xref: /freebsd/libexec/rtld-elf/rtld.c (revision bbb29a3c0f2c4565eff6fda70426807b6ed97f8b)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *, int *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static int parse_libdir(const char *);
123 static void *path_enumerate(const char *, path_enum_proc, void *);
124 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
125     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
126 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
127     int flags, RtldLockState *lockstate);
128 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
129     RtldLockState *);
130 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
131     int flags, RtldLockState *lockstate);
132 static int rtld_dirname(const char *, char *);
133 static int rtld_dirname_abs(const char *, char *);
134 static void *rtld_dlopen(const char *name, int fd, int mode);
135 static void rtld_exit(void);
136 static char *search_library_path(const char *, const char *);
137 static char *search_library_pathfds(const char *, const char *, int *);
138 static const void **get_program_var_addr(const char *, RtldLockState *);
139 static void set_program_var(const char *, const void *);
140 static int symlook_default(SymLook *, const Obj_Entry *refobj);
141 static int symlook_global(SymLook *, DoneList *);
142 static void symlook_init_from_req(SymLook *, const SymLook *);
143 static int symlook_list(SymLook *, const Objlist *, DoneList *);
144 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
145 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
146 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
147 static void trace_loaded_objects(Obj_Entry *);
148 static void unlink_object(Obj_Entry *);
149 static void unload_object(Obj_Entry *);
150 static void unref_dag(Obj_Entry *);
151 static void ref_dag(Obj_Entry *);
152 static char *origin_subst_one(char *, const char *, const char *, bool);
153 static char *origin_subst(char *, const char *);
154 static void preinit_main(void);
155 static int  rtld_verify_versions(const Objlist *);
156 static int  rtld_verify_object_versions(Obj_Entry *);
157 static void object_add_name(Obj_Entry *, const char *);
158 static int  object_match_name(const Obj_Entry *, const char *);
159 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
160 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
161     struct dl_phdr_info *phdr_info);
162 static uint32_t gnu_hash(const char *);
163 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
164     const unsigned long);
165 
166 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
167 void _r_debug_postinit(struct link_map *) __noinline;
168 
169 /*
170  * Data declarations.
171  */
172 static char *error_message;	/* Message for dlerror(), or NULL */
173 struct r_debug r_debug;		/* for GDB; */
174 static bool libmap_disable;	/* Disable libmap */
175 static bool ld_loadfltr;	/* Immediate filters processing */
176 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
177 static bool trust;		/* False for setuid and setgid programs */
178 static bool dangerous_ld_env;	/* True if environment variables have been
179 				   used to affect the libraries loaded */
180 static char *ld_bind_now;	/* Environment variable for immediate binding */
181 static char *ld_debug;		/* Environment variable for debugging */
182 static char *ld_library_path;	/* Environment variable for search path */
183 static char *ld_library_dirs;	/* Environment variable for library descriptors */
184 static char *ld_preload;	/* Environment variable for libraries to
185 				   load first */
186 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
187 static char *ld_tracing;	/* Called from ldd to print libs */
188 static char *ld_utrace;		/* Use utrace() to log events. */
189 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
190 static Obj_Entry **obj_tail;	/* Link field of last object in list */
191 static Obj_Entry *obj_main;	/* The main program shared object */
192 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
193 static unsigned int obj_count;	/* Number of objects in obj_list */
194 static unsigned int obj_loads;	/* Number of objects in obj_list */
195 
196 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
197   STAILQ_HEAD_INITIALIZER(list_global);
198 static Objlist list_main =	/* Objects loaded at program startup */
199   STAILQ_HEAD_INITIALIZER(list_main);
200 static Objlist list_fini =	/* Objects needing fini() calls */
201   STAILQ_HEAD_INITIALIZER(list_fini);
202 
203 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
204 
205 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
206 
207 extern Elf_Dyn _DYNAMIC;
208 #pragma weak _DYNAMIC
209 #ifndef RTLD_IS_DYNAMIC
210 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
211 #endif
212 
213 int npagesizes, osreldate;
214 size_t *pagesizes;
215 
216 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
217 
218 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
219 static int max_stack_flags;
220 
221 /*
222  * Global declarations normally provided by crt1.  The dynamic linker is
223  * not built with crt1, so we have to provide them ourselves.
224  */
225 char *__progname;
226 char **environ;
227 
228 /*
229  * Used to pass argc, argv to init functions.
230  */
231 int main_argc;
232 char **main_argv;
233 
234 /*
235  * Globals to control TLS allocation.
236  */
237 size_t tls_last_offset;		/* Static TLS offset of last module */
238 size_t tls_last_size;		/* Static TLS size of last module */
239 size_t tls_static_space;	/* Static TLS space allocated */
240 size_t tls_static_max_align;
241 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
242 int tls_max_index = 1;		/* Largest module index allocated */
243 
244 bool ld_library_path_rpath = false;
245 
246 /*
247  * Fill in a DoneList with an allocation large enough to hold all of
248  * the currently-loaded objects.  Keep this as a macro since it calls
249  * alloca and we want that to occur within the scope of the caller.
250  */
251 #define donelist_init(dlp)					\
252     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
253     assert((dlp)->objs != NULL),				\
254     (dlp)->num_alloc = obj_count,				\
255     (dlp)->num_used = 0)
256 
257 #define	UTRACE_DLOPEN_START		1
258 #define	UTRACE_DLOPEN_STOP		2
259 #define	UTRACE_DLCLOSE_START		3
260 #define	UTRACE_DLCLOSE_STOP		4
261 #define	UTRACE_LOAD_OBJECT		5
262 #define	UTRACE_UNLOAD_OBJECT		6
263 #define	UTRACE_ADD_RUNDEP		7
264 #define	UTRACE_PRELOAD_FINISHED		8
265 #define	UTRACE_INIT_CALL		9
266 #define	UTRACE_FINI_CALL		10
267 
268 struct utrace_rtld {
269 	char sig[4];			/* 'RTLD' */
270 	int event;
271 	void *handle;
272 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
273 	size_t mapsize;
274 	int refcnt;			/* Used for 'mode' */
275 	char name[MAXPATHLEN];
276 };
277 
278 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
279 	if (ld_utrace != NULL)					\
280 		ld_utrace_log(e, h, mb, ms, r, n);		\
281 } while (0)
282 
283 static void
284 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
285     int refcnt, const char *name)
286 {
287 	struct utrace_rtld ut;
288 
289 	ut.sig[0] = 'R';
290 	ut.sig[1] = 'T';
291 	ut.sig[2] = 'L';
292 	ut.sig[3] = 'D';
293 	ut.event = event;
294 	ut.handle = handle;
295 	ut.mapbase = mapbase;
296 	ut.mapsize = mapsize;
297 	ut.refcnt = refcnt;
298 	bzero(ut.name, sizeof(ut.name));
299 	if (name)
300 		strlcpy(ut.name, name, sizeof(ut.name));
301 	utrace(&ut, sizeof(ut));
302 }
303 
304 /*
305  * Main entry point for dynamic linking.  The first argument is the
306  * stack pointer.  The stack is expected to be laid out as described
307  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
308  * Specifically, the stack pointer points to a word containing
309  * ARGC.  Following that in the stack is a null-terminated sequence
310  * of pointers to argument strings.  Then comes a null-terminated
311  * sequence of pointers to environment strings.  Finally, there is a
312  * sequence of "auxiliary vector" entries.
313  *
314  * The second argument points to a place to store the dynamic linker's
315  * exit procedure pointer and the third to a place to store the main
316  * program's object.
317  *
318  * The return value is the main program's entry point.
319  */
320 func_ptr_type
321 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
322 {
323     Elf_Auxinfo *aux_info[AT_COUNT];
324     int i;
325     int argc;
326     char **argv;
327     char **env;
328     Elf_Auxinfo *aux;
329     Elf_Auxinfo *auxp;
330     const char *argv0;
331     Objlist_Entry *entry;
332     Obj_Entry *obj;
333     Obj_Entry **preload_tail;
334     Obj_Entry *last_interposer;
335     Objlist initlist;
336     RtldLockState lockstate;
337     char *library_path_rpath;
338     int mib[2];
339     size_t len;
340 
341     /*
342      * On entry, the dynamic linker itself has not been relocated yet.
343      * Be very careful not to reference any global data until after
344      * init_rtld has returned.  It is OK to reference file-scope statics
345      * and string constants, and to call static and global functions.
346      */
347 
348     /* Find the auxiliary vector on the stack. */
349     argc = *sp++;
350     argv = (char **) sp;
351     sp += argc + 1;	/* Skip over arguments and NULL terminator */
352     env = (char **) sp;
353     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
354 	;
355     aux = (Elf_Auxinfo *) sp;
356 
357     /* Digest the auxiliary vector. */
358     for (i = 0;  i < AT_COUNT;  i++)
359 	aux_info[i] = NULL;
360     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
361 	if (auxp->a_type < AT_COUNT)
362 	    aux_info[auxp->a_type] = auxp;
363     }
364 
365     /* Initialize and relocate ourselves. */
366     assert(aux_info[AT_BASE] != NULL);
367     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
368 
369     __progname = obj_rtld.path;
370     argv0 = argv[0] != NULL ? argv[0] : "(null)";
371     environ = env;
372     main_argc = argc;
373     main_argv = argv;
374 
375     if (aux_info[AT_CANARY] != NULL &&
376 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
377 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
378 	    if (i > sizeof(__stack_chk_guard))
379 		    i = sizeof(__stack_chk_guard);
380 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
381     } else {
382 	mib[0] = CTL_KERN;
383 	mib[1] = KERN_ARND;
384 
385 	len = sizeof(__stack_chk_guard);
386 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
387 	    len != sizeof(__stack_chk_guard)) {
388 		/* If sysctl was unsuccessful, use the "terminator canary". */
389 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
390 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
391 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
392 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
393 	}
394     }
395 
396     trust = !issetugid();
397 
398     ld_bind_now = getenv(LD_ "BIND_NOW");
399     /*
400      * If the process is tainted, then we un-set the dangerous environment
401      * variables.  The process will be marked as tainted until setuid(2)
402      * is called.  If any child process calls setuid(2) we do not want any
403      * future processes to honor the potentially un-safe variables.
404      */
405     if (!trust) {
406         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
407 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
408 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
409 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
410 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
411 		_rtld_error("environment corrupt; aborting");
412 		die();
413 	}
414     }
415     ld_debug = getenv(LD_ "DEBUG");
416     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
417     libmap_override = getenv(LD_ "LIBMAP");
418     ld_library_path = getenv(LD_ "LIBRARY_PATH");
419     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
420     ld_preload = getenv(LD_ "PRELOAD");
421     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
422     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
423     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
424     if (library_path_rpath != NULL) {
425 	    if (library_path_rpath[0] == 'y' ||
426 		library_path_rpath[0] == 'Y' ||
427 		library_path_rpath[0] == '1')
428 		    ld_library_path_rpath = true;
429 	    else
430 		    ld_library_path_rpath = false;
431     }
432     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
433 	(ld_library_path != NULL) || (ld_preload != NULL) ||
434 	(ld_elf_hints_path != NULL) || ld_loadfltr;
435     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
436     ld_utrace = getenv(LD_ "UTRACE");
437 
438     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
439 	ld_elf_hints_path = _PATH_ELF_HINTS;
440 
441     if (ld_debug != NULL && *ld_debug != '\0')
442 	debug = 1;
443     dbg("%s is initialized, base address = %p", __progname,
444 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
445     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
446     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
447 
448     dbg("initializing thread locks");
449     lockdflt_init();
450 
451     /*
452      * Load the main program, or process its program header if it is
453      * already loaded.
454      */
455     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
456 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
457 	dbg("loading main program");
458 	obj_main = map_object(fd, argv0, NULL);
459 	close(fd);
460 	if (obj_main == NULL)
461 	    die();
462 	max_stack_flags = obj->stack_flags;
463     } else {				/* Main program already loaded. */
464 	const Elf_Phdr *phdr;
465 	int phnum;
466 	caddr_t entry;
467 
468 	dbg("processing main program's program header");
469 	assert(aux_info[AT_PHDR] != NULL);
470 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
471 	assert(aux_info[AT_PHNUM] != NULL);
472 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
473 	assert(aux_info[AT_PHENT] != NULL);
474 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
475 	assert(aux_info[AT_ENTRY] != NULL);
476 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
477 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
478 	    die();
479     }
480 
481     if (aux_info[AT_EXECPATH] != 0) {
482 	    char *kexecpath;
483 	    char buf[MAXPATHLEN];
484 
485 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
486 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
487 	    if (kexecpath[0] == '/')
488 		    obj_main->path = kexecpath;
489 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
490 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
491 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
492 		    obj_main->path = xstrdup(argv0);
493 	    else
494 		    obj_main->path = xstrdup(buf);
495     } else {
496 	    dbg("No AT_EXECPATH");
497 	    obj_main->path = xstrdup(argv0);
498     }
499     dbg("obj_main path %s", obj_main->path);
500     obj_main->mainprog = true;
501 
502     if (aux_info[AT_STACKPROT] != NULL &&
503       aux_info[AT_STACKPROT]->a_un.a_val != 0)
504 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
505 
506 #ifndef COMPAT_32BIT
507     /*
508      * Get the actual dynamic linker pathname from the executable if
509      * possible.  (It should always be possible.)  That ensures that
510      * gdb will find the right dynamic linker even if a non-standard
511      * one is being used.
512      */
513     if (obj_main->interp != NULL &&
514       strcmp(obj_main->interp, obj_rtld.path) != 0) {
515 	free(obj_rtld.path);
516 	obj_rtld.path = xstrdup(obj_main->interp);
517         __progname = obj_rtld.path;
518     }
519 #endif
520 
521     digest_dynamic(obj_main, 0);
522     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
523 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
524 	obj_main->dynsymcount);
525 
526     linkmap_add(obj_main);
527     linkmap_add(&obj_rtld);
528 
529     /* Link the main program into the list of objects. */
530     *obj_tail = obj_main;
531     obj_tail = &obj_main->next;
532     obj_count++;
533     obj_loads++;
534 
535     /* Initialize a fake symbol for resolving undefined weak references. */
536     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
537     sym_zero.st_shndx = SHN_UNDEF;
538     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
539 
540     if (!libmap_disable)
541         libmap_disable = (bool)lm_init(libmap_override);
542 
543     dbg("loading LD_PRELOAD libraries");
544     if (load_preload_objects() == -1)
545 	die();
546     preload_tail = obj_tail;
547 
548     dbg("loading needed objects");
549     if (load_needed_objects(obj_main, 0) == -1)
550 	die();
551 
552     /* Make a list of all objects loaded at startup. */
553     last_interposer = obj_main;
554     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
555 	if (obj->z_interpose && obj != obj_main) {
556 	    objlist_put_after(&list_main, last_interposer, obj);
557 	    last_interposer = obj;
558 	} else {
559 	    objlist_push_tail(&list_main, obj);
560 	}
561     	obj->refcount++;
562     }
563 
564     dbg("checking for required versions");
565     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
566 	die();
567 
568     if (ld_tracing) {		/* We're done */
569 	trace_loaded_objects(obj_main);
570 	exit(0);
571     }
572 
573     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
574        dump_relocations(obj_main);
575        exit (0);
576     }
577 
578     /*
579      * Processing tls relocations requires having the tls offsets
580      * initialized.  Prepare offsets before starting initial
581      * relocation processing.
582      */
583     dbg("initializing initial thread local storage offsets");
584     STAILQ_FOREACH(entry, &list_main, link) {
585 	/*
586 	 * Allocate all the initial objects out of the static TLS
587 	 * block even if they didn't ask for it.
588 	 */
589 	allocate_tls_offset(entry->obj);
590     }
591 
592     if (relocate_objects(obj_main,
593       ld_bind_now != NULL && *ld_bind_now != '\0',
594       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
595 	die();
596 
597     dbg("doing copy relocations");
598     if (do_copy_relocations(obj_main) == -1)
599 	die();
600 
601     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
602        dump_relocations(obj_main);
603        exit (0);
604     }
605 
606     /*
607      * Setup TLS for main thread.  This must be done after the
608      * relocations are processed, since tls initialization section
609      * might be the subject for relocations.
610      */
611     dbg("initializing initial thread local storage");
612     allocate_initial_tls(obj_list);
613 
614     dbg("initializing key program variables");
615     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
616     set_program_var("environ", env);
617     set_program_var("__elf_aux_vector", aux);
618 
619     /* Make a list of init functions to call. */
620     objlist_init(&initlist);
621     initlist_add_objects(obj_list, preload_tail, &initlist);
622 
623     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
624 
625     map_stacks_exec(NULL);
626 
627     dbg("resolving ifuncs");
628     if (resolve_objects_ifunc(obj_main,
629       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
630       NULL) == -1)
631 	die();
632 
633     if (!obj_main->crt_no_init) {
634 	/*
635 	 * Make sure we don't call the main program's init and fini
636 	 * functions for binaries linked with old crt1 which calls
637 	 * _init itself.
638 	 */
639 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
640 	obj_main->preinit_array = obj_main->init_array =
641 	    obj_main->fini_array = (Elf_Addr)NULL;
642     }
643 
644     wlock_acquire(rtld_bind_lock, &lockstate);
645     if (obj_main->crt_no_init)
646 	preinit_main();
647     objlist_call_init(&initlist, &lockstate);
648     _r_debug_postinit(&obj_main->linkmap);
649     objlist_clear(&initlist);
650     dbg("loading filtees");
651     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
652 	if (ld_loadfltr || obj->z_loadfltr)
653 	    load_filtees(obj, 0, &lockstate);
654     }
655     lock_release(rtld_bind_lock, &lockstate);
656 
657     dbg("transferring control to program entry point = %p", obj_main->entry);
658 
659     /* Return the exit procedure and the program entry point. */
660     *exit_proc = rtld_exit;
661     *objp = obj_main;
662     return (func_ptr_type) obj_main->entry;
663 }
664 
665 void *
666 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
667 {
668 	void *ptr;
669 	Elf_Addr target;
670 
671 	ptr = (void *)make_function_pointer(def, obj);
672 	target = ((Elf_Addr (*)(void))ptr)();
673 	return ((void *)target);
674 }
675 
676 Elf_Addr
677 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
678 {
679     const Elf_Rel *rel;
680     const Elf_Sym *def;
681     const Obj_Entry *defobj;
682     Elf_Addr *where;
683     Elf_Addr target;
684     RtldLockState lockstate;
685 
686     rlock_acquire(rtld_bind_lock, &lockstate);
687     if (sigsetjmp(lockstate.env, 0) != 0)
688 	    lock_upgrade(rtld_bind_lock, &lockstate);
689     if (obj->pltrel)
690 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
691     else
692 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
693 
694     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
695     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
696 	&lockstate);
697     if (def == NULL)
698 	die();
699     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
700 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
701     else
702 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
703 
704     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
705       defobj->strtab + def->st_name, basename(obj->path),
706       (void *)target, basename(defobj->path));
707 
708     /*
709      * Write the new contents for the jmpslot. Note that depending on
710      * architecture, the value which we need to return back to the
711      * lazy binding trampoline may or may not be the target
712      * address. The value returned from reloc_jmpslot() is the value
713      * that the trampoline needs.
714      */
715     target = reloc_jmpslot(where, target, defobj, obj, rel);
716     lock_release(rtld_bind_lock, &lockstate);
717     return target;
718 }
719 
720 /*
721  * Error reporting function.  Use it like printf.  If formats the message
722  * into a buffer, and sets things up so that the next call to dlerror()
723  * will return the message.
724  */
725 void
726 _rtld_error(const char *fmt, ...)
727 {
728     static char buf[512];
729     va_list ap;
730 
731     va_start(ap, fmt);
732     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
733     error_message = buf;
734     va_end(ap);
735 }
736 
737 /*
738  * Return a dynamically-allocated copy of the current error message, if any.
739  */
740 static char *
741 errmsg_save(void)
742 {
743     return error_message == NULL ? NULL : xstrdup(error_message);
744 }
745 
746 /*
747  * Restore the current error message from a copy which was previously saved
748  * by errmsg_save().  The copy is freed.
749  */
750 static void
751 errmsg_restore(char *saved_msg)
752 {
753     if (saved_msg == NULL)
754 	error_message = NULL;
755     else {
756 	_rtld_error("%s", saved_msg);
757 	free(saved_msg);
758     }
759 }
760 
761 static const char *
762 basename(const char *name)
763 {
764     const char *p = strrchr(name, '/');
765     return p != NULL ? p + 1 : name;
766 }
767 
768 static struct utsname uts;
769 
770 static char *
771 origin_subst_one(char *real, const char *kw, const char *subst,
772     bool may_free)
773 {
774 	char *p, *p1, *res, *resp;
775 	int subst_len, kw_len, subst_count, old_len, new_len;
776 
777 	kw_len = strlen(kw);
778 
779 	/*
780 	 * First, count the number of the keyword occurences, to
781 	 * preallocate the final string.
782 	 */
783 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
784 		p1 = strstr(p, kw);
785 		if (p1 == NULL)
786 			break;
787 	}
788 
789 	/*
790 	 * If the keyword is not found, just return.
791 	 */
792 	if (subst_count == 0)
793 		return (may_free ? real : xstrdup(real));
794 
795 	/*
796 	 * There is indeed something to substitute.  Calculate the
797 	 * length of the resulting string, and allocate it.
798 	 */
799 	subst_len = strlen(subst);
800 	old_len = strlen(real);
801 	new_len = old_len + (subst_len - kw_len) * subst_count;
802 	res = xmalloc(new_len + 1);
803 
804 	/*
805 	 * Now, execute the substitution loop.
806 	 */
807 	for (p = real, resp = res, *resp = '\0';;) {
808 		p1 = strstr(p, kw);
809 		if (p1 != NULL) {
810 			/* Copy the prefix before keyword. */
811 			memcpy(resp, p, p1 - p);
812 			resp += p1 - p;
813 			/* Keyword replacement. */
814 			memcpy(resp, subst, subst_len);
815 			resp += subst_len;
816 			*resp = '\0';
817 			p = p1 + kw_len;
818 		} else
819 			break;
820 	}
821 
822 	/* Copy to the end of string and finish. */
823 	strcat(resp, p);
824 	if (may_free)
825 		free(real);
826 	return (res);
827 }
828 
829 static char *
830 origin_subst(char *real, const char *origin_path)
831 {
832 	char *res1, *res2, *res3, *res4;
833 
834 	if (uts.sysname[0] == '\0') {
835 		if (uname(&uts) != 0) {
836 			_rtld_error("utsname failed: %d", errno);
837 			return (NULL);
838 		}
839 	}
840 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
841 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
842 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
843 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
844 	return (res4);
845 }
846 
847 static void
848 die(void)
849 {
850     const char *msg = dlerror();
851 
852     if (msg == NULL)
853 	msg = "Fatal error";
854     rtld_fdputstr(STDERR_FILENO, msg);
855     rtld_fdputchar(STDERR_FILENO, '\n');
856     _exit(1);
857 }
858 
859 /*
860  * Process a shared object's DYNAMIC section, and save the important
861  * information in its Obj_Entry structure.
862  */
863 static void
864 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
865     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
866 {
867     const Elf_Dyn *dynp;
868     Needed_Entry **needed_tail = &obj->needed;
869     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
870     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
871     const Elf_Hashelt *hashtab;
872     const Elf32_Word *hashval;
873     Elf32_Word bkt, nmaskwords;
874     int bloom_size32;
875     bool nmw_power2;
876     int plttype = DT_REL;
877 
878     *dyn_rpath = NULL;
879     *dyn_soname = NULL;
880     *dyn_runpath = NULL;
881 
882     obj->bind_now = false;
883     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
884 	switch (dynp->d_tag) {
885 
886 	case DT_REL:
887 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
888 	    break;
889 
890 	case DT_RELSZ:
891 	    obj->relsize = dynp->d_un.d_val;
892 	    break;
893 
894 	case DT_RELENT:
895 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
896 	    break;
897 
898 	case DT_JMPREL:
899 	    obj->pltrel = (const Elf_Rel *)
900 	      (obj->relocbase + dynp->d_un.d_ptr);
901 	    break;
902 
903 	case DT_PLTRELSZ:
904 	    obj->pltrelsize = dynp->d_un.d_val;
905 	    break;
906 
907 	case DT_RELA:
908 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
909 	    break;
910 
911 	case DT_RELASZ:
912 	    obj->relasize = dynp->d_un.d_val;
913 	    break;
914 
915 	case DT_RELAENT:
916 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
917 	    break;
918 
919 	case DT_PLTREL:
920 	    plttype = dynp->d_un.d_val;
921 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
922 	    break;
923 
924 	case DT_SYMTAB:
925 	    obj->symtab = (const Elf_Sym *)
926 	      (obj->relocbase + dynp->d_un.d_ptr);
927 	    break;
928 
929 	case DT_SYMENT:
930 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
931 	    break;
932 
933 	case DT_STRTAB:
934 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
935 	    break;
936 
937 	case DT_STRSZ:
938 	    obj->strsize = dynp->d_un.d_val;
939 	    break;
940 
941 	case DT_VERNEED:
942 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
943 		dynp->d_un.d_val);
944 	    break;
945 
946 	case DT_VERNEEDNUM:
947 	    obj->verneednum = dynp->d_un.d_val;
948 	    break;
949 
950 	case DT_VERDEF:
951 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
952 		dynp->d_un.d_val);
953 	    break;
954 
955 	case DT_VERDEFNUM:
956 	    obj->verdefnum = dynp->d_un.d_val;
957 	    break;
958 
959 	case DT_VERSYM:
960 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
961 		dynp->d_un.d_val);
962 	    break;
963 
964 	case DT_HASH:
965 	    {
966 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
967 		    dynp->d_un.d_ptr);
968 		obj->nbuckets = hashtab[0];
969 		obj->nchains = hashtab[1];
970 		obj->buckets = hashtab + 2;
971 		obj->chains = obj->buckets + obj->nbuckets;
972 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
973 		  obj->buckets != NULL;
974 	    }
975 	    break;
976 
977 	case DT_GNU_HASH:
978 	    {
979 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
980 		    dynp->d_un.d_ptr);
981 		obj->nbuckets_gnu = hashtab[0];
982 		obj->symndx_gnu = hashtab[1];
983 		nmaskwords = hashtab[2];
984 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
985 		/* Number of bitmask words is required to be power of 2 */
986 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
987 		obj->maskwords_bm_gnu = nmaskwords - 1;
988 		obj->shift2_gnu = hashtab[3];
989 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
990 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
991 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
992 		  obj->symndx_gnu;
993 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
994 		  obj->buckets_gnu != NULL;
995 	    }
996 	    break;
997 
998 	case DT_NEEDED:
999 	    if (!obj->rtld) {
1000 		Needed_Entry *nep = NEW(Needed_Entry);
1001 		nep->name = dynp->d_un.d_val;
1002 		nep->obj = NULL;
1003 		nep->next = NULL;
1004 
1005 		*needed_tail = nep;
1006 		needed_tail = &nep->next;
1007 	    }
1008 	    break;
1009 
1010 	case DT_FILTER:
1011 	    if (!obj->rtld) {
1012 		Needed_Entry *nep = NEW(Needed_Entry);
1013 		nep->name = dynp->d_un.d_val;
1014 		nep->obj = NULL;
1015 		nep->next = NULL;
1016 
1017 		*needed_filtees_tail = nep;
1018 		needed_filtees_tail = &nep->next;
1019 	    }
1020 	    break;
1021 
1022 	case DT_AUXILIARY:
1023 	    if (!obj->rtld) {
1024 		Needed_Entry *nep = NEW(Needed_Entry);
1025 		nep->name = dynp->d_un.d_val;
1026 		nep->obj = NULL;
1027 		nep->next = NULL;
1028 
1029 		*needed_aux_filtees_tail = nep;
1030 		needed_aux_filtees_tail = &nep->next;
1031 	    }
1032 	    break;
1033 
1034 	case DT_PLTGOT:
1035 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1036 	    break;
1037 
1038 	case DT_TEXTREL:
1039 	    obj->textrel = true;
1040 	    break;
1041 
1042 	case DT_SYMBOLIC:
1043 	    obj->symbolic = true;
1044 	    break;
1045 
1046 	case DT_RPATH:
1047 	    /*
1048 	     * We have to wait until later to process this, because we
1049 	     * might not have gotten the address of the string table yet.
1050 	     */
1051 	    *dyn_rpath = dynp;
1052 	    break;
1053 
1054 	case DT_SONAME:
1055 	    *dyn_soname = dynp;
1056 	    break;
1057 
1058 	case DT_RUNPATH:
1059 	    *dyn_runpath = dynp;
1060 	    break;
1061 
1062 	case DT_INIT:
1063 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1064 	    break;
1065 
1066 	case DT_PREINIT_ARRAY:
1067 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1068 	    break;
1069 
1070 	case DT_PREINIT_ARRAYSZ:
1071 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1072 	    break;
1073 
1074 	case DT_INIT_ARRAY:
1075 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1076 	    break;
1077 
1078 	case DT_INIT_ARRAYSZ:
1079 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1080 	    break;
1081 
1082 	case DT_FINI:
1083 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1084 	    break;
1085 
1086 	case DT_FINI_ARRAY:
1087 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1088 	    break;
1089 
1090 	case DT_FINI_ARRAYSZ:
1091 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1092 	    break;
1093 
1094 	/*
1095 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1096 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1097 	 */
1098 
1099 #ifndef __mips__
1100 	case DT_DEBUG:
1101 	    /* XXX - not implemented yet */
1102 	    if (!early)
1103 		dbg("Filling in DT_DEBUG entry");
1104 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1105 	    break;
1106 #endif
1107 
1108 	case DT_FLAGS:
1109 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1110 		    obj->z_origin = true;
1111 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1112 		    obj->symbolic = true;
1113 		if (dynp->d_un.d_val & DF_TEXTREL)
1114 		    obj->textrel = true;
1115 		if (dynp->d_un.d_val & DF_BIND_NOW)
1116 		    obj->bind_now = true;
1117 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1118 		    ;*/
1119 	    break;
1120 #ifdef __mips__
1121 	case DT_MIPS_LOCAL_GOTNO:
1122 		obj->local_gotno = dynp->d_un.d_val;
1123 	    break;
1124 
1125 	case DT_MIPS_SYMTABNO:
1126 		obj->symtabno = dynp->d_un.d_val;
1127 		break;
1128 
1129 	case DT_MIPS_GOTSYM:
1130 		obj->gotsym = dynp->d_un.d_val;
1131 		break;
1132 
1133 	case DT_MIPS_RLD_MAP:
1134 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1135 		break;
1136 #endif
1137 
1138 	case DT_FLAGS_1:
1139 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1140 		    obj->z_noopen = true;
1141 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1142 		    obj->z_origin = true;
1143 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1144 		    XXX ;*/
1145 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1146 		    obj->bind_now = true;
1147 		if (dynp->d_un.d_val & DF_1_NODELETE)
1148 		    obj->z_nodelete = true;
1149 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1150 		    obj->z_loadfltr = true;
1151 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1152 		    obj->z_interpose = true;
1153 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1154 		    obj->z_nodeflib = true;
1155 	    break;
1156 
1157 	default:
1158 	    if (!early) {
1159 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1160 		    (long)dynp->d_tag);
1161 	    }
1162 	    break;
1163 	}
1164     }
1165 
1166     obj->traced = false;
1167 
1168     if (plttype == DT_RELA) {
1169 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1170 	obj->pltrel = NULL;
1171 	obj->pltrelasize = obj->pltrelsize;
1172 	obj->pltrelsize = 0;
1173     }
1174 
1175     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1176     if (obj->valid_hash_sysv)
1177 	obj->dynsymcount = obj->nchains;
1178     else if (obj->valid_hash_gnu) {
1179 	obj->dynsymcount = 0;
1180 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1181 	    if (obj->buckets_gnu[bkt] == 0)
1182 		continue;
1183 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1184 	    do
1185 		obj->dynsymcount++;
1186 	    while ((*hashval++ & 1u) == 0);
1187 	}
1188 	obj->dynsymcount += obj->symndx_gnu;
1189     }
1190 }
1191 
1192 static void
1193 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1194     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1195 {
1196 
1197     if (obj->z_origin && obj->origin_path == NULL) {
1198 	obj->origin_path = xmalloc(PATH_MAX);
1199 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1200 	    die();
1201     }
1202 
1203     if (dyn_runpath != NULL) {
1204 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1205 	if (obj->z_origin)
1206 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1207     }
1208     else if (dyn_rpath != NULL) {
1209 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1210 	if (obj->z_origin)
1211 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1212     }
1213 
1214     if (dyn_soname != NULL)
1215 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1216 }
1217 
1218 static void
1219 digest_dynamic(Obj_Entry *obj, int early)
1220 {
1221 	const Elf_Dyn *dyn_rpath;
1222 	const Elf_Dyn *dyn_soname;
1223 	const Elf_Dyn *dyn_runpath;
1224 
1225 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1226 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1227 }
1228 
1229 /*
1230  * Process a shared object's program header.  This is used only for the
1231  * main program, when the kernel has already loaded the main program
1232  * into memory before calling the dynamic linker.  It creates and
1233  * returns an Obj_Entry structure.
1234  */
1235 static Obj_Entry *
1236 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1237 {
1238     Obj_Entry *obj;
1239     const Elf_Phdr *phlimit = phdr + phnum;
1240     const Elf_Phdr *ph;
1241     Elf_Addr note_start, note_end;
1242     int nsegs = 0;
1243 
1244     obj = obj_new();
1245     for (ph = phdr;  ph < phlimit;  ph++) {
1246 	if (ph->p_type != PT_PHDR)
1247 	    continue;
1248 
1249 	obj->phdr = phdr;
1250 	obj->phsize = ph->p_memsz;
1251 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1252 	break;
1253     }
1254 
1255     obj->stack_flags = PF_X | PF_R | PF_W;
1256 
1257     for (ph = phdr;  ph < phlimit;  ph++) {
1258 	switch (ph->p_type) {
1259 
1260 	case PT_INTERP:
1261 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1262 	    break;
1263 
1264 	case PT_LOAD:
1265 	    if (nsegs == 0) {	/* First load segment */
1266 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1267 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1268 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1269 		  obj->vaddrbase;
1270 	    } else {		/* Last load segment */
1271 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1272 		  obj->vaddrbase;
1273 	    }
1274 	    nsegs++;
1275 	    break;
1276 
1277 	case PT_DYNAMIC:
1278 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1279 	    break;
1280 
1281 	case PT_TLS:
1282 	    obj->tlsindex = 1;
1283 	    obj->tlssize = ph->p_memsz;
1284 	    obj->tlsalign = ph->p_align;
1285 	    obj->tlsinitsize = ph->p_filesz;
1286 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1287 	    break;
1288 
1289 	case PT_GNU_STACK:
1290 	    obj->stack_flags = ph->p_flags;
1291 	    break;
1292 
1293 	case PT_GNU_RELRO:
1294 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1295 	    obj->relro_size = round_page(ph->p_memsz);
1296 	    break;
1297 
1298 	case PT_NOTE:
1299 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1300 	    note_end = note_start + ph->p_filesz;
1301 	    digest_notes(obj, note_start, note_end);
1302 	    break;
1303 	}
1304     }
1305     if (nsegs < 1) {
1306 	_rtld_error("%s: too few PT_LOAD segments", path);
1307 	return NULL;
1308     }
1309 
1310     obj->entry = entry;
1311     return obj;
1312 }
1313 
1314 void
1315 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1316 {
1317 	const Elf_Note *note;
1318 	const char *note_name;
1319 	uintptr_t p;
1320 
1321 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1322 	    note = (const Elf_Note *)((const char *)(note + 1) +
1323 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1324 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1325 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1326 		    note->n_descsz != sizeof(int32_t))
1327 			continue;
1328 		if (note->n_type != ABI_NOTETYPE &&
1329 		    note->n_type != CRT_NOINIT_NOTETYPE)
1330 			continue;
1331 		note_name = (const char *)(note + 1);
1332 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1333 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1334 			continue;
1335 		switch (note->n_type) {
1336 		case ABI_NOTETYPE:
1337 			/* FreeBSD osrel note */
1338 			p = (uintptr_t)(note + 1);
1339 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1340 			obj->osrel = *(const int32_t *)(p);
1341 			dbg("note osrel %d", obj->osrel);
1342 			break;
1343 		case CRT_NOINIT_NOTETYPE:
1344 			/* FreeBSD 'crt does not call init' note */
1345 			obj->crt_no_init = true;
1346 			dbg("note crt_no_init");
1347 			break;
1348 		}
1349 	}
1350 }
1351 
1352 static Obj_Entry *
1353 dlcheck(void *handle)
1354 {
1355     Obj_Entry *obj;
1356 
1357     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1358 	if (obj == (Obj_Entry *) handle)
1359 	    break;
1360 
1361     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1362 	_rtld_error("Invalid shared object handle %p", handle);
1363 	return NULL;
1364     }
1365     return obj;
1366 }
1367 
1368 /*
1369  * If the given object is already in the donelist, return true.  Otherwise
1370  * add the object to the list and return false.
1371  */
1372 static bool
1373 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1374 {
1375     unsigned int i;
1376 
1377     for (i = 0;  i < dlp->num_used;  i++)
1378 	if (dlp->objs[i] == obj)
1379 	    return true;
1380     /*
1381      * Our donelist allocation should always be sufficient.  But if
1382      * our threads locking isn't working properly, more shared objects
1383      * could have been loaded since we allocated the list.  That should
1384      * never happen, but we'll handle it properly just in case it does.
1385      */
1386     if (dlp->num_used < dlp->num_alloc)
1387 	dlp->objs[dlp->num_used++] = obj;
1388     return false;
1389 }
1390 
1391 /*
1392  * Hash function for symbol table lookup.  Don't even think about changing
1393  * this.  It is specified by the System V ABI.
1394  */
1395 unsigned long
1396 elf_hash(const char *name)
1397 {
1398     const unsigned char *p = (const unsigned char *) name;
1399     unsigned long h = 0;
1400     unsigned long g;
1401 
1402     while (*p != '\0') {
1403 	h = (h << 4) + *p++;
1404 	if ((g = h & 0xf0000000) != 0)
1405 	    h ^= g >> 24;
1406 	h &= ~g;
1407     }
1408     return h;
1409 }
1410 
1411 /*
1412  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1413  * unsigned in case it's implemented with a wider type.
1414  */
1415 static uint32_t
1416 gnu_hash(const char *s)
1417 {
1418 	uint32_t h;
1419 	unsigned char c;
1420 
1421 	h = 5381;
1422 	for (c = *s; c != '\0'; c = *++s)
1423 		h = h * 33 + c;
1424 	return (h & 0xffffffff);
1425 }
1426 
1427 
1428 /*
1429  * Find the library with the given name, and return its full pathname.
1430  * The returned string is dynamically allocated.  Generates an error
1431  * message and returns NULL if the library cannot be found.
1432  *
1433  * If the second argument is non-NULL, then it refers to an already-
1434  * loaded shared object, whose library search path will be searched.
1435  *
1436  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1437  * descriptor (which is close-on-exec) will be passed out via the third
1438  * argument.
1439  *
1440  * The search order is:
1441  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1442  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1443  *   LD_LIBRARY_PATH
1444  *   DT_RUNPATH in the referencing file
1445  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1446  *	 from list)
1447  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1448  *
1449  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1450  */
1451 static char *
1452 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1453 {
1454     char *pathname;
1455     char *name;
1456     bool nodeflib, objgiven;
1457 
1458     objgiven = refobj != NULL;
1459     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1460 	if (xname[0] != '/' && !trust) {
1461 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1462 	      xname);
1463 	    return NULL;
1464 	}
1465 	if (objgiven && refobj->z_origin) {
1466 		return (origin_subst(__DECONST(char *, xname),
1467 		    refobj->origin_path));
1468 	} else {
1469 		return (xstrdup(xname));
1470 	}
1471     }
1472 
1473     if (libmap_disable || !objgiven ||
1474 	(name = lm_find(refobj->path, xname)) == NULL)
1475 	name = (char *)xname;
1476 
1477     dbg(" Searching for \"%s\"", name);
1478 
1479     /*
1480      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1481      * back to pre-conforming behaviour if user requested so with
1482      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1483      * nodeflib.
1484      */
1485     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1486 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1487 	  (refobj != NULL &&
1488 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1489 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1490           (pathname = search_library_path(name, gethints(false))) != NULL ||
1491 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1492 	    return (pathname);
1493     } else {
1494 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1495 	if ((objgiven &&
1496 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1497 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1498 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1499 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1500 	  (objgiven &&
1501 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1502 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1503 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1504 	  (objgiven && !nodeflib &&
1505 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1506 	    return (pathname);
1507     }
1508 
1509     if (objgiven && refobj->path != NULL) {
1510 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1511 	  name, basename(refobj->path));
1512     } else {
1513 	_rtld_error("Shared object \"%s\" not found", name);
1514     }
1515     return NULL;
1516 }
1517 
1518 /*
1519  * Given a symbol number in a referencing object, find the corresponding
1520  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1521  * no definition was found.  Returns a pointer to the Obj_Entry of the
1522  * defining object via the reference parameter DEFOBJ_OUT.
1523  */
1524 const Elf_Sym *
1525 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1526     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1527     RtldLockState *lockstate)
1528 {
1529     const Elf_Sym *ref;
1530     const Elf_Sym *def;
1531     const Obj_Entry *defobj;
1532     SymLook req;
1533     const char *name;
1534     int res;
1535 
1536     /*
1537      * If we have already found this symbol, get the information from
1538      * the cache.
1539      */
1540     if (symnum >= refobj->dynsymcount)
1541 	return NULL;	/* Bad object */
1542     if (cache != NULL && cache[symnum].sym != NULL) {
1543 	*defobj_out = cache[symnum].obj;
1544 	return cache[symnum].sym;
1545     }
1546 
1547     ref = refobj->symtab + symnum;
1548     name = refobj->strtab + ref->st_name;
1549     def = NULL;
1550     defobj = NULL;
1551 
1552     /*
1553      * We don't have to do a full scale lookup if the symbol is local.
1554      * We know it will bind to the instance in this load module; to
1555      * which we already have a pointer (ie ref). By not doing a lookup,
1556      * we not only improve performance, but it also avoids unresolvable
1557      * symbols when local symbols are not in the hash table. This has
1558      * been seen with the ia64 toolchain.
1559      */
1560     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1561 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1562 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1563 		symnum);
1564 	}
1565 	symlook_init(&req, name);
1566 	req.flags = flags;
1567 	req.ventry = fetch_ventry(refobj, symnum);
1568 	req.lockstate = lockstate;
1569 	res = symlook_default(&req, refobj);
1570 	if (res == 0) {
1571 	    def = req.sym_out;
1572 	    defobj = req.defobj_out;
1573 	}
1574     } else {
1575 	def = ref;
1576 	defobj = refobj;
1577     }
1578 
1579     /*
1580      * If we found no definition and the reference is weak, treat the
1581      * symbol as having the value zero.
1582      */
1583     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1584 	def = &sym_zero;
1585 	defobj = obj_main;
1586     }
1587 
1588     if (def != NULL) {
1589 	*defobj_out = defobj;
1590 	/* Record the information in the cache to avoid subsequent lookups. */
1591 	if (cache != NULL) {
1592 	    cache[symnum].sym = def;
1593 	    cache[symnum].obj = defobj;
1594 	}
1595     } else {
1596 	if (refobj != &obj_rtld)
1597 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1598     }
1599     return def;
1600 }
1601 
1602 /*
1603  * Return the search path from the ldconfig hints file, reading it if
1604  * necessary.  If nostdlib is true, then the default search paths are
1605  * not added to result.
1606  *
1607  * Returns NULL if there are problems with the hints file,
1608  * or if the search path there is empty.
1609  */
1610 static const char *
1611 gethints(bool nostdlib)
1612 {
1613 	static char *hints, *filtered_path;
1614 	struct elfhints_hdr hdr;
1615 	struct fill_search_info_args sargs, hargs;
1616 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1617 	struct dl_serpath *SLPpath, *hintpath;
1618 	char *p;
1619 	unsigned int SLPndx, hintndx, fndx, fcount;
1620 	int fd;
1621 	size_t flen;
1622 	bool skip;
1623 
1624 	/* First call, read the hints file */
1625 	if (hints == NULL) {
1626 		/* Keep from trying again in case the hints file is bad. */
1627 		hints = "";
1628 
1629 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1630 			return (NULL);
1631 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1632 		    hdr.magic != ELFHINTS_MAGIC ||
1633 		    hdr.version != 1) {
1634 			close(fd);
1635 			return (NULL);
1636 		}
1637 		p = xmalloc(hdr.dirlistlen + 1);
1638 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1639 		    read(fd, p, hdr.dirlistlen + 1) !=
1640 		    (ssize_t)hdr.dirlistlen + 1) {
1641 			free(p);
1642 			close(fd);
1643 			return (NULL);
1644 		}
1645 		hints = p;
1646 		close(fd);
1647 	}
1648 
1649 	/*
1650 	 * If caller agreed to receive list which includes the default
1651 	 * paths, we are done. Otherwise, if we still did not
1652 	 * calculated filtered result, do it now.
1653 	 */
1654 	if (!nostdlib)
1655 		return (hints[0] != '\0' ? hints : NULL);
1656 	if (filtered_path != NULL)
1657 		goto filt_ret;
1658 
1659 	/*
1660 	 * Obtain the list of all configured search paths, and the
1661 	 * list of the default paths.
1662 	 *
1663 	 * First estimate the size of the results.
1664 	 */
1665 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1666 	smeta.dls_cnt = 0;
1667 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1668 	hmeta.dls_cnt = 0;
1669 
1670 	sargs.request = RTLD_DI_SERINFOSIZE;
1671 	sargs.serinfo = &smeta;
1672 	hargs.request = RTLD_DI_SERINFOSIZE;
1673 	hargs.serinfo = &hmeta;
1674 
1675 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1676 	path_enumerate(p, fill_search_info, &hargs);
1677 
1678 	SLPinfo = xmalloc(smeta.dls_size);
1679 	hintinfo = xmalloc(hmeta.dls_size);
1680 
1681 	/*
1682 	 * Next fetch both sets of paths.
1683 	 */
1684 	sargs.request = RTLD_DI_SERINFO;
1685 	sargs.serinfo = SLPinfo;
1686 	sargs.serpath = &SLPinfo->dls_serpath[0];
1687 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1688 
1689 	hargs.request = RTLD_DI_SERINFO;
1690 	hargs.serinfo = hintinfo;
1691 	hargs.serpath = &hintinfo->dls_serpath[0];
1692 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1693 
1694 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1695 	path_enumerate(p, fill_search_info, &hargs);
1696 
1697 	/*
1698 	 * Now calculate the difference between two sets, by excluding
1699 	 * standard paths from the full set.
1700 	 */
1701 	fndx = 0;
1702 	fcount = 0;
1703 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1704 	hintpath = &hintinfo->dls_serpath[0];
1705 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1706 		skip = false;
1707 		SLPpath = &SLPinfo->dls_serpath[0];
1708 		/*
1709 		 * Check each standard path against current.
1710 		 */
1711 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1712 			/* matched, skip the path */
1713 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1714 				skip = true;
1715 				break;
1716 			}
1717 		}
1718 		if (skip)
1719 			continue;
1720 		/*
1721 		 * Not matched against any standard path, add the path
1722 		 * to result. Separate consequtive paths with ':'.
1723 		 */
1724 		if (fcount > 0) {
1725 			filtered_path[fndx] = ':';
1726 			fndx++;
1727 		}
1728 		fcount++;
1729 		flen = strlen(hintpath->dls_name);
1730 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1731 		fndx += flen;
1732 	}
1733 	filtered_path[fndx] = '\0';
1734 
1735 	free(SLPinfo);
1736 	free(hintinfo);
1737 
1738 filt_ret:
1739 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1740 }
1741 
1742 static void
1743 init_dag(Obj_Entry *root)
1744 {
1745     const Needed_Entry *needed;
1746     const Objlist_Entry *elm;
1747     DoneList donelist;
1748 
1749     if (root->dag_inited)
1750 	return;
1751     donelist_init(&donelist);
1752 
1753     /* Root object belongs to own DAG. */
1754     objlist_push_tail(&root->dldags, root);
1755     objlist_push_tail(&root->dagmembers, root);
1756     donelist_check(&donelist, root);
1757 
1758     /*
1759      * Add dependencies of root object to DAG in breadth order
1760      * by exploiting the fact that each new object get added
1761      * to the tail of the dagmembers list.
1762      */
1763     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1764 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1765 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1766 		continue;
1767 	    objlist_push_tail(&needed->obj->dldags, root);
1768 	    objlist_push_tail(&root->dagmembers, needed->obj);
1769 	}
1770     }
1771     root->dag_inited = true;
1772 }
1773 
1774 static void
1775 process_nodelete(Obj_Entry *root)
1776 {
1777 	const Objlist_Entry *elm;
1778 
1779 	/*
1780 	 * Walk over object DAG and process every dependent object that
1781 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1782 	 * which then should have its reference upped separately.
1783 	 */
1784 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1785 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1786 		    !elm->obj->ref_nodel) {
1787 			dbg("obj %s nodelete", elm->obj->path);
1788 			init_dag(elm->obj);
1789 			ref_dag(elm->obj);
1790 			elm->obj->ref_nodel = true;
1791 		}
1792 	}
1793 }
1794 /*
1795  * Initialize the dynamic linker.  The argument is the address at which
1796  * the dynamic linker has been mapped into memory.  The primary task of
1797  * this function is to relocate the dynamic linker.
1798  */
1799 static void
1800 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1801 {
1802     Obj_Entry objtmp;	/* Temporary rtld object */
1803     const Elf_Dyn *dyn_rpath;
1804     const Elf_Dyn *dyn_soname;
1805     const Elf_Dyn *dyn_runpath;
1806 
1807 #ifdef RTLD_INIT_PAGESIZES_EARLY
1808     /* The page size is required by the dynamic memory allocator. */
1809     init_pagesizes(aux_info);
1810 #endif
1811 
1812     /*
1813      * Conjure up an Obj_Entry structure for the dynamic linker.
1814      *
1815      * The "path" member can't be initialized yet because string constants
1816      * cannot yet be accessed. Below we will set it correctly.
1817      */
1818     memset(&objtmp, 0, sizeof(objtmp));
1819     objtmp.path = NULL;
1820     objtmp.rtld = true;
1821     objtmp.mapbase = mapbase;
1822 #ifdef PIC
1823     objtmp.relocbase = mapbase;
1824 #endif
1825     if (RTLD_IS_DYNAMIC()) {
1826 	objtmp.dynamic = rtld_dynamic(&objtmp);
1827 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1828 	assert(objtmp.needed == NULL);
1829 #if !defined(__mips__)
1830 	/* MIPS has a bogus DT_TEXTREL. */
1831 	assert(!objtmp.textrel);
1832 #endif
1833 
1834 	/*
1835 	 * Temporarily put the dynamic linker entry into the object list, so
1836 	 * that symbols can be found.
1837 	 */
1838 
1839 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1840     }
1841 
1842     /* Initialize the object list. */
1843     obj_tail = &obj_list;
1844 
1845     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1846     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1847 
1848 #ifndef RTLD_INIT_PAGESIZES_EARLY
1849     /* The page size is required by the dynamic memory allocator. */
1850     init_pagesizes(aux_info);
1851 #endif
1852 
1853     if (aux_info[AT_OSRELDATE] != NULL)
1854 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1855 
1856     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1857 
1858     /* Replace the path with a dynamically allocated copy. */
1859     obj_rtld.path = xstrdup(PATH_RTLD);
1860 
1861     r_debug.r_brk = r_debug_state;
1862     r_debug.r_state = RT_CONSISTENT;
1863 }
1864 
1865 /*
1866  * Retrieve the array of supported page sizes.  The kernel provides the page
1867  * sizes in increasing order.
1868  */
1869 static void
1870 init_pagesizes(Elf_Auxinfo **aux_info)
1871 {
1872 	static size_t psa[MAXPAGESIZES];
1873 	int mib[2];
1874 	size_t len, size;
1875 
1876 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1877 	    NULL) {
1878 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1879 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1880 	} else {
1881 		len = 2;
1882 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1883 			size = sizeof(psa);
1884 		else {
1885 			/* As a fallback, retrieve the base page size. */
1886 			size = sizeof(psa[0]);
1887 			if (aux_info[AT_PAGESZ] != NULL) {
1888 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1889 				goto psa_filled;
1890 			} else {
1891 				mib[0] = CTL_HW;
1892 				mib[1] = HW_PAGESIZE;
1893 				len = 2;
1894 			}
1895 		}
1896 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1897 			_rtld_error("sysctl for hw.pagesize(s) failed");
1898 			die();
1899 		}
1900 psa_filled:
1901 		pagesizes = psa;
1902 	}
1903 	npagesizes = size / sizeof(pagesizes[0]);
1904 	/* Discard any invalid entries at the end of the array. */
1905 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1906 		npagesizes--;
1907 }
1908 
1909 /*
1910  * Add the init functions from a needed object list (and its recursive
1911  * needed objects) to "list".  This is not used directly; it is a helper
1912  * function for initlist_add_objects().  The write lock must be held
1913  * when this function is called.
1914  */
1915 static void
1916 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1917 {
1918     /* Recursively process the successor needed objects. */
1919     if (needed->next != NULL)
1920 	initlist_add_neededs(needed->next, list);
1921 
1922     /* Process the current needed object. */
1923     if (needed->obj != NULL)
1924 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1925 }
1926 
1927 /*
1928  * Scan all of the DAGs rooted in the range of objects from "obj" to
1929  * "tail" and add their init functions to "list".  This recurses over
1930  * the DAGs and ensure the proper init ordering such that each object's
1931  * needed libraries are initialized before the object itself.  At the
1932  * same time, this function adds the objects to the global finalization
1933  * list "list_fini" in the opposite order.  The write lock must be
1934  * held when this function is called.
1935  */
1936 static void
1937 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1938 {
1939 
1940     if (obj->init_scanned || obj->init_done)
1941 	return;
1942     obj->init_scanned = true;
1943 
1944     /* Recursively process the successor objects. */
1945     if (&obj->next != tail)
1946 	initlist_add_objects(obj->next, tail, list);
1947 
1948     /* Recursively process the needed objects. */
1949     if (obj->needed != NULL)
1950 	initlist_add_neededs(obj->needed, list);
1951     if (obj->needed_filtees != NULL)
1952 	initlist_add_neededs(obj->needed_filtees, list);
1953     if (obj->needed_aux_filtees != NULL)
1954 	initlist_add_neededs(obj->needed_aux_filtees, list);
1955 
1956     /* Add the object to the init list. */
1957     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1958       obj->init_array != (Elf_Addr)NULL)
1959 	objlist_push_tail(list, obj);
1960 
1961     /* Add the object to the global fini list in the reverse order. */
1962     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1963       && !obj->on_fini_list) {
1964 	objlist_push_head(&list_fini, obj);
1965 	obj->on_fini_list = true;
1966     }
1967 }
1968 
1969 #ifndef FPTR_TARGET
1970 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1971 #endif
1972 
1973 static void
1974 free_needed_filtees(Needed_Entry *n)
1975 {
1976     Needed_Entry *needed, *needed1;
1977 
1978     for (needed = n; needed != NULL; needed = needed->next) {
1979 	if (needed->obj != NULL) {
1980 	    dlclose(needed->obj);
1981 	    needed->obj = NULL;
1982 	}
1983     }
1984     for (needed = n; needed != NULL; needed = needed1) {
1985 	needed1 = needed->next;
1986 	free(needed);
1987     }
1988 }
1989 
1990 static void
1991 unload_filtees(Obj_Entry *obj)
1992 {
1993 
1994     free_needed_filtees(obj->needed_filtees);
1995     obj->needed_filtees = NULL;
1996     free_needed_filtees(obj->needed_aux_filtees);
1997     obj->needed_aux_filtees = NULL;
1998     obj->filtees_loaded = false;
1999 }
2000 
2001 static void
2002 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2003     RtldLockState *lockstate)
2004 {
2005 
2006     for (; needed != NULL; needed = needed->next) {
2007 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2008 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2009 	  RTLD_LOCAL, lockstate);
2010     }
2011 }
2012 
2013 static void
2014 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2015 {
2016 
2017     lock_restart_for_upgrade(lockstate);
2018     if (!obj->filtees_loaded) {
2019 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2020 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2021 	obj->filtees_loaded = true;
2022     }
2023 }
2024 
2025 static int
2026 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2027 {
2028     Obj_Entry *obj1;
2029 
2030     for (; needed != NULL; needed = needed->next) {
2031 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2032 	  flags & ~RTLD_LO_NOLOAD);
2033 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2034 	    return (-1);
2035     }
2036     return (0);
2037 }
2038 
2039 /*
2040  * Given a shared object, traverse its list of needed objects, and load
2041  * each of them.  Returns 0 on success.  Generates an error message and
2042  * returns -1 on failure.
2043  */
2044 static int
2045 load_needed_objects(Obj_Entry *first, int flags)
2046 {
2047     Obj_Entry *obj;
2048 
2049     for (obj = first;  obj != NULL;  obj = obj->next) {
2050 	if (process_needed(obj, obj->needed, flags) == -1)
2051 	    return (-1);
2052     }
2053     return (0);
2054 }
2055 
2056 static int
2057 load_preload_objects(void)
2058 {
2059     char *p = ld_preload;
2060     Obj_Entry *obj;
2061     static const char delim[] = " \t:;";
2062 
2063     if (p == NULL)
2064 	return 0;
2065 
2066     p += strspn(p, delim);
2067     while (*p != '\0') {
2068 	size_t len = strcspn(p, delim);
2069 	char savech;
2070 
2071 	savech = p[len];
2072 	p[len] = '\0';
2073 	obj = load_object(p, -1, NULL, 0);
2074 	if (obj == NULL)
2075 	    return -1;	/* XXX - cleanup */
2076 	obj->z_interpose = true;
2077 	p[len] = savech;
2078 	p += len;
2079 	p += strspn(p, delim);
2080     }
2081     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2082     return 0;
2083 }
2084 
2085 static const char *
2086 printable_path(const char *path)
2087 {
2088 
2089 	return (path == NULL ? "<unknown>" : path);
2090 }
2091 
2092 /*
2093  * Load a shared object into memory, if it is not already loaded.  The
2094  * object may be specified by name or by user-supplied file descriptor
2095  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2096  * duplicate is.
2097  *
2098  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2099  * on failure.
2100  */
2101 static Obj_Entry *
2102 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2103 {
2104     Obj_Entry *obj;
2105     int fd;
2106     struct stat sb;
2107     char *path;
2108 
2109     fd = -1;
2110     if (name != NULL) {
2111 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2112 	    if (object_match_name(obj, name))
2113 		return (obj);
2114 	}
2115 
2116 	path = find_library(name, refobj, &fd);
2117 	if (path == NULL)
2118 	    return (NULL);
2119     } else
2120 	path = NULL;
2121 
2122     if (fd >= 0) {
2123 	/*
2124 	 * search_library_pathfds() opens a fresh file descriptor for the
2125 	 * library, so there is no need to dup().
2126 	 */
2127     } else if (fd_u == -1) {
2128 	/*
2129 	 * If we didn't find a match by pathname, or the name is not
2130 	 * supplied, open the file and check again by device and inode.
2131 	 * This avoids false mismatches caused by multiple links or ".."
2132 	 * in pathnames.
2133 	 *
2134 	 * To avoid a race, we open the file and use fstat() rather than
2135 	 * using stat().
2136 	 */
2137 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2138 	    _rtld_error("Cannot open \"%s\"", path);
2139 	    free(path);
2140 	    return (NULL);
2141 	}
2142     } else {
2143 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2144 	if (fd == -1) {
2145 	    _rtld_error("Cannot dup fd");
2146 	    free(path);
2147 	    return (NULL);
2148 	}
2149     }
2150     if (fstat(fd, &sb) == -1) {
2151 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2152 	close(fd);
2153 	free(path);
2154 	return NULL;
2155     }
2156     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2157 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2158 	    break;
2159     if (obj != NULL && name != NULL) {
2160 	object_add_name(obj, name);
2161 	free(path);
2162 	close(fd);
2163 	return obj;
2164     }
2165     if (flags & RTLD_LO_NOLOAD) {
2166 	free(path);
2167 	close(fd);
2168 	return (NULL);
2169     }
2170 
2171     /* First use of this object, so we must map it in */
2172     obj = do_load_object(fd, name, path, &sb, flags);
2173     if (obj == NULL)
2174 	free(path);
2175     close(fd);
2176 
2177     return obj;
2178 }
2179 
2180 static Obj_Entry *
2181 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2182   int flags)
2183 {
2184     Obj_Entry *obj;
2185     struct statfs fs;
2186 
2187     /*
2188      * but first, make sure that environment variables haven't been
2189      * used to circumvent the noexec flag on a filesystem.
2190      */
2191     if (dangerous_ld_env) {
2192 	if (fstatfs(fd, &fs) != 0) {
2193 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2194 	    return NULL;
2195 	}
2196 	if (fs.f_flags & MNT_NOEXEC) {
2197 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2198 	    return NULL;
2199 	}
2200     }
2201     dbg("loading \"%s\"", printable_path(path));
2202     obj = map_object(fd, printable_path(path), sbp);
2203     if (obj == NULL)
2204         return NULL;
2205 
2206     /*
2207      * If DT_SONAME is present in the object, digest_dynamic2 already
2208      * added it to the object names.
2209      */
2210     if (name != NULL)
2211 	object_add_name(obj, name);
2212     obj->path = path;
2213     digest_dynamic(obj, 0);
2214     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2215 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2216     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2217       RTLD_LO_DLOPEN) {
2218 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2219 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2220 	munmap(obj->mapbase, obj->mapsize);
2221 	obj_free(obj);
2222 	return (NULL);
2223     }
2224 
2225     *obj_tail = obj;
2226     obj_tail = &obj->next;
2227     obj_count++;
2228     obj_loads++;
2229     linkmap_add(obj);	/* for GDB & dlinfo() */
2230     max_stack_flags |= obj->stack_flags;
2231 
2232     dbg("  %p .. %p: %s", obj->mapbase,
2233          obj->mapbase + obj->mapsize - 1, obj->path);
2234     if (obj->textrel)
2235 	dbg("  WARNING: %s has impure text", obj->path);
2236     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2237 	obj->path);
2238 
2239     return obj;
2240 }
2241 
2242 static Obj_Entry *
2243 obj_from_addr(const void *addr)
2244 {
2245     Obj_Entry *obj;
2246 
2247     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2248 	if (addr < (void *) obj->mapbase)
2249 	    continue;
2250 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2251 	    return obj;
2252     }
2253     return NULL;
2254 }
2255 
2256 static void
2257 preinit_main(void)
2258 {
2259     Elf_Addr *preinit_addr;
2260     int index;
2261 
2262     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2263     if (preinit_addr == NULL)
2264 	return;
2265 
2266     for (index = 0; index < obj_main->preinit_array_num; index++) {
2267 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2268 	    dbg("calling preinit function for %s at %p", obj_main->path,
2269 	      (void *)preinit_addr[index]);
2270 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2271 	      0, 0, obj_main->path);
2272 	    call_init_pointer(obj_main, preinit_addr[index]);
2273 	}
2274     }
2275 }
2276 
2277 /*
2278  * Call the finalization functions for each of the objects in "list"
2279  * belonging to the DAG of "root" and referenced once. If NULL "root"
2280  * is specified, every finalization function will be called regardless
2281  * of the reference count and the list elements won't be freed. All of
2282  * the objects are expected to have non-NULL fini functions.
2283  */
2284 static void
2285 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2286 {
2287     Objlist_Entry *elm;
2288     char *saved_msg;
2289     Elf_Addr *fini_addr;
2290     int index;
2291 
2292     assert(root == NULL || root->refcount == 1);
2293 
2294     /*
2295      * Preserve the current error message since a fini function might
2296      * call into the dynamic linker and overwrite it.
2297      */
2298     saved_msg = errmsg_save();
2299     do {
2300 	STAILQ_FOREACH(elm, list, link) {
2301 	    if (root != NULL && (elm->obj->refcount != 1 ||
2302 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2303 		continue;
2304 	    /* Remove object from fini list to prevent recursive invocation. */
2305 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2306 	    /*
2307 	     * XXX: If a dlopen() call references an object while the
2308 	     * fini function is in progress, we might end up trying to
2309 	     * unload the referenced object in dlclose() or the object
2310 	     * won't be unloaded although its fini function has been
2311 	     * called.
2312 	     */
2313 	    lock_release(rtld_bind_lock, lockstate);
2314 
2315 	    /*
2316 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2317 	     * When this happens, DT_FINI_ARRAY is processed first.
2318 	     */
2319 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2320 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2321 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2322 		  index--) {
2323 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2324 			dbg("calling fini function for %s at %p",
2325 			    elm->obj->path, (void *)fini_addr[index]);
2326 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2327 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2328 			call_initfini_pointer(elm->obj, fini_addr[index]);
2329 		    }
2330 		}
2331 	    }
2332 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2333 		dbg("calling fini function for %s at %p", elm->obj->path,
2334 		    (void *)elm->obj->fini);
2335 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2336 		    0, 0, elm->obj->path);
2337 		call_initfini_pointer(elm->obj, elm->obj->fini);
2338 	    }
2339 	    wlock_acquire(rtld_bind_lock, lockstate);
2340 	    /* No need to free anything if process is going down. */
2341 	    if (root != NULL)
2342 	    	free(elm);
2343 	    /*
2344 	     * We must restart the list traversal after every fini call
2345 	     * because a dlclose() call from the fini function or from
2346 	     * another thread might have modified the reference counts.
2347 	     */
2348 	    break;
2349 	}
2350     } while (elm != NULL);
2351     errmsg_restore(saved_msg);
2352 }
2353 
2354 /*
2355  * Call the initialization functions for each of the objects in
2356  * "list".  All of the objects are expected to have non-NULL init
2357  * functions.
2358  */
2359 static void
2360 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2361 {
2362     Objlist_Entry *elm;
2363     Obj_Entry *obj;
2364     char *saved_msg;
2365     Elf_Addr *init_addr;
2366     int index;
2367 
2368     /*
2369      * Clean init_scanned flag so that objects can be rechecked and
2370      * possibly initialized earlier if any of vectors called below
2371      * cause the change by using dlopen.
2372      */
2373     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2374 	obj->init_scanned = false;
2375 
2376     /*
2377      * Preserve the current error message since an init function might
2378      * call into the dynamic linker and overwrite it.
2379      */
2380     saved_msg = errmsg_save();
2381     STAILQ_FOREACH(elm, list, link) {
2382 	if (elm->obj->init_done) /* Initialized early. */
2383 	    continue;
2384 	/*
2385 	 * Race: other thread might try to use this object before current
2386 	 * one completes the initilization. Not much can be done here
2387 	 * without better locking.
2388 	 */
2389 	elm->obj->init_done = true;
2390 	lock_release(rtld_bind_lock, lockstate);
2391 
2392         /*
2393          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2394          * When this happens, DT_INIT is processed first.
2395          */
2396 	if (elm->obj->init != (Elf_Addr)NULL) {
2397 	    dbg("calling init function for %s at %p", elm->obj->path,
2398 	        (void *)elm->obj->init);
2399 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2400 	        0, 0, elm->obj->path);
2401 	    call_initfini_pointer(elm->obj, elm->obj->init);
2402 	}
2403 	init_addr = (Elf_Addr *)elm->obj->init_array;
2404 	if (init_addr != NULL) {
2405 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2406 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2407 		    dbg("calling init function for %s at %p", elm->obj->path,
2408 			(void *)init_addr[index]);
2409 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2410 			(void *)init_addr[index], 0, 0, elm->obj->path);
2411 		    call_init_pointer(elm->obj, init_addr[index]);
2412 		}
2413 	    }
2414 	}
2415 	wlock_acquire(rtld_bind_lock, lockstate);
2416     }
2417     errmsg_restore(saved_msg);
2418 }
2419 
2420 static void
2421 objlist_clear(Objlist *list)
2422 {
2423     Objlist_Entry *elm;
2424 
2425     while (!STAILQ_EMPTY(list)) {
2426 	elm = STAILQ_FIRST(list);
2427 	STAILQ_REMOVE_HEAD(list, link);
2428 	free(elm);
2429     }
2430 }
2431 
2432 static Objlist_Entry *
2433 objlist_find(Objlist *list, const Obj_Entry *obj)
2434 {
2435     Objlist_Entry *elm;
2436 
2437     STAILQ_FOREACH(elm, list, link)
2438 	if (elm->obj == obj)
2439 	    return elm;
2440     return NULL;
2441 }
2442 
2443 static void
2444 objlist_init(Objlist *list)
2445 {
2446     STAILQ_INIT(list);
2447 }
2448 
2449 static void
2450 objlist_push_head(Objlist *list, Obj_Entry *obj)
2451 {
2452     Objlist_Entry *elm;
2453 
2454     elm = NEW(Objlist_Entry);
2455     elm->obj = obj;
2456     STAILQ_INSERT_HEAD(list, elm, link);
2457 }
2458 
2459 static void
2460 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2461 {
2462     Objlist_Entry *elm;
2463 
2464     elm = NEW(Objlist_Entry);
2465     elm->obj = obj;
2466     STAILQ_INSERT_TAIL(list, elm, link);
2467 }
2468 
2469 static void
2470 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2471 {
2472 	Objlist_Entry *elm, *listelm;
2473 
2474 	STAILQ_FOREACH(listelm, list, link) {
2475 		if (listelm->obj == listobj)
2476 			break;
2477 	}
2478 	elm = NEW(Objlist_Entry);
2479 	elm->obj = obj;
2480 	if (listelm != NULL)
2481 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2482 	else
2483 		STAILQ_INSERT_TAIL(list, elm, link);
2484 }
2485 
2486 static void
2487 objlist_remove(Objlist *list, Obj_Entry *obj)
2488 {
2489     Objlist_Entry *elm;
2490 
2491     if ((elm = objlist_find(list, obj)) != NULL) {
2492 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2493 	free(elm);
2494     }
2495 }
2496 
2497 /*
2498  * Relocate dag rooted in the specified object.
2499  * Returns 0 on success, or -1 on failure.
2500  */
2501 
2502 static int
2503 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2504     int flags, RtldLockState *lockstate)
2505 {
2506 	Objlist_Entry *elm;
2507 	int error;
2508 
2509 	error = 0;
2510 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2511 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2512 		    lockstate);
2513 		if (error == -1)
2514 			break;
2515 	}
2516 	return (error);
2517 }
2518 
2519 /*
2520  * Relocate single object.
2521  * Returns 0 on success, or -1 on failure.
2522  */
2523 static int
2524 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2525     int flags, RtldLockState *lockstate)
2526 {
2527 
2528 	if (obj->relocated)
2529 		return (0);
2530 	obj->relocated = true;
2531 	if (obj != rtldobj)
2532 		dbg("relocating \"%s\"", obj->path);
2533 
2534 	if (obj->symtab == NULL || obj->strtab == NULL ||
2535 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2536 		_rtld_error("%s: Shared object has no run-time symbol table",
2537 			    obj->path);
2538 		return (-1);
2539 	}
2540 
2541 	if (obj->textrel) {
2542 		/* There are relocations to the write-protected text segment. */
2543 		if (mprotect(obj->mapbase, obj->textsize,
2544 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2545 			_rtld_error("%s: Cannot write-enable text segment: %s",
2546 			    obj->path, rtld_strerror(errno));
2547 			return (-1);
2548 		}
2549 	}
2550 
2551 	/* Process the non-PLT non-IFUNC relocations. */
2552 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2553 		return (-1);
2554 
2555 	if (obj->textrel) {	/* Re-protected the text segment. */
2556 		if (mprotect(obj->mapbase, obj->textsize,
2557 		    PROT_READ|PROT_EXEC) == -1) {
2558 			_rtld_error("%s: Cannot write-protect text segment: %s",
2559 			    obj->path, rtld_strerror(errno));
2560 			return (-1);
2561 		}
2562 	}
2563 
2564 	/* Set the special PLT or GOT entries. */
2565 	init_pltgot(obj);
2566 
2567 	/* Process the PLT relocations. */
2568 	if (reloc_plt(obj) == -1)
2569 		return (-1);
2570 	/* Relocate the jump slots if we are doing immediate binding. */
2571 	if (obj->bind_now || bind_now)
2572 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2573 			return (-1);
2574 
2575 	/*
2576 	 * Process the non-PLT IFUNC relocations.  The relocations are
2577 	 * processed in two phases, because IFUNC resolvers may
2578 	 * reference other symbols, which must be readily processed
2579 	 * before resolvers are called.
2580 	 */
2581 	if (obj->non_plt_gnu_ifunc &&
2582 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2583 		return (-1);
2584 
2585 	if (obj->relro_size > 0) {
2586 		if (mprotect(obj->relro_page, obj->relro_size,
2587 		    PROT_READ) == -1) {
2588 			_rtld_error("%s: Cannot enforce relro protection: %s",
2589 			    obj->path, rtld_strerror(errno));
2590 			return (-1);
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Set up the magic number and version in the Obj_Entry.  These
2596 	 * were checked in the crt1.o from the original ElfKit, so we
2597 	 * set them for backward compatibility.
2598 	 */
2599 	obj->magic = RTLD_MAGIC;
2600 	obj->version = RTLD_VERSION;
2601 
2602 	return (0);
2603 }
2604 
2605 /*
2606  * Relocate newly-loaded shared objects.  The argument is a pointer to
2607  * the Obj_Entry for the first such object.  All objects from the first
2608  * to the end of the list of objects are relocated.  Returns 0 on success,
2609  * or -1 on failure.
2610  */
2611 static int
2612 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2613     int flags, RtldLockState *lockstate)
2614 {
2615 	Obj_Entry *obj;
2616 	int error;
2617 
2618 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2619 		error = relocate_object(obj, bind_now, rtldobj, flags,
2620 		    lockstate);
2621 		if (error == -1)
2622 			break;
2623 	}
2624 	return (error);
2625 }
2626 
2627 /*
2628  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2629  * referencing STT_GNU_IFUNC symbols is postponed till the other
2630  * relocations are done.  The indirect functions specified as
2631  * ifunc are allowed to call other symbols, so we need to have
2632  * objects relocated before asking for resolution from indirects.
2633  *
2634  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2635  * instead of the usual lazy handling of PLT slots.  It is
2636  * consistent with how GNU does it.
2637  */
2638 static int
2639 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2640     RtldLockState *lockstate)
2641 {
2642 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2643 		return (-1);
2644 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2645 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2646 		return (-1);
2647 	return (0);
2648 }
2649 
2650 static int
2651 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2652     RtldLockState *lockstate)
2653 {
2654 	Obj_Entry *obj;
2655 
2656 	for (obj = first;  obj != NULL;  obj = obj->next) {
2657 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2658 			return (-1);
2659 	}
2660 	return (0);
2661 }
2662 
2663 static int
2664 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2665     RtldLockState *lockstate)
2666 {
2667 	Objlist_Entry *elm;
2668 
2669 	STAILQ_FOREACH(elm, list, link) {
2670 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2671 		    lockstate) == -1)
2672 			return (-1);
2673 	}
2674 	return (0);
2675 }
2676 
2677 /*
2678  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2679  * before the process exits.
2680  */
2681 static void
2682 rtld_exit(void)
2683 {
2684     RtldLockState lockstate;
2685 
2686     wlock_acquire(rtld_bind_lock, &lockstate);
2687     dbg("rtld_exit()");
2688     objlist_call_fini(&list_fini, NULL, &lockstate);
2689     /* No need to remove the items from the list, since we are exiting. */
2690     if (!libmap_disable)
2691         lm_fini();
2692     lock_release(rtld_bind_lock, &lockstate);
2693 }
2694 
2695 /*
2696  * Iterate over a search path, translate each element, and invoke the
2697  * callback on the result.
2698  */
2699 static void *
2700 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2701 {
2702     const char *trans;
2703     if (path == NULL)
2704 	return (NULL);
2705 
2706     path += strspn(path, ":;");
2707     while (*path != '\0') {
2708 	size_t len;
2709 	char  *res;
2710 
2711 	len = strcspn(path, ":;");
2712 	trans = lm_findn(NULL, path, len);
2713 	if (trans)
2714 	    res = callback(trans, strlen(trans), arg);
2715 	else
2716 	    res = callback(path, len, arg);
2717 
2718 	if (res != NULL)
2719 	    return (res);
2720 
2721 	path += len;
2722 	path += strspn(path, ":;");
2723     }
2724 
2725     return (NULL);
2726 }
2727 
2728 struct try_library_args {
2729     const char	*name;
2730     size_t	 namelen;
2731     char	*buffer;
2732     size_t	 buflen;
2733 };
2734 
2735 static void *
2736 try_library_path(const char *dir, size_t dirlen, void *param)
2737 {
2738     struct try_library_args *arg;
2739 
2740     arg = param;
2741     if (*dir == '/' || trust) {
2742 	char *pathname;
2743 
2744 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2745 		return (NULL);
2746 
2747 	pathname = arg->buffer;
2748 	strncpy(pathname, dir, dirlen);
2749 	pathname[dirlen] = '/';
2750 	strcpy(pathname + dirlen + 1, arg->name);
2751 
2752 	dbg("  Trying \"%s\"", pathname);
2753 	if (access(pathname, F_OK) == 0) {		/* We found it */
2754 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2755 	    strcpy(pathname, arg->buffer);
2756 	    return (pathname);
2757 	}
2758     }
2759     return (NULL);
2760 }
2761 
2762 static char *
2763 search_library_path(const char *name, const char *path)
2764 {
2765     char *p;
2766     struct try_library_args arg;
2767 
2768     if (path == NULL)
2769 	return NULL;
2770 
2771     arg.name = name;
2772     arg.namelen = strlen(name);
2773     arg.buffer = xmalloc(PATH_MAX);
2774     arg.buflen = PATH_MAX;
2775 
2776     p = path_enumerate(path, try_library_path, &arg);
2777 
2778     free(arg.buffer);
2779 
2780     return (p);
2781 }
2782 
2783 
2784 /*
2785  * Finds the library with the given name using the directory descriptors
2786  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2787  *
2788  * Returns a freshly-opened close-on-exec file descriptor for the library,
2789  * or -1 if the library cannot be found.
2790  */
2791 static char *
2792 search_library_pathfds(const char *name, const char *path, int *fdp)
2793 {
2794 	char *envcopy, *fdstr, *found, *last_token;
2795 	size_t len;
2796 	int dirfd, fd;
2797 
2798 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2799 
2800 	/* Don't load from user-specified libdirs into setuid binaries. */
2801 	if (!trust)
2802 		return (NULL);
2803 
2804 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2805 	if (path == NULL)
2806 		return (NULL);
2807 
2808 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2809 	if (name[0] == '/') {
2810 		dbg("Absolute path (%s) passed to %s", name, __func__);
2811 		return (NULL);
2812 	}
2813 
2814 	/*
2815 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2816 	 * copy of the path, as strtok_r rewrites separator tokens
2817 	 * with '\0'.
2818 	 */
2819 	found = NULL;
2820 	envcopy = xstrdup(path);
2821 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2822 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2823 		dirfd = parse_libdir(fdstr);
2824 		if (dirfd < 0)
2825 			break;
2826 		fd = openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2827 		if (fd >= 0) {
2828 			*fdp = fd;
2829 			len = strlen(fdstr) + strlen(name) + 3;
2830 			found = xmalloc(len);
2831 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2832 				_rtld_error("error generating '%d/%s'",
2833 				    dirfd, name);
2834 				die();
2835 			}
2836 			dbg("open('%s') => %d", found, fd);
2837 			break;
2838 		}
2839 	}
2840 	free(envcopy);
2841 
2842 	return (found);
2843 }
2844 
2845 
2846 int
2847 dlclose(void *handle)
2848 {
2849     Obj_Entry *root;
2850     RtldLockState lockstate;
2851 
2852     wlock_acquire(rtld_bind_lock, &lockstate);
2853     root = dlcheck(handle);
2854     if (root == NULL) {
2855 	lock_release(rtld_bind_lock, &lockstate);
2856 	return -1;
2857     }
2858     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2859 	root->path);
2860 
2861     /* Unreference the object and its dependencies. */
2862     root->dl_refcount--;
2863 
2864     if (root->refcount == 1) {
2865 	/*
2866 	 * The object will be no longer referenced, so we must unload it.
2867 	 * First, call the fini functions.
2868 	 */
2869 	objlist_call_fini(&list_fini, root, &lockstate);
2870 
2871 	unref_dag(root);
2872 
2873 	/* Finish cleaning up the newly-unreferenced objects. */
2874 	GDB_STATE(RT_DELETE,&root->linkmap);
2875 	unload_object(root);
2876 	GDB_STATE(RT_CONSISTENT,NULL);
2877     } else
2878 	unref_dag(root);
2879 
2880     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2881     lock_release(rtld_bind_lock, &lockstate);
2882     return 0;
2883 }
2884 
2885 char *
2886 dlerror(void)
2887 {
2888     char *msg = error_message;
2889     error_message = NULL;
2890     return msg;
2891 }
2892 
2893 /*
2894  * This function is deprecated and has no effect.
2895  */
2896 void
2897 dllockinit(void *context,
2898 	   void *(*lock_create)(void *context),
2899            void (*rlock_acquire)(void *lock),
2900            void (*wlock_acquire)(void *lock),
2901            void (*lock_release)(void *lock),
2902            void (*lock_destroy)(void *lock),
2903 	   void (*context_destroy)(void *context))
2904 {
2905     static void *cur_context;
2906     static void (*cur_context_destroy)(void *);
2907 
2908     /* Just destroy the context from the previous call, if necessary. */
2909     if (cur_context_destroy != NULL)
2910 	cur_context_destroy(cur_context);
2911     cur_context = context;
2912     cur_context_destroy = context_destroy;
2913 }
2914 
2915 void *
2916 dlopen(const char *name, int mode)
2917 {
2918 
2919 	return (rtld_dlopen(name, -1, mode));
2920 }
2921 
2922 void *
2923 fdlopen(int fd, int mode)
2924 {
2925 
2926 	return (rtld_dlopen(NULL, fd, mode));
2927 }
2928 
2929 static void *
2930 rtld_dlopen(const char *name, int fd, int mode)
2931 {
2932     RtldLockState lockstate;
2933     int lo_flags;
2934 
2935     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2936     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2937     if (ld_tracing != NULL) {
2938 	rlock_acquire(rtld_bind_lock, &lockstate);
2939 	if (sigsetjmp(lockstate.env, 0) != 0)
2940 	    lock_upgrade(rtld_bind_lock, &lockstate);
2941 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2942 	lock_release(rtld_bind_lock, &lockstate);
2943     }
2944     lo_flags = RTLD_LO_DLOPEN;
2945     if (mode & RTLD_NODELETE)
2946 	    lo_flags |= RTLD_LO_NODELETE;
2947     if (mode & RTLD_NOLOAD)
2948 	    lo_flags |= RTLD_LO_NOLOAD;
2949     if (ld_tracing != NULL)
2950 	    lo_flags |= RTLD_LO_TRACE;
2951 
2952     return (dlopen_object(name, fd, obj_main, lo_flags,
2953       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2954 }
2955 
2956 static void
2957 dlopen_cleanup(Obj_Entry *obj)
2958 {
2959 
2960 	obj->dl_refcount--;
2961 	unref_dag(obj);
2962 	if (obj->refcount == 0)
2963 		unload_object(obj);
2964 }
2965 
2966 static Obj_Entry *
2967 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2968     int mode, RtldLockState *lockstate)
2969 {
2970     Obj_Entry **old_obj_tail;
2971     Obj_Entry *obj;
2972     Objlist initlist;
2973     RtldLockState mlockstate;
2974     int result;
2975 
2976     objlist_init(&initlist);
2977 
2978     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2979 	wlock_acquire(rtld_bind_lock, &mlockstate);
2980 	lockstate = &mlockstate;
2981     }
2982     GDB_STATE(RT_ADD,NULL);
2983 
2984     old_obj_tail = obj_tail;
2985     obj = NULL;
2986     if (name == NULL && fd == -1) {
2987 	obj = obj_main;
2988 	obj->refcount++;
2989     } else {
2990 	obj = load_object(name, fd, refobj, lo_flags);
2991     }
2992 
2993     if (obj) {
2994 	obj->dl_refcount++;
2995 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2996 	    objlist_push_tail(&list_global, obj);
2997 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2998 	    assert(*old_obj_tail == obj);
2999 	    result = load_needed_objects(obj,
3000 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3001 	    init_dag(obj);
3002 	    ref_dag(obj);
3003 	    if (result != -1)
3004 		result = rtld_verify_versions(&obj->dagmembers);
3005 	    if (result != -1 && ld_tracing)
3006 		goto trace;
3007 	    if (result == -1 || relocate_object_dag(obj,
3008 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3009 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3010 	      lockstate) == -1) {
3011 		dlopen_cleanup(obj);
3012 		obj = NULL;
3013 	    } else if (lo_flags & RTLD_LO_EARLY) {
3014 		/*
3015 		 * Do not call the init functions for early loaded
3016 		 * filtees.  The image is still not initialized enough
3017 		 * for them to work.
3018 		 *
3019 		 * Our object is found by the global object list and
3020 		 * will be ordered among all init calls done right
3021 		 * before transferring control to main.
3022 		 */
3023 	    } else {
3024 		/* Make list of init functions to call. */
3025 		initlist_add_objects(obj, &obj->next, &initlist);
3026 	    }
3027 	    /*
3028 	     * Process all no_delete objects here, given them own
3029 	     * DAGs to prevent their dependencies from being unloaded.
3030 	     * This has to be done after we have loaded all of the
3031 	     * dependencies, so that we do not miss any.
3032 	     */
3033 	    if (obj != NULL)
3034 		process_nodelete(obj);
3035 	} else {
3036 	    /*
3037 	     * Bump the reference counts for objects on this DAG.  If
3038 	     * this is the first dlopen() call for the object that was
3039 	     * already loaded as a dependency, initialize the dag
3040 	     * starting at it.
3041 	     */
3042 	    init_dag(obj);
3043 	    ref_dag(obj);
3044 
3045 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3046 		goto trace;
3047 	}
3048 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3049 	  obj->z_nodelete) && !obj->ref_nodel) {
3050 	    dbg("obj %s nodelete", obj->path);
3051 	    ref_dag(obj);
3052 	    obj->z_nodelete = obj->ref_nodel = true;
3053 	}
3054     }
3055 
3056     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3057 	name);
3058     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3059 
3060     if (!(lo_flags & RTLD_LO_EARLY)) {
3061 	map_stacks_exec(lockstate);
3062     }
3063 
3064     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3065       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3066       lockstate) == -1) {
3067 	objlist_clear(&initlist);
3068 	dlopen_cleanup(obj);
3069 	if (lockstate == &mlockstate)
3070 	    lock_release(rtld_bind_lock, lockstate);
3071 	return (NULL);
3072     }
3073 
3074     if (!(lo_flags & RTLD_LO_EARLY)) {
3075 	/* Call the init functions. */
3076 	objlist_call_init(&initlist, lockstate);
3077     }
3078     objlist_clear(&initlist);
3079     if (lockstate == &mlockstate)
3080 	lock_release(rtld_bind_lock, lockstate);
3081     return obj;
3082 trace:
3083     trace_loaded_objects(obj);
3084     if (lockstate == &mlockstate)
3085 	lock_release(rtld_bind_lock, lockstate);
3086     exit(0);
3087 }
3088 
3089 static void *
3090 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3091     int flags)
3092 {
3093     DoneList donelist;
3094     const Obj_Entry *obj, *defobj;
3095     const Elf_Sym *def;
3096     SymLook req;
3097     RtldLockState lockstate;
3098     tls_index ti;
3099     int res;
3100 
3101     def = NULL;
3102     defobj = NULL;
3103     symlook_init(&req, name);
3104     req.ventry = ve;
3105     req.flags = flags | SYMLOOK_IN_PLT;
3106     req.lockstate = &lockstate;
3107 
3108     rlock_acquire(rtld_bind_lock, &lockstate);
3109     if (sigsetjmp(lockstate.env, 0) != 0)
3110 	    lock_upgrade(rtld_bind_lock, &lockstate);
3111     if (handle == NULL || handle == RTLD_NEXT ||
3112 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3113 
3114 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3115 	    _rtld_error("Cannot determine caller's shared object");
3116 	    lock_release(rtld_bind_lock, &lockstate);
3117 	    return NULL;
3118 	}
3119 	if (handle == NULL) {	/* Just the caller's shared object. */
3120 	    res = symlook_obj(&req, obj);
3121 	    if (res == 0) {
3122 		def = req.sym_out;
3123 		defobj = req.defobj_out;
3124 	    }
3125 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3126 		   handle == RTLD_SELF) { /* ... caller included */
3127 	    if (handle == RTLD_NEXT)
3128 		obj = obj->next;
3129 	    for (; obj != NULL; obj = obj->next) {
3130 		res = symlook_obj(&req, obj);
3131 		if (res == 0) {
3132 		    if (def == NULL ||
3133 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3134 			def = req.sym_out;
3135 			defobj = req.defobj_out;
3136 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3137 			    break;
3138 		    }
3139 		}
3140 	    }
3141 	    /*
3142 	     * Search the dynamic linker itself, and possibly resolve the
3143 	     * symbol from there.  This is how the application links to
3144 	     * dynamic linker services such as dlopen.
3145 	     */
3146 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3147 		res = symlook_obj(&req, &obj_rtld);
3148 		if (res == 0) {
3149 		    def = req.sym_out;
3150 		    defobj = req.defobj_out;
3151 		}
3152 	    }
3153 	} else {
3154 	    assert(handle == RTLD_DEFAULT);
3155 	    res = symlook_default(&req, obj);
3156 	    if (res == 0) {
3157 		defobj = req.defobj_out;
3158 		def = req.sym_out;
3159 	    }
3160 	}
3161     } else {
3162 	if ((obj = dlcheck(handle)) == NULL) {
3163 	    lock_release(rtld_bind_lock, &lockstate);
3164 	    return NULL;
3165 	}
3166 
3167 	donelist_init(&donelist);
3168 	if (obj->mainprog) {
3169             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3170 	    res = symlook_global(&req, &donelist);
3171 	    if (res == 0) {
3172 		def = req.sym_out;
3173 		defobj = req.defobj_out;
3174 	    }
3175 	    /*
3176 	     * Search the dynamic linker itself, and possibly resolve the
3177 	     * symbol from there.  This is how the application links to
3178 	     * dynamic linker services such as dlopen.
3179 	     */
3180 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3181 		res = symlook_obj(&req, &obj_rtld);
3182 		if (res == 0) {
3183 		    def = req.sym_out;
3184 		    defobj = req.defobj_out;
3185 		}
3186 	    }
3187 	}
3188 	else {
3189 	    /* Search the whole DAG rooted at the given object. */
3190 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3191 	    if (res == 0) {
3192 		def = req.sym_out;
3193 		defobj = req.defobj_out;
3194 	    }
3195 	}
3196     }
3197 
3198     if (def != NULL) {
3199 	lock_release(rtld_bind_lock, &lockstate);
3200 
3201 	/*
3202 	 * The value required by the caller is derived from the value
3203 	 * of the symbol. this is simply the relocated value of the
3204 	 * symbol.
3205 	 */
3206 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3207 	    return (make_function_pointer(def, defobj));
3208 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3209 	    return (rtld_resolve_ifunc(defobj, def));
3210 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3211 	    ti.ti_module = defobj->tlsindex;
3212 	    ti.ti_offset = def->st_value;
3213 	    return (__tls_get_addr(&ti));
3214 	} else
3215 	    return (defobj->relocbase + def->st_value);
3216     }
3217 
3218     _rtld_error("Undefined symbol \"%s\"", name);
3219     lock_release(rtld_bind_lock, &lockstate);
3220     return NULL;
3221 }
3222 
3223 void *
3224 dlsym(void *handle, const char *name)
3225 {
3226 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3227 	    SYMLOOK_DLSYM);
3228 }
3229 
3230 dlfunc_t
3231 dlfunc(void *handle, const char *name)
3232 {
3233 	union {
3234 		void *d;
3235 		dlfunc_t f;
3236 	} rv;
3237 
3238 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3239 	    SYMLOOK_DLSYM);
3240 	return (rv.f);
3241 }
3242 
3243 void *
3244 dlvsym(void *handle, const char *name, const char *version)
3245 {
3246 	Ver_Entry ventry;
3247 
3248 	ventry.name = version;
3249 	ventry.file = NULL;
3250 	ventry.hash = elf_hash(version);
3251 	ventry.flags= 0;
3252 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3253 	    SYMLOOK_DLSYM);
3254 }
3255 
3256 int
3257 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3258 {
3259     const Obj_Entry *obj;
3260     RtldLockState lockstate;
3261 
3262     rlock_acquire(rtld_bind_lock, &lockstate);
3263     obj = obj_from_addr(addr);
3264     if (obj == NULL) {
3265         _rtld_error("No shared object contains address");
3266 	lock_release(rtld_bind_lock, &lockstate);
3267         return (0);
3268     }
3269     rtld_fill_dl_phdr_info(obj, phdr_info);
3270     lock_release(rtld_bind_lock, &lockstate);
3271     return (1);
3272 }
3273 
3274 int
3275 dladdr(const void *addr, Dl_info *info)
3276 {
3277     const Obj_Entry *obj;
3278     const Elf_Sym *def;
3279     void *symbol_addr;
3280     unsigned long symoffset;
3281     RtldLockState lockstate;
3282 
3283     rlock_acquire(rtld_bind_lock, &lockstate);
3284     obj = obj_from_addr(addr);
3285     if (obj == NULL) {
3286         _rtld_error("No shared object contains address");
3287 	lock_release(rtld_bind_lock, &lockstate);
3288         return 0;
3289     }
3290     info->dli_fname = obj->path;
3291     info->dli_fbase = obj->mapbase;
3292     info->dli_saddr = (void *)0;
3293     info->dli_sname = NULL;
3294 
3295     /*
3296      * Walk the symbol list looking for the symbol whose address is
3297      * closest to the address sent in.
3298      */
3299     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3300         def = obj->symtab + symoffset;
3301 
3302         /*
3303          * For skip the symbol if st_shndx is either SHN_UNDEF or
3304          * SHN_COMMON.
3305          */
3306         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3307             continue;
3308 
3309         /*
3310          * If the symbol is greater than the specified address, or if it
3311          * is further away from addr than the current nearest symbol,
3312          * then reject it.
3313          */
3314         symbol_addr = obj->relocbase + def->st_value;
3315         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3316             continue;
3317 
3318         /* Update our idea of the nearest symbol. */
3319         info->dli_sname = obj->strtab + def->st_name;
3320         info->dli_saddr = symbol_addr;
3321 
3322         /* Exact match? */
3323         if (info->dli_saddr == addr)
3324             break;
3325     }
3326     lock_release(rtld_bind_lock, &lockstate);
3327     return 1;
3328 }
3329 
3330 int
3331 dlinfo(void *handle, int request, void *p)
3332 {
3333     const Obj_Entry *obj;
3334     RtldLockState lockstate;
3335     int error;
3336 
3337     rlock_acquire(rtld_bind_lock, &lockstate);
3338 
3339     if (handle == NULL || handle == RTLD_SELF) {
3340 	void *retaddr;
3341 
3342 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3343 	if ((obj = obj_from_addr(retaddr)) == NULL)
3344 	    _rtld_error("Cannot determine caller's shared object");
3345     } else
3346 	obj = dlcheck(handle);
3347 
3348     if (obj == NULL) {
3349 	lock_release(rtld_bind_lock, &lockstate);
3350 	return (-1);
3351     }
3352 
3353     error = 0;
3354     switch (request) {
3355     case RTLD_DI_LINKMAP:
3356 	*((struct link_map const **)p) = &obj->linkmap;
3357 	break;
3358     case RTLD_DI_ORIGIN:
3359 	error = rtld_dirname(obj->path, p);
3360 	break;
3361 
3362     case RTLD_DI_SERINFOSIZE:
3363     case RTLD_DI_SERINFO:
3364 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3365 	break;
3366 
3367     default:
3368 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3369 	error = -1;
3370     }
3371 
3372     lock_release(rtld_bind_lock, &lockstate);
3373 
3374     return (error);
3375 }
3376 
3377 static void
3378 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3379 {
3380 
3381 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3382 	phdr_info->dlpi_name = obj->path;
3383 	phdr_info->dlpi_phdr = obj->phdr;
3384 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3385 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3386 	phdr_info->dlpi_tls_data = obj->tlsinit;
3387 	phdr_info->dlpi_adds = obj_loads;
3388 	phdr_info->dlpi_subs = obj_loads - obj_count;
3389 }
3390 
3391 int
3392 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3393 {
3394     struct dl_phdr_info phdr_info;
3395     const Obj_Entry *obj;
3396     RtldLockState bind_lockstate, phdr_lockstate;
3397     int error;
3398 
3399     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3400     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3401 
3402     error = 0;
3403 
3404     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3405 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3406 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3407 		break;
3408 
3409     }
3410     if (error == 0) {
3411 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3412 	error = callback(&phdr_info, sizeof(phdr_info), param);
3413     }
3414 
3415     lock_release(rtld_bind_lock, &bind_lockstate);
3416     lock_release(rtld_phdr_lock, &phdr_lockstate);
3417 
3418     return (error);
3419 }
3420 
3421 static void *
3422 fill_search_info(const char *dir, size_t dirlen, void *param)
3423 {
3424     struct fill_search_info_args *arg;
3425 
3426     arg = param;
3427 
3428     if (arg->request == RTLD_DI_SERINFOSIZE) {
3429 	arg->serinfo->dls_cnt ++;
3430 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3431     } else {
3432 	struct dl_serpath *s_entry;
3433 
3434 	s_entry = arg->serpath;
3435 	s_entry->dls_name  = arg->strspace;
3436 	s_entry->dls_flags = arg->flags;
3437 
3438 	strncpy(arg->strspace, dir, dirlen);
3439 	arg->strspace[dirlen] = '\0';
3440 
3441 	arg->strspace += dirlen + 1;
3442 	arg->serpath++;
3443     }
3444 
3445     return (NULL);
3446 }
3447 
3448 static int
3449 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3450 {
3451     struct dl_serinfo _info;
3452     struct fill_search_info_args args;
3453 
3454     args.request = RTLD_DI_SERINFOSIZE;
3455     args.serinfo = &_info;
3456 
3457     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3458     _info.dls_cnt  = 0;
3459 
3460     path_enumerate(obj->rpath, fill_search_info, &args);
3461     path_enumerate(ld_library_path, fill_search_info, &args);
3462     path_enumerate(obj->runpath, fill_search_info, &args);
3463     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3464     if (!obj->z_nodeflib)
3465       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3466 
3467 
3468     if (request == RTLD_DI_SERINFOSIZE) {
3469 	info->dls_size = _info.dls_size;
3470 	info->dls_cnt = _info.dls_cnt;
3471 	return (0);
3472     }
3473 
3474     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3475 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3476 	return (-1);
3477     }
3478 
3479     args.request  = RTLD_DI_SERINFO;
3480     args.serinfo  = info;
3481     args.serpath  = &info->dls_serpath[0];
3482     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3483 
3484     args.flags = LA_SER_RUNPATH;
3485     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3486 	return (-1);
3487 
3488     args.flags = LA_SER_LIBPATH;
3489     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3490 	return (-1);
3491 
3492     args.flags = LA_SER_RUNPATH;
3493     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3494 	return (-1);
3495 
3496     args.flags = LA_SER_CONFIG;
3497     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3498       != NULL)
3499 	return (-1);
3500 
3501     args.flags = LA_SER_DEFAULT;
3502     if (!obj->z_nodeflib &&
3503       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3504 	return (-1);
3505     return (0);
3506 }
3507 
3508 static int
3509 rtld_dirname(const char *path, char *bname)
3510 {
3511     const char *endp;
3512 
3513     /* Empty or NULL string gets treated as "." */
3514     if (path == NULL || *path == '\0') {
3515 	bname[0] = '.';
3516 	bname[1] = '\0';
3517 	return (0);
3518     }
3519 
3520     /* Strip trailing slashes */
3521     endp = path + strlen(path) - 1;
3522     while (endp > path && *endp == '/')
3523 	endp--;
3524 
3525     /* Find the start of the dir */
3526     while (endp > path && *endp != '/')
3527 	endp--;
3528 
3529     /* Either the dir is "/" or there are no slashes */
3530     if (endp == path) {
3531 	bname[0] = *endp == '/' ? '/' : '.';
3532 	bname[1] = '\0';
3533 	return (0);
3534     } else {
3535 	do {
3536 	    endp--;
3537 	} while (endp > path && *endp == '/');
3538     }
3539 
3540     if (endp - path + 2 > PATH_MAX)
3541     {
3542 	_rtld_error("Filename is too long: %s", path);
3543 	return(-1);
3544     }
3545 
3546     strncpy(bname, path, endp - path + 1);
3547     bname[endp - path + 1] = '\0';
3548     return (0);
3549 }
3550 
3551 static int
3552 rtld_dirname_abs(const char *path, char *base)
3553 {
3554 	char base_rel[PATH_MAX];
3555 
3556 	if (rtld_dirname(path, base) == -1)
3557 		return (-1);
3558 	if (base[0] == '/')
3559 		return (0);
3560 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3561 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3562 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3563 		return (-1);
3564 	strcpy(base, base_rel);
3565 	return (0);
3566 }
3567 
3568 static void
3569 linkmap_add(Obj_Entry *obj)
3570 {
3571     struct link_map *l = &obj->linkmap;
3572     struct link_map *prev;
3573 
3574     obj->linkmap.l_name = obj->path;
3575     obj->linkmap.l_addr = obj->mapbase;
3576     obj->linkmap.l_ld = obj->dynamic;
3577 #ifdef __mips__
3578     /* GDB needs load offset on MIPS to use the symbols */
3579     obj->linkmap.l_offs = obj->relocbase;
3580 #endif
3581 
3582     if (r_debug.r_map == NULL) {
3583 	r_debug.r_map = l;
3584 	return;
3585     }
3586 
3587     /*
3588      * Scan to the end of the list, but not past the entry for the
3589      * dynamic linker, which we want to keep at the very end.
3590      */
3591     for (prev = r_debug.r_map;
3592       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3593       prev = prev->l_next)
3594 	;
3595 
3596     /* Link in the new entry. */
3597     l->l_prev = prev;
3598     l->l_next = prev->l_next;
3599     if (l->l_next != NULL)
3600 	l->l_next->l_prev = l;
3601     prev->l_next = l;
3602 }
3603 
3604 static void
3605 linkmap_delete(Obj_Entry *obj)
3606 {
3607     struct link_map *l = &obj->linkmap;
3608 
3609     if (l->l_prev == NULL) {
3610 	if ((r_debug.r_map = l->l_next) != NULL)
3611 	    l->l_next->l_prev = NULL;
3612 	return;
3613     }
3614 
3615     if ((l->l_prev->l_next = l->l_next) != NULL)
3616 	l->l_next->l_prev = l->l_prev;
3617 }
3618 
3619 /*
3620  * Function for the debugger to set a breakpoint on to gain control.
3621  *
3622  * The two parameters allow the debugger to easily find and determine
3623  * what the runtime loader is doing and to whom it is doing it.
3624  *
3625  * When the loadhook trap is hit (r_debug_state, set at program
3626  * initialization), the arguments can be found on the stack:
3627  *
3628  *  +8   struct link_map *m
3629  *  +4   struct r_debug  *rd
3630  *  +0   RetAddr
3631  */
3632 void
3633 r_debug_state(struct r_debug* rd, struct link_map *m)
3634 {
3635     /*
3636      * The following is a hack to force the compiler to emit calls to
3637      * this function, even when optimizing.  If the function is empty,
3638      * the compiler is not obliged to emit any code for calls to it,
3639      * even when marked __noinline.  However, gdb depends on those
3640      * calls being made.
3641      */
3642     __compiler_membar();
3643 }
3644 
3645 /*
3646  * A function called after init routines have completed. This can be used to
3647  * break before a program's entry routine is called, and can be used when
3648  * main is not available in the symbol table.
3649  */
3650 void
3651 _r_debug_postinit(struct link_map *m)
3652 {
3653 
3654 	/* See r_debug_state(). */
3655 	__compiler_membar();
3656 }
3657 
3658 /*
3659  * Get address of the pointer variable in the main program.
3660  * Prefer non-weak symbol over the weak one.
3661  */
3662 static const void **
3663 get_program_var_addr(const char *name, RtldLockState *lockstate)
3664 {
3665     SymLook req;
3666     DoneList donelist;
3667 
3668     symlook_init(&req, name);
3669     req.lockstate = lockstate;
3670     donelist_init(&donelist);
3671     if (symlook_global(&req, &donelist) != 0)
3672 	return (NULL);
3673     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3674 	return ((const void **)make_function_pointer(req.sym_out,
3675 	  req.defobj_out));
3676     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3677 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3678     else
3679 	return ((const void **)(req.defobj_out->relocbase +
3680 	  req.sym_out->st_value));
3681 }
3682 
3683 /*
3684  * Set a pointer variable in the main program to the given value.  This
3685  * is used to set key variables such as "environ" before any of the
3686  * init functions are called.
3687  */
3688 static void
3689 set_program_var(const char *name, const void *value)
3690 {
3691     const void **addr;
3692 
3693     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3694 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3695 	*addr = value;
3696     }
3697 }
3698 
3699 /*
3700  * Search the global objects, including dependencies and main object,
3701  * for the given symbol.
3702  */
3703 static int
3704 symlook_global(SymLook *req, DoneList *donelist)
3705 {
3706     SymLook req1;
3707     const Objlist_Entry *elm;
3708     int res;
3709 
3710     symlook_init_from_req(&req1, req);
3711 
3712     /* Search all objects loaded at program start up. */
3713     if (req->defobj_out == NULL ||
3714       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3715 	res = symlook_list(&req1, &list_main, donelist);
3716 	if (res == 0 && (req->defobj_out == NULL ||
3717 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3718 	    req->sym_out = req1.sym_out;
3719 	    req->defobj_out = req1.defobj_out;
3720 	    assert(req->defobj_out != NULL);
3721 	}
3722     }
3723 
3724     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3725     STAILQ_FOREACH(elm, &list_global, link) {
3726 	if (req->defobj_out != NULL &&
3727 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3728 	    break;
3729 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3730 	if (res == 0 && (req->defobj_out == NULL ||
3731 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3732 	    req->sym_out = req1.sym_out;
3733 	    req->defobj_out = req1.defobj_out;
3734 	    assert(req->defobj_out != NULL);
3735 	}
3736     }
3737 
3738     return (req->sym_out != NULL ? 0 : ESRCH);
3739 }
3740 
3741 /*
3742  * Given a symbol name in a referencing object, find the corresponding
3743  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3744  * no definition was found.  Returns a pointer to the Obj_Entry of the
3745  * defining object via the reference parameter DEFOBJ_OUT.
3746  */
3747 static int
3748 symlook_default(SymLook *req, const Obj_Entry *refobj)
3749 {
3750     DoneList donelist;
3751     const Objlist_Entry *elm;
3752     SymLook req1;
3753     int res;
3754 
3755     donelist_init(&donelist);
3756     symlook_init_from_req(&req1, req);
3757 
3758     /* Look first in the referencing object if linked symbolically. */
3759     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3760 	res = symlook_obj(&req1, refobj);
3761 	if (res == 0) {
3762 	    req->sym_out = req1.sym_out;
3763 	    req->defobj_out = req1.defobj_out;
3764 	    assert(req->defobj_out != NULL);
3765 	}
3766     }
3767 
3768     symlook_global(req, &donelist);
3769 
3770     /* Search all dlopened DAGs containing the referencing object. */
3771     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3772 	if (req->sym_out != NULL &&
3773 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3774 	    break;
3775 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3776 	if (res == 0 && (req->sym_out == NULL ||
3777 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3778 	    req->sym_out = req1.sym_out;
3779 	    req->defobj_out = req1.defobj_out;
3780 	    assert(req->defobj_out != NULL);
3781 	}
3782     }
3783 
3784     /*
3785      * Search the dynamic linker itself, and possibly resolve the
3786      * symbol from there.  This is how the application links to
3787      * dynamic linker services such as dlopen.
3788      */
3789     if (req->sym_out == NULL ||
3790       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3791 	res = symlook_obj(&req1, &obj_rtld);
3792 	if (res == 0) {
3793 	    req->sym_out = req1.sym_out;
3794 	    req->defobj_out = req1.defobj_out;
3795 	    assert(req->defobj_out != NULL);
3796 	}
3797     }
3798 
3799     return (req->sym_out != NULL ? 0 : ESRCH);
3800 }
3801 
3802 static int
3803 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3804 {
3805     const Elf_Sym *def;
3806     const Obj_Entry *defobj;
3807     const Objlist_Entry *elm;
3808     SymLook req1;
3809     int res;
3810 
3811     def = NULL;
3812     defobj = NULL;
3813     STAILQ_FOREACH(elm, objlist, link) {
3814 	if (donelist_check(dlp, elm->obj))
3815 	    continue;
3816 	symlook_init_from_req(&req1, req);
3817 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3818 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3819 		def = req1.sym_out;
3820 		defobj = req1.defobj_out;
3821 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3822 		    break;
3823 	    }
3824 	}
3825     }
3826     if (def != NULL) {
3827 	req->sym_out = def;
3828 	req->defobj_out = defobj;
3829 	return (0);
3830     }
3831     return (ESRCH);
3832 }
3833 
3834 /*
3835  * Search the chain of DAGS cointed to by the given Needed_Entry
3836  * for a symbol of the given name.  Each DAG is scanned completely
3837  * before advancing to the next one.  Returns a pointer to the symbol,
3838  * or NULL if no definition was found.
3839  */
3840 static int
3841 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3842 {
3843     const Elf_Sym *def;
3844     const Needed_Entry *n;
3845     const Obj_Entry *defobj;
3846     SymLook req1;
3847     int res;
3848 
3849     def = NULL;
3850     defobj = NULL;
3851     symlook_init_from_req(&req1, req);
3852     for (n = needed; n != NULL; n = n->next) {
3853 	if (n->obj == NULL ||
3854 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3855 	    continue;
3856 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3857 	    def = req1.sym_out;
3858 	    defobj = req1.defobj_out;
3859 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3860 		break;
3861 	}
3862     }
3863     if (def != NULL) {
3864 	req->sym_out = def;
3865 	req->defobj_out = defobj;
3866 	return (0);
3867     }
3868     return (ESRCH);
3869 }
3870 
3871 /*
3872  * Search the symbol table of a single shared object for a symbol of
3873  * the given name and version, if requested.  Returns a pointer to the
3874  * symbol, or NULL if no definition was found.  If the object is
3875  * filter, return filtered symbol from filtee.
3876  *
3877  * The symbol's hash value is passed in for efficiency reasons; that
3878  * eliminates many recomputations of the hash value.
3879  */
3880 int
3881 symlook_obj(SymLook *req, const Obj_Entry *obj)
3882 {
3883     DoneList donelist;
3884     SymLook req1;
3885     int flags, res, mres;
3886 
3887     /*
3888      * If there is at least one valid hash at this point, we prefer to
3889      * use the faster GNU version if available.
3890      */
3891     if (obj->valid_hash_gnu)
3892 	mres = symlook_obj1_gnu(req, obj);
3893     else if (obj->valid_hash_sysv)
3894 	mres = symlook_obj1_sysv(req, obj);
3895     else
3896 	return (EINVAL);
3897 
3898     if (mres == 0) {
3899 	if (obj->needed_filtees != NULL) {
3900 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3901 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3902 	    donelist_init(&donelist);
3903 	    symlook_init_from_req(&req1, req);
3904 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3905 	    if (res == 0) {
3906 		req->sym_out = req1.sym_out;
3907 		req->defobj_out = req1.defobj_out;
3908 	    }
3909 	    return (res);
3910 	}
3911 	if (obj->needed_aux_filtees != NULL) {
3912 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3913 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3914 	    donelist_init(&donelist);
3915 	    symlook_init_from_req(&req1, req);
3916 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3917 	    if (res == 0) {
3918 		req->sym_out = req1.sym_out;
3919 		req->defobj_out = req1.defobj_out;
3920 		return (res);
3921 	    }
3922 	}
3923     }
3924     return (mres);
3925 }
3926 
3927 /* Symbol match routine common to both hash functions */
3928 static bool
3929 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3930     const unsigned long symnum)
3931 {
3932 	Elf_Versym verndx;
3933 	const Elf_Sym *symp;
3934 	const char *strp;
3935 
3936 	symp = obj->symtab + symnum;
3937 	strp = obj->strtab + symp->st_name;
3938 
3939 	switch (ELF_ST_TYPE(symp->st_info)) {
3940 	case STT_FUNC:
3941 	case STT_NOTYPE:
3942 	case STT_OBJECT:
3943 	case STT_COMMON:
3944 	case STT_GNU_IFUNC:
3945 		if (symp->st_value == 0)
3946 			return (false);
3947 		/* fallthrough */
3948 	case STT_TLS:
3949 		if (symp->st_shndx != SHN_UNDEF)
3950 			break;
3951 #ifndef __mips__
3952 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3953 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3954 			break;
3955 		/* fallthrough */
3956 #endif
3957 	default:
3958 		return (false);
3959 	}
3960 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3961 		return (false);
3962 
3963 	if (req->ventry == NULL) {
3964 		if (obj->versyms != NULL) {
3965 			verndx = VER_NDX(obj->versyms[symnum]);
3966 			if (verndx > obj->vernum) {
3967 				_rtld_error(
3968 				    "%s: symbol %s references wrong version %d",
3969 				    obj->path, obj->strtab + symnum, verndx);
3970 				return (false);
3971 			}
3972 			/*
3973 			 * If we are not called from dlsym (i.e. this
3974 			 * is a normal relocation from unversioned
3975 			 * binary), accept the symbol immediately if
3976 			 * it happens to have first version after this
3977 			 * shared object became versioned.  Otherwise,
3978 			 * if symbol is versioned and not hidden,
3979 			 * remember it. If it is the only symbol with
3980 			 * this name exported by the shared object, it
3981 			 * will be returned as a match by the calling
3982 			 * function. If symbol is global (verndx < 2)
3983 			 * accept it unconditionally.
3984 			 */
3985 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3986 			    verndx == VER_NDX_GIVEN) {
3987 				result->sym_out = symp;
3988 				return (true);
3989 			}
3990 			else if (verndx >= VER_NDX_GIVEN) {
3991 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3992 				    == 0) {
3993 					if (result->vsymp == NULL)
3994 						result->vsymp = symp;
3995 					result->vcount++;
3996 				}
3997 				return (false);
3998 			}
3999 		}
4000 		result->sym_out = symp;
4001 		return (true);
4002 	}
4003 	if (obj->versyms == NULL) {
4004 		if (object_match_name(obj, req->ventry->name)) {
4005 			_rtld_error("%s: object %s should provide version %s "
4006 			    "for symbol %s", obj_rtld.path, obj->path,
4007 			    req->ventry->name, obj->strtab + symnum);
4008 			return (false);
4009 		}
4010 	} else {
4011 		verndx = VER_NDX(obj->versyms[symnum]);
4012 		if (verndx > obj->vernum) {
4013 			_rtld_error("%s: symbol %s references wrong version %d",
4014 			    obj->path, obj->strtab + symnum, verndx);
4015 			return (false);
4016 		}
4017 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4018 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4019 			/*
4020 			 * Version does not match. Look if this is a
4021 			 * global symbol and if it is not hidden. If
4022 			 * global symbol (verndx < 2) is available,
4023 			 * use it. Do not return symbol if we are
4024 			 * called by dlvsym, because dlvsym looks for
4025 			 * a specific version and default one is not
4026 			 * what dlvsym wants.
4027 			 */
4028 			if ((req->flags & SYMLOOK_DLSYM) ||
4029 			    (verndx >= VER_NDX_GIVEN) ||
4030 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4031 				return (false);
4032 		}
4033 	}
4034 	result->sym_out = symp;
4035 	return (true);
4036 }
4037 
4038 /*
4039  * Search for symbol using SysV hash function.
4040  * obj->buckets is known not to be NULL at this point; the test for this was
4041  * performed with the obj->valid_hash_sysv assignment.
4042  */
4043 static int
4044 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4045 {
4046 	unsigned long symnum;
4047 	Sym_Match_Result matchres;
4048 
4049 	matchres.sym_out = NULL;
4050 	matchres.vsymp = NULL;
4051 	matchres.vcount = 0;
4052 
4053 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4054 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4055 		if (symnum >= obj->nchains)
4056 			return (ESRCH);	/* Bad object */
4057 
4058 		if (matched_symbol(req, obj, &matchres, symnum)) {
4059 			req->sym_out = matchres.sym_out;
4060 			req->defobj_out = obj;
4061 			return (0);
4062 		}
4063 	}
4064 	if (matchres.vcount == 1) {
4065 		req->sym_out = matchres.vsymp;
4066 		req->defobj_out = obj;
4067 		return (0);
4068 	}
4069 	return (ESRCH);
4070 }
4071 
4072 /* Search for symbol using GNU hash function */
4073 static int
4074 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4075 {
4076 	Elf_Addr bloom_word;
4077 	const Elf32_Word *hashval;
4078 	Elf32_Word bucket;
4079 	Sym_Match_Result matchres;
4080 	unsigned int h1, h2;
4081 	unsigned long symnum;
4082 
4083 	matchres.sym_out = NULL;
4084 	matchres.vsymp = NULL;
4085 	matchres.vcount = 0;
4086 
4087 	/* Pick right bitmask word from Bloom filter array */
4088 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4089 	    obj->maskwords_bm_gnu];
4090 
4091 	/* Calculate modulus word size of gnu hash and its derivative */
4092 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4093 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4094 
4095 	/* Filter out the "definitely not in set" queries */
4096 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4097 		return (ESRCH);
4098 
4099 	/* Locate hash chain and corresponding value element*/
4100 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4101 	if (bucket == 0)
4102 		return (ESRCH);
4103 	hashval = &obj->chain_zero_gnu[bucket];
4104 	do {
4105 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4106 			symnum = hashval - obj->chain_zero_gnu;
4107 			if (matched_symbol(req, obj, &matchres, symnum)) {
4108 				req->sym_out = matchres.sym_out;
4109 				req->defobj_out = obj;
4110 				return (0);
4111 			}
4112 		}
4113 	} while ((*hashval++ & 1) == 0);
4114 	if (matchres.vcount == 1) {
4115 		req->sym_out = matchres.vsymp;
4116 		req->defobj_out = obj;
4117 		return (0);
4118 	}
4119 	return (ESRCH);
4120 }
4121 
4122 static void
4123 trace_loaded_objects(Obj_Entry *obj)
4124 {
4125     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4126     int		c;
4127 
4128     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4129 	main_local = "";
4130 
4131     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4132 	fmt1 = "\t%o => %p (%x)\n";
4133 
4134     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4135 	fmt2 = "\t%o (%x)\n";
4136 
4137     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4138 
4139     for (; obj; obj = obj->next) {
4140 	Needed_Entry		*needed;
4141 	char			*name, *path;
4142 	bool			is_lib;
4143 
4144 	if (list_containers && obj->needed != NULL)
4145 	    rtld_printf("%s:\n", obj->path);
4146 	for (needed = obj->needed; needed; needed = needed->next) {
4147 	    if (needed->obj != NULL) {
4148 		if (needed->obj->traced && !list_containers)
4149 		    continue;
4150 		needed->obj->traced = true;
4151 		path = needed->obj->path;
4152 	    } else
4153 		path = "not found";
4154 
4155 	    name = (char *)obj->strtab + needed->name;
4156 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4157 
4158 	    fmt = is_lib ? fmt1 : fmt2;
4159 	    while ((c = *fmt++) != '\0') {
4160 		switch (c) {
4161 		default:
4162 		    rtld_putchar(c);
4163 		    continue;
4164 		case '\\':
4165 		    switch (c = *fmt) {
4166 		    case '\0':
4167 			continue;
4168 		    case 'n':
4169 			rtld_putchar('\n');
4170 			break;
4171 		    case 't':
4172 			rtld_putchar('\t');
4173 			break;
4174 		    }
4175 		    break;
4176 		case '%':
4177 		    switch (c = *fmt) {
4178 		    case '\0':
4179 			continue;
4180 		    case '%':
4181 		    default:
4182 			rtld_putchar(c);
4183 			break;
4184 		    case 'A':
4185 			rtld_putstr(main_local);
4186 			break;
4187 		    case 'a':
4188 			rtld_putstr(obj_main->path);
4189 			break;
4190 		    case 'o':
4191 			rtld_putstr(name);
4192 			break;
4193 #if 0
4194 		    case 'm':
4195 			rtld_printf("%d", sodp->sod_major);
4196 			break;
4197 		    case 'n':
4198 			rtld_printf("%d", sodp->sod_minor);
4199 			break;
4200 #endif
4201 		    case 'p':
4202 			rtld_putstr(path);
4203 			break;
4204 		    case 'x':
4205 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4206 			  0);
4207 			break;
4208 		    }
4209 		    break;
4210 		}
4211 		++fmt;
4212 	    }
4213 	}
4214     }
4215 }
4216 
4217 /*
4218  * Unload a dlopened object and its dependencies from memory and from
4219  * our data structures.  It is assumed that the DAG rooted in the
4220  * object has already been unreferenced, and that the object has a
4221  * reference count of 0.
4222  */
4223 static void
4224 unload_object(Obj_Entry *root)
4225 {
4226     Obj_Entry *obj;
4227     Obj_Entry **linkp;
4228 
4229     assert(root->refcount == 0);
4230 
4231     /*
4232      * Pass over the DAG removing unreferenced objects from
4233      * appropriate lists.
4234      */
4235     unlink_object(root);
4236 
4237     /* Unmap all objects that are no longer referenced. */
4238     linkp = &obj_list->next;
4239     while ((obj = *linkp) != NULL) {
4240 	if (obj->refcount == 0) {
4241 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4242 		obj->path);
4243 	    dbg("unloading \"%s\"", obj->path);
4244 	    unload_filtees(root);
4245 	    munmap(obj->mapbase, obj->mapsize);
4246 	    linkmap_delete(obj);
4247 	    *linkp = obj->next;
4248 	    obj_count--;
4249 	    obj_free(obj);
4250 	} else
4251 	    linkp = &obj->next;
4252     }
4253     obj_tail = linkp;
4254 }
4255 
4256 static void
4257 unlink_object(Obj_Entry *root)
4258 {
4259     Objlist_Entry *elm;
4260 
4261     if (root->refcount == 0) {
4262 	/* Remove the object from the RTLD_GLOBAL list. */
4263 	objlist_remove(&list_global, root);
4264 
4265     	/* Remove the object from all objects' DAG lists. */
4266     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4267 	    objlist_remove(&elm->obj->dldags, root);
4268 	    if (elm->obj != root)
4269 		unlink_object(elm->obj);
4270 	}
4271     }
4272 }
4273 
4274 static void
4275 ref_dag(Obj_Entry *root)
4276 {
4277     Objlist_Entry *elm;
4278 
4279     assert(root->dag_inited);
4280     STAILQ_FOREACH(elm, &root->dagmembers, link)
4281 	elm->obj->refcount++;
4282 }
4283 
4284 static void
4285 unref_dag(Obj_Entry *root)
4286 {
4287     Objlist_Entry *elm;
4288 
4289     assert(root->dag_inited);
4290     STAILQ_FOREACH(elm, &root->dagmembers, link)
4291 	elm->obj->refcount--;
4292 }
4293 
4294 /*
4295  * Common code for MD __tls_get_addr().
4296  */
4297 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4298 static void *
4299 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4300 {
4301     Elf_Addr *newdtv, *dtv;
4302     RtldLockState lockstate;
4303     int to_copy;
4304 
4305     dtv = *dtvp;
4306     /* Check dtv generation in case new modules have arrived */
4307     if (dtv[0] != tls_dtv_generation) {
4308 	wlock_acquire(rtld_bind_lock, &lockstate);
4309 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4310 	to_copy = dtv[1];
4311 	if (to_copy > tls_max_index)
4312 	    to_copy = tls_max_index;
4313 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4314 	newdtv[0] = tls_dtv_generation;
4315 	newdtv[1] = tls_max_index;
4316 	free(dtv);
4317 	lock_release(rtld_bind_lock, &lockstate);
4318 	dtv = *dtvp = newdtv;
4319     }
4320 
4321     /* Dynamically allocate module TLS if necessary */
4322     if (dtv[index + 1] == 0) {
4323 	/* Signal safe, wlock will block out signals. */
4324 	wlock_acquire(rtld_bind_lock, &lockstate);
4325 	if (!dtv[index + 1])
4326 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4327 	lock_release(rtld_bind_lock, &lockstate);
4328     }
4329     return ((void *)(dtv[index + 1] + offset));
4330 }
4331 
4332 void *
4333 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4334 {
4335 	Elf_Addr *dtv;
4336 
4337 	dtv = *dtvp;
4338 	/* Check dtv generation in case new modules have arrived */
4339 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4340 	    dtv[index + 1] != 0))
4341 		return ((void *)(dtv[index + 1] + offset));
4342 	return (tls_get_addr_slow(dtvp, index, offset));
4343 }
4344 
4345 #if defined(__arm__) || defined(__mips__) || defined(__powerpc__)
4346 
4347 /*
4348  * Allocate Static TLS using the Variant I method.
4349  */
4350 void *
4351 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4352 {
4353     Obj_Entry *obj;
4354     char *tcb;
4355     Elf_Addr **tls;
4356     Elf_Addr *dtv;
4357     Elf_Addr addr;
4358     int i;
4359 
4360     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4361 	return (oldtcb);
4362 
4363     assert(tcbsize >= TLS_TCB_SIZE);
4364     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4365     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4366 
4367     if (oldtcb != NULL) {
4368 	memcpy(tls, oldtcb, tls_static_space);
4369 	free(oldtcb);
4370 
4371 	/* Adjust the DTV. */
4372 	dtv = tls[0];
4373 	for (i = 0; i < dtv[1]; i++) {
4374 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4375 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4376 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4377 	    }
4378 	}
4379     } else {
4380 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4381 	tls[0] = dtv;
4382 	dtv[0] = tls_dtv_generation;
4383 	dtv[1] = tls_max_index;
4384 
4385 	for (obj = objs; obj; obj = obj->next) {
4386 	    if (obj->tlsoffset > 0) {
4387 		addr = (Elf_Addr)tls + obj->tlsoffset;
4388 		if (obj->tlsinitsize > 0)
4389 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4390 		if (obj->tlssize > obj->tlsinitsize)
4391 		    memset((void*) (addr + obj->tlsinitsize), 0,
4392 			   obj->tlssize - obj->tlsinitsize);
4393 		dtv[obj->tlsindex + 1] = addr;
4394 	    }
4395 	}
4396     }
4397 
4398     return (tcb);
4399 }
4400 
4401 void
4402 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4403 {
4404     Elf_Addr *dtv;
4405     Elf_Addr tlsstart, tlsend;
4406     int dtvsize, i;
4407 
4408     assert(tcbsize >= TLS_TCB_SIZE);
4409 
4410     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4411     tlsend = tlsstart + tls_static_space;
4412 
4413     dtv = *(Elf_Addr **)tlsstart;
4414     dtvsize = dtv[1];
4415     for (i = 0; i < dtvsize; i++) {
4416 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4417 	    free((void*)dtv[i+2]);
4418 	}
4419     }
4420     free(dtv);
4421     free(tcb);
4422 }
4423 
4424 #endif
4425 
4426 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4427 
4428 /*
4429  * Allocate Static TLS using the Variant II method.
4430  */
4431 void *
4432 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4433 {
4434     Obj_Entry *obj;
4435     size_t size, ralign;
4436     char *tls;
4437     Elf_Addr *dtv, *olddtv;
4438     Elf_Addr segbase, oldsegbase, addr;
4439     int i;
4440 
4441     ralign = tcbalign;
4442     if (tls_static_max_align > ralign)
4443 	    ralign = tls_static_max_align;
4444     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4445 
4446     assert(tcbsize >= 2*sizeof(Elf_Addr));
4447     tls = malloc_aligned(size, ralign);
4448     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4449 
4450     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4451     ((Elf_Addr*)segbase)[0] = segbase;
4452     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4453 
4454     dtv[0] = tls_dtv_generation;
4455     dtv[1] = tls_max_index;
4456 
4457     if (oldtls) {
4458 	/*
4459 	 * Copy the static TLS block over whole.
4460 	 */
4461 	oldsegbase = (Elf_Addr) oldtls;
4462 	memcpy((void *)(segbase - tls_static_space),
4463 	       (const void *)(oldsegbase - tls_static_space),
4464 	       tls_static_space);
4465 
4466 	/*
4467 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4468 	 * move them over.
4469 	 */
4470 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4471 	for (i = 0; i < olddtv[1]; i++) {
4472 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4473 		dtv[i+2] = olddtv[i+2];
4474 		olddtv[i+2] = 0;
4475 	    }
4476 	}
4477 
4478 	/*
4479 	 * We assume that this block was the one we created with
4480 	 * allocate_initial_tls().
4481 	 */
4482 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4483     } else {
4484 	for (obj = objs; obj; obj = obj->next) {
4485 	    if (obj->tlsoffset) {
4486 		addr = segbase - obj->tlsoffset;
4487 		memset((void*) (addr + obj->tlsinitsize),
4488 		       0, obj->tlssize - obj->tlsinitsize);
4489 		if (obj->tlsinit)
4490 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4491 		dtv[obj->tlsindex + 1] = addr;
4492 	    }
4493 	}
4494     }
4495 
4496     return (void*) segbase;
4497 }
4498 
4499 void
4500 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4501 {
4502     Elf_Addr* dtv;
4503     size_t size, ralign;
4504     int dtvsize, i;
4505     Elf_Addr tlsstart, tlsend;
4506 
4507     /*
4508      * Figure out the size of the initial TLS block so that we can
4509      * find stuff which ___tls_get_addr() allocated dynamically.
4510      */
4511     ralign = tcbalign;
4512     if (tls_static_max_align > ralign)
4513 	    ralign = tls_static_max_align;
4514     size = round(tls_static_space, ralign);
4515 
4516     dtv = ((Elf_Addr**)tls)[1];
4517     dtvsize = dtv[1];
4518     tlsend = (Elf_Addr) tls;
4519     tlsstart = tlsend - size;
4520     for (i = 0; i < dtvsize; i++) {
4521 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4522 		free_aligned((void *)dtv[i + 2]);
4523 	}
4524     }
4525 
4526     free_aligned((void *)tlsstart);
4527     free((void*) dtv);
4528 }
4529 
4530 #endif
4531 
4532 /*
4533  * Allocate TLS block for module with given index.
4534  */
4535 void *
4536 allocate_module_tls(int index)
4537 {
4538     Obj_Entry* obj;
4539     char* p;
4540 
4541     for (obj = obj_list; obj; obj = obj->next) {
4542 	if (obj->tlsindex == index)
4543 	    break;
4544     }
4545     if (!obj) {
4546 	_rtld_error("Can't find module with TLS index %d", index);
4547 	die();
4548     }
4549 
4550     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4551     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4552     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4553 
4554     return p;
4555 }
4556 
4557 bool
4558 allocate_tls_offset(Obj_Entry *obj)
4559 {
4560     size_t off;
4561 
4562     if (obj->tls_done)
4563 	return true;
4564 
4565     if (obj->tlssize == 0) {
4566 	obj->tls_done = true;
4567 	return true;
4568     }
4569 
4570     if (obj->tlsindex == 1)
4571 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4572     else
4573 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4574 				   obj->tlssize, obj->tlsalign);
4575 
4576     /*
4577      * If we have already fixed the size of the static TLS block, we
4578      * must stay within that size. When allocating the static TLS, we
4579      * leave a small amount of space spare to be used for dynamically
4580      * loading modules which use static TLS.
4581      */
4582     if (tls_static_space != 0) {
4583 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4584 	    return false;
4585     } else if (obj->tlsalign > tls_static_max_align) {
4586 	    tls_static_max_align = obj->tlsalign;
4587     }
4588 
4589     tls_last_offset = obj->tlsoffset = off;
4590     tls_last_size = obj->tlssize;
4591     obj->tls_done = true;
4592 
4593     return true;
4594 }
4595 
4596 void
4597 free_tls_offset(Obj_Entry *obj)
4598 {
4599 
4600     /*
4601      * If we were the last thing to allocate out of the static TLS
4602      * block, we give our space back to the 'allocator'. This is a
4603      * simplistic workaround to allow libGL.so.1 to be loaded and
4604      * unloaded multiple times.
4605      */
4606     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4607 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4608 	tls_last_offset -= obj->tlssize;
4609 	tls_last_size = 0;
4610     }
4611 }
4612 
4613 void *
4614 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4615 {
4616     void *ret;
4617     RtldLockState lockstate;
4618 
4619     wlock_acquire(rtld_bind_lock, &lockstate);
4620     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4621     lock_release(rtld_bind_lock, &lockstate);
4622     return (ret);
4623 }
4624 
4625 void
4626 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4627 {
4628     RtldLockState lockstate;
4629 
4630     wlock_acquire(rtld_bind_lock, &lockstate);
4631     free_tls(tcb, tcbsize, tcbalign);
4632     lock_release(rtld_bind_lock, &lockstate);
4633 }
4634 
4635 static void
4636 object_add_name(Obj_Entry *obj, const char *name)
4637 {
4638     Name_Entry *entry;
4639     size_t len;
4640 
4641     len = strlen(name);
4642     entry = malloc(sizeof(Name_Entry) + len);
4643 
4644     if (entry != NULL) {
4645 	strcpy(entry->name, name);
4646 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4647     }
4648 }
4649 
4650 static int
4651 object_match_name(const Obj_Entry *obj, const char *name)
4652 {
4653     Name_Entry *entry;
4654 
4655     STAILQ_FOREACH(entry, &obj->names, link) {
4656 	if (strcmp(name, entry->name) == 0)
4657 	    return (1);
4658     }
4659     return (0);
4660 }
4661 
4662 static Obj_Entry *
4663 locate_dependency(const Obj_Entry *obj, const char *name)
4664 {
4665     const Objlist_Entry *entry;
4666     const Needed_Entry *needed;
4667 
4668     STAILQ_FOREACH(entry, &list_main, link) {
4669 	if (object_match_name(entry->obj, name))
4670 	    return entry->obj;
4671     }
4672 
4673     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4674 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4675 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4676 	    /*
4677 	     * If there is DT_NEEDED for the name we are looking for,
4678 	     * we are all set.  Note that object might not be found if
4679 	     * dependency was not loaded yet, so the function can
4680 	     * return NULL here.  This is expected and handled
4681 	     * properly by the caller.
4682 	     */
4683 	    return (needed->obj);
4684 	}
4685     }
4686     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4687 	obj->path, name);
4688     die();
4689 }
4690 
4691 static int
4692 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4693     const Elf_Vernaux *vna)
4694 {
4695     const Elf_Verdef *vd;
4696     const char *vername;
4697 
4698     vername = refobj->strtab + vna->vna_name;
4699     vd = depobj->verdef;
4700     if (vd == NULL) {
4701 	_rtld_error("%s: version %s required by %s not defined",
4702 	    depobj->path, vername, refobj->path);
4703 	return (-1);
4704     }
4705     for (;;) {
4706 	if (vd->vd_version != VER_DEF_CURRENT) {
4707 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4708 		depobj->path, vd->vd_version);
4709 	    return (-1);
4710 	}
4711 	if (vna->vna_hash == vd->vd_hash) {
4712 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4713 		((char *)vd + vd->vd_aux);
4714 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4715 		return (0);
4716 	}
4717 	if (vd->vd_next == 0)
4718 	    break;
4719 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4720     }
4721     if (vna->vna_flags & VER_FLG_WEAK)
4722 	return (0);
4723     _rtld_error("%s: version %s required by %s not found",
4724 	depobj->path, vername, refobj->path);
4725     return (-1);
4726 }
4727 
4728 static int
4729 rtld_verify_object_versions(Obj_Entry *obj)
4730 {
4731     const Elf_Verneed *vn;
4732     const Elf_Verdef  *vd;
4733     const Elf_Verdaux *vda;
4734     const Elf_Vernaux *vna;
4735     const Obj_Entry *depobj;
4736     int maxvernum, vernum;
4737 
4738     if (obj->ver_checked)
4739 	return (0);
4740     obj->ver_checked = true;
4741 
4742     maxvernum = 0;
4743     /*
4744      * Walk over defined and required version records and figure out
4745      * max index used by any of them. Do very basic sanity checking
4746      * while there.
4747      */
4748     vn = obj->verneed;
4749     while (vn != NULL) {
4750 	if (vn->vn_version != VER_NEED_CURRENT) {
4751 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4752 		obj->path, vn->vn_version);
4753 	    return (-1);
4754 	}
4755 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4756 	for (;;) {
4757 	    vernum = VER_NEED_IDX(vna->vna_other);
4758 	    if (vernum > maxvernum)
4759 		maxvernum = vernum;
4760 	    if (vna->vna_next == 0)
4761 		 break;
4762 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4763 	}
4764 	if (vn->vn_next == 0)
4765 	    break;
4766 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4767     }
4768 
4769     vd = obj->verdef;
4770     while (vd != NULL) {
4771 	if (vd->vd_version != VER_DEF_CURRENT) {
4772 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4773 		obj->path, vd->vd_version);
4774 	    return (-1);
4775 	}
4776 	vernum = VER_DEF_IDX(vd->vd_ndx);
4777 	if (vernum > maxvernum)
4778 		maxvernum = vernum;
4779 	if (vd->vd_next == 0)
4780 	    break;
4781 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4782     }
4783 
4784     if (maxvernum == 0)
4785 	return (0);
4786 
4787     /*
4788      * Store version information in array indexable by version index.
4789      * Verify that object version requirements are satisfied along the
4790      * way.
4791      */
4792     obj->vernum = maxvernum + 1;
4793     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4794 
4795     vd = obj->verdef;
4796     while (vd != NULL) {
4797 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4798 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4799 	    assert(vernum <= maxvernum);
4800 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4801 	    obj->vertab[vernum].hash = vd->vd_hash;
4802 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4803 	    obj->vertab[vernum].file = NULL;
4804 	    obj->vertab[vernum].flags = 0;
4805 	}
4806 	if (vd->vd_next == 0)
4807 	    break;
4808 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4809     }
4810 
4811     vn = obj->verneed;
4812     while (vn != NULL) {
4813 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4814 	if (depobj == NULL)
4815 	    return (-1);
4816 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4817 	for (;;) {
4818 	    if (check_object_provided_version(obj, depobj, vna))
4819 		return (-1);
4820 	    vernum = VER_NEED_IDX(vna->vna_other);
4821 	    assert(vernum <= maxvernum);
4822 	    obj->vertab[vernum].hash = vna->vna_hash;
4823 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4824 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4825 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4826 		VER_INFO_HIDDEN : 0;
4827 	    if (vna->vna_next == 0)
4828 		 break;
4829 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4830 	}
4831 	if (vn->vn_next == 0)
4832 	    break;
4833 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4834     }
4835     return 0;
4836 }
4837 
4838 static int
4839 rtld_verify_versions(const Objlist *objlist)
4840 {
4841     Objlist_Entry *entry;
4842     int rc;
4843 
4844     rc = 0;
4845     STAILQ_FOREACH(entry, objlist, link) {
4846 	/*
4847 	 * Skip dummy objects or objects that have their version requirements
4848 	 * already checked.
4849 	 */
4850 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4851 	    continue;
4852 	if (rtld_verify_object_versions(entry->obj) == -1) {
4853 	    rc = -1;
4854 	    if (ld_tracing == NULL)
4855 		break;
4856 	}
4857     }
4858     if (rc == 0 || ld_tracing != NULL)
4859     	rc = rtld_verify_object_versions(&obj_rtld);
4860     return rc;
4861 }
4862 
4863 const Ver_Entry *
4864 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4865 {
4866     Elf_Versym vernum;
4867 
4868     if (obj->vertab) {
4869 	vernum = VER_NDX(obj->versyms[symnum]);
4870 	if (vernum >= obj->vernum) {
4871 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4872 		obj->path, obj->strtab + symnum, vernum);
4873 	} else if (obj->vertab[vernum].hash != 0) {
4874 	    return &obj->vertab[vernum];
4875 	}
4876     }
4877     return NULL;
4878 }
4879 
4880 int
4881 _rtld_get_stack_prot(void)
4882 {
4883 
4884 	return (stack_prot);
4885 }
4886 
4887 static void
4888 map_stacks_exec(RtldLockState *lockstate)
4889 {
4890 	void (*thr_map_stacks_exec)(void);
4891 
4892 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4893 		return;
4894 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4895 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4896 	if (thr_map_stacks_exec != NULL) {
4897 		stack_prot |= PROT_EXEC;
4898 		thr_map_stacks_exec();
4899 	}
4900 }
4901 
4902 void
4903 symlook_init(SymLook *dst, const char *name)
4904 {
4905 
4906 	bzero(dst, sizeof(*dst));
4907 	dst->name = name;
4908 	dst->hash = elf_hash(name);
4909 	dst->hash_gnu = gnu_hash(name);
4910 }
4911 
4912 static void
4913 symlook_init_from_req(SymLook *dst, const SymLook *src)
4914 {
4915 
4916 	dst->name = src->name;
4917 	dst->hash = src->hash;
4918 	dst->hash_gnu = src->hash_gnu;
4919 	dst->ventry = src->ventry;
4920 	dst->flags = src->flags;
4921 	dst->defobj_out = NULL;
4922 	dst->sym_out = NULL;
4923 	dst->lockstate = src->lockstate;
4924 }
4925 
4926 
4927 /*
4928  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4929  */
4930 static int
4931 parse_libdir(const char *str)
4932 {
4933 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4934 	const char *orig;
4935 	int fd;
4936 	char c;
4937 
4938 	orig = str;
4939 	fd = 0;
4940 	for (c = *str; c != '\0'; c = *++str) {
4941 		if (c < '0' || c > '9')
4942 			return (-1);
4943 
4944 		fd *= RADIX;
4945 		fd += c - '0';
4946 	}
4947 
4948 	/* Make sure we actually parsed something. */
4949 	if (str == orig) {
4950 		_rtld_error("failed to parse directory FD from '%s'", str);
4951 		return (-1);
4952 	}
4953 	return (fd);
4954 }
4955 
4956 /*
4957  * Overrides for libc_pic-provided functions.
4958  */
4959 
4960 int
4961 __getosreldate(void)
4962 {
4963 	size_t len;
4964 	int oid[2];
4965 	int error, osrel;
4966 
4967 	if (osreldate != 0)
4968 		return (osreldate);
4969 
4970 	oid[0] = CTL_KERN;
4971 	oid[1] = KERN_OSRELDATE;
4972 	osrel = 0;
4973 	len = sizeof(osrel);
4974 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4975 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4976 		osreldate = osrel;
4977 	return (osreldate);
4978 }
4979 
4980 void
4981 exit(int status)
4982 {
4983 
4984 	_exit(status);
4985 }
4986 
4987 void (*__cleanup)(void);
4988 int __isthreaded = 0;
4989 int _thread_autoinit_dummy_decl = 1;
4990 
4991 /*
4992  * No unresolved symbols for rtld.
4993  */
4994 void
4995 __pthread_cxa_finalize(struct dl_phdr_info *a)
4996 {
4997 }
4998 
4999 void
5000 __stack_chk_fail(void)
5001 {
5002 
5003 	_rtld_error("stack overflow detected; terminated");
5004 	die();
5005 }
5006 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5007 
5008 void
5009 __chk_fail(void)
5010 {
5011 
5012 	_rtld_error("buffer overflow detected; terminated");
5013 	die();
5014 }
5015 
5016 const char *
5017 rtld_strerror(int errnum)
5018 {
5019 
5020 	if (errnum < 0 || errnum >= sys_nerr)
5021 		return ("Unknown error");
5022 	return (sys_errlist[errnum]);
5023 }
5024