xref: /freebsd/libexec/rtld-elf/rtld.c (revision c4e127e24dc9f1322ebe7ade0991de7022010bf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 
73 /* Types. */
74 typedef void (*func_ptr_type)(void);
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 
78 /* Variables that cannot be static: */
79 extern struct r_debug r_debug; /* For GDB */
80 extern int _thread_autoinit_dummy_decl;
81 extern char* __progname;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path);
138 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
139 static int parse_integer(const char *);
140 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
141 static void print_usage(const char *argv0);
142 static void release_object(Obj_Entry *);
143 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
144     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
145 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
146     int flags, RtldLockState *lockstate);
147 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
148     RtldLockState *);
149 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
150 static int rtld_dirname(const char *, char *);
151 static int rtld_dirname_abs(const char *, char *);
152 static void *rtld_dlopen(const char *name, int fd, int mode);
153 static void rtld_exit(void);
154 static void rtld_nop_exit(void);
155 static char *search_library_path(const char *, const char *, const char *,
156     int *);
157 static char *search_library_pathfds(const char *, const char *, int *);
158 static const void **get_program_var_addr(const char *, RtldLockState *);
159 static void set_program_var(const char *, const void *);
160 static int symlook_default(SymLook *, const Obj_Entry *refobj);
161 static int symlook_global(SymLook *, DoneList *);
162 static void symlook_init_from_req(SymLook *, const SymLook *);
163 static int symlook_list(SymLook *, const Objlist *, DoneList *);
164 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
165 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
166 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
167 static void trace_loaded_objects(Obj_Entry *);
168 static void unlink_object(Obj_Entry *);
169 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
170 static void unref_dag(Obj_Entry *);
171 static void ref_dag(Obj_Entry *);
172 static char *origin_subst_one(Obj_Entry *, char *, const char *,
173     const char *, bool);
174 static char *origin_subst(Obj_Entry *, const char *);
175 static bool obj_resolve_origin(Obj_Entry *obj);
176 static void preinit_main(void);
177 static int  rtld_verify_versions(const Objlist *);
178 static int  rtld_verify_object_versions(Obj_Entry *);
179 static void object_add_name(Obj_Entry *, const char *);
180 static int  object_match_name(const Obj_Entry *, const char *);
181 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
182 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
183     struct dl_phdr_info *phdr_info);
184 static uint32_t gnu_hash(const char *);
185 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
186     const unsigned long);
187 
188 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
189 void _r_debug_postinit(struct link_map *) __noinline __exported;
190 
191 int __sys_openat(int, const char *, int, ...);
192 
193 /*
194  * Data declarations.
195  */
196 static char *error_message;	/* Message for dlerror(), or NULL */
197 struct r_debug r_debug __exported;	/* for GDB; */
198 static bool libmap_disable;	/* Disable libmap */
199 static bool ld_loadfltr;	/* Immediate filters processing */
200 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
201 static bool trust;		/* False for setuid and setgid programs */
202 static bool dangerous_ld_env;	/* True if environment variables have been
203 				   used to affect the libraries loaded */
204 bool ld_bind_not;		/* Disable PLT update */
205 static char *ld_bind_now;	/* Environment variable for immediate binding */
206 static char *ld_debug;		/* Environment variable for debugging */
207 static char *ld_library_path;	/* Environment variable for search path */
208 static char *ld_library_dirs;	/* Environment variable for library descriptors */
209 static char *ld_preload;	/* Environment variable for libraries to
210 				   load first */
211 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
212 static const char *ld_tracing;	/* Called from ldd to print libs */
213 static char *ld_utrace;		/* Use utrace() to log events. */
214 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
215 static Obj_Entry *obj_main;	/* The main program shared object */
216 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
217 static unsigned int obj_count;	/* Number of objects in obj_list */
218 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
219 
220 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
221   STAILQ_HEAD_INITIALIZER(list_global);
222 static Objlist list_main =	/* Objects loaded at program startup */
223   STAILQ_HEAD_INITIALIZER(list_main);
224 static Objlist list_fini =	/* Objects needing fini() calls */
225   STAILQ_HEAD_INITIALIZER(list_fini);
226 
227 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
228 
229 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
230 
231 extern Elf_Dyn _DYNAMIC;
232 #pragma weak _DYNAMIC
233 
234 int dlclose(void *) __exported;
235 char *dlerror(void) __exported;
236 void *dlopen(const char *, int) __exported;
237 void *fdlopen(int, int) __exported;
238 void *dlsym(void *, const char *) __exported;
239 dlfunc_t dlfunc(void *, const char *) __exported;
240 void *dlvsym(void *, const char *, const char *) __exported;
241 int dladdr(const void *, Dl_info *) __exported;
242 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
243     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
244 int dlinfo(void *, int , void *) __exported;
245 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
246 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
247 int _rtld_get_stack_prot(void) __exported;
248 int _rtld_is_dlopened(void *) __exported;
249 void _rtld_error(const char *, ...) __exported;
250 
251 /* Only here to fix -Wmissing-prototypes warnings */
252 int __getosreldate(void);
253 void __pthread_cxa_finalize(struct dl_phdr_info *a);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 
290 /*
291  * Globals for path names, and such
292  */
293 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
294 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
295 const char *ld_path_rtld = _PATH_RTLD;
296 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
297 const char *ld_env_prefix = LD_;
298 
299 static void (*rtld_exit_ptr)(void);
300 
301 /*
302  * Fill in a DoneList with an allocation large enough to hold all of
303  * the currently-loaded objects.  Keep this as a macro since it calls
304  * alloca and we want that to occur within the scope of the caller.
305  */
306 #define donelist_init(dlp)					\
307     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
308     assert((dlp)->objs != NULL),				\
309     (dlp)->num_alloc = obj_count,				\
310     (dlp)->num_used = 0)
311 
312 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
313 	if (ld_utrace != NULL)					\
314 		ld_utrace_log(e, h, mb, ms, r, n);		\
315 } while (0)
316 
317 static void
318 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
319     int refcnt, const char *name)
320 {
321 	struct utrace_rtld ut;
322 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
323 
324 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
325 	ut.event = event;
326 	ut.handle = handle;
327 	ut.mapbase = mapbase;
328 	ut.mapsize = mapsize;
329 	ut.refcnt = refcnt;
330 	bzero(ut.name, sizeof(ut.name));
331 	if (name)
332 		strlcpy(ut.name, name, sizeof(ut.name));
333 	utrace(&ut, sizeof(ut));
334 }
335 
336 #ifdef RTLD_VARIANT_ENV_NAMES
337 /*
338  * construct the env variable based on the type of binary that's
339  * running.
340  */
341 static inline const char *
342 _LD(const char *var)
343 {
344 	static char buffer[128];
345 
346 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
347 	strlcat(buffer, var, sizeof(buffer));
348 	return (buffer);
349 }
350 #else
351 #define _LD(x)	LD_ x
352 #endif
353 
354 /*
355  * Main entry point for dynamic linking.  The first argument is the
356  * stack pointer.  The stack is expected to be laid out as described
357  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
358  * Specifically, the stack pointer points to a word containing
359  * ARGC.  Following that in the stack is a null-terminated sequence
360  * of pointers to argument strings.  Then comes a null-terminated
361  * sequence of pointers to environment strings.  Finally, there is a
362  * sequence of "auxiliary vector" entries.
363  *
364  * The second argument points to a place to store the dynamic linker's
365  * exit procedure pointer and the third to a place to store the main
366  * program's object.
367  *
368  * The return value is the main program's entry point.
369  */
370 func_ptr_type
371 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
372 {
373     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
374     Objlist_Entry *entry;
375     Obj_Entry *last_interposer, *obj, *preload_tail;
376     const Elf_Phdr *phdr;
377     Objlist initlist;
378     RtldLockState lockstate;
379     struct stat st;
380     Elf_Addr *argcp;
381     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
382     const char *argv0;
383     caddr_t imgentry;
384     char buf[MAXPATHLEN];
385     int argc, fd, i, phnum, rtld_argc;
386     bool dir_enable, explicit_fd, search_in_path;
387 
388     /*
389      * On entry, the dynamic linker itself has not been relocated yet.
390      * Be very careful not to reference any global data until after
391      * init_rtld has returned.  It is OK to reference file-scope statics
392      * and string constants, and to call static and global functions.
393      */
394 
395     /* Find the auxiliary vector on the stack. */
396     argcp = sp;
397     argc = *sp++;
398     argv = (char **) sp;
399     sp += argc + 1;	/* Skip over arguments and NULL terminator */
400     env = (char **) sp;
401     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
402 	;
403     aux = (Elf_Auxinfo *) sp;
404 
405     /* Digest the auxiliary vector. */
406     for (i = 0;  i < AT_COUNT;  i++)
407 	aux_info[i] = NULL;
408     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
409 	if (auxp->a_type < AT_COUNT)
410 	    aux_info[auxp->a_type] = auxp;
411     }
412 
413     /* Initialize and relocate ourselves. */
414     assert(aux_info[AT_BASE] != NULL);
415     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
416 
417     __progname = obj_rtld.path;
418     argv0 = argv[0] != NULL ? argv[0] : "(null)";
419     environ = env;
420     main_argc = argc;
421     main_argv = argv;
422 
423     trust = !issetugid();
424 
425     md_abi_variant_hook(aux_info);
426 
427     fd = -1;
428     if (aux_info[AT_EXECFD] != NULL) {
429 	fd = aux_info[AT_EXECFD]->a_un.a_val;
430     } else {
431 	assert(aux_info[AT_PHDR] != NULL);
432 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
433 	if (phdr == obj_rtld.phdr) {
434 	    if (!trust) {
435 		_rtld_error("Tainted process refusing to run binary %s",
436 		    argv0);
437 		rtld_die();
438 	    }
439 	    dbg("opening main program in direct exec mode");
440 	    if (argc >= 2) {
441 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
442 		argv0 = argv[rtld_argc];
443 		explicit_fd = (fd != -1);
444 		if (!explicit_fd)
445 		    fd = open_binary_fd(argv0, search_in_path);
446 		if (fstat(fd, &st) == -1) {
447 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
448 		      explicit_fd ? "user-provided descriptor" : argv0,
449 		      rtld_strerror(errno));
450 		    rtld_die();
451 		}
452 
453 		/*
454 		 * Rough emulation of the permission checks done by
455 		 * execve(2), only Unix DACs are checked, ACLs are
456 		 * ignored.  Preserve the semantic of disabling owner
457 		 * to execute if owner x bit is cleared, even if
458 		 * others x bit is enabled.
459 		 * mmap(2) does not allow to mmap with PROT_EXEC if
460 		 * binary' file comes from noexec mount.  We cannot
461 		 * set a text reference on the binary.
462 		 */
463 		dir_enable = false;
464 		if (st.st_uid == geteuid()) {
465 		    if ((st.st_mode & S_IXUSR) != 0)
466 			dir_enable = true;
467 		} else if (st.st_gid == getegid()) {
468 		    if ((st.st_mode & S_IXGRP) != 0)
469 			dir_enable = true;
470 		} else if ((st.st_mode & S_IXOTH) != 0) {
471 		    dir_enable = true;
472 		}
473 		if (!dir_enable) {
474 		    _rtld_error("No execute permission for binary %s",
475 		        argv0);
476 		    rtld_die();
477 		}
478 
479 		/*
480 		 * For direct exec mode, argv[0] is the interpreter
481 		 * name, we must remove it and shift arguments left
482 		 * before invoking binary main.  Since stack layout
483 		 * places environment pointers and aux vectors right
484 		 * after the terminating NULL, we must shift
485 		 * environment and aux as well.
486 		 */
487 		main_argc = argc - rtld_argc;
488 		for (i = 0; i <= main_argc; i++)
489 		    argv[i] = argv[i + rtld_argc];
490 		*argcp -= rtld_argc;
491 		environ = env = envp = argv + main_argc + 1;
492 		do {
493 		    *envp = *(envp + rtld_argc);
494 		    envp++;
495 		} while (*envp != NULL);
496 		aux = auxp = (Elf_Auxinfo *)envp;
497 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
498 		for (;; auxp++, auxpf++) {
499 		    *auxp = *auxpf;
500 		    if (auxp->a_type == AT_NULL)
501 			    break;
502 		}
503 	    } else {
504 		_rtld_error("No binary");
505 		rtld_die();
506 	    }
507 	}
508     }
509 
510     ld_bind_now = getenv(_LD("BIND_NOW"));
511 
512     /*
513      * If the process is tainted, then we un-set the dangerous environment
514      * variables.  The process will be marked as tainted until setuid(2)
515      * is called.  If any child process calls setuid(2) we do not want any
516      * future processes to honor the potentially un-safe variables.
517      */
518     if (!trust) {
519 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
520 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
521 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
522 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
523 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
524 		_rtld_error("environment corrupt; aborting");
525 		rtld_die();
526 	}
527     }
528     ld_debug = getenv(_LD("DEBUG"));
529     if (ld_bind_now == NULL)
530 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
531     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
532     libmap_override = getenv(_LD("LIBMAP"));
533     ld_library_path = getenv(_LD("LIBRARY_PATH"));
534     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
535     ld_preload = getenv(_LD("PRELOAD"));
536     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
537     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
538     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
539     if (library_path_rpath != NULL) {
540 	    if (library_path_rpath[0] == 'y' ||
541 		library_path_rpath[0] == 'Y' ||
542 		library_path_rpath[0] == '1')
543 		    ld_library_path_rpath = true;
544 	    else
545 		    ld_library_path_rpath = false;
546     }
547     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
548 	(ld_library_path != NULL) || (ld_preload != NULL) ||
549 	(ld_elf_hints_path != NULL) || ld_loadfltr;
550     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
551     ld_utrace = getenv(_LD("UTRACE"));
552 
553     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
554 	ld_elf_hints_path = ld_elf_hints_default;
555 
556     if (ld_debug != NULL && *ld_debug != '\0')
557 	debug = 1;
558     dbg("%s is initialized, base address = %p", __progname,
559 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
560     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
561     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
562 
563     dbg("initializing thread locks");
564     lockdflt_init();
565 
566     /*
567      * Load the main program, or process its program header if it is
568      * already loaded.
569      */
570     if (fd != -1) {	/* Load the main program. */
571 	dbg("loading main program");
572 	obj_main = map_object(fd, argv0, NULL);
573 	close(fd);
574 	if (obj_main == NULL)
575 	    rtld_die();
576 	max_stack_flags = obj_main->stack_flags;
577     } else {				/* Main program already loaded. */
578 	dbg("processing main program's program header");
579 	assert(aux_info[AT_PHDR] != NULL);
580 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
581 	assert(aux_info[AT_PHNUM] != NULL);
582 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
583 	assert(aux_info[AT_PHENT] != NULL);
584 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
585 	assert(aux_info[AT_ENTRY] != NULL);
586 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
587 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
588 	    rtld_die();
589     }
590 
591     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
592 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
593 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
594 	    if (kexecpath[0] == '/')
595 		    obj_main->path = kexecpath;
596 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
597 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
598 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
599 		    obj_main->path = xstrdup(argv0);
600 	    else
601 		    obj_main->path = xstrdup(buf);
602     } else {
603 	    dbg("No AT_EXECPATH or direct exec");
604 	    obj_main->path = xstrdup(argv0);
605     }
606     dbg("obj_main path %s", obj_main->path);
607     obj_main->mainprog = true;
608 
609     if (aux_info[AT_STACKPROT] != NULL &&
610       aux_info[AT_STACKPROT]->a_un.a_val != 0)
611 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
612 
613 #ifndef COMPAT_32BIT
614     /*
615      * Get the actual dynamic linker pathname from the executable if
616      * possible.  (It should always be possible.)  That ensures that
617      * gdb will find the right dynamic linker even if a non-standard
618      * one is being used.
619      */
620     if (obj_main->interp != NULL &&
621       strcmp(obj_main->interp, obj_rtld.path) != 0) {
622 	free(obj_rtld.path);
623 	obj_rtld.path = xstrdup(obj_main->interp);
624         __progname = obj_rtld.path;
625     }
626 #endif
627 
628     digest_dynamic(obj_main, 0);
629     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
630 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
631 	obj_main->dynsymcount);
632 
633     linkmap_add(obj_main);
634     linkmap_add(&obj_rtld);
635 
636     /* Link the main program into the list of objects. */
637     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
638     obj_count++;
639     obj_loads++;
640 
641     /* Initialize a fake symbol for resolving undefined weak references. */
642     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
643     sym_zero.st_shndx = SHN_UNDEF;
644     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
645 
646     if (!libmap_disable)
647         libmap_disable = (bool)lm_init(libmap_override);
648 
649     dbg("loading LD_PRELOAD libraries");
650     if (load_preload_objects() == -1)
651 	rtld_die();
652     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
653 
654     dbg("loading needed objects");
655     if (load_needed_objects(obj_main, 0) == -1)
656 	rtld_die();
657 
658     /* Make a list of all objects loaded at startup. */
659     last_interposer = obj_main;
660     TAILQ_FOREACH(obj, &obj_list, next) {
661 	if (obj->marker)
662 	    continue;
663 	if (obj->z_interpose && obj != obj_main) {
664 	    objlist_put_after(&list_main, last_interposer, obj);
665 	    last_interposer = obj;
666 	} else {
667 	    objlist_push_tail(&list_main, obj);
668 	}
669     	obj->refcount++;
670     }
671 
672     dbg("checking for required versions");
673     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
674 	rtld_die();
675 
676     if (ld_tracing) {		/* We're done */
677 	trace_loaded_objects(obj_main);
678 	exit(0);
679     }
680 
681     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
682        dump_relocations(obj_main);
683        exit (0);
684     }
685 
686     /*
687      * Processing tls relocations requires having the tls offsets
688      * initialized.  Prepare offsets before starting initial
689      * relocation processing.
690      */
691     dbg("initializing initial thread local storage offsets");
692     STAILQ_FOREACH(entry, &list_main, link) {
693 	/*
694 	 * Allocate all the initial objects out of the static TLS
695 	 * block even if they didn't ask for it.
696 	 */
697 	allocate_tls_offset(entry->obj);
698     }
699 
700     if (relocate_objects(obj_main,
701       ld_bind_now != NULL && *ld_bind_now != '\0',
702       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
703 	rtld_die();
704 
705     dbg("doing copy relocations");
706     if (do_copy_relocations(obj_main) == -1)
707 	rtld_die();
708 
709     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
710        dump_relocations(obj_main);
711        exit (0);
712     }
713 
714     ifunc_init(aux);
715 
716     /*
717      * Setup TLS for main thread.  This must be done after the
718      * relocations are processed, since tls initialization section
719      * might be the subject for relocations.
720      */
721     dbg("initializing initial thread local storage");
722     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
723 
724     dbg("initializing key program variables");
725     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
726     set_program_var("environ", env);
727     set_program_var("__elf_aux_vector", aux);
728 
729     /* Make a list of init functions to call. */
730     objlist_init(&initlist);
731     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
732       preload_tail, &initlist);
733 
734     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
735 
736     map_stacks_exec(NULL);
737 
738     if (!obj_main->crt_no_init) {
739 	/*
740 	 * Make sure we don't call the main program's init and fini
741 	 * functions for binaries linked with old crt1 which calls
742 	 * _init itself.
743 	 */
744 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
745 	obj_main->preinit_array = obj_main->init_array =
746 	    obj_main->fini_array = (Elf_Addr)NULL;
747     }
748 
749     /*
750      * Execute MD initializers required before we call the objects'
751      * init functions.
752      */
753     pre_init();
754 
755     wlock_acquire(rtld_bind_lock, &lockstate);
756 
757     dbg("resolving ifuncs");
758     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
759       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
760 	rtld_die();
761 
762     rtld_exit_ptr = rtld_exit;
763     if (obj_main->crt_no_init)
764 	preinit_main();
765     objlist_call_init(&initlist, &lockstate);
766     _r_debug_postinit(&obj_main->linkmap);
767     objlist_clear(&initlist);
768     dbg("loading filtees");
769     TAILQ_FOREACH(obj, &obj_list, next) {
770 	if (obj->marker)
771 	    continue;
772 	if (ld_loadfltr || obj->z_loadfltr)
773 	    load_filtees(obj, 0, &lockstate);
774     }
775 
776     dbg("enforcing main obj relro");
777     if (obj_enforce_relro(obj_main) == -1)
778 	rtld_die();
779 
780     lock_release(rtld_bind_lock, &lockstate);
781 
782     dbg("transferring control to program entry point = %p", obj_main->entry);
783 
784     /* Return the exit procedure and the program entry point. */
785     *exit_proc = rtld_exit_ptr;
786     *objp = obj_main;
787     return (func_ptr_type) obj_main->entry;
788 }
789 
790 void *
791 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
792 {
793 	void *ptr;
794 	Elf_Addr target;
795 
796 	ptr = (void *)make_function_pointer(def, obj);
797 	target = call_ifunc_resolver(ptr);
798 	return ((void *)target);
799 }
800 
801 /*
802  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
803  * Changes to this function should be applied there as well.
804  */
805 Elf_Addr
806 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
807 {
808     const Elf_Rel *rel;
809     const Elf_Sym *def;
810     const Obj_Entry *defobj;
811     Elf_Addr *where;
812     Elf_Addr target;
813     RtldLockState lockstate;
814 
815     rlock_acquire(rtld_bind_lock, &lockstate);
816     if (sigsetjmp(lockstate.env, 0) != 0)
817 	    lock_upgrade(rtld_bind_lock, &lockstate);
818     if (obj->pltrel)
819 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
820     else
821 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
822 
823     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
824     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
825 	NULL, &lockstate);
826     if (def == NULL)
827 	rtld_die();
828     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
829 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
830     else
831 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
832 
833     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
834       defobj->strtab + def->st_name, basename(obj->path),
835       (void *)target, basename(defobj->path));
836 
837     /*
838      * Write the new contents for the jmpslot. Note that depending on
839      * architecture, the value which we need to return back to the
840      * lazy binding trampoline may or may not be the target
841      * address. The value returned from reloc_jmpslot() is the value
842      * that the trampoline needs.
843      */
844     target = reloc_jmpslot(where, target, defobj, obj, rel);
845     lock_release(rtld_bind_lock, &lockstate);
846     return target;
847 }
848 
849 /*
850  * Error reporting function.  Use it like printf.  If formats the message
851  * into a buffer, and sets things up so that the next call to dlerror()
852  * will return the message.
853  */
854 void
855 _rtld_error(const char *fmt, ...)
856 {
857     static char buf[512];
858     va_list ap;
859 
860     va_start(ap, fmt);
861     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
862     error_message = buf;
863     va_end(ap);
864     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
865 }
866 
867 /*
868  * Return a dynamically-allocated copy of the current error message, if any.
869  */
870 static char *
871 errmsg_save(void)
872 {
873     return error_message == NULL ? NULL : xstrdup(error_message);
874 }
875 
876 /*
877  * Restore the current error message from a copy which was previously saved
878  * by errmsg_save().  The copy is freed.
879  */
880 static void
881 errmsg_restore(char *saved_msg)
882 {
883     if (saved_msg == NULL)
884 	error_message = NULL;
885     else {
886 	_rtld_error("%s", saved_msg);
887 	free(saved_msg);
888     }
889 }
890 
891 static const char *
892 basename(const char *name)
893 {
894     const char *p = strrchr(name, '/');
895     return p != NULL ? p + 1 : name;
896 }
897 
898 static struct utsname uts;
899 
900 static char *
901 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
902     const char *subst, bool may_free)
903 {
904 	char *p, *p1, *res, *resp;
905 	int subst_len, kw_len, subst_count, old_len, new_len;
906 
907 	kw_len = strlen(kw);
908 
909 	/*
910 	 * First, count the number of the keyword occurrences, to
911 	 * preallocate the final string.
912 	 */
913 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
914 		p1 = strstr(p, kw);
915 		if (p1 == NULL)
916 			break;
917 	}
918 
919 	/*
920 	 * If the keyword is not found, just return.
921 	 *
922 	 * Return non-substituted string if resolution failed.  We
923 	 * cannot do anything more reasonable, the failure mode of the
924 	 * caller is unresolved library anyway.
925 	 */
926 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
927 		return (may_free ? real : xstrdup(real));
928 	if (obj != NULL)
929 		subst = obj->origin_path;
930 
931 	/*
932 	 * There is indeed something to substitute.  Calculate the
933 	 * length of the resulting string, and allocate it.
934 	 */
935 	subst_len = strlen(subst);
936 	old_len = strlen(real);
937 	new_len = old_len + (subst_len - kw_len) * subst_count;
938 	res = xmalloc(new_len + 1);
939 
940 	/*
941 	 * Now, execute the substitution loop.
942 	 */
943 	for (p = real, resp = res, *resp = '\0';;) {
944 		p1 = strstr(p, kw);
945 		if (p1 != NULL) {
946 			/* Copy the prefix before keyword. */
947 			memcpy(resp, p, p1 - p);
948 			resp += p1 - p;
949 			/* Keyword replacement. */
950 			memcpy(resp, subst, subst_len);
951 			resp += subst_len;
952 			*resp = '\0';
953 			p = p1 + kw_len;
954 		} else
955 			break;
956 	}
957 
958 	/* Copy to the end of string and finish. */
959 	strcat(resp, p);
960 	if (may_free)
961 		free(real);
962 	return (res);
963 }
964 
965 static char *
966 origin_subst(Obj_Entry *obj, const char *real)
967 {
968 	char *res1, *res2, *res3, *res4;
969 
970 	if (obj == NULL || !trust)
971 		return (xstrdup(real));
972 	if (uts.sysname[0] == '\0') {
973 		if (uname(&uts) != 0) {
974 			_rtld_error("utsname failed: %d", errno);
975 			return (NULL);
976 		}
977 	}
978 	/* __DECONST is safe here since without may_free real is unchanged */
979 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
980 	    false);
981 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
982 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
983 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
984 	return (res4);
985 }
986 
987 void
988 rtld_die(void)
989 {
990     const char *msg = dlerror();
991 
992     if (msg == NULL)
993 	msg = "Fatal error";
994     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
995     rtld_fdputstr(STDERR_FILENO, msg);
996     rtld_fdputchar(STDERR_FILENO, '\n');
997     _exit(1);
998 }
999 
1000 /*
1001  * Process a shared object's DYNAMIC section, and save the important
1002  * information in its Obj_Entry structure.
1003  */
1004 static void
1005 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1006     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1007 {
1008     const Elf_Dyn *dynp;
1009     Needed_Entry **needed_tail = &obj->needed;
1010     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1011     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1012     const Elf_Hashelt *hashtab;
1013     const Elf32_Word *hashval;
1014     Elf32_Word bkt, nmaskwords;
1015     int bloom_size32;
1016     int plttype = DT_REL;
1017 
1018     *dyn_rpath = NULL;
1019     *dyn_soname = NULL;
1020     *dyn_runpath = NULL;
1021 
1022     obj->bind_now = false;
1023     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1024 	switch (dynp->d_tag) {
1025 
1026 	case DT_REL:
1027 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1028 	    break;
1029 
1030 	case DT_RELSZ:
1031 	    obj->relsize = dynp->d_un.d_val;
1032 	    break;
1033 
1034 	case DT_RELENT:
1035 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1036 	    break;
1037 
1038 	case DT_JMPREL:
1039 	    obj->pltrel = (const Elf_Rel *)
1040 	      (obj->relocbase + dynp->d_un.d_ptr);
1041 	    break;
1042 
1043 	case DT_PLTRELSZ:
1044 	    obj->pltrelsize = dynp->d_un.d_val;
1045 	    break;
1046 
1047 	case DT_RELA:
1048 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1049 	    break;
1050 
1051 	case DT_RELASZ:
1052 	    obj->relasize = dynp->d_un.d_val;
1053 	    break;
1054 
1055 	case DT_RELAENT:
1056 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1057 	    break;
1058 
1059 	case DT_PLTREL:
1060 	    plttype = dynp->d_un.d_val;
1061 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1062 	    break;
1063 
1064 	case DT_SYMTAB:
1065 	    obj->symtab = (const Elf_Sym *)
1066 	      (obj->relocbase + dynp->d_un.d_ptr);
1067 	    break;
1068 
1069 	case DT_SYMENT:
1070 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1071 	    break;
1072 
1073 	case DT_STRTAB:
1074 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1075 	    break;
1076 
1077 	case DT_STRSZ:
1078 	    obj->strsize = dynp->d_un.d_val;
1079 	    break;
1080 
1081 	case DT_VERNEED:
1082 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1083 		dynp->d_un.d_val);
1084 	    break;
1085 
1086 	case DT_VERNEEDNUM:
1087 	    obj->verneednum = dynp->d_un.d_val;
1088 	    break;
1089 
1090 	case DT_VERDEF:
1091 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1092 		dynp->d_un.d_val);
1093 	    break;
1094 
1095 	case DT_VERDEFNUM:
1096 	    obj->verdefnum = dynp->d_un.d_val;
1097 	    break;
1098 
1099 	case DT_VERSYM:
1100 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1101 		dynp->d_un.d_val);
1102 	    break;
1103 
1104 	case DT_HASH:
1105 	    {
1106 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1107 		    dynp->d_un.d_ptr);
1108 		obj->nbuckets = hashtab[0];
1109 		obj->nchains = hashtab[1];
1110 		obj->buckets = hashtab + 2;
1111 		obj->chains = obj->buckets + obj->nbuckets;
1112 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1113 		  obj->buckets != NULL;
1114 	    }
1115 	    break;
1116 
1117 	case DT_GNU_HASH:
1118 	    {
1119 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1120 		    dynp->d_un.d_ptr);
1121 		obj->nbuckets_gnu = hashtab[0];
1122 		obj->symndx_gnu = hashtab[1];
1123 		nmaskwords = hashtab[2];
1124 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1125 		obj->maskwords_bm_gnu = nmaskwords - 1;
1126 		obj->shift2_gnu = hashtab[3];
1127 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1128 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1129 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1130 		  obj->symndx_gnu;
1131 		/* Number of bitmask words is required to be power of 2 */
1132 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1133 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1134 	    }
1135 	    break;
1136 
1137 	case DT_NEEDED:
1138 	    if (!obj->rtld) {
1139 		Needed_Entry *nep = NEW(Needed_Entry);
1140 		nep->name = dynp->d_un.d_val;
1141 		nep->obj = NULL;
1142 		nep->next = NULL;
1143 
1144 		*needed_tail = nep;
1145 		needed_tail = &nep->next;
1146 	    }
1147 	    break;
1148 
1149 	case DT_FILTER:
1150 	    if (!obj->rtld) {
1151 		Needed_Entry *nep = NEW(Needed_Entry);
1152 		nep->name = dynp->d_un.d_val;
1153 		nep->obj = NULL;
1154 		nep->next = NULL;
1155 
1156 		*needed_filtees_tail = nep;
1157 		needed_filtees_tail = &nep->next;
1158 	    }
1159 	    break;
1160 
1161 	case DT_AUXILIARY:
1162 	    if (!obj->rtld) {
1163 		Needed_Entry *nep = NEW(Needed_Entry);
1164 		nep->name = dynp->d_un.d_val;
1165 		nep->obj = NULL;
1166 		nep->next = NULL;
1167 
1168 		*needed_aux_filtees_tail = nep;
1169 		needed_aux_filtees_tail = &nep->next;
1170 	    }
1171 	    break;
1172 
1173 	case DT_PLTGOT:
1174 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1175 	    break;
1176 
1177 	case DT_TEXTREL:
1178 	    obj->textrel = true;
1179 	    break;
1180 
1181 	case DT_SYMBOLIC:
1182 	    obj->symbolic = true;
1183 	    break;
1184 
1185 	case DT_RPATH:
1186 	    /*
1187 	     * We have to wait until later to process this, because we
1188 	     * might not have gotten the address of the string table yet.
1189 	     */
1190 	    *dyn_rpath = dynp;
1191 	    break;
1192 
1193 	case DT_SONAME:
1194 	    *dyn_soname = dynp;
1195 	    break;
1196 
1197 	case DT_RUNPATH:
1198 	    *dyn_runpath = dynp;
1199 	    break;
1200 
1201 	case DT_INIT:
1202 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1203 	    break;
1204 
1205 	case DT_PREINIT_ARRAY:
1206 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1207 	    break;
1208 
1209 	case DT_PREINIT_ARRAYSZ:
1210 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1211 	    break;
1212 
1213 	case DT_INIT_ARRAY:
1214 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1215 	    break;
1216 
1217 	case DT_INIT_ARRAYSZ:
1218 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1219 	    break;
1220 
1221 	case DT_FINI:
1222 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1223 	    break;
1224 
1225 	case DT_FINI_ARRAY:
1226 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1227 	    break;
1228 
1229 	case DT_FINI_ARRAYSZ:
1230 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1231 	    break;
1232 
1233 	/*
1234 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1235 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1236 	 */
1237 
1238 #ifndef __mips__
1239 	case DT_DEBUG:
1240 	    if (!early)
1241 		dbg("Filling in DT_DEBUG entry");
1242 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1243 	    break;
1244 #endif
1245 
1246 	case DT_FLAGS:
1247 		if (dynp->d_un.d_val & DF_ORIGIN)
1248 		    obj->z_origin = true;
1249 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1250 		    obj->symbolic = true;
1251 		if (dynp->d_un.d_val & DF_TEXTREL)
1252 		    obj->textrel = true;
1253 		if (dynp->d_un.d_val & DF_BIND_NOW)
1254 		    obj->bind_now = true;
1255 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1256 		    obj->static_tls = true;
1257 	    break;
1258 #ifdef __mips__
1259 	case DT_MIPS_LOCAL_GOTNO:
1260 		obj->local_gotno = dynp->d_un.d_val;
1261 		break;
1262 
1263 	case DT_MIPS_SYMTABNO:
1264 		obj->symtabno = dynp->d_un.d_val;
1265 		break;
1266 
1267 	case DT_MIPS_GOTSYM:
1268 		obj->gotsym = dynp->d_un.d_val;
1269 		break;
1270 
1271 	case DT_MIPS_RLD_MAP:
1272 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1273 		break;
1274 
1275 	case DT_MIPS_RLD_MAP_REL:
1276 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1277 		// section relative to the address of the tag itself.
1278 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1279 		    (Elf_Addr) &r_debug;
1280 		break;
1281 
1282 	case DT_MIPS_PLTGOT:
1283 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1284 		    dynp->d_un.d_ptr);
1285 		break;
1286 
1287 #endif
1288 
1289 #ifdef __powerpc__
1290 #ifdef __powerpc64__
1291 	case DT_PPC64_GLINK:
1292 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1293 		break;
1294 #else
1295 	case DT_PPC_GOT:
1296 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1297 		break;
1298 #endif
1299 #endif
1300 
1301 	case DT_FLAGS_1:
1302 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1303 		    obj->z_noopen = true;
1304 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1305 		    obj->z_origin = true;
1306 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1307 		    obj->z_global = true;
1308 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1309 		    obj->bind_now = true;
1310 		if (dynp->d_un.d_val & DF_1_NODELETE)
1311 		    obj->z_nodelete = true;
1312 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1313 		    obj->z_loadfltr = true;
1314 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1315 		    obj->z_interpose = true;
1316 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1317 		    obj->z_nodeflib = true;
1318 	    break;
1319 
1320 	default:
1321 	    if (!early) {
1322 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1323 		    (long)dynp->d_tag);
1324 	    }
1325 	    break;
1326 	}
1327     }
1328 
1329     obj->traced = false;
1330 
1331     if (plttype == DT_RELA) {
1332 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1333 	obj->pltrel = NULL;
1334 	obj->pltrelasize = obj->pltrelsize;
1335 	obj->pltrelsize = 0;
1336     }
1337 
1338     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1339     if (obj->valid_hash_sysv)
1340 	obj->dynsymcount = obj->nchains;
1341     else if (obj->valid_hash_gnu) {
1342 	obj->dynsymcount = 0;
1343 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1344 	    if (obj->buckets_gnu[bkt] == 0)
1345 		continue;
1346 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1347 	    do
1348 		obj->dynsymcount++;
1349 	    while ((*hashval++ & 1u) == 0);
1350 	}
1351 	obj->dynsymcount += obj->symndx_gnu;
1352     }
1353 }
1354 
1355 static bool
1356 obj_resolve_origin(Obj_Entry *obj)
1357 {
1358 
1359 	if (obj->origin_path != NULL)
1360 		return (true);
1361 	obj->origin_path = xmalloc(PATH_MAX);
1362 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1363 }
1364 
1365 static void
1366 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1367     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1368 {
1369 
1370 	if (obj->z_origin && !obj_resolve_origin(obj))
1371 		rtld_die();
1372 
1373 	if (dyn_runpath != NULL) {
1374 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1375 		obj->runpath = origin_subst(obj, obj->runpath);
1376 	} else if (dyn_rpath != NULL) {
1377 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1378 		obj->rpath = origin_subst(obj, obj->rpath);
1379 	}
1380 	if (dyn_soname != NULL)
1381 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1382 }
1383 
1384 static void
1385 digest_dynamic(Obj_Entry *obj, int early)
1386 {
1387 	const Elf_Dyn *dyn_rpath;
1388 	const Elf_Dyn *dyn_soname;
1389 	const Elf_Dyn *dyn_runpath;
1390 
1391 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1392 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1393 }
1394 
1395 /*
1396  * Process a shared object's program header.  This is used only for the
1397  * main program, when the kernel has already loaded the main program
1398  * into memory before calling the dynamic linker.  It creates and
1399  * returns an Obj_Entry structure.
1400  */
1401 static Obj_Entry *
1402 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1403 {
1404     Obj_Entry *obj;
1405     const Elf_Phdr *phlimit = phdr + phnum;
1406     const Elf_Phdr *ph;
1407     Elf_Addr note_start, note_end;
1408     int nsegs = 0;
1409 
1410     obj = obj_new();
1411     for (ph = phdr;  ph < phlimit;  ph++) {
1412 	if (ph->p_type != PT_PHDR)
1413 	    continue;
1414 
1415 	obj->phdr = phdr;
1416 	obj->phsize = ph->p_memsz;
1417 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1418 	break;
1419     }
1420 
1421     obj->stack_flags = PF_X | PF_R | PF_W;
1422 
1423     for (ph = phdr;  ph < phlimit;  ph++) {
1424 	switch (ph->p_type) {
1425 
1426 	case PT_INTERP:
1427 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1428 	    break;
1429 
1430 	case PT_LOAD:
1431 	    if (nsegs == 0) {	/* First load segment */
1432 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1433 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1434 	    } else {		/* Last load segment */
1435 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1436 		  obj->vaddrbase;
1437 	    }
1438 	    nsegs++;
1439 	    break;
1440 
1441 	case PT_DYNAMIC:
1442 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1443 	    break;
1444 
1445 	case PT_TLS:
1446 	    obj->tlsindex = 1;
1447 	    obj->tlssize = ph->p_memsz;
1448 	    obj->tlsalign = ph->p_align;
1449 	    obj->tlsinitsize = ph->p_filesz;
1450 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1451 	    break;
1452 
1453 	case PT_GNU_STACK:
1454 	    obj->stack_flags = ph->p_flags;
1455 	    break;
1456 
1457 	case PT_GNU_RELRO:
1458 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1459 	    obj->relro_size = round_page(ph->p_memsz);
1460 	    break;
1461 
1462 	case PT_NOTE:
1463 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1464 	    note_end = note_start + ph->p_filesz;
1465 	    digest_notes(obj, note_start, note_end);
1466 	    break;
1467 	}
1468     }
1469     if (nsegs < 1) {
1470 	_rtld_error("%s: too few PT_LOAD segments", path);
1471 	return NULL;
1472     }
1473 
1474     obj->entry = entry;
1475     return obj;
1476 }
1477 
1478 void
1479 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1480 {
1481 	const Elf_Note *note;
1482 	const char *note_name;
1483 	uintptr_t p;
1484 
1485 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1486 	    note = (const Elf_Note *)((const char *)(note + 1) +
1487 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1488 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1489 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1490 		    note->n_descsz != sizeof(int32_t))
1491 			continue;
1492 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1493 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1494 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1495 			continue;
1496 		note_name = (const char *)(note + 1);
1497 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1498 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1499 			continue;
1500 		switch (note->n_type) {
1501 		case NT_FREEBSD_ABI_TAG:
1502 			/* FreeBSD osrel note */
1503 			p = (uintptr_t)(note + 1);
1504 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1505 			obj->osrel = *(const int32_t *)(p);
1506 			dbg("note osrel %d", obj->osrel);
1507 			break;
1508 		case NT_FREEBSD_FEATURE_CTL:
1509 			/* FreeBSD ABI feature control note */
1510 			p = (uintptr_t)(note + 1);
1511 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1512 			obj->fctl0 = *(const uint32_t *)(p);
1513 			dbg("note fctl0 %#x", obj->fctl0);
1514 			break;
1515 		case NT_FREEBSD_NOINIT_TAG:
1516 			/* FreeBSD 'crt does not call init' note */
1517 			obj->crt_no_init = true;
1518 			dbg("note crt_no_init");
1519 			break;
1520 		}
1521 	}
1522 }
1523 
1524 static Obj_Entry *
1525 dlcheck(void *handle)
1526 {
1527     Obj_Entry *obj;
1528 
1529     TAILQ_FOREACH(obj, &obj_list, next) {
1530 	if (obj == (Obj_Entry *) handle)
1531 	    break;
1532     }
1533 
1534     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1535 	_rtld_error("Invalid shared object handle %p", handle);
1536 	return NULL;
1537     }
1538     return obj;
1539 }
1540 
1541 /*
1542  * If the given object is already in the donelist, return true.  Otherwise
1543  * add the object to the list and return false.
1544  */
1545 static bool
1546 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1547 {
1548     unsigned int i;
1549 
1550     for (i = 0;  i < dlp->num_used;  i++)
1551 	if (dlp->objs[i] == obj)
1552 	    return true;
1553     /*
1554      * Our donelist allocation should always be sufficient.  But if
1555      * our threads locking isn't working properly, more shared objects
1556      * could have been loaded since we allocated the list.  That should
1557      * never happen, but we'll handle it properly just in case it does.
1558      */
1559     if (dlp->num_used < dlp->num_alloc)
1560 	dlp->objs[dlp->num_used++] = obj;
1561     return false;
1562 }
1563 
1564 /*
1565  * Hash function for symbol table lookup.  Don't even think about changing
1566  * this.  It is specified by the System V ABI.
1567  */
1568 unsigned long
1569 elf_hash(const char *name)
1570 {
1571     const unsigned char *p = (const unsigned char *) name;
1572     unsigned long h = 0;
1573     unsigned long g;
1574 
1575     while (*p != '\0') {
1576 	h = (h << 4) + *p++;
1577 	if ((g = h & 0xf0000000) != 0)
1578 	    h ^= g >> 24;
1579 	h &= ~g;
1580     }
1581     return h;
1582 }
1583 
1584 /*
1585  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1586  * unsigned in case it's implemented with a wider type.
1587  */
1588 static uint32_t
1589 gnu_hash(const char *s)
1590 {
1591 	uint32_t h;
1592 	unsigned char c;
1593 
1594 	h = 5381;
1595 	for (c = *s; c != '\0'; c = *++s)
1596 		h = h * 33 + c;
1597 	return (h & 0xffffffff);
1598 }
1599 
1600 
1601 /*
1602  * Find the library with the given name, and return its full pathname.
1603  * The returned string is dynamically allocated.  Generates an error
1604  * message and returns NULL if the library cannot be found.
1605  *
1606  * If the second argument is non-NULL, then it refers to an already-
1607  * loaded shared object, whose library search path will be searched.
1608  *
1609  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1610  * descriptor (which is close-on-exec) will be passed out via the third
1611  * argument.
1612  *
1613  * The search order is:
1614  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1615  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1616  *   LD_LIBRARY_PATH
1617  *   DT_RUNPATH in the referencing file
1618  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1619  *	 from list)
1620  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1621  *
1622  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1623  */
1624 static char *
1625 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1626 {
1627 	char *pathname, *refobj_path;
1628 	const char *name;
1629 	bool nodeflib, objgiven;
1630 
1631 	objgiven = refobj != NULL;
1632 
1633 	if (libmap_disable || !objgiven ||
1634 	    (name = lm_find(refobj->path, xname)) == NULL)
1635 		name = xname;
1636 
1637 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1638 		if (name[0] != '/' && !trust) {
1639 			_rtld_error("Absolute pathname required "
1640 			    "for shared object \"%s\"", name);
1641 			return (NULL);
1642 		}
1643 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1644 		    __DECONST(char *, name)));
1645 	}
1646 
1647 	dbg(" Searching for \"%s\"", name);
1648 	refobj_path = objgiven ? refobj->path : NULL;
1649 
1650 	/*
1651 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1652 	 * back to pre-conforming behaviour if user requested so with
1653 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1654 	 * nodeflib.
1655 	 */
1656 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1657 		pathname = search_library_path(name, ld_library_path,
1658 		    refobj_path, fdp);
1659 		if (pathname != NULL)
1660 			return (pathname);
1661 		if (refobj != NULL) {
1662 			pathname = search_library_path(name, refobj->rpath,
1663 			    refobj_path, fdp);
1664 			if (pathname != NULL)
1665 				return (pathname);
1666 		}
1667 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1668 		if (pathname != NULL)
1669 			return (pathname);
1670 		pathname = search_library_path(name, gethints(false),
1671 		    refobj_path, fdp);
1672 		if (pathname != NULL)
1673 			return (pathname);
1674 		pathname = search_library_path(name, ld_standard_library_path,
1675 		    refobj_path, fdp);
1676 		if (pathname != NULL)
1677 			return (pathname);
1678 	} else {
1679 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1680 		if (objgiven) {
1681 			pathname = search_library_path(name, refobj->rpath,
1682 			    refobj->path, fdp);
1683 			if (pathname != NULL)
1684 				return (pathname);
1685 		}
1686 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1687 			pathname = search_library_path(name, obj_main->rpath,
1688 			    refobj_path, fdp);
1689 			if (pathname != NULL)
1690 				return (pathname);
1691 		}
1692 		pathname = search_library_path(name, ld_library_path,
1693 		    refobj_path, fdp);
1694 		if (pathname != NULL)
1695 			return (pathname);
1696 		if (objgiven) {
1697 			pathname = search_library_path(name, refobj->runpath,
1698 			    refobj_path, fdp);
1699 			if (pathname != NULL)
1700 				return (pathname);
1701 		}
1702 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1703 		if (pathname != NULL)
1704 			return (pathname);
1705 		pathname = search_library_path(name, gethints(nodeflib),
1706 		    refobj_path, fdp);
1707 		if (pathname != NULL)
1708 			return (pathname);
1709 		if (objgiven && !nodeflib) {
1710 			pathname = search_library_path(name,
1711 			    ld_standard_library_path, refobj_path, fdp);
1712 			if (pathname != NULL)
1713 				return (pathname);
1714 		}
1715 	}
1716 
1717 	if (objgiven && refobj->path != NULL) {
1718 		_rtld_error("Shared object \"%s\" not found, "
1719 		    "required by \"%s\"", name, basename(refobj->path));
1720 	} else {
1721 		_rtld_error("Shared object \"%s\" not found", name);
1722 	}
1723 	return (NULL);
1724 }
1725 
1726 /*
1727  * Given a symbol number in a referencing object, find the corresponding
1728  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1729  * no definition was found.  Returns a pointer to the Obj_Entry of the
1730  * defining object via the reference parameter DEFOBJ_OUT.
1731  */
1732 const Elf_Sym *
1733 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1734     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1735     RtldLockState *lockstate)
1736 {
1737     const Elf_Sym *ref;
1738     const Elf_Sym *def;
1739     const Obj_Entry *defobj;
1740     const Ver_Entry *ve;
1741     SymLook req;
1742     const char *name;
1743     int res;
1744 
1745     /*
1746      * If we have already found this symbol, get the information from
1747      * the cache.
1748      */
1749     if (symnum >= refobj->dynsymcount)
1750 	return NULL;	/* Bad object */
1751     if (cache != NULL && cache[symnum].sym != NULL) {
1752 	*defobj_out = cache[symnum].obj;
1753 	return cache[symnum].sym;
1754     }
1755 
1756     ref = refobj->symtab + symnum;
1757     name = refobj->strtab + ref->st_name;
1758     def = NULL;
1759     defobj = NULL;
1760     ve = NULL;
1761 
1762     /*
1763      * We don't have to do a full scale lookup if the symbol is local.
1764      * We know it will bind to the instance in this load module; to
1765      * which we already have a pointer (ie ref). By not doing a lookup,
1766      * we not only improve performance, but it also avoids unresolvable
1767      * symbols when local symbols are not in the hash table. This has
1768      * been seen with the ia64 toolchain.
1769      */
1770     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1771 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1772 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1773 		symnum);
1774 	}
1775 	symlook_init(&req, name);
1776 	req.flags = flags;
1777 	ve = req.ventry = fetch_ventry(refobj, symnum);
1778 	req.lockstate = lockstate;
1779 	res = symlook_default(&req, refobj);
1780 	if (res == 0) {
1781 	    def = req.sym_out;
1782 	    defobj = req.defobj_out;
1783 	}
1784     } else {
1785 	def = ref;
1786 	defobj = refobj;
1787     }
1788 
1789     /*
1790      * If we found no definition and the reference is weak, treat the
1791      * symbol as having the value zero.
1792      */
1793     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1794 	def = &sym_zero;
1795 	defobj = obj_main;
1796     }
1797 
1798     if (def != NULL) {
1799 	*defobj_out = defobj;
1800 	/* Record the information in the cache to avoid subsequent lookups. */
1801 	if (cache != NULL) {
1802 	    cache[symnum].sym = def;
1803 	    cache[symnum].obj = defobj;
1804 	}
1805     } else {
1806 	if (refobj != &obj_rtld)
1807 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1808 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1809     }
1810     return def;
1811 }
1812 
1813 /*
1814  * Return the search path from the ldconfig hints file, reading it if
1815  * necessary.  If nostdlib is true, then the default search paths are
1816  * not added to result.
1817  *
1818  * Returns NULL if there are problems with the hints file,
1819  * or if the search path there is empty.
1820  */
1821 static const char *
1822 gethints(bool nostdlib)
1823 {
1824 	static char *filtered_path;
1825 	static const char *hints;
1826 	static struct elfhints_hdr hdr;
1827 	struct fill_search_info_args sargs, hargs;
1828 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1829 	struct dl_serpath *SLPpath, *hintpath;
1830 	char *p;
1831 	struct stat hint_stat;
1832 	unsigned int SLPndx, hintndx, fndx, fcount;
1833 	int fd;
1834 	size_t flen;
1835 	uint32_t dl;
1836 	bool skip;
1837 
1838 	/* First call, read the hints file */
1839 	if (hints == NULL) {
1840 		/* Keep from trying again in case the hints file is bad. */
1841 		hints = "";
1842 
1843 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1844 			return (NULL);
1845 
1846 		/*
1847 		 * Check of hdr.dirlistlen value against type limit
1848 		 * intends to pacify static analyzers.  Further
1849 		 * paranoia leads to checks that dirlist is fully
1850 		 * contained in the file range.
1851 		 */
1852 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1853 		    hdr.magic != ELFHINTS_MAGIC ||
1854 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1855 		    fstat(fd, &hint_stat) == -1) {
1856 cleanup1:
1857 			close(fd);
1858 			hdr.dirlistlen = 0;
1859 			return (NULL);
1860 		}
1861 		dl = hdr.strtab;
1862 		if (dl + hdr.dirlist < dl)
1863 			goto cleanup1;
1864 		dl += hdr.dirlist;
1865 		if (dl + hdr.dirlistlen < dl)
1866 			goto cleanup1;
1867 		dl += hdr.dirlistlen;
1868 		if (dl > hint_stat.st_size)
1869 			goto cleanup1;
1870 		p = xmalloc(hdr.dirlistlen + 1);
1871 		if (pread(fd, p, hdr.dirlistlen + 1,
1872 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1873 		    p[hdr.dirlistlen] != '\0') {
1874 			free(p);
1875 			goto cleanup1;
1876 		}
1877 		hints = p;
1878 		close(fd);
1879 	}
1880 
1881 	/*
1882 	 * If caller agreed to receive list which includes the default
1883 	 * paths, we are done. Otherwise, if we still did not
1884 	 * calculated filtered result, do it now.
1885 	 */
1886 	if (!nostdlib)
1887 		return (hints[0] != '\0' ? hints : NULL);
1888 	if (filtered_path != NULL)
1889 		goto filt_ret;
1890 
1891 	/*
1892 	 * Obtain the list of all configured search paths, and the
1893 	 * list of the default paths.
1894 	 *
1895 	 * First estimate the size of the results.
1896 	 */
1897 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1898 	smeta.dls_cnt = 0;
1899 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1900 	hmeta.dls_cnt = 0;
1901 
1902 	sargs.request = RTLD_DI_SERINFOSIZE;
1903 	sargs.serinfo = &smeta;
1904 	hargs.request = RTLD_DI_SERINFOSIZE;
1905 	hargs.serinfo = &hmeta;
1906 
1907 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1908 	    &sargs);
1909 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1910 
1911 	SLPinfo = xmalloc(smeta.dls_size);
1912 	hintinfo = xmalloc(hmeta.dls_size);
1913 
1914 	/*
1915 	 * Next fetch both sets of paths.
1916 	 */
1917 	sargs.request = RTLD_DI_SERINFO;
1918 	sargs.serinfo = SLPinfo;
1919 	sargs.serpath = &SLPinfo->dls_serpath[0];
1920 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1921 
1922 	hargs.request = RTLD_DI_SERINFO;
1923 	hargs.serinfo = hintinfo;
1924 	hargs.serpath = &hintinfo->dls_serpath[0];
1925 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1926 
1927 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1928 	    &sargs);
1929 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1930 
1931 	/*
1932 	 * Now calculate the difference between two sets, by excluding
1933 	 * standard paths from the full set.
1934 	 */
1935 	fndx = 0;
1936 	fcount = 0;
1937 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1938 	hintpath = &hintinfo->dls_serpath[0];
1939 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1940 		skip = false;
1941 		SLPpath = &SLPinfo->dls_serpath[0];
1942 		/*
1943 		 * Check each standard path against current.
1944 		 */
1945 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1946 			/* matched, skip the path */
1947 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1948 				skip = true;
1949 				break;
1950 			}
1951 		}
1952 		if (skip)
1953 			continue;
1954 		/*
1955 		 * Not matched against any standard path, add the path
1956 		 * to result. Separate consequtive paths with ':'.
1957 		 */
1958 		if (fcount > 0) {
1959 			filtered_path[fndx] = ':';
1960 			fndx++;
1961 		}
1962 		fcount++;
1963 		flen = strlen(hintpath->dls_name);
1964 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1965 		fndx += flen;
1966 	}
1967 	filtered_path[fndx] = '\0';
1968 
1969 	free(SLPinfo);
1970 	free(hintinfo);
1971 
1972 filt_ret:
1973 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1974 }
1975 
1976 static void
1977 init_dag(Obj_Entry *root)
1978 {
1979     const Needed_Entry *needed;
1980     const Objlist_Entry *elm;
1981     DoneList donelist;
1982 
1983     if (root->dag_inited)
1984 	return;
1985     donelist_init(&donelist);
1986 
1987     /* Root object belongs to own DAG. */
1988     objlist_push_tail(&root->dldags, root);
1989     objlist_push_tail(&root->dagmembers, root);
1990     donelist_check(&donelist, root);
1991 
1992     /*
1993      * Add dependencies of root object to DAG in breadth order
1994      * by exploiting the fact that each new object get added
1995      * to the tail of the dagmembers list.
1996      */
1997     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1998 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1999 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2000 		continue;
2001 	    objlist_push_tail(&needed->obj->dldags, root);
2002 	    objlist_push_tail(&root->dagmembers, needed->obj);
2003 	}
2004     }
2005     root->dag_inited = true;
2006 }
2007 
2008 static void
2009 init_marker(Obj_Entry *marker)
2010 {
2011 
2012 	bzero(marker, sizeof(*marker));
2013 	marker->marker = true;
2014 }
2015 
2016 Obj_Entry *
2017 globallist_curr(const Obj_Entry *obj)
2018 {
2019 
2020 	for (;;) {
2021 		if (obj == NULL)
2022 			return (NULL);
2023 		if (!obj->marker)
2024 			return (__DECONST(Obj_Entry *, obj));
2025 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2026 	}
2027 }
2028 
2029 Obj_Entry *
2030 globallist_next(const Obj_Entry *obj)
2031 {
2032 
2033 	for (;;) {
2034 		obj = TAILQ_NEXT(obj, next);
2035 		if (obj == NULL)
2036 			return (NULL);
2037 		if (!obj->marker)
2038 			return (__DECONST(Obj_Entry *, obj));
2039 	}
2040 }
2041 
2042 /* Prevent the object from being unmapped while the bind lock is dropped. */
2043 static void
2044 hold_object(Obj_Entry *obj)
2045 {
2046 
2047 	obj->holdcount++;
2048 }
2049 
2050 static void
2051 unhold_object(Obj_Entry *obj)
2052 {
2053 
2054 	assert(obj->holdcount > 0);
2055 	if (--obj->holdcount == 0 && obj->unholdfree)
2056 		release_object(obj);
2057 }
2058 
2059 static void
2060 process_z(Obj_Entry *root)
2061 {
2062 	const Objlist_Entry *elm;
2063 	Obj_Entry *obj;
2064 
2065 	/*
2066 	 * Walk over object DAG and process every dependent object
2067 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2068 	 * to grow their own DAG.
2069 	 *
2070 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2071 	 * symlook_global() to work.
2072 	 *
2073 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2074 	 */
2075 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2076 		obj = elm->obj;
2077 		if (obj == NULL)
2078 			continue;
2079 		if (obj->z_nodelete && !obj->ref_nodel) {
2080 			dbg("obj %s -z nodelete", obj->path);
2081 			init_dag(obj);
2082 			ref_dag(obj);
2083 			obj->ref_nodel = true;
2084 		}
2085 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2086 			dbg("obj %s -z global", obj->path);
2087 			objlist_push_tail(&list_global, obj);
2088 			init_dag(obj);
2089 		}
2090 	}
2091 }
2092 /*
2093  * Initialize the dynamic linker.  The argument is the address at which
2094  * the dynamic linker has been mapped into memory.  The primary task of
2095  * this function is to relocate the dynamic linker.
2096  */
2097 static void
2098 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2099 {
2100     Obj_Entry objtmp;	/* Temporary rtld object */
2101     const Elf_Ehdr *ehdr;
2102     const Elf_Dyn *dyn_rpath;
2103     const Elf_Dyn *dyn_soname;
2104     const Elf_Dyn *dyn_runpath;
2105 
2106 #ifdef RTLD_INIT_PAGESIZES_EARLY
2107     /* The page size is required by the dynamic memory allocator. */
2108     init_pagesizes(aux_info);
2109 #endif
2110 
2111     /*
2112      * Conjure up an Obj_Entry structure for the dynamic linker.
2113      *
2114      * The "path" member can't be initialized yet because string constants
2115      * cannot yet be accessed. Below we will set it correctly.
2116      */
2117     memset(&objtmp, 0, sizeof(objtmp));
2118     objtmp.path = NULL;
2119     objtmp.rtld = true;
2120     objtmp.mapbase = mapbase;
2121 #ifdef PIC
2122     objtmp.relocbase = mapbase;
2123 #endif
2124 
2125     objtmp.dynamic = rtld_dynamic(&objtmp);
2126     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2127     assert(objtmp.needed == NULL);
2128 #if !defined(__mips__)
2129     /* MIPS has a bogus DT_TEXTREL. */
2130     assert(!objtmp.textrel);
2131 #endif
2132     /*
2133      * Temporarily put the dynamic linker entry into the object list, so
2134      * that symbols can be found.
2135      */
2136     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2137 
2138     ehdr = (Elf_Ehdr *)mapbase;
2139     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2140     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2141 
2142     /* Initialize the object list. */
2143     TAILQ_INIT(&obj_list);
2144 
2145     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2146     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2147 
2148 #ifndef RTLD_INIT_PAGESIZES_EARLY
2149     /* The page size is required by the dynamic memory allocator. */
2150     init_pagesizes(aux_info);
2151 #endif
2152 
2153     if (aux_info[AT_OSRELDATE] != NULL)
2154 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2155 
2156     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2157 
2158     /* Replace the path with a dynamically allocated copy. */
2159     obj_rtld.path = xstrdup(ld_path_rtld);
2160 
2161     r_debug.r_brk = r_debug_state;
2162     r_debug.r_state = RT_CONSISTENT;
2163 }
2164 
2165 /*
2166  * Retrieve the array of supported page sizes.  The kernel provides the page
2167  * sizes in increasing order.
2168  */
2169 static void
2170 init_pagesizes(Elf_Auxinfo **aux_info)
2171 {
2172 	static size_t psa[MAXPAGESIZES];
2173 	int mib[2];
2174 	size_t len, size;
2175 
2176 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2177 	    NULL) {
2178 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2179 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2180 	} else {
2181 		len = 2;
2182 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2183 			size = sizeof(psa);
2184 		else {
2185 			/* As a fallback, retrieve the base page size. */
2186 			size = sizeof(psa[0]);
2187 			if (aux_info[AT_PAGESZ] != NULL) {
2188 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2189 				goto psa_filled;
2190 			} else {
2191 				mib[0] = CTL_HW;
2192 				mib[1] = HW_PAGESIZE;
2193 				len = 2;
2194 			}
2195 		}
2196 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2197 			_rtld_error("sysctl for hw.pagesize(s) failed");
2198 			rtld_die();
2199 		}
2200 psa_filled:
2201 		pagesizes = psa;
2202 	}
2203 	npagesizes = size / sizeof(pagesizes[0]);
2204 	/* Discard any invalid entries at the end of the array. */
2205 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2206 		npagesizes--;
2207 }
2208 
2209 /*
2210  * Add the init functions from a needed object list (and its recursive
2211  * needed objects) to "list".  This is not used directly; it is a helper
2212  * function for initlist_add_objects().  The write lock must be held
2213  * when this function is called.
2214  */
2215 static void
2216 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2217 {
2218     /* Recursively process the successor needed objects. */
2219     if (needed->next != NULL)
2220 	initlist_add_neededs(needed->next, list);
2221 
2222     /* Process the current needed object. */
2223     if (needed->obj != NULL)
2224 	initlist_add_objects(needed->obj, needed->obj, list);
2225 }
2226 
2227 /*
2228  * Scan all of the DAGs rooted in the range of objects from "obj" to
2229  * "tail" and add their init functions to "list".  This recurses over
2230  * the DAGs and ensure the proper init ordering such that each object's
2231  * needed libraries are initialized before the object itself.  At the
2232  * same time, this function adds the objects to the global finalization
2233  * list "list_fini" in the opposite order.  The write lock must be
2234  * held when this function is called.
2235  */
2236 static void
2237 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2238 {
2239     Obj_Entry *nobj;
2240 
2241     if (obj->init_scanned || obj->init_done)
2242 	return;
2243     obj->init_scanned = true;
2244 
2245     /* Recursively process the successor objects. */
2246     nobj = globallist_next(obj);
2247     if (nobj != NULL && obj != tail)
2248 	initlist_add_objects(nobj, tail, list);
2249 
2250     /* Recursively process the needed objects. */
2251     if (obj->needed != NULL)
2252 	initlist_add_neededs(obj->needed, list);
2253     if (obj->needed_filtees != NULL)
2254 	initlist_add_neededs(obj->needed_filtees, list);
2255     if (obj->needed_aux_filtees != NULL)
2256 	initlist_add_neededs(obj->needed_aux_filtees, list);
2257 
2258     /* Add the object to the init list. */
2259     objlist_push_tail(list, obj);
2260 
2261     /* Add the object to the global fini list in the reverse order. */
2262     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2263       && !obj->on_fini_list) {
2264 	objlist_push_head(&list_fini, obj);
2265 	obj->on_fini_list = true;
2266     }
2267 }
2268 
2269 #ifndef FPTR_TARGET
2270 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2271 #endif
2272 
2273 static void
2274 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2275 {
2276     Needed_Entry *needed, *needed1;
2277 
2278     for (needed = n; needed != NULL; needed = needed->next) {
2279 	if (needed->obj != NULL) {
2280 	    dlclose_locked(needed->obj, lockstate);
2281 	    needed->obj = NULL;
2282 	}
2283     }
2284     for (needed = n; needed != NULL; needed = needed1) {
2285 	needed1 = needed->next;
2286 	free(needed);
2287     }
2288 }
2289 
2290 static void
2291 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2292 {
2293 
2294 	free_needed_filtees(obj->needed_filtees, lockstate);
2295 	obj->needed_filtees = NULL;
2296 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2297 	obj->needed_aux_filtees = NULL;
2298 	obj->filtees_loaded = false;
2299 }
2300 
2301 static void
2302 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2303     RtldLockState *lockstate)
2304 {
2305 
2306     for (; needed != NULL; needed = needed->next) {
2307 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2308 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2309 	  RTLD_LOCAL, lockstate);
2310     }
2311 }
2312 
2313 static void
2314 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2315 {
2316 
2317     lock_restart_for_upgrade(lockstate);
2318     if (!obj->filtees_loaded) {
2319 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2320 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2321 	obj->filtees_loaded = true;
2322     }
2323 }
2324 
2325 static int
2326 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2327 {
2328     Obj_Entry *obj1;
2329 
2330     for (; needed != NULL; needed = needed->next) {
2331 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2332 	  flags & ~RTLD_LO_NOLOAD);
2333 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2334 	    return (-1);
2335     }
2336     return (0);
2337 }
2338 
2339 /*
2340  * Given a shared object, traverse its list of needed objects, and load
2341  * each of them.  Returns 0 on success.  Generates an error message and
2342  * returns -1 on failure.
2343  */
2344 static int
2345 load_needed_objects(Obj_Entry *first, int flags)
2346 {
2347     Obj_Entry *obj;
2348 
2349     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2350 	if (obj->marker)
2351 	    continue;
2352 	if (process_needed(obj, obj->needed, flags) == -1)
2353 	    return (-1);
2354     }
2355     return (0);
2356 }
2357 
2358 static int
2359 load_preload_objects(void)
2360 {
2361     char *p = ld_preload;
2362     Obj_Entry *obj;
2363     static const char delim[] = " \t:;";
2364 
2365     if (p == NULL)
2366 	return 0;
2367 
2368     p += strspn(p, delim);
2369     while (*p != '\0') {
2370 	size_t len = strcspn(p, delim);
2371 	char savech;
2372 
2373 	savech = p[len];
2374 	p[len] = '\0';
2375 	obj = load_object(p, -1, NULL, 0);
2376 	if (obj == NULL)
2377 	    return -1;	/* XXX - cleanup */
2378 	obj->z_interpose = true;
2379 	p[len] = savech;
2380 	p += len;
2381 	p += strspn(p, delim);
2382     }
2383     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2384     return 0;
2385 }
2386 
2387 static const char *
2388 printable_path(const char *path)
2389 {
2390 
2391 	return (path == NULL ? "<unknown>" : path);
2392 }
2393 
2394 /*
2395  * Load a shared object into memory, if it is not already loaded.  The
2396  * object may be specified by name or by user-supplied file descriptor
2397  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2398  * duplicate is.
2399  *
2400  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2401  * on failure.
2402  */
2403 static Obj_Entry *
2404 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2405 {
2406     Obj_Entry *obj;
2407     int fd;
2408     struct stat sb;
2409     char *path;
2410 
2411     fd = -1;
2412     if (name != NULL) {
2413 	TAILQ_FOREACH(obj, &obj_list, next) {
2414 	    if (obj->marker || obj->doomed)
2415 		continue;
2416 	    if (object_match_name(obj, name))
2417 		return (obj);
2418 	}
2419 
2420 	path = find_library(name, refobj, &fd);
2421 	if (path == NULL)
2422 	    return (NULL);
2423     } else
2424 	path = NULL;
2425 
2426     if (fd >= 0) {
2427 	/*
2428 	 * search_library_pathfds() opens a fresh file descriptor for the
2429 	 * library, so there is no need to dup().
2430 	 */
2431     } else if (fd_u == -1) {
2432 	/*
2433 	 * If we didn't find a match by pathname, or the name is not
2434 	 * supplied, open the file and check again by device and inode.
2435 	 * This avoids false mismatches caused by multiple links or ".."
2436 	 * in pathnames.
2437 	 *
2438 	 * To avoid a race, we open the file and use fstat() rather than
2439 	 * using stat().
2440 	 */
2441 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2442 	    _rtld_error("Cannot open \"%s\"", path);
2443 	    free(path);
2444 	    return (NULL);
2445 	}
2446     } else {
2447 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2448 	if (fd == -1) {
2449 	    _rtld_error("Cannot dup fd");
2450 	    free(path);
2451 	    return (NULL);
2452 	}
2453     }
2454     if (fstat(fd, &sb) == -1) {
2455 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2456 	close(fd);
2457 	free(path);
2458 	return NULL;
2459     }
2460     TAILQ_FOREACH(obj, &obj_list, next) {
2461 	if (obj->marker || obj->doomed)
2462 	    continue;
2463 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2464 	    break;
2465     }
2466     if (obj != NULL && name != NULL) {
2467 	object_add_name(obj, name);
2468 	free(path);
2469 	close(fd);
2470 	return obj;
2471     }
2472     if (flags & RTLD_LO_NOLOAD) {
2473 	free(path);
2474 	close(fd);
2475 	return (NULL);
2476     }
2477 
2478     /* First use of this object, so we must map it in */
2479     obj = do_load_object(fd, name, path, &sb, flags);
2480     if (obj == NULL)
2481 	free(path);
2482     close(fd);
2483 
2484     return obj;
2485 }
2486 
2487 static Obj_Entry *
2488 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2489   int flags)
2490 {
2491     Obj_Entry *obj;
2492     struct statfs fs;
2493 
2494     /*
2495      * but first, make sure that environment variables haven't been
2496      * used to circumvent the noexec flag on a filesystem.
2497      */
2498     if (dangerous_ld_env) {
2499 	if (fstatfs(fd, &fs) != 0) {
2500 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2501 	    return NULL;
2502 	}
2503 	if (fs.f_flags & MNT_NOEXEC) {
2504 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2505 	    return NULL;
2506 	}
2507     }
2508     dbg("loading \"%s\"", printable_path(path));
2509     obj = map_object(fd, printable_path(path), sbp);
2510     if (obj == NULL)
2511         return NULL;
2512 
2513     /*
2514      * If DT_SONAME is present in the object, digest_dynamic2 already
2515      * added it to the object names.
2516      */
2517     if (name != NULL)
2518 	object_add_name(obj, name);
2519     obj->path = path;
2520     digest_dynamic(obj, 0);
2521     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2522 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2523     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2524       RTLD_LO_DLOPEN) {
2525 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2526 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2527 	munmap(obj->mapbase, obj->mapsize);
2528 	obj_free(obj);
2529 	return (NULL);
2530     }
2531 
2532     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2533     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2534     obj_count++;
2535     obj_loads++;
2536     linkmap_add(obj);	/* for GDB & dlinfo() */
2537     max_stack_flags |= obj->stack_flags;
2538 
2539     dbg("  %p .. %p: %s", obj->mapbase,
2540          obj->mapbase + obj->mapsize - 1, obj->path);
2541     if (obj->textrel)
2542 	dbg("  WARNING: %s has impure text", obj->path);
2543     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2544 	obj->path);
2545 
2546     return obj;
2547 }
2548 
2549 static Obj_Entry *
2550 obj_from_addr(const void *addr)
2551 {
2552     Obj_Entry *obj;
2553 
2554     TAILQ_FOREACH(obj, &obj_list, next) {
2555 	if (obj->marker)
2556 	    continue;
2557 	if (addr < (void *) obj->mapbase)
2558 	    continue;
2559 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2560 	    return obj;
2561     }
2562     return NULL;
2563 }
2564 
2565 static void
2566 preinit_main(void)
2567 {
2568     Elf_Addr *preinit_addr;
2569     int index;
2570 
2571     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2572     if (preinit_addr == NULL)
2573 	return;
2574 
2575     for (index = 0; index < obj_main->preinit_array_num; index++) {
2576 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2577 	    dbg("calling preinit function for %s at %p", obj_main->path,
2578 	      (void *)preinit_addr[index]);
2579 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2580 	      0, 0, obj_main->path);
2581 	    call_init_pointer(obj_main, preinit_addr[index]);
2582 	}
2583     }
2584 }
2585 
2586 /*
2587  * Call the finalization functions for each of the objects in "list"
2588  * belonging to the DAG of "root" and referenced once. If NULL "root"
2589  * is specified, every finalization function will be called regardless
2590  * of the reference count and the list elements won't be freed. All of
2591  * the objects are expected to have non-NULL fini functions.
2592  */
2593 static void
2594 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2595 {
2596     Objlist_Entry *elm;
2597     char *saved_msg;
2598     Elf_Addr *fini_addr;
2599     int index;
2600 
2601     assert(root == NULL || root->refcount == 1);
2602 
2603     if (root != NULL)
2604 	root->doomed = true;
2605 
2606     /*
2607      * Preserve the current error message since a fini function might
2608      * call into the dynamic linker and overwrite it.
2609      */
2610     saved_msg = errmsg_save();
2611     do {
2612 	STAILQ_FOREACH(elm, list, link) {
2613 	    if (root != NULL && (elm->obj->refcount != 1 ||
2614 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2615 		continue;
2616 	    /* Remove object from fini list to prevent recursive invocation. */
2617 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2618 	    /* Ensure that new references cannot be acquired. */
2619 	    elm->obj->doomed = true;
2620 
2621 	    hold_object(elm->obj);
2622 	    lock_release(rtld_bind_lock, lockstate);
2623 	    /*
2624 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2625 	     * When this happens, DT_FINI_ARRAY is processed first.
2626 	     */
2627 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2628 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2629 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2630 		  index--) {
2631 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2632 			dbg("calling fini function for %s at %p",
2633 			    elm->obj->path, (void *)fini_addr[index]);
2634 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2635 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2636 			call_initfini_pointer(elm->obj, fini_addr[index]);
2637 		    }
2638 		}
2639 	    }
2640 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2641 		dbg("calling fini function for %s at %p", elm->obj->path,
2642 		    (void *)elm->obj->fini);
2643 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2644 		    0, 0, elm->obj->path);
2645 		call_initfini_pointer(elm->obj, elm->obj->fini);
2646 	    }
2647 	    wlock_acquire(rtld_bind_lock, lockstate);
2648 	    unhold_object(elm->obj);
2649 	    /* No need to free anything if process is going down. */
2650 	    if (root != NULL)
2651 	    	free(elm);
2652 	    /*
2653 	     * We must restart the list traversal after every fini call
2654 	     * because a dlclose() call from the fini function or from
2655 	     * another thread might have modified the reference counts.
2656 	     */
2657 	    break;
2658 	}
2659     } while (elm != NULL);
2660     errmsg_restore(saved_msg);
2661 }
2662 
2663 /*
2664  * Call the initialization functions for each of the objects in
2665  * "list".  All of the objects are expected to have non-NULL init
2666  * functions.
2667  */
2668 static void
2669 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2670 {
2671     Objlist_Entry *elm;
2672     Obj_Entry *obj;
2673     char *saved_msg;
2674     Elf_Addr *init_addr;
2675     void (*reg)(void (*)(void));
2676     int index;
2677 
2678     /*
2679      * Clean init_scanned flag so that objects can be rechecked and
2680      * possibly initialized earlier if any of vectors called below
2681      * cause the change by using dlopen.
2682      */
2683     TAILQ_FOREACH(obj, &obj_list, next) {
2684 	if (obj->marker)
2685 	    continue;
2686 	obj->init_scanned = false;
2687     }
2688 
2689     /*
2690      * Preserve the current error message since an init function might
2691      * call into the dynamic linker and overwrite it.
2692      */
2693     saved_msg = errmsg_save();
2694     STAILQ_FOREACH(elm, list, link) {
2695 	if (elm->obj->init_done) /* Initialized early. */
2696 	    continue;
2697 	/*
2698 	 * Race: other thread might try to use this object before current
2699 	 * one completes the initialization. Not much can be done here
2700 	 * without better locking.
2701 	 */
2702 	elm->obj->init_done = true;
2703 	hold_object(elm->obj);
2704 	reg = NULL;
2705 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2706 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2707 		    "__libc_atexit", lockstate);
2708 	}
2709 	lock_release(rtld_bind_lock, lockstate);
2710 	if (reg != NULL) {
2711 		reg(rtld_exit);
2712 		rtld_exit_ptr = rtld_nop_exit;
2713 	}
2714 
2715         /*
2716          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2717          * When this happens, DT_INIT is processed first.
2718          */
2719 	if (elm->obj->init != (Elf_Addr)NULL) {
2720 	    dbg("calling init function for %s at %p", elm->obj->path,
2721 	        (void *)elm->obj->init);
2722 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2723 	        0, 0, elm->obj->path);
2724 	    call_initfini_pointer(elm->obj, elm->obj->init);
2725 	}
2726 	init_addr = (Elf_Addr *)elm->obj->init_array;
2727 	if (init_addr != NULL) {
2728 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2729 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2730 		    dbg("calling init function for %s at %p", elm->obj->path,
2731 			(void *)init_addr[index]);
2732 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2733 			(void *)init_addr[index], 0, 0, elm->obj->path);
2734 		    call_init_pointer(elm->obj, init_addr[index]);
2735 		}
2736 	    }
2737 	}
2738 	wlock_acquire(rtld_bind_lock, lockstate);
2739 	unhold_object(elm->obj);
2740     }
2741     errmsg_restore(saved_msg);
2742 }
2743 
2744 static void
2745 objlist_clear(Objlist *list)
2746 {
2747     Objlist_Entry *elm;
2748 
2749     while (!STAILQ_EMPTY(list)) {
2750 	elm = STAILQ_FIRST(list);
2751 	STAILQ_REMOVE_HEAD(list, link);
2752 	free(elm);
2753     }
2754 }
2755 
2756 static Objlist_Entry *
2757 objlist_find(Objlist *list, const Obj_Entry *obj)
2758 {
2759     Objlist_Entry *elm;
2760 
2761     STAILQ_FOREACH(elm, list, link)
2762 	if (elm->obj == obj)
2763 	    return elm;
2764     return NULL;
2765 }
2766 
2767 static void
2768 objlist_init(Objlist *list)
2769 {
2770     STAILQ_INIT(list);
2771 }
2772 
2773 static void
2774 objlist_push_head(Objlist *list, Obj_Entry *obj)
2775 {
2776     Objlist_Entry *elm;
2777 
2778     elm = NEW(Objlist_Entry);
2779     elm->obj = obj;
2780     STAILQ_INSERT_HEAD(list, elm, link);
2781 }
2782 
2783 static void
2784 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2785 {
2786     Objlist_Entry *elm;
2787 
2788     elm = NEW(Objlist_Entry);
2789     elm->obj = obj;
2790     STAILQ_INSERT_TAIL(list, elm, link);
2791 }
2792 
2793 static void
2794 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2795 {
2796 	Objlist_Entry *elm, *listelm;
2797 
2798 	STAILQ_FOREACH(listelm, list, link) {
2799 		if (listelm->obj == listobj)
2800 			break;
2801 	}
2802 	elm = NEW(Objlist_Entry);
2803 	elm->obj = obj;
2804 	if (listelm != NULL)
2805 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2806 	else
2807 		STAILQ_INSERT_TAIL(list, elm, link);
2808 }
2809 
2810 static void
2811 objlist_remove(Objlist *list, Obj_Entry *obj)
2812 {
2813     Objlist_Entry *elm;
2814 
2815     if ((elm = objlist_find(list, obj)) != NULL) {
2816 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2817 	free(elm);
2818     }
2819 }
2820 
2821 /*
2822  * Relocate dag rooted in the specified object.
2823  * Returns 0 on success, or -1 on failure.
2824  */
2825 
2826 static int
2827 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2828     int flags, RtldLockState *lockstate)
2829 {
2830 	Objlist_Entry *elm;
2831 	int error;
2832 
2833 	error = 0;
2834 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2835 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2836 		    lockstate);
2837 		if (error == -1)
2838 			break;
2839 	}
2840 	return (error);
2841 }
2842 
2843 /*
2844  * Prepare for, or clean after, relocating an object marked with
2845  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2846  * segments are remapped read-write.  After relocations are done, the
2847  * segment's permissions are returned back to the modes specified in
2848  * the phdrs.  If any relocation happened, or always for wired
2849  * program, COW is triggered.
2850  */
2851 static int
2852 reloc_textrel_prot(Obj_Entry *obj, bool before)
2853 {
2854 	const Elf_Phdr *ph;
2855 	void *base;
2856 	size_t l, sz;
2857 	int prot;
2858 
2859 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2860 	    l--, ph++) {
2861 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2862 			continue;
2863 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2864 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2865 		    trunc_page(ph->p_vaddr);
2866 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2867 		if (mprotect(base, sz, prot) == -1) {
2868 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2869 			    obj->path, before ? "en" : "dis",
2870 			    rtld_strerror(errno));
2871 			return (-1);
2872 		}
2873 	}
2874 	return (0);
2875 }
2876 
2877 /*
2878  * Relocate single object.
2879  * Returns 0 on success, or -1 on failure.
2880  */
2881 static int
2882 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2883     int flags, RtldLockState *lockstate)
2884 {
2885 
2886 	if (obj->relocated)
2887 		return (0);
2888 	obj->relocated = true;
2889 	if (obj != rtldobj)
2890 		dbg("relocating \"%s\"", obj->path);
2891 
2892 	if (obj->symtab == NULL || obj->strtab == NULL ||
2893 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2894 		_rtld_error("%s: Shared object has no run-time symbol table",
2895 			    obj->path);
2896 		return (-1);
2897 	}
2898 
2899 	/* There are relocations to the write-protected text segment. */
2900 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2901 		return (-1);
2902 
2903 	/* Process the non-PLT non-IFUNC relocations. */
2904 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2905 		return (-1);
2906 
2907 	/* Re-protected the text segment. */
2908 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2909 		return (-1);
2910 
2911 	/* Set the special PLT or GOT entries. */
2912 	init_pltgot(obj);
2913 
2914 	/* Process the PLT relocations. */
2915 	if (reloc_plt(obj, flags, lockstate) == -1)
2916 		return (-1);
2917 	/* Relocate the jump slots if we are doing immediate binding. */
2918 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2919 	    lockstate) == -1)
2920 		return (-1);
2921 
2922 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2923 		return (-1);
2924 
2925 	/*
2926 	 * Set up the magic number and version in the Obj_Entry.  These
2927 	 * were checked in the crt1.o from the original ElfKit, so we
2928 	 * set them for backward compatibility.
2929 	 */
2930 	obj->magic = RTLD_MAGIC;
2931 	obj->version = RTLD_VERSION;
2932 
2933 	return (0);
2934 }
2935 
2936 /*
2937  * Relocate newly-loaded shared objects.  The argument is a pointer to
2938  * the Obj_Entry for the first such object.  All objects from the first
2939  * to the end of the list of objects are relocated.  Returns 0 on success,
2940  * or -1 on failure.
2941  */
2942 static int
2943 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2944     int flags, RtldLockState *lockstate)
2945 {
2946 	Obj_Entry *obj;
2947 	int error;
2948 
2949 	for (error = 0, obj = first;  obj != NULL;
2950 	    obj = TAILQ_NEXT(obj, next)) {
2951 		if (obj->marker)
2952 			continue;
2953 		error = relocate_object(obj, bind_now, rtldobj, flags,
2954 		    lockstate);
2955 		if (error == -1)
2956 			break;
2957 	}
2958 	return (error);
2959 }
2960 
2961 /*
2962  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2963  * referencing STT_GNU_IFUNC symbols is postponed till the other
2964  * relocations are done.  The indirect functions specified as
2965  * ifunc are allowed to call other symbols, so we need to have
2966  * objects relocated before asking for resolution from indirects.
2967  *
2968  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2969  * instead of the usual lazy handling of PLT slots.  It is
2970  * consistent with how GNU does it.
2971  */
2972 static int
2973 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2974     RtldLockState *lockstate)
2975 {
2976 
2977 	if (obj->ifuncs_resolved)
2978 		return (0);
2979 	obj->ifuncs_resolved = true;
2980 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
2981 		return (0);
2982 	if (obj_disable_relro(obj) == -1 ||
2983 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
2984 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2985 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
2986 	    obj_enforce_relro(obj) == -1)
2987 		return (-1);
2988 	return (0);
2989 }
2990 
2991 static int
2992 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2993     RtldLockState *lockstate)
2994 {
2995 	Objlist_Entry *elm;
2996 	Obj_Entry *obj;
2997 
2998 	STAILQ_FOREACH(elm, list, link) {
2999 		obj = elm->obj;
3000 		if (obj->marker)
3001 			continue;
3002 		if (resolve_object_ifunc(obj, bind_now, flags,
3003 		    lockstate) == -1)
3004 			return (-1);
3005 	}
3006 	return (0);
3007 }
3008 
3009 /*
3010  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3011  * before the process exits.
3012  */
3013 static void
3014 rtld_exit(void)
3015 {
3016     RtldLockState lockstate;
3017 
3018     wlock_acquire(rtld_bind_lock, &lockstate);
3019     dbg("rtld_exit()");
3020     objlist_call_fini(&list_fini, NULL, &lockstate);
3021     /* No need to remove the items from the list, since we are exiting. */
3022     if (!libmap_disable)
3023         lm_fini();
3024     lock_release(rtld_bind_lock, &lockstate);
3025 }
3026 
3027 static void
3028 rtld_nop_exit(void)
3029 {
3030 }
3031 
3032 /*
3033  * Iterate over a search path, translate each element, and invoke the
3034  * callback on the result.
3035  */
3036 static void *
3037 path_enumerate(const char *path, path_enum_proc callback,
3038     const char *refobj_path, void *arg)
3039 {
3040     const char *trans;
3041     if (path == NULL)
3042 	return (NULL);
3043 
3044     path += strspn(path, ":;");
3045     while (*path != '\0') {
3046 	size_t len;
3047 	char  *res;
3048 
3049 	len = strcspn(path, ":;");
3050 	trans = lm_findn(refobj_path, path, len);
3051 	if (trans)
3052 	    res = callback(trans, strlen(trans), arg);
3053 	else
3054 	    res = callback(path, len, arg);
3055 
3056 	if (res != NULL)
3057 	    return (res);
3058 
3059 	path += len;
3060 	path += strspn(path, ":;");
3061     }
3062 
3063     return (NULL);
3064 }
3065 
3066 struct try_library_args {
3067     const char	*name;
3068     size_t	 namelen;
3069     char	*buffer;
3070     size_t	 buflen;
3071     int		 fd;
3072 };
3073 
3074 static void *
3075 try_library_path(const char *dir, size_t dirlen, void *param)
3076 {
3077     struct try_library_args *arg;
3078     int fd;
3079 
3080     arg = param;
3081     if (*dir == '/' || trust) {
3082 	char *pathname;
3083 
3084 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3085 		return (NULL);
3086 
3087 	pathname = arg->buffer;
3088 	strncpy(pathname, dir, dirlen);
3089 	pathname[dirlen] = '/';
3090 	strcpy(pathname + dirlen + 1, arg->name);
3091 
3092 	dbg("  Trying \"%s\"", pathname);
3093 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3094 	if (fd >= 0) {
3095 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3096 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3097 	    strcpy(pathname, arg->buffer);
3098 	    arg->fd = fd;
3099 	    return (pathname);
3100 	} else {
3101 	    dbg("  Failed to open \"%s\": %s",
3102 		pathname, rtld_strerror(errno));
3103 	}
3104     }
3105     return (NULL);
3106 }
3107 
3108 static char *
3109 search_library_path(const char *name, const char *path,
3110     const char *refobj_path, int *fdp)
3111 {
3112     char *p;
3113     struct try_library_args arg;
3114 
3115     if (path == NULL)
3116 	return NULL;
3117 
3118     arg.name = name;
3119     arg.namelen = strlen(name);
3120     arg.buffer = xmalloc(PATH_MAX);
3121     arg.buflen = PATH_MAX;
3122     arg.fd = -1;
3123 
3124     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3125     *fdp = arg.fd;
3126 
3127     free(arg.buffer);
3128 
3129     return (p);
3130 }
3131 
3132 
3133 /*
3134  * Finds the library with the given name using the directory descriptors
3135  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3136  *
3137  * Returns a freshly-opened close-on-exec file descriptor for the library,
3138  * or -1 if the library cannot be found.
3139  */
3140 static char *
3141 search_library_pathfds(const char *name, const char *path, int *fdp)
3142 {
3143 	char *envcopy, *fdstr, *found, *last_token;
3144 	size_t len;
3145 	int dirfd, fd;
3146 
3147 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3148 
3149 	/* Don't load from user-specified libdirs into setuid binaries. */
3150 	if (!trust)
3151 		return (NULL);
3152 
3153 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3154 	if (path == NULL)
3155 		return (NULL);
3156 
3157 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3158 	if (name[0] == '/') {
3159 		dbg("Absolute path (%s) passed to %s", name, __func__);
3160 		return (NULL);
3161 	}
3162 
3163 	/*
3164 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3165 	 * copy of the path, as strtok_r rewrites separator tokens
3166 	 * with '\0'.
3167 	 */
3168 	found = NULL;
3169 	envcopy = xstrdup(path);
3170 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3171 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3172 		dirfd = parse_integer(fdstr);
3173 		if (dirfd < 0) {
3174 			_rtld_error("failed to parse directory FD: '%s'",
3175 				fdstr);
3176 			break;
3177 		}
3178 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3179 		if (fd >= 0) {
3180 			*fdp = fd;
3181 			len = strlen(fdstr) + strlen(name) + 3;
3182 			found = xmalloc(len);
3183 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3184 				_rtld_error("error generating '%d/%s'",
3185 				    dirfd, name);
3186 				rtld_die();
3187 			}
3188 			dbg("open('%s') => %d", found, fd);
3189 			break;
3190 		}
3191 	}
3192 	free(envcopy);
3193 
3194 	return (found);
3195 }
3196 
3197 
3198 int
3199 dlclose(void *handle)
3200 {
3201 	RtldLockState lockstate;
3202 	int error;
3203 
3204 	wlock_acquire(rtld_bind_lock, &lockstate);
3205 	error = dlclose_locked(handle, &lockstate);
3206 	lock_release(rtld_bind_lock, &lockstate);
3207 	return (error);
3208 }
3209 
3210 static int
3211 dlclose_locked(void *handle, RtldLockState *lockstate)
3212 {
3213     Obj_Entry *root;
3214 
3215     root = dlcheck(handle);
3216     if (root == NULL)
3217 	return -1;
3218     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3219 	root->path);
3220 
3221     /* Unreference the object and its dependencies. */
3222     root->dl_refcount--;
3223 
3224     if (root->refcount == 1) {
3225 	/*
3226 	 * The object will be no longer referenced, so we must unload it.
3227 	 * First, call the fini functions.
3228 	 */
3229 	objlist_call_fini(&list_fini, root, lockstate);
3230 
3231 	unref_dag(root);
3232 
3233 	/* Finish cleaning up the newly-unreferenced objects. */
3234 	GDB_STATE(RT_DELETE,&root->linkmap);
3235 	unload_object(root, lockstate);
3236 	GDB_STATE(RT_CONSISTENT,NULL);
3237     } else
3238 	unref_dag(root);
3239 
3240     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3241     return 0;
3242 }
3243 
3244 char *
3245 dlerror(void)
3246 {
3247     char *msg = error_message;
3248     error_message = NULL;
3249     return msg;
3250 }
3251 
3252 /*
3253  * This function is deprecated and has no effect.
3254  */
3255 void
3256 dllockinit(void *context,
3257     void *(*_lock_create)(void *context) __unused,
3258     void (*_rlock_acquire)(void *lock) __unused,
3259     void (*_wlock_acquire)(void *lock)  __unused,
3260     void (*_lock_release)(void *lock) __unused,
3261     void (*_lock_destroy)(void *lock) __unused,
3262     void (*context_destroy)(void *context))
3263 {
3264     static void *cur_context;
3265     static void (*cur_context_destroy)(void *);
3266 
3267     /* Just destroy the context from the previous call, if necessary. */
3268     if (cur_context_destroy != NULL)
3269 	cur_context_destroy(cur_context);
3270     cur_context = context;
3271     cur_context_destroy = context_destroy;
3272 }
3273 
3274 void *
3275 dlopen(const char *name, int mode)
3276 {
3277 
3278 	return (rtld_dlopen(name, -1, mode));
3279 }
3280 
3281 void *
3282 fdlopen(int fd, int mode)
3283 {
3284 
3285 	return (rtld_dlopen(NULL, fd, mode));
3286 }
3287 
3288 static void *
3289 rtld_dlopen(const char *name, int fd, int mode)
3290 {
3291     RtldLockState lockstate;
3292     int lo_flags;
3293 
3294     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3295     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3296     if (ld_tracing != NULL) {
3297 	rlock_acquire(rtld_bind_lock, &lockstate);
3298 	if (sigsetjmp(lockstate.env, 0) != 0)
3299 	    lock_upgrade(rtld_bind_lock, &lockstate);
3300 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3301 	lock_release(rtld_bind_lock, &lockstate);
3302     }
3303     lo_flags = RTLD_LO_DLOPEN;
3304     if (mode & RTLD_NODELETE)
3305 	    lo_flags |= RTLD_LO_NODELETE;
3306     if (mode & RTLD_NOLOAD)
3307 	    lo_flags |= RTLD_LO_NOLOAD;
3308     if (ld_tracing != NULL)
3309 	    lo_flags |= RTLD_LO_TRACE;
3310 
3311     return (dlopen_object(name, fd, obj_main, lo_flags,
3312       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3313 }
3314 
3315 static void
3316 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3317 {
3318 
3319 	obj->dl_refcount--;
3320 	unref_dag(obj);
3321 	if (obj->refcount == 0)
3322 		unload_object(obj, lockstate);
3323 }
3324 
3325 static Obj_Entry *
3326 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3327     int mode, RtldLockState *lockstate)
3328 {
3329     Obj_Entry *old_obj_tail;
3330     Obj_Entry *obj;
3331     Objlist initlist;
3332     RtldLockState mlockstate;
3333     int result;
3334 
3335     objlist_init(&initlist);
3336 
3337     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3338 	wlock_acquire(rtld_bind_lock, &mlockstate);
3339 	lockstate = &mlockstate;
3340     }
3341     GDB_STATE(RT_ADD,NULL);
3342 
3343     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3344     obj = NULL;
3345     if (name == NULL && fd == -1) {
3346 	obj = obj_main;
3347 	obj->refcount++;
3348     } else {
3349 	obj = load_object(name, fd, refobj, lo_flags);
3350     }
3351 
3352     if (obj) {
3353 	obj->dl_refcount++;
3354 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3355 	    objlist_push_tail(&list_global, obj);
3356 	if (globallist_next(old_obj_tail) != NULL) {
3357 	    /* We loaded something new. */
3358 	    assert(globallist_next(old_obj_tail) == obj);
3359 	    result = 0;
3360 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3361 	      !allocate_tls_offset(obj)) {
3362 		_rtld_error("%s: No space available "
3363 		  "for static Thread Local Storage", obj->path);
3364 		result = -1;
3365 	    }
3366 	    if (result != -1)
3367 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3368 		    RTLD_LO_EARLY));
3369 	    init_dag(obj);
3370 	    ref_dag(obj);
3371 	    if (result != -1)
3372 		result = rtld_verify_versions(&obj->dagmembers);
3373 	    if (result != -1 && ld_tracing)
3374 		goto trace;
3375 	    if (result == -1 || relocate_object_dag(obj,
3376 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3377 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3378 	      lockstate) == -1) {
3379 		dlopen_cleanup(obj, lockstate);
3380 		obj = NULL;
3381 	    } else if (lo_flags & RTLD_LO_EARLY) {
3382 		/*
3383 		 * Do not call the init functions for early loaded
3384 		 * filtees.  The image is still not initialized enough
3385 		 * for them to work.
3386 		 *
3387 		 * Our object is found by the global object list and
3388 		 * will be ordered among all init calls done right
3389 		 * before transferring control to main.
3390 		 */
3391 	    } else {
3392 		/* Make list of init functions to call. */
3393 		initlist_add_objects(obj, obj, &initlist);
3394 	    }
3395 	    /*
3396 	     * Process all no_delete or global objects here, given
3397 	     * them own DAGs to prevent their dependencies from being
3398 	     * unloaded.  This has to be done after we have loaded all
3399 	     * of the dependencies, so that we do not miss any.
3400 	     */
3401 	    if (obj != NULL)
3402 		process_z(obj);
3403 	} else {
3404 	    /*
3405 	     * Bump the reference counts for objects on this DAG.  If
3406 	     * this is the first dlopen() call for the object that was
3407 	     * already loaded as a dependency, initialize the dag
3408 	     * starting at it.
3409 	     */
3410 	    init_dag(obj);
3411 	    ref_dag(obj);
3412 
3413 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3414 		goto trace;
3415 	}
3416 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3417 	  obj->z_nodelete) && !obj->ref_nodel) {
3418 	    dbg("obj %s nodelete", obj->path);
3419 	    ref_dag(obj);
3420 	    obj->z_nodelete = obj->ref_nodel = true;
3421 	}
3422     }
3423 
3424     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3425 	name);
3426     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3427 
3428     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3429 	map_stacks_exec(lockstate);
3430 	if (obj != NULL)
3431 	    distribute_static_tls(&initlist, lockstate);
3432     }
3433 
3434     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3435       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3436       lockstate) == -1) {
3437 	objlist_clear(&initlist);
3438 	dlopen_cleanup(obj, lockstate);
3439 	if (lockstate == &mlockstate)
3440 	    lock_release(rtld_bind_lock, lockstate);
3441 	return (NULL);
3442     }
3443 
3444     if (!(lo_flags & RTLD_LO_EARLY)) {
3445 	/* Call the init functions. */
3446 	objlist_call_init(&initlist, lockstate);
3447     }
3448     objlist_clear(&initlist);
3449     if (lockstate == &mlockstate)
3450 	lock_release(rtld_bind_lock, lockstate);
3451     return obj;
3452 trace:
3453     trace_loaded_objects(obj);
3454     if (lockstate == &mlockstate)
3455 	lock_release(rtld_bind_lock, lockstate);
3456     exit(0);
3457 }
3458 
3459 static void *
3460 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3461     int flags)
3462 {
3463     DoneList donelist;
3464     const Obj_Entry *obj, *defobj;
3465     const Elf_Sym *def;
3466     SymLook req;
3467     RtldLockState lockstate;
3468     tls_index ti;
3469     void *sym;
3470     int res;
3471 
3472     def = NULL;
3473     defobj = NULL;
3474     symlook_init(&req, name);
3475     req.ventry = ve;
3476     req.flags = flags | SYMLOOK_IN_PLT;
3477     req.lockstate = &lockstate;
3478 
3479     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3480     rlock_acquire(rtld_bind_lock, &lockstate);
3481     if (sigsetjmp(lockstate.env, 0) != 0)
3482 	    lock_upgrade(rtld_bind_lock, &lockstate);
3483     if (handle == NULL || handle == RTLD_NEXT ||
3484 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3485 
3486 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3487 	    _rtld_error("Cannot determine caller's shared object");
3488 	    lock_release(rtld_bind_lock, &lockstate);
3489 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3490 	    return NULL;
3491 	}
3492 	if (handle == NULL) {	/* Just the caller's shared object. */
3493 	    res = symlook_obj(&req, obj);
3494 	    if (res == 0) {
3495 		def = req.sym_out;
3496 		defobj = req.defobj_out;
3497 	    }
3498 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3499 		   handle == RTLD_SELF) { /* ... caller included */
3500 	    if (handle == RTLD_NEXT)
3501 		obj = globallist_next(obj);
3502 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3503 		if (obj->marker)
3504 		    continue;
3505 		res = symlook_obj(&req, obj);
3506 		if (res == 0) {
3507 		    if (def == NULL ||
3508 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3509 			def = req.sym_out;
3510 			defobj = req.defobj_out;
3511 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3512 			    break;
3513 		    }
3514 		}
3515 	    }
3516 	    /*
3517 	     * Search the dynamic linker itself, and possibly resolve the
3518 	     * symbol from there.  This is how the application links to
3519 	     * dynamic linker services such as dlopen.
3520 	     */
3521 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3522 		res = symlook_obj(&req, &obj_rtld);
3523 		if (res == 0) {
3524 		    def = req.sym_out;
3525 		    defobj = req.defobj_out;
3526 		}
3527 	    }
3528 	} else {
3529 	    assert(handle == RTLD_DEFAULT);
3530 	    res = symlook_default(&req, obj);
3531 	    if (res == 0) {
3532 		defobj = req.defobj_out;
3533 		def = req.sym_out;
3534 	    }
3535 	}
3536     } else {
3537 	if ((obj = dlcheck(handle)) == NULL) {
3538 	    lock_release(rtld_bind_lock, &lockstate);
3539 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3540 	    return NULL;
3541 	}
3542 
3543 	donelist_init(&donelist);
3544 	if (obj->mainprog) {
3545             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3546 	    res = symlook_global(&req, &donelist);
3547 	    if (res == 0) {
3548 		def = req.sym_out;
3549 		defobj = req.defobj_out;
3550 	    }
3551 	    /*
3552 	     * Search the dynamic linker itself, and possibly resolve the
3553 	     * symbol from there.  This is how the application links to
3554 	     * dynamic linker services such as dlopen.
3555 	     */
3556 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3557 		res = symlook_obj(&req, &obj_rtld);
3558 		if (res == 0) {
3559 		    def = req.sym_out;
3560 		    defobj = req.defobj_out;
3561 		}
3562 	    }
3563 	}
3564 	else {
3565 	    /* Search the whole DAG rooted at the given object. */
3566 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3567 	    if (res == 0) {
3568 		def = req.sym_out;
3569 		defobj = req.defobj_out;
3570 	    }
3571 	}
3572     }
3573 
3574     if (def != NULL) {
3575 	lock_release(rtld_bind_lock, &lockstate);
3576 
3577 	/*
3578 	 * The value required by the caller is derived from the value
3579 	 * of the symbol. this is simply the relocated value of the
3580 	 * symbol.
3581 	 */
3582 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3583 	    sym = make_function_pointer(def, defobj);
3584 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3585 	    sym = rtld_resolve_ifunc(defobj, def);
3586 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3587 	    ti.ti_module = defobj->tlsindex;
3588 	    ti.ti_offset = def->st_value;
3589 	    sym = __tls_get_addr(&ti);
3590 	} else
3591 	    sym = defobj->relocbase + def->st_value;
3592 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3593 	return (sym);
3594     }
3595 
3596     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3597       ve != NULL ? ve->name : "");
3598     lock_release(rtld_bind_lock, &lockstate);
3599     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3600     return NULL;
3601 }
3602 
3603 void *
3604 dlsym(void *handle, const char *name)
3605 {
3606 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3607 	    SYMLOOK_DLSYM);
3608 }
3609 
3610 dlfunc_t
3611 dlfunc(void *handle, const char *name)
3612 {
3613 	union {
3614 		void *d;
3615 		dlfunc_t f;
3616 	} rv;
3617 
3618 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3619 	    SYMLOOK_DLSYM);
3620 	return (rv.f);
3621 }
3622 
3623 void *
3624 dlvsym(void *handle, const char *name, const char *version)
3625 {
3626 	Ver_Entry ventry;
3627 
3628 	ventry.name = version;
3629 	ventry.file = NULL;
3630 	ventry.hash = elf_hash(version);
3631 	ventry.flags= 0;
3632 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3633 	    SYMLOOK_DLSYM);
3634 }
3635 
3636 int
3637 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3638 {
3639     const Obj_Entry *obj;
3640     RtldLockState lockstate;
3641 
3642     rlock_acquire(rtld_bind_lock, &lockstate);
3643     obj = obj_from_addr(addr);
3644     if (obj == NULL) {
3645         _rtld_error("No shared object contains address");
3646 	lock_release(rtld_bind_lock, &lockstate);
3647         return (0);
3648     }
3649     rtld_fill_dl_phdr_info(obj, phdr_info);
3650     lock_release(rtld_bind_lock, &lockstate);
3651     return (1);
3652 }
3653 
3654 int
3655 dladdr(const void *addr, Dl_info *info)
3656 {
3657     const Obj_Entry *obj;
3658     const Elf_Sym *def;
3659     void *symbol_addr;
3660     unsigned long symoffset;
3661     RtldLockState lockstate;
3662 
3663     rlock_acquire(rtld_bind_lock, &lockstate);
3664     obj = obj_from_addr(addr);
3665     if (obj == NULL) {
3666         _rtld_error("No shared object contains address");
3667 	lock_release(rtld_bind_lock, &lockstate);
3668         return 0;
3669     }
3670     info->dli_fname = obj->path;
3671     info->dli_fbase = obj->mapbase;
3672     info->dli_saddr = (void *)0;
3673     info->dli_sname = NULL;
3674 
3675     /*
3676      * Walk the symbol list looking for the symbol whose address is
3677      * closest to the address sent in.
3678      */
3679     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3680         def = obj->symtab + symoffset;
3681 
3682         /*
3683          * For skip the symbol if st_shndx is either SHN_UNDEF or
3684          * SHN_COMMON.
3685          */
3686         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3687             continue;
3688 
3689         /*
3690          * If the symbol is greater than the specified address, or if it
3691          * is further away from addr than the current nearest symbol,
3692          * then reject it.
3693          */
3694         symbol_addr = obj->relocbase + def->st_value;
3695         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3696             continue;
3697 
3698         /* Update our idea of the nearest symbol. */
3699         info->dli_sname = obj->strtab + def->st_name;
3700         info->dli_saddr = symbol_addr;
3701 
3702         /* Exact match? */
3703         if (info->dli_saddr == addr)
3704             break;
3705     }
3706     lock_release(rtld_bind_lock, &lockstate);
3707     return 1;
3708 }
3709 
3710 int
3711 dlinfo(void *handle, int request, void *p)
3712 {
3713     const Obj_Entry *obj;
3714     RtldLockState lockstate;
3715     int error;
3716 
3717     rlock_acquire(rtld_bind_lock, &lockstate);
3718 
3719     if (handle == NULL || handle == RTLD_SELF) {
3720 	void *retaddr;
3721 
3722 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3723 	if ((obj = obj_from_addr(retaddr)) == NULL)
3724 	    _rtld_error("Cannot determine caller's shared object");
3725     } else
3726 	obj = dlcheck(handle);
3727 
3728     if (obj == NULL) {
3729 	lock_release(rtld_bind_lock, &lockstate);
3730 	return (-1);
3731     }
3732 
3733     error = 0;
3734     switch (request) {
3735     case RTLD_DI_LINKMAP:
3736 	*((struct link_map const **)p) = &obj->linkmap;
3737 	break;
3738     case RTLD_DI_ORIGIN:
3739 	error = rtld_dirname(obj->path, p);
3740 	break;
3741 
3742     case RTLD_DI_SERINFOSIZE:
3743     case RTLD_DI_SERINFO:
3744 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3745 	break;
3746 
3747     default:
3748 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3749 	error = -1;
3750     }
3751 
3752     lock_release(rtld_bind_lock, &lockstate);
3753 
3754     return (error);
3755 }
3756 
3757 static void
3758 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3759 {
3760 
3761 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3762 	phdr_info->dlpi_name = obj->path;
3763 	phdr_info->dlpi_phdr = obj->phdr;
3764 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3765 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3766 	phdr_info->dlpi_tls_data = obj->tlsinit;
3767 	phdr_info->dlpi_adds = obj_loads;
3768 	phdr_info->dlpi_subs = obj_loads - obj_count;
3769 }
3770 
3771 int
3772 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3773 {
3774 	struct dl_phdr_info phdr_info;
3775 	Obj_Entry *obj, marker;
3776 	RtldLockState bind_lockstate, phdr_lockstate;
3777 	int error;
3778 
3779 	init_marker(&marker);
3780 	error = 0;
3781 
3782 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3783 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3784 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3785 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3786 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3787 		hold_object(obj);
3788 		lock_release(rtld_bind_lock, &bind_lockstate);
3789 
3790 		error = callback(&phdr_info, sizeof phdr_info, param);
3791 
3792 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3793 		unhold_object(obj);
3794 		obj = globallist_next(&marker);
3795 		TAILQ_REMOVE(&obj_list, &marker, next);
3796 		if (error != 0) {
3797 			lock_release(rtld_bind_lock, &bind_lockstate);
3798 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3799 			return (error);
3800 		}
3801 	}
3802 
3803 	if (error == 0) {
3804 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3805 		lock_release(rtld_bind_lock, &bind_lockstate);
3806 		error = callback(&phdr_info, sizeof(phdr_info), param);
3807 	}
3808 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3809 	return (error);
3810 }
3811 
3812 static void *
3813 fill_search_info(const char *dir, size_t dirlen, void *param)
3814 {
3815     struct fill_search_info_args *arg;
3816 
3817     arg = param;
3818 
3819     if (arg->request == RTLD_DI_SERINFOSIZE) {
3820 	arg->serinfo->dls_cnt ++;
3821 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3822     } else {
3823 	struct dl_serpath *s_entry;
3824 
3825 	s_entry = arg->serpath;
3826 	s_entry->dls_name  = arg->strspace;
3827 	s_entry->dls_flags = arg->flags;
3828 
3829 	strncpy(arg->strspace, dir, dirlen);
3830 	arg->strspace[dirlen] = '\0';
3831 
3832 	arg->strspace += dirlen + 1;
3833 	arg->serpath++;
3834     }
3835 
3836     return (NULL);
3837 }
3838 
3839 static int
3840 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3841 {
3842     struct dl_serinfo _info;
3843     struct fill_search_info_args args;
3844 
3845     args.request = RTLD_DI_SERINFOSIZE;
3846     args.serinfo = &_info;
3847 
3848     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3849     _info.dls_cnt  = 0;
3850 
3851     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3852     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3853     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3854     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3855     if (!obj->z_nodeflib)
3856       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3857 
3858 
3859     if (request == RTLD_DI_SERINFOSIZE) {
3860 	info->dls_size = _info.dls_size;
3861 	info->dls_cnt = _info.dls_cnt;
3862 	return (0);
3863     }
3864 
3865     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3866 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3867 	return (-1);
3868     }
3869 
3870     args.request  = RTLD_DI_SERINFO;
3871     args.serinfo  = info;
3872     args.serpath  = &info->dls_serpath[0];
3873     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3874 
3875     args.flags = LA_SER_RUNPATH;
3876     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3877 	return (-1);
3878 
3879     args.flags = LA_SER_LIBPATH;
3880     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3881 	return (-1);
3882 
3883     args.flags = LA_SER_RUNPATH;
3884     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3885 	return (-1);
3886 
3887     args.flags = LA_SER_CONFIG;
3888     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3889       != NULL)
3890 	return (-1);
3891 
3892     args.flags = LA_SER_DEFAULT;
3893     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3894       fill_search_info, NULL, &args) != NULL)
3895 	return (-1);
3896     return (0);
3897 }
3898 
3899 static int
3900 rtld_dirname(const char *path, char *bname)
3901 {
3902     const char *endp;
3903 
3904     /* Empty or NULL string gets treated as "." */
3905     if (path == NULL || *path == '\0') {
3906 	bname[0] = '.';
3907 	bname[1] = '\0';
3908 	return (0);
3909     }
3910 
3911     /* Strip trailing slashes */
3912     endp = path + strlen(path) - 1;
3913     while (endp > path && *endp == '/')
3914 	endp--;
3915 
3916     /* Find the start of the dir */
3917     while (endp > path && *endp != '/')
3918 	endp--;
3919 
3920     /* Either the dir is "/" or there are no slashes */
3921     if (endp == path) {
3922 	bname[0] = *endp == '/' ? '/' : '.';
3923 	bname[1] = '\0';
3924 	return (0);
3925     } else {
3926 	do {
3927 	    endp--;
3928 	} while (endp > path && *endp == '/');
3929     }
3930 
3931     if (endp - path + 2 > PATH_MAX)
3932     {
3933 	_rtld_error("Filename is too long: %s", path);
3934 	return(-1);
3935     }
3936 
3937     strncpy(bname, path, endp - path + 1);
3938     bname[endp - path + 1] = '\0';
3939     return (0);
3940 }
3941 
3942 static int
3943 rtld_dirname_abs(const char *path, char *base)
3944 {
3945 	char *last;
3946 
3947 	if (realpath(path, base) == NULL)
3948 		return (-1);
3949 	dbg("%s -> %s", path, base);
3950 	last = strrchr(base, '/');
3951 	if (last == NULL)
3952 		return (-1);
3953 	if (last != base)
3954 		*last = '\0';
3955 	return (0);
3956 }
3957 
3958 static void
3959 linkmap_add(Obj_Entry *obj)
3960 {
3961     struct link_map *l = &obj->linkmap;
3962     struct link_map *prev;
3963 
3964     obj->linkmap.l_name = obj->path;
3965     obj->linkmap.l_addr = obj->mapbase;
3966     obj->linkmap.l_ld = obj->dynamic;
3967 #ifdef __mips__
3968     /* GDB needs load offset on MIPS to use the symbols */
3969     obj->linkmap.l_offs = obj->relocbase;
3970 #endif
3971 
3972     if (r_debug.r_map == NULL) {
3973 	r_debug.r_map = l;
3974 	return;
3975     }
3976 
3977     /*
3978      * Scan to the end of the list, but not past the entry for the
3979      * dynamic linker, which we want to keep at the very end.
3980      */
3981     for (prev = r_debug.r_map;
3982       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3983       prev = prev->l_next)
3984 	;
3985 
3986     /* Link in the new entry. */
3987     l->l_prev = prev;
3988     l->l_next = prev->l_next;
3989     if (l->l_next != NULL)
3990 	l->l_next->l_prev = l;
3991     prev->l_next = l;
3992 }
3993 
3994 static void
3995 linkmap_delete(Obj_Entry *obj)
3996 {
3997     struct link_map *l = &obj->linkmap;
3998 
3999     if (l->l_prev == NULL) {
4000 	if ((r_debug.r_map = l->l_next) != NULL)
4001 	    l->l_next->l_prev = NULL;
4002 	return;
4003     }
4004 
4005     if ((l->l_prev->l_next = l->l_next) != NULL)
4006 	l->l_next->l_prev = l->l_prev;
4007 }
4008 
4009 /*
4010  * Function for the debugger to set a breakpoint on to gain control.
4011  *
4012  * The two parameters allow the debugger to easily find and determine
4013  * what the runtime loader is doing and to whom it is doing it.
4014  *
4015  * When the loadhook trap is hit (r_debug_state, set at program
4016  * initialization), the arguments can be found on the stack:
4017  *
4018  *  +8   struct link_map *m
4019  *  +4   struct r_debug  *rd
4020  *  +0   RetAddr
4021  */
4022 void
4023 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4024 {
4025     /*
4026      * The following is a hack to force the compiler to emit calls to
4027      * this function, even when optimizing.  If the function is empty,
4028      * the compiler is not obliged to emit any code for calls to it,
4029      * even when marked __noinline.  However, gdb depends on those
4030      * calls being made.
4031      */
4032     __compiler_membar();
4033 }
4034 
4035 /*
4036  * A function called after init routines have completed. This can be used to
4037  * break before a program's entry routine is called, and can be used when
4038  * main is not available in the symbol table.
4039  */
4040 void
4041 _r_debug_postinit(struct link_map *m __unused)
4042 {
4043 
4044 	/* See r_debug_state(). */
4045 	__compiler_membar();
4046 }
4047 
4048 static void
4049 release_object(Obj_Entry *obj)
4050 {
4051 
4052 	if (obj->holdcount > 0) {
4053 		obj->unholdfree = true;
4054 		return;
4055 	}
4056 	munmap(obj->mapbase, obj->mapsize);
4057 	linkmap_delete(obj);
4058 	obj_free(obj);
4059 }
4060 
4061 /*
4062  * Get address of the pointer variable in the main program.
4063  * Prefer non-weak symbol over the weak one.
4064  */
4065 static const void **
4066 get_program_var_addr(const char *name, RtldLockState *lockstate)
4067 {
4068     SymLook req;
4069     DoneList donelist;
4070 
4071     symlook_init(&req, name);
4072     req.lockstate = lockstate;
4073     donelist_init(&donelist);
4074     if (symlook_global(&req, &donelist) != 0)
4075 	return (NULL);
4076     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4077 	return ((const void **)make_function_pointer(req.sym_out,
4078 	  req.defobj_out));
4079     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4080 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4081     else
4082 	return ((const void **)(req.defobj_out->relocbase +
4083 	  req.sym_out->st_value));
4084 }
4085 
4086 /*
4087  * Set a pointer variable in the main program to the given value.  This
4088  * is used to set key variables such as "environ" before any of the
4089  * init functions are called.
4090  */
4091 static void
4092 set_program_var(const char *name, const void *value)
4093 {
4094     const void **addr;
4095 
4096     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4097 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4098 	*addr = value;
4099     }
4100 }
4101 
4102 /*
4103  * Search the global objects, including dependencies and main object,
4104  * for the given symbol.
4105  */
4106 static int
4107 symlook_global(SymLook *req, DoneList *donelist)
4108 {
4109     SymLook req1;
4110     const Objlist_Entry *elm;
4111     int res;
4112 
4113     symlook_init_from_req(&req1, req);
4114 
4115     /* Search all objects loaded at program start up. */
4116     if (req->defobj_out == NULL ||
4117       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4118 	res = symlook_list(&req1, &list_main, donelist);
4119 	if (res == 0 && (req->defobj_out == NULL ||
4120 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4121 	    req->sym_out = req1.sym_out;
4122 	    req->defobj_out = req1.defobj_out;
4123 	    assert(req->defobj_out != NULL);
4124 	}
4125     }
4126 
4127     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4128     STAILQ_FOREACH(elm, &list_global, link) {
4129 	if (req->defobj_out != NULL &&
4130 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4131 	    break;
4132 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4133 	if (res == 0 && (req->defobj_out == NULL ||
4134 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4135 	    req->sym_out = req1.sym_out;
4136 	    req->defobj_out = req1.defobj_out;
4137 	    assert(req->defobj_out != NULL);
4138 	}
4139     }
4140 
4141     return (req->sym_out != NULL ? 0 : ESRCH);
4142 }
4143 
4144 /*
4145  * Given a symbol name in a referencing object, find the corresponding
4146  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4147  * no definition was found.  Returns a pointer to the Obj_Entry of the
4148  * defining object via the reference parameter DEFOBJ_OUT.
4149  */
4150 static int
4151 symlook_default(SymLook *req, const Obj_Entry *refobj)
4152 {
4153     DoneList donelist;
4154     const Objlist_Entry *elm;
4155     SymLook req1;
4156     int res;
4157 
4158     donelist_init(&donelist);
4159     symlook_init_from_req(&req1, req);
4160 
4161     /*
4162      * Look first in the referencing object if linked symbolically,
4163      * and similarly handle protected symbols.
4164      */
4165     res = symlook_obj(&req1, refobj);
4166     if (res == 0 && (refobj->symbolic ||
4167       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4168 	req->sym_out = req1.sym_out;
4169 	req->defobj_out = req1.defobj_out;
4170 	assert(req->defobj_out != NULL);
4171     }
4172     if (refobj->symbolic || req->defobj_out != NULL)
4173 	donelist_check(&donelist, refobj);
4174 
4175     symlook_global(req, &donelist);
4176 
4177     /* Search all dlopened DAGs containing the referencing object. */
4178     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4179 	if (req->sym_out != NULL &&
4180 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4181 	    break;
4182 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4183 	if (res == 0 && (req->sym_out == NULL ||
4184 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4185 	    req->sym_out = req1.sym_out;
4186 	    req->defobj_out = req1.defobj_out;
4187 	    assert(req->defobj_out != NULL);
4188 	}
4189     }
4190 
4191     /*
4192      * Search the dynamic linker itself, and possibly resolve the
4193      * symbol from there.  This is how the application links to
4194      * dynamic linker services such as dlopen.
4195      */
4196     if (req->sym_out == NULL ||
4197       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4198 	res = symlook_obj(&req1, &obj_rtld);
4199 	if (res == 0) {
4200 	    req->sym_out = req1.sym_out;
4201 	    req->defobj_out = req1.defobj_out;
4202 	    assert(req->defobj_out != NULL);
4203 	}
4204     }
4205 
4206     return (req->sym_out != NULL ? 0 : ESRCH);
4207 }
4208 
4209 static int
4210 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4211 {
4212     const Elf_Sym *def;
4213     const Obj_Entry *defobj;
4214     const Objlist_Entry *elm;
4215     SymLook req1;
4216     int res;
4217 
4218     def = NULL;
4219     defobj = NULL;
4220     STAILQ_FOREACH(elm, objlist, link) {
4221 	if (donelist_check(dlp, elm->obj))
4222 	    continue;
4223 	symlook_init_from_req(&req1, req);
4224 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4225 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4226 		def = req1.sym_out;
4227 		defobj = req1.defobj_out;
4228 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4229 		    break;
4230 	    }
4231 	}
4232     }
4233     if (def != NULL) {
4234 	req->sym_out = def;
4235 	req->defobj_out = defobj;
4236 	return (0);
4237     }
4238     return (ESRCH);
4239 }
4240 
4241 /*
4242  * Search the chain of DAGS cointed to by the given Needed_Entry
4243  * for a symbol of the given name.  Each DAG is scanned completely
4244  * before advancing to the next one.  Returns a pointer to the symbol,
4245  * or NULL if no definition was found.
4246  */
4247 static int
4248 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4249 {
4250     const Elf_Sym *def;
4251     const Needed_Entry *n;
4252     const Obj_Entry *defobj;
4253     SymLook req1;
4254     int res;
4255 
4256     def = NULL;
4257     defobj = NULL;
4258     symlook_init_from_req(&req1, req);
4259     for (n = needed; n != NULL; n = n->next) {
4260 	if (n->obj == NULL ||
4261 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4262 	    continue;
4263 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4264 	    def = req1.sym_out;
4265 	    defobj = req1.defobj_out;
4266 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4267 		break;
4268 	}
4269     }
4270     if (def != NULL) {
4271 	req->sym_out = def;
4272 	req->defobj_out = defobj;
4273 	return (0);
4274     }
4275     return (ESRCH);
4276 }
4277 
4278 /*
4279  * Search the symbol table of a single shared object for a symbol of
4280  * the given name and version, if requested.  Returns a pointer to the
4281  * symbol, or NULL if no definition was found.  If the object is
4282  * filter, return filtered symbol from filtee.
4283  *
4284  * The symbol's hash value is passed in for efficiency reasons; that
4285  * eliminates many recomputations of the hash value.
4286  */
4287 int
4288 symlook_obj(SymLook *req, const Obj_Entry *obj)
4289 {
4290     DoneList donelist;
4291     SymLook req1;
4292     int flags, res, mres;
4293 
4294     /*
4295      * If there is at least one valid hash at this point, we prefer to
4296      * use the faster GNU version if available.
4297      */
4298     if (obj->valid_hash_gnu)
4299 	mres = symlook_obj1_gnu(req, obj);
4300     else if (obj->valid_hash_sysv)
4301 	mres = symlook_obj1_sysv(req, obj);
4302     else
4303 	return (EINVAL);
4304 
4305     if (mres == 0) {
4306 	if (obj->needed_filtees != NULL) {
4307 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4308 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4309 	    donelist_init(&donelist);
4310 	    symlook_init_from_req(&req1, req);
4311 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4312 	    if (res == 0) {
4313 		req->sym_out = req1.sym_out;
4314 		req->defobj_out = req1.defobj_out;
4315 	    }
4316 	    return (res);
4317 	}
4318 	if (obj->needed_aux_filtees != NULL) {
4319 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4320 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4321 	    donelist_init(&donelist);
4322 	    symlook_init_from_req(&req1, req);
4323 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4324 	    if (res == 0) {
4325 		req->sym_out = req1.sym_out;
4326 		req->defobj_out = req1.defobj_out;
4327 		return (res);
4328 	    }
4329 	}
4330     }
4331     return (mres);
4332 }
4333 
4334 /* Symbol match routine common to both hash functions */
4335 static bool
4336 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4337     const unsigned long symnum)
4338 {
4339 	Elf_Versym verndx;
4340 	const Elf_Sym *symp;
4341 	const char *strp;
4342 
4343 	symp = obj->symtab + symnum;
4344 	strp = obj->strtab + symp->st_name;
4345 
4346 	switch (ELF_ST_TYPE(symp->st_info)) {
4347 	case STT_FUNC:
4348 	case STT_NOTYPE:
4349 	case STT_OBJECT:
4350 	case STT_COMMON:
4351 	case STT_GNU_IFUNC:
4352 		if (symp->st_value == 0)
4353 			return (false);
4354 		/* fallthrough */
4355 	case STT_TLS:
4356 		if (symp->st_shndx != SHN_UNDEF)
4357 			break;
4358 #ifndef __mips__
4359 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4360 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4361 			break;
4362 #endif
4363 		/* fallthrough */
4364 	default:
4365 		return (false);
4366 	}
4367 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4368 		return (false);
4369 
4370 	if (req->ventry == NULL) {
4371 		if (obj->versyms != NULL) {
4372 			verndx = VER_NDX(obj->versyms[symnum]);
4373 			if (verndx > obj->vernum) {
4374 				_rtld_error(
4375 				    "%s: symbol %s references wrong version %d",
4376 				    obj->path, obj->strtab + symnum, verndx);
4377 				return (false);
4378 			}
4379 			/*
4380 			 * If we are not called from dlsym (i.e. this
4381 			 * is a normal relocation from unversioned
4382 			 * binary), accept the symbol immediately if
4383 			 * it happens to have first version after this
4384 			 * shared object became versioned.  Otherwise,
4385 			 * if symbol is versioned and not hidden,
4386 			 * remember it. If it is the only symbol with
4387 			 * this name exported by the shared object, it
4388 			 * will be returned as a match by the calling
4389 			 * function. If symbol is global (verndx < 2)
4390 			 * accept it unconditionally.
4391 			 */
4392 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4393 			    verndx == VER_NDX_GIVEN) {
4394 				result->sym_out = symp;
4395 				return (true);
4396 			}
4397 			else if (verndx >= VER_NDX_GIVEN) {
4398 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4399 				    == 0) {
4400 					if (result->vsymp == NULL)
4401 						result->vsymp = symp;
4402 					result->vcount++;
4403 				}
4404 				return (false);
4405 			}
4406 		}
4407 		result->sym_out = symp;
4408 		return (true);
4409 	}
4410 	if (obj->versyms == NULL) {
4411 		if (object_match_name(obj, req->ventry->name)) {
4412 			_rtld_error("%s: object %s should provide version %s "
4413 			    "for symbol %s", obj_rtld.path, obj->path,
4414 			    req->ventry->name, obj->strtab + symnum);
4415 			return (false);
4416 		}
4417 	} else {
4418 		verndx = VER_NDX(obj->versyms[symnum]);
4419 		if (verndx > obj->vernum) {
4420 			_rtld_error("%s: symbol %s references wrong version %d",
4421 			    obj->path, obj->strtab + symnum, verndx);
4422 			return (false);
4423 		}
4424 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4425 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4426 			/*
4427 			 * Version does not match. Look if this is a
4428 			 * global symbol and if it is not hidden. If
4429 			 * global symbol (verndx < 2) is available,
4430 			 * use it. Do not return symbol if we are
4431 			 * called by dlvsym, because dlvsym looks for
4432 			 * a specific version and default one is not
4433 			 * what dlvsym wants.
4434 			 */
4435 			if ((req->flags & SYMLOOK_DLSYM) ||
4436 			    (verndx >= VER_NDX_GIVEN) ||
4437 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4438 				return (false);
4439 		}
4440 	}
4441 	result->sym_out = symp;
4442 	return (true);
4443 }
4444 
4445 /*
4446  * Search for symbol using SysV hash function.
4447  * obj->buckets is known not to be NULL at this point; the test for this was
4448  * performed with the obj->valid_hash_sysv assignment.
4449  */
4450 static int
4451 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4452 {
4453 	unsigned long symnum;
4454 	Sym_Match_Result matchres;
4455 
4456 	matchres.sym_out = NULL;
4457 	matchres.vsymp = NULL;
4458 	matchres.vcount = 0;
4459 
4460 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4461 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4462 		if (symnum >= obj->nchains)
4463 			return (ESRCH);	/* Bad object */
4464 
4465 		if (matched_symbol(req, obj, &matchres, symnum)) {
4466 			req->sym_out = matchres.sym_out;
4467 			req->defobj_out = obj;
4468 			return (0);
4469 		}
4470 	}
4471 	if (matchres.vcount == 1) {
4472 		req->sym_out = matchres.vsymp;
4473 		req->defobj_out = obj;
4474 		return (0);
4475 	}
4476 	return (ESRCH);
4477 }
4478 
4479 /* Search for symbol using GNU hash function */
4480 static int
4481 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4482 {
4483 	Elf_Addr bloom_word;
4484 	const Elf32_Word *hashval;
4485 	Elf32_Word bucket;
4486 	Sym_Match_Result matchres;
4487 	unsigned int h1, h2;
4488 	unsigned long symnum;
4489 
4490 	matchres.sym_out = NULL;
4491 	matchres.vsymp = NULL;
4492 	matchres.vcount = 0;
4493 
4494 	/* Pick right bitmask word from Bloom filter array */
4495 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4496 	    obj->maskwords_bm_gnu];
4497 
4498 	/* Calculate modulus word size of gnu hash and its derivative */
4499 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4500 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4501 
4502 	/* Filter out the "definitely not in set" queries */
4503 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4504 		return (ESRCH);
4505 
4506 	/* Locate hash chain and corresponding value element*/
4507 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4508 	if (bucket == 0)
4509 		return (ESRCH);
4510 	hashval = &obj->chain_zero_gnu[bucket];
4511 	do {
4512 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4513 			symnum = hashval - obj->chain_zero_gnu;
4514 			if (matched_symbol(req, obj, &matchres, symnum)) {
4515 				req->sym_out = matchres.sym_out;
4516 				req->defobj_out = obj;
4517 				return (0);
4518 			}
4519 		}
4520 	} while ((*hashval++ & 1) == 0);
4521 	if (matchres.vcount == 1) {
4522 		req->sym_out = matchres.vsymp;
4523 		req->defobj_out = obj;
4524 		return (0);
4525 	}
4526 	return (ESRCH);
4527 }
4528 
4529 static void
4530 trace_loaded_objects(Obj_Entry *obj)
4531 {
4532     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4533     int c;
4534 
4535     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4536 	main_local = "";
4537 
4538     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4539 	fmt1 = "\t%o => %p (%x)\n";
4540 
4541     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4542 	fmt2 = "\t%o (%x)\n";
4543 
4544     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4545 
4546     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4547 	Needed_Entry *needed;
4548 	const char *name, *path;
4549 	bool is_lib;
4550 
4551 	if (obj->marker)
4552 	    continue;
4553 	if (list_containers && obj->needed != NULL)
4554 	    rtld_printf("%s:\n", obj->path);
4555 	for (needed = obj->needed; needed; needed = needed->next) {
4556 	    if (needed->obj != NULL) {
4557 		if (needed->obj->traced && !list_containers)
4558 		    continue;
4559 		needed->obj->traced = true;
4560 		path = needed->obj->path;
4561 	    } else
4562 		path = "not found";
4563 
4564 	    name = obj->strtab + needed->name;
4565 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4566 
4567 	    fmt = is_lib ? fmt1 : fmt2;
4568 	    while ((c = *fmt++) != '\0') {
4569 		switch (c) {
4570 		default:
4571 		    rtld_putchar(c);
4572 		    continue;
4573 		case '\\':
4574 		    switch (c = *fmt) {
4575 		    case '\0':
4576 			continue;
4577 		    case 'n':
4578 			rtld_putchar('\n');
4579 			break;
4580 		    case 't':
4581 			rtld_putchar('\t');
4582 			break;
4583 		    }
4584 		    break;
4585 		case '%':
4586 		    switch (c = *fmt) {
4587 		    case '\0':
4588 			continue;
4589 		    case '%':
4590 		    default:
4591 			rtld_putchar(c);
4592 			break;
4593 		    case 'A':
4594 			rtld_putstr(main_local);
4595 			break;
4596 		    case 'a':
4597 			rtld_putstr(obj_main->path);
4598 			break;
4599 		    case 'o':
4600 			rtld_putstr(name);
4601 			break;
4602 #if 0
4603 		    case 'm':
4604 			rtld_printf("%d", sodp->sod_major);
4605 			break;
4606 		    case 'n':
4607 			rtld_printf("%d", sodp->sod_minor);
4608 			break;
4609 #endif
4610 		    case 'p':
4611 			rtld_putstr(path);
4612 			break;
4613 		    case 'x':
4614 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4615 			  0);
4616 			break;
4617 		    }
4618 		    break;
4619 		}
4620 		++fmt;
4621 	    }
4622 	}
4623     }
4624 }
4625 
4626 /*
4627  * Unload a dlopened object and its dependencies from memory and from
4628  * our data structures.  It is assumed that the DAG rooted in the
4629  * object has already been unreferenced, and that the object has a
4630  * reference count of 0.
4631  */
4632 static void
4633 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4634 {
4635 	Obj_Entry marker, *obj, *next;
4636 
4637 	assert(root->refcount == 0);
4638 
4639 	/*
4640 	 * Pass over the DAG removing unreferenced objects from
4641 	 * appropriate lists.
4642 	 */
4643 	unlink_object(root);
4644 
4645 	/* Unmap all objects that are no longer referenced. */
4646 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4647 		next = TAILQ_NEXT(obj, next);
4648 		if (obj->marker || obj->refcount != 0)
4649 			continue;
4650 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4651 		    obj->mapsize, 0, obj->path);
4652 		dbg("unloading \"%s\"", obj->path);
4653 		/*
4654 		 * Unlink the object now to prevent new references from
4655 		 * being acquired while the bind lock is dropped in
4656 		 * recursive dlclose() invocations.
4657 		 */
4658 		TAILQ_REMOVE(&obj_list, obj, next);
4659 		obj_count--;
4660 
4661 		if (obj->filtees_loaded) {
4662 			if (next != NULL) {
4663 				init_marker(&marker);
4664 				TAILQ_INSERT_BEFORE(next, &marker, next);
4665 				unload_filtees(obj, lockstate);
4666 				next = TAILQ_NEXT(&marker, next);
4667 				TAILQ_REMOVE(&obj_list, &marker, next);
4668 			} else
4669 				unload_filtees(obj, lockstate);
4670 		}
4671 		release_object(obj);
4672 	}
4673 }
4674 
4675 static void
4676 unlink_object(Obj_Entry *root)
4677 {
4678     Objlist_Entry *elm;
4679 
4680     if (root->refcount == 0) {
4681 	/* Remove the object from the RTLD_GLOBAL list. */
4682 	objlist_remove(&list_global, root);
4683 
4684     	/* Remove the object from all objects' DAG lists. */
4685     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4686 	    objlist_remove(&elm->obj->dldags, root);
4687 	    if (elm->obj != root)
4688 		unlink_object(elm->obj);
4689 	}
4690     }
4691 }
4692 
4693 static void
4694 ref_dag(Obj_Entry *root)
4695 {
4696     Objlist_Entry *elm;
4697 
4698     assert(root->dag_inited);
4699     STAILQ_FOREACH(elm, &root->dagmembers, link)
4700 	elm->obj->refcount++;
4701 }
4702 
4703 static void
4704 unref_dag(Obj_Entry *root)
4705 {
4706     Objlist_Entry *elm;
4707 
4708     assert(root->dag_inited);
4709     STAILQ_FOREACH(elm, &root->dagmembers, link)
4710 	elm->obj->refcount--;
4711 }
4712 
4713 /*
4714  * Common code for MD __tls_get_addr().
4715  */
4716 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4717 static void *
4718 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4719 {
4720     Elf_Addr *newdtv, *dtv;
4721     RtldLockState lockstate;
4722     int to_copy;
4723 
4724     dtv = *dtvp;
4725     /* Check dtv generation in case new modules have arrived */
4726     if (dtv[0] != tls_dtv_generation) {
4727 	wlock_acquire(rtld_bind_lock, &lockstate);
4728 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4729 	to_copy = dtv[1];
4730 	if (to_copy > tls_max_index)
4731 	    to_copy = tls_max_index;
4732 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4733 	newdtv[0] = tls_dtv_generation;
4734 	newdtv[1] = tls_max_index;
4735 	free(dtv);
4736 	lock_release(rtld_bind_lock, &lockstate);
4737 	dtv = *dtvp = newdtv;
4738     }
4739 
4740     /* Dynamically allocate module TLS if necessary */
4741     if (dtv[index + 1] == 0) {
4742 	/* Signal safe, wlock will block out signals. */
4743 	wlock_acquire(rtld_bind_lock, &lockstate);
4744 	if (!dtv[index + 1])
4745 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4746 	lock_release(rtld_bind_lock, &lockstate);
4747     }
4748     return ((void *)(dtv[index + 1] + offset));
4749 }
4750 
4751 void *
4752 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4753 {
4754 	Elf_Addr *dtv;
4755 
4756 	dtv = *dtvp;
4757 	/* Check dtv generation in case new modules have arrived */
4758 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4759 	    dtv[index + 1] != 0))
4760 		return ((void *)(dtv[index + 1] + offset));
4761 	return (tls_get_addr_slow(dtvp, index, offset));
4762 }
4763 
4764 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4765     defined(__powerpc__) || defined(__riscv)
4766 
4767 /*
4768  * Return pointer to allocated TLS block
4769  */
4770 static void *
4771 get_tls_block_ptr(void *tcb, size_t tcbsize)
4772 {
4773     size_t extra_size, post_size, pre_size, tls_block_size;
4774     size_t tls_init_align;
4775 
4776     tls_init_align = MAX(obj_main->tlsalign, 1);
4777 
4778     /* Compute fragments sizes. */
4779     extra_size = tcbsize - TLS_TCB_SIZE;
4780     post_size = calculate_tls_post_size(tls_init_align);
4781     tls_block_size = tcbsize + post_size;
4782     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4783 
4784     return ((char *)tcb - pre_size - extra_size);
4785 }
4786 
4787 /*
4788  * Allocate Static TLS using the Variant I method.
4789  *
4790  * For details on the layout, see lib/libc/gen/tls.c.
4791  *
4792  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4793  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4794  *     offsets, whereas libc's tls_static_space is just the executable's static
4795  *     TLS segment.
4796  */
4797 void *
4798 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4799 {
4800     Obj_Entry *obj;
4801     char *tls_block;
4802     Elf_Addr *dtv, **tcb;
4803     Elf_Addr addr;
4804     Elf_Addr i;
4805     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4806     size_t tls_init_align;
4807 
4808     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4809 	return (oldtcb);
4810 
4811     assert(tcbsize >= TLS_TCB_SIZE);
4812     maxalign = MAX(tcbalign, tls_static_max_align);
4813     tls_init_align = MAX(obj_main->tlsalign, 1);
4814 
4815     /* Compute fragmets sizes. */
4816     extra_size = tcbsize - TLS_TCB_SIZE;
4817     post_size = calculate_tls_post_size(tls_init_align);
4818     tls_block_size = tcbsize + post_size;
4819     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4820     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4821 
4822     /* Allocate whole TLS block */
4823     tls_block = malloc_aligned(tls_block_size, maxalign);
4824     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4825 
4826     if (oldtcb != NULL) {
4827 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4828 	    tls_static_space);
4829 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4830 
4831 	/* Adjust the DTV. */
4832 	dtv = tcb[0];
4833 	for (i = 0; i < dtv[1]; i++) {
4834 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4835 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4836 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4837 	    }
4838 	}
4839     } else {
4840 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4841 	tcb[0] = dtv;
4842 	dtv[0] = tls_dtv_generation;
4843 	dtv[1] = tls_max_index;
4844 
4845 	for (obj = globallist_curr(objs); obj != NULL;
4846 	  obj = globallist_next(obj)) {
4847 	    if (obj->tlsoffset > 0) {
4848 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4849 		if (obj->tlsinitsize > 0)
4850 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4851 		if (obj->tlssize > obj->tlsinitsize)
4852 		    memset((void*)(addr + obj->tlsinitsize), 0,
4853 			   obj->tlssize - obj->tlsinitsize);
4854 		dtv[obj->tlsindex + 1] = addr;
4855 	    }
4856 	}
4857     }
4858 
4859     return (tcb);
4860 }
4861 
4862 void
4863 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4864 {
4865     Elf_Addr *dtv;
4866     Elf_Addr tlsstart, tlsend;
4867     size_t post_size;
4868     size_t dtvsize, i, tls_init_align;
4869 
4870     assert(tcbsize >= TLS_TCB_SIZE);
4871     tls_init_align = MAX(obj_main->tlsalign, 1);
4872 
4873     /* Compute fragments sizes. */
4874     post_size = calculate_tls_post_size(tls_init_align);
4875 
4876     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4877     tlsend = (Elf_Addr)tcb + tls_static_space;
4878 
4879     dtv = *(Elf_Addr **)tcb;
4880     dtvsize = dtv[1];
4881     for (i = 0; i < dtvsize; i++) {
4882 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4883 	    free((void*)dtv[i+2]);
4884 	}
4885     }
4886     free(dtv);
4887     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4888 }
4889 
4890 #endif
4891 
4892 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4893 
4894 /*
4895  * Allocate Static TLS using the Variant II method.
4896  */
4897 void *
4898 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4899 {
4900     Obj_Entry *obj;
4901     size_t size, ralign;
4902     char *tls;
4903     Elf_Addr *dtv, *olddtv;
4904     Elf_Addr segbase, oldsegbase, addr;
4905     size_t i;
4906 
4907     ralign = tcbalign;
4908     if (tls_static_max_align > ralign)
4909 	    ralign = tls_static_max_align;
4910     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4911 
4912     assert(tcbsize >= 2*sizeof(Elf_Addr));
4913     tls = malloc_aligned(size, ralign);
4914     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4915 
4916     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4917     ((Elf_Addr*)segbase)[0] = segbase;
4918     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4919 
4920     dtv[0] = tls_dtv_generation;
4921     dtv[1] = tls_max_index;
4922 
4923     if (oldtls) {
4924 	/*
4925 	 * Copy the static TLS block over whole.
4926 	 */
4927 	oldsegbase = (Elf_Addr) oldtls;
4928 	memcpy((void *)(segbase - tls_static_space),
4929 	       (const void *)(oldsegbase - tls_static_space),
4930 	       tls_static_space);
4931 
4932 	/*
4933 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4934 	 * move them over.
4935 	 */
4936 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4937 	for (i = 0; i < olddtv[1]; i++) {
4938 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4939 		dtv[i+2] = olddtv[i+2];
4940 		olddtv[i+2] = 0;
4941 	    }
4942 	}
4943 
4944 	/*
4945 	 * We assume that this block was the one we created with
4946 	 * allocate_initial_tls().
4947 	 */
4948 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4949     } else {
4950 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4951 		if (obj->marker || obj->tlsoffset == 0)
4952 			continue;
4953 		addr = segbase - obj->tlsoffset;
4954 		memset((void*)(addr + obj->tlsinitsize),
4955 		       0, obj->tlssize - obj->tlsinitsize);
4956 		if (obj->tlsinit) {
4957 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4958 		    obj->static_tls_copied = true;
4959 		}
4960 		dtv[obj->tlsindex + 1] = addr;
4961 	}
4962     }
4963 
4964     return (void*) segbase;
4965 }
4966 
4967 void
4968 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4969 {
4970     Elf_Addr* dtv;
4971     size_t size, ralign;
4972     int dtvsize, i;
4973     Elf_Addr tlsstart, tlsend;
4974 
4975     /*
4976      * Figure out the size of the initial TLS block so that we can
4977      * find stuff which ___tls_get_addr() allocated dynamically.
4978      */
4979     ralign = tcbalign;
4980     if (tls_static_max_align > ralign)
4981 	    ralign = tls_static_max_align;
4982     size = round(tls_static_space, ralign);
4983 
4984     dtv = ((Elf_Addr**)tls)[1];
4985     dtvsize = dtv[1];
4986     tlsend = (Elf_Addr) tls;
4987     tlsstart = tlsend - size;
4988     for (i = 0; i < dtvsize; i++) {
4989 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4990 		free_aligned((void *)dtv[i + 2]);
4991 	}
4992     }
4993 
4994     free_aligned((void *)tlsstart);
4995     free((void*) dtv);
4996 }
4997 
4998 #endif
4999 
5000 /*
5001  * Allocate TLS block for module with given index.
5002  */
5003 void *
5004 allocate_module_tls(int index)
5005 {
5006     Obj_Entry* obj;
5007     char* p;
5008 
5009     TAILQ_FOREACH(obj, &obj_list, next) {
5010 	if (obj->marker)
5011 	    continue;
5012 	if (obj->tlsindex == index)
5013 	    break;
5014     }
5015     if (!obj) {
5016 	_rtld_error("Can't find module with TLS index %d", index);
5017 	rtld_die();
5018     }
5019 
5020     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5021     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5022     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5023 
5024     return p;
5025 }
5026 
5027 bool
5028 allocate_tls_offset(Obj_Entry *obj)
5029 {
5030     size_t off;
5031 
5032     if (obj->tls_done)
5033 	return true;
5034 
5035     if (obj->tlssize == 0) {
5036 	obj->tls_done = true;
5037 	return true;
5038     }
5039 
5040     if (tls_last_offset == 0)
5041 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5042     else
5043 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5044 				   obj->tlssize, obj->tlsalign);
5045 
5046     /*
5047      * If we have already fixed the size of the static TLS block, we
5048      * must stay within that size. When allocating the static TLS, we
5049      * leave a small amount of space spare to be used for dynamically
5050      * loading modules which use static TLS.
5051      */
5052     if (tls_static_space != 0) {
5053 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5054 	    return false;
5055     } else if (obj->tlsalign > tls_static_max_align) {
5056 	    tls_static_max_align = obj->tlsalign;
5057     }
5058 
5059     tls_last_offset = obj->tlsoffset = off;
5060     tls_last_size = obj->tlssize;
5061     obj->tls_done = true;
5062 
5063     return true;
5064 }
5065 
5066 void
5067 free_tls_offset(Obj_Entry *obj)
5068 {
5069 
5070     /*
5071      * If we were the last thing to allocate out of the static TLS
5072      * block, we give our space back to the 'allocator'. This is a
5073      * simplistic workaround to allow libGL.so.1 to be loaded and
5074      * unloaded multiple times.
5075      */
5076     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5077 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5078 	tls_last_offset -= obj->tlssize;
5079 	tls_last_size = 0;
5080     }
5081 }
5082 
5083 void *
5084 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5085 {
5086     void *ret;
5087     RtldLockState lockstate;
5088 
5089     wlock_acquire(rtld_bind_lock, &lockstate);
5090     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5091       tcbsize, tcbalign);
5092     lock_release(rtld_bind_lock, &lockstate);
5093     return (ret);
5094 }
5095 
5096 void
5097 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5098 {
5099     RtldLockState lockstate;
5100 
5101     wlock_acquire(rtld_bind_lock, &lockstate);
5102     free_tls(tcb, tcbsize, tcbalign);
5103     lock_release(rtld_bind_lock, &lockstate);
5104 }
5105 
5106 static void
5107 object_add_name(Obj_Entry *obj, const char *name)
5108 {
5109     Name_Entry *entry;
5110     size_t len;
5111 
5112     len = strlen(name);
5113     entry = malloc(sizeof(Name_Entry) + len);
5114 
5115     if (entry != NULL) {
5116 	strcpy(entry->name, name);
5117 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5118     }
5119 }
5120 
5121 static int
5122 object_match_name(const Obj_Entry *obj, const char *name)
5123 {
5124     Name_Entry *entry;
5125 
5126     STAILQ_FOREACH(entry, &obj->names, link) {
5127 	if (strcmp(name, entry->name) == 0)
5128 	    return (1);
5129     }
5130     return (0);
5131 }
5132 
5133 static Obj_Entry *
5134 locate_dependency(const Obj_Entry *obj, const char *name)
5135 {
5136     const Objlist_Entry *entry;
5137     const Needed_Entry *needed;
5138 
5139     STAILQ_FOREACH(entry, &list_main, link) {
5140 	if (object_match_name(entry->obj, name))
5141 	    return entry->obj;
5142     }
5143 
5144     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5145 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5146 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5147 	    /*
5148 	     * If there is DT_NEEDED for the name we are looking for,
5149 	     * we are all set.  Note that object might not be found if
5150 	     * dependency was not loaded yet, so the function can
5151 	     * return NULL here.  This is expected and handled
5152 	     * properly by the caller.
5153 	     */
5154 	    return (needed->obj);
5155 	}
5156     }
5157     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5158 	obj->path, name);
5159     rtld_die();
5160 }
5161 
5162 static int
5163 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5164     const Elf_Vernaux *vna)
5165 {
5166     const Elf_Verdef *vd;
5167     const char *vername;
5168 
5169     vername = refobj->strtab + vna->vna_name;
5170     vd = depobj->verdef;
5171     if (vd == NULL) {
5172 	_rtld_error("%s: version %s required by %s not defined",
5173 	    depobj->path, vername, refobj->path);
5174 	return (-1);
5175     }
5176     for (;;) {
5177 	if (vd->vd_version != VER_DEF_CURRENT) {
5178 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5179 		depobj->path, vd->vd_version);
5180 	    return (-1);
5181 	}
5182 	if (vna->vna_hash == vd->vd_hash) {
5183 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5184 		((const char *)vd + vd->vd_aux);
5185 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5186 		return (0);
5187 	}
5188 	if (vd->vd_next == 0)
5189 	    break;
5190 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5191     }
5192     if (vna->vna_flags & VER_FLG_WEAK)
5193 	return (0);
5194     _rtld_error("%s: version %s required by %s not found",
5195 	depobj->path, vername, refobj->path);
5196     return (-1);
5197 }
5198 
5199 static int
5200 rtld_verify_object_versions(Obj_Entry *obj)
5201 {
5202     const Elf_Verneed *vn;
5203     const Elf_Verdef  *vd;
5204     const Elf_Verdaux *vda;
5205     const Elf_Vernaux *vna;
5206     const Obj_Entry *depobj;
5207     int maxvernum, vernum;
5208 
5209     if (obj->ver_checked)
5210 	return (0);
5211     obj->ver_checked = true;
5212 
5213     maxvernum = 0;
5214     /*
5215      * Walk over defined and required version records and figure out
5216      * max index used by any of them. Do very basic sanity checking
5217      * while there.
5218      */
5219     vn = obj->verneed;
5220     while (vn != NULL) {
5221 	if (vn->vn_version != VER_NEED_CURRENT) {
5222 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5223 		obj->path, vn->vn_version);
5224 	    return (-1);
5225 	}
5226 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5227 	for (;;) {
5228 	    vernum = VER_NEED_IDX(vna->vna_other);
5229 	    if (vernum > maxvernum)
5230 		maxvernum = vernum;
5231 	    if (vna->vna_next == 0)
5232 		 break;
5233 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5234 	}
5235 	if (vn->vn_next == 0)
5236 	    break;
5237 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5238     }
5239 
5240     vd = obj->verdef;
5241     while (vd != NULL) {
5242 	if (vd->vd_version != VER_DEF_CURRENT) {
5243 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5244 		obj->path, vd->vd_version);
5245 	    return (-1);
5246 	}
5247 	vernum = VER_DEF_IDX(vd->vd_ndx);
5248 	if (vernum > maxvernum)
5249 		maxvernum = vernum;
5250 	if (vd->vd_next == 0)
5251 	    break;
5252 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5253     }
5254 
5255     if (maxvernum == 0)
5256 	return (0);
5257 
5258     /*
5259      * Store version information in array indexable by version index.
5260      * Verify that object version requirements are satisfied along the
5261      * way.
5262      */
5263     obj->vernum = maxvernum + 1;
5264     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5265 
5266     vd = obj->verdef;
5267     while (vd != NULL) {
5268 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5269 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5270 	    assert(vernum <= maxvernum);
5271 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5272 	    obj->vertab[vernum].hash = vd->vd_hash;
5273 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5274 	    obj->vertab[vernum].file = NULL;
5275 	    obj->vertab[vernum].flags = 0;
5276 	}
5277 	if (vd->vd_next == 0)
5278 	    break;
5279 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5280     }
5281 
5282     vn = obj->verneed;
5283     while (vn != NULL) {
5284 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5285 	if (depobj == NULL)
5286 	    return (-1);
5287 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5288 	for (;;) {
5289 	    if (check_object_provided_version(obj, depobj, vna))
5290 		return (-1);
5291 	    vernum = VER_NEED_IDX(vna->vna_other);
5292 	    assert(vernum <= maxvernum);
5293 	    obj->vertab[vernum].hash = vna->vna_hash;
5294 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5295 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5296 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5297 		VER_INFO_HIDDEN : 0;
5298 	    if (vna->vna_next == 0)
5299 		 break;
5300 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5301 	}
5302 	if (vn->vn_next == 0)
5303 	    break;
5304 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5305     }
5306     return 0;
5307 }
5308 
5309 static int
5310 rtld_verify_versions(const Objlist *objlist)
5311 {
5312     Objlist_Entry *entry;
5313     int rc;
5314 
5315     rc = 0;
5316     STAILQ_FOREACH(entry, objlist, link) {
5317 	/*
5318 	 * Skip dummy objects or objects that have their version requirements
5319 	 * already checked.
5320 	 */
5321 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5322 	    continue;
5323 	if (rtld_verify_object_versions(entry->obj) == -1) {
5324 	    rc = -1;
5325 	    if (ld_tracing == NULL)
5326 		break;
5327 	}
5328     }
5329     if (rc == 0 || ld_tracing != NULL)
5330     	rc = rtld_verify_object_versions(&obj_rtld);
5331     return rc;
5332 }
5333 
5334 const Ver_Entry *
5335 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5336 {
5337     Elf_Versym vernum;
5338 
5339     if (obj->vertab) {
5340 	vernum = VER_NDX(obj->versyms[symnum]);
5341 	if (vernum >= obj->vernum) {
5342 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5343 		obj->path, obj->strtab + symnum, vernum);
5344 	} else if (obj->vertab[vernum].hash != 0) {
5345 	    return &obj->vertab[vernum];
5346 	}
5347     }
5348     return NULL;
5349 }
5350 
5351 int
5352 _rtld_get_stack_prot(void)
5353 {
5354 
5355 	return (stack_prot);
5356 }
5357 
5358 int
5359 _rtld_is_dlopened(void *arg)
5360 {
5361 	Obj_Entry *obj;
5362 	RtldLockState lockstate;
5363 	int res;
5364 
5365 	rlock_acquire(rtld_bind_lock, &lockstate);
5366 	obj = dlcheck(arg);
5367 	if (obj == NULL)
5368 		obj = obj_from_addr(arg);
5369 	if (obj == NULL) {
5370 		_rtld_error("No shared object contains address");
5371 		lock_release(rtld_bind_lock, &lockstate);
5372 		return (-1);
5373 	}
5374 	res = obj->dlopened ? 1 : 0;
5375 	lock_release(rtld_bind_lock, &lockstate);
5376 	return (res);
5377 }
5378 
5379 static int
5380 obj_remap_relro(Obj_Entry *obj, int prot)
5381 {
5382 
5383 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5384 	    prot) == -1) {
5385 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5386 		    obj->path, prot, rtld_strerror(errno));
5387 		return (-1);
5388 	}
5389 	return (0);
5390 }
5391 
5392 static int
5393 obj_disable_relro(Obj_Entry *obj)
5394 {
5395 
5396 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5397 }
5398 
5399 static int
5400 obj_enforce_relro(Obj_Entry *obj)
5401 {
5402 
5403 	return (obj_remap_relro(obj, PROT_READ));
5404 }
5405 
5406 static void
5407 map_stacks_exec(RtldLockState *lockstate)
5408 {
5409 	void (*thr_map_stacks_exec)(void);
5410 
5411 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5412 		return;
5413 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5414 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5415 	if (thr_map_stacks_exec != NULL) {
5416 		stack_prot |= PROT_EXEC;
5417 		thr_map_stacks_exec();
5418 	}
5419 }
5420 
5421 static void
5422 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5423 {
5424 	Objlist_Entry *elm;
5425 	Obj_Entry *obj;
5426 	void (*distrib)(size_t, void *, size_t, size_t);
5427 
5428 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5429 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5430 	if (distrib == NULL)
5431 		return;
5432 	STAILQ_FOREACH(elm, list, link) {
5433 		obj = elm->obj;
5434 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5435 			continue;
5436 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5437 		    obj->tlssize);
5438 		obj->static_tls_copied = true;
5439 	}
5440 }
5441 
5442 void
5443 symlook_init(SymLook *dst, const char *name)
5444 {
5445 
5446 	bzero(dst, sizeof(*dst));
5447 	dst->name = name;
5448 	dst->hash = elf_hash(name);
5449 	dst->hash_gnu = gnu_hash(name);
5450 }
5451 
5452 static void
5453 symlook_init_from_req(SymLook *dst, const SymLook *src)
5454 {
5455 
5456 	dst->name = src->name;
5457 	dst->hash = src->hash;
5458 	dst->hash_gnu = src->hash_gnu;
5459 	dst->ventry = src->ventry;
5460 	dst->flags = src->flags;
5461 	dst->defobj_out = NULL;
5462 	dst->sym_out = NULL;
5463 	dst->lockstate = src->lockstate;
5464 }
5465 
5466 static int
5467 open_binary_fd(const char *argv0, bool search_in_path)
5468 {
5469 	char *pathenv, *pe, binpath[PATH_MAX];
5470 	int fd;
5471 
5472 	if (search_in_path && strchr(argv0, '/') == NULL) {
5473 		pathenv = getenv("PATH");
5474 		if (pathenv == NULL) {
5475 			_rtld_error("-p and no PATH environment variable");
5476 			rtld_die();
5477 		}
5478 		pathenv = strdup(pathenv);
5479 		if (pathenv == NULL) {
5480 			_rtld_error("Cannot allocate memory");
5481 			rtld_die();
5482 		}
5483 		fd = -1;
5484 		errno = ENOENT;
5485 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5486 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5487 			    sizeof(binpath))
5488 				continue;
5489 			if (binpath[0] != '\0' &&
5490 			    strlcat(binpath, "/", sizeof(binpath)) >=
5491 			    sizeof(binpath))
5492 				continue;
5493 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5494 			    sizeof(binpath))
5495 				continue;
5496 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5497 			if (fd != -1 || errno != ENOENT)
5498 				break;
5499 		}
5500 		free(pathenv);
5501 	} else {
5502 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5503 	}
5504 
5505 	if (fd == -1) {
5506 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5507 		rtld_die();
5508 	}
5509 	return (fd);
5510 }
5511 
5512 /*
5513  * Parse a set of command-line arguments.
5514  */
5515 static int
5516 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5517 {
5518 	const char *arg;
5519 	int fd, i, j, arglen;
5520 	char opt;
5521 
5522 	dbg("Parsing command-line arguments");
5523 	*use_pathp = false;
5524 	*fdp = -1;
5525 
5526 	for (i = 1; i < argc; i++ ) {
5527 		arg = argv[i];
5528 		dbg("argv[%d]: '%s'", i, arg);
5529 
5530 		/*
5531 		 * rtld arguments end with an explicit "--" or with the first
5532 		 * non-prefixed argument.
5533 		 */
5534 		if (strcmp(arg, "--") == 0) {
5535 			i++;
5536 			break;
5537 		}
5538 		if (arg[0] != '-')
5539 			break;
5540 
5541 		/*
5542 		 * All other arguments are single-character options that can
5543 		 * be combined, so we need to search through `arg` for them.
5544 		 */
5545 		arglen = strlen(arg);
5546 		for (j = 1; j < arglen; j++) {
5547 			opt = arg[j];
5548 			if (opt == 'h') {
5549 				print_usage(argv[0]);
5550 				_exit(0);
5551 			} else if (opt == 'f') {
5552 			/*
5553 			 * -f XX can be used to specify a descriptor for the
5554 			 * binary named at the command line (i.e., the later
5555 			 * argument will specify the process name but the
5556 			 * descriptor is what will actually be executed)
5557 			 */
5558 			if (j != arglen - 1) {
5559 				/* -f must be the last option in, e.g., -abcf */
5560 				_rtld_error("Invalid options: %s", arg);
5561 				rtld_die();
5562 			}
5563 			i++;
5564 			fd = parse_integer(argv[i]);
5565 			if (fd == -1) {
5566 				_rtld_error("Invalid file descriptor: '%s'",
5567 				    argv[i]);
5568 				rtld_die();
5569 			}
5570 			*fdp = fd;
5571 			break;
5572 			} else if (opt == 'p') {
5573 				*use_pathp = true;
5574 			} else {
5575 				_rtld_error("Invalid argument: '%s'", arg);
5576 				print_usage(argv[0]);
5577 				rtld_die();
5578 			}
5579 		}
5580 	}
5581 
5582 	return (i);
5583 }
5584 
5585 /*
5586  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5587  */
5588 static int
5589 parse_integer(const char *str)
5590 {
5591 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5592 	const char *orig;
5593 	int n;
5594 	char c;
5595 
5596 	orig = str;
5597 	n = 0;
5598 	for (c = *str; c != '\0'; c = *++str) {
5599 		if (c < '0' || c > '9')
5600 			return (-1);
5601 
5602 		n *= RADIX;
5603 		n += c - '0';
5604 	}
5605 
5606 	/* Make sure we actually parsed something. */
5607 	if (str == orig)
5608 		return (-1);
5609 	return (n);
5610 }
5611 
5612 static void
5613 print_usage(const char *argv0)
5614 {
5615 
5616 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5617 		"\n"
5618 		"Options:\n"
5619 		"  -h        Display this help message\n"
5620 		"  -p        Search in PATH for named binary\n"
5621 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5622 		"  --        End of RTLD options\n"
5623 		"  <binary>  Name of process to execute\n"
5624 		"  <args>    Arguments to the executed process\n", argv0);
5625 }
5626 
5627 /*
5628  * Overrides for libc_pic-provided functions.
5629  */
5630 
5631 int
5632 __getosreldate(void)
5633 {
5634 	size_t len;
5635 	int oid[2];
5636 	int error, osrel;
5637 
5638 	if (osreldate != 0)
5639 		return (osreldate);
5640 
5641 	oid[0] = CTL_KERN;
5642 	oid[1] = KERN_OSRELDATE;
5643 	osrel = 0;
5644 	len = sizeof(osrel);
5645 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5646 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5647 		osreldate = osrel;
5648 	return (osreldate);
5649 }
5650 
5651 void
5652 exit(int status)
5653 {
5654 
5655 	_exit(status);
5656 }
5657 
5658 void (*__cleanup)(void);
5659 int __isthreaded = 0;
5660 int _thread_autoinit_dummy_decl = 1;
5661 
5662 /*
5663  * No unresolved symbols for rtld.
5664  */
5665 void
5666 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5667 {
5668 }
5669 
5670 const char *
5671 rtld_strerror(int errnum)
5672 {
5673 
5674 	if (errnum < 0 || errnum >= sys_nerr)
5675 		return ("Unknown error");
5676 	return (sys_errlist[errnum]);
5677 }
5678 
5679 /*
5680  * No ifunc relocations.
5681  */
5682 void *
5683 memset(void *dest, int c, size_t len)
5684 {
5685 	size_t i;
5686 
5687 	for (i = 0; i < len; i++)
5688 		((char *)dest)[i] = c;
5689 	return (dest);
5690 }
5691 
5692 void
5693 bzero(void *dest, size_t len)
5694 {
5695 	size_t i;
5696 
5697 	for (i = 0; i < len; i++)
5698 		((char *)dest)[i] = 0;
5699 }
5700 
5701 /* malloc */
5702 void *
5703 malloc(size_t nbytes)
5704 {
5705 
5706 	return (__crt_malloc(nbytes));
5707 }
5708 
5709 void *
5710 calloc(size_t num, size_t size)
5711 {
5712 
5713 	return (__crt_calloc(num, size));
5714 }
5715 
5716 void
5717 free(void *cp)
5718 {
5719 
5720 	__crt_free(cp);
5721 }
5722 
5723 void *
5724 realloc(void *cp, size_t nbytes)
5725 {
5726 
5727 	return (__crt_realloc(cp, nbytes));
5728 }
5729