xref: /freebsd/libexec/rtld-elf/rtld.c (revision b13788e396c2b24f88697e7d4a74bab429ef4d0c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
140 static int parse_integer(const char *);
141 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
142 static void print_usage(const char *argv0);
143 static void release_object(Obj_Entry *);
144 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
145     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
146 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
147     int flags, RtldLockState *lockstate);
148 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
149     RtldLockState *);
150 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
151 static int rtld_dirname(const char *, char *);
152 static int rtld_dirname_abs(const char *, char *);
153 static void *rtld_dlopen(const char *name, int fd, int mode);
154 static void rtld_exit(void);
155 static void rtld_nop_exit(void);
156 static char *search_library_path(const char *, const char *, const char *,
157     int *);
158 static char *search_library_pathfds(const char *, const char *, int *);
159 static const void **get_program_var_addr(const char *, RtldLockState *);
160 static void set_program_var(const char *, const void *);
161 static int symlook_default(SymLook *, const Obj_Entry *refobj);
162 static int symlook_global(SymLook *, DoneList *);
163 static void symlook_init_from_req(SymLook *, const SymLook *);
164 static int symlook_list(SymLook *, const Objlist *, DoneList *);
165 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
166 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
167 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
168 static void trace_loaded_objects(Obj_Entry *);
169 static void unlink_object(Obj_Entry *);
170 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
171 static void unref_dag(Obj_Entry *);
172 static void ref_dag(Obj_Entry *);
173 static char *origin_subst_one(Obj_Entry *, char *, const char *,
174     const char *, bool);
175 static char *origin_subst(Obj_Entry *, const char *);
176 static bool obj_resolve_origin(Obj_Entry *obj);
177 static void preinit_main(void);
178 static int  rtld_verify_versions(const Objlist *);
179 static int  rtld_verify_object_versions(Obj_Entry *);
180 static void object_add_name(Obj_Entry *, const char *);
181 static int  object_match_name(const Obj_Entry *, const char *);
182 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
183 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
184     struct dl_phdr_info *phdr_info);
185 static uint32_t gnu_hash(const char *);
186 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
187     const unsigned long);
188 
189 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
190 void _r_debug_postinit(struct link_map *) __noinline __exported;
191 
192 int __sys_openat(int, const char *, int, ...);
193 
194 /*
195  * Data declarations.
196  */
197 static char *error_message;	/* Message for dlerror(), or NULL */
198 struct r_debug r_debug __exported;	/* for GDB; */
199 static bool libmap_disable;	/* Disable libmap */
200 static bool ld_loadfltr;	/* Immediate filters processing */
201 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
202 static bool trust;		/* False for setuid and setgid programs */
203 static bool dangerous_ld_env;	/* True if environment variables have been
204 				   used to affect the libraries loaded */
205 bool ld_bind_not;		/* Disable PLT update */
206 static char *ld_bind_now;	/* Environment variable for immediate binding */
207 static char *ld_debug;		/* Environment variable for debugging */
208 static char *ld_library_path;	/* Environment variable for search path */
209 static char *ld_library_dirs;	/* Environment variable for library descriptors */
210 static char *ld_preload;	/* Environment variable for libraries to
211 				   load first */
212 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
213 static const char *ld_tracing;	/* Called from ldd to print libs */
214 static char *ld_utrace;		/* Use utrace() to log events. */
215 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
216 static Obj_Entry *obj_main;	/* The main program shared object */
217 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
218 static unsigned int obj_count;	/* Number of objects in obj_list */
219 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
220 
221 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
222   STAILQ_HEAD_INITIALIZER(list_global);
223 static Objlist list_main =	/* Objects loaded at program startup */
224   STAILQ_HEAD_INITIALIZER(list_main);
225 static Objlist list_fini =	/* Objects needing fini() calls */
226   STAILQ_HEAD_INITIALIZER(list_fini);
227 
228 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
229 
230 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
231 
232 extern Elf_Dyn _DYNAMIC;
233 #pragma weak _DYNAMIC
234 
235 int dlclose(void *) __exported;
236 char *dlerror(void) __exported;
237 void *dlopen(const char *, int) __exported;
238 void *fdlopen(int, int) __exported;
239 void *dlsym(void *, const char *) __exported;
240 dlfunc_t dlfunc(void *, const char *) __exported;
241 void *dlvsym(void *, const char *, const char *) __exported;
242 int dladdr(const void *, Dl_info *) __exported;
243 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
244     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
245 int dlinfo(void *, int , void *) __exported;
246 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
247 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
248 int _rtld_get_stack_prot(void) __exported;
249 int _rtld_is_dlopened(void *) __exported;
250 void _rtld_error(const char *, ...) __exported;
251 
252 /* Only here to fix -Wmissing-prototypes warnings */
253 int __getosreldate(void);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 bool ld_fast_sigblock = false;
290 
291 /*
292  * Globals for path names, and such
293  */
294 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
295 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
296 const char *ld_path_rtld = _PATH_RTLD;
297 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
298 const char *ld_env_prefix = LD_;
299 
300 static void (*rtld_exit_ptr)(void);
301 
302 /*
303  * Fill in a DoneList with an allocation large enough to hold all of
304  * the currently-loaded objects.  Keep this as a macro since it calls
305  * alloca and we want that to occur within the scope of the caller.
306  */
307 #define donelist_init(dlp)					\
308     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
309     assert((dlp)->objs != NULL),				\
310     (dlp)->num_alloc = obj_count,				\
311     (dlp)->num_used = 0)
312 
313 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
314 	if (ld_utrace != NULL)					\
315 		ld_utrace_log(e, h, mb, ms, r, n);		\
316 } while (0)
317 
318 static void
319 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
320     int refcnt, const char *name)
321 {
322 	struct utrace_rtld ut;
323 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
324 
325 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
326 	ut.event = event;
327 	ut.handle = handle;
328 	ut.mapbase = mapbase;
329 	ut.mapsize = mapsize;
330 	ut.refcnt = refcnt;
331 	bzero(ut.name, sizeof(ut.name));
332 	if (name)
333 		strlcpy(ut.name, name, sizeof(ut.name));
334 	utrace(&ut, sizeof(ut));
335 }
336 
337 #ifdef RTLD_VARIANT_ENV_NAMES
338 /*
339  * construct the env variable based on the type of binary that's
340  * running.
341  */
342 static inline const char *
343 _LD(const char *var)
344 {
345 	static char buffer[128];
346 
347 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
348 	strlcat(buffer, var, sizeof(buffer));
349 	return (buffer);
350 }
351 #else
352 #define _LD(x)	LD_ x
353 #endif
354 
355 /*
356  * Main entry point for dynamic linking.  The first argument is the
357  * stack pointer.  The stack is expected to be laid out as described
358  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
359  * Specifically, the stack pointer points to a word containing
360  * ARGC.  Following that in the stack is a null-terminated sequence
361  * of pointers to argument strings.  Then comes a null-terminated
362  * sequence of pointers to environment strings.  Finally, there is a
363  * sequence of "auxiliary vector" entries.
364  *
365  * The second argument points to a place to store the dynamic linker's
366  * exit procedure pointer and the third to a place to store the main
367  * program's object.
368  *
369  * The return value is the main program's entry point.
370  */
371 func_ptr_type
372 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
373 {
374     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
375     Objlist_Entry *entry;
376     Obj_Entry *last_interposer, *obj, *preload_tail;
377     const Elf_Phdr *phdr;
378     Objlist initlist;
379     RtldLockState lockstate;
380     struct stat st;
381     Elf_Addr *argcp;
382     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
383     const char *argv0, *binpath;
384     caddr_t imgentry;
385     char buf[MAXPATHLEN];
386     int argc, fd, i, phnum, rtld_argc;
387 #ifdef __powerpc__
388     int old_auxv_format = 1;
389 #endif
390     bool dir_enable, explicit_fd, search_in_path;
391 
392     /*
393      * On entry, the dynamic linker itself has not been relocated yet.
394      * Be very careful not to reference any global data until after
395      * init_rtld has returned.  It is OK to reference file-scope statics
396      * and string constants, and to call static and global functions.
397      */
398 
399     /* Find the auxiliary vector on the stack. */
400     argcp = sp;
401     argc = *sp++;
402     argv = (char **) sp;
403     sp += argc + 1;	/* Skip over arguments and NULL terminator */
404     env = (char **) sp;
405     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
406 	;
407     aux = (Elf_Auxinfo *) sp;
408 
409     /* Digest the auxiliary vector. */
410     for (i = 0;  i < AT_COUNT;  i++)
411 	aux_info[i] = NULL;
412     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
413 	if (auxp->a_type < AT_COUNT)
414 	    aux_info[auxp->a_type] = auxp;
415 #ifdef __powerpc__
416 	if (auxp->a_type == 23) /* AT_STACKPROT */
417 	    old_auxv_format = 0;
418 #endif
419     }
420 
421 #ifdef __powerpc__
422     if (old_auxv_format) {
423 	/* Remap from old-style auxv numbers. */
424 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
425 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
426 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
427 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
428 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
429 	aux_info[13] = NULL;		/* AT_GID */
430 
431 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
432 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
433 	aux_info[16] = aux_info[14];	/* AT_CANARY */
434 	aux_info[14] = NULL;		/* AT_EGID */
435     }
436 #endif
437 
438     /* Initialize and relocate ourselves. */
439     assert(aux_info[AT_BASE] != NULL);
440     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
441 
442     __progname = obj_rtld.path;
443     argv0 = argv[0] != NULL ? argv[0] : "(null)";
444     environ = env;
445     main_argc = argc;
446     main_argv = argv;
447 
448     if (aux_info[AT_BSDFLAGS] != NULL &&
449 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
450 	    ld_fast_sigblock = true;
451 
452     trust = !issetugid();
453 
454     md_abi_variant_hook(aux_info);
455 
456     fd = -1;
457     if (aux_info[AT_EXECFD] != NULL) {
458 	fd = aux_info[AT_EXECFD]->a_un.a_val;
459     } else {
460 	assert(aux_info[AT_PHDR] != NULL);
461 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
462 	if (phdr == obj_rtld.phdr) {
463 	    if (!trust) {
464 		_rtld_error("Tainted process refusing to run binary %s",
465 		    argv0);
466 		rtld_die();
467 	    }
468 	    dbg("opening main program in direct exec mode");
469 	    if (argc >= 2) {
470 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
471 		argv0 = argv[rtld_argc];
472 		explicit_fd = (fd != -1);
473 		binpath = NULL;
474 		if (!explicit_fd)
475 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
476 		if (fstat(fd, &st) == -1) {
477 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
478 		      explicit_fd ? "user-provided descriptor" : argv0,
479 		      rtld_strerror(errno));
480 		    rtld_die();
481 		}
482 
483 		/*
484 		 * Rough emulation of the permission checks done by
485 		 * execve(2), only Unix DACs are checked, ACLs are
486 		 * ignored.  Preserve the semantic of disabling owner
487 		 * to execute if owner x bit is cleared, even if
488 		 * others x bit is enabled.
489 		 * mmap(2) does not allow to mmap with PROT_EXEC if
490 		 * binary' file comes from noexec mount.  We cannot
491 		 * set a text reference on the binary.
492 		 */
493 		dir_enable = false;
494 		if (st.st_uid == geteuid()) {
495 		    if ((st.st_mode & S_IXUSR) != 0)
496 			dir_enable = true;
497 		} else if (st.st_gid == getegid()) {
498 		    if ((st.st_mode & S_IXGRP) != 0)
499 			dir_enable = true;
500 		} else if ((st.st_mode & S_IXOTH) != 0) {
501 		    dir_enable = true;
502 		}
503 		if (!dir_enable) {
504 		    _rtld_error("No execute permission for binary %s",
505 		        argv0);
506 		    rtld_die();
507 		}
508 
509 		/*
510 		 * For direct exec mode, argv[0] is the interpreter
511 		 * name, we must remove it and shift arguments left
512 		 * before invoking binary main.  Since stack layout
513 		 * places environment pointers and aux vectors right
514 		 * after the terminating NULL, we must shift
515 		 * environment and aux as well.
516 		 */
517 		main_argc = argc - rtld_argc;
518 		for (i = 0; i <= main_argc; i++)
519 		    argv[i] = argv[i + rtld_argc];
520 		*argcp -= rtld_argc;
521 		environ = env = envp = argv + main_argc + 1;
522 		dbg("move env from %p to %p", envp + rtld_argc, envp);
523 		do {
524 		    *envp = *(envp + rtld_argc);
525 		}  while (*envp++ != NULL);
526 		aux = auxp = (Elf_Auxinfo *)envp;
527 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
528 		dbg("move aux from %p to %p", auxpf, aux);
529 		/* XXXKIB insert place for AT_EXECPATH if not present */
530 		for (;; auxp++, auxpf++) {
531 		    *auxp = *auxpf;
532 		    if (auxp->a_type == AT_NULL)
533 			    break;
534 		}
535 		/* Since the auxiliary vector has moved, redigest it. */
536 		for (i = 0;  i < AT_COUNT;  i++)
537 		    aux_info[i] = NULL;
538 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
539 		    if (auxp->a_type < AT_COUNT)
540 			aux_info[auxp->a_type] = auxp;
541 		}
542 
543 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
544 		if (binpath == NULL) {
545 		    aux_info[AT_EXECPATH] = NULL;
546 		} else {
547 		    if (aux_info[AT_EXECPATH] == NULL) {
548 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
549 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
550 		    }
551 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
552 		      binpath);
553 		}
554 	    } else {
555 		_rtld_error("No binary");
556 		rtld_die();
557 	    }
558 	}
559     }
560 
561     ld_bind_now = getenv(_LD("BIND_NOW"));
562 
563     /*
564      * If the process is tainted, then we un-set the dangerous environment
565      * variables.  The process will be marked as tainted until setuid(2)
566      * is called.  If any child process calls setuid(2) we do not want any
567      * future processes to honor the potentially un-safe variables.
568      */
569     if (!trust) {
570 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
571 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
572 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
573 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
574 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
575 		_rtld_error("environment corrupt; aborting");
576 		rtld_die();
577 	}
578     }
579     ld_debug = getenv(_LD("DEBUG"));
580     if (ld_bind_now == NULL)
581 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
582     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
583     libmap_override = getenv(_LD("LIBMAP"));
584     ld_library_path = getenv(_LD("LIBRARY_PATH"));
585     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
586     ld_preload = getenv(_LD("PRELOAD"));
587     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
588     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
589     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
590     if (library_path_rpath != NULL) {
591 	    if (library_path_rpath[0] == 'y' ||
592 		library_path_rpath[0] == 'Y' ||
593 		library_path_rpath[0] == '1')
594 		    ld_library_path_rpath = true;
595 	    else
596 		    ld_library_path_rpath = false;
597     }
598     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
599 	(ld_library_path != NULL) || (ld_preload != NULL) ||
600 	(ld_elf_hints_path != NULL) || ld_loadfltr;
601     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
602     ld_utrace = getenv(_LD("UTRACE"));
603 
604     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
605 	ld_elf_hints_path = ld_elf_hints_default;
606 
607     if (ld_debug != NULL && *ld_debug != '\0')
608 	debug = 1;
609     dbg("%s is initialized, base address = %p", __progname,
610 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
611     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
612     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
613 
614     dbg("initializing thread locks");
615     lockdflt_init();
616 
617     /*
618      * Load the main program, or process its program header if it is
619      * already loaded.
620      */
621     if (fd != -1) {	/* Load the main program. */
622 	dbg("loading main program");
623 	obj_main = map_object(fd, argv0, NULL);
624 	close(fd);
625 	if (obj_main == NULL)
626 	    rtld_die();
627 	max_stack_flags = obj_main->stack_flags;
628     } else {				/* Main program already loaded. */
629 	dbg("processing main program's program header");
630 	assert(aux_info[AT_PHDR] != NULL);
631 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
632 	assert(aux_info[AT_PHNUM] != NULL);
633 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
634 	assert(aux_info[AT_PHENT] != NULL);
635 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
636 	assert(aux_info[AT_ENTRY] != NULL);
637 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
638 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
639 	    rtld_die();
640     }
641 
642     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
643 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
644 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
645 	    if (kexecpath[0] == '/')
646 		    obj_main->path = kexecpath;
647 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
648 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
649 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
650 		    obj_main->path = xstrdup(argv0);
651 	    else
652 		    obj_main->path = xstrdup(buf);
653     } else {
654 	    dbg("No AT_EXECPATH or direct exec");
655 	    obj_main->path = xstrdup(argv0);
656     }
657     dbg("obj_main path %s", obj_main->path);
658     obj_main->mainprog = true;
659 
660     if (aux_info[AT_STACKPROT] != NULL &&
661       aux_info[AT_STACKPROT]->a_un.a_val != 0)
662 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
663 
664 #ifndef COMPAT_32BIT
665     /*
666      * Get the actual dynamic linker pathname from the executable if
667      * possible.  (It should always be possible.)  That ensures that
668      * gdb will find the right dynamic linker even if a non-standard
669      * one is being used.
670      */
671     if (obj_main->interp != NULL &&
672       strcmp(obj_main->interp, obj_rtld.path) != 0) {
673 	free(obj_rtld.path);
674 	obj_rtld.path = xstrdup(obj_main->interp);
675         __progname = obj_rtld.path;
676     }
677 #endif
678 
679     if (!digest_dynamic(obj_main, 0))
680 	rtld_die();
681     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
682 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
683 	obj_main->dynsymcount);
684 
685     linkmap_add(obj_main);
686     linkmap_add(&obj_rtld);
687 
688     /* Link the main program into the list of objects. */
689     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
690     obj_count++;
691     obj_loads++;
692 
693     /* Initialize a fake symbol for resolving undefined weak references. */
694     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
695     sym_zero.st_shndx = SHN_UNDEF;
696     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
697 
698     if (!libmap_disable)
699         libmap_disable = (bool)lm_init(libmap_override);
700 
701     dbg("loading LD_PRELOAD libraries");
702     if (load_preload_objects() == -1)
703 	rtld_die();
704     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
705 
706     dbg("loading needed objects");
707     if (load_needed_objects(obj_main, 0) == -1)
708 	rtld_die();
709 
710     /* Make a list of all objects loaded at startup. */
711     last_interposer = obj_main;
712     TAILQ_FOREACH(obj, &obj_list, next) {
713 	if (obj->marker)
714 	    continue;
715 	if (obj->z_interpose && obj != obj_main) {
716 	    objlist_put_after(&list_main, last_interposer, obj);
717 	    last_interposer = obj;
718 	} else {
719 	    objlist_push_tail(&list_main, obj);
720 	}
721     	obj->refcount++;
722     }
723 
724     dbg("checking for required versions");
725     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
726 	rtld_die();
727 
728     if (ld_tracing) {		/* We're done */
729 	trace_loaded_objects(obj_main);
730 	exit(0);
731     }
732 
733     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
734        dump_relocations(obj_main);
735        exit (0);
736     }
737 
738     /*
739      * Processing tls relocations requires having the tls offsets
740      * initialized.  Prepare offsets before starting initial
741      * relocation processing.
742      */
743     dbg("initializing initial thread local storage offsets");
744     STAILQ_FOREACH(entry, &list_main, link) {
745 	/*
746 	 * Allocate all the initial objects out of the static TLS
747 	 * block even if they didn't ask for it.
748 	 */
749 	allocate_tls_offset(entry->obj);
750     }
751 
752     if (relocate_objects(obj_main,
753       ld_bind_now != NULL && *ld_bind_now != '\0',
754       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
755 	rtld_die();
756 
757     dbg("doing copy relocations");
758     if (do_copy_relocations(obj_main) == -1)
759 	rtld_die();
760 
761     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
762        dump_relocations(obj_main);
763        exit (0);
764     }
765 
766     ifunc_init(aux);
767 
768     /*
769      * Setup TLS for main thread.  This must be done after the
770      * relocations are processed, since tls initialization section
771      * might be the subject for relocations.
772      */
773     dbg("initializing initial thread local storage");
774     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
775 
776     dbg("initializing key program variables");
777     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
778     set_program_var("environ", env);
779     set_program_var("__elf_aux_vector", aux);
780 
781     /* Make a list of init functions to call. */
782     objlist_init(&initlist);
783     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
784       preload_tail, &initlist);
785 
786     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
787 
788     map_stacks_exec(NULL);
789 
790     if (!obj_main->crt_no_init) {
791 	/*
792 	 * Make sure we don't call the main program's init and fini
793 	 * functions for binaries linked with old crt1 which calls
794 	 * _init itself.
795 	 */
796 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
797 	obj_main->preinit_array = obj_main->init_array =
798 	    obj_main->fini_array = (Elf_Addr)NULL;
799     }
800 
801     /*
802      * Execute MD initializers required before we call the objects'
803      * init functions.
804      */
805     pre_init();
806 
807     wlock_acquire(rtld_bind_lock, &lockstate);
808 
809     dbg("resolving ifuncs");
810     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
811       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
812 	rtld_die();
813 
814     rtld_exit_ptr = rtld_exit;
815     if (obj_main->crt_no_init)
816 	preinit_main();
817     objlist_call_init(&initlist, &lockstate);
818     _r_debug_postinit(&obj_main->linkmap);
819     objlist_clear(&initlist);
820     dbg("loading filtees");
821     TAILQ_FOREACH(obj, &obj_list, next) {
822 	if (obj->marker)
823 	    continue;
824 	if (ld_loadfltr || obj->z_loadfltr)
825 	    load_filtees(obj, 0, &lockstate);
826     }
827 
828     dbg("enforcing main obj relro");
829     if (obj_enforce_relro(obj_main) == -1)
830 	rtld_die();
831 
832     lock_release(rtld_bind_lock, &lockstate);
833 
834     dbg("transferring control to program entry point = %p", obj_main->entry);
835 
836     /* Return the exit procedure and the program entry point. */
837     *exit_proc = rtld_exit_ptr;
838     *objp = obj_main;
839     return (func_ptr_type) obj_main->entry;
840 }
841 
842 void *
843 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
844 {
845 	void *ptr;
846 	Elf_Addr target;
847 
848 	ptr = (void *)make_function_pointer(def, obj);
849 	target = call_ifunc_resolver(ptr);
850 	return ((void *)target);
851 }
852 
853 /*
854  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
855  * Changes to this function should be applied there as well.
856  */
857 Elf_Addr
858 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
859 {
860     const Elf_Rel *rel;
861     const Elf_Sym *def;
862     const Obj_Entry *defobj;
863     Elf_Addr *where;
864     Elf_Addr target;
865     RtldLockState lockstate;
866 
867     rlock_acquire(rtld_bind_lock, &lockstate);
868     if (sigsetjmp(lockstate.env, 0) != 0)
869 	    lock_upgrade(rtld_bind_lock, &lockstate);
870     if (obj->pltrel)
871 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
872     else
873 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
874 
875     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
876     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
877 	NULL, &lockstate);
878     if (def == NULL)
879 	rtld_die();
880     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
881 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
882     else
883 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
884 
885     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
886       defobj->strtab + def->st_name, basename(obj->path),
887       (void *)target, basename(defobj->path));
888 
889     /*
890      * Write the new contents for the jmpslot. Note that depending on
891      * architecture, the value which we need to return back to the
892      * lazy binding trampoline may or may not be the target
893      * address. The value returned from reloc_jmpslot() is the value
894      * that the trampoline needs.
895      */
896     target = reloc_jmpslot(where, target, defobj, obj, rel);
897     lock_release(rtld_bind_lock, &lockstate);
898     return target;
899 }
900 
901 /*
902  * Error reporting function.  Use it like printf.  If formats the message
903  * into a buffer, and sets things up so that the next call to dlerror()
904  * will return the message.
905  */
906 void
907 _rtld_error(const char *fmt, ...)
908 {
909     static char buf[512];
910     va_list ap;
911 
912     va_start(ap, fmt);
913     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
914     error_message = buf;
915     va_end(ap);
916     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
917 }
918 
919 /*
920  * Return a dynamically-allocated copy of the current error message, if any.
921  */
922 static char *
923 errmsg_save(void)
924 {
925     return error_message == NULL ? NULL : xstrdup(error_message);
926 }
927 
928 /*
929  * Restore the current error message from a copy which was previously saved
930  * by errmsg_save().  The copy is freed.
931  */
932 static void
933 errmsg_restore(char *saved_msg)
934 {
935     if (saved_msg == NULL)
936 	error_message = NULL;
937     else {
938 	_rtld_error("%s", saved_msg);
939 	free(saved_msg);
940     }
941 }
942 
943 static const char *
944 basename(const char *name)
945 {
946     const char *p = strrchr(name, '/');
947     return p != NULL ? p + 1 : name;
948 }
949 
950 static struct utsname uts;
951 
952 static char *
953 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
954     const char *subst, bool may_free)
955 {
956 	char *p, *p1, *res, *resp;
957 	int subst_len, kw_len, subst_count, old_len, new_len;
958 
959 	kw_len = strlen(kw);
960 
961 	/*
962 	 * First, count the number of the keyword occurrences, to
963 	 * preallocate the final string.
964 	 */
965 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
966 		p1 = strstr(p, kw);
967 		if (p1 == NULL)
968 			break;
969 	}
970 
971 	/*
972 	 * If the keyword is not found, just return.
973 	 *
974 	 * Return non-substituted string if resolution failed.  We
975 	 * cannot do anything more reasonable, the failure mode of the
976 	 * caller is unresolved library anyway.
977 	 */
978 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
979 		return (may_free ? real : xstrdup(real));
980 	if (obj != NULL)
981 		subst = obj->origin_path;
982 
983 	/*
984 	 * There is indeed something to substitute.  Calculate the
985 	 * length of the resulting string, and allocate it.
986 	 */
987 	subst_len = strlen(subst);
988 	old_len = strlen(real);
989 	new_len = old_len + (subst_len - kw_len) * subst_count;
990 	res = xmalloc(new_len + 1);
991 
992 	/*
993 	 * Now, execute the substitution loop.
994 	 */
995 	for (p = real, resp = res, *resp = '\0';;) {
996 		p1 = strstr(p, kw);
997 		if (p1 != NULL) {
998 			/* Copy the prefix before keyword. */
999 			memcpy(resp, p, p1 - p);
1000 			resp += p1 - p;
1001 			/* Keyword replacement. */
1002 			memcpy(resp, subst, subst_len);
1003 			resp += subst_len;
1004 			*resp = '\0';
1005 			p = p1 + kw_len;
1006 		} else
1007 			break;
1008 	}
1009 
1010 	/* Copy to the end of string and finish. */
1011 	strcat(resp, p);
1012 	if (may_free)
1013 		free(real);
1014 	return (res);
1015 }
1016 
1017 static char *
1018 origin_subst(Obj_Entry *obj, const char *real)
1019 {
1020 	char *res1, *res2, *res3, *res4;
1021 
1022 	if (obj == NULL || !trust)
1023 		return (xstrdup(real));
1024 	if (uts.sysname[0] == '\0') {
1025 		if (uname(&uts) != 0) {
1026 			_rtld_error("utsname failed: %d", errno);
1027 			return (NULL);
1028 		}
1029 	}
1030 	/* __DECONST is safe here since without may_free real is unchanged */
1031 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1032 	    false);
1033 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1034 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1035 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1036 	return (res4);
1037 }
1038 
1039 void
1040 rtld_die(void)
1041 {
1042     const char *msg = dlerror();
1043 
1044     if (msg == NULL)
1045 	msg = "Fatal error";
1046     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1047     rtld_fdputstr(STDERR_FILENO, msg);
1048     rtld_fdputchar(STDERR_FILENO, '\n');
1049     _exit(1);
1050 }
1051 
1052 /*
1053  * Process a shared object's DYNAMIC section, and save the important
1054  * information in its Obj_Entry structure.
1055  */
1056 static void
1057 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1058     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1059 {
1060     const Elf_Dyn *dynp;
1061     Needed_Entry **needed_tail = &obj->needed;
1062     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1063     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1064     const Elf_Hashelt *hashtab;
1065     const Elf32_Word *hashval;
1066     Elf32_Word bkt, nmaskwords;
1067     int bloom_size32;
1068     int plttype = DT_REL;
1069 
1070     *dyn_rpath = NULL;
1071     *dyn_soname = NULL;
1072     *dyn_runpath = NULL;
1073 
1074     obj->bind_now = false;
1075     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1076 	switch (dynp->d_tag) {
1077 
1078 	case DT_REL:
1079 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1080 	    break;
1081 
1082 	case DT_RELSZ:
1083 	    obj->relsize = dynp->d_un.d_val;
1084 	    break;
1085 
1086 	case DT_RELENT:
1087 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1088 	    break;
1089 
1090 	case DT_JMPREL:
1091 	    obj->pltrel = (const Elf_Rel *)
1092 	      (obj->relocbase + dynp->d_un.d_ptr);
1093 	    break;
1094 
1095 	case DT_PLTRELSZ:
1096 	    obj->pltrelsize = dynp->d_un.d_val;
1097 	    break;
1098 
1099 	case DT_RELA:
1100 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1101 	    break;
1102 
1103 	case DT_RELASZ:
1104 	    obj->relasize = dynp->d_un.d_val;
1105 	    break;
1106 
1107 	case DT_RELAENT:
1108 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1109 	    break;
1110 
1111 	case DT_PLTREL:
1112 	    plttype = dynp->d_un.d_val;
1113 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1114 	    break;
1115 
1116 	case DT_SYMTAB:
1117 	    obj->symtab = (const Elf_Sym *)
1118 	      (obj->relocbase + dynp->d_un.d_ptr);
1119 	    break;
1120 
1121 	case DT_SYMENT:
1122 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1123 	    break;
1124 
1125 	case DT_STRTAB:
1126 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1127 	    break;
1128 
1129 	case DT_STRSZ:
1130 	    obj->strsize = dynp->d_un.d_val;
1131 	    break;
1132 
1133 	case DT_VERNEED:
1134 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1135 		dynp->d_un.d_val);
1136 	    break;
1137 
1138 	case DT_VERNEEDNUM:
1139 	    obj->verneednum = dynp->d_un.d_val;
1140 	    break;
1141 
1142 	case DT_VERDEF:
1143 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1144 		dynp->d_un.d_val);
1145 	    break;
1146 
1147 	case DT_VERDEFNUM:
1148 	    obj->verdefnum = dynp->d_un.d_val;
1149 	    break;
1150 
1151 	case DT_VERSYM:
1152 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1153 		dynp->d_un.d_val);
1154 	    break;
1155 
1156 	case DT_HASH:
1157 	    {
1158 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1159 		    dynp->d_un.d_ptr);
1160 		obj->nbuckets = hashtab[0];
1161 		obj->nchains = hashtab[1];
1162 		obj->buckets = hashtab + 2;
1163 		obj->chains = obj->buckets + obj->nbuckets;
1164 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1165 		  obj->buckets != NULL;
1166 	    }
1167 	    break;
1168 
1169 	case DT_GNU_HASH:
1170 	    {
1171 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1172 		    dynp->d_un.d_ptr);
1173 		obj->nbuckets_gnu = hashtab[0];
1174 		obj->symndx_gnu = hashtab[1];
1175 		nmaskwords = hashtab[2];
1176 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1177 		obj->maskwords_bm_gnu = nmaskwords - 1;
1178 		obj->shift2_gnu = hashtab[3];
1179 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1180 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1181 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1182 		  obj->symndx_gnu;
1183 		/* Number of bitmask words is required to be power of 2 */
1184 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1185 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1186 	    }
1187 	    break;
1188 
1189 	case DT_NEEDED:
1190 	    if (!obj->rtld) {
1191 		Needed_Entry *nep = NEW(Needed_Entry);
1192 		nep->name = dynp->d_un.d_val;
1193 		nep->obj = NULL;
1194 		nep->next = NULL;
1195 
1196 		*needed_tail = nep;
1197 		needed_tail = &nep->next;
1198 	    }
1199 	    break;
1200 
1201 	case DT_FILTER:
1202 	    if (!obj->rtld) {
1203 		Needed_Entry *nep = NEW(Needed_Entry);
1204 		nep->name = dynp->d_un.d_val;
1205 		nep->obj = NULL;
1206 		nep->next = NULL;
1207 
1208 		*needed_filtees_tail = nep;
1209 		needed_filtees_tail = &nep->next;
1210 	    }
1211 	    break;
1212 
1213 	case DT_AUXILIARY:
1214 	    if (!obj->rtld) {
1215 		Needed_Entry *nep = NEW(Needed_Entry);
1216 		nep->name = dynp->d_un.d_val;
1217 		nep->obj = NULL;
1218 		nep->next = NULL;
1219 
1220 		*needed_aux_filtees_tail = nep;
1221 		needed_aux_filtees_tail = &nep->next;
1222 	    }
1223 	    break;
1224 
1225 	case DT_PLTGOT:
1226 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1227 	    break;
1228 
1229 	case DT_TEXTREL:
1230 	    obj->textrel = true;
1231 	    break;
1232 
1233 	case DT_SYMBOLIC:
1234 	    obj->symbolic = true;
1235 	    break;
1236 
1237 	case DT_RPATH:
1238 	    /*
1239 	     * We have to wait until later to process this, because we
1240 	     * might not have gotten the address of the string table yet.
1241 	     */
1242 	    *dyn_rpath = dynp;
1243 	    break;
1244 
1245 	case DT_SONAME:
1246 	    *dyn_soname = dynp;
1247 	    break;
1248 
1249 	case DT_RUNPATH:
1250 	    *dyn_runpath = dynp;
1251 	    break;
1252 
1253 	case DT_INIT:
1254 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1255 	    break;
1256 
1257 	case DT_PREINIT_ARRAY:
1258 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1259 	    break;
1260 
1261 	case DT_PREINIT_ARRAYSZ:
1262 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1263 	    break;
1264 
1265 	case DT_INIT_ARRAY:
1266 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1267 	    break;
1268 
1269 	case DT_INIT_ARRAYSZ:
1270 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1271 	    break;
1272 
1273 	case DT_FINI:
1274 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1275 	    break;
1276 
1277 	case DT_FINI_ARRAY:
1278 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1279 	    break;
1280 
1281 	case DT_FINI_ARRAYSZ:
1282 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1283 	    break;
1284 
1285 	/*
1286 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1287 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1288 	 */
1289 
1290 #ifndef __mips__
1291 	case DT_DEBUG:
1292 	    if (!early)
1293 		dbg("Filling in DT_DEBUG entry");
1294 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1295 	    break;
1296 #endif
1297 
1298 	case DT_FLAGS:
1299 		if (dynp->d_un.d_val & DF_ORIGIN)
1300 		    obj->z_origin = true;
1301 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1302 		    obj->symbolic = true;
1303 		if (dynp->d_un.d_val & DF_TEXTREL)
1304 		    obj->textrel = true;
1305 		if (dynp->d_un.d_val & DF_BIND_NOW)
1306 		    obj->bind_now = true;
1307 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1308 		    obj->static_tls = true;
1309 	    break;
1310 #ifdef __mips__
1311 	case DT_MIPS_LOCAL_GOTNO:
1312 		obj->local_gotno = dynp->d_un.d_val;
1313 		break;
1314 
1315 	case DT_MIPS_SYMTABNO:
1316 		obj->symtabno = dynp->d_un.d_val;
1317 		break;
1318 
1319 	case DT_MIPS_GOTSYM:
1320 		obj->gotsym = dynp->d_un.d_val;
1321 		break;
1322 
1323 	case DT_MIPS_RLD_MAP:
1324 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1325 		break;
1326 
1327 	case DT_MIPS_RLD_MAP_REL:
1328 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1329 		// section relative to the address of the tag itself.
1330 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1331 		    (Elf_Addr) &r_debug;
1332 		break;
1333 
1334 	case DT_MIPS_PLTGOT:
1335 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1336 		    dynp->d_un.d_ptr);
1337 		break;
1338 
1339 #endif
1340 
1341 #ifdef __powerpc__
1342 #ifdef __powerpc64__
1343 	case DT_PPC64_GLINK:
1344 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1345 		break;
1346 #else
1347 	case DT_PPC_GOT:
1348 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1349 		break;
1350 #endif
1351 #endif
1352 
1353 	case DT_FLAGS_1:
1354 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1355 		    obj->z_noopen = true;
1356 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1357 		    obj->z_origin = true;
1358 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1359 		    obj->z_global = true;
1360 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1361 		    obj->bind_now = true;
1362 		if (dynp->d_un.d_val & DF_1_NODELETE)
1363 		    obj->z_nodelete = true;
1364 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1365 		    obj->z_loadfltr = true;
1366 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1367 		    obj->z_interpose = true;
1368 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1369 		    obj->z_nodeflib = true;
1370 	    break;
1371 
1372 	default:
1373 	    if (!early) {
1374 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1375 		    (long)dynp->d_tag);
1376 	    }
1377 	    break;
1378 	}
1379     }
1380 
1381     obj->traced = false;
1382 
1383     if (plttype == DT_RELA) {
1384 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1385 	obj->pltrel = NULL;
1386 	obj->pltrelasize = obj->pltrelsize;
1387 	obj->pltrelsize = 0;
1388     }
1389 
1390     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1391     if (obj->valid_hash_sysv)
1392 	obj->dynsymcount = obj->nchains;
1393     else if (obj->valid_hash_gnu) {
1394 	obj->dynsymcount = 0;
1395 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1396 	    if (obj->buckets_gnu[bkt] == 0)
1397 		continue;
1398 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1399 	    do
1400 		obj->dynsymcount++;
1401 	    while ((*hashval++ & 1u) == 0);
1402 	}
1403 	obj->dynsymcount += obj->symndx_gnu;
1404     }
1405 }
1406 
1407 static bool
1408 obj_resolve_origin(Obj_Entry *obj)
1409 {
1410 
1411 	if (obj->origin_path != NULL)
1412 		return (true);
1413 	obj->origin_path = xmalloc(PATH_MAX);
1414 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1415 }
1416 
1417 static bool
1418 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1419     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1420 {
1421 
1422 	if (obj->z_origin && !obj_resolve_origin(obj))
1423 		return (false);
1424 
1425 	if (dyn_runpath != NULL) {
1426 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1427 		obj->runpath = origin_subst(obj, obj->runpath);
1428 	} else if (dyn_rpath != NULL) {
1429 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1430 		obj->rpath = origin_subst(obj, obj->rpath);
1431 	}
1432 	if (dyn_soname != NULL)
1433 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1434 	return (true);
1435 }
1436 
1437 static bool
1438 digest_dynamic(Obj_Entry *obj, int early)
1439 {
1440 	const Elf_Dyn *dyn_rpath;
1441 	const Elf_Dyn *dyn_soname;
1442 	const Elf_Dyn *dyn_runpath;
1443 
1444 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1445 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1446 }
1447 
1448 /*
1449  * Process a shared object's program header.  This is used only for the
1450  * main program, when the kernel has already loaded the main program
1451  * into memory before calling the dynamic linker.  It creates and
1452  * returns an Obj_Entry structure.
1453  */
1454 static Obj_Entry *
1455 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1456 {
1457     Obj_Entry *obj;
1458     const Elf_Phdr *phlimit = phdr + phnum;
1459     const Elf_Phdr *ph;
1460     Elf_Addr note_start, note_end;
1461     int nsegs = 0;
1462 
1463     obj = obj_new();
1464     for (ph = phdr;  ph < phlimit;  ph++) {
1465 	if (ph->p_type != PT_PHDR)
1466 	    continue;
1467 
1468 	obj->phdr = phdr;
1469 	obj->phsize = ph->p_memsz;
1470 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1471 	break;
1472     }
1473 
1474     obj->stack_flags = PF_X | PF_R | PF_W;
1475 
1476     for (ph = phdr;  ph < phlimit;  ph++) {
1477 	switch (ph->p_type) {
1478 
1479 	case PT_INTERP:
1480 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1481 	    break;
1482 
1483 	case PT_LOAD:
1484 	    if (nsegs == 0) {	/* First load segment */
1485 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1486 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1487 	    } else {		/* Last load segment */
1488 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1489 		  obj->vaddrbase;
1490 	    }
1491 	    nsegs++;
1492 	    break;
1493 
1494 	case PT_DYNAMIC:
1495 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1496 	    break;
1497 
1498 	case PT_TLS:
1499 	    obj->tlsindex = 1;
1500 	    obj->tlssize = ph->p_memsz;
1501 	    obj->tlsalign = ph->p_align;
1502 	    obj->tlsinitsize = ph->p_filesz;
1503 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1504 	    obj->tlspoffset = ph->p_offset;
1505 	    break;
1506 
1507 	case PT_GNU_STACK:
1508 	    obj->stack_flags = ph->p_flags;
1509 	    break;
1510 
1511 	case PT_GNU_RELRO:
1512 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1513 	    obj->relro_size = round_page(ph->p_memsz);
1514 	    break;
1515 
1516 	case PT_NOTE:
1517 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1518 	    note_end = note_start + ph->p_filesz;
1519 	    digest_notes(obj, note_start, note_end);
1520 	    break;
1521 	}
1522     }
1523     if (nsegs < 1) {
1524 	_rtld_error("%s: too few PT_LOAD segments", path);
1525 	return NULL;
1526     }
1527 
1528     obj->entry = entry;
1529     return obj;
1530 }
1531 
1532 void
1533 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1534 {
1535 	const Elf_Note *note;
1536 	const char *note_name;
1537 	uintptr_t p;
1538 
1539 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1540 	    note = (const Elf_Note *)((const char *)(note + 1) +
1541 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1542 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1543 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1544 		    note->n_descsz != sizeof(int32_t))
1545 			continue;
1546 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1547 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1548 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1549 			continue;
1550 		note_name = (const char *)(note + 1);
1551 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1552 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1553 			continue;
1554 		switch (note->n_type) {
1555 		case NT_FREEBSD_ABI_TAG:
1556 			/* FreeBSD osrel note */
1557 			p = (uintptr_t)(note + 1);
1558 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1559 			obj->osrel = *(const int32_t *)(p);
1560 			dbg("note osrel %d", obj->osrel);
1561 			break;
1562 		case NT_FREEBSD_FEATURE_CTL:
1563 			/* FreeBSD ABI feature control note */
1564 			p = (uintptr_t)(note + 1);
1565 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1566 			obj->fctl0 = *(const uint32_t *)(p);
1567 			dbg("note fctl0 %#x", obj->fctl0);
1568 			break;
1569 		case NT_FREEBSD_NOINIT_TAG:
1570 			/* FreeBSD 'crt does not call init' note */
1571 			obj->crt_no_init = true;
1572 			dbg("note crt_no_init");
1573 			break;
1574 		}
1575 	}
1576 }
1577 
1578 static Obj_Entry *
1579 dlcheck(void *handle)
1580 {
1581     Obj_Entry *obj;
1582 
1583     TAILQ_FOREACH(obj, &obj_list, next) {
1584 	if (obj == (Obj_Entry *) handle)
1585 	    break;
1586     }
1587 
1588     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1589 	_rtld_error("Invalid shared object handle %p", handle);
1590 	return NULL;
1591     }
1592     return obj;
1593 }
1594 
1595 /*
1596  * If the given object is already in the donelist, return true.  Otherwise
1597  * add the object to the list and return false.
1598  */
1599 static bool
1600 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1601 {
1602     unsigned int i;
1603 
1604     for (i = 0;  i < dlp->num_used;  i++)
1605 	if (dlp->objs[i] == obj)
1606 	    return true;
1607     /*
1608      * Our donelist allocation should always be sufficient.  But if
1609      * our threads locking isn't working properly, more shared objects
1610      * could have been loaded since we allocated the list.  That should
1611      * never happen, but we'll handle it properly just in case it does.
1612      */
1613     if (dlp->num_used < dlp->num_alloc)
1614 	dlp->objs[dlp->num_used++] = obj;
1615     return false;
1616 }
1617 
1618 /*
1619  * Hash function for symbol table lookup.  Don't even think about changing
1620  * this.  It is specified by the System V ABI.
1621  */
1622 unsigned long
1623 elf_hash(const char *name)
1624 {
1625     const unsigned char *p = (const unsigned char *) name;
1626     unsigned long h = 0;
1627     unsigned long g;
1628 
1629     while (*p != '\0') {
1630 	h = (h << 4) + *p++;
1631 	if ((g = h & 0xf0000000) != 0)
1632 	    h ^= g >> 24;
1633 	h &= ~g;
1634     }
1635     return h;
1636 }
1637 
1638 /*
1639  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1640  * unsigned in case it's implemented with a wider type.
1641  */
1642 static uint32_t
1643 gnu_hash(const char *s)
1644 {
1645 	uint32_t h;
1646 	unsigned char c;
1647 
1648 	h = 5381;
1649 	for (c = *s; c != '\0'; c = *++s)
1650 		h = h * 33 + c;
1651 	return (h & 0xffffffff);
1652 }
1653 
1654 
1655 /*
1656  * Find the library with the given name, and return its full pathname.
1657  * The returned string is dynamically allocated.  Generates an error
1658  * message and returns NULL if the library cannot be found.
1659  *
1660  * If the second argument is non-NULL, then it refers to an already-
1661  * loaded shared object, whose library search path will be searched.
1662  *
1663  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1664  * descriptor (which is close-on-exec) will be passed out via the third
1665  * argument.
1666  *
1667  * The search order is:
1668  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1669  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1670  *   LD_LIBRARY_PATH
1671  *   DT_RUNPATH in the referencing file
1672  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1673  *	 from list)
1674  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1675  *
1676  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1677  */
1678 static char *
1679 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1680 {
1681 	char *pathname, *refobj_path;
1682 	const char *name;
1683 	bool nodeflib, objgiven;
1684 
1685 	objgiven = refobj != NULL;
1686 
1687 	if (libmap_disable || !objgiven ||
1688 	    (name = lm_find(refobj->path, xname)) == NULL)
1689 		name = xname;
1690 
1691 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1692 		if (name[0] != '/' && !trust) {
1693 			_rtld_error("Absolute pathname required "
1694 			    "for shared object \"%s\"", name);
1695 			return (NULL);
1696 		}
1697 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1698 		    __DECONST(char *, name)));
1699 	}
1700 
1701 	dbg(" Searching for \"%s\"", name);
1702 	refobj_path = objgiven ? refobj->path : NULL;
1703 
1704 	/*
1705 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1706 	 * back to pre-conforming behaviour if user requested so with
1707 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1708 	 * nodeflib.
1709 	 */
1710 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1711 		pathname = search_library_path(name, ld_library_path,
1712 		    refobj_path, fdp);
1713 		if (pathname != NULL)
1714 			return (pathname);
1715 		if (refobj != NULL) {
1716 			pathname = search_library_path(name, refobj->rpath,
1717 			    refobj_path, fdp);
1718 			if (pathname != NULL)
1719 				return (pathname);
1720 		}
1721 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1722 		if (pathname != NULL)
1723 			return (pathname);
1724 		pathname = search_library_path(name, gethints(false),
1725 		    refobj_path, fdp);
1726 		if (pathname != NULL)
1727 			return (pathname);
1728 		pathname = search_library_path(name, ld_standard_library_path,
1729 		    refobj_path, fdp);
1730 		if (pathname != NULL)
1731 			return (pathname);
1732 	} else {
1733 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1734 		if (objgiven) {
1735 			pathname = search_library_path(name, refobj->rpath,
1736 			    refobj->path, fdp);
1737 			if (pathname != NULL)
1738 				return (pathname);
1739 		}
1740 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1741 			pathname = search_library_path(name, obj_main->rpath,
1742 			    refobj_path, fdp);
1743 			if (pathname != NULL)
1744 				return (pathname);
1745 		}
1746 		pathname = search_library_path(name, ld_library_path,
1747 		    refobj_path, fdp);
1748 		if (pathname != NULL)
1749 			return (pathname);
1750 		if (objgiven) {
1751 			pathname = search_library_path(name, refobj->runpath,
1752 			    refobj_path, fdp);
1753 			if (pathname != NULL)
1754 				return (pathname);
1755 		}
1756 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1757 		if (pathname != NULL)
1758 			return (pathname);
1759 		pathname = search_library_path(name, gethints(nodeflib),
1760 		    refobj_path, fdp);
1761 		if (pathname != NULL)
1762 			return (pathname);
1763 		if (objgiven && !nodeflib) {
1764 			pathname = search_library_path(name,
1765 			    ld_standard_library_path, refobj_path, fdp);
1766 			if (pathname != NULL)
1767 				return (pathname);
1768 		}
1769 	}
1770 
1771 	if (objgiven && refobj->path != NULL) {
1772 		_rtld_error("Shared object \"%s\" not found, "
1773 		    "required by \"%s\"", name, basename(refobj->path));
1774 	} else {
1775 		_rtld_error("Shared object \"%s\" not found", name);
1776 	}
1777 	return (NULL);
1778 }
1779 
1780 /*
1781  * Given a symbol number in a referencing object, find the corresponding
1782  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1783  * no definition was found.  Returns a pointer to the Obj_Entry of the
1784  * defining object via the reference parameter DEFOBJ_OUT.
1785  */
1786 const Elf_Sym *
1787 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1788     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1789     RtldLockState *lockstate)
1790 {
1791     const Elf_Sym *ref;
1792     const Elf_Sym *def;
1793     const Obj_Entry *defobj;
1794     const Ver_Entry *ve;
1795     SymLook req;
1796     const char *name;
1797     int res;
1798 
1799     /*
1800      * If we have already found this symbol, get the information from
1801      * the cache.
1802      */
1803     if (symnum >= refobj->dynsymcount)
1804 	return NULL;	/* Bad object */
1805     if (cache != NULL && cache[symnum].sym != NULL) {
1806 	*defobj_out = cache[symnum].obj;
1807 	return cache[symnum].sym;
1808     }
1809 
1810     ref = refobj->symtab + symnum;
1811     name = refobj->strtab + ref->st_name;
1812     def = NULL;
1813     defobj = NULL;
1814     ve = NULL;
1815 
1816     /*
1817      * We don't have to do a full scale lookup if the symbol is local.
1818      * We know it will bind to the instance in this load module; to
1819      * which we already have a pointer (ie ref). By not doing a lookup,
1820      * we not only improve performance, but it also avoids unresolvable
1821      * symbols when local symbols are not in the hash table. This has
1822      * been seen with the ia64 toolchain.
1823      */
1824     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1825 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1826 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1827 		symnum);
1828 	}
1829 	symlook_init(&req, name);
1830 	req.flags = flags;
1831 	ve = req.ventry = fetch_ventry(refobj, symnum);
1832 	req.lockstate = lockstate;
1833 	res = symlook_default(&req, refobj);
1834 	if (res == 0) {
1835 	    def = req.sym_out;
1836 	    defobj = req.defobj_out;
1837 	}
1838     } else {
1839 	def = ref;
1840 	defobj = refobj;
1841     }
1842 
1843     /*
1844      * If we found no definition and the reference is weak, treat the
1845      * symbol as having the value zero.
1846      */
1847     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1848 	def = &sym_zero;
1849 	defobj = obj_main;
1850     }
1851 
1852     if (def != NULL) {
1853 	*defobj_out = defobj;
1854 	/* Record the information in the cache to avoid subsequent lookups. */
1855 	if (cache != NULL) {
1856 	    cache[symnum].sym = def;
1857 	    cache[symnum].obj = defobj;
1858 	}
1859     } else {
1860 	if (refobj != &obj_rtld)
1861 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1862 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1863     }
1864     return def;
1865 }
1866 
1867 /*
1868  * Return the search path from the ldconfig hints file, reading it if
1869  * necessary.  If nostdlib is true, then the default search paths are
1870  * not added to result.
1871  *
1872  * Returns NULL if there are problems with the hints file,
1873  * or if the search path there is empty.
1874  */
1875 static const char *
1876 gethints(bool nostdlib)
1877 {
1878 	static char *filtered_path;
1879 	static const char *hints;
1880 	static struct elfhints_hdr hdr;
1881 	struct fill_search_info_args sargs, hargs;
1882 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1883 	struct dl_serpath *SLPpath, *hintpath;
1884 	char *p;
1885 	struct stat hint_stat;
1886 	unsigned int SLPndx, hintndx, fndx, fcount;
1887 	int fd;
1888 	size_t flen;
1889 	uint32_t dl;
1890 	bool skip;
1891 
1892 	/* First call, read the hints file */
1893 	if (hints == NULL) {
1894 		/* Keep from trying again in case the hints file is bad. */
1895 		hints = "";
1896 
1897 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1898 			return (NULL);
1899 
1900 		/*
1901 		 * Check of hdr.dirlistlen value against type limit
1902 		 * intends to pacify static analyzers.  Further
1903 		 * paranoia leads to checks that dirlist is fully
1904 		 * contained in the file range.
1905 		 */
1906 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1907 		    hdr.magic != ELFHINTS_MAGIC ||
1908 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1909 		    fstat(fd, &hint_stat) == -1) {
1910 cleanup1:
1911 			close(fd);
1912 			hdr.dirlistlen = 0;
1913 			return (NULL);
1914 		}
1915 		dl = hdr.strtab;
1916 		if (dl + hdr.dirlist < dl)
1917 			goto cleanup1;
1918 		dl += hdr.dirlist;
1919 		if (dl + hdr.dirlistlen < dl)
1920 			goto cleanup1;
1921 		dl += hdr.dirlistlen;
1922 		if (dl > hint_stat.st_size)
1923 			goto cleanup1;
1924 		p = xmalloc(hdr.dirlistlen + 1);
1925 		if (pread(fd, p, hdr.dirlistlen + 1,
1926 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1927 		    p[hdr.dirlistlen] != '\0') {
1928 			free(p);
1929 			goto cleanup1;
1930 		}
1931 		hints = p;
1932 		close(fd);
1933 	}
1934 
1935 	/*
1936 	 * If caller agreed to receive list which includes the default
1937 	 * paths, we are done. Otherwise, if we still did not
1938 	 * calculated filtered result, do it now.
1939 	 */
1940 	if (!nostdlib)
1941 		return (hints[0] != '\0' ? hints : NULL);
1942 	if (filtered_path != NULL)
1943 		goto filt_ret;
1944 
1945 	/*
1946 	 * Obtain the list of all configured search paths, and the
1947 	 * list of the default paths.
1948 	 *
1949 	 * First estimate the size of the results.
1950 	 */
1951 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1952 	smeta.dls_cnt = 0;
1953 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1954 	hmeta.dls_cnt = 0;
1955 
1956 	sargs.request = RTLD_DI_SERINFOSIZE;
1957 	sargs.serinfo = &smeta;
1958 	hargs.request = RTLD_DI_SERINFOSIZE;
1959 	hargs.serinfo = &hmeta;
1960 
1961 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1962 	    &sargs);
1963 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1964 
1965 	SLPinfo = xmalloc(smeta.dls_size);
1966 	hintinfo = xmalloc(hmeta.dls_size);
1967 
1968 	/*
1969 	 * Next fetch both sets of paths.
1970 	 */
1971 	sargs.request = RTLD_DI_SERINFO;
1972 	sargs.serinfo = SLPinfo;
1973 	sargs.serpath = &SLPinfo->dls_serpath[0];
1974 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1975 
1976 	hargs.request = RTLD_DI_SERINFO;
1977 	hargs.serinfo = hintinfo;
1978 	hargs.serpath = &hintinfo->dls_serpath[0];
1979 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1980 
1981 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1982 	    &sargs);
1983 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1984 
1985 	/*
1986 	 * Now calculate the difference between two sets, by excluding
1987 	 * standard paths from the full set.
1988 	 */
1989 	fndx = 0;
1990 	fcount = 0;
1991 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1992 	hintpath = &hintinfo->dls_serpath[0];
1993 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1994 		skip = false;
1995 		SLPpath = &SLPinfo->dls_serpath[0];
1996 		/*
1997 		 * Check each standard path against current.
1998 		 */
1999 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2000 			/* matched, skip the path */
2001 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2002 				skip = true;
2003 				break;
2004 			}
2005 		}
2006 		if (skip)
2007 			continue;
2008 		/*
2009 		 * Not matched against any standard path, add the path
2010 		 * to result. Separate consequtive paths with ':'.
2011 		 */
2012 		if (fcount > 0) {
2013 			filtered_path[fndx] = ':';
2014 			fndx++;
2015 		}
2016 		fcount++;
2017 		flen = strlen(hintpath->dls_name);
2018 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2019 		fndx += flen;
2020 	}
2021 	filtered_path[fndx] = '\0';
2022 
2023 	free(SLPinfo);
2024 	free(hintinfo);
2025 
2026 filt_ret:
2027 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2028 }
2029 
2030 static void
2031 init_dag(Obj_Entry *root)
2032 {
2033     const Needed_Entry *needed;
2034     const Objlist_Entry *elm;
2035     DoneList donelist;
2036 
2037     if (root->dag_inited)
2038 	return;
2039     donelist_init(&donelist);
2040 
2041     /* Root object belongs to own DAG. */
2042     objlist_push_tail(&root->dldags, root);
2043     objlist_push_tail(&root->dagmembers, root);
2044     donelist_check(&donelist, root);
2045 
2046     /*
2047      * Add dependencies of root object to DAG in breadth order
2048      * by exploiting the fact that each new object get added
2049      * to the tail of the dagmembers list.
2050      */
2051     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2052 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2053 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2054 		continue;
2055 	    objlist_push_tail(&needed->obj->dldags, root);
2056 	    objlist_push_tail(&root->dagmembers, needed->obj);
2057 	}
2058     }
2059     root->dag_inited = true;
2060 }
2061 
2062 static void
2063 init_marker(Obj_Entry *marker)
2064 {
2065 
2066 	bzero(marker, sizeof(*marker));
2067 	marker->marker = true;
2068 }
2069 
2070 Obj_Entry *
2071 globallist_curr(const Obj_Entry *obj)
2072 {
2073 
2074 	for (;;) {
2075 		if (obj == NULL)
2076 			return (NULL);
2077 		if (!obj->marker)
2078 			return (__DECONST(Obj_Entry *, obj));
2079 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2080 	}
2081 }
2082 
2083 Obj_Entry *
2084 globallist_next(const Obj_Entry *obj)
2085 {
2086 
2087 	for (;;) {
2088 		obj = TAILQ_NEXT(obj, next);
2089 		if (obj == NULL)
2090 			return (NULL);
2091 		if (!obj->marker)
2092 			return (__DECONST(Obj_Entry *, obj));
2093 	}
2094 }
2095 
2096 /* Prevent the object from being unmapped while the bind lock is dropped. */
2097 static void
2098 hold_object(Obj_Entry *obj)
2099 {
2100 
2101 	obj->holdcount++;
2102 }
2103 
2104 static void
2105 unhold_object(Obj_Entry *obj)
2106 {
2107 
2108 	assert(obj->holdcount > 0);
2109 	if (--obj->holdcount == 0 && obj->unholdfree)
2110 		release_object(obj);
2111 }
2112 
2113 static void
2114 process_z(Obj_Entry *root)
2115 {
2116 	const Objlist_Entry *elm;
2117 	Obj_Entry *obj;
2118 
2119 	/*
2120 	 * Walk over object DAG and process every dependent object
2121 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2122 	 * to grow their own DAG.
2123 	 *
2124 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2125 	 * symlook_global() to work.
2126 	 *
2127 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2128 	 */
2129 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2130 		obj = elm->obj;
2131 		if (obj == NULL)
2132 			continue;
2133 		if (obj->z_nodelete && !obj->ref_nodel) {
2134 			dbg("obj %s -z nodelete", obj->path);
2135 			init_dag(obj);
2136 			ref_dag(obj);
2137 			obj->ref_nodel = true;
2138 		}
2139 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2140 			dbg("obj %s -z global", obj->path);
2141 			objlist_push_tail(&list_global, obj);
2142 			init_dag(obj);
2143 		}
2144 	}
2145 }
2146 /*
2147  * Initialize the dynamic linker.  The argument is the address at which
2148  * the dynamic linker has been mapped into memory.  The primary task of
2149  * this function is to relocate the dynamic linker.
2150  */
2151 static void
2152 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2153 {
2154     Obj_Entry objtmp;	/* Temporary rtld object */
2155     const Elf_Ehdr *ehdr;
2156     const Elf_Dyn *dyn_rpath;
2157     const Elf_Dyn *dyn_soname;
2158     const Elf_Dyn *dyn_runpath;
2159 
2160 #ifdef RTLD_INIT_PAGESIZES_EARLY
2161     /* The page size is required by the dynamic memory allocator. */
2162     init_pagesizes(aux_info);
2163 #endif
2164 
2165     /*
2166      * Conjure up an Obj_Entry structure for the dynamic linker.
2167      *
2168      * The "path" member can't be initialized yet because string constants
2169      * cannot yet be accessed. Below we will set it correctly.
2170      */
2171     memset(&objtmp, 0, sizeof(objtmp));
2172     objtmp.path = NULL;
2173     objtmp.rtld = true;
2174     objtmp.mapbase = mapbase;
2175 #ifdef PIC
2176     objtmp.relocbase = mapbase;
2177 #endif
2178 
2179     objtmp.dynamic = rtld_dynamic(&objtmp);
2180     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2181     assert(objtmp.needed == NULL);
2182 #if !defined(__mips__)
2183     /* MIPS has a bogus DT_TEXTREL. */
2184     assert(!objtmp.textrel);
2185 #endif
2186     /*
2187      * Temporarily put the dynamic linker entry into the object list, so
2188      * that symbols can be found.
2189      */
2190     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2191 
2192     ehdr = (Elf_Ehdr *)mapbase;
2193     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2194     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2195 
2196     /* Initialize the object list. */
2197     TAILQ_INIT(&obj_list);
2198 
2199     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2200     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2201 
2202 #ifndef RTLD_INIT_PAGESIZES_EARLY
2203     /* The page size is required by the dynamic memory allocator. */
2204     init_pagesizes(aux_info);
2205 #endif
2206 
2207     if (aux_info[AT_OSRELDATE] != NULL)
2208 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2209 
2210     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2211 
2212     /* Replace the path with a dynamically allocated copy. */
2213     obj_rtld.path = xstrdup(ld_path_rtld);
2214 
2215     r_debug.r_brk = r_debug_state;
2216     r_debug.r_state = RT_CONSISTENT;
2217 }
2218 
2219 /*
2220  * Retrieve the array of supported page sizes.  The kernel provides the page
2221  * sizes in increasing order.
2222  */
2223 static void
2224 init_pagesizes(Elf_Auxinfo **aux_info)
2225 {
2226 	static size_t psa[MAXPAGESIZES];
2227 	int mib[2];
2228 	size_t len, size;
2229 
2230 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2231 	    NULL) {
2232 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2233 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2234 	} else {
2235 		len = 2;
2236 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2237 			size = sizeof(psa);
2238 		else {
2239 			/* As a fallback, retrieve the base page size. */
2240 			size = sizeof(psa[0]);
2241 			if (aux_info[AT_PAGESZ] != NULL) {
2242 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2243 				goto psa_filled;
2244 			} else {
2245 				mib[0] = CTL_HW;
2246 				mib[1] = HW_PAGESIZE;
2247 				len = 2;
2248 			}
2249 		}
2250 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2251 			_rtld_error("sysctl for hw.pagesize(s) failed");
2252 			rtld_die();
2253 		}
2254 psa_filled:
2255 		pagesizes = psa;
2256 	}
2257 	npagesizes = size / sizeof(pagesizes[0]);
2258 	/* Discard any invalid entries at the end of the array. */
2259 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2260 		npagesizes--;
2261 }
2262 
2263 /*
2264  * Add the init functions from a needed object list (and its recursive
2265  * needed objects) to "list".  This is not used directly; it is a helper
2266  * function for initlist_add_objects().  The write lock must be held
2267  * when this function is called.
2268  */
2269 static void
2270 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2271 {
2272     /* Recursively process the successor needed objects. */
2273     if (needed->next != NULL)
2274 	initlist_add_neededs(needed->next, list);
2275 
2276     /* Process the current needed object. */
2277     if (needed->obj != NULL)
2278 	initlist_add_objects(needed->obj, needed->obj, list);
2279 }
2280 
2281 /*
2282  * Scan all of the DAGs rooted in the range of objects from "obj" to
2283  * "tail" and add their init functions to "list".  This recurses over
2284  * the DAGs and ensure the proper init ordering such that each object's
2285  * needed libraries are initialized before the object itself.  At the
2286  * same time, this function adds the objects to the global finalization
2287  * list "list_fini" in the opposite order.  The write lock must be
2288  * held when this function is called.
2289  */
2290 static void
2291 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2292 {
2293     Obj_Entry *nobj;
2294 
2295     if (obj->init_scanned || obj->init_done)
2296 	return;
2297     obj->init_scanned = true;
2298 
2299     /* Recursively process the successor objects. */
2300     nobj = globallist_next(obj);
2301     if (nobj != NULL && obj != tail)
2302 	initlist_add_objects(nobj, tail, list);
2303 
2304     /* Recursively process the needed objects. */
2305     if (obj->needed != NULL)
2306 	initlist_add_neededs(obj->needed, list);
2307     if (obj->needed_filtees != NULL)
2308 	initlist_add_neededs(obj->needed_filtees, list);
2309     if (obj->needed_aux_filtees != NULL)
2310 	initlist_add_neededs(obj->needed_aux_filtees, list);
2311 
2312     /* Add the object to the init list. */
2313     objlist_push_tail(list, obj);
2314 
2315     /* Add the object to the global fini list in the reverse order. */
2316     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2317       && !obj->on_fini_list) {
2318 	objlist_push_head(&list_fini, obj);
2319 	obj->on_fini_list = true;
2320     }
2321 }
2322 
2323 #ifndef FPTR_TARGET
2324 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2325 #endif
2326 
2327 static void
2328 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2329 {
2330     Needed_Entry *needed, *needed1;
2331 
2332     for (needed = n; needed != NULL; needed = needed->next) {
2333 	if (needed->obj != NULL) {
2334 	    dlclose_locked(needed->obj, lockstate);
2335 	    needed->obj = NULL;
2336 	}
2337     }
2338     for (needed = n; needed != NULL; needed = needed1) {
2339 	needed1 = needed->next;
2340 	free(needed);
2341     }
2342 }
2343 
2344 static void
2345 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2346 {
2347 
2348 	free_needed_filtees(obj->needed_filtees, lockstate);
2349 	obj->needed_filtees = NULL;
2350 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2351 	obj->needed_aux_filtees = NULL;
2352 	obj->filtees_loaded = false;
2353 }
2354 
2355 static void
2356 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2357     RtldLockState *lockstate)
2358 {
2359 
2360     for (; needed != NULL; needed = needed->next) {
2361 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2362 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2363 	  RTLD_LOCAL, lockstate);
2364     }
2365 }
2366 
2367 static void
2368 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2369 {
2370 
2371     lock_restart_for_upgrade(lockstate);
2372     if (!obj->filtees_loaded) {
2373 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2374 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2375 	obj->filtees_loaded = true;
2376     }
2377 }
2378 
2379 static int
2380 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2381 {
2382     Obj_Entry *obj1;
2383 
2384     for (; needed != NULL; needed = needed->next) {
2385 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2386 	  flags & ~RTLD_LO_NOLOAD);
2387 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2388 	    return (-1);
2389     }
2390     return (0);
2391 }
2392 
2393 /*
2394  * Given a shared object, traverse its list of needed objects, and load
2395  * each of them.  Returns 0 on success.  Generates an error message and
2396  * returns -1 on failure.
2397  */
2398 static int
2399 load_needed_objects(Obj_Entry *first, int flags)
2400 {
2401     Obj_Entry *obj;
2402 
2403     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2404 	if (obj->marker)
2405 	    continue;
2406 	if (process_needed(obj, obj->needed, flags) == -1)
2407 	    return (-1);
2408     }
2409     return (0);
2410 }
2411 
2412 static int
2413 load_preload_objects(void)
2414 {
2415     char *p = ld_preload;
2416     Obj_Entry *obj;
2417     static const char delim[] = " \t:;";
2418 
2419     if (p == NULL)
2420 	return 0;
2421 
2422     p += strspn(p, delim);
2423     while (*p != '\0') {
2424 	size_t len = strcspn(p, delim);
2425 	char savech;
2426 
2427 	savech = p[len];
2428 	p[len] = '\0';
2429 	obj = load_object(p, -1, NULL, 0);
2430 	if (obj == NULL)
2431 	    return -1;	/* XXX - cleanup */
2432 	obj->z_interpose = true;
2433 	p[len] = savech;
2434 	p += len;
2435 	p += strspn(p, delim);
2436     }
2437     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2438     return 0;
2439 }
2440 
2441 static const char *
2442 printable_path(const char *path)
2443 {
2444 
2445 	return (path == NULL ? "<unknown>" : path);
2446 }
2447 
2448 /*
2449  * Load a shared object into memory, if it is not already loaded.  The
2450  * object may be specified by name or by user-supplied file descriptor
2451  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2452  * duplicate is.
2453  *
2454  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2455  * on failure.
2456  */
2457 static Obj_Entry *
2458 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2459 {
2460     Obj_Entry *obj;
2461     int fd;
2462     struct stat sb;
2463     char *path;
2464 
2465     fd = -1;
2466     if (name != NULL) {
2467 	TAILQ_FOREACH(obj, &obj_list, next) {
2468 	    if (obj->marker || obj->doomed)
2469 		continue;
2470 	    if (object_match_name(obj, name))
2471 		return (obj);
2472 	}
2473 
2474 	path = find_library(name, refobj, &fd);
2475 	if (path == NULL)
2476 	    return (NULL);
2477     } else
2478 	path = NULL;
2479 
2480     if (fd >= 0) {
2481 	/*
2482 	 * search_library_pathfds() opens a fresh file descriptor for the
2483 	 * library, so there is no need to dup().
2484 	 */
2485     } else if (fd_u == -1) {
2486 	/*
2487 	 * If we didn't find a match by pathname, or the name is not
2488 	 * supplied, open the file and check again by device and inode.
2489 	 * This avoids false mismatches caused by multiple links or ".."
2490 	 * in pathnames.
2491 	 *
2492 	 * To avoid a race, we open the file and use fstat() rather than
2493 	 * using stat().
2494 	 */
2495 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2496 	    _rtld_error("Cannot open \"%s\"", path);
2497 	    free(path);
2498 	    return (NULL);
2499 	}
2500     } else {
2501 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2502 	if (fd == -1) {
2503 	    _rtld_error("Cannot dup fd");
2504 	    free(path);
2505 	    return (NULL);
2506 	}
2507     }
2508     if (fstat(fd, &sb) == -1) {
2509 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2510 	close(fd);
2511 	free(path);
2512 	return NULL;
2513     }
2514     TAILQ_FOREACH(obj, &obj_list, next) {
2515 	if (obj->marker || obj->doomed)
2516 	    continue;
2517 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2518 	    break;
2519     }
2520     if (obj != NULL && name != NULL) {
2521 	object_add_name(obj, name);
2522 	free(path);
2523 	close(fd);
2524 	return obj;
2525     }
2526     if (flags & RTLD_LO_NOLOAD) {
2527 	free(path);
2528 	close(fd);
2529 	return (NULL);
2530     }
2531 
2532     /* First use of this object, so we must map it in */
2533     obj = do_load_object(fd, name, path, &sb, flags);
2534     if (obj == NULL)
2535 	free(path);
2536     close(fd);
2537 
2538     return obj;
2539 }
2540 
2541 static Obj_Entry *
2542 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2543   int flags)
2544 {
2545     Obj_Entry *obj;
2546     struct statfs fs;
2547 
2548     /*
2549      * but first, make sure that environment variables haven't been
2550      * used to circumvent the noexec flag on a filesystem.
2551      */
2552     if (dangerous_ld_env) {
2553 	if (fstatfs(fd, &fs) != 0) {
2554 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2555 	    return NULL;
2556 	}
2557 	if (fs.f_flags & MNT_NOEXEC) {
2558 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2559 	    return NULL;
2560 	}
2561     }
2562     dbg("loading \"%s\"", printable_path(path));
2563     obj = map_object(fd, printable_path(path), sbp);
2564     if (obj == NULL)
2565         return NULL;
2566 
2567     /*
2568      * If DT_SONAME is present in the object, digest_dynamic2 already
2569      * added it to the object names.
2570      */
2571     if (name != NULL)
2572 	object_add_name(obj, name);
2573     obj->path = path;
2574     if (!digest_dynamic(obj, 0))
2575 	goto errp;
2576     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2577 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2578     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2579       RTLD_LO_DLOPEN) {
2580 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2581 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2582 	goto errp;
2583     }
2584 
2585     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2586     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2587     obj_count++;
2588     obj_loads++;
2589     linkmap_add(obj);	/* for GDB & dlinfo() */
2590     max_stack_flags |= obj->stack_flags;
2591 
2592     dbg("  %p .. %p: %s", obj->mapbase,
2593          obj->mapbase + obj->mapsize - 1, obj->path);
2594     if (obj->textrel)
2595 	dbg("  WARNING: %s has impure text", obj->path);
2596     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2597 	obj->path);
2598 
2599     return (obj);
2600 
2601 errp:
2602     munmap(obj->mapbase, obj->mapsize);
2603     obj_free(obj);
2604     return (NULL);
2605 }
2606 
2607 static Obj_Entry *
2608 obj_from_addr(const void *addr)
2609 {
2610     Obj_Entry *obj;
2611 
2612     TAILQ_FOREACH(obj, &obj_list, next) {
2613 	if (obj->marker)
2614 	    continue;
2615 	if (addr < (void *) obj->mapbase)
2616 	    continue;
2617 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2618 	    return obj;
2619     }
2620     return NULL;
2621 }
2622 
2623 static void
2624 preinit_main(void)
2625 {
2626     Elf_Addr *preinit_addr;
2627     int index;
2628 
2629     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2630     if (preinit_addr == NULL)
2631 	return;
2632 
2633     for (index = 0; index < obj_main->preinit_array_num; index++) {
2634 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2635 	    dbg("calling preinit function for %s at %p", obj_main->path,
2636 	      (void *)preinit_addr[index]);
2637 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2638 	      0, 0, obj_main->path);
2639 	    call_init_pointer(obj_main, preinit_addr[index]);
2640 	}
2641     }
2642 }
2643 
2644 /*
2645  * Call the finalization functions for each of the objects in "list"
2646  * belonging to the DAG of "root" and referenced once. If NULL "root"
2647  * is specified, every finalization function will be called regardless
2648  * of the reference count and the list elements won't be freed. All of
2649  * the objects are expected to have non-NULL fini functions.
2650  */
2651 static void
2652 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2653 {
2654     Objlist_Entry *elm;
2655     char *saved_msg;
2656     Elf_Addr *fini_addr;
2657     int index;
2658 
2659     assert(root == NULL || root->refcount == 1);
2660 
2661     if (root != NULL)
2662 	root->doomed = true;
2663 
2664     /*
2665      * Preserve the current error message since a fini function might
2666      * call into the dynamic linker and overwrite it.
2667      */
2668     saved_msg = errmsg_save();
2669     do {
2670 	STAILQ_FOREACH(elm, list, link) {
2671 	    if (root != NULL && (elm->obj->refcount != 1 ||
2672 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2673 		continue;
2674 	    /* Remove object from fini list to prevent recursive invocation. */
2675 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2676 	    /* Ensure that new references cannot be acquired. */
2677 	    elm->obj->doomed = true;
2678 
2679 	    hold_object(elm->obj);
2680 	    lock_release(rtld_bind_lock, lockstate);
2681 	    /*
2682 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2683 	     * When this happens, DT_FINI_ARRAY is processed first.
2684 	     */
2685 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2686 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2687 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2688 		  index--) {
2689 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2690 			dbg("calling fini function for %s at %p",
2691 			    elm->obj->path, (void *)fini_addr[index]);
2692 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2693 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2694 			call_initfini_pointer(elm->obj, fini_addr[index]);
2695 		    }
2696 		}
2697 	    }
2698 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2699 		dbg("calling fini function for %s at %p", elm->obj->path,
2700 		    (void *)elm->obj->fini);
2701 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2702 		    0, 0, elm->obj->path);
2703 		call_initfini_pointer(elm->obj, elm->obj->fini);
2704 	    }
2705 	    wlock_acquire(rtld_bind_lock, lockstate);
2706 	    unhold_object(elm->obj);
2707 	    /* No need to free anything if process is going down. */
2708 	    if (root != NULL)
2709 	    	free(elm);
2710 	    /*
2711 	     * We must restart the list traversal after every fini call
2712 	     * because a dlclose() call from the fini function or from
2713 	     * another thread might have modified the reference counts.
2714 	     */
2715 	    break;
2716 	}
2717     } while (elm != NULL);
2718     errmsg_restore(saved_msg);
2719 }
2720 
2721 /*
2722  * Call the initialization functions for each of the objects in
2723  * "list".  All of the objects are expected to have non-NULL init
2724  * functions.
2725  */
2726 static void
2727 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2728 {
2729     Objlist_Entry *elm;
2730     Obj_Entry *obj;
2731     char *saved_msg;
2732     Elf_Addr *init_addr;
2733     void (*reg)(void (*)(void));
2734     int index;
2735 
2736     /*
2737      * Clean init_scanned flag so that objects can be rechecked and
2738      * possibly initialized earlier if any of vectors called below
2739      * cause the change by using dlopen.
2740      */
2741     TAILQ_FOREACH(obj, &obj_list, next) {
2742 	if (obj->marker)
2743 	    continue;
2744 	obj->init_scanned = false;
2745     }
2746 
2747     /*
2748      * Preserve the current error message since an init function might
2749      * call into the dynamic linker and overwrite it.
2750      */
2751     saved_msg = errmsg_save();
2752     STAILQ_FOREACH(elm, list, link) {
2753 	if (elm->obj->init_done) /* Initialized early. */
2754 	    continue;
2755 	/*
2756 	 * Race: other thread might try to use this object before current
2757 	 * one completes the initialization. Not much can be done here
2758 	 * without better locking.
2759 	 */
2760 	elm->obj->init_done = true;
2761 	hold_object(elm->obj);
2762 	reg = NULL;
2763 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2764 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2765 		    "__libc_atexit", lockstate);
2766 	}
2767 	lock_release(rtld_bind_lock, lockstate);
2768 	if (reg != NULL) {
2769 		reg(rtld_exit);
2770 		rtld_exit_ptr = rtld_nop_exit;
2771 	}
2772 
2773         /*
2774          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2775          * When this happens, DT_INIT is processed first.
2776          */
2777 	if (elm->obj->init != (Elf_Addr)NULL) {
2778 	    dbg("calling init function for %s at %p", elm->obj->path,
2779 	        (void *)elm->obj->init);
2780 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2781 	        0, 0, elm->obj->path);
2782 	    call_initfini_pointer(elm->obj, elm->obj->init);
2783 	}
2784 	init_addr = (Elf_Addr *)elm->obj->init_array;
2785 	if (init_addr != NULL) {
2786 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2787 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2788 		    dbg("calling init function for %s at %p", elm->obj->path,
2789 			(void *)init_addr[index]);
2790 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2791 			(void *)init_addr[index], 0, 0, elm->obj->path);
2792 		    call_init_pointer(elm->obj, init_addr[index]);
2793 		}
2794 	    }
2795 	}
2796 	wlock_acquire(rtld_bind_lock, lockstate);
2797 	unhold_object(elm->obj);
2798     }
2799     errmsg_restore(saved_msg);
2800 }
2801 
2802 static void
2803 objlist_clear(Objlist *list)
2804 {
2805     Objlist_Entry *elm;
2806 
2807     while (!STAILQ_EMPTY(list)) {
2808 	elm = STAILQ_FIRST(list);
2809 	STAILQ_REMOVE_HEAD(list, link);
2810 	free(elm);
2811     }
2812 }
2813 
2814 static Objlist_Entry *
2815 objlist_find(Objlist *list, const Obj_Entry *obj)
2816 {
2817     Objlist_Entry *elm;
2818 
2819     STAILQ_FOREACH(elm, list, link)
2820 	if (elm->obj == obj)
2821 	    return elm;
2822     return NULL;
2823 }
2824 
2825 static void
2826 objlist_init(Objlist *list)
2827 {
2828     STAILQ_INIT(list);
2829 }
2830 
2831 static void
2832 objlist_push_head(Objlist *list, Obj_Entry *obj)
2833 {
2834     Objlist_Entry *elm;
2835 
2836     elm = NEW(Objlist_Entry);
2837     elm->obj = obj;
2838     STAILQ_INSERT_HEAD(list, elm, link);
2839 }
2840 
2841 static void
2842 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2843 {
2844     Objlist_Entry *elm;
2845 
2846     elm = NEW(Objlist_Entry);
2847     elm->obj = obj;
2848     STAILQ_INSERT_TAIL(list, elm, link);
2849 }
2850 
2851 static void
2852 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2853 {
2854 	Objlist_Entry *elm, *listelm;
2855 
2856 	STAILQ_FOREACH(listelm, list, link) {
2857 		if (listelm->obj == listobj)
2858 			break;
2859 	}
2860 	elm = NEW(Objlist_Entry);
2861 	elm->obj = obj;
2862 	if (listelm != NULL)
2863 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2864 	else
2865 		STAILQ_INSERT_TAIL(list, elm, link);
2866 }
2867 
2868 static void
2869 objlist_remove(Objlist *list, Obj_Entry *obj)
2870 {
2871     Objlist_Entry *elm;
2872 
2873     if ((elm = objlist_find(list, obj)) != NULL) {
2874 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2875 	free(elm);
2876     }
2877 }
2878 
2879 /*
2880  * Relocate dag rooted in the specified object.
2881  * Returns 0 on success, or -1 on failure.
2882  */
2883 
2884 static int
2885 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2886     int flags, RtldLockState *lockstate)
2887 {
2888 	Objlist_Entry *elm;
2889 	int error;
2890 
2891 	error = 0;
2892 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2893 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2894 		    lockstate);
2895 		if (error == -1)
2896 			break;
2897 	}
2898 	return (error);
2899 }
2900 
2901 /*
2902  * Prepare for, or clean after, relocating an object marked with
2903  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2904  * segments are remapped read-write.  After relocations are done, the
2905  * segment's permissions are returned back to the modes specified in
2906  * the phdrs.  If any relocation happened, or always for wired
2907  * program, COW is triggered.
2908  */
2909 static int
2910 reloc_textrel_prot(Obj_Entry *obj, bool before)
2911 {
2912 	const Elf_Phdr *ph;
2913 	void *base;
2914 	size_t l, sz;
2915 	int prot;
2916 
2917 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2918 	    l--, ph++) {
2919 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2920 			continue;
2921 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2922 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2923 		    trunc_page(ph->p_vaddr);
2924 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2925 		if (mprotect(base, sz, prot) == -1) {
2926 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2927 			    obj->path, before ? "en" : "dis",
2928 			    rtld_strerror(errno));
2929 			return (-1);
2930 		}
2931 	}
2932 	return (0);
2933 }
2934 
2935 /*
2936  * Relocate single object.
2937  * Returns 0 on success, or -1 on failure.
2938  */
2939 static int
2940 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2941     int flags, RtldLockState *lockstate)
2942 {
2943 
2944 	if (obj->relocated)
2945 		return (0);
2946 	obj->relocated = true;
2947 	if (obj != rtldobj)
2948 		dbg("relocating \"%s\"", obj->path);
2949 
2950 	if (obj->symtab == NULL || obj->strtab == NULL ||
2951 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2952 		_rtld_error("%s: Shared object has no run-time symbol table",
2953 			    obj->path);
2954 		return (-1);
2955 	}
2956 
2957 	/* There are relocations to the write-protected text segment. */
2958 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2959 		return (-1);
2960 
2961 	/* Process the non-PLT non-IFUNC relocations. */
2962 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2963 		return (-1);
2964 
2965 	/* Re-protected the text segment. */
2966 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2967 		return (-1);
2968 
2969 	/* Set the special PLT or GOT entries. */
2970 	init_pltgot(obj);
2971 
2972 	/* Process the PLT relocations. */
2973 	if (reloc_plt(obj, flags, lockstate) == -1)
2974 		return (-1);
2975 	/* Relocate the jump slots if we are doing immediate binding. */
2976 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2977 	    lockstate) == -1)
2978 		return (-1);
2979 
2980 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2981 		return (-1);
2982 
2983 	/*
2984 	 * Set up the magic number and version in the Obj_Entry.  These
2985 	 * were checked in the crt1.o from the original ElfKit, so we
2986 	 * set them for backward compatibility.
2987 	 */
2988 	obj->magic = RTLD_MAGIC;
2989 	obj->version = RTLD_VERSION;
2990 
2991 	return (0);
2992 }
2993 
2994 /*
2995  * Relocate newly-loaded shared objects.  The argument is a pointer to
2996  * the Obj_Entry for the first such object.  All objects from the first
2997  * to the end of the list of objects are relocated.  Returns 0 on success,
2998  * or -1 on failure.
2999  */
3000 static int
3001 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3002     int flags, RtldLockState *lockstate)
3003 {
3004 	Obj_Entry *obj;
3005 	int error;
3006 
3007 	for (error = 0, obj = first;  obj != NULL;
3008 	    obj = TAILQ_NEXT(obj, next)) {
3009 		if (obj->marker)
3010 			continue;
3011 		error = relocate_object(obj, bind_now, rtldobj, flags,
3012 		    lockstate);
3013 		if (error == -1)
3014 			break;
3015 	}
3016 	return (error);
3017 }
3018 
3019 /*
3020  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3021  * referencing STT_GNU_IFUNC symbols is postponed till the other
3022  * relocations are done.  The indirect functions specified as
3023  * ifunc are allowed to call other symbols, so we need to have
3024  * objects relocated before asking for resolution from indirects.
3025  *
3026  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3027  * instead of the usual lazy handling of PLT slots.  It is
3028  * consistent with how GNU does it.
3029  */
3030 static int
3031 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3032     RtldLockState *lockstate)
3033 {
3034 
3035 	if (obj->ifuncs_resolved)
3036 		return (0);
3037 	obj->ifuncs_resolved = true;
3038 	if (!obj->irelative && !obj->irelative_nonplt &&
3039 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3040 		return (0);
3041 	if (obj_disable_relro(obj) == -1 ||
3042 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3043 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3044 	    lockstate) == -1) ||
3045 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3046 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3047 	    obj_enforce_relro(obj) == -1)
3048 		return (-1);
3049 	return (0);
3050 }
3051 
3052 static int
3053 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3054     RtldLockState *lockstate)
3055 {
3056 	Objlist_Entry *elm;
3057 	Obj_Entry *obj;
3058 
3059 	STAILQ_FOREACH(elm, list, link) {
3060 		obj = elm->obj;
3061 		if (obj->marker)
3062 			continue;
3063 		if (resolve_object_ifunc(obj, bind_now, flags,
3064 		    lockstate) == -1)
3065 			return (-1);
3066 	}
3067 	return (0);
3068 }
3069 
3070 /*
3071  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3072  * before the process exits.
3073  */
3074 static void
3075 rtld_exit(void)
3076 {
3077     RtldLockState lockstate;
3078 
3079     wlock_acquire(rtld_bind_lock, &lockstate);
3080     dbg("rtld_exit()");
3081     objlist_call_fini(&list_fini, NULL, &lockstate);
3082     /* No need to remove the items from the list, since we are exiting. */
3083     if (!libmap_disable)
3084         lm_fini();
3085     lock_release(rtld_bind_lock, &lockstate);
3086 }
3087 
3088 static void
3089 rtld_nop_exit(void)
3090 {
3091 }
3092 
3093 /*
3094  * Iterate over a search path, translate each element, and invoke the
3095  * callback on the result.
3096  */
3097 static void *
3098 path_enumerate(const char *path, path_enum_proc callback,
3099     const char *refobj_path, void *arg)
3100 {
3101     const char *trans;
3102     if (path == NULL)
3103 	return (NULL);
3104 
3105     path += strspn(path, ":;");
3106     while (*path != '\0') {
3107 	size_t len;
3108 	char  *res;
3109 
3110 	len = strcspn(path, ":;");
3111 	trans = lm_findn(refobj_path, path, len);
3112 	if (trans)
3113 	    res = callback(trans, strlen(trans), arg);
3114 	else
3115 	    res = callback(path, len, arg);
3116 
3117 	if (res != NULL)
3118 	    return (res);
3119 
3120 	path += len;
3121 	path += strspn(path, ":;");
3122     }
3123 
3124     return (NULL);
3125 }
3126 
3127 struct try_library_args {
3128     const char	*name;
3129     size_t	 namelen;
3130     char	*buffer;
3131     size_t	 buflen;
3132     int		 fd;
3133 };
3134 
3135 static void *
3136 try_library_path(const char *dir, size_t dirlen, void *param)
3137 {
3138     struct try_library_args *arg;
3139     int fd;
3140 
3141     arg = param;
3142     if (*dir == '/' || trust) {
3143 	char *pathname;
3144 
3145 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3146 		return (NULL);
3147 
3148 	pathname = arg->buffer;
3149 	strncpy(pathname, dir, dirlen);
3150 	pathname[dirlen] = '/';
3151 	strcpy(pathname + dirlen + 1, arg->name);
3152 
3153 	dbg("  Trying \"%s\"", pathname);
3154 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3155 	if (fd >= 0) {
3156 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3157 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3158 	    strcpy(pathname, arg->buffer);
3159 	    arg->fd = fd;
3160 	    return (pathname);
3161 	} else {
3162 	    dbg("  Failed to open \"%s\": %s",
3163 		pathname, rtld_strerror(errno));
3164 	}
3165     }
3166     return (NULL);
3167 }
3168 
3169 static char *
3170 search_library_path(const char *name, const char *path,
3171     const char *refobj_path, int *fdp)
3172 {
3173     char *p;
3174     struct try_library_args arg;
3175 
3176     if (path == NULL)
3177 	return NULL;
3178 
3179     arg.name = name;
3180     arg.namelen = strlen(name);
3181     arg.buffer = xmalloc(PATH_MAX);
3182     arg.buflen = PATH_MAX;
3183     arg.fd = -1;
3184 
3185     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3186     *fdp = arg.fd;
3187 
3188     free(arg.buffer);
3189 
3190     return (p);
3191 }
3192 
3193 
3194 /*
3195  * Finds the library with the given name using the directory descriptors
3196  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3197  *
3198  * Returns a freshly-opened close-on-exec file descriptor for the library,
3199  * or -1 if the library cannot be found.
3200  */
3201 static char *
3202 search_library_pathfds(const char *name, const char *path, int *fdp)
3203 {
3204 	char *envcopy, *fdstr, *found, *last_token;
3205 	size_t len;
3206 	int dirfd, fd;
3207 
3208 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3209 
3210 	/* Don't load from user-specified libdirs into setuid binaries. */
3211 	if (!trust)
3212 		return (NULL);
3213 
3214 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3215 	if (path == NULL)
3216 		return (NULL);
3217 
3218 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3219 	if (name[0] == '/') {
3220 		dbg("Absolute path (%s) passed to %s", name, __func__);
3221 		return (NULL);
3222 	}
3223 
3224 	/*
3225 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3226 	 * copy of the path, as strtok_r rewrites separator tokens
3227 	 * with '\0'.
3228 	 */
3229 	found = NULL;
3230 	envcopy = xstrdup(path);
3231 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3232 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3233 		dirfd = parse_integer(fdstr);
3234 		if (dirfd < 0) {
3235 			_rtld_error("failed to parse directory FD: '%s'",
3236 				fdstr);
3237 			break;
3238 		}
3239 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3240 		if (fd >= 0) {
3241 			*fdp = fd;
3242 			len = strlen(fdstr) + strlen(name) + 3;
3243 			found = xmalloc(len);
3244 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3245 				_rtld_error("error generating '%d/%s'",
3246 				    dirfd, name);
3247 				rtld_die();
3248 			}
3249 			dbg("open('%s') => %d", found, fd);
3250 			break;
3251 		}
3252 	}
3253 	free(envcopy);
3254 
3255 	return (found);
3256 }
3257 
3258 
3259 int
3260 dlclose(void *handle)
3261 {
3262 	RtldLockState lockstate;
3263 	int error;
3264 
3265 	wlock_acquire(rtld_bind_lock, &lockstate);
3266 	error = dlclose_locked(handle, &lockstate);
3267 	lock_release(rtld_bind_lock, &lockstate);
3268 	return (error);
3269 }
3270 
3271 static int
3272 dlclose_locked(void *handle, RtldLockState *lockstate)
3273 {
3274     Obj_Entry *root;
3275 
3276     root = dlcheck(handle);
3277     if (root == NULL)
3278 	return -1;
3279     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3280 	root->path);
3281 
3282     /* Unreference the object and its dependencies. */
3283     root->dl_refcount--;
3284 
3285     if (root->refcount == 1) {
3286 	/*
3287 	 * The object will be no longer referenced, so we must unload it.
3288 	 * First, call the fini functions.
3289 	 */
3290 	objlist_call_fini(&list_fini, root, lockstate);
3291 
3292 	unref_dag(root);
3293 
3294 	/* Finish cleaning up the newly-unreferenced objects. */
3295 	GDB_STATE(RT_DELETE,&root->linkmap);
3296 	unload_object(root, lockstate);
3297 	GDB_STATE(RT_CONSISTENT,NULL);
3298     } else
3299 	unref_dag(root);
3300 
3301     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3302     return 0;
3303 }
3304 
3305 char *
3306 dlerror(void)
3307 {
3308     char *msg = error_message;
3309     error_message = NULL;
3310     return msg;
3311 }
3312 
3313 /*
3314  * This function is deprecated and has no effect.
3315  */
3316 void
3317 dllockinit(void *context,
3318     void *(*_lock_create)(void *context) __unused,
3319     void (*_rlock_acquire)(void *lock) __unused,
3320     void (*_wlock_acquire)(void *lock)  __unused,
3321     void (*_lock_release)(void *lock) __unused,
3322     void (*_lock_destroy)(void *lock) __unused,
3323     void (*context_destroy)(void *context))
3324 {
3325     static void *cur_context;
3326     static void (*cur_context_destroy)(void *);
3327 
3328     /* Just destroy the context from the previous call, if necessary. */
3329     if (cur_context_destroy != NULL)
3330 	cur_context_destroy(cur_context);
3331     cur_context = context;
3332     cur_context_destroy = context_destroy;
3333 }
3334 
3335 void *
3336 dlopen(const char *name, int mode)
3337 {
3338 
3339 	return (rtld_dlopen(name, -1, mode));
3340 }
3341 
3342 void *
3343 fdlopen(int fd, int mode)
3344 {
3345 
3346 	return (rtld_dlopen(NULL, fd, mode));
3347 }
3348 
3349 static void *
3350 rtld_dlopen(const char *name, int fd, int mode)
3351 {
3352     RtldLockState lockstate;
3353     int lo_flags;
3354 
3355     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3356     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3357     if (ld_tracing != NULL) {
3358 	rlock_acquire(rtld_bind_lock, &lockstate);
3359 	if (sigsetjmp(lockstate.env, 0) != 0)
3360 	    lock_upgrade(rtld_bind_lock, &lockstate);
3361 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3362 	lock_release(rtld_bind_lock, &lockstate);
3363     }
3364     lo_flags = RTLD_LO_DLOPEN;
3365     if (mode & RTLD_NODELETE)
3366 	    lo_flags |= RTLD_LO_NODELETE;
3367     if (mode & RTLD_NOLOAD)
3368 	    lo_flags |= RTLD_LO_NOLOAD;
3369     if (mode & RTLD_DEEPBIND)
3370 	    lo_flags |= RTLD_LO_DEEPBIND;
3371     if (ld_tracing != NULL)
3372 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3373 
3374     return (dlopen_object(name, fd, obj_main, lo_flags,
3375       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3376 }
3377 
3378 static void
3379 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3380 {
3381 
3382 	obj->dl_refcount--;
3383 	unref_dag(obj);
3384 	if (obj->refcount == 0)
3385 		unload_object(obj, lockstate);
3386 }
3387 
3388 static Obj_Entry *
3389 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3390     int mode, RtldLockState *lockstate)
3391 {
3392     Obj_Entry *old_obj_tail;
3393     Obj_Entry *obj;
3394     Objlist initlist;
3395     RtldLockState mlockstate;
3396     int result;
3397 
3398     objlist_init(&initlist);
3399 
3400     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3401 	wlock_acquire(rtld_bind_lock, &mlockstate);
3402 	lockstate = &mlockstate;
3403     }
3404     GDB_STATE(RT_ADD,NULL);
3405 
3406     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3407     obj = NULL;
3408     if (name == NULL && fd == -1) {
3409 	obj = obj_main;
3410 	obj->refcount++;
3411     } else {
3412 	obj = load_object(name, fd, refobj, lo_flags);
3413     }
3414 
3415     if (obj) {
3416 	obj->dl_refcount++;
3417 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3418 	    objlist_push_tail(&list_global, obj);
3419 	if (globallist_next(old_obj_tail) != NULL) {
3420 	    /* We loaded something new. */
3421 	    assert(globallist_next(old_obj_tail) == obj);
3422 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3423 		obj->symbolic = true;
3424 	    result = 0;
3425 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3426 	      obj->static_tls && !allocate_tls_offset(obj)) {
3427 		_rtld_error("%s: No space available "
3428 		  "for static Thread Local Storage", obj->path);
3429 		result = -1;
3430 	    }
3431 	    if (result != -1)
3432 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3433 		    RTLD_LO_EARLY | RTLD_LO_IGNSTLS));
3434 	    init_dag(obj);
3435 	    ref_dag(obj);
3436 	    if (result != -1)
3437 		result = rtld_verify_versions(&obj->dagmembers);
3438 	    if (result != -1 && ld_tracing)
3439 		goto trace;
3440 	    if (result == -1 || relocate_object_dag(obj,
3441 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3442 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3443 	      lockstate) == -1) {
3444 		dlopen_cleanup(obj, lockstate);
3445 		obj = NULL;
3446 	    } else if (lo_flags & RTLD_LO_EARLY) {
3447 		/*
3448 		 * Do not call the init functions for early loaded
3449 		 * filtees.  The image is still not initialized enough
3450 		 * for them to work.
3451 		 *
3452 		 * Our object is found by the global object list and
3453 		 * will be ordered among all init calls done right
3454 		 * before transferring control to main.
3455 		 */
3456 	    } else {
3457 		/* Make list of init functions to call. */
3458 		initlist_add_objects(obj, obj, &initlist);
3459 	    }
3460 	    /*
3461 	     * Process all no_delete or global objects here, given
3462 	     * them own DAGs to prevent their dependencies from being
3463 	     * unloaded.  This has to be done after we have loaded all
3464 	     * of the dependencies, so that we do not miss any.
3465 	     */
3466 	    if (obj != NULL)
3467 		process_z(obj);
3468 	} else {
3469 	    /*
3470 	     * Bump the reference counts for objects on this DAG.  If
3471 	     * this is the first dlopen() call for the object that was
3472 	     * already loaded as a dependency, initialize the dag
3473 	     * starting at it.
3474 	     */
3475 	    init_dag(obj);
3476 	    ref_dag(obj);
3477 
3478 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3479 		goto trace;
3480 	}
3481 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3482 	  obj->z_nodelete) && !obj->ref_nodel) {
3483 	    dbg("obj %s nodelete", obj->path);
3484 	    ref_dag(obj);
3485 	    obj->z_nodelete = obj->ref_nodel = true;
3486 	}
3487     }
3488 
3489     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3490 	name);
3491     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3492 
3493     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3494 	map_stacks_exec(lockstate);
3495 	if (obj != NULL)
3496 	    distribute_static_tls(&initlist, lockstate);
3497     }
3498 
3499     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3500       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3501       lockstate) == -1) {
3502 	objlist_clear(&initlist);
3503 	dlopen_cleanup(obj, lockstate);
3504 	if (lockstate == &mlockstate)
3505 	    lock_release(rtld_bind_lock, lockstate);
3506 	return (NULL);
3507     }
3508 
3509     if (!(lo_flags & RTLD_LO_EARLY)) {
3510 	/* Call the init functions. */
3511 	objlist_call_init(&initlist, lockstate);
3512     }
3513     objlist_clear(&initlist);
3514     if (lockstate == &mlockstate)
3515 	lock_release(rtld_bind_lock, lockstate);
3516     return obj;
3517 trace:
3518     trace_loaded_objects(obj);
3519     if (lockstate == &mlockstate)
3520 	lock_release(rtld_bind_lock, lockstate);
3521     exit(0);
3522 }
3523 
3524 static void *
3525 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3526     int flags)
3527 {
3528     DoneList donelist;
3529     const Obj_Entry *obj, *defobj;
3530     const Elf_Sym *def;
3531     SymLook req;
3532     RtldLockState lockstate;
3533     tls_index ti;
3534     void *sym;
3535     int res;
3536 
3537     def = NULL;
3538     defobj = NULL;
3539     symlook_init(&req, name);
3540     req.ventry = ve;
3541     req.flags = flags | SYMLOOK_IN_PLT;
3542     req.lockstate = &lockstate;
3543 
3544     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3545     rlock_acquire(rtld_bind_lock, &lockstate);
3546     if (sigsetjmp(lockstate.env, 0) != 0)
3547 	    lock_upgrade(rtld_bind_lock, &lockstate);
3548     if (handle == NULL || handle == RTLD_NEXT ||
3549 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3550 
3551 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3552 	    _rtld_error("Cannot determine caller's shared object");
3553 	    lock_release(rtld_bind_lock, &lockstate);
3554 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3555 	    return NULL;
3556 	}
3557 	if (handle == NULL) {	/* Just the caller's shared object. */
3558 	    res = symlook_obj(&req, obj);
3559 	    if (res == 0) {
3560 		def = req.sym_out;
3561 		defobj = req.defobj_out;
3562 	    }
3563 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3564 		   handle == RTLD_SELF) { /* ... caller included */
3565 	    if (handle == RTLD_NEXT)
3566 		obj = globallist_next(obj);
3567 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3568 		if (obj->marker)
3569 		    continue;
3570 		res = symlook_obj(&req, obj);
3571 		if (res == 0) {
3572 		    if (def == NULL ||
3573 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3574 			def = req.sym_out;
3575 			defobj = req.defobj_out;
3576 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3577 			    break;
3578 		    }
3579 		}
3580 	    }
3581 	    /*
3582 	     * Search the dynamic linker itself, and possibly resolve the
3583 	     * symbol from there.  This is how the application links to
3584 	     * dynamic linker services such as dlopen.
3585 	     */
3586 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3587 		res = symlook_obj(&req, &obj_rtld);
3588 		if (res == 0) {
3589 		    def = req.sym_out;
3590 		    defobj = req.defobj_out;
3591 		}
3592 	    }
3593 	} else {
3594 	    assert(handle == RTLD_DEFAULT);
3595 	    res = symlook_default(&req, obj);
3596 	    if (res == 0) {
3597 		defobj = req.defobj_out;
3598 		def = req.sym_out;
3599 	    }
3600 	}
3601     } else {
3602 	if ((obj = dlcheck(handle)) == NULL) {
3603 	    lock_release(rtld_bind_lock, &lockstate);
3604 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3605 	    return NULL;
3606 	}
3607 
3608 	donelist_init(&donelist);
3609 	if (obj->mainprog) {
3610             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3611 	    res = symlook_global(&req, &donelist);
3612 	    if (res == 0) {
3613 		def = req.sym_out;
3614 		defobj = req.defobj_out;
3615 	    }
3616 	    /*
3617 	     * Search the dynamic linker itself, and possibly resolve the
3618 	     * symbol from there.  This is how the application links to
3619 	     * dynamic linker services such as dlopen.
3620 	     */
3621 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3622 		res = symlook_obj(&req, &obj_rtld);
3623 		if (res == 0) {
3624 		    def = req.sym_out;
3625 		    defobj = req.defobj_out;
3626 		}
3627 	    }
3628 	}
3629 	else {
3630 	    /* Search the whole DAG rooted at the given object. */
3631 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3632 	    if (res == 0) {
3633 		def = req.sym_out;
3634 		defobj = req.defobj_out;
3635 	    }
3636 	}
3637     }
3638 
3639     if (def != NULL) {
3640 	lock_release(rtld_bind_lock, &lockstate);
3641 
3642 	/*
3643 	 * The value required by the caller is derived from the value
3644 	 * of the symbol. this is simply the relocated value of the
3645 	 * symbol.
3646 	 */
3647 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3648 	    sym = make_function_pointer(def, defobj);
3649 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3650 	    sym = rtld_resolve_ifunc(defobj, def);
3651 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3652 	    ti.ti_module = defobj->tlsindex;
3653 	    ti.ti_offset = def->st_value;
3654 	    sym = __tls_get_addr(&ti);
3655 	} else
3656 	    sym = defobj->relocbase + def->st_value;
3657 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3658 	return (sym);
3659     }
3660 
3661     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3662       ve != NULL ? ve->name : "");
3663     lock_release(rtld_bind_lock, &lockstate);
3664     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3665     return NULL;
3666 }
3667 
3668 void *
3669 dlsym(void *handle, const char *name)
3670 {
3671 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3672 	    SYMLOOK_DLSYM);
3673 }
3674 
3675 dlfunc_t
3676 dlfunc(void *handle, const char *name)
3677 {
3678 	union {
3679 		void *d;
3680 		dlfunc_t f;
3681 	} rv;
3682 
3683 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3684 	    SYMLOOK_DLSYM);
3685 	return (rv.f);
3686 }
3687 
3688 void *
3689 dlvsym(void *handle, const char *name, const char *version)
3690 {
3691 	Ver_Entry ventry;
3692 
3693 	ventry.name = version;
3694 	ventry.file = NULL;
3695 	ventry.hash = elf_hash(version);
3696 	ventry.flags= 0;
3697 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3698 	    SYMLOOK_DLSYM);
3699 }
3700 
3701 int
3702 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3703 {
3704     const Obj_Entry *obj;
3705     RtldLockState lockstate;
3706 
3707     rlock_acquire(rtld_bind_lock, &lockstate);
3708     obj = obj_from_addr(addr);
3709     if (obj == NULL) {
3710         _rtld_error("No shared object contains address");
3711 	lock_release(rtld_bind_lock, &lockstate);
3712         return (0);
3713     }
3714     rtld_fill_dl_phdr_info(obj, phdr_info);
3715     lock_release(rtld_bind_lock, &lockstate);
3716     return (1);
3717 }
3718 
3719 int
3720 dladdr(const void *addr, Dl_info *info)
3721 {
3722     const Obj_Entry *obj;
3723     const Elf_Sym *def;
3724     void *symbol_addr;
3725     unsigned long symoffset;
3726     RtldLockState lockstate;
3727 
3728     rlock_acquire(rtld_bind_lock, &lockstate);
3729     obj = obj_from_addr(addr);
3730     if (obj == NULL) {
3731         _rtld_error("No shared object contains address");
3732 	lock_release(rtld_bind_lock, &lockstate);
3733         return 0;
3734     }
3735     info->dli_fname = obj->path;
3736     info->dli_fbase = obj->mapbase;
3737     info->dli_saddr = (void *)0;
3738     info->dli_sname = NULL;
3739 
3740     /*
3741      * Walk the symbol list looking for the symbol whose address is
3742      * closest to the address sent in.
3743      */
3744     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3745         def = obj->symtab + symoffset;
3746 
3747         /*
3748          * For skip the symbol if st_shndx is either SHN_UNDEF or
3749          * SHN_COMMON.
3750          */
3751         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3752             continue;
3753 
3754         /*
3755          * If the symbol is greater than the specified address, or if it
3756          * is further away from addr than the current nearest symbol,
3757          * then reject it.
3758          */
3759         symbol_addr = obj->relocbase + def->st_value;
3760         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3761             continue;
3762 
3763         /* Update our idea of the nearest symbol. */
3764         info->dli_sname = obj->strtab + def->st_name;
3765         info->dli_saddr = symbol_addr;
3766 
3767         /* Exact match? */
3768         if (info->dli_saddr == addr)
3769             break;
3770     }
3771     lock_release(rtld_bind_lock, &lockstate);
3772     return 1;
3773 }
3774 
3775 int
3776 dlinfo(void *handle, int request, void *p)
3777 {
3778     const Obj_Entry *obj;
3779     RtldLockState lockstate;
3780     int error;
3781 
3782     rlock_acquire(rtld_bind_lock, &lockstate);
3783 
3784     if (handle == NULL || handle == RTLD_SELF) {
3785 	void *retaddr;
3786 
3787 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3788 	if ((obj = obj_from_addr(retaddr)) == NULL)
3789 	    _rtld_error("Cannot determine caller's shared object");
3790     } else
3791 	obj = dlcheck(handle);
3792 
3793     if (obj == NULL) {
3794 	lock_release(rtld_bind_lock, &lockstate);
3795 	return (-1);
3796     }
3797 
3798     error = 0;
3799     switch (request) {
3800     case RTLD_DI_LINKMAP:
3801 	*((struct link_map const **)p) = &obj->linkmap;
3802 	break;
3803     case RTLD_DI_ORIGIN:
3804 	error = rtld_dirname(obj->path, p);
3805 	break;
3806 
3807     case RTLD_DI_SERINFOSIZE:
3808     case RTLD_DI_SERINFO:
3809 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3810 	break;
3811 
3812     default:
3813 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3814 	error = -1;
3815     }
3816 
3817     lock_release(rtld_bind_lock, &lockstate);
3818 
3819     return (error);
3820 }
3821 
3822 static void
3823 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3824 {
3825 
3826 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3827 	phdr_info->dlpi_name = obj->path;
3828 	phdr_info->dlpi_phdr = obj->phdr;
3829 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3830 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3831 	phdr_info->dlpi_tls_data = obj->tlsinit;
3832 	phdr_info->dlpi_adds = obj_loads;
3833 	phdr_info->dlpi_subs = obj_loads - obj_count;
3834 }
3835 
3836 int
3837 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3838 {
3839 	struct dl_phdr_info phdr_info;
3840 	Obj_Entry *obj, marker;
3841 	RtldLockState bind_lockstate, phdr_lockstate;
3842 	int error;
3843 
3844 	init_marker(&marker);
3845 	error = 0;
3846 
3847 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3848 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3849 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3850 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3851 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3852 		hold_object(obj);
3853 		lock_release(rtld_bind_lock, &bind_lockstate);
3854 
3855 		error = callback(&phdr_info, sizeof phdr_info, param);
3856 
3857 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3858 		unhold_object(obj);
3859 		obj = globallist_next(&marker);
3860 		TAILQ_REMOVE(&obj_list, &marker, next);
3861 		if (error != 0) {
3862 			lock_release(rtld_bind_lock, &bind_lockstate);
3863 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3864 			return (error);
3865 		}
3866 	}
3867 
3868 	if (error == 0) {
3869 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3870 		lock_release(rtld_bind_lock, &bind_lockstate);
3871 		error = callback(&phdr_info, sizeof(phdr_info), param);
3872 	}
3873 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3874 	return (error);
3875 }
3876 
3877 static void *
3878 fill_search_info(const char *dir, size_t dirlen, void *param)
3879 {
3880     struct fill_search_info_args *arg;
3881 
3882     arg = param;
3883 
3884     if (arg->request == RTLD_DI_SERINFOSIZE) {
3885 	arg->serinfo->dls_cnt ++;
3886 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3887     } else {
3888 	struct dl_serpath *s_entry;
3889 
3890 	s_entry = arg->serpath;
3891 	s_entry->dls_name  = arg->strspace;
3892 	s_entry->dls_flags = arg->flags;
3893 
3894 	strncpy(arg->strspace, dir, dirlen);
3895 	arg->strspace[dirlen] = '\0';
3896 
3897 	arg->strspace += dirlen + 1;
3898 	arg->serpath++;
3899     }
3900 
3901     return (NULL);
3902 }
3903 
3904 static int
3905 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3906 {
3907     struct dl_serinfo _info;
3908     struct fill_search_info_args args;
3909 
3910     args.request = RTLD_DI_SERINFOSIZE;
3911     args.serinfo = &_info;
3912 
3913     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3914     _info.dls_cnt  = 0;
3915 
3916     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3917     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3918     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3919     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3920     if (!obj->z_nodeflib)
3921       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3922 
3923 
3924     if (request == RTLD_DI_SERINFOSIZE) {
3925 	info->dls_size = _info.dls_size;
3926 	info->dls_cnt = _info.dls_cnt;
3927 	return (0);
3928     }
3929 
3930     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3931 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3932 	return (-1);
3933     }
3934 
3935     args.request  = RTLD_DI_SERINFO;
3936     args.serinfo  = info;
3937     args.serpath  = &info->dls_serpath[0];
3938     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3939 
3940     args.flags = LA_SER_RUNPATH;
3941     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3942 	return (-1);
3943 
3944     args.flags = LA_SER_LIBPATH;
3945     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3946 	return (-1);
3947 
3948     args.flags = LA_SER_RUNPATH;
3949     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3950 	return (-1);
3951 
3952     args.flags = LA_SER_CONFIG;
3953     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3954       != NULL)
3955 	return (-1);
3956 
3957     args.flags = LA_SER_DEFAULT;
3958     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3959       fill_search_info, NULL, &args) != NULL)
3960 	return (-1);
3961     return (0);
3962 }
3963 
3964 static int
3965 rtld_dirname(const char *path, char *bname)
3966 {
3967     const char *endp;
3968 
3969     /* Empty or NULL string gets treated as "." */
3970     if (path == NULL || *path == '\0') {
3971 	bname[0] = '.';
3972 	bname[1] = '\0';
3973 	return (0);
3974     }
3975 
3976     /* Strip trailing slashes */
3977     endp = path + strlen(path) - 1;
3978     while (endp > path && *endp == '/')
3979 	endp--;
3980 
3981     /* Find the start of the dir */
3982     while (endp > path && *endp != '/')
3983 	endp--;
3984 
3985     /* Either the dir is "/" or there are no slashes */
3986     if (endp == path) {
3987 	bname[0] = *endp == '/' ? '/' : '.';
3988 	bname[1] = '\0';
3989 	return (0);
3990     } else {
3991 	do {
3992 	    endp--;
3993 	} while (endp > path && *endp == '/');
3994     }
3995 
3996     if (endp - path + 2 > PATH_MAX)
3997     {
3998 	_rtld_error("Filename is too long: %s", path);
3999 	return(-1);
4000     }
4001 
4002     strncpy(bname, path, endp - path + 1);
4003     bname[endp - path + 1] = '\0';
4004     return (0);
4005 }
4006 
4007 static int
4008 rtld_dirname_abs(const char *path, char *base)
4009 {
4010 	char *last;
4011 
4012 	if (realpath(path, base) == NULL) {
4013 		_rtld_error("realpath \"%s\" failed (%s)", path,
4014 		    rtld_strerror(errno));
4015 		return (-1);
4016 	}
4017 	dbg("%s -> %s", path, base);
4018 	last = strrchr(base, '/');
4019 	if (last == NULL) {
4020 		_rtld_error("non-abs result from realpath \"%s\"", path);
4021 		return (-1);
4022 	}
4023 	if (last != base)
4024 		*last = '\0';
4025 	return (0);
4026 }
4027 
4028 static void
4029 linkmap_add(Obj_Entry *obj)
4030 {
4031     struct link_map *l = &obj->linkmap;
4032     struct link_map *prev;
4033 
4034     obj->linkmap.l_name = obj->path;
4035     obj->linkmap.l_addr = obj->mapbase;
4036     obj->linkmap.l_ld = obj->dynamic;
4037 #ifdef __mips__
4038     /* GDB needs load offset on MIPS to use the symbols */
4039     obj->linkmap.l_offs = obj->relocbase;
4040 #endif
4041 
4042     if (r_debug.r_map == NULL) {
4043 	r_debug.r_map = l;
4044 	return;
4045     }
4046 
4047     /*
4048      * Scan to the end of the list, but not past the entry for the
4049      * dynamic linker, which we want to keep at the very end.
4050      */
4051     for (prev = r_debug.r_map;
4052       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4053       prev = prev->l_next)
4054 	;
4055 
4056     /* Link in the new entry. */
4057     l->l_prev = prev;
4058     l->l_next = prev->l_next;
4059     if (l->l_next != NULL)
4060 	l->l_next->l_prev = l;
4061     prev->l_next = l;
4062 }
4063 
4064 static void
4065 linkmap_delete(Obj_Entry *obj)
4066 {
4067     struct link_map *l = &obj->linkmap;
4068 
4069     if (l->l_prev == NULL) {
4070 	if ((r_debug.r_map = l->l_next) != NULL)
4071 	    l->l_next->l_prev = NULL;
4072 	return;
4073     }
4074 
4075     if ((l->l_prev->l_next = l->l_next) != NULL)
4076 	l->l_next->l_prev = l->l_prev;
4077 }
4078 
4079 /*
4080  * Function for the debugger to set a breakpoint on to gain control.
4081  *
4082  * The two parameters allow the debugger to easily find and determine
4083  * what the runtime loader is doing and to whom it is doing it.
4084  *
4085  * When the loadhook trap is hit (r_debug_state, set at program
4086  * initialization), the arguments can be found on the stack:
4087  *
4088  *  +8   struct link_map *m
4089  *  +4   struct r_debug  *rd
4090  *  +0   RetAddr
4091  */
4092 void
4093 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4094 {
4095     /*
4096      * The following is a hack to force the compiler to emit calls to
4097      * this function, even when optimizing.  If the function is empty,
4098      * the compiler is not obliged to emit any code for calls to it,
4099      * even when marked __noinline.  However, gdb depends on those
4100      * calls being made.
4101      */
4102     __compiler_membar();
4103 }
4104 
4105 /*
4106  * A function called after init routines have completed. This can be used to
4107  * break before a program's entry routine is called, and can be used when
4108  * main is not available in the symbol table.
4109  */
4110 void
4111 _r_debug_postinit(struct link_map *m __unused)
4112 {
4113 
4114 	/* See r_debug_state(). */
4115 	__compiler_membar();
4116 }
4117 
4118 static void
4119 release_object(Obj_Entry *obj)
4120 {
4121 
4122 	if (obj->holdcount > 0) {
4123 		obj->unholdfree = true;
4124 		return;
4125 	}
4126 	munmap(obj->mapbase, obj->mapsize);
4127 	linkmap_delete(obj);
4128 	obj_free(obj);
4129 }
4130 
4131 /*
4132  * Get address of the pointer variable in the main program.
4133  * Prefer non-weak symbol over the weak one.
4134  */
4135 static const void **
4136 get_program_var_addr(const char *name, RtldLockState *lockstate)
4137 {
4138     SymLook req;
4139     DoneList donelist;
4140 
4141     symlook_init(&req, name);
4142     req.lockstate = lockstate;
4143     donelist_init(&donelist);
4144     if (symlook_global(&req, &donelist) != 0)
4145 	return (NULL);
4146     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4147 	return ((const void **)make_function_pointer(req.sym_out,
4148 	  req.defobj_out));
4149     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4150 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4151     else
4152 	return ((const void **)(req.defobj_out->relocbase +
4153 	  req.sym_out->st_value));
4154 }
4155 
4156 /*
4157  * Set a pointer variable in the main program to the given value.  This
4158  * is used to set key variables such as "environ" before any of the
4159  * init functions are called.
4160  */
4161 static void
4162 set_program_var(const char *name, const void *value)
4163 {
4164     const void **addr;
4165 
4166     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4167 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4168 	*addr = value;
4169     }
4170 }
4171 
4172 /*
4173  * Search the global objects, including dependencies and main object,
4174  * for the given symbol.
4175  */
4176 static int
4177 symlook_global(SymLook *req, DoneList *donelist)
4178 {
4179     SymLook req1;
4180     const Objlist_Entry *elm;
4181     int res;
4182 
4183     symlook_init_from_req(&req1, req);
4184 
4185     /* Search all objects loaded at program start up. */
4186     if (req->defobj_out == NULL ||
4187       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4188 	res = symlook_list(&req1, &list_main, donelist);
4189 	if (res == 0 && (req->defobj_out == NULL ||
4190 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4191 	    req->sym_out = req1.sym_out;
4192 	    req->defobj_out = req1.defobj_out;
4193 	    assert(req->defobj_out != NULL);
4194 	}
4195     }
4196 
4197     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4198     STAILQ_FOREACH(elm, &list_global, link) {
4199 	if (req->defobj_out != NULL &&
4200 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4201 	    break;
4202 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4203 	if (res == 0 && (req->defobj_out == NULL ||
4204 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4205 	    req->sym_out = req1.sym_out;
4206 	    req->defobj_out = req1.defobj_out;
4207 	    assert(req->defobj_out != NULL);
4208 	}
4209     }
4210 
4211     return (req->sym_out != NULL ? 0 : ESRCH);
4212 }
4213 
4214 /*
4215  * Given a symbol name in a referencing object, find the corresponding
4216  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4217  * no definition was found.  Returns a pointer to the Obj_Entry of the
4218  * defining object via the reference parameter DEFOBJ_OUT.
4219  */
4220 static int
4221 symlook_default(SymLook *req, const Obj_Entry *refobj)
4222 {
4223     DoneList donelist;
4224     const Objlist_Entry *elm;
4225     SymLook req1;
4226     int res;
4227 
4228     donelist_init(&donelist);
4229     symlook_init_from_req(&req1, req);
4230 
4231     /*
4232      * Look first in the referencing object if linked symbolically,
4233      * and similarly handle protected symbols.
4234      */
4235     res = symlook_obj(&req1, refobj);
4236     if (res == 0 && (refobj->symbolic ||
4237       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4238 	req->sym_out = req1.sym_out;
4239 	req->defobj_out = req1.defobj_out;
4240 	assert(req->defobj_out != NULL);
4241     }
4242     if (refobj->symbolic || req->defobj_out != NULL)
4243 	donelist_check(&donelist, refobj);
4244 
4245     symlook_global(req, &donelist);
4246 
4247     /* Search all dlopened DAGs containing the referencing object. */
4248     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4249 	if (req->sym_out != NULL &&
4250 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4251 	    break;
4252 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4253 	if (res == 0 && (req->sym_out == NULL ||
4254 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4255 	    req->sym_out = req1.sym_out;
4256 	    req->defobj_out = req1.defobj_out;
4257 	    assert(req->defobj_out != NULL);
4258 	}
4259     }
4260 
4261     /*
4262      * Search the dynamic linker itself, and possibly resolve the
4263      * symbol from there.  This is how the application links to
4264      * dynamic linker services such as dlopen.
4265      */
4266     if (req->sym_out == NULL ||
4267       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4268 	res = symlook_obj(&req1, &obj_rtld);
4269 	if (res == 0) {
4270 	    req->sym_out = req1.sym_out;
4271 	    req->defobj_out = req1.defobj_out;
4272 	    assert(req->defobj_out != NULL);
4273 	}
4274     }
4275 
4276     return (req->sym_out != NULL ? 0 : ESRCH);
4277 }
4278 
4279 static int
4280 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4281 {
4282     const Elf_Sym *def;
4283     const Obj_Entry *defobj;
4284     const Objlist_Entry *elm;
4285     SymLook req1;
4286     int res;
4287 
4288     def = NULL;
4289     defobj = NULL;
4290     STAILQ_FOREACH(elm, objlist, link) {
4291 	if (donelist_check(dlp, elm->obj))
4292 	    continue;
4293 	symlook_init_from_req(&req1, req);
4294 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4295 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4296 		def = req1.sym_out;
4297 		defobj = req1.defobj_out;
4298 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4299 		    break;
4300 	    }
4301 	}
4302     }
4303     if (def != NULL) {
4304 	req->sym_out = def;
4305 	req->defobj_out = defobj;
4306 	return (0);
4307     }
4308     return (ESRCH);
4309 }
4310 
4311 /*
4312  * Search the chain of DAGS cointed to by the given Needed_Entry
4313  * for a symbol of the given name.  Each DAG is scanned completely
4314  * before advancing to the next one.  Returns a pointer to the symbol,
4315  * or NULL if no definition was found.
4316  */
4317 static int
4318 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4319 {
4320     const Elf_Sym *def;
4321     const Needed_Entry *n;
4322     const Obj_Entry *defobj;
4323     SymLook req1;
4324     int res;
4325 
4326     def = NULL;
4327     defobj = NULL;
4328     symlook_init_from_req(&req1, req);
4329     for (n = needed; n != NULL; n = n->next) {
4330 	if (n->obj == NULL ||
4331 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4332 	    continue;
4333 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4334 	    def = req1.sym_out;
4335 	    defobj = req1.defobj_out;
4336 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4337 		break;
4338 	}
4339     }
4340     if (def != NULL) {
4341 	req->sym_out = def;
4342 	req->defobj_out = defobj;
4343 	return (0);
4344     }
4345     return (ESRCH);
4346 }
4347 
4348 /*
4349  * Search the symbol table of a single shared object for a symbol of
4350  * the given name and version, if requested.  Returns a pointer to the
4351  * symbol, or NULL if no definition was found.  If the object is
4352  * filter, return filtered symbol from filtee.
4353  *
4354  * The symbol's hash value is passed in for efficiency reasons; that
4355  * eliminates many recomputations of the hash value.
4356  */
4357 int
4358 symlook_obj(SymLook *req, const Obj_Entry *obj)
4359 {
4360     DoneList donelist;
4361     SymLook req1;
4362     int flags, res, mres;
4363 
4364     /*
4365      * If there is at least one valid hash at this point, we prefer to
4366      * use the faster GNU version if available.
4367      */
4368     if (obj->valid_hash_gnu)
4369 	mres = symlook_obj1_gnu(req, obj);
4370     else if (obj->valid_hash_sysv)
4371 	mres = symlook_obj1_sysv(req, obj);
4372     else
4373 	return (EINVAL);
4374 
4375     if (mres == 0) {
4376 	if (obj->needed_filtees != NULL) {
4377 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4378 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4379 	    donelist_init(&donelist);
4380 	    symlook_init_from_req(&req1, req);
4381 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4382 	    if (res == 0) {
4383 		req->sym_out = req1.sym_out;
4384 		req->defobj_out = req1.defobj_out;
4385 	    }
4386 	    return (res);
4387 	}
4388 	if (obj->needed_aux_filtees != NULL) {
4389 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4390 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4391 	    donelist_init(&donelist);
4392 	    symlook_init_from_req(&req1, req);
4393 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4394 	    if (res == 0) {
4395 		req->sym_out = req1.sym_out;
4396 		req->defobj_out = req1.defobj_out;
4397 		return (res);
4398 	    }
4399 	}
4400     }
4401     return (mres);
4402 }
4403 
4404 /* Symbol match routine common to both hash functions */
4405 static bool
4406 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4407     const unsigned long symnum)
4408 {
4409 	Elf_Versym verndx;
4410 	const Elf_Sym *symp;
4411 	const char *strp;
4412 
4413 	symp = obj->symtab + symnum;
4414 	strp = obj->strtab + symp->st_name;
4415 
4416 	switch (ELF_ST_TYPE(symp->st_info)) {
4417 	case STT_FUNC:
4418 	case STT_NOTYPE:
4419 	case STT_OBJECT:
4420 	case STT_COMMON:
4421 	case STT_GNU_IFUNC:
4422 		if (symp->st_value == 0)
4423 			return (false);
4424 		/* fallthrough */
4425 	case STT_TLS:
4426 		if (symp->st_shndx != SHN_UNDEF)
4427 			break;
4428 #ifndef __mips__
4429 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4430 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4431 			break;
4432 #endif
4433 		/* fallthrough */
4434 	default:
4435 		return (false);
4436 	}
4437 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4438 		return (false);
4439 
4440 	if (req->ventry == NULL) {
4441 		if (obj->versyms != NULL) {
4442 			verndx = VER_NDX(obj->versyms[symnum]);
4443 			if (verndx > obj->vernum) {
4444 				_rtld_error(
4445 				    "%s: symbol %s references wrong version %d",
4446 				    obj->path, obj->strtab + symnum, verndx);
4447 				return (false);
4448 			}
4449 			/*
4450 			 * If we are not called from dlsym (i.e. this
4451 			 * is a normal relocation from unversioned
4452 			 * binary), accept the symbol immediately if
4453 			 * it happens to have first version after this
4454 			 * shared object became versioned.  Otherwise,
4455 			 * if symbol is versioned and not hidden,
4456 			 * remember it. If it is the only symbol with
4457 			 * this name exported by the shared object, it
4458 			 * will be returned as a match by the calling
4459 			 * function. If symbol is global (verndx < 2)
4460 			 * accept it unconditionally.
4461 			 */
4462 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4463 			    verndx == VER_NDX_GIVEN) {
4464 				result->sym_out = symp;
4465 				return (true);
4466 			}
4467 			else if (verndx >= VER_NDX_GIVEN) {
4468 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4469 				    == 0) {
4470 					if (result->vsymp == NULL)
4471 						result->vsymp = symp;
4472 					result->vcount++;
4473 				}
4474 				return (false);
4475 			}
4476 		}
4477 		result->sym_out = symp;
4478 		return (true);
4479 	}
4480 	if (obj->versyms == NULL) {
4481 		if (object_match_name(obj, req->ventry->name)) {
4482 			_rtld_error("%s: object %s should provide version %s "
4483 			    "for symbol %s", obj_rtld.path, obj->path,
4484 			    req->ventry->name, obj->strtab + symnum);
4485 			return (false);
4486 		}
4487 	} else {
4488 		verndx = VER_NDX(obj->versyms[symnum]);
4489 		if (verndx > obj->vernum) {
4490 			_rtld_error("%s: symbol %s references wrong version %d",
4491 			    obj->path, obj->strtab + symnum, verndx);
4492 			return (false);
4493 		}
4494 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4495 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4496 			/*
4497 			 * Version does not match. Look if this is a
4498 			 * global symbol and if it is not hidden. If
4499 			 * global symbol (verndx < 2) is available,
4500 			 * use it. Do not return symbol if we are
4501 			 * called by dlvsym, because dlvsym looks for
4502 			 * a specific version and default one is not
4503 			 * what dlvsym wants.
4504 			 */
4505 			if ((req->flags & SYMLOOK_DLSYM) ||
4506 			    (verndx >= VER_NDX_GIVEN) ||
4507 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4508 				return (false);
4509 		}
4510 	}
4511 	result->sym_out = symp;
4512 	return (true);
4513 }
4514 
4515 /*
4516  * Search for symbol using SysV hash function.
4517  * obj->buckets is known not to be NULL at this point; the test for this was
4518  * performed with the obj->valid_hash_sysv assignment.
4519  */
4520 static int
4521 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4522 {
4523 	unsigned long symnum;
4524 	Sym_Match_Result matchres;
4525 
4526 	matchres.sym_out = NULL;
4527 	matchres.vsymp = NULL;
4528 	matchres.vcount = 0;
4529 
4530 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4531 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4532 		if (symnum >= obj->nchains)
4533 			return (ESRCH);	/* Bad object */
4534 
4535 		if (matched_symbol(req, obj, &matchres, symnum)) {
4536 			req->sym_out = matchres.sym_out;
4537 			req->defobj_out = obj;
4538 			return (0);
4539 		}
4540 	}
4541 	if (matchres.vcount == 1) {
4542 		req->sym_out = matchres.vsymp;
4543 		req->defobj_out = obj;
4544 		return (0);
4545 	}
4546 	return (ESRCH);
4547 }
4548 
4549 /* Search for symbol using GNU hash function */
4550 static int
4551 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4552 {
4553 	Elf_Addr bloom_word;
4554 	const Elf32_Word *hashval;
4555 	Elf32_Word bucket;
4556 	Sym_Match_Result matchres;
4557 	unsigned int h1, h2;
4558 	unsigned long symnum;
4559 
4560 	matchres.sym_out = NULL;
4561 	matchres.vsymp = NULL;
4562 	matchres.vcount = 0;
4563 
4564 	/* Pick right bitmask word from Bloom filter array */
4565 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4566 	    obj->maskwords_bm_gnu];
4567 
4568 	/* Calculate modulus word size of gnu hash and its derivative */
4569 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4570 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4571 
4572 	/* Filter out the "definitely not in set" queries */
4573 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4574 		return (ESRCH);
4575 
4576 	/* Locate hash chain and corresponding value element*/
4577 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4578 	if (bucket == 0)
4579 		return (ESRCH);
4580 	hashval = &obj->chain_zero_gnu[bucket];
4581 	do {
4582 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4583 			symnum = hashval - obj->chain_zero_gnu;
4584 			if (matched_symbol(req, obj, &matchres, symnum)) {
4585 				req->sym_out = matchres.sym_out;
4586 				req->defobj_out = obj;
4587 				return (0);
4588 			}
4589 		}
4590 	} while ((*hashval++ & 1) == 0);
4591 	if (matchres.vcount == 1) {
4592 		req->sym_out = matchres.vsymp;
4593 		req->defobj_out = obj;
4594 		return (0);
4595 	}
4596 	return (ESRCH);
4597 }
4598 
4599 static void
4600 trace_loaded_objects(Obj_Entry *obj)
4601 {
4602     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4603     int c;
4604 
4605     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4606 	main_local = "";
4607 
4608     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4609 	fmt1 = "\t%o => %p (%x)\n";
4610 
4611     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4612 	fmt2 = "\t%o (%x)\n";
4613 
4614     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4615 
4616     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4617 	Needed_Entry *needed;
4618 	const char *name, *path;
4619 	bool is_lib;
4620 
4621 	if (obj->marker)
4622 	    continue;
4623 	if (list_containers && obj->needed != NULL)
4624 	    rtld_printf("%s:\n", obj->path);
4625 	for (needed = obj->needed; needed; needed = needed->next) {
4626 	    if (needed->obj != NULL) {
4627 		if (needed->obj->traced && !list_containers)
4628 		    continue;
4629 		needed->obj->traced = true;
4630 		path = needed->obj->path;
4631 	    } else
4632 		path = "not found";
4633 
4634 	    name = obj->strtab + needed->name;
4635 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4636 
4637 	    fmt = is_lib ? fmt1 : fmt2;
4638 	    while ((c = *fmt++) != '\0') {
4639 		switch (c) {
4640 		default:
4641 		    rtld_putchar(c);
4642 		    continue;
4643 		case '\\':
4644 		    switch (c = *fmt) {
4645 		    case '\0':
4646 			continue;
4647 		    case 'n':
4648 			rtld_putchar('\n');
4649 			break;
4650 		    case 't':
4651 			rtld_putchar('\t');
4652 			break;
4653 		    }
4654 		    break;
4655 		case '%':
4656 		    switch (c = *fmt) {
4657 		    case '\0':
4658 			continue;
4659 		    case '%':
4660 		    default:
4661 			rtld_putchar(c);
4662 			break;
4663 		    case 'A':
4664 			rtld_putstr(main_local);
4665 			break;
4666 		    case 'a':
4667 			rtld_putstr(obj_main->path);
4668 			break;
4669 		    case 'o':
4670 			rtld_putstr(name);
4671 			break;
4672 #if 0
4673 		    case 'm':
4674 			rtld_printf("%d", sodp->sod_major);
4675 			break;
4676 		    case 'n':
4677 			rtld_printf("%d", sodp->sod_minor);
4678 			break;
4679 #endif
4680 		    case 'p':
4681 			rtld_putstr(path);
4682 			break;
4683 		    case 'x':
4684 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4685 			  0);
4686 			break;
4687 		    }
4688 		    break;
4689 		}
4690 		++fmt;
4691 	    }
4692 	}
4693     }
4694 }
4695 
4696 /*
4697  * Unload a dlopened object and its dependencies from memory and from
4698  * our data structures.  It is assumed that the DAG rooted in the
4699  * object has already been unreferenced, and that the object has a
4700  * reference count of 0.
4701  */
4702 static void
4703 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4704 {
4705 	Obj_Entry marker, *obj, *next;
4706 
4707 	assert(root->refcount == 0);
4708 
4709 	/*
4710 	 * Pass over the DAG removing unreferenced objects from
4711 	 * appropriate lists.
4712 	 */
4713 	unlink_object(root);
4714 
4715 	/* Unmap all objects that are no longer referenced. */
4716 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4717 		next = TAILQ_NEXT(obj, next);
4718 		if (obj->marker || obj->refcount != 0)
4719 			continue;
4720 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4721 		    obj->mapsize, 0, obj->path);
4722 		dbg("unloading \"%s\"", obj->path);
4723 		/*
4724 		 * Unlink the object now to prevent new references from
4725 		 * being acquired while the bind lock is dropped in
4726 		 * recursive dlclose() invocations.
4727 		 */
4728 		TAILQ_REMOVE(&obj_list, obj, next);
4729 		obj_count--;
4730 
4731 		if (obj->filtees_loaded) {
4732 			if (next != NULL) {
4733 				init_marker(&marker);
4734 				TAILQ_INSERT_BEFORE(next, &marker, next);
4735 				unload_filtees(obj, lockstate);
4736 				next = TAILQ_NEXT(&marker, next);
4737 				TAILQ_REMOVE(&obj_list, &marker, next);
4738 			} else
4739 				unload_filtees(obj, lockstate);
4740 		}
4741 		release_object(obj);
4742 	}
4743 }
4744 
4745 static void
4746 unlink_object(Obj_Entry *root)
4747 {
4748     Objlist_Entry *elm;
4749 
4750     if (root->refcount == 0) {
4751 	/* Remove the object from the RTLD_GLOBAL list. */
4752 	objlist_remove(&list_global, root);
4753 
4754     	/* Remove the object from all objects' DAG lists. */
4755     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4756 	    objlist_remove(&elm->obj->dldags, root);
4757 	    if (elm->obj != root)
4758 		unlink_object(elm->obj);
4759 	}
4760     }
4761 }
4762 
4763 static void
4764 ref_dag(Obj_Entry *root)
4765 {
4766     Objlist_Entry *elm;
4767 
4768     assert(root->dag_inited);
4769     STAILQ_FOREACH(elm, &root->dagmembers, link)
4770 	elm->obj->refcount++;
4771 }
4772 
4773 static void
4774 unref_dag(Obj_Entry *root)
4775 {
4776     Objlist_Entry *elm;
4777 
4778     assert(root->dag_inited);
4779     STAILQ_FOREACH(elm, &root->dagmembers, link)
4780 	elm->obj->refcount--;
4781 }
4782 
4783 /*
4784  * Common code for MD __tls_get_addr().
4785  */
4786 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4787 static void *
4788 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4789 {
4790     Elf_Addr *newdtv, *dtv;
4791     RtldLockState lockstate;
4792     int to_copy;
4793 
4794     dtv = *dtvp;
4795     /* Check dtv generation in case new modules have arrived */
4796     if (dtv[0] != tls_dtv_generation) {
4797 	wlock_acquire(rtld_bind_lock, &lockstate);
4798 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4799 	to_copy = dtv[1];
4800 	if (to_copy > tls_max_index)
4801 	    to_copy = tls_max_index;
4802 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4803 	newdtv[0] = tls_dtv_generation;
4804 	newdtv[1] = tls_max_index;
4805 	free(dtv);
4806 	lock_release(rtld_bind_lock, &lockstate);
4807 	dtv = *dtvp = newdtv;
4808     }
4809 
4810     /* Dynamically allocate module TLS if necessary */
4811     if (dtv[index + 1] == 0) {
4812 	/* Signal safe, wlock will block out signals. */
4813 	wlock_acquire(rtld_bind_lock, &lockstate);
4814 	if (!dtv[index + 1])
4815 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4816 	lock_release(rtld_bind_lock, &lockstate);
4817     }
4818     return ((void *)(dtv[index + 1] + offset));
4819 }
4820 
4821 void *
4822 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4823 {
4824 	Elf_Addr *dtv;
4825 
4826 	dtv = *dtvp;
4827 	/* Check dtv generation in case new modules have arrived */
4828 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4829 	    dtv[index + 1] != 0))
4830 		return ((void *)(dtv[index + 1] + offset));
4831 	return (tls_get_addr_slow(dtvp, index, offset));
4832 }
4833 
4834 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4835     defined(__powerpc__) || defined(__riscv)
4836 
4837 /*
4838  * Return pointer to allocated TLS block
4839  */
4840 static void *
4841 get_tls_block_ptr(void *tcb, size_t tcbsize)
4842 {
4843     size_t extra_size, post_size, pre_size, tls_block_size;
4844     size_t tls_init_align;
4845 
4846     tls_init_align = MAX(obj_main->tlsalign, 1);
4847 
4848     /* Compute fragments sizes. */
4849     extra_size = tcbsize - TLS_TCB_SIZE;
4850     post_size = calculate_tls_post_size(tls_init_align);
4851     tls_block_size = tcbsize + post_size;
4852     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4853 
4854     return ((char *)tcb - pre_size - extra_size);
4855 }
4856 
4857 /*
4858  * Allocate Static TLS using the Variant I method.
4859  *
4860  * For details on the layout, see lib/libc/gen/tls.c.
4861  *
4862  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4863  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4864  *     offsets, whereas libc's tls_static_space is just the executable's static
4865  *     TLS segment.
4866  */
4867 void *
4868 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4869 {
4870     Obj_Entry *obj;
4871     char *tls_block;
4872     Elf_Addr *dtv, **tcb;
4873     Elf_Addr addr;
4874     Elf_Addr i;
4875     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4876     size_t tls_init_align, tls_init_offset;
4877 
4878     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4879 	return (oldtcb);
4880 
4881     assert(tcbsize >= TLS_TCB_SIZE);
4882     maxalign = MAX(tcbalign, tls_static_max_align);
4883     tls_init_align = MAX(obj_main->tlsalign, 1);
4884 
4885     /* Compute fragmets sizes. */
4886     extra_size = tcbsize - TLS_TCB_SIZE;
4887     post_size = calculate_tls_post_size(tls_init_align);
4888     tls_block_size = tcbsize + post_size;
4889     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4890     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4891 
4892     /* Allocate whole TLS block */
4893     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4894     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4895 
4896     if (oldtcb != NULL) {
4897 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4898 	    tls_static_space);
4899 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4900 
4901 	/* Adjust the DTV. */
4902 	dtv = tcb[0];
4903 	for (i = 0; i < dtv[1]; i++) {
4904 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4905 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4906 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4907 	    }
4908 	}
4909     } else {
4910 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4911 	tcb[0] = dtv;
4912 	dtv[0] = tls_dtv_generation;
4913 	dtv[1] = tls_max_index;
4914 
4915 	for (obj = globallist_curr(objs); obj != NULL;
4916 	  obj = globallist_next(obj)) {
4917 	    if (obj->tlsoffset == 0)
4918 		continue;
4919 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4920 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4921 	    if (tls_init_offset > 0)
4922 		memset((void *)addr, 0, tls_init_offset);
4923 	    if (obj->tlsinitsize > 0) {
4924 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4925 		    obj->tlsinitsize);
4926 	    }
4927 	    if (obj->tlssize > obj->tlsinitsize) {
4928 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4929 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4930 	    }
4931 	    dtv[obj->tlsindex + 1] = addr;
4932 	}
4933     }
4934 
4935     return (tcb);
4936 }
4937 
4938 void
4939 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4940 {
4941     Elf_Addr *dtv;
4942     Elf_Addr tlsstart, tlsend;
4943     size_t post_size;
4944     size_t dtvsize, i, tls_init_align;
4945 
4946     assert(tcbsize >= TLS_TCB_SIZE);
4947     tls_init_align = MAX(obj_main->tlsalign, 1);
4948 
4949     /* Compute fragments sizes. */
4950     post_size = calculate_tls_post_size(tls_init_align);
4951 
4952     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4953     tlsend = (Elf_Addr)tcb + tls_static_space;
4954 
4955     dtv = *(Elf_Addr **)tcb;
4956     dtvsize = dtv[1];
4957     for (i = 0; i < dtvsize; i++) {
4958 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4959 	    free((void*)dtv[i+2]);
4960 	}
4961     }
4962     free(dtv);
4963     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4964 }
4965 
4966 #endif
4967 
4968 #if defined(__i386__) || defined(__amd64__)
4969 
4970 /*
4971  * Allocate Static TLS using the Variant II method.
4972  */
4973 void *
4974 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4975 {
4976     Obj_Entry *obj;
4977     size_t size, ralign;
4978     char *tls;
4979     Elf_Addr *dtv, *olddtv;
4980     Elf_Addr segbase, oldsegbase, addr;
4981     size_t i;
4982 
4983     ralign = tcbalign;
4984     if (tls_static_max_align > ralign)
4985 	    ralign = tls_static_max_align;
4986     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
4987 
4988     assert(tcbsize >= 2*sizeof(Elf_Addr));
4989     tls = malloc_aligned(size, ralign, 0 /* XXX */);
4990     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4991 
4992     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
4993     ((Elf_Addr*)segbase)[0] = segbase;
4994     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4995 
4996     dtv[0] = tls_dtv_generation;
4997     dtv[1] = tls_max_index;
4998 
4999     if (oldtls) {
5000 	/*
5001 	 * Copy the static TLS block over whole.
5002 	 */
5003 	oldsegbase = (Elf_Addr) oldtls;
5004 	memcpy((void *)(segbase - tls_static_space),
5005 	       (const void *)(oldsegbase - tls_static_space),
5006 	       tls_static_space);
5007 
5008 	/*
5009 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5010 	 * move them over.
5011 	 */
5012 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5013 	for (i = 0; i < olddtv[1]; i++) {
5014 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5015 		dtv[i+2] = olddtv[i+2];
5016 		olddtv[i+2] = 0;
5017 	    }
5018 	}
5019 
5020 	/*
5021 	 * We assume that this block was the one we created with
5022 	 * allocate_initial_tls().
5023 	 */
5024 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5025     } else {
5026 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5027 		if (obj->marker || obj->tlsoffset == 0)
5028 			continue;
5029 		addr = segbase - obj->tlsoffset;
5030 		memset((void*)(addr + obj->tlsinitsize),
5031 		       0, obj->tlssize - obj->tlsinitsize);
5032 		if (obj->tlsinit) {
5033 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5034 		    obj->static_tls_copied = true;
5035 		}
5036 		dtv[obj->tlsindex + 1] = addr;
5037 	}
5038     }
5039 
5040     return (void*) segbase;
5041 }
5042 
5043 void
5044 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5045 {
5046     Elf_Addr* dtv;
5047     size_t size, ralign;
5048     int dtvsize, i;
5049     Elf_Addr tlsstart, tlsend;
5050 
5051     /*
5052      * Figure out the size of the initial TLS block so that we can
5053      * find stuff which ___tls_get_addr() allocated dynamically.
5054      */
5055     ralign = tcbalign;
5056     if (tls_static_max_align > ralign)
5057 	    ralign = tls_static_max_align;
5058     size = roundup(tls_static_space, ralign);
5059 
5060     dtv = ((Elf_Addr**)tls)[1];
5061     dtvsize = dtv[1];
5062     tlsend = (Elf_Addr) tls;
5063     tlsstart = tlsend - size;
5064     for (i = 0; i < dtvsize; i++) {
5065 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5066 		free_aligned((void *)dtv[i + 2]);
5067 	}
5068     }
5069 
5070     free_aligned((void *)tlsstart);
5071     free((void*) dtv);
5072 }
5073 
5074 #endif
5075 
5076 /*
5077  * Allocate TLS block for module with given index.
5078  */
5079 void *
5080 allocate_module_tls(int index)
5081 {
5082 	Obj_Entry *obj;
5083 	char *p;
5084 
5085 	TAILQ_FOREACH(obj, &obj_list, next) {
5086 		if (obj->marker)
5087 			continue;
5088 		if (obj->tlsindex == index)
5089 			break;
5090 	}
5091 	if (obj == NULL) {
5092 		_rtld_error("Can't find module with TLS index %d", index);
5093 		rtld_die();
5094 	}
5095 
5096 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5097 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5098 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5099 	return (p);
5100 }
5101 
5102 bool
5103 allocate_tls_offset(Obj_Entry *obj)
5104 {
5105     size_t off;
5106 
5107     if (obj->tls_done)
5108 	return true;
5109 
5110     if (obj->tlssize == 0) {
5111 	obj->tls_done = true;
5112 	return true;
5113     }
5114 
5115     if (tls_last_offset == 0)
5116 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5117 	  obj->tlspoffset);
5118     else
5119 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5120 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5121 
5122     /*
5123      * If we have already fixed the size of the static TLS block, we
5124      * must stay within that size. When allocating the static TLS, we
5125      * leave a small amount of space spare to be used for dynamically
5126      * loading modules which use static TLS.
5127      */
5128     if (tls_static_space != 0) {
5129 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5130 	    return false;
5131     } else if (obj->tlsalign > tls_static_max_align) {
5132 	    tls_static_max_align = obj->tlsalign;
5133     }
5134 
5135     tls_last_offset = obj->tlsoffset = off;
5136     tls_last_size = obj->tlssize;
5137     obj->tls_done = true;
5138 
5139     return true;
5140 }
5141 
5142 void
5143 free_tls_offset(Obj_Entry *obj)
5144 {
5145 
5146     /*
5147      * If we were the last thing to allocate out of the static TLS
5148      * block, we give our space back to the 'allocator'. This is a
5149      * simplistic workaround to allow libGL.so.1 to be loaded and
5150      * unloaded multiple times.
5151      */
5152     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5153 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5154 	tls_last_offset -= obj->tlssize;
5155 	tls_last_size = 0;
5156     }
5157 }
5158 
5159 void *
5160 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5161 {
5162     void *ret;
5163     RtldLockState lockstate;
5164 
5165     wlock_acquire(rtld_bind_lock, &lockstate);
5166     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5167       tcbsize, tcbalign);
5168     lock_release(rtld_bind_lock, &lockstate);
5169     return (ret);
5170 }
5171 
5172 void
5173 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5174 {
5175     RtldLockState lockstate;
5176 
5177     wlock_acquire(rtld_bind_lock, &lockstate);
5178     free_tls(tcb, tcbsize, tcbalign);
5179     lock_release(rtld_bind_lock, &lockstate);
5180 }
5181 
5182 static void
5183 object_add_name(Obj_Entry *obj, const char *name)
5184 {
5185     Name_Entry *entry;
5186     size_t len;
5187 
5188     len = strlen(name);
5189     entry = malloc(sizeof(Name_Entry) + len);
5190 
5191     if (entry != NULL) {
5192 	strcpy(entry->name, name);
5193 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5194     }
5195 }
5196 
5197 static int
5198 object_match_name(const Obj_Entry *obj, const char *name)
5199 {
5200     Name_Entry *entry;
5201 
5202     STAILQ_FOREACH(entry, &obj->names, link) {
5203 	if (strcmp(name, entry->name) == 0)
5204 	    return (1);
5205     }
5206     return (0);
5207 }
5208 
5209 static Obj_Entry *
5210 locate_dependency(const Obj_Entry *obj, const char *name)
5211 {
5212     const Objlist_Entry *entry;
5213     const Needed_Entry *needed;
5214 
5215     STAILQ_FOREACH(entry, &list_main, link) {
5216 	if (object_match_name(entry->obj, name))
5217 	    return entry->obj;
5218     }
5219 
5220     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5221 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5222 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5223 	    /*
5224 	     * If there is DT_NEEDED for the name we are looking for,
5225 	     * we are all set.  Note that object might not be found if
5226 	     * dependency was not loaded yet, so the function can
5227 	     * return NULL here.  This is expected and handled
5228 	     * properly by the caller.
5229 	     */
5230 	    return (needed->obj);
5231 	}
5232     }
5233     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5234 	obj->path, name);
5235     rtld_die();
5236 }
5237 
5238 static int
5239 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5240     const Elf_Vernaux *vna)
5241 {
5242     const Elf_Verdef *vd;
5243     const char *vername;
5244 
5245     vername = refobj->strtab + vna->vna_name;
5246     vd = depobj->verdef;
5247     if (vd == NULL) {
5248 	_rtld_error("%s: version %s required by %s not defined",
5249 	    depobj->path, vername, refobj->path);
5250 	return (-1);
5251     }
5252     for (;;) {
5253 	if (vd->vd_version != VER_DEF_CURRENT) {
5254 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5255 		depobj->path, vd->vd_version);
5256 	    return (-1);
5257 	}
5258 	if (vna->vna_hash == vd->vd_hash) {
5259 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5260 		((const char *)vd + vd->vd_aux);
5261 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5262 		return (0);
5263 	}
5264 	if (vd->vd_next == 0)
5265 	    break;
5266 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5267     }
5268     if (vna->vna_flags & VER_FLG_WEAK)
5269 	return (0);
5270     _rtld_error("%s: version %s required by %s not found",
5271 	depobj->path, vername, refobj->path);
5272     return (-1);
5273 }
5274 
5275 static int
5276 rtld_verify_object_versions(Obj_Entry *obj)
5277 {
5278     const Elf_Verneed *vn;
5279     const Elf_Verdef  *vd;
5280     const Elf_Verdaux *vda;
5281     const Elf_Vernaux *vna;
5282     const Obj_Entry *depobj;
5283     int maxvernum, vernum;
5284 
5285     if (obj->ver_checked)
5286 	return (0);
5287     obj->ver_checked = true;
5288 
5289     maxvernum = 0;
5290     /*
5291      * Walk over defined and required version records and figure out
5292      * max index used by any of them. Do very basic sanity checking
5293      * while there.
5294      */
5295     vn = obj->verneed;
5296     while (vn != NULL) {
5297 	if (vn->vn_version != VER_NEED_CURRENT) {
5298 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5299 		obj->path, vn->vn_version);
5300 	    return (-1);
5301 	}
5302 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5303 	for (;;) {
5304 	    vernum = VER_NEED_IDX(vna->vna_other);
5305 	    if (vernum > maxvernum)
5306 		maxvernum = vernum;
5307 	    if (vna->vna_next == 0)
5308 		 break;
5309 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5310 	}
5311 	if (vn->vn_next == 0)
5312 	    break;
5313 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5314     }
5315 
5316     vd = obj->verdef;
5317     while (vd != NULL) {
5318 	if (vd->vd_version != VER_DEF_CURRENT) {
5319 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5320 		obj->path, vd->vd_version);
5321 	    return (-1);
5322 	}
5323 	vernum = VER_DEF_IDX(vd->vd_ndx);
5324 	if (vernum > maxvernum)
5325 		maxvernum = vernum;
5326 	if (vd->vd_next == 0)
5327 	    break;
5328 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5329     }
5330 
5331     if (maxvernum == 0)
5332 	return (0);
5333 
5334     /*
5335      * Store version information in array indexable by version index.
5336      * Verify that object version requirements are satisfied along the
5337      * way.
5338      */
5339     obj->vernum = maxvernum + 1;
5340     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5341 
5342     vd = obj->verdef;
5343     while (vd != NULL) {
5344 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5345 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5346 	    assert(vernum <= maxvernum);
5347 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5348 	    obj->vertab[vernum].hash = vd->vd_hash;
5349 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5350 	    obj->vertab[vernum].file = NULL;
5351 	    obj->vertab[vernum].flags = 0;
5352 	}
5353 	if (vd->vd_next == 0)
5354 	    break;
5355 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5356     }
5357 
5358     vn = obj->verneed;
5359     while (vn != NULL) {
5360 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5361 	if (depobj == NULL)
5362 	    return (-1);
5363 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5364 	for (;;) {
5365 	    if (check_object_provided_version(obj, depobj, vna))
5366 		return (-1);
5367 	    vernum = VER_NEED_IDX(vna->vna_other);
5368 	    assert(vernum <= maxvernum);
5369 	    obj->vertab[vernum].hash = vna->vna_hash;
5370 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5371 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5372 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5373 		VER_INFO_HIDDEN : 0;
5374 	    if (vna->vna_next == 0)
5375 		 break;
5376 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5377 	}
5378 	if (vn->vn_next == 0)
5379 	    break;
5380 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5381     }
5382     return 0;
5383 }
5384 
5385 static int
5386 rtld_verify_versions(const Objlist *objlist)
5387 {
5388     Objlist_Entry *entry;
5389     int rc;
5390 
5391     rc = 0;
5392     STAILQ_FOREACH(entry, objlist, link) {
5393 	/*
5394 	 * Skip dummy objects or objects that have their version requirements
5395 	 * already checked.
5396 	 */
5397 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5398 	    continue;
5399 	if (rtld_verify_object_versions(entry->obj) == -1) {
5400 	    rc = -1;
5401 	    if (ld_tracing == NULL)
5402 		break;
5403 	}
5404     }
5405     if (rc == 0 || ld_tracing != NULL)
5406     	rc = rtld_verify_object_versions(&obj_rtld);
5407     return rc;
5408 }
5409 
5410 const Ver_Entry *
5411 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5412 {
5413     Elf_Versym vernum;
5414 
5415     if (obj->vertab) {
5416 	vernum = VER_NDX(obj->versyms[symnum]);
5417 	if (vernum >= obj->vernum) {
5418 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5419 		obj->path, obj->strtab + symnum, vernum);
5420 	} else if (obj->vertab[vernum].hash != 0) {
5421 	    return &obj->vertab[vernum];
5422 	}
5423     }
5424     return NULL;
5425 }
5426 
5427 int
5428 _rtld_get_stack_prot(void)
5429 {
5430 
5431 	return (stack_prot);
5432 }
5433 
5434 int
5435 _rtld_is_dlopened(void *arg)
5436 {
5437 	Obj_Entry *obj;
5438 	RtldLockState lockstate;
5439 	int res;
5440 
5441 	rlock_acquire(rtld_bind_lock, &lockstate);
5442 	obj = dlcheck(arg);
5443 	if (obj == NULL)
5444 		obj = obj_from_addr(arg);
5445 	if (obj == NULL) {
5446 		_rtld_error("No shared object contains address");
5447 		lock_release(rtld_bind_lock, &lockstate);
5448 		return (-1);
5449 	}
5450 	res = obj->dlopened ? 1 : 0;
5451 	lock_release(rtld_bind_lock, &lockstate);
5452 	return (res);
5453 }
5454 
5455 static int
5456 obj_remap_relro(Obj_Entry *obj, int prot)
5457 {
5458 
5459 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5460 	    prot) == -1) {
5461 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5462 		    obj->path, prot, rtld_strerror(errno));
5463 		return (-1);
5464 	}
5465 	return (0);
5466 }
5467 
5468 static int
5469 obj_disable_relro(Obj_Entry *obj)
5470 {
5471 
5472 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5473 }
5474 
5475 static int
5476 obj_enforce_relro(Obj_Entry *obj)
5477 {
5478 
5479 	return (obj_remap_relro(obj, PROT_READ));
5480 }
5481 
5482 static void
5483 map_stacks_exec(RtldLockState *lockstate)
5484 {
5485 	void (*thr_map_stacks_exec)(void);
5486 
5487 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5488 		return;
5489 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5490 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5491 	if (thr_map_stacks_exec != NULL) {
5492 		stack_prot |= PROT_EXEC;
5493 		thr_map_stacks_exec();
5494 	}
5495 }
5496 
5497 static void
5498 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5499 {
5500 	Objlist_Entry *elm;
5501 	Obj_Entry *obj;
5502 	void (*distrib)(size_t, void *, size_t, size_t);
5503 
5504 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5505 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5506 	if (distrib == NULL)
5507 		return;
5508 	STAILQ_FOREACH(elm, list, link) {
5509 		obj = elm->obj;
5510 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5511 			continue;
5512 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5513 		    obj->tlssize);
5514 		obj->static_tls_copied = true;
5515 	}
5516 }
5517 
5518 void
5519 symlook_init(SymLook *dst, const char *name)
5520 {
5521 
5522 	bzero(dst, sizeof(*dst));
5523 	dst->name = name;
5524 	dst->hash = elf_hash(name);
5525 	dst->hash_gnu = gnu_hash(name);
5526 }
5527 
5528 static void
5529 symlook_init_from_req(SymLook *dst, const SymLook *src)
5530 {
5531 
5532 	dst->name = src->name;
5533 	dst->hash = src->hash;
5534 	dst->hash_gnu = src->hash_gnu;
5535 	dst->ventry = src->ventry;
5536 	dst->flags = src->flags;
5537 	dst->defobj_out = NULL;
5538 	dst->sym_out = NULL;
5539 	dst->lockstate = src->lockstate;
5540 }
5541 
5542 static int
5543 open_binary_fd(const char *argv0, bool search_in_path,
5544     const char **binpath_res)
5545 {
5546 	char *binpath, *pathenv, *pe, *res1;
5547 	const char *res;
5548 	int fd;
5549 
5550 	binpath = NULL;
5551 	res = NULL;
5552 	if (search_in_path && strchr(argv0, '/') == NULL) {
5553 		binpath = xmalloc(PATH_MAX);
5554 		pathenv = getenv("PATH");
5555 		if (pathenv == NULL) {
5556 			_rtld_error("-p and no PATH environment variable");
5557 			rtld_die();
5558 		}
5559 		pathenv = strdup(pathenv);
5560 		if (pathenv == NULL) {
5561 			_rtld_error("Cannot allocate memory");
5562 			rtld_die();
5563 		}
5564 		fd = -1;
5565 		errno = ENOENT;
5566 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5567 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5568 				continue;
5569 			if (binpath[0] != '\0' &&
5570 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5571 				continue;
5572 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5573 				continue;
5574 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5575 			if (fd != -1 || errno != ENOENT) {
5576 				res = binpath;
5577 				break;
5578 			}
5579 		}
5580 		free(pathenv);
5581 	} else {
5582 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5583 		res = argv0;
5584 	}
5585 
5586 	if (fd == -1) {
5587 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5588 		rtld_die();
5589 	}
5590 	if (res != NULL && res[0] != '/') {
5591 		res1 = xmalloc(PATH_MAX);
5592 		if (realpath(res, res1) != NULL) {
5593 			if (res != argv0)
5594 				free(__DECONST(char *, res));
5595 			res = res1;
5596 		} else {
5597 			free(res1);
5598 		}
5599 	}
5600 	*binpath_res = res;
5601 	return (fd);
5602 }
5603 
5604 /*
5605  * Parse a set of command-line arguments.
5606  */
5607 static int
5608 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5609 {
5610 	const char *arg;
5611 	int fd, i, j, arglen;
5612 	char opt;
5613 
5614 	dbg("Parsing command-line arguments");
5615 	*use_pathp = false;
5616 	*fdp = -1;
5617 
5618 	for (i = 1; i < argc; i++ ) {
5619 		arg = argv[i];
5620 		dbg("argv[%d]: '%s'", i, arg);
5621 
5622 		/*
5623 		 * rtld arguments end with an explicit "--" or with the first
5624 		 * non-prefixed argument.
5625 		 */
5626 		if (strcmp(arg, "--") == 0) {
5627 			i++;
5628 			break;
5629 		}
5630 		if (arg[0] != '-')
5631 			break;
5632 
5633 		/*
5634 		 * All other arguments are single-character options that can
5635 		 * be combined, so we need to search through `arg` for them.
5636 		 */
5637 		arglen = strlen(arg);
5638 		for (j = 1; j < arglen; j++) {
5639 			opt = arg[j];
5640 			if (opt == 'h') {
5641 				print_usage(argv[0]);
5642 				_exit(0);
5643 			} else if (opt == 'f') {
5644 				/*
5645 				 * -f XX can be used to specify a
5646 				 * descriptor for the binary named at
5647 				 * the command line (i.e., the later
5648 				 * argument will specify the process
5649 				 * name but the descriptor is what
5650 				 * will actually be executed).
5651 				 *
5652 				 * -f must be the last option in, e.g., -abcf.
5653 				 */
5654 				if (j != arglen - 1) {
5655 					_rtld_error("Invalid options: %s", arg);
5656 					rtld_die();
5657 				}
5658 				i++;
5659 				fd = parse_integer(argv[i]);
5660 				if (fd == -1) {
5661 					_rtld_error(
5662 					    "Invalid file descriptor: '%s'",
5663 					    argv[i]);
5664 					rtld_die();
5665 				}
5666 				*fdp = fd;
5667 				break;
5668 			} else if (opt == 'p') {
5669 				*use_pathp = true;
5670 			} else {
5671 				_rtld_error("Invalid argument: '%s'", arg);
5672 				print_usage(argv[0]);
5673 				rtld_die();
5674 			}
5675 		}
5676 	}
5677 
5678 	return (i);
5679 }
5680 
5681 /*
5682  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5683  */
5684 static int
5685 parse_integer(const char *str)
5686 {
5687 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5688 	const char *orig;
5689 	int n;
5690 	char c;
5691 
5692 	orig = str;
5693 	n = 0;
5694 	for (c = *str; c != '\0'; c = *++str) {
5695 		if (c < '0' || c > '9')
5696 			return (-1);
5697 
5698 		n *= RADIX;
5699 		n += c - '0';
5700 	}
5701 
5702 	/* Make sure we actually parsed something. */
5703 	if (str == orig)
5704 		return (-1);
5705 	return (n);
5706 }
5707 
5708 static void
5709 print_usage(const char *argv0)
5710 {
5711 
5712 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5713 		"\n"
5714 		"Options:\n"
5715 		"  -h        Display this help message\n"
5716 		"  -p        Search in PATH for named binary\n"
5717 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5718 		"  --        End of RTLD options\n"
5719 		"  <binary>  Name of process to execute\n"
5720 		"  <args>    Arguments to the executed process\n", argv0);
5721 }
5722 
5723 /*
5724  * Overrides for libc_pic-provided functions.
5725  */
5726 
5727 int
5728 __getosreldate(void)
5729 {
5730 	size_t len;
5731 	int oid[2];
5732 	int error, osrel;
5733 
5734 	if (osreldate != 0)
5735 		return (osreldate);
5736 
5737 	oid[0] = CTL_KERN;
5738 	oid[1] = KERN_OSRELDATE;
5739 	osrel = 0;
5740 	len = sizeof(osrel);
5741 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5742 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5743 		osreldate = osrel;
5744 	return (osreldate);
5745 }
5746 const char *
5747 rtld_strerror(int errnum)
5748 {
5749 
5750 	if (errnum < 0 || errnum >= sys_nerr)
5751 		return ("Unknown error");
5752 	return (sys_errlist[errnum]);
5753 }
5754 
5755 /* malloc */
5756 void *
5757 malloc(size_t nbytes)
5758 {
5759 
5760 	return (__crt_malloc(nbytes));
5761 }
5762 
5763 void *
5764 calloc(size_t num, size_t size)
5765 {
5766 
5767 	return (__crt_calloc(num, size));
5768 }
5769 
5770 void
5771 free(void *cp)
5772 {
5773 
5774 	__crt_free(cp);
5775 }
5776 
5777 void *
5778 realloc(void *cp, size_t nbytes)
5779 {
5780 
5781 	return (__crt_realloc(cp, nbytes));
5782 }
5783