
2815  * the Obj_Entry for the first such object.  All objects from the first
2816  * to the end of the list of objects are relocated.  Returns 0 on success,
2817  * or -1 on failure.
2818  */
2819 static int
2820 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2821     int flags, RtldLockState *lockstate)
2822 {
2823 	Obj_Entry *obj;
2824 	int error;
2825 
2826 	for (error = 0, obj = first;  obj != NULL;
2827 	    obj = TAILQ_NEXT(obj, next)) {
2828 		if (obj->marker)
2829 			continue;
2830 		error = relocate_object(obj, bind_now, rtldobj, flags,
2831 		    lockstate);
2832 		if (error == -1)
2833 			break;
2834 	}
2835 	return (error);
2836 }
2837 
2838 /*
2839  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2840  * referencing STT_GNU_IFUNC symbols is postponed till the other
2841  * relocations are done.  The indirect functions specified as
2842  * ifunc are allowed to call other symbols, so we need to have
2843  * objects relocated before asking for resolution from indirects.
2844  *
2845  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2846  * instead of the usual lazy handling of PLT slots.  It is
2847  * consistent with how GNU does it.
2848  */
2849 static int
2850 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2851     RtldLockState *lockstate)
2852 {
2853 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2854 		return (-1);
2855 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2856 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2857 		return (-1);
2858 	return (0);
2859 }
2860 
2861 static int
2862 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2863     RtldLockState *lockstate)
2864 {
2865 	Obj_Entry *obj;
2866 
2867 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2868 		if (obj->marker)
2869 			continue;
2870 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2871 			return (-1);
2872 	}
2873 	return (0);
2874 }
2875 
2876 static int
2877 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2878     RtldLockState *lockstate)
2879 {
2880 	Objlist_Entry *elm;
2881 
2882 	STAILQ_FOREACH(elm, list, link) {
2883 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2884 		    lockstate) == -1)
2885 			return (-1);
2886 	}
2887 	return (0);
2888 }
2889 
2890 /*
2891  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2892  * before the process exits.
2893  */
2894 static void
2895 rtld_exit(void)
2896 {
2897     RtldLockState lockstate;
2898 
2899     wlock_acquire(rtld_bind_lock, &lockstate);
2900     dbg("rtld_exit()");
2901     objlist_call_fini(&list_fini, NULL, &lockstate);
2902     /* No need to remove the items from the list, since we are exiting. */
2903     if (!libmap_disable)
2904         lm_fini();
2905     lock_release(rtld_bind_lock, &lockstate);
2906 }
2907 
2908 /*
2909  * Iterate over a search path, translate each element, and invoke the
2910  * callback on the result.
2911  */
2912 static void *
2913 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2914 {
2915     const char *trans;
2916     if (path == NULL)
2917 	return (NULL);
2918 
2919     path += strspn(path, ":;");
2920     while (*path != '\0') {
2921 	size_t len;
2922 	char  *res;
2923 
2924 	len = strcspn(path, ":;");
2925 	trans = lm_findn(NULL, path, len);
2926 	if (trans)
2927 	    res = callback(trans, strlen(trans), arg);
2928 	else
2929 	    res = callback(path, len, arg);
2930 
2931 	if (res != NULL)
2932 	    return (res);
2933 
2934 	path += len;
2935 	path += strspn(path, ":;");
2936     }
2937 
2938     return (NULL);
2939 }
2940 
2941 struct try_library_args {
2942     const char	*name;
2943     size_t	 namelen;
2944     char	*buffer;
2945     size_t	 buflen;
2946 };
2947 
2948 static void *
2949 try_library_path(const char *dir, size_t dirlen, void *param)
2950 {
2951     struct try_library_args *arg;
2952 
2953     arg = param;
2954     if (*dir == '/' || trust) {
2955 	char *pathname;
2956 
2957 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2958 		return (NULL);
2959 
2960 	pathname = arg->buffer;
2961 	strncpy(pathname, dir, dirlen);
2962 	pathname[dirlen] = '/';
2963 	strcpy(pathname + dirlen + 1, arg->name);
2964 
2965 	dbg("  Trying \"%s\"", pathname);
2966 	if (access(pathname, F_OK) == 0) {		/* We found it */
2967 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2968 	    strcpy(pathname, arg->buffer);
2969 	    return (pathname);
2970 	}
2971     }
2972     return (NULL);
2973 }
2974 
2975 static char *
2976 search_library_path(const char *name, const char *path)
2977 {
2978     char *p;
2979     struct try_library_args arg;
2980 
2981     if (path == NULL)
2982 	return NULL;
2983 
2984     arg.name = name;
2985     arg.namelen = strlen(name);
2986     arg.buffer = xmalloc(PATH_MAX);
2987     arg.buflen = PATH_MAX;
2988 
2989     p = path_enumerate(path, try_library_path, &arg);
2990 
2991     free(arg.buffer);
2992 
2993     return (p);
2994 }
2995 
2996 
2997 /*
2998  * Finds the library with the given name using the directory descriptors
2999  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3000  *
3001  * Returns a freshly-opened close-on-exec file descriptor for the library,
3002  * or -1 if the library cannot be found.
3003  */
3004 static char *
3005 search_library_pathfds(const char *name, const char *path, int *fdp)
3006 {
3007 	char *envcopy, *fdstr, *found, *last_token;
3008 	size_t len;
3009 	int dirfd, fd;
3010 
3011 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3012 
3013 	/* Don't load from user-specified libdirs into setuid binaries. */
3014 	if (!trust)
3015 		return (NULL);
3016 
3017 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3018 	if (path == NULL)
3019 		return (NULL);
3020 
3021 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3022 	if (name[0] == '/') {
3023 		dbg("Absolute path (%s) passed to %s", name, __func__);
3024 		return (NULL);
3025 	}
3026 
3027 	/*
3028 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3029 	 * copy of the path, as strtok_r rewrites separator tokens
3030 	 * with '\0'.
3031 	 */
3032 	found = NULL;
3033 	envcopy = xstrdup(path);
3034 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3035 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3036 		dirfd = parse_libdir(fdstr);
3037 		if (dirfd < 0)
3038 			break;
3039 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3040 		if (fd >= 0) {
3041 			*fdp = fd;
3042 			len = strlen(fdstr) + strlen(name) + 3;
3043 			found = xmalloc(len);
3044 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3045 				_rtld_error("error generating '%d/%s'",
3046 				    dirfd, name);
3047 				rtld_die();
3048 			}
3049 			dbg("open('%s') => %d", found, fd);
3050 			break;
3051 		}
3052 	}
3053 	free(envcopy);
3054 
3055 	return (found);
3056 }
3057 
3058 
3059 int
3060 dlclose(void *handle)
3061 {
3062 	RtldLockState lockstate;
3063 	int error;
3064 
3065 	wlock_acquire(rtld_bind_lock, &lockstate);
3066 	error = dlclose_locked(handle, &lockstate);
3067 	lock_release(rtld_bind_lock, &lockstate);
3068 	return (error);
3069 }
3070 
3071 static int
3072 dlclose_locked(void *handle, RtldLockState *lockstate)
3073 {
3074     Obj_Entry *root;
3075 
3076     root = dlcheck(handle);
3077     if (root == NULL)
3078 	return -1;
3079     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3080 	root->path);
3081 
3082     /* Unreference the object and its dependencies. */
3083     root->dl_refcount--;
3084 
3085     if (root->refcount == 1) {
3086 	/*
3087 	 * The object will be no longer referenced, so we must unload it.
3088 	 * First, call the fini functions.
3089 	 */
3090 	objlist_call_fini(&list_fini, root, lockstate);
3091 
3092 	unref_dag(root);
3093 
3094 	/* Finish cleaning up the newly-unreferenced objects. */
3095 	GDB_STATE(RT_DELETE,&root->linkmap);
3096 	unload_object(root, lockstate);
3097 	GDB_STATE(RT_CONSISTENT,NULL);
3098     } else
3099 	unref_dag(root);
3100 
3101     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3102     return 0;
3103 }
3104 
3105 char *
3106 dlerror(void)
3107 {
3108     char *msg = error_message;
3109     error_message = NULL;
3110     return msg;
3111 }
3112 
3113 /*
3114  * This function is deprecated and has no effect.
3115  */
3116 void
3117 dllockinit(void *context,
3118 	   void *(*lock_create)(void *context),
3119            void (*rlock_acquire)(void *lock),
3120            void (*wlock_acquire)(void *lock),
3121            void (*lock_release)(void *lock),
3122            void (*lock_destroy)(void *lock),
3123 	   void (*context_destroy)(void *context))
3124 {
3125     static void *cur_context;
3126     static void (*cur_context_destroy)(void *);
3127 
3128     /* Just destroy the context from the previous call, if necessary. */
3129     if (cur_context_destroy != NULL)
3130 	cur_context_destroy(cur_context);
3131     cur_context = context;
3132     cur_context_destroy = context_destroy;
3133 }
3134 
3135 void *
3136 dlopen(const char *name, int mode)
3137 {
3138 
3139 	return (rtld_dlopen(name, -1, mode));
3140 }
3141 
3142 void *
3143 fdlopen(int fd, int mode)
3144 {
3145 
3146 	return (rtld_dlopen(NULL, fd, mode));
3147 }
3148 
3149 static void *
3150 rtld_dlopen(const char *name, int fd, int mode)
3151 {
3152     RtldLockState lockstate;
3153     int lo_flags;
3154 
3155     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3156     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3157     if (ld_tracing != NULL) {
3158 	rlock_acquire(rtld_bind_lock, &lockstate);
3159 	if (sigsetjmp(lockstate.env, 0) != 0)
3160 	    lock_upgrade(rtld_bind_lock, &lockstate);
3161 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3162 	lock_release(rtld_bind_lock, &lockstate);
3163     }
3164     lo_flags = RTLD_LO_DLOPEN;
3165     if (mode & RTLD_NODELETE)
3166 	    lo_flags |= RTLD_LO_NODELETE;
3167     if (mode & RTLD_NOLOAD)
3168 	    lo_flags |= RTLD_LO_NOLOAD;
3169     if (ld_tracing != NULL)
3170 	    lo_flags |= RTLD_LO_TRACE;
3171 
3172     return (dlopen_object(name, fd, obj_main, lo_flags,
3173       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3174 }
3175 
3176 static void
3177 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3178 {
3179 
3180 	obj->dl_refcount--;
3181 	unref_dag(obj);
3182 	if (obj->refcount == 0)
3183 		unload_object(obj, lockstate);
3184 }
3185 
3186 static Obj_Entry *
3187 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3188     int mode, RtldLockState *lockstate)
3189 {
3190     Obj_Entry *old_obj_tail;
3191     Obj_Entry *obj;
3192     Objlist initlist;
3193     RtldLockState mlockstate;
3194     int result;
3195 
3196     objlist_init(&initlist);
3197 
3198     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3199 	wlock_acquire(rtld_bind_lock, &mlockstate);
3200 	lockstate = &mlockstate;
3201     }
3202     GDB_STATE(RT_ADD,NULL);
3203 
3204     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3205     obj = NULL;
3206     if (name == NULL && fd == -1) {
3207 	obj = obj_main;
3208 	obj->refcount++;
3209     } else {
3210 	obj = load_object(name, fd, refobj, lo_flags);
3211     }
3212 
3213     if (obj) {
3214 	obj->dl_refcount++;
3215 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3216 	    objlist_push_tail(&list_global, obj);
3217 	if (globallist_next(old_obj_tail) != NULL) {
3218 	    /* We loaded something new. */
3219 	    assert(globallist_next(old_obj_tail) == obj);
3220 	    result = load_needed_objects(obj,
3221 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3222 	    init_dag(obj);
3223 	    ref_dag(obj);
3224 	    if (result != -1)
3225 		result = rtld_verify_versions(&obj->dagmembers);
3226 	    if (result != -1 && ld_tracing)
3227 		goto trace;
3228 	    if (result == -1 || relocate_object_dag(obj,
3229 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3230 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3231 	      lockstate) == -1) {
3232 		dlopen_cleanup(obj, lockstate);
3233 		obj = NULL;
3234 	    } else if (lo_flags & RTLD_LO_EARLY) {
3235 		/*
3236 		 * Do not call the init functions for early loaded
3237 		 * filtees.  The image is still not initialized enough
3238 		 * for them to work.
3239 		 *
3240 		 * Our object is found by the global object list and
3241 		 * will be ordered among all init calls done right
3242 		 * before transferring control to main.
3243 		 */
3244 	    } else {
3245 		/* Make list of init functions to call. */
3246 		initlist_add_objects(obj, obj, &initlist);
3247 	    }
3248 	    /*
3249 	     * Process all no_delete or global objects here, given
3250 	     * them own DAGs to prevent their dependencies from being
3251 	     * unloaded.  This has to be done after we have loaded all
3252 	     * of the dependencies, so that we do not miss any.
3253 	     */
3254 	    if (obj != NULL)
3255 		process_z(obj);
3256 	} else {
3257 	    /*
3258 	     * Bump the reference counts for objects on this DAG.  If
3259 	     * this is the first dlopen() call for the object that was
3260 	     * already loaded as a dependency, initialize the dag
3261 	     * starting at it.
3262 	     */
3263 	    init_dag(obj);
3264 	    ref_dag(obj);
3265 
3266 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3267 		goto trace;
3268 	}
3269 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3270 	  obj->z_nodelete) && !obj->ref_nodel) {
3271 	    dbg("obj %s nodelete", obj->path);
3272 	    ref_dag(obj);
3273 	    obj->z_nodelete = obj->ref_nodel = true;
3274 	}
3275     }
3276 
3277     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3278 	name);
3279     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3280 
3281     if (!(lo_flags & RTLD_LO_EARLY)) {
3282 	map_stacks_exec(lockstate);
3283     }
3284 
3285     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3286       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3287       lockstate) == -1) {
3288 	objlist_clear(&initlist);
3289 	dlopen_cleanup(obj, lockstate);
3290 	if (lockstate == &mlockstate)
3291 	    lock_release(rtld_bind_lock, lockstate);
3292 	return (NULL);
3293     }
3294 
3295     if (!(lo_flags & RTLD_LO_EARLY)) {
3296 	/* Call the init functions. */
3297 	objlist_call_init(&initlist, lockstate);
3298     }
3299     objlist_clear(&initlist);
3300     if (lockstate == &mlockstate)
3301 	lock_release(rtld_bind_lock, lockstate);
3302     return obj;
3303 trace:
3304     trace_loaded_objects(obj);
3305     if (lockstate == &mlockstate)
3306 	lock_release(rtld_bind_lock, lockstate);
3307     exit(0);
3308 }
3309 
3310 static void *
3311 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3312     int flags)
3313 {
3314     DoneList donelist;
3315     const Obj_Entry *obj, *defobj;
3316     const Elf_Sym *def;
3317     SymLook req;
3318     RtldLockState lockstate;
3319     tls_index ti;
3320     void *sym;
3321     int res;
3322 
3323     def = NULL;
3324     defobj = NULL;
3325     symlook_init(&req, name);
3326     req.ventry = ve;
3327     req.flags = flags | SYMLOOK_IN_PLT;
3328     req.lockstate = &lockstate;
3329 
3330     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3331     rlock_acquire(rtld_bind_lock, &lockstate);
3332     if (sigsetjmp(lockstate.env, 0) != 0)
3333 	    lock_upgrade(rtld_bind_lock, &lockstate);
3334     if (handle == NULL || handle == RTLD_NEXT ||
3335 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3336 
3337 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3338 	    _rtld_error("Cannot determine caller's shared object");
3339 	    lock_release(rtld_bind_lock, &lockstate);
3340 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3341 	    return NULL;
3342 	}
3343 	if (handle == NULL) {	/* Just the caller's shared object. */
3344 	    res = symlook_obj(&req, obj);
3345 	    if (res == 0) {
3346 		def = req.sym_out;
3347 		defobj = req.defobj_out;
3348 	    }
3349 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3350 		   handle == RTLD_SELF) { /* ... caller included */
3351 	    if (handle == RTLD_NEXT)
3352 		obj = globallist_next(obj);
3353 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3354 		if (obj->marker)
3355 		    continue;
3356 		res = symlook_obj(&req, obj);
3357 		if (res == 0) {
3358 		    if (def == NULL ||
3359 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3360 			def = req.sym_out;
3361 			defobj = req.defobj_out;
3362 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3363 			    break;
3364 		    }
3365 		}
3366 	    }
3367 	    /*
3368 	     * Search the dynamic linker itself, and possibly resolve the
3369 	     * symbol from there.  This is how the application links to
3370 	     * dynamic linker services such as dlopen.
3371 	     */
3372 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3373 		res = symlook_obj(&req, &obj_rtld);
3374 		if (res == 0) {
3375 		    def = req.sym_out;
3376 		    defobj = req.defobj_out;
3377 		}
3378 	    }
3379 	} else {
3380 	    assert(handle == RTLD_DEFAULT);
3381 	    res = symlook_default(&req, obj);
3382 	    if (res == 0) {
3383 		defobj = req.defobj_out;
3384 		def = req.sym_out;
3385 	    }
3386 	}
3387     } else {
3388 	if ((obj = dlcheck(handle)) == NULL) {
3389 	    lock_release(rtld_bind_lock, &lockstate);
3390 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3391 	    return NULL;
3392 	}
3393 
3394 	donelist_init(&donelist);
3395 	if (obj->mainprog) {
3396             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3397 	    res = symlook_global(&req, &donelist);
3398 	    if (res == 0) {
3399 		def = req.sym_out;
3400 		defobj = req.defobj_out;
3401 	    }
3402 	    /*
3403 	     * Search the dynamic linker itself, and possibly resolve the
3404 	     * symbol from there.  This is how the application links to
3405 	     * dynamic linker services such as dlopen.
3406 	     */
3407 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3408 		res = symlook_obj(&req, &obj_rtld);
3409 		if (res == 0) {
3410 		    def = req.sym_out;
3411 		    defobj = req.defobj_out;
3412 		}
3413 	    }
3414 	}
3415 	else {
3416 	    /* Search the whole DAG rooted at the given object. */
3417 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3418 	    if (res == 0) {
3419 		def = req.sym_out;
3420 		defobj = req.defobj_out;
3421 	    }
3422 	}
3423     }
3424 
3425     if (def != NULL) {
3426 	lock_release(rtld_bind_lock, &lockstate);
3427 
3428 	/*
3429 	 * The value required by the caller is derived from the value
3430 	 * of the symbol. this is simply the relocated value of the
3431 	 * symbol.
3432 	 */
3433 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3434 	    sym = make_function_pointer(def, defobj);
3435 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3436 	    sym = rtld_resolve_ifunc(defobj, def);
3437 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3438 	    ti.ti_module = defobj->tlsindex;
3439 	    ti.ti_offset = def->st_value;
3440 	    sym = __tls_get_addr(&ti);
3441 	} else
3442 	    sym = defobj->relocbase + def->st_value;
3443 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3444 	return (sym);
3445     }
3446 
3447     _rtld_error("Undefined symbol \"%s\"", name);
3448     lock_release(rtld_bind_lock, &lockstate);
3449     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3450     return NULL;
3451 }
3452 
3453 void *
3454 dlsym(void *handle, const char *name)
3455 {
3456 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3457 	    SYMLOOK_DLSYM);
3458 }
3459 
3460 dlfunc_t
3461 dlfunc(void *handle, const char *name)
3462 {
3463 	union {
3464 		void *d;
3465 		dlfunc_t f;
3466 	} rv;
3467 
3468 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3469 	    SYMLOOK_DLSYM);
3470 	return (rv.f);
3471 }
3472 
3473 void *
3474 dlvsym(void *handle, const char *name, const char *version)
3475 {
3476 	Ver_Entry ventry;
3477 
3478 	ventry.name = version;
3479 	ventry.file = NULL;
3480 	ventry.hash = elf_hash(version);
3481 	ventry.flags= 0;
3482 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3483 	    SYMLOOK_DLSYM);
3484 }
3485 
3486 int
3487 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3488 {
3489     const Obj_Entry *obj;
3490     RtldLockState lockstate;
3491 
3492     rlock_acquire(rtld_bind_lock, &lockstate);
3493     obj = obj_from_addr(addr);
3494     if (obj == NULL) {
3495         _rtld_error("No shared object contains address");
3496 	lock_release(rtld_bind_lock, &lockstate);
3497         return (0);
3498     }
3499     rtld_fill_dl_phdr_info(obj, phdr_info);
3500     lock_release(rtld_bind_lock, &lockstate);
3501     return (1);
3502 }
3503 
3504 int
3505 dladdr(const void *addr, Dl_info *info)
3506 {
3507     const Obj_Entry *obj;
3508     const Elf_Sym *def;
3509     void *symbol_addr;
3510     unsigned long symoffset;
3511     RtldLockState lockstate;
3512 
3513     rlock_acquire(rtld_bind_lock, &lockstate);
3514     obj = obj_from_addr(addr);
3515     if (obj == NULL) {
3516         _rtld_error("No shared object contains address");
3517 	lock_release(rtld_bind_lock, &lockstate);
3518         return 0;
3519     }
3520     info->dli_fname = obj->path;
3521     info->dli_fbase = obj->mapbase;
3522     info->dli_saddr = (void *)0;
3523     info->dli_sname = NULL;
3524 
3525     /*
3526      * Walk the symbol list looking for the symbol whose address is
3527      * closest to the address sent in.
3528      */
3529     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3530         def = obj->symtab + symoffset;
3531 
3532         /*
3533          * For skip the symbol if st_shndx is either SHN_UNDEF or
3534          * SHN_COMMON.
3535          */
3536         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3537             continue;
3538 
3539         /*
3540          * If the symbol is greater than the specified address, or if it
3541          * is further away from addr than the current nearest symbol,
3542          * then reject it.
3543          */
3544         symbol_addr = obj->relocbase + def->st_value;
3545         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3546             continue;
3547 
3548         /* Update our idea of the nearest symbol. */
3549         info->dli_sname = obj->strtab + def->st_name;
3550         info->dli_saddr = symbol_addr;
3551 
3552         /* Exact match? */
3553         if (info->dli_saddr == addr)
3554             break;
3555     }
3556     lock_release(rtld_bind_lock, &lockstate);
3557     return 1;
3558 }
3559 
3560 int
3561 dlinfo(void *handle, int request, void *p)
3562 {
3563     const Obj_Entry *obj;
3564     RtldLockState lockstate;
3565     int error;
3566 
3567     rlock_acquire(rtld_bind_lock, &lockstate);
3568 
3569     if (handle == NULL || handle == RTLD_SELF) {
3570 	void *retaddr;
3571 
3572 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3573 	if ((obj = obj_from_addr(retaddr)) == NULL)
3574 	    _rtld_error("Cannot determine caller's shared object");
3575     } else
3576 	obj = dlcheck(handle);
3577 
3578     if (obj == NULL) {
3579 	lock_release(rtld_bind_lock, &lockstate);
3580 	return (-1);
3581     }
3582 
3583     error = 0;
3584     switch (request) {
3585     case RTLD_DI_LINKMAP:
3586 	*((struct link_map const **)p) = &obj->linkmap;
3587 	break;
3588     case RTLD_DI_ORIGIN:
3589 	error = rtld_dirname(obj->path, p);
3590 	break;
3591 
3592     case RTLD_DI_SERINFOSIZE:
3593     case RTLD_DI_SERINFO:
3594 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3595 	break;
3596 
3597     default:
3598 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3599 	error = -1;
3600     }
3601 
3602     lock_release(rtld_bind_lock, &lockstate);
3603 
3604     return (error);
3605 }
3606 
3607 static void
3608 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3609 {
3610 
3611 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3612 	phdr_info->dlpi_name = obj->path;
3613 	phdr_info->dlpi_phdr = obj->phdr;
3614 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3615 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3616 	phdr_info->dlpi_tls_data = obj->tlsinit;
3617 	phdr_info->dlpi_adds = obj_loads;
3618 	phdr_info->dlpi_subs = obj_loads - obj_count;
3619 }
3620 
3621 int
3622 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3623 {
3624 	struct dl_phdr_info phdr_info;
3625 	Obj_Entry *obj, marker;
3626 	RtldLockState bind_lockstate, phdr_lockstate;
3627 	int error;
3628 
3629 	init_marker(&marker);
3630 	error = 0;
3631 
3632 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3633 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3634 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3635 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3636 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3637 		hold_object(obj);
3638 		lock_release(rtld_bind_lock, &bind_lockstate);
3639 
3640 		error = callback(&phdr_info, sizeof phdr_info, param);
3641 
3642 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3643 		unhold_object(obj);
3644 		obj = globallist_next(&marker);
3645 		TAILQ_REMOVE(&obj_list, &marker, next);
3646 		if (error != 0) {
3647 			lock_release(rtld_bind_lock, &bind_lockstate);
3648 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3649 			return (error);
3650 		}
3651 	}
3652 
3653 	if (error == 0) {
3654 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3655 		lock_release(rtld_bind_lock, &bind_lockstate);
3656 		error = callback(&phdr_info, sizeof(phdr_info), param);
3657 	}
3658 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3659 	return (error);
3660 }
3661 
3662 static void *
3663 fill_search_info(const char *dir, size_t dirlen, void *param)
3664 {
3665     struct fill_search_info_args *arg;
3666 
3667     arg = param;
3668 
3669     if (arg->request == RTLD_DI_SERINFOSIZE) {
3670 	arg->serinfo->dls_cnt ++;
3671 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3672     } else {
3673 	struct dl_serpath *s_entry;
3674 
3675 	s_entry = arg->serpath;
3676 	s_entry->dls_name  = arg->strspace;
3677 	s_entry->dls_flags = arg->flags;
3678 
3679 	strncpy(arg->strspace, dir, dirlen);
3680 	arg->strspace[dirlen] = '\0';
3681 
3682 	arg->strspace += dirlen + 1;
3683 	arg->serpath++;
3684     }
3685 
3686     return (NULL);
3687 }
3688 
3689 static int
3690 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3691 {
3692     struct dl_serinfo _info;
3693     struct fill_search_info_args args;
3694 
3695     args.request = RTLD_DI_SERINFOSIZE;
3696     args.serinfo = &_info;
3697 
3698     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3699     _info.dls_cnt  = 0;
3700 
3701     path_enumerate(obj->rpath, fill_search_info, &args);
3702     path_enumerate(ld_library_path, fill_search_info, &args);
3703     path_enumerate(obj->runpath, fill_search_info, &args);
3704     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3705     if (!obj->z_nodeflib)
3706       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3707 
3708 
3709     if (request == RTLD_DI_SERINFOSIZE) {
3710 	info->dls_size = _info.dls_size;
3711 	info->dls_cnt = _info.dls_cnt;
3712 	return (0);
3713     }
3714 
3715     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3716 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3717 	return (-1);
3718     }
3719 
3720     args.request  = RTLD_DI_SERINFO;
3721     args.serinfo  = info;
3722     args.serpath  = &info->dls_serpath[0];
3723     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3724 
3725     args.flags = LA_SER_RUNPATH;
3726     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3727 	return (-1);
3728 
3729     args.flags = LA_SER_LIBPATH;
3730     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3731 	return (-1);
3732 
3733     args.flags = LA_SER_RUNPATH;
3734     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3735 	return (-1);
3736 
3737     args.flags = LA_SER_CONFIG;
3738     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3739       != NULL)
3740 	return (-1);
3741 
3742     args.flags = LA_SER_DEFAULT;
3743     if (!obj->z_nodeflib &&
3744       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3745 	return (-1);
3746     return (0);
3747 }
3748 
3749 static int
3750 rtld_dirname(const char *path, char *bname)
3751 {
3752     const char *endp;
3753 
3754     /* Empty or NULL string gets treated as "." */
3755     if (path == NULL || *path == '\0') {
3756 	bname[0] = '.';
3757 	bname[1] = '\0';
3758 	return (0);
3759     }
3760 
3761     /* Strip trailing slashes */
3762     endp = path + strlen(path) - 1;
3763     while (endp > path && *endp == '/')
3764 	endp--;
3765 
3766     /* Find the start of the dir */
3767     while (endp > path && *endp != '/')
3768 	endp--;
3769 
3770     /* Either the dir is "/" or there are no slashes */
3771     if (endp == path) {
3772 	bname[0] = *endp == '/' ? '/' : '.';
3773 	bname[1] = '\0';
3774 	return (0);
3775     } else {
3776 	do {
3777 	    endp--;
3778 	} while (endp > path && *endp == '/');
3779     }
3780 
3781     if (endp - path + 2 > PATH_MAX)
3782     {
3783 	_rtld_error("Filename is too long: %s", path);
3784 	return(-1);
3785     }
3786 
3787     strncpy(bname, path, endp - path + 1);
3788     bname[endp - path + 1] = '\0';
3789     return (0);
3790 }
3791 
3792 static int
3793 rtld_dirname_abs(const char *path, char *base)
3794 {
3795 	char *last;
3796 
3797 	if (realpath(path, base) == NULL)
3798 		return (-1);
3799 	dbg("%s -> %s", path, base);
3800 	last = strrchr(base, '/');
3801 	if (last == NULL)
3802 		return (-1);
3803 	if (last != base)
3804 		*last = '\0';
3805 	return (0);
3806 }
3807 
3808 static void
3809 linkmap_add(Obj_Entry *obj)
3810 {
3811     struct link_map *l = &obj->linkmap;
3812     struct link_map *prev;
3813 
3814     obj->linkmap.l_name = obj->path;
3815     obj->linkmap.l_addr = obj->mapbase;
3816     obj->linkmap.l_ld = obj->dynamic;
3817 #ifdef __mips__
3818     /* GDB needs load offset on MIPS to use the symbols */
3819     obj->linkmap.l_offs = obj->relocbase;
3820 #endif
3821 
3822     if (r_debug.r_map == NULL) {
3823 	r_debug.r_map = l;
3824 	return;
3825     }
3826 
3827     /*
3828      * Scan to the end of the list, but not past the entry for the
3829      * dynamic linker, which we want to keep at the very end.
3830      */
3831     for (prev = r_debug.r_map;
3832       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3833       prev = prev->l_next)
3834 	;
3835 
3836     /* Link in the new entry. */
3837     l->l_prev = prev;
3838     l->l_next = prev->l_next;
3839     if (l->l_next != NULL)
3840 	l->l_next->l_prev = l;
3841     prev->l_next = l;
3842 }
3843 
3844 static void
3845 linkmap_delete(Obj_Entry *obj)
3846 {
3847     struct link_map *l = &obj->linkmap;
3848 
3849     if (l->l_prev == NULL) {
3850 	if ((r_debug.r_map = l->l_next) != NULL)
3851 	    l->l_next->l_prev = NULL;
3852 	return;
3853     }
3854 
3855     if ((l->l_prev->l_next = l->l_next) != NULL)
3856 	l->l_next->l_prev = l->l_prev;
3857 }
3858 
3859 /*
3860  * Function for the debugger to set a breakpoint on to gain control.
3861  *
3862  * The two parameters allow the debugger to easily find and determine
3863  * what the runtime loader is doing and to whom it is doing it.
3864  *
3865  * When the loadhook trap is hit (r_debug_state, set at program
3866  * initialization), the arguments can be found on the stack:
3867  *
3868  *  +8   struct link_map *m
3869  *  +4   struct r_debug  *rd
3870  *  +0   RetAddr
3871  */
3872 void
3873 r_debug_state(struct r_debug* rd, struct link_map *m)
3874 {
3875     /*
3876      * The following is a hack to force the compiler to emit calls to
3877      * this function, even when optimizing.  If the function is empty,
3878      * the compiler is not obliged to emit any code for calls to it,
3879      * even when marked __noinline.  However, gdb depends on those
3880      * calls being made.
3881      */
3882     __compiler_membar();
3883 }
3884 
3885 /*
3886  * A function called after init routines have completed. This can be used to
3887  * break before a program's entry routine is called, and can be used when
3888  * main is not available in the symbol table.
3889  */
3890 void
3891 _r_debug_postinit(struct link_map *m)
3892 {
3893 
3894 	/* See r_debug_state(). */
3895 	__compiler_membar();
3896 }
3897 
3898 static void
3899 release_object(Obj_Entry *obj)
3900 {
3901 
3902 	if (obj->holdcount > 0) {
3903 		obj->unholdfree = true;
3904 		return;
3905 	}
3906 	munmap(obj->mapbase, obj->mapsize);
3907 	linkmap_delete(obj);
3908 	obj_free(obj);
3909 }
3910 
3911 /*
3912  * Get address of the pointer variable in the main program.
3913  * Prefer non-weak symbol over the weak one.
3914  */
3915 static const void **
3916 get_program_var_addr(const char *name, RtldLockState *lockstate)
3917 {
3918     SymLook req;
3919     DoneList donelist;
3920 
3921     symlook_init(&req, name);
3922     req.lockstate = lockstate;
3923     donelist_init(&donelist);
3924     if (symlook_global(&req, &donelist) != 0)
3925 	return (NULL);
3926     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3927 	return ((const void **)make_function_pointer(req.sym_out,
3928 	  req.defobj_out));
3929     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3930 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3931     else
3932 	return ((const void **)(req.defobj_out->relocbase +
3933 	  req.sym_out->st_value));
3934 }
3935 
3936 /*
3937  * Set a pointer variable in the main program to the given value.  This
3938  * is used to set key variables such as "environ" before any of the
3939  * init functions are called.
3940  */
3941 static void
3942 set_program_var(const char *name, const void *value)
3943 {
3944     const void **addr;
3945 
3946     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3947 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3948 	*addr = value;
3949     }
3950 }
3951 
3952 /*
3953  * Search the global objects, including dependencies and main object,
3954  * for the given symbol.
3955  */
3956 static int
3957 symlook_global(SymLook *req, DoneList *donelist)
3958 {
3959     SymLook req1;
3960     const Objlist_Entry *elm;
3961     int res;
3962 
3963     symlook_init_from_req(&req1, req);
3964 
3965     /* Search all objects loaded at program start up. */
3966     if (req->defobj_out == NULL ||
3967       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3968 	res = symlook_list(&req1, &list_main, donelist);
3969 	if (res == 0 && (req->defobj_out == NULL ||
3970 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3971 	    req->sym_out = req1.sym_out;
3972 	    req->defobj_out = req1.defobj_out;
3973 	    assert(req->defobj_out != NULL);
3974 	}
3975     }
3976 
3977     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3978     STAILQ_FOREACH(elm, &list_global, link) {
3979 	if (req->defobj_out != NULL &&
3980 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3981 	    break;
3982 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3983 	if (res == 0 && (req->defobj_out == NULL ||
3984 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3985 	    req->sym_out = req1.sym_out;
3986 	    req->defobj_out = req1.defobj_out;
3987 	    assert(req->defobj_out != NULL);
3988 	}
3989     }
3990 
3991     return (req->sym_out != NULL ? 0 : ESRCH);
3992 }
3993 
3994 /*
3995  * Given a symbol name in a referencing object, find the corresponding
3996  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3997  * no definition was found.  Returns a pointer to the Obj_Entry of the
3998  * defining object via the reference parameter DEFOBJ_OUT.
3999  */
4000 static int
4001 symlook_default(SymLook *req, const Obj_Entry *refobj)
4002 {
4003     DoneList donelist;
4004     const Objlist_Entry *elm;
4005     SymLook req1;
4006     int res;
4007 
4008     donelist_init(&donelist);
4009     symlook_init_from_req(&req1, req);
4010 
4011     /*
4012      * Look first in the referencing object if linked symbolically,
4013      * and similarly handle protected symbols.
4014      */
4015     res = symlook_obj(&req1, refobj);
4016     if (res == 0 && (refobj->symbolic ||
4017       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4018 	req->sym_out = req1.sym_out;
4019 	req->defobj_out = req1.defobj_out;
4020 	assert(req->defobj_out != NULL);
4021     }
4022     if (refobj->symbolic || req->defobj_out != NULL)
4023 	donelist_check(&donelist, refobj);
4024 
4025     symlook_global(req, &donelist);
4026 
4027     /* Search all dlopened DAGs containing the referencing object. */
4028     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4029 	if (req->sym_out != NULL &&
4030 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4031 	    break;
4032 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4033 	if (res == 0 && (req->sym_out == NULL ||
4034 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4035 	    req->sym_out = req1.sym_out;
4036 	    req->defobj_out = req1.defobj_out;
4037 	    assert(req->defobj_out != NULL);
4038 	}
4039     }
4040 
4041     /*
4042      * Search the dynamic linker itself, and possibly resolve the
4043      * symbol from there.  This is how the application links to
4044      * dynamic linker services such as dlopen.
4045      */
4046     if (req->sym_out == NULL ||
4047       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4048 	res = symlook_obj(&req1, &obj_rtld);
4049 	if (res == 0) {
4050 	    req->sym_out = req1.sym_out;
4051 	    req->defobj_out = req1.defobj_out;
4052 	    assert(req->defobj_out != NULL);
4053 	}
4054     }
4055 
4056     return (req->sym_out != NULL ? 0 : ESRCH);
4057 }
4058 
4059 static int
4060 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4061 {
4062     const Elf_Sym *def;
4063     const Obj_Entry *defobj;
4064     const Objlist_Entry *elm;
4065     SymLook req1;
4066     int res;
4067 
4068     def = NULL;
4069     defobj = NULL;
4070     STAILQ_FOREACH(elm, objlist, link) {
4071 	if (donelist_check(dlp, elm->obj))
4072 	    continue;
4073 	symlook_init_from_req(&req1, req);
4074 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4075 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4076 		def = req1.sym_out;
4077 		defobj = req1.defobj_out;
4078 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4079 		    break;
4080 	    }
4081 	}
4082     }
4083     if (def != NULL) {
4084 	req->sym_out = def;
4085 	req->defobj_out = defobj;
4086 	return (0);
4087     }
4088     return (ESRCH);
4089 }
4090 
4091 /*
4092  * Search the chain of DAGS cointed to by the given Needed_Entry
4093  * for a symbol of the given name.  Each DAG is scanned completely
4094  * before advancing to the next one.  Returns a pointer to the symbol,
4095  * or NULL if no definition was found.
4096  */
4097 static int
4098 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4099 {
4100     const Elf_Sym *def;
4101     const Needed_Entry *n;
4102     const Obj_Entry *defobj;
4103     SymLook req1;
4104     int res;
4105 
4106     def = NULL;
4107     defobj = NULL;
4108     symlook_init_from_req(&req1, req);
4109     for (n = needed; n != NULL; n = n->next) {
4110 	if (n->obj == NULL ||
4111 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4112 	    continue;
4113 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4114 	    def = req1.sym_out;
4115 	    defobj = req1.defobj_out;
4116 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4117 		break;
4118 	}
4119     }
4120     if (def != NULL) {
4121 	req->sym_out = def;
4122 	req->defobj_out = defobj;
4123 	return (0);
4124     }
4125     return (ESRCH);
4126 }
4127 
4128 /*
4129  * Search the symbol table of a single shared object for a symbol of
4130  * the given name and version, if requested.  Returns a pointer to the
4131  * symbol, or NULL if no definition was found.  If the object is
4132  * filter, return filtered symbol from filtee.
4133  *
4134  * The symbol's hash value is passed in for efficiency reasons; that
4135  * eliminates many recomputations of the hash value.
4136  */
4137 int
4138 symlook_obj(SymLook *req, const Obj_Entry *obj)
4139 {
4140     DoneList donelist;
4141     SymLook req1;
4142     int flags, res, mres;
4143 
4144     /*
4145      * If there is at least one valid hash at this point, we prefer to
4146      * use the faster GNU version if available.
4147      */
4148     if (obj->valid_hash_gnu)
4149 	mres = symlook_obj1_gnu(req, obj);
4150     else if (obj->valid_hash_sysv)
4151 	mres = symlook_obj1_sysv(req, obj);
4152     else
4153 	return (EINVAL);
4154 
4155     if (mres == 0) {
4156 	if (obj->needed_filtees != NULL) {
4157 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4158 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4159 	    donelist_init(&donelist);
4160 	    symlook_init_from_req(&req1, req);
4161 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4162 	    if (res == 0) {
4163 		req->sym_out = req1.sym_out;
4164 		req->defobj_out = req1.defobj_out;
4165 	    }
4166 	    return (res);
4167 	}
4168 	if (obj->needed_aux_filtees != NULL) {
4169 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4170 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4171 	    donelist_init(&donelist);
4172 	    symlook_init_from_req(&req1, req);
4173 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4174 	    if (res == 0) {
4175 		req->sym_out = req1.sym_out;
4176 		req->defobj_out = req1.defobj_out;
4177 		return (res);
4178 	    }
4179 	}
4180     }
4181     return (mres);
4182 }
4183 
4184 /* Symbol match routine common to both hash functions */
4185 static bool
4186 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4187     const unsigned long symnum)
4188 {
4189 	Elf_Versym verndx;
4190 	const Elf_Sym *symp;
4191 	const char *strp;
4192 
4193 	symp = obj->symtab + symnum;
4194 	strp = obj->strtab + symp->st_name;
4195 
4196 	switch (ELF_ST_TYPE(symp->st_info)) {
4197 	case STT_FUNC:
4198 	case STT_NOTYPE:
4199 	case STT_OBJECT:
4200 	case STT_COMMON:
4201 	case STT_GNU_IFUNC:
4202 		if (symp->st_value == 0)
4203 			return (false);
4204 		/* fallthrough */
4205 	case STT_TLS:
4206 		if (symp->st_shndx != SHN_UNDEF)
4207 			break;
4208 #ifndef __mips__
4209 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4210 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4211 			break;
4212 		/* fallthrough */
4213 #endif
4214 	default:
4215 		return (false);
4216 	}
4217 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4218 		return (false);
4219 
4220 	if (req->ventry == NULL) {
4221 		if (obj->versyms != NULL) {
4222 			verndx = VER_NDX(obj->versyms[symnum]);
4223 			if (verndx > obj->vernum) {
4224 				_rtld_error(
4225 				    "%s: symbol %s references wrong version %d",
4226 				    obj->path, obj->strtab + symnum, verndx);
4227 				return (false);
4228 			}
4229 			/*
4230 			 * If we are not called from dlsym (i.e. this
4231 			 * is a normal relocation from unversioned
4232 			 * binary), accept the symbol immediately if
4233 			 * it happens to have first version after this
4234 			 * shared object became versioned.  Otherwise,
4235 			 * if symbol is versioned and not hidden,
4236 			 * remember it. If it is the only symbol with
4237 			 * this name exported by the shared object, it
4238 			 * will be returned as a match by the calling
4239 			 * function. If symbol is global (verndx < 2)
4240 			 * accept it unconditionally.
4241 			 */
4242 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4243 			    verndx == VER_NDX_GIVEN) {
4244 				result->sym_out = symp;
4245 				return (true);
4246 			}
4247 			else if (verndx >= VER_NDX_GIVEN) {
4248 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4249 				    == 0) {
4250 					if (result->vsymp == NULL)
4251 						result->vsymp = symp;
4252 					result->vcount++;
4253 				}
4254 				return (false);
4255 			}
4256 		}
4257 		result->sym_out = symp;
4258 		return (true);
4259 	}
4260 	if (obj->versyms == NULL) {
4261 		if (object_match_name(obj, req->ventry->name)) {
4262 			_rtld_error("%s: object %s should provide version %s "
4263 			    "for symbol %s", obj_rtld.path, obj->path,
4264 			    req->ventry->name, obj->strtab + symnum);
4265 			return (false);
4266 		}
4267 	} else {
4268 		verndx = VER_NDX(obj->versyms[symnum]);
4269 		if (verndx > obj->vernum) {
4270 			_rtld_error("%s: symbol %s references wrong version %d",
4271 			    obj->path, obj->strtab + symnum, verndx);
4272 			return (false);
4273 		}
4274 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4275 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4276 			/*
4277 			 * Version does not match. Look if this is a
4278 			 * global symbol and if it is not hidden. If
4279 			 * global symbol (verndx < 2) is available,
4280 			 * use it. Do not return symbol if we are
4281 			 * called by dlvsym, because dlvsym looks for
4282 			 * a specific version and default one is not
4283 			 * what dlvsym wants.
4284 			 */
4285 			if ((req->flags & SYMLOOK_DLSYM) ||
4286 			    (verndx >= VER_NDX_GIVEN) ||
4287 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4288 				return (false);
4289 		}
4290 	}
4291 	result->sym_out = symp;
4292 	return (true);
4293 }
4294 
4295 /*
4296  * Search for symbol using SysV hash function.
4297  * obj->buckets is known not to be NULL at this point; the test for this was
4298  * performed with the obj->valid_hash_sysv assignment.
4299  */
4300 static int
4301 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4302 {
4303 	unsigned long symnum;
4304 	Sym_Match_Result matchres;
4305 
4306 	matchres.sym_out = NULL;
4307 	matchres.vsymp = NULL;
4308 	matchres.vcount = 0;
4309 
4310 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4311 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4312 		if (symnum >= obj->nchains)
4313 			return (ESRCH);	/* Bad object */
4314 
4315 		if (matched_symbol(req, obj, &matchres, symnum)) {
4316 			req->sym_out = matchres.sym_out;
4317 			req->defobj_out = obj;
4318 			return (0);
4319 		}
4320 	}
4321 	if (matchres.vcount == 1) {
4322 		req->sym_out = matchres.vsymp;
4323 		req->defobj_out = obj;
4324 		return (0);
4325 	}
4326 	return (ESRCH);
4327 }
4328 
4329 /* Search for symbol using GNU hash function */
4330 static int
4331 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4332 {
4333 	Elf_Addr bloom_word;
4334 	const Elf32_Word *hashval;
4335 	Elf32_Word bucket;
4336 	Sym_Match_Result matchres;
4337 	unsigned int h1, h2;
4338 	unsigned long symnum;
4339 
4340 	matchres.sym_out = NULL;
4341 	matchres.vsymp = NULL;
4342 	matchres.vcount = 0;
4343 
4344 	/* Pick right bitmask word from Bloom filter array */
4345 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4346 	    obj->maskwords_bm_gnu];
4347 
4348 	/* Calculate modulus word size of gnu hash and its derivative */
4349 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4350 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4351 
4352 	/* Filter out the "definitely not in set" queries */
4353 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4354 		return (ESRCH);
4355 
4356 	/* Locate hash chain and corresponding value element*/
4357 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4358 	if (bucket == 0)
4359 		return (ESRCH);
4360 	hashval = &obj->chain_zero_gnu[bucket];
4361 	do {
4362 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4363 			symnum = hashval - obj->chain_zero_gnu;
4364 			if (matched_symbol(req, obj, &matchres, symnum)) {
4365 				req->sym_out = matchres.sym_out;
4366 				req->defobj_out = obj;
4367 				return (0);
4368 			}
4369 		}
4370 	} while ((*hashval++ & 1) == 0);
4371 	if (matchres.vcount == 1) {
4372 		req->sym_out = matchres.vsymp;
4373 		req->defobj_out = obj;
4374 		return (0);
4375 	}
4376 	return (ESRCH);
4377 }
4378 
4379 static void
4380 trace_loaded_objects(Obj_Entry *obj)
4381 {
4382     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4383     int		c;
4384 
4385     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4386 	main_local = "";
4387 
4388     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4389 	fmt1 = "\t%o => %p (%x)\n";
4390 
4391     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4392 	fmt2 = "\t%o (%x)\n";
4393 
4394     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4395 
4396     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4397 	Needed_Entry		*needed;
4398 	char			*name, *path;
4399 	bool			is_lib;
4400 
4401 	if (obj->marker)
4402 	    continue;
4403 	if (list_containers && obj->needed != NULL)
4404 	    rtld_printf("%s:\n", obj->path);
4405 	for (needed = obj->needed; needed; needed = needed->next) {
4406 	    if (needed->obj != NULL) {
4407 		if (needed->obj->traced && !list_containers)
4408 		    continue;
4409 		needed->obj->traced = true;
4410 		path = needed->obj->path;
4411 	    } else
4412 		path = "not found";
4413 
4414 	    name = (char *)obj->strtab + needed->name;
4415 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4416 
4417 	    fmt = is_lib ? fmt1 : fmt2;
4418 	    while ((c = *fmt++) != '\0') {
4419 		switch (c) {
4420 		default:
4421 		    rtld_putchar(c);
4422 		    continue;
4423 		case '\\':
4424 		    switch (c = *fmt) {
4425 		    case '\0':
4426 			continue;
4427 		    case 'n':
4428 			rtld_putchar('\n');
4429 			break;
4430 		    case 't':
4431 			rtld_putchar('\t');
4432 			break;
4433 		    }
4434 		    break;
4435 		case '%':
4436 		    switch (c = *fmt) {
4437 		    case '\0':
4438 			continue;
4439 		    case '%':
4440 		    default:
4441 			rtld_putchar(c);
4442 			break;
4443 		    case 'A':
4444 			rtld_putstr(main_local);
4445 			break;
4446 		    case 'a':
4447 			rtld_putstr(obj_main->path);
4448 			break;
4449 		    case 'o':
4450 			rtld_putstr(name);
4451 			break;
4452 #if 0
4453 		    case 'm':
4454 			rtld_printf("%d", sodp->sod_major);
4455 			break;
4456 		    case 'n':
4457 			rtld_printf("%d", sodp->sod_minor);
4458 			break;
4459 #endif
4460 		    case 'p':
4461 			rtld_putstr(path);
4462 			break;
4463 		    case 'x':
4464 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4465 			  0);
4466 			break;
4467 		    }
4468 		    break;
4469 		}
4470 		++fmt;
4471 	    }
4472 	}
4473     }
4474 }
4475 
4476 /*
4477  * Unload a dlopened object and its dependencies from memory and from
4478  * our data structures.  It is assumed that the DAG rooted in the
4479  * object has already been unreferenced, and that the object has a
4480  * reference count of 0.
4481  */
4482 static void
4483 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4484 {
4485 	Obj_Entry marker, *obj, *next;
4486 
4487 	assert(root->refcount == 0);
4488 
4489 	/*
4490 	 * Pass over the DAG removing unreferenced objects from
4491 	 * appropriate lists.
4492 	 */
4493 	unlink_object(root);
4494 
4495 	/* Unmap all objects that are no longer referenced. */
4496 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4497 		next = TAILQ_NEXT(obj, next);
4498 		if (obj->marker || obj->refcount != 0)
4499 			continue;
4500 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4501 		    obj->mapsize, 0, obj->path);
4502 		dbg("unloading \"%s\"", obj->path);
4503 		/*
4504 		 * Unlink the object now to prevent new references from
4505 		 * being acquired while the bind lock is dropped in
4506 		 * recursive dlclose() invocations.
4507 		 */
4508 		TAILQ_REMOVE(&obj_list, obj, next);
4509 		obj_count--;
4510 
4511 		if (obj->filtees_loaded) {
4512 			if (next != NULL) {
4513 				init_marker(&marker);
4514 				TAILQ_INSERT_BEFORE(next, &marker, next);
4515 				unload_filtees(obj, lockstate);
4516 				next = TAILQ_NEXT(&marker, next);
4517 				TAILQ_REMOVE(&obj_list, &marker, next);
4518 			} else
4519 				unload_filtees(obj, lockstate);
4520 		}
4521 		release_object(obj);
4522 	}
4523 }
4524 
4525 static void
4526 unlink_object(Obj_Entry *root)
4527 {
4528     Objlist_Entry *elm;
4529 
4530     if (root->refcount == 0) {
4531 	/* Remove the object from the RTLD_GLOBAL list. */
4532 	objlist_remove(&list_global, root);
4533 
4534     	/* Remove the object from all objects' DAG lists. */
4535     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4536 	    objlist_remove(&elm->obj->dldags, root);
4537 	    if (elm->obj != root)
4538 		unlink_object(elm->obj);
4539 	}
4540     }
4541 }
4542 
4543 static void
4544 ref_dag(Obj_Entry *root)
4545 {
4546     Objlist_Entry *elm;
4547 
4548     assert(root->dag_inited);
4549     STAILQ_FOREACH(elm, &root->dagmembers, link)
4550 	elm->obj->refcount++;
4551 }
4552 
4553 static void
4554 unref_dag(Obj_Entry *root)
4555 {
4556     Objlist_Entry *elm;
4557 
4558     assert(root->dag_inited);
4559     STAILQ_FOREACH(elm, &root->dagmembers, link)
4560 	elm->obj->refcount--;
4561 }
4562 
4563 /*
4564  * Common code for MD __tls_get_addr().
4565  */
4566 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4567 static void *
4568 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4569 {
4570     Elf_Addr *newdtv, *dtv;
4571     RtldLockState lockstate;
4572     int to_copy;
4573 
4574     dtv = *dtvp;
4575     /* Check dtv generation in case new modules have arrived */
4576     if (dtv[0] != tls_dtv_generation) {
4577 	wlock_acquire(rtld_bind_lock, &lockstate);
4578 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4579 	to_copy = dtv[1];
4580 	if (to_copy > tls_max_index)
4581 	    to_copy = tls_max_index;
4582 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4583 	newdtv[0] = tls_dtv_generation;
4584 	newdtv[1] = tls_max_index;
4585 	free(dtv);
4586 	lock_release(rtld_bind_lock, &lockstate);
4587 	dtv = *dtvp = newdtv;
4588     }
4589 
4590     /* Dynamically allocate module TLS if necessary */
4591     if (dtv[index + 1] == 0) {
4592 	/* Signal safe, wlock will block out signals. */
4593 	wlock_acquire(rtld_bind_lock, &lockstate);
4594 	if (!dtv[index + 1])
4595 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4596 	lock_release(rtld_bind_lock, &lockstate);
4597     }
4598     return ((void *)(dtv[index + 1] + offset));
4599 }
4600 
4601 void *
4602 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4603 {
4604 	Elf_Addr *dtv;
4605 
4606 	dtv = *dtvp;
4607 	/* Check dtv generation in case new modules have arrived */
4608 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4609 	    dtv[index + 1] != 0))
4610 		return ((void *)(dtv[index + 1] + offset));
4611 	return (tls_get_addr_slow(dtvp, index, offset));
4612 }
4613 
4614 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4615     defined(__powerpc__) || defined(__riscv__)
4616 
4617 /*
4618  * Allocate Static TLS using the Variant I method.
4619  */
4620 void *
4621 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4622 {
4623     Obj_Entry *obj;
4624     char *tcb;
4625     Elf_Addr **tls;
4626     Elf_Addr *dtv;
4627     Elf_Addr addr;
4628     int i;
4629 
4630     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4631 	return (oldtcb);
4632 
4633     assert(tcbsize >= TLS_TCB_SIZE);
4634     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4635     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4636 
4637     if (oldtcb != NULL) {
4638 	memcpy(tls, oldtcb, tls_static_space);
4639 	free(oldtcb);
4640 
4641 	/* Adjust the DTV. */
4642 	dtv = tls[0];
4643 	for (i = 0; i < dtv[1]; i++) {
4644 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4645 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4646 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4647 	    }
4648 	}
4649     } else {
4650 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4651 	tls[0] = dtv;
4652 	dtv[0] = tls_dtv_generation;
4653 	dtv[1] = tls_max_index;
4654 
4655 	for (obj = globallist_curr(objs); obj != NULL;
4656 	  obj = globallist_next(obj)) {
4657 	    if (obj->tlsoffset > 0) {
4658 		addr = (Elf_Addr)tls + obj->tlsoffset;
4659 		if (obj->tlsinitsize > 0)
4660 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4661 		if (obj->tlssize > obj->tlsinitsize)
4662 		    memset((void*) (addr + obj->tlsinitsize), 0,
4663 			   obj->tlssize - obj->tlsinitsize);
4664 		dtv[obj->tlsindex + 1] = addr;
4665 	    }
4666 	}
4667     }
4668 
4669     return (tcb);
4670 }
4671 
4672 void
4673 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4674 {
4675     Elf_Addr *dtv;
4676     Elf_Addr tlsstart, tlsend;
4677     int dtvsize, i;
4678 
4679     assert(tcbsize >= TLS_TCB_SIZE);
4680 
4681     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4682     tlsend = tlsstart + tls_static_space;
4683 
4684     dtv = *(Elf_Addr **)tlsstart;
4685     dtvsize = dtv[1];
4686     for (i = 0; i < dtvsize; i++) {
4687 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4688 	    free((void*)dtv[i+2]);
4689 	}
4690     }
4691     free(dtv);
4692     free(tcb);
4693 }
4694 
4695 #endif
4696 
4697 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4698 
4699 /*
4700  * Allocate Static TLS using the Variant II method.
4701  */
4702 void *
4703 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4704 {
4705     Obj_Entry *obj;
4706     size_t size, ralign;
4707     char *tls;
4708     Elf_Addr *dtv, *olddtv;
4709     Elf_Addr segbase, oldsegbase, addr;
4710     int i;
4711 
4712     ralign = tcbalign;
4713     if (tls_static_max_align > ralign)
4714 	    ralign = tls_static_max_align;
4715     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4716 
4717     assert(tcbsize >= 2*sizeof(Elf_Addr));
4718     tls = malloc_aligned(size, ralign);
4719     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4720 
4721     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4722     ((Elf_Addr*)segbase)[0] = segbase;
4723     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4724 
4725     dtv[0] = tls_dtv_generation;
4726     dtv[1] = tls_max_index;
4727 
4728     if (oldtls) {
4729 	/*
4730 	 * Copy the static TLS block over whole.
4731 	 */
4732 	oldsegbase = (Elf_Addr) oldtls;
4733 	memcpy((void *)(segbase - tls_static_space),
4734 	       (const void *)(oldsegbase - tls_static_space),
4735 	       tls_static_space);
4736 
4737 	/*
4738 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4739 	 * move them over.
4740 	 */
4741 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4742 	for (i = 0; i < olddtv[1]; i++) {
4743 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4744 		dtv[i+2] = olddtv[i+2];
4745 		olddtv[i+2] = 0;
4746 	    }
4747 	}
4748 
4749 	/*
4750 	 * We assume that this block was the one we created with
4751 	 * allocate_initial_tls().
4752 	 */
4753 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4754     } else {
4755 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4756 		if (obj->marker || obj->tlsoffset == 0)
4757 			continue;
4758 		addr = segbase - obj->tlsoffset;
4759 		memset((void*) (addr + obj->tlsinitsize),
4760 		       0, obj->tlssize - obj->tlsinitsize);
4761 		if (obj->tlsinit)
4762 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4763 		dtv[obj->tlsindex + 1] = addr;
4764 	}
4765     }
4766 
4767     return (void*) segbase;
4768 }
4769 
4770 void
4771 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4772 {
4773     Elf_Addr* dtv;
4774     size_t size, ralign;
4775     int dtvsize, i;
4776     Elf_Addr tlsstart, tlsend;
4777 
4778     /*
4779      * Figure out the size of the initial TLS block so that we can
4780      * find stuff which ___tls_get_addr() allocated dynamically.
4781      */
4782     ralign = tcbalign;
4783     if (tls_static_max_align > ralign)
4784 	    ralign = tls_static_max_align;
4785     size = round(tls_static_space, ralign);
4786 
4787     dtv = ((Elf_Addr**)tls)[1];
4788     dtvsize = dtv[1];
4789     tlsend = (Elf_Addr) tls;
4790     tlsstart = tlsend - size;
4791     for (i = 0; i < dtvsize; i++) {
4792 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4793 		free_aligned((void *)dtv[i + 2]);
4794 	}
4795     }
4796 
4797     free_aligned((void *)tlsstart);
4798     free((void*) dtv);
4799 }
4800 
4801 #endif
4802 
4803 /*
4804  * Allocate TLS block for module with given index.
4805  */
4806 void *
4807 allocate_module_tls(int index)
4808 {
4809     Obj_Entry* obj;
4810     char* p;
4811 
4812     TAILQ_FOREACH(obj, &obj_list, next) {
4813 	if (obj->marker)
4814 	    continue;
4815 	if (obj->tlsindex == index)
4816 	    break;
4817     }
4818     if (!obj) {
4819 	_rtld_error("Can't find module with TLS index %d", index);
4820 	rtld_die();
4821     }
4822 
4823     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4824     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4825     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4826 
4827     return p;
4828 }
4829 
4830 bool
4831 allocate_tls_offset(Obj_Entry *obj)
4832 {
4833     size_t off;
4834 
4835     if (obj->tls_done)
4836 	return true;
4837 
4838     if (obj->tlssize == 0) {
4839 	obj->tls_done = true;
4840 	return true;
4841     }
4842 
4843     if (tls_last_offset == 0)
4844 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4845     else
4846 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4847 				   obj->tlssize, obj->tlsalign);
4848 
4849     /*
4850      * If we have already fixed the size of the static TLS block, we
4851      * must stay within that size. When allocating the static TLS, we
4852      * leave a small amount of space spare to be used for dynamically
4853      * loading modules which use static TLS.
4854      */
4855     if (tls_static_space != 0) {
4856 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4857 	    return false;
4858     } else if (obj->tlsalign > tls_static_max_align) {
4859 	    tls_static_max_align = obj->tlsalign;
4860     }
4861 
4862     tls_last_offset = obj->tlsoffset = off;
4863     tls_last_size = obj->tlssize;
4864     obj->tls_done = true;
4865 
4866     return true;
4867 }
4868 
4869 void
4870 free_tls_offset(Obj_Entry *obj)
4871 {
4872 
4873     /*
4874      * If we were the last thing to allocate out of the static TLS
4875      * block, we give our space back to the 'allocator'. This is a
4876      * simplistic workaround to allow libGL.so.1 to be loaded and
4877      * unloaded multiple times.
4878      */
4879     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4880 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4881 	tls_last_offset -= obj->tlssize;
4882 	tls_last_size = 0;
4883     }
4884 }
4885 
4886 void *
4887 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4888 {
4889     void *ret;
4890     RtldLockState lockstate;
4891 
4892     wlock_acquire(rtld_bind_lock, &lockstate);
4893     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4894       tcbsize, tcbalign);
4895     lock_release(rtld_bind_lock, &lockstate);
4896     return (ret);
4897 }
4898 
4899 void
4900 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4901 {
4902     RtldLockState lockstate;
4903 
4904     wlock_acquire(rtld_bind_lock, &lockstate);
4905     free_tls(tcb, tcbsize, tcbalign);
4906     lock_release(rtld_bind_lock, &lockstate);
4907 }
4908 
4909 static void
4910 object_add_name(Obj_Entry *obj, const char *name)
4911 {
4912     Name_Entry *entry;
4913     size_t len;
4914 
4915     len = strlen(name);
4916     entry = malloc(sizeof(Name_Entry) + len);
4917 
4918     if (entry != NULL) {
4919 	strcpy(entry->name, name);
4920 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4921     }
4922 }
4923 
4924 static int
4925 object_match_name(const Obj_Entry *obj, const char *name)
4926 {
4927     Name_Entry *entry;
4928 
4929     STAILQ_FOREACH(entry, &obj->names, link) {
4930 	if (strcmp(name, entry->name) == 0)
4931 	    return (1);
4932     }
4933     return (0);
4934 }
4935 
4936 static Obj_Entry *
4937 locate_dependency(const Obj_Entry *obj, const char *name)
4938 {
4939     const Objlist_Entry *entry;
4940     const Needed_Entry *needed;
4941 
4942     STAILQ_FOREACH(entry, &list_main, link) {
4943 	if (object_match_name(entry->obj, name))
4944 	    return entry->obj;
4945     }
4946 
4947     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4948 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4949 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4950 	    /*
4951 	     * If there is DT_NEEDED for the name we are looking for,
4952 	     * we are all set.  Note that object might not be found if
4953 	     * dependency was not loaded yet, so the function can
4954 	     * return NULL here.  This is expected and handled
4955 	     * properly by the caller.
4956 	     */
4957 	    return (needed->obj);
4958 	}
4959     }
4960     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4961 	obj->path, name);
4962     rtld_die();
4963 }
4964 
4965 static int
4966 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4967     const Elf_Vernaux *vna)
4968 {
4969     const Elf_Verdef *vd;
4970     const char *vername;
4971 
4972     vername = refobj->strtab + vna->vna_name;
4973     vd = depobj->verdef;
4974     if (vd == NULL) {
4975 	_rtld_error("%s: version %s required by %s not defined",
4976 	    depobj->path, vername, refobj->path);
4977 	return (-1);
4978     }
4979     for (;;) {
4980 	if (vd->vd_version != VER_DEF_CURRENT) {
4981 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4982 		depobj->path, vd->vd_version);
4983 	    return (-1);
4984 	}
4985 	if (vna->vna_hash == vd->vd_hash) {
4986 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4987 		((char *)vd + vd->vd_aux);
4988 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4989 		return (0);
4990 	}
4991 	if (vd->vd_next == 0)
4992 	    break;
4993 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4994     }
4995     if (vna->vna_flags & VER_FLG_WEAK)
4996 	return (0);
4997     _rtld_error("%s: version %s required by %s not found",
4998 	depobj->path, vername, refobj->path);
4999     return (-1);
5000 }
5001 
5002 static int
5003 rtld_verify_object_versions(Obj_Entry *obj)
5004 {
5005     const Elf_Verneed *vn;
5006     const Elf_Verdef  *vd;
5007     const Elf_Verdaux *vda;
5008     const Elf_Vernaux *vna;
5009     const Obj_Entry *depobj;
5010     int maxvernum, vernum;
5011 
5012     if (obj->ver_checked)
5013 	return (0);
5014     obj->ver_checked = true;
5015 
5016     maxvernum = 0;
5017     /*
5018      * Walk over defined and required version records and figure out
5019      * max index used by any of them. Do very basic sanity checking
5020      * while there.
5021      */
5022     vn = obj->verneed;
5023     while (vn != NULL) {
5024 	if (vn->vn_version != VER_NEED_CURRENT) {
5025 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5026 		obj->path, vn->vn_version);
5027 	    return (-1);
5028 	}
5029 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5030 	for (;;) {
5031 	    vernum = VER_NEED_IDX(vna->vna_other);
5032 	    if (vernum > maxvernum)
5033 		maxvernum = vernum;
5034 	    if (vna->vna_next == 0)
5035 		 break;
5036 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5037 	}
5038 	if (vn->vn_next == 0)
5039 	    break;
5040 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5041     }
5042 
5043     vd = obj->verdef;
5044     while (vd != NULL) {
5045 	if (vd->vd_version != VER_DEF_CURRENT) {
5046 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5047 		obj->path, vd->vd_version);
5048 	    return (-1);
5049 	}
5050 	vernum = VER_DEF_IDX(vd->vd_ndx);
5051 	if (vernum > maxvernum)
5052 		maxvernum = vernum;
5053 	if (vd->vd_next == 0)
5054 	    break;
5055 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5056     }
5057 
5058     if (maxvernum == 0)
5059 	return (0);
5060 
5061     /*
5062      * Store version information in array indexable by version index.
5063      * Verify that object version requirements are satisfied along the
5064      * way.
5065      */
5066     obj->vernum = maxvernum + 1;
5067     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5068 
5069     vd = obj->verdef;
5070     while (vd != NULL) {
5071 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5072 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5073 	    assert(vernum <= maxvernum);
5074 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5075 	    obj->vertab[vernum].hash = vd->vd_hash;
5076 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5077 	    obj->vertab[vernum].file = NULL;
5078 	    obj->vertab[vernum].flags = 0;
5079 	}
5080 	if (vd->vd_next == 0)
5081 	    break;
5082 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5083     }
5084 
5085     vn = obj->verneed;
5086     while (vn != NULL) {
5087 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5088 	if (depobj == NULL)
5089 	    return (-1);
5090 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5091 	for (;;) {
5092 	    if (check_object_provided_version(obj, depobj, vna))
5093 		return (-1);
5094 	    vernum = VER_NEED_IDX(vna->vna_other);
5095 	    assert(vernum <= maxvernum);
5096 	    obj->vertab[vernum].hash = vna->vna_hash;
5097 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5098 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5099 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5100 		VER_INFO_HIDDEN : 0;
5101 	    if (vna->vna_next == 0)
5102 		 break;
5103 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5104 	}
5105 	if (vn->vn_next == 0)
5106 	    break;
5107 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5108     }
5109     return 0;
5110 }
5111 
5112 static int
5113 rtld_verify_versions(const Objlist *objlist)
5114 {
5115     Objlist_Entry *entry;
5116     int rc;
5117 
5118     rc = 0;
5119     STAILQ_FOREACH(entry, objlist, link) {
5120 	/*
5121 	 * Skip dummy objects or objects that have their version requirements
5122 	 * already checked.
5123 	 */
5124 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5125 	    continue;
5126 	if (rtld_verify_object_versions(entry->obj) == -1) {
5127 	    rc = -1;
5128 	    if (ld_tracing == NULL)
5129 		break;
5130 	}
5131     }
5132     if (rc == 0 || ld_tracing != NULL)
5133     	rc = rtld_verify_object_versions(&obj_rtld);
5134     return rc;
5135 }
5136 
5137 const Ver_Entry *
5138 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5139 {
5140     Elf_Versym vernum;
5141 
5142     if (obj->vertab) {
5143 	vernum = VER_NDX(obj->versyms[symnum]);
5144 	if (vernum >= obj->vernum) {
5145 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5146 		obj->path, obj->strtab + symnum, vernum);
5147 	} else if (obj->vertab[vernum].hash != 0) {
5148 	    return &obj->vertab[vernum];
5149 	}
5150     }
5151     return NULL;
5152 }
5153 
5154 int
5155 _rtld_get_stack_prot(void)
5156 {
5157 
5158 	return (stack_prot);
5159 }
5160 
5161 int
5162 _rtld_is_dlopened(void *arg)
5163 {
5164 	Obj_Entry *obj;
5165 	RtldLockState lockstate;
5166 	int res;
5167 
5168 	rlock_acquire(rtld_bind_lock, &lockstate);
5169 	obj = dlcheck(arg);
5170 	if (obj == NULL)
5171 		obj = obj_from_addr(arg);
5172 	if (obj == NULL) {
5173 		_rtld_error("No shared object contains address");
5174 		lock_release(rtld_bind_lock, &lockstate);
5175 		return (-1);
5176 	}
5177 	res = obj->dlopened ? 1 : 0;
5178 	lock_release(rtld_bind_lock, &lockstate);
5179 	return (res);
5180 }
5181 
5182 int
5183 obj_enforce_relro(Obj_Entry *obj)
5184 {
5185 
5186 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5187 	    PROT_READ) == -1) {
5188 		_rtld_error("%s: Cannot enforce relro protection: %s",
5189 		    obj->path, rtld_strerror(errno));
5190 		return (-1);
5191 	}
5192 	return (0);
5193 }
5194 
5195 static void
5196 map_stacks_exec(RtldLockState *lockstate)
5197 {
5198 	void (*thr_map_stacks_exec)(void);
5199 
5200 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5201 		return;
5202 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5203 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5204 	if (thr_map_stacks_exec != NULL) {
5205 		stack_prot |= PROT_EXEC;
5206 		thr_map_stacks_exec();
5207 	}
5208 }
5209 
5210 void
5211 symlook_init(SymLook *dst, const char *name)
5212 {
5213 
5214 	bzero(dst, sizeof(*dst));
5215 	dst->name = name;
5216 	dst->hash = elf_hash(name);
5217 	dst->hash_gnu = gnu_hash(name);
5218 }
5219 
5220 static void
5221 symlook_init_from_req(SymLook *dst, const SymLook *src)
5222 {
5223 
5224 	dst->name = src->name;
5225 	dst->hash = src->hash;
5226 	dst->hash_gnu = src->hash_gnu;
5227 	dst->ventry = src->ventry;
5228 	dst->flags = src->flags;
5229 	dst->defobj_out = NULL;
5230 	dst->sym_out = NULL;
5231 	dst->lockstate = src->lockstate;
5232 }
5233 
5234 
5235 /*
5236  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5237  */
5238 static int
5239 parse_libdir(const char *str)
5240 {
5241 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5242 	const char *orig;
5243 	int fd;
5244 	char c;
5245 
5246 	orig = str;
5247 	fd = 0;
5248 	for (c = *str; c != '\0'; c = *++str) {
5249 		if (c < '0' || c > '9')
5250 			return (-1);
5251 
5252 		fd *= RADIX;
5253 		fd += c - '0';
5254 	}
5255 
5256 	/* Make sure we actually parsed something. */
5257 	if (str == orig) {
5258 		_rtld_error("failed to parse directory FD from '%s'", str);
5259 		return (-1);
5260 	}
5261 	return (fd);
5262 }
5263 
5264 /*
5265  * Overrides for libc_pic-provided functions.
5266  */
5267 
5268 int
5269 __getosreldate(void)
5270 {
5271 	size_t len;
5272 	int oid[2];
5273 	int error, osrel;
5274 
5275 	if (osreldate != 0)
5276 		return (osreldate);
5277 
5278 	oid[0] = CTL_KERN;
5279 	oid[1] = KERN_OSRELDATE;
5280 	osrel = 0;
5281 	len = sizeof(osrel);
5282 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5283 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5284 		osreldate = osrel;
5285 	return (osreldate);
5286 }
5287 
5288 void
5289 exit(int status)
5290 {
5291 
5292 	_exit(status);
5293 }
5294 
5295 void (*__cleanup)(void);
5296 int __isthreaded = 0;
5297 int _thread_autoinit_dummy_decl = 1;
5298 
5299 /*
5300  * No unresolved symbols for rtld.
5301  */
5302 void
5303 __pthread_cxa_finalize(struct dl_phdr_info *a)
5304 {
5305 }
5306 
5307 void
5308 __stack_chk_fail(void)
5309 {
5310 
5311 	_rtld_error("stack overflow detected; terminated");
5312 	rtld_die();
5313 }
5314 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5315 
5316 void
5317 __chk_fail(void)
5318 {
5319 
5320 	_rtld_error("buffer overflow detected; terminated");
5321 	rtld_die();
5322 }
5323 
5324 const char *
5325 rtld_strerror(int errnum)
5326 {
5327 
5328 	if (errnum < 0 || errnum >= sys_nerr)
5329 		return ("Unknown error");
5330 	return (sys_errlist[errnum]);
5331 }
5332