1 /*- 2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 /* 29 * Dynamic linker for ELF. 30 * 31 * John Polstra <jdp@polstra.com>. 32 */ 33 34 #ifndef __GNUC__ 35 #error "GCC is needed to compile this file" 36 #endif 37 38 #include <sys/param.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 42 #include <dlfcn.h> 43 #include <err.h> 44 #include <errno.h> 45 #include <fcntl.h> 46 #include <stdarg.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <unistd.h> 51 52 #include "debug.h" 53 #include "rtld.h" 54 55 #define END_SYM "_end" 56 #define PATH_RTLD "/usr/libexec/ld-elf.so.1" 57 58 /* Types. */ 59 typedef void (*func_ptr_type)(); 60 61 /* 62 * This structure provides a reentrant way to keep a list of objects and 63 * check which ones have already been processed in some way. 64 */ 65 typedef struct Struct_DoneList { 66 const Obj_Entry **objs; /* Array of object pointers */ 67 unsigned int num_alloc; /* Allocated size of the array */ 68 unsigned int num_used; /* Number of array slots used */ 69 } DoneList; 70 71 /* 72 * Function declarations. 73 */ 74 static const char *basename(const char *); 75 static void die(void); 76 static void digest_dynamic(Obj_Entry *, int); 77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 78 static Obj_Entry *dlcheck(void *); 79 static bool donelist_check(DoneList *, const Obj_Entry *); 80 static void errmsg_restore(char *); 81 static char *errmsg_save(void); 82 static char *find_library(const char *, const Obj_Entry *); 83 static const char *gethints(void); 84 static void init_dag(Obj_Entry *); 85 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *); 86 static void init_rtld(caddr_t); 87 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list); 88 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, 89 Objlist *list); 90 static bool is_exported(const Elf_Sym *); 91 static void linkmap_add(Obj_Entry *); 92 static void linkmap_delete(Obj_Entry *); 93 static int load_needed_objects(Obj_Entry *); 94 static int load_preload_objects(void); 95 static Obj_Entry *load_object(char *); 96 static void lock_check(void); 97 static Obj_Entry *obj_from_addr(const void *); 98 static void objlist_call_fini(Objlist *); 99 static void objlist_call_init(Objlist *); 100 static void objlist_clear(Objlist *); 101 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 102 static void objlist_init(Objlist *); 103 static void objlist_push_head(Objlist *, Obj_Entry *); 104 static void objlist_push_tail(Objlist *, Obj_Entry *); 105 static void objlist_remove(Objlist *, Obj_Entry *); 106 static void objlist_remove_unref(Objlist *); 107 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *); 108 static void rtld_exit(void); 109 static char *search_library_path(const char *, const char *); 110 static const void **get_program_var_addr(const char *name); 111 static void set_program_var(const char *, const void *); 112 static const Elf_Sym *symlook_default(const char *, unsigned long hash, 113 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt); 114 static const Elf_Sym *symlook_list(const char *, unsigned long, 115 Objlist *, const Obj_Entry **, bool in_plt, DoneList *); 116 static void trace_loaded_objects(Obj_Entry *obj); 117 static void unload_object(Obj_Entry *); 118 static void unref_dag(Obj_Entry *); 119 120 void r_debug_state(struct r_debug*, struct link_map*); 121 void xprintf(const char *, ...) __printflike(1, 2); 122 123 /* 124 * Data declarations. 125 */ 126 static char *error_message; /* Message for dlerror(), or NULL */ 127 struct r_debug r_debug; /* for GDB; */ 128 static bool trust; /* False for setuid and setgid programs */ 129 static char *ld_bind_now; /* Environment variable for immediate binding */ 130 static char *ld_debug; /* Environment variable for debugging */ 131 static char *ld_library_path; /* Environment variable for search path */ 132 static char *ld_preload; /* Environment variable for libraries to 133 load first */ 134 static char *ld_tracing; /* Called from ldd to print libs */ 135 static Obj_Entry *obj_list; /* Head of linked list of shared objects */ 136 static Obj_Entry **obj_tail; /* Link field of last object in list */ 137 static Obj_Entry *obj_main; /* The main program shared object */ 138 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 139 static unsigned int obj_count; /* Number of objects in obj_list */ 140 141 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 142 STAILQ_HEAD_INITIALIZER(list_global); 143 static Objlist list_main = /* Objects loaded at program startup */ 144 STAILQ_HEAD_INITIALIZER(list_main); 145 static Objlist list_fini = /* Objects needing fini() calls */ 146 STAILQ_HEAD_INITIALIZER(list_fini); 147 148 static LockInfo lockinfo; 149 150 static Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 151 152 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 153 154 extern Elf_Dyn _DYNAMIC; 155 #pragma weak _DYNAMIC 156 157 /* 158 * These are the functions the dynamic linker exports to application 159 * programs. They are the only symbols the dynamic linker is willing 160 * to export from itself. 161 */ 162 static func_ptr_type exports[] = { 163 (func_ptr_type) &_rtld_error, 164 (func_ptr_type) &dlclose, 165 (func_ptr_type) &dlerror, 166 (func_ptr_type) &dlopen, 167 (func_ptr_type) &dlsym, 168 (func_ptr_type) &dladdr, 169 (func_ptr_type) &dllockinit, 170 NULL 171 }; 172 173 /* 174 * Global declarations normally provided by crt1. The dynamic linker is 175 * not built with crt1, so we have to provide them ourselves. 176 */ 177 char *__progname; 178 char **environ; 179 180 /* 181 * Fill in a DoneList with an allocation large enough to hold all of 182 * the currently-loaded objects. Keep this as a macro since it calls 183 * alloca and we want that to occur within the scope of the caller. 184 */ 185 #define donelist_init(dlp) \ 186 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 187 assert((dlp)->objs != NULL), \ 188 (dlp)->num_alloc = obj_count, \ 189 (dlp)->num_used = 0) 190 191 static __inline void 192 rlock_acquire(void) 193 { 194 lockinfo.rlock_acquire(lockinfo.thelock); 195 atomic_incr_int(&lockinfo.rcount); 196 lock_check(); 197 } 198 199 static __inline void 200 wlock_acquire(void) 201 { 202 lockinfo.wlock_acquire(lockinfo.thelock); 203 atomic_incr_int(&lockinfo.wcount); 204 lock_check(); 205 } 206 207 static __inline void 208 rlock_release(void) 209 { 210 atomic_decr_int(&lockinfo.rcount); 211 lockinfo.rlock_release(lockinfo.thelock); 212 } 213 214 static __inline void 215 wlock_release(void) 216 { 217 atomic_decr_int(&lockinfo.wcount); 218 lockinfo.wlock_release(lockinfo.thelock); 219 } 220 221 /* 222 * Main entry point for dynamic linking. The first argument is the 223 * stack pointer. The stack is expected to be laid out as described 224 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 225 * Specifically, the stack pointer points to a word containing 226 * ARGC. Following that in the stack is a null-terminated sequence 227 * of pointers to argument strings. Then comes a null-terminated 228 * sequence of pointers to environment strings. Finally, there is a 229 * sequence of "auxiliary vector" entries. 230 * 231 * The second argument points to a place to store the dynamic linker's 232 * exit procedure pointer and the third to a place to store the main 233 * program's object. 234 * 235 * The return value is the main program's entry point. 236 */ 237 func_ptr_type 238 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 239 { 240 Elf_Auxinfo *aux_info[AT_COUNT]; 241 int i; 242 int argc; 243 char **argv; 244 char **env; 245 Elf_Auxinfo *aux; 246 Elf_Auxinfo *auxp; 247 const char *argv0; 248 Obj_Entry *obj; 249 Obj_Entry **preload_tail; 250 Objlist initlist; 251 252 /* 253 * On entry, the dynamic linker itself has not been relocated yet. 254 * Be very careful not to reference any global data until after 255 * init_rtld has returned. It is OK to reference file-scope statics 256 * and string constants, and to call static and global functions. 257 */ 258 259 /* Find the auxiliary vector on the stack. */ 260 argc = *sp++; 261 argv = (char **) sp; 262 sp += argc + 1; /* Skip over arguments and NULL terminator */ 263 env = (char **) sp; 264 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 265 ; 266 aux = (Elf_Auxinfo *) sp; 267 268 /* Digest the auxiliary vector. */ 269 for (i = 0; i < AT_COUNT; i++) 270 aux_info[i] = NULL; 271 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 272 if (auxp->a_type < AT_COUNT) 273 aux_info[auxp->a_type] = auxp; 274 } 275 276 /* Initialize and relocate ourselves. */ 277 assert(aux_info[AT_BASE] != NULL); 278 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 279 280 __progname = obj_rtld.path; 281 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 282 environ = env; 283 284 trust = geteuid() == getuid() && getegid() == getgid(); 285 286 ld_bind_now = getenv("LD_BIND_NOW"); 287 if (trust) { 288 ld_debug = getenv("LD_DEBUG"); 289 ld_library_path = getenv("LD_LIBRARY_PATH"); 290 ld_preload = getenv("LD_PRELOAD"); 291 } 292 ld_tracing = getenv("LD_TRACE_LOADED_OBJECTS"); 293 294 if (ld_debug != NULL && *ld_debug != '\0') 295 debug = 1; 296 dbg("%s is initialized, base address = %p", __progname, 297 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 298 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 299 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 300 301 /* 302 * Load the main program, or process its program header if it is 303 * already loaded. 304 */ 305 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ 306 int fd = aux_info[AT_EXECFD]->a_un.a_val; 307 dbg("loading main program"); 308 obj_main = map_object(fd, argv0, NULL); 309 close(fd); 310 if (obj_main == NULL) 311 die(); 312 } else { /* Main program already loaded. */ 313 const Elf_Phdr *phdr; 314 int phnum; 315 caddr_t entry; 316 317 dbg("processing main program's program header"); 318 assert(aux_info[AT_PHDR] != NULL); 319 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 320 assert(aux_info[AT_PHNUM] != NULL); 321 phnum = aux_info[AT_PHNUM]->a_un.a_val; 322 assert(aux_info[AT_PHENT] != NULL); 323 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 324 assert(aux_info[AT_ENTRY] != NULL); 325 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 326 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) 327 die(); 328 } 329 330 obj_main->path = xstrdup(argv0); 331 obj_main->mainprog = true; 332 333 /* 334 * Get the actual dynamic linker pathname from the executable if 335 * possible. (It should always be possible.) That ensures that 336 * gdb will find the right dynamic linker even if a non-standard 337 * one is being used. 338 */ 339 if (obj_main->interp != NULL && 340 strcmp(obj_main->interp, obj_rtld.path) != 0) { 341 free(obj_rtld.path); 342 obj_rtld.path = xstrdup(obj_main->interp); 343 } 344 345 digest_dynamic(obj_main, 0); 346 347 linkmap_add(obj_main); 348 linkmap_add(&obj_rtld); 349 350 /* Link the main program into the list of objects. */ 351 *obj_tail = obj_main; 352 obj_tail = &obj_main->next; 353 obj_count++; 354 obj_main->refcount++; 355 /* Make sure we don't call the main program's init and fini functions. */ 356 obj_main->init = obj_main->fini = NULL; 357 358 /* Initialize a fake symbol for resolving undefined weak references. */ 359 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 360 sym_zero.st_shndx = SHN_UNDEF; 361 362 dbg("loading LD_PRELOAD libraries"); 363 if (load_preload_objects() == -1) 364 die(); 365 preload_tail = obj_tail; 366 367 dbg("loading needed objects"); 368 if (load_needed_objects(obj_main) == -1) 369 die(); 370 371 /* Make a list of all objects loaded at startup. */ 372 for (obj = obj_list; obj != NULL; obj = obj->next) 373 objlist_push_tail(&list_main, obj); 374 375 if (ld_tracing) { /* We're done */ 376 trace_loaded_objects(obj_main); 377 exit(0); 378 } 379 380 if (relocate_objects(obj_main, 381 ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1) 382 die(); 383 384 dbg("doing copy relocations"); 385 if (do_copy_relocations(obj_main) == -1) 386 die(); 387 388 dbg("initializing key program variables"); 389 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 390 set_program_var("environ", env); 391 392 dbg("initializing thread locks"); 393 lockdflt_init(&lockinfo); 394 lockinfo.thelock = lockinfo.lock_create(lockinfo.context); 395 396 /* Make a list of init functions to call. */ 397 objlist_init(&initlist); 398 initlist_add_objects(obj_list, preload_tail, &initlist); 399 400 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 401 402 objlist_call_init(&initlist); 403 wlock_acquire(); 404 objlist_clear(&initlist); 405 wlock_release(); 406 407 dbg("transferring control to program entry point = %p", obj_main->entry); 408 409 /* Return the exit procedure and the program entry point. */ 410 *exit_proc = rtld_exit; 411 *objp = obj_main; 412 return (func_ptr_type) obj_main->entry; 413 } 414 415 Elf_Addr 416 _rtld_bind(Obj_Entry *obj, Elf_Word reloff) 417 { 418 const Elf_Rel *rel; 419 const Elf_Sym *def; 420 const Obj_Entry *defobj; 421 Elf_Addr *where; 422 Elf_Addr target; 423 424 rlock_acquire(); 425 if (obj->pltrel) 426 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 427 else 428 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 429 430 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 431 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL); 432 if (def == NULL) 433 die(); 434 435 target = (Elf_Addr)(defobj->relocbase + def->st_value); 436 437 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 438 defobj->strtab + def->st_name, basename(obj->path), 439 (void *)target, basename(defobj->path)); 440 441 /* 442 * Write the new contents for the jmpslot. Note that depending on 443 * architecture, the value which we need to return back to the 444 * lazy binding trampoline may or may not be the target 445 * address. The value returned from reloc_jmpslot() is the value 446 * that the trampoline needs. 447 */ 448 target = reloc_jmpslot(where, target, defobj); 449 rlock_release(); 450 return target; 451 } 452 453 /* 454 * Error reporting function. Use it like printf. If formats the message 455 * into a buffer, and sets things up so that the next call to dlerror() 456 * will return the message. 457 */ 458 void 459 _rtld_error(const char *fmt, ...) 460 { 461 static char buf[512]; 462 va_list ap; 463 464 va_start(ap, fmt); 465 vsnprintf(buf, sizeof buf, fmt, ap); 466 error_message = buf; 467 va_end(ap); 468 } 469 470 /* 471 * Return a dynamically-allocated copy of the current error message, if any. 472 */ 473 static char * 474 errmsg_save(void) 475 { 476 return error_message == NULL ? NULL : xstrdup(error_message); 477 } 478 479 /* 480 * Restore the current error message from a copy which was previously saved 481 * by errmsg_save(). The copy is freed. 482 */ 483 static void 484 errmsg_restore(char *saved_msg) 485 { 486 if (saved_msg == NULL) 487 error_message = NULL; 488 else { 489 _rtld_error("%s", saved_msg); 490 free(saved_msg); 491 } 492 } 493 494 static const char * 495 basename(const char *name) 496 { 497 const char *p = strrchr(name, '/'); 498 return p != NULL ? p + 1 : name; 499 } 500 501 static void 502 die(void) 503 { 504 const char *msg = dlerror(); 505 506 if (msg == NULL) 507 msg = "Fatal error"; 508 errx(1, "%s", msg); 509 } 510 511 /* 512 * Process a shared object's DYNAMIC section, and save the important 513 * information in its Obj_Entry structure. 514 */ 515 static void 516 digest_dynamic(Obj_Entry *obj, int early) 517 { 518 const Elf_Dyn *dynp; 519 Needed_Entry **needed_tail = &obj->needed; 520 const Elf_Dyn *dyn_rpath = NULL; 521 int plttype = DT_REL; 522 523 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 524 switch (dynp->d_tag) { 525 526 case DT_REL: 527 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 528 break; 529 530 case DT_RELSZ: 531 obj->relsize = dynp->d_un.d_val; 532 break; 533 534 case DT_RELENT: 535 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 536 break; 537 538 case DT_JMPREL: 539 obj->pltrel = (const Elf_Rel *) 540 (obj->relocbase + dynp->d_un.d_ptr); 541 break; 542 543 case DT_PLTRELSZ: 544 obj->pltrelsize = dynp->d_un.d_val; 545 break; 546 547 case DT_RELA: 548 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 549 break; 550 551 case DT_RELASZ: 552 obj->relasize = dynp->d_un.d_val; 553 break; 554 555 case DT_RELAENT: 556 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 557 break; 558 559 case DT_PLTREL: 560 plttype = dynp->d_un.d_val; 561 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 562 break; 563 564 case DT_SYMTAB: 565 obj->symtab = (const Elf_Sym *) 566 (obj->relocbase + dynp->d_un.d_ptr); 567 break; 568 569 case DT_SYMENT: 570 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 571 break; 572 573 case DT_STRTAB: 574 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 575 break; 576 577 case DT_STRSZ: 578 obj->strsize = dynp->d_un.d_val; 579 break; 580 581 case DT_HASH: 582 { 583 const Elf_Hashelt *hashtab = (const Elf_Hashelt *) 584 (obj->relocbase + dynp->d_un.d_ptr); 585 obj->nbuckets = hashtab[0]; 586 obj->nchains = hashtab[1]; 587 obj->buckets = hashtab + 2; 588 obj->chains = obj->buckets + obj->nbuckets; 589 } 590 break; 591 592 case DT_NEEDED: 593 if (!obj->rtld) { 594 Needed_Entry *nep = NEW(Needed_Entry); 595 nep->name = dynp->d_un.d_val; 596 nep->obj = NULL; 597 nep->next = NULL; 598 599 *needed_tail = nep; 600 needed_tail = &nep->next; 601 } 602 break; 603 604 case DT_PLTGOT: 605 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 606 break; 607 608 case DT_TEXTREL: 609 obj->textrel = true; 610 break; 611 612 case DT_SYMBOLIC: 613 obj->symbolic = true; 614 break; 615 616 case DT_RPATH: 617 /* 618 * We have to wait until later to process this, because we 619 * might not have gotten the address of the string table yet. 620 */ 621 dyn_rpath = dynp; 622 break; 623 624 case DT_SONAME: 625 /* Not used by the dynamic linker. */ 626 break; 627 628 case DT_INIT: 629 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 630 break; 631 632 case DT_FINI: 633 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 634 break; 635 636 case DT_DEBUG: 637 /* XXX - not implemented yet */ 638 if (!early) 639 dbg("Filling in DT_DEBUG entry"); 640 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 641 break; 642 643 default: 644 if (!early) { 645 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 646 (long)dynp->d_tag); 647 } 648 break; 649 } 650 } 651 652 obj->traced = false; 653 654 if (plttype == DT_RELA) { 655 obj->pltrela = (const Elf_Rela *) obj->pltrel; 656 obj->pltrel = NULL; 657 obj->pltrelasize = obj->pltrelsize; 658 obj->pltrelsize = 0; 659 } 660 661 if (dyn_rpath != NULL) 662 obj->rpath = obj->strtab + dyn_rpath->d_un.d_val; 663 } 664 665 /* 666 * Process a shared object's program header. This is used only for the 667 * main program, when the kernel has already loaded the main program 668 * into memory before calling the dynamic linker. It creates and 669 * returns an Obj_Entry structure. 670 */ 671 static Obj_Entry * 672 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 673 { 674 Obj_Entry *obj; 675 const Elf_Phdr *phlimit = phdr + phnum; 676 const Elf_Phdr *ph; 677 int nsegs = 0; 678 679 obj = obj_new(); 680 for (ph = phdr; ph < phlimit; ph++) { 681 switch (ph->p_type) { 682 683 case PT_PHDR: 684 if ((const Elf_Phdr *)ph->p_vaddr != phdr) { 685 _rtld_error("%s: invalid PT_PHDR", path); 686 return NULL; 687 } 688 obj->phdr = (const Elf_Phdr *) ph->p_vaddr; 689 obj->phsize = ph->p_memsz; 690 break; 691 692 case PT_INTERP: 693 obj->interp = (const char *) ph->p_vaddr; 694 break; 695 696 case PT_LOAD: 697 if (nsegs >= 2) { 698 _rtld_error("%s: too many PT_LOAD segments", path); 699 return NULL; 700 } 701 if (nsegs == 0) { /* First load segment */ 702 obj->vaddrbase = trunc_page(ph->p_vaddr); 703 obj->mapbase = (caddr_t) obj->vaddrbase; 704 obj->relocbase = obj->mapbase - obj->vaddrbase; 705 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 706 obj->vaddrbase; 707 } else { /* Last load segment */ 708 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 709 obj->vaddrbase; 710 } 711 nsegs++; 712 break; 713 714 case PT_DYNAMIC: 715 obj->dynamic = (const Elf_Dyn *) ph->p_vaddr; 716 break; 717 } 718 } 719 if (nsegs < 2) { 720 _rtld_error("%s: too few PT_LOAD segments", path); 721 return NULL; 722 } 723 724 obj->entry = entry; 725 return obj; 726 } 727 728 static Obj_Entry * 729 dlcheck(void *handle) 730 { 731 Obj_Entry *obj; 732 733 for (obj = obj_list; obj != NULL; obj = obj->next) 734 if (obj == (Obj_Entry *) handle) 735 break; 736 737 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 738 _rtld_error("Invalid shared object handle %p", handle); 739 return NULL; 740 } 741 return obj; 742 } 743 744 /* 745 * If the given object is already in the donelist, return true. Otherwise 746 * add the object to the list and return false. 747 */ 748 static bool 749 donelist_check(DoneList *dlp, const Obj_Entry *obj) 750 { 751 unsigned int i; 752 753 for (i = 0; i < dlp->num_used; i++) 754 if (dlp->objs[i] == obj) 755 return true; 756 /* 757 * Our donelist allocation should always be sufficient. But if 758 * our threads locking isn't working properly, more shared objects 759 * could have been loaded since we allocated the list. That should 760 * never happen, but we'll handle it properly just in case it does. 761 */ 762 if (dlp->num_used < dlp->num_alloc) 763 dlp->objs[dlp->num_used++] = obj; 764 return false; 765 } 766 767 /* 768 * Hash function for symbol table lookup. Don't even think about changing 769 * this. It is specified by the System V ABI. 770 */ 771 unsigned long 772 elf_hash(const char *name) 773 { 774 const unsigned char *p = (const unsigned char *) name; 775 unsigned long h = 0; 776 unsigned long g; 777 778 while (*p != '\0') { 779 h = (h << 4) + *p++; 780 if ((g = h & 0xf0000000) != 0) 781 h ^= g >> 24; 782 h &= ~g; 783 } 784 return h; 785 } 786 787 /* 788 * Find the library with the given name, and return its full pathname. 789 * The returned string is dynamically allocated. Generates an error 790 * message and returns NULL if the library cannot be found. 791 * 792 * If the second argument is non-NULL, then it refers to an already- 793 * loaded shared object, whose library search path will be searched. 794 * 795 * The search order is: 796 * rpath in the referencing file 797 * LD_LIBRARY_PATH 798 * ldconfig hints 799 * /usr/lib 800 */ 801 static char * 802 find_library(const char *name, const Obj_Entry *refobj) 803 { 804 char *pathname; 805 806 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 807 if (name[0] != '/' && !trust) { 808 _rtld_error("Absolute pathname required for shared object \"%s\"", 809 name); 810 return NULL; 811 } 812 return xstrdup(name); 813 } 814 815 dbg(" Searching for \"%s\"", name); 816 817 if ((pathname = search_library_path(name, ld_library_path)) != NULL || 818 (refobj != NULL && 819 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 820 (pathname = search_library_path(name, gethints())) != NULL || 821 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL) 822 return pathname; 823 824 _rtld_error("Shared object \"%s\" not found", name); 825 return NULL; 826 } 827 828 /* 829 * Given a symbol number in a referencing object, find the corresponding 830 * definition of the symbol. Returns a pointer to the symbol, or NULL if 831 * no definition was found. Returns a pointer to the Obj_Entry of the 832 * defining object via the reference parameter DEFOBJ_OUT. 833 */ 834 const Elf_Sym * 835 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 836 const Obj_Entry **defobj_out, bool in_plt, SymCache *cache) 837 { 838 const Elf_Sym *ref; 839 const Elf_Sym *def; 840 const Obj_Entry *defobj; 841 const char *name; 842 unsigned long hash; 843 844 /* 845 * If we have already found this symbol, get the information from 846 * the cache. 847 */ 848 if (symnum >= refobj->nchains) 849 return NULL; /* Bad object */ 850 if (cache != NULL && cache[symnum].sym != NULL) { 851 *defobj_out = cache[symnum].obj; 852 return cache[symnum].sym; 853 } 854 855 ref = refobj->symtab + symnum; 856 name = refobj->strtab + ref->st_name; 857 defobj = NULL; 858 859 /* 860 * We don't have to do a full scale lookup if the symbol is local. 861 * We know it will bind to the instance in this load module; to 862 * which we already have a pointer (ie ref). By not doing a lookup, 863 * we not only improve performance, but it also avoids unresolvable 864 * symbols when local symbols are not in the hash table. This has 865 * been seen with the ia64 toolchain. 866 */ 867 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 868 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 869 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 870 symnum); 871 } 872 hash = elf_hash(name); 873 def = symlook_default(name, hash, refobj, &defobj, in_plt); 874 } else { 875 def = ref; 876 defobj = refobj; 877 } 878 879 /* 880 * If we found no definition and the reference is weak, treat the 881 * symbol as having the value zero. 882 */ 883 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 884 def = &sym_zero; 885 defobj = obj_main; 886 } 887 888 if (def != NULL) { 889 *defobj_out = defobj; 890 /* Record the information in the cache to avoid subsequent lookups. */ 891 if (cache != NULL) { 892 cache[symnum].sym = def; 893 cache[symnum].obj = defobj; 894 } 895 } else { 896 if (refobj != &obj_rtld) 897 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); 898 } 899 return def; 900 } 901 902 /* 903 * Return the search path from the ldconfig hints file, reading it if 904 * necessary. Returns NULL if there are problems with the hints file, 905 * or if the search path there is empty. 906 */ 907 static const char * 908 gethints(void) 909 { 910 static char *hints; 911 912 if (hints == NULL) { 913 int fd; 914 struct elfhints_hdr hdr; 915 char *p; 916 917 /* Keep from trying again in case the hints file is bad. */ 918 hints = ""; 919 920 if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1) 921 return NULL; 922 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 923 hdr.magic != ELFHINTS_MAGIC || 924 hdr.version != 1) { 925 close(fd); 926 return NULL; 927 } 928 p = xmalloc(hdr.dirlistlen + 1); 929 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || 930 read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) { 931 free(p); 932 close(fd); 933 return NULL; 934 } 935 hints = p; 936 close(fd); 937 } 938 return hints[0] != '\0' ? hints : NULL; 939 } 940 941 static void 942 init_dag(Obj_Entry *root) 943 { 944 DoneList donelist; 945 946 donelist_init(&donelist); 947 init_dag1(root, root, &donelist); 948 } 949 950 static void 951 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp) 952 { 953 const Needed_Entry *needed; 954 955 if (donelist_check(dlp, obj)) 956 return; 957 objlist_push_tail(&obj->dldags, root); 958 objlist_push_tail(&root->dagmembers, obj); 959 for (needed = obj->needed; needed != NULL; needed = needed->next) 960 if (needed->obj != NULL) 961 init_dag1(root, needed->obj, dlp); 962 } 963 964 /* 965 * Initialize the dynamic linker. The argument is the address at which 966 * the dynamic linker has been mapped into memory. The primary task of 967 * this function is to relocate the dynamic linker. 968 */ 969 static void 970 init_rtld(caddr_t mapbase) 971 { 972 Obj_Entry objtmp; /* Temporary rtld object */ 973 974 /* 975 * Conjure up an Obj_Entry structure for the dynamic linker. 976 * 977 * The "path" member can't be initialized yet because string constatns 978 * cannot yet be acessed. Below we will set it correctly. 979 */ 980 objtmp.path = NULL; 981 objtmp.rtld = true; 982 objtmp.mapbase = mapbase; 983 #ifdef PIC 984 objtmp.relocbase = mapbase; 985 #endif 986 if (&_DYNAMIC != 0) { 987 objtmp.dynamic = rtld_dynamic(&objtmp); 988 digest_dynamic(&objtmp, 1); 989 assert(objtmp.needed == NULL); 990 assert(!objtmp.textrel); 991 992 /* 993 * Temporarily put the dynamic linker entry into the object list, so 994 * that symbols can be found. 995 */ 996 997 relocate_objects(&objtmp, true, &objtmp); 998 } 999 1000 /* Initialize the object list. */ 1001 obj_tail = &obj_list; 1002 1003 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 1004 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 1005 1006 /* Replace the path with a dynamically allocated copy. */ 1007 obj_rtld.path = xstrdup(PATH_RTLD); 1008 1009 r_debug.r_brk = r_debug_state; 1010 r_debug.r_state = RT_CONSISTENT; 1011 } 1012 1013 /* 1014 * Add the init functions from a needed object list (and its recursive 1015 * needed objects) to "list". This is not used directly; it is a helper 1016 * function for initlist_add_objects(). The write lock must be held 1017 * when this function is called. 1018 */ 1019 static void 1020 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 1021 { 1022 /* Recursively process the successor needed objects. */ 1023 if (needed->next != NULL) 1024 initlist_add_neededs(needed->next, list); 1025 1026 /* Process the current needed object. */ 1027 if (needed->obj != NULL) 1028 initlist_add_objects(needed->obj, &needed->obj->next, list); 1029 } 1030 1031 /* 1032 * Scan all of the DAGs rooted in the range of objects from "obj" to 1033 * "tail" and add their init functions to "list". This recurses over 1034 * the DAGs and ensure the proper init ordering such that each object's 1035 * needed libraries are initialized before the object itself. At the 1036 * same time, this function adds the objects to the global finalization 1037 * list "list_fini" in the opposite order. The write lock must be 1038 * held when this function is called. 1039 */ 1040 static void 1041 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list) 1042 { 1043 if (obj->init_done) 1044 return; 1045 obj->init_done = true; 1046 1047 /* Recursively process the successor objects. */ 1048 if (&obj->next != tail) 1049 initlist_add_objects(obj->next, tail, list); 1050 1051 /* Recursively process the needed objects. */ 1052 if (obj->needed != NULL) 1053 initlist_add_neededs(obj->needed, list); 1054 1055 /* Add the object to the init list. */ 1056 if (obj->init != NULL) 1057 objlist_push_tail(list, obj); 1058 1059 /* Add the object to the global fini list in the reverse order. */ 1060 if (obj->fini != NULL) 1061 objlist_push_head(&list_fini, obj); 1062 } 1063 1064 #ifndef FPTR_TARGET 1065 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 1066 #endif 1067 1068 static bool 1069 is_exported(const Elf_Sym *def) 1070 { 1071 Elf_Addr value; 1072 const func_ptr_type *p; 1073 1074 value = (Elf_Addr)(obj_rtld.relocbase + def->st_value); 1075 for (p = exports; *p != NULL; p++) 1076 if (FPTR_TARGET(*p) == value) 1077 return true; 1078 return false; 1079 } 1080 1081 /* 1082 * Given a shared object, traverse its list of needed objects, and load 1083 * each of them. Returns 0 on success. Generates an error message and 1084 * returns -1 on failure. 1085 */ 1086 static int 1087 load_needed_objects(Obj_Entry *first) 1088 { 1089 Obj_Entry *obj; 1090 1091 for (obj = first; obj != NULL; obj = obj->next) { 1092 Needed_Entry *needed; 1093 1094 for (needed = obj->needed; needed != NULL; needed = needed->next) { 1095 const char *name = obj->strtab + needed->name; 1096 char *path = find_library(name, obj); 1097 1098 needed->obj = NULL; 1099 if (path == NULL && !ld_tracing) 1100 return -1; 1101 1102 if (path) { 1103 needed->obj = load_object(path); 1104 if (needed->obj == NULL && !ld_tracing) 1105 return -1; /* XXX - cleanup */ 1106 } 1107 } 1108 } 1109 1110 return 0; 1111 } 1112 1113 static int 1114 load_preload_objects(void) 1115 { 1116 char *p = ld_preload; 1117 static const char delim[] = " \t:;"; 1118 1119 if (p == NULL) 1120 return NULL; 1121 1122 p += strspn(p, delim); 1123 while (*p != '\0') { 1124 size_t len = strcspn(p, delim); 1125 char *path; 1126 char savech; 1127 1128 savech = p[len]; 1129 p[len] = '\0'; 1130 if ((path = find_library(p, NULL)) == NULL) 1131 return -1; 1132 if (load_object(path) == NULL) 1133 return -1; /* XXX - cleanup */ 1134 p[len] = savech; 1135 p += len; 1136 p += strspn(p, delim); 1137 } 1138 return 0; 1139 } 1140 1141 /* 1142 * Load a shared object into memory, if it is not already loaded. The 1143 * argument must be a string allocated on the heap. This function assumes 1144 * responsibility for freeing it when necessary. 1145 * 1146 * Returns a pointer to the Obj_Entry for the object. Returns NULL 1147 * on failure. 1148 */ 1149 static Obj_Entry * 1150 load_object(char *path) 1151 { 1152 Obj_Entry *obj; 1153 int fd = -1; 1154 struct stat sb; 1155 1156 for (obj = obj_list->next; obj != NULL; obj = obj->next) 1157 if (strcmp(obj->path, path) == 0) 1158 break; 1159 1160 /* 1161 * If we didn't find a match by pathname, open the file and check 1162 * again by device and inode. This avoids false mismatches caused 1163 * by multiple links or ".." in pathnames. 1164 * 1165 * To avoid a race, we open the file and use fstat() rather than 1166 * using stat(). 1167 */ 1168 if (obj == NULL) { 1169 if ((fd = open(path, O_RDONLY)) == -1) { 1170 _rtld_error("Cannot open \"%s\"", path); 1171 return NULL; 1172 } 1173 if (fstat(fd, &sb) == -1) { 1174 _rtld_error("Cannot fstat \"%s\"", path); 1175 close(fd); 1176 return NULL; 1177 } 1178 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 1179 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) { 1180 close(fd); 1181 break; 1182 } 1183 } 1184 } 1185 1186 if (obj == NULL) { /* First use of this object, so we must map it in */ 1187 dbg("loading \"%s\"", path); 1188 obj = map_object(fd, path, &sb); 1189 close(fd); 1190 if (obj == NULL) { 1191 free(path); 1192 return NULL; 1193 } 1194 1195 obj->path = path; 1196 digest_dynamic(obj, 0); 1197 1198 *obj_tail = obj; 1199 obj_tail = &obj->next; 1200 obj_count++; 1201 linkmap_add(obj); /* for GDB */ 1202 1203 dbg(" %p .. %p: %s", obj->mapbase, 1204 obj->mapbase + obj->mapsize - 1, obj->path); 1205 if (obj->textrel) 1206 dbg(" WARNING: %s has impure text", obj->path); 1207 } else 1208 free(path); 1209 1210 obj->refcount++; 1211 return obj; 1212 } 1213 1214 /* 1215 * Check for locking violations and die if one is found. 1216 */ 1217 static void 1218 lock_check(void) 1219 { 1220 int rcount, wcount; 1221 1222 rcount = lockinfo.rcount; 1223 wcount = lockinfo.wcount; 1224 assert(rcount >= 0); 1225 assert(wcount >= 0); 1226 if (wcount > 1 || (wcount != 0 && rcount != 0)) { 1227 _rtld_error("Application locking error: %d readers and %d writers" 1228 " in dynamic linker. See DLLOCKINIT(3) in manual pages.", 1229 rcount, wcount); 1230 die(); 1231 } 1232 } 1233 1234 static Obj_Entry * 1235 obj_from_addr(const void *addr) 1236 { 1237 unsigned long endhash; 1238 Obj_Entry *obj; 1239 1240 endhash = elf_hash(END_SYM); 1241 for (obj = obj_list; obj != NULL; obj = obj->next) { 1242 const Elf_Sym *endsym; 1243 1244 if (addr < (void *) obj->mapbase) 1245 continue; 1246 if ((endsym = symlook_obj(END_SYM, endhash, obj, true)) == NULL) 1247 continue; /* No "end" symbol?! */ 1248 if (addr < (void *) (obj->relocbase + endsym->st_value)) 1249 return obj; 1250 } 1251 return NULL; 1252 } 1253 1254 /* 1255 * Call the finalization functions for each of the objects in "list" 1256 * which are unreferenced. All of the objects are expected to have 1257 * non-NULL fini functions. 1258 */ 1259 static void 1260 objlist_call_fini(Objlist *list) 1261 { 1262 Objlist_Entry *elm; 1263 char *saved_msg; 1264 1265 /* 1266 * Preserve the current error message since a fini function might 1267 * call into the dynamic linker and overwrite it. 1268 */ 1269 saved_msg = errmsg_save(); 1270 STAILQ_FOREACH(elm, list, link) { 1271 if (elm->obj->refcount == 0) { 1272 dbg("calling fini function for %s at %p", elm->obj->path, 1273 (void *)elm->obj->fini); 1274 call_initfini_pointer(elm->obj, elm->obj->fini); 1275 } 1276 } 1277 errmsg_restore(saved_msg); 1278 } 1279 1280 /* 1281 * Call the initialization functions for each of the objects in 1282 * "list". All of the objects are expected to have non-NULL init 1283 * functions. 1284 */ 1285 static void 1286 objlist_call_init(Objlist *list) 1287 { 1288 Objlist_Entry *elm; 1289 char *saved_msg; 1290 1291 /* 1292 * Preserve the current error message since an init function might 1293 * call into the dynamic linker and overwrite it. 1294 */ 1295 saved_msg = errmsg_save(); 1296 STAILQ_FOREACH(elm, list, link) { 1297 dbg("calling init function for %s at %p", elm->obj->path, 1298 (void *)elm->obj->init); 1299 call_initfini_pointer(elm->obj, elm->obj->init); 1300 } 1301 errmsg_restore(saved_msg); 1302 } 1303 1304 static void 1305 objlist_clear(Objlist *list) 1306 { 1307 Objlist_Entry *elm; 1308 1309 while (!STAILQ_EMPTY(list)) { 1310 elm = STAILQ_FIRST(list); 1311 STAILQ_REMOVE_HEAD(list, link); 1312 free(elm); 1313 } 1314 } 1315 1316 static Objlist_Entry * 1317 objlist_find(Objlist *list, const Obj_Entry *obj) 1318 { 1319 Objlist_Entry *elm; 1320 1321 STAILQ_FOREACH(elm, list, link) 1322 if (elm->obj == obj) 1323 return elm; 1324 return NULL; 1325 } 1326 1327 static void 1328 objlist_init(Objlist *list) 1329 { 1330 STAILQ_INIT(list); 1331 } 1332 1333 static void 1334 objlist_push_head(Objlist *list, Obj_Entry *obj) 1335 { 1336 Objlist_Entry *elm; 1337 1338 elm = NEW(Objlist_Entry); 1339 elm->obj = obj; 1340 STAILQ_INSERT_HEAD(list, elm, link); 1341 } 1342 1343 static void 1344 objlist_push_tail(Objlist *list, Obj_Entry *obj) 1345 { 1346 Objlist_Entry *elm; 1347 1348 elm = NEW(Objlist_Entry); 1349 elm->obj = obj; 1350 STAILQ_INSERT_TAIL(list, elm, link); 1351 } 1352 1353 static void 1354 objlist_remove(Objlist *list, Obj_Entry *obj) 1355 { 1356 Objlist_Entry *elm; 1357 1358 if ((elm = objlist_find(list, obj)) != NULL) { 1359 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 1360 free(elm); 1361 } 1362 } 1363 1364 /* 1365 * Remove all of the unreferenced objects from "list". 1366 */ 1367 static void 1368 objlist_remove_unref(Objlist *list) 1369 { 1370 Objlist newlist; 1371 Objlist_Entry *elm; 1372 1373 STAILQ_INIT(&newlist); 1374 while (!STAILQ_EMPTY(list)) { 1375 elm = STAILQ_FIRST(list); 1376 STAILQ_REMOVE_HEAD(list, link); 1377 if (elm->obj->refcount == 0) 1378 free(elm); 1379 else 1380 STAILQ_INSERT_TAIL(&newlist, elm, link); 1381 } 1382 *list = newlist; 1383 } 1384 1385 /* 1386 * Relocate newly-loaded shared objects. The argument is a pointer to 1387 * the Obj_Entry for the first such object. All objects from the first 1388 * to the end of the list of objects are relocated. Returns 0 on success, 1389 * or -1 on failure. 1390 */ 1391 static int 1392 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj) 1393 { 1394 Obj_Entry *obj; 1395 1396 for (obj = first; obj != NULL; obj = obj->next) { 1397 if (obj != rtldobj) 1398 dbg("relocating \"%s\"", obj->path); 1399 if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL || 1400 obj->symtab == NULL || obj->strtab == NULL) { 1401 _rtld_error("%s: Shared object has no run-time symbol table", 1402 obj->path); 1403 return -1; 1404 } 1405 1406 if (obj->textrel) { 1407 /* There are relocations to the write-protected text segment. */ 1408 if (mprotect(obj->mapbase, obj->textsize, 1409 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) { 1410 _rtld_error("%s: Cannot write-enable text segment: %s", 1411 obj->path, strerror(errno)); 1412 return -1; 1413 } 1414 } 1415 1416 /* Process the non-PLT relocations. */ 1417 if (reloc_non_plt(obj, rtldobj)) 1418 return -1; 1419 1420 if (obj->textrel) { /* Re-protected the text segment. */ 1421 if (mprotect(obj->mapbase, obj->textsize, 1422 PROT_READ|PROT_EXEC) == -1) { 1423 _rtld_error("%s: Cannot write-protect text segment: %s", 1424 obj->path, strerror(errno)); 1425 return -1; 1426 } 1427 } 1428 1429 /* Process the PLT relocations. */ 1430 if (reloc_plt(obj) == -1) 1431 return -1; 1432 /* Relocate the jump slots if we are doing immediate binding. */ 1433 if (bind_now) 1434 if (reloc_jmpslots(obj) == -1) 1435 return -1; 1436 1437 1438 /* 1439 * Set up the magic number and version in the Obj_Entry. These 1440 * were checked in the crt1.o from the original ElfKit, so we 1441 * set them for backward compatibility. 1442 */ 1443 obj->magic = RTLD_MAGIC; 1444 obj->version = RTLD_VERSION; 1445 1446 /* Set the special PLT or GOT entries. */ 1447 init_pltgot(obj); 1448 } 1449 1450 return 0; 1451 } 1452 1453 /* 1454 * Cleanup procedure. It will be called (by the atexit mechanism) just 1455 * before the process exits. 1456 */ 1457 static void 1458 rtld_exit(void) 1459 { 1460 Obj_Entry *obj; 1461 1462 dbg("rtld_exit()"); 1463 /* Clear all the reference counts so the fini functions will be called. */ 1464 for (obj = obj_list; obj != NULL; obj = obj->next) 1465 obj->refcount = 0; 1466 objlist_call_fini(&list_fini); 1467 /* No need to remove the items from the list, since we are exiting. */ 1468 } 1469 1470 static char * 1471 search_library_path(const char *name, const char *path) 1472 { 1473 size_t namelen = strlen(name); 1474 const char *p = path; 1475 1476 if (p == NULL) 1477 return NULL; 1478 1479 p += strspn(p, ":;"); 1480 while (*p != '\0') { 1481 size_t len = strcspn(p, ":;"); 1482 1483 if (*p == '/' || trust) { 1484 char *pathname; 1485 const char *dir = p; 1486 size_t dirlen = len; 1487 1488 pathname = xmalloc(dirlen + 1 + namelen + 1); 1489 strncpy(pathname, dir, dirlen); 1490 pathname[dirlen] = '/'; 1491 strcpy(pathname + dirlen + 1, name); 1492 1493 dbg(" Trying \"%s\"", pathname); 1494 if (access(pathname, F_OK) == 0) /* We found it */ 1495 return pathname; 1496 1497 free(pathname); 1498 } 1499 p += len; 1500 p += strspn(p, ":;"); 1501 } 1502 1503 return NULL; 1504 } 1505 1506 int 1507 dlclose(void *handle) 1508 { 1509 Obj_Entry *root; 1510 1511 wlock_acquire(); 1512 root = dlcheck(handle); 1513 if (root == NULL) { 1514 wlock_release(); 1515 return -1; 1516 } 1517 1518 /* Unreference the object and its dependencies. */ 1519 root->dl_refcount--; 1520 unref_dag(root); 1521 1522 if (root->refcount == 0) { 1523 /* 1524 * The object is no longer referenced, so we must unload it. 1525 * First, call the fini functions with no locks held. 1526 */ 1527 wlock_release(); 1528 objlist_call_fini(&list_fini); 1529 wlock_acquire(); 1530 objlist_remove_unref(&list_fini); 1531 1532 /* Finish cleaning up the newly-unreferenced objects. */ 1533 GDB_STATE(RT_DELETE,&root->linkmap); 1534 unload_object(root); 1535 GDB_STATE(RT_CONSISTENT,NULL); 1536 } 1537 wlock_release(); 1538 return 0; 1539 } 1540 1541 const char * 1542 dlerror(void) 1543 { 1544 char *msg = error_message; 1545 error_message = NULL; 1546 return msg; 1547 } 1548 1549 /* 1550 * This function is deprecated and has no effect. 1551 */ 1552 void 1553 dllockinit(void *context, 1554 void *(*lock_create)(void *context), 1555 void (*rlock_acquire)(void *lock), 1556 void (*wlock_acquire)(void *lock), 1557 void (*lock_release)(void *lock), 1558 void (*lock_destroy)(void *lock), 1559 void (*context_destroy)(void *context)) 1560 { 1561 static void *cur_context; 1562 static void (*cur_context_destroy)(void *); 1563 1564 /* Just destroy the context from the previous call, if necessary. */ 1565 if (cur_context_destroy != NULL) 1566 cur_context_destroy(cur_context); 1567 cur_context = context; 1568 cur_context_destroy = context_destroy; 1569 } 1570 1571 void * 1572 dlopen(const char *name, int mode) 1573 { 1574 Obj_Entry **old_obj_tail; 1575 Obj_Entry *obj; 1576 Objlist initlist; 1577 int result; 1578 1579 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 1580 if (ld_tracing != NULL) 1581 environ = (char **)*get_program_var_addr("environ"); 1582 1583 objlist_init(&initlist); 1584 1585 wlock_acquire(); 1586 GDB_STATE(RT_ADD,NULL); 1587 1588 old_obj_tail = obj_tail; 1589 obj = NULL; 1590 if (name == NULL) { 1591 obj = obj_main; 1592 obj->refcount++; 1593 } else { 1594 char *path = find_library(name, obj_main); 1595 if (path != NULL) 1596 obj = load_object(path); 1597 } 1598 1599 if (obj) { 1600 obj->dl_refcount++; 1601 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 1602 objlist_push_tail(&list_global, obj); 1603 mode &= RTLD_MODEMASK; 1604 if (*old_obj_tail != NULL) { /* We loaded something new. */ 1605 assert(*old_obj_tail == obj); 1606 1607 result = load_needed_objects(obj); 1608 if (result != -1 && ld_tracing) { 1609 trace_loaded_objects(obj); 1610 wlock_release(); 1611 exit(0); 1612 } 1613 1614 if (result == -1 || 1615 (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW, 1616 &obj_rtld)) == -1) { 1617 obj->dl_refcount--; 1618 unref_dag(obj); 1619 if (obj->refcount == 0) 1620 unload_object(obj); 1621 obj = NULL; 1622 } else { 1623 /* Make list of init functions to call. */ 1624 initlist_add_objects(obj, &obj->next, &initlist); 1625 } 1626 } 1627 } 1628 1629 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 1630 1631 /* Call the init functions with no locks held. */ 1632 wlock_release(); 1633 objlist_call_init(&initlist); 1634 wlock_acquire(); 1635 objlist_clear(&initlist); 1636 wlock_release(); 1637 return obj; 1638 } 1639 1640 void * 1641 dlsym(void *handle, const char *name) 1642 { 1643 const Obj_Entry *obj; 1644 unsigned long hash; 1645 const Elf_Sym *def; 1646 const Obj_Entry *defobj; 1647 1648 hash = elf_hash(name); 1649 def = NULL; 1650 defobj = NULL; 1651 1652 rlock_acquire(); 1653 if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT) { 1654 void *retaddr; 1655 1656 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 1657 if ((obj = obj_from_addr(retaddr)) == NULL) { 1658 _rtld_error("Cannot determine caller's shared object"); 1659 rlock_release(); 1660 return NULL; 1661 } 1662 if (handle == NULL) { /* Just the caller's shared object. */ 1663 def = symlook_obj(name, hash, obj, true); 1664 defobj = obj; 1665 } else if (handle == RTLD_NEXT) { /* Objects after caller's */ 1666 while ((obj = obj->next) != NULL) { 1667 if ((def = symlook_obj(name, hash, obj, true)) != NULL) { 1668 defobj = obj; 1669 break; 1670 } 1671 } 1672 } else { 1673 assert(handle == RTLD_DEFAULT); 1674 def = symlook_default(name, hash, obj, &defobj, true); 1675 } 1676 } else { 1677 if ((obj = dlcheck(handle)) == NULL) { 1678 rlock_release(); 1679 return NULL; 1680 } 1681 1682 if (obj->mainprog) { 1683 DoneList donelist; 1684 1685 /* Search main program and all libraries loaded by it. */ 1686 donelist_init(&donelist); 1687 def = symlook_list(name, hash, &list_main, &defobj, true, 1688 &donelist); 1689 } else { 1690 /* 1691 * XXX - This isn't correct. The search should include the whole 1692 * DAG rooted at the given object. 1693 */ 1694 def = symlook_obj(name, hash, obj, true); 1695 defobj = obj; 1696 } 1697 } 1698 1699 if (def != NULL) { 1700 rlock_release(); 1701 1702 /* 1703 * The value required by the caller is derived from the value 1704 * of the symbol. For the ia64 architecture, we need to 1705 * construct a function descriptor which the caller can use to 1706 * call the function with the right 'gp' value. For other 1707 * architectures and for non-functions, the value is simply 1708 * the relocated value of the symbol. 1709 */ 1710 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 1711 return make_function_pointer(def, defobj); 1712 else 1713 return defobj->relocbase + def->st_value; 1714 } 1715 1716 _rtld_error("Undefined symbol \"%s\"", name); 1717 rlock_release(); 1718 return NULL; 1719 } 1720 1721 int 1722 dladdr(const void *addr, Dl_info *info) 1723 { 1724 const Obj_Entry *obj; 1725 const Elf_Sym *def; 1726 void *symbol_addr; 1727 unsigned long symoffset; 1728 1729 rlock_acquire(); 1730 obj = obj_from_addr(addr); 1731 if (obj == NULL) { 1732 _rtld_error("No shared object contains address"); 1733 rlock_release(); 1734 return 0; 1735 } 1736 info->dli_fname = obj->path; 1737 info->dli_fbase = obj->mapbase; 1738 info->dli_saddr = (void *)0; 1739 info->dli_sname = NULL; 1740 1741 /* 1742 * Walk the symbol list looking for the symbol whose address is 1743 * closest to the address sent in. 1744 */ 1745 for (symoffset = 0; symoffset < obj->nchains; symoffset++) { 1746 def = obj->symtab + symoffset; 1747 1748 /* 1749 * For skip the symbol if st_shndx is either SHN_UNDEF or 1750 * SHN_COMMON. 1751 */ 1752 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 1753 continue; 1754 1755 /* 1756 * If the symbol is greater than the specified address, or if it 1757 * is further away from addr than the current nearest symbol, 1758 * then reject it. 1759 */ 1760 symbol_addr = obj->relocbase + def->st_value; 1761 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 1762 continue; 1763 1764 /* Update our idea of the nearest symbol. */ 1765 info->dli_sname = obj->strtab + def->st_name; 1766 info->dli_saddr = symbol_addr; 1767 1768 /* Exact match? */ 1769 if (info->dli_saddr == addr) 1770 break; 1771 } 1772 rlock_release(); 1773 return 1; 1774 } 1775 1776 static void 1777 linkmap_add(Obj_Entry *obj) 1778 { 1779 struct link_map *l = &obj->linkmap; 1780 struct link_map *prev; 1781 1782 obj->linkmap.l_name = obj->path; 1783 obj->linkmap.l_addr = obj->mapbase; 1784 obj->linkmap.l_ld = obj->dynamic; 1785 #ifdef __mips__ 1786 /* GDB needs load offset on MIPS to use the symbols */ 1787 obj->linkmap.l_offs = obj->relocbase; 1788 #endif 1789 1790 if (r_debug.r_map == NULL) { 1791 r_debug.r_map = l; 1792 return; 1793 } 1794 1795 /* 1796 * Scan to the end of the list, but not past the entry for the 1797 * dynamic linker, which we want to keep at the very end. 1798 */ 1799 for (prev = r_debug.r_map; 1800 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 1801 prev = prev->l_next) 1802 ; 1803 1804 /* Link in the new entry. */ 1805 l->l_prev = prev; 1806 l->l_next = prev->l_next; 1807 if (l->l_next != NULL) 1808 l->l_next->l_prev = l; 1809 prev->l_next = l; 1810 } 1811 1812 static void 1813 linkmap_delete(Obj_Entry *obj) 1814 { 1815 struct link_map *l = &obj->linkmap; 1816 1817 if (l->l_prev == NULL) { 1818 if ((r_debug.r_map = l->l_next) != NULL) 1819 l->l_next->l_prev = NULL; 1820 return; 1821 } 1822 1823 if ((l->l_prev->l_next = l->l_next) != NULL) 1824 l->l_next->l_prev = l->l_prev; 1825 } 1826 1827 /* 1828 * Function for the debugger to set a breakpoint on to gain control. 1829 * 1830 * The two parameters allow the debugger to easily find and determine 1831 * what the runtime loader is doing and to whom it is doing it. 1832 * 1833 * When the loadhook trap is hit (r_debug_state, set at program 1834 * initialization), the arguments can be found on the stack: 1835 * 1836 * +8 struct link_map *m 1837 * +4 struct r_debug *rd 1838 * +0 RetAddr 1839 */ 1840 void 1841 r_debug_state(struct r_debug* rd, struct link_map *m) 1842 { 1843 } 1844 1845 /* 1846 * Get address of the pointer variable in the main program. 1847 */ 1848 static const void ** 1849 get_program_var_addr(const char *name) 1850 { 1851 const Obj_Entry *obj; 1852 unsigned long hash; 1853 1854 hash = elf_hash(name); 1855 for (obj = obj_main; obj != NULL; obj = obj->next) { 1856 const Elf_Sym *def; 1857 1858 if ((def = symlook_obj(name, hash, obj, false)) != NULL) { 1859 const void **addr; 1860 1861 addr = (const void **)(obj->relocbase + def->st_value); 1862 return addr; 1863 } 1864 } 1865 return NULL; 1866 } 1867 1868 /* 1869 * Set a pointer variable in the main program to the given value. This 1870 * is used to set key variables such as "environ" before any of the 1871 * init functions are called. 1872 */ 1873 static void 1874 set_program_var(const char *name, const void *value) 1875 { 1876 const void **addr; 1877 1878 if ((addr = get_program_var_addr(name)) != NULL) { 1879 dbg("\"%s\": *%p <-- %p", name, addr, value); 1880 *addr = value; 1881 } 1882 } 1883 1884 /* 1885 * Given a symbol name in a referencing object, find the corresponding 1886 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1887 * no definition was found. Returns a pointer to the Obj_Entry of the 1888 * defining object via the reference parameter DEFOBJ_OUT. 1889 */ 1890 static const Elf_Sym * 1891 symlook_default(const char *name, unsigned long hash, 1892 const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt) 1893 { 1894 DoneList donelist; 1895 const Elf_Sym *def; 1896 const Elf_Sym *symp; 1897 const Obj_Entry *obj; 1898 const Obj_Entry *defobj; 1899 const Objlist_Entry *elm; 1900 def = NULL; 1901 defobj = NULL; 1902 donelist_init(&donelist); 1903 1904 /* Look first in the referencing object if linked symbolically. */ 1905 if (refobj->symbolic && !donelist_check(&donelist, refobj)) { 1906 symp = symlook_obj(name, hash, refobj, in_plt); 1907 if (symp != NULL) { 1908 def = symp; 1909 defobj = refobj; 1910 } 1911 } 1912 1913 /* Search all objects loaded at program start up. */ 1914 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1915 symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist); 1916 if (symp != NULL && 1917 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1918 def = symp; 1919 defobj = obj; 1920 } 1921 } 1922 1923 /* Search all dlopened DAGs containing the referencing object. */ 1924 STAILQ_FOREACH(elm, &refobj->dldags, link) { 1925 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK) 1926 break; 1927 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt, 1928 &donelist); 1929 if (symp != NULL && 1930 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1931 def = symp; 1932 defobj = obj; 1933 } 1934 } 1935 1936 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 1937 STAILQ_FOREACH(elm, &list_global, link) { 1938 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK) 1939 break; 1940 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt, 1941 &donelist); 1942 if (symp != NULL && 1943 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) { 1944 def = symp; 1945 defobj = obj; 1946 } 1947 } 1948 1949 /* 1950 * Search the dynamic linker itself, and possibly resolve the 1951 * symbol from there. This is how the application links to 1952 * dynamic linker services such as dlopen. Only the values listed 1953 * in the "exports" array can be resolved from the dynamic linker. 1954 */ 1955 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 1956 symp = symlook_obj(name, hash, &obj_rtld, in_plt); 1957 if (symp != NULL && is_exported(symp)) { 1958 def = symp; 1959 defobj = &obj_rtld; 1960 } 1961 } 1962 1963 if (def != NULL) 1964 *defobj_out = defobj; 1965 return def; 1966 } 1967 1968 static const Elf_Sym * 1969 symlook_list(const char *name, unsigned long hash, Objlist *objlist, 1970 const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp) 1971 { 1972 const Elf_Sym *symp; 1973 const Elf_Sym *def; 1974 const Obj_Entry *defobj; 1975 const Objlist_Entry *elm; 1976 1977 def = NULL; 1978 defobj = NULL; 1979 STAILQ_FOREACH(elm, objlist, link) { 1980 if (donelist_check(dlp, elm->obj)) 1981 continue; 1982 if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) { 1983 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) { 1984 def = symp; 1985 defobj = elm->obj; 1986 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 1987 break; 1988 } 1989 } 1990 } 1991 if (def != NULL) 1992 *defobj_out = defobj; 1993 return def; 1994 } 1995 1996 /* 1997 * Search the symbol table of a single shared object for a symbol of 1998 * the given name. Returns a pointer to the symbol, or NULL if no 1999 * definition was found. 2000 * 2001 * The symbol's hash value is passed in for efficiency reasons; that 2002 * eliminates many recomputations of the hash value. 2003 */ 2004 const Elf_Sym * 2005 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj, 2006 bool in_plt) 2007 { 2008 if (obj->buckets != NULL) { 2009 unsigned long symnum = obj->buckets[hash % obj->nbuckets]; 2010 2011 while (symnum != STN_UNDEF) { 2012 const Elf_Sym *symp; 2013 const char *strp; 2014 2015 if (symnum >= obj->nchains) 2016 return NULL; /* Bad object */ 2017 symp = obj->symtab + symnum; 2018 strp = obj->strtab + symp->st_name; 2019 2020 if (name[0] == strp[0] && strcmp(name, strp) == 0) 2021 return symp->st_shndx != SHN_UNDEF || 2022 (!in_plt && symp->st_value != 0 && 2023 ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL; 2024 2025 symnum = obj->chains[symnum]; 2026 } 2027 } 2028 return NULL; 2029 } 2030 2031 static void 2032 trace_loaded_objects(Obj_Entry *obj) 2033 { 2034 char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 2035 int c; 2036 2037 if ((main_local = getenv("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) 2038 main_local = ""; 2039 2040 if ((fmt1 = getenv("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL) 2041 fmt1 = "\t%o => %p (%x)\n"; 2042 2043 if ((fmt2 = getenv("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL) 2044 fmt2 = "\t%o (%x)\n"; 2045 2046 list_containers = getenv("LD_TRACE_LOADED_OBJECTS_ALL"); 2047 2048 for (; obj; obj = obj->next) { 2049 Needed_Entry *needed; 2050 char *name, *path; 2051 bool is_lib; 2052 2053 if (list_containers && obj->needed != NULL) 2054 printf("%s:\n", obj->path); 2055 for (needed = obj->needed; needed; needed = needed->next) { 2056 if (needed->obj != NULL) { 2057 if (needed->obj->traced && !list_containers) 2058 continue; 2059 needed->obj->traced = true; 2060 path = needed->obj->path; 2061 } else 2062 path = "not found"; 2063 2064 name = (char *)obj->strtab + needed->name; 2065 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 2066 2067 fmt = is_lib ? fmt1 : fmt2; 2068 while ((c = *fmt++) != '\0') { 2069 switch (c) { 2070 default: 2071 putchar(c); 2072 continue; 2073 case '\\': 2074 switch (c = *fmt) { 2075 case '\0': 2076 continue; 2077 case 'n': 2078 putchar('\n'); 2079 break; 2080 case 't': 2081 putchar('\t'); 2082 break; 2083 } 2084 break; 2085 case '%': 2086 switch (c = *fmt) { 2087 case '\0': 2088 continue; 2089 case '%': 2090 default: 2091 putchar(c); 2092 break; 2093 case 'A': 2094 printf("%s", main_local); 2095 break; 2096 case 'a': 2097 printf("%s", obj_main->path); 2098 break; 2099 case 'o': 2100 printf("%s", name); 2101 break; 2102 #if 0 2103 case 'm': 2104 printf("%d", sodp->sod_major); 2105 break; 2106 case 'n': 2107 printf("%d", sodp->sod_minor); 2108 break; 2109 #endif 2110 case 'p': 2111 printf("%s", path); 2112 break; 2113 case 'x': 2114 printf("%p", needed->obj ? needed->obj->mapbase : 0); 2115 break; 2116 } 2117 break; 2118 } 2119 ++fmt; 2120 } 2121 } 2122 } 2123 } 2124 2125 /* 2126 * Unload a dlopened object and its dependencies from memory and from 2127 * our data structures. It is assumed that the DAG rooted in the 2128 * object has already been unreferenced, and that the object has a 2129 * reference count of 0. 2130 */ 2131 static void 2132 unload_object(Obj_Entry *root) 2133 { 2134 Obj_Entry *obj; 2135 Obj_Entry **linkp; 2136 Objlist_Entry *elm; 2137 2138 assert(root->refcount == 0); 2139 2140 /* Remove the DAG from all objects' DAG lists. */ 2141 STAILQ_FOREACH(elm, &root->dagmembers , link) 2142 objlist_remove(&elm->obj->dldags, root); 2143 2144 /* Remove the DAG from the RTLD_GLOBAL list. */ 2145 objlist_remove(&list_global, root); 2146 2147 /* Unmap all objects that are no longer referenced. */ 2148 linkp = &obj_list->next; 2149 while ((obj = *linkp) != NULL) { 2150 if (obj->refcount == 0) { 2151 dbg("unloading \"%s\"", obj->path); 2152 munmap(obj->mapbase, obj->mapsize); 2153 linkmap_delete(obj); 2154 *linkp = obj->next; 2155 obj_count--; 2156 obj_free(obj); 2157 } else 2158 linkp = &obj->next; 2159 } 2160 obj_tail = linkp; 2161 } 2162 2163 static void 2164 unref_dag(Obj_Entry *root) 2165 { 2166 const Needed_Entry *needed; 2167 2168 if (root->refcount == 0) 2169 return; 2170 root->refcount--; 2171 if (root->refcount == 0) 2172 for (needed = root->needed; needed != NULL; needed = needed->next) 2173 if (needed->obj != NULL) 2174 unref_dag(needed->obj); 2175 } 2176 2177 /* 2178 * Non-mallocing printf, for use by malloc itself. 2179 * XXX - This doesn't belong in this module. 2180 */ 2181 void 2182 xprintf(const char *fmt, ...) 2183 { 2184 char buf[256]; 2185 va_list ap; 2186 2187 va_start(ap, fmt); 2188 vsprintf(buf, fmt, ap); 2189 (void)write(STDOUT_FILENO, buf, strlen(buf)); 2190 va_end(ap); 2191 } 2192