xref: /freebsd/libexec/rtld-elf/rtld.c (revision ab1e0d2410ece7d391a5b1e2cbc9d1e9857c2fdb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern char* __progname;
81 extern void (*__cleanup)(void);
82 
83 
84 /*
85  * Function declarations.
86  */
87 static const char *basename(const char *);
88 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
89     const Elf_Dyn **, const Elf_Dyn **);
90 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
91     const Elf_Dyn *);
92 static void digest_dynamic(Obj_Entry *, int);
93 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
94 static Obj_Entry *dlcheck(void *);
95 static int dlclose_locked(void *, RtldLockState *);
96 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
97     int lo_flags, int mode, RtldLockState *lockstate);
98 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
99 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
100 static bool donelist_check(DoneList *, const Obj_Entry *);
101 static void errmsg_restore(char *);
102 static char *errmsg_save(void);
103 static void *fill_search_info(const char *, size_t, void *);
104 static char *find_library(const char *, const Obj_Entry *, int *);
105 static const char *gethints(bool);
106 static void hold_object(Obj_Entry *);
107 static void unhold_object(Obj_Entry *);
108 static void init_dag(Obj_Entry *);
109 static void init_marker(Obj_Entry *);
110 static void init_pagesizes(Elf_Auxinfo **aux_info);
111 static void init_rtld(caddr_t, Elf_Auxinfo **);
112 static void initlist_add_neededs(Needed_Entry *, Objlist *);
113 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
114 static void linkmap_add(Obj_Entry *);
115 static void linkmap_delete(Obj_Entry *);
116 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
117 static void unload_filtees(Obj_Entry *, RtldLockState *);
118 static int load_needed_objects(Obj_Entry *, int);
119 static int load_preload_objects(void);
120 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
121 static void map_stacks_exec(RtldLockState *);
122 static int obj_enforce_relro(Obj_Entry *);
123 static Obj_Entry *obj_from_addr(const void *);
124 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
125 static void objlist_call_init(Objlist *, RtldLockState *);
126 static void objlist_clear(Objlist *);
127 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
128 static void objlist_init(Objlist *);
129 static void objlist_push_head(Objlist *, Obj_Entry *);
130 static void objlist_push_tail(Objlist *, Obj_Entry *);
131 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
132 static void objlist_remove(Objlist *, Obj_Entry *);
133 static int open_binary_fd(const char *argv0, bool search_in_path);
134 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
135 static int parse_integer(const char *);
136 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
137 static void print_usage(const char *argv0);
138 static void release_object(Obj_Entry *);
139 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
140     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
141 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
142     int flags, RtldLockState *lockstate);
143 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
144     RtldLockState *);
145 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
146 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
147     int flags, RtldLockState *lockstate);
148 static int rtld_dirname(const char *, char *);
149 static int rtld_dirname_abs(const char *, char *);
150 static void *rtld_dlopen(const char *name, int fd, int mode);
151 static void rtld_exit(void);
152 static char *search_library_path(const char *, const char *, const char *,
153     int *);
154 static char *search_library_pathfds(const char *, const char *, int *);
155 static const void **get_program_var_addr(const char *, RtldLockState *);
156 static void set_program_var(const char *, const void *);
157 static int symlook_default(SymLook *, const Obj_Entry *refobj);
158 static int symlook_global(SymLook *, DoneList *);
159 static void symlook_init_from_req(SymLook *, const SymLook *);
160 static int symlook_list(SymLook *, const Objlist *, DoneList *);
161 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
162 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
163 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
164 static void trace_loaded_objects(Obj_Entry *);
165 static void unlink_object(Obj_Entry *);
166 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
167 static void unref_dag(Obj_Entry *);
168 static void ref_dag(Obj_Entry *);
169 static char *origin_subst_one(Obj_Entry *, char *, const char *,
170     const char *, bool);
171 static char *origin_subst(Obj_Entry *, const char *);
172 static bool obj_resolve_origin(Obj_Entry *obj);
173 static void preinit_main(void);
174 static int  rtld_verify_versions(const Objlist *);
175 static int  rtld_verify_object_versions(Obj_Entry *);
176 static void object_add_name(Obj_Entry *, const char *);
177 static int  object_match_name(const Obj_Entry *, const char *);
178 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
179 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
180     struct dl_phdr_info *phdr_info);
181 static uint32_t gnu_hash(const char *);
182 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
183     const unsigned long);
184 
185 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
186 void _r_debug_postinit(struct link_map *) __noinline __exported;
187 
188 int __sys_openat(int, const char *, int, ...);
189 
190 /*
191  * Data declarations.
192  */
193 static char *error_message;	/* Message for dlerror(), or NULL */
194 struct r_debug r_debug __exported;	/* for GDB; */
195 static bool libmap_disable;	/* Disable libmap */
196 static bool ld_loadfltr;	/* Immediate filters processing */
197 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
198 static bool trust;		/* False for setuid and setgid programs */
199 static bool dangerous_ld_env;	/* True if environment variables have been
200 				   used to affect the libraries loaded */
201 bool ld_bind_not;		/* Disable PLT update */
202 static char *ld_bind_now;	/* Environment variable for immediate binding */
203 static char *ld_debug;		/* Environment variable for debugging */
204 static char *ld_library_path;	/* Environment variable for search path */
205 static char *ld_library_dirs;	/* Environment variable for library descriptors */
206 static char *ld_preload;	/* Environment variable for libraries to
207 				   load first */
208 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
209 static const char *ld_tracing;	/* Called from ldd to print libs */
210 static char *ld_utrace;		/* Use utrace() to log events. */
211 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
212 static Obj_Entry *obj_main;	/* The main program shared object */
213 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
214 static unsigned int obj_count;	/* Number of objects in obj_list */
215 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
216 
217 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
218   STAILQ_HEAD_INITIALIZER(list_global);
219 static Objlist list_main =	/* Objects loaded at program startup */
220   STAILQ_HEAD_INITIALIZER(list_main);
221 static Objlist list_fini =	/* Objects needing fini() calls */
222   STAILQ_HEAD_INITIALIZER(list_fini);
223 
224 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
225 
226 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
227 
228 extern Elf_Dyn _DYNAMIC;
229 #pragma weak _DYNAMIC
230 
231 int dlclose(void *) __exported;
232 char *dlerror(void) __exported;
233 void *dlopen(const char *, int) __exported;
234 void *fdlopen(int, int) __exported;
235 void *dlsym(void *, const char *) __exported;
236 dlfunc_t dlfunc(void *, const char *) __exported;
237 void *dlvsym(void *, const char *, const char *) __exported;
238 int dladdr(const void *, Dl_info *) __exported;
239 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
240     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
241 int dlinfo(void *, int , void *) __exported;
242 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
243 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
244 int _rtld_get_stack_prot(void) __exported;
245 int _rtld_is_dlopened(void *) __exported;
246 void _rtld_error(const char *, ...) __exported;
247 
248 /* Only here to fix -Wmissing-prototypes warnings */
249 int __getosreldate(void);
250 void __pthread_cxa_finalize(struct dl_phdr_info *a);
251 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
252 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
253 
254 
255 int npagesizes;
256 static int osreldate;
257 size_t *pagesizes;
258 
259 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
260 static int max_stack_flags;
261 
262 /*
263  * Global declarations normally provided by crt1.  The dynamic linker is
264  * not built with crt1, so we have to provide them ourselves.
265  */
266 char *__progname;
267 char **environ;
268 
269 /*
270  * Used to pass argc, argv to init functions.
271  */
272 int main_argc;
273 char **main_argv;
274 
275 /*
276  * Globals to control TLS allocation.
277  */
278 size_t tls_last_offset;		/* Static TLS offset of last module */
279 size_t tls_last_size;		/* Static TLS size of last module */
280 size_t tls_static_space;	/* Static TLS space allocated */
281 static size_t tls_static_max_align;
282 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
283 int tls_max_index = 1;		/* Largest module index allocated */
284 
285 static bool ld_library_path_rpath = false;
286 
287 /*
288  * Globals for path names, and such
289  */
290 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
291 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
292 const char *ld_path_rtld = _PATH_RTLD;
293 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
294 const char *ld_env_prefix = LD_;
295 
296 /*
297  * Fill in a DoneList with an allocation large enough to hold all of
298  * the currently-loaded objects.  Keep this as a macro since it calls
299  * alloca and we want that to occur within the scope of the caller.
300  */
301 #define donelist_init(dlp)					\
302     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
303     assert((dlp)->objs != NULL),				\
304     (dlp)->num_alloc = obj_count,				\
305     (dlp)->num_used = 0)
306 
307 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
308 	if (ld_utrace != NULL)					\
309 		ld_utrace_log(e, h, mb, ms, r, n);		\
310 } while (0)
311 
312 static void
313 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
314     int refcnt, const char *name)
315 {
316 	struct utrace_rtld ut;
317 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
318 
319 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
320 	ut.event = event;
321 	ut.handle = handle;
322 	ut.mapbase = mapbase;
323 	ut.mapsize = mapsize;
324 	ut.refcnt = refcnt;
325 	bzero(ut.name, sizeof(ut.name));
326 	if (name)
327 		strlcpy(ut.name, name, sizeof(ut.name));
328 	utrace(&ut, sizeof(ut));
329 }
330 
331 #ifdef RTLD_VARIANT_ENV_NAMES
332 /*
333  * construct the env variable based on the type of binary that's
334  * running.
335  */
336 static inline const char *
337 _LD(const char *var)
338 {
339 	static char buffer[128];
340 
341 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
342 	strlcat(buffer, var, sizeof(buffer));
343 	return (buffer);
344 }
345 #else
346 #define _LD(x)	LD_ x
347 #endif
348 
349 /*
350  * Main entry point for dynamic linking.  The first argument is the
351  * stack pointer.  The stack is expected to be laid out as described
352  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
353  * Specifically, the stack pointer points to a word containing
354  * ARGC.  Following that in the stack is a null-terminated sequence
355  * of pointers to argument strings.  Then comes a null-terminated
356  * sequence of pointers to environment strings.  Finally, there is a
357  * sequence of "auxiliary vector" entries.
358  *
359  * The second argument points to a place to store the dynamic linker's
360  * exit procedure pointer and the third to a place to store the main
361  * program's object.
362  *
363  * The return value is the main program's entry point.
364  */
365 func_ptr_type
366 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
367 {
368     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
369     Objlist_Entry *entry;
370     Obj_Entry *last_interposer, *obj, *preload_tail;
371     const Elf_Phdr *phdr;
372     Objlist initlist;
373     RtldLockState lockstate;
374     struct stat st;
375     Elf_Addr *argcp;
376     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
377     const char *argv0;
378     caddr_t imgentry;
379     char buf[MAXPATHLEN];
380     int argc, fd, i, phnum, rtld_argc;
381     bool dir_enable, explicit_fd, search_in_path;
382 
383     /*
384      * On entry, the dynamic linker itself has not been relocated yet.
385      * Be very careful not to reference any global data until after
386      * init_rtld has returned.  It is OK to reference file-scope statics
387      * and string constants, and to call static and global functions.
388      */
389 
390     /* Find the auxiliary vector on the stack. */
391     argcp = sp;
392     argc = *sp++;
393     argv = (char **) sp;
394     sp += argc + 1;	/* Skip over arguments and NULL terminator */
395     env = (char **) sp;
396     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
397 	;
398     aux = (Elf_Auxinfo *) sp;
399 
400     /* Digest the auxiliary vector. */
401     for (i = 0;  i < AT_COUNT;  i++)
402 	aux_info[i] = NULL;
403     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
404 	if (auxp->a_type < AT_COUNT)
405 	    aux_info[auxp->a_type] = auxp;
406     }
407 
408     /* Initialize and relocate ourselves. */
409     assert(aux_info[AT_BASE] != NULL);
410     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
411 
412     __progname = obj_rtld.path;
413     argv0 = argv[0] != NULL ? argv[0] : "(null)";
414     environ = env;
415     main_argc = argc;
416     main_argv = argv;
417 
418     trust = !issetugid();
419 
420     md_abi_variant_hook(aux_info);
421 
422     fd = -1;
423     if (aux_info[AT_EXECFD] != NULL) {
424 	fd = aux_info[AT_EXECFD]->a_un.a_val;
425     } else {
426 	assert(aux_info[AT_PHDR] != NULL);
427 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
428 	if (phdr == obj_rtld.phdr) {
429 	    if (!trust) {
430 		_rtld_error("Tainted process refusing to run binary %s",
431 		    argv0);
432 		rtld_die();
433 	    }
434 	    dbg("opening main program in direct exec mode");
435 	    if (argc >= 2) {
436 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
437 		argv0 = argv[rtld_argc];
438 		explicit_fd = (fd != -1);
439 		if (!explicit_fd)
440 		    fd = open_binary_fd(argv0, search_in_path);
441 		if (fstat(fd, &st) == -1) {
442 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
443 		      explicit_fd ? "user-provided descriptor" : argv0,
444 		      rtld_strerror(errno));
445 		    rtld_die();
446 		}
447 
448 		/*
449 		 * Rough emulation of the permission checks done by
450 		 * execve(2), only Unix DACs are checked, ACLs are
451 		 * ignored.  Preserve the semantic of disabling owner
452 		 * to execute if owner x bit is cleared, even if
453 		 * others x bit is enabled.
454 		 * mmap(2) does not allow to mmap with PROT_EXEC if
455 		 * binary' file comes from noexec mount.  We cannot
456 		 * set VV_TEXT on the binary.
457 		 */
458 		dir_enable = false;
459 		if (st.st_uid == geteuid()) {
460 		    if ((st.st_mode & S_IXUSR) != 0)
461 			dir_enable = true;
462 		} else if (st.st_gid == getegid()) {
463 		    if ((st.st_mode & S_IXGRP) != 0)
464 			dir_enable = true;
465 		} else if ((st.st_mode & S_IXOTH) != 0) {
466 		    dir_enable = true;
467 		}
468 		if (!dir_enable) {
469 		    _rtld_error("No execute permission for binary %s",
470 		        argv0);
471 		    rtld_die();
472 		}
473 
474 		/*
475 		 * For direct exec mode, argv[0] is the interpreter
476 		 * name, we must remove it and shift arguments left
477 		 * before invoking binary main.  Since stack layout
478 		 * places environment pointers and aux vectors right
479 		 * after the terminating NULL, we must shift
480 		 * environment and aux as well.
481 		 */
482 		main_argc = argc - rtld_argc;
483 		for (i = 0; i <= main_argc; i++)
484 		    argv[i] = argv[i + rtld_argc];
485 		*argcp -= rtld_argc;
486 		environ = env = envp = argv + main_argc + 1;
487 		do {
488 		    *envp = *(envp + rtld_argc);
489 		    envp++;
490 		} while (*envp != NULL);
491 		aux = auxp = (Elf_Auxinfo *)envp;
492 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
493 		for (;; auxp++, auxpf++) {
494 		    *auxp = *auxpf;
495 		    if (auxp->a_type == AT_NULL)
496 			    break;
497 		}
498 	    } else {
499 		_rtld_error("No binary");
500 		rtld_die();
501 	    }
502 	}
503     }
504 
505     ld_bind_now = getenv(_LD("BIND_NOW"));
506 
507     /*
508      * If the process is tainted, then we un-set the dangerous environment
509      * variables.  The process will be marked as tainted until setuid(2)
510      * is called.  If any child process calls setuid(2) we do not want any
511      * future processes to honor the potentially un-safe variables.
512      */
513     if (!trust) {
514 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
515 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
516 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
517 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
518 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
519 		_rtld_error("environment corrupt; aborting");
520 		rtld_die();
521 	}
522     }
523     ld_debug = getenv(_LD("DEBUG"));
524     if (ld_bind_now == NULL)
525 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
526     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
527     libmap_override = getenv(_LD("LIBMAP"));
528     ld_library_path = getenv(_LD("LIBRARY_PATH"));
529     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
530     ld_preload = getenv(_LD("PRELOAD"));
531     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
532     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
533     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
534     if (library_path_rpath != NULL) {
535 	    if (library_path_rpath[0] == 'y' ||
536 		library_path_rpath[0] == 'Y' ||
537 		library_path_rpath[0] == '1')
538 		    ld_library_path_rpath = true;
539 	    else
540 		    ld_library_path_rpath = false;
541     }
542     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
543 	(ld_library_path != NULL) || (ld_preload != NULL) ||
544 	(ld_elf_hints_path != NULL) || ld_loadfltr;
545     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
546     ld_utrace = getenv(_LD("UTRACE"));
547 
548     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
549 	ld_elf_hints_path = ld_elf_hints_default;
550 
551     if (ld_debug != NULL && *ld_debug != '\0')
552 	debug = 1;
553     dbg("%s is initialized, base address = %p", __progname,
554 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
555     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
556     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
557 
558     dbg("initializing thread locks");
559     lockdflt_init();
560 
561     /*
562      * Load the main program, or process its program header if it is
563      * already loaded.
564      */
565     if (fd != -1) {	/* Load the main program. */
566 	dbg("loading main program");
567 	obj_main = map_object(fd, argv0, NULL);
568 	close(fd);
569 	if (obj_main == NULL)
570 	    rtld_die();
571 	max_stack_flags = obj_main->stack_flags;
572     } else {				/* Main program already loaded. */
573 	dbg("processing main program's program header");
574 	assert(aux_info[AT_PHDR] != NULL);
575 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
576 	assert(aux_info[AT_PHNUM] != NULL);
577 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
578 	assert(aux_info[AT_PHENT] != NULL);
579 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
580 	assert(aux_info[AT_ENTRY] != NULL);
581 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
582 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
583 	    rtld_die();
584     }
585 
586     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
587 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
588 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
589 	    if (kexecpath[0] == '/')
590 		    obj_main->path = kexecpath;
591 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
592 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
593 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
594 		    obj_main->path = xstrdup(argv0);
595 	    else
596 		    obj_main->path = xstrdup(buf);
597     } else {
598 	    dbg("No AT_EXECPATH or direct exec");
599 	    obj_main->path = xstrdup(argv0);
600     }
601     dbg("obj_main path %s", obj_main->path);
602     obj_main->mainprog = true;
603 
604     if (aux_info[AT_STACKPROT] != NULL &&
605       aux_info[AT_STACKPROT]->a_un.a_val != 0)
606 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
607 
608 #ifndef COMPAT_32BIT
609     /*
610      * Get the actual dynamic linker pathname from the executable if
611      * possible.  (It should always be possible.)  That ensures that
612      * gdb will find the right dynamic linker even if a non-standard
613      * one is being used.
614      */
615     if (obj_main->interp != NULL &&
616       strcmp(obj_main->interp, obj_rtld.path) != 0) {
617 	free(obj_rtld.path);
618 	obj_rtld.path = xstrdup(obj_main->interp);
619         __progname = obj_rtld.path;
620     }
621 #endif
622 
623     digest_dynamic(obj_main, 0);
624     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
625 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
626 	obj_main->dynsymcount);
627 
628     linkmap_add(obj_main);
629     linkmap_add(&obj_rtld);
630 
631     /* Link the main program into the list of objects. */
632     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
633     obj_count++;
634     obj_loads++;
635 
636     /* Initialize a fake symbol for resolving undefined weak references. */
637     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
638     sym_zero.st_shndx = SHN_UNDEF;
639     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
640 
641     if (!libmap_disable)
642         libmap_disable = (bool)lm_init(libmap_override);
643 
644     dbg("loading LD_PRELOAD libraries");
645     if (load_preload_objects() == -1)
646 	rtld_die();
647     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
648 
649     dbg("loading needed objects");
650     if (load_needed_objects(obj_main, 0) == -1)
651 	rtld_die();
652 
653     /* Make a list of all objects loaded at startup. */
654     last_interposer = obj_main;
655     TAILQ_FOREACH(obj, &obj_list, next) {
656 	if (obj->marker)
657 	    continue;
658 	if (obj->z_interpose && obj != obj_main) {
659 	    objlist_put_after(&list_main, last_interposer, obj);
660 	    last_interposer = obj;
661 	} else {
662 	    objlist_push_tail(&list_main, obj);
663 	}
664     	obj->refcount++;
665     }
666 
667     dbg("checking for required versions");
668     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
669 	rtld_die();
670 
671     if (ld_tracing) {		/* We're done */
672 	trace_loaded_objects(obj_main);
673 	exit(0);
674     }
675 
676     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
677        dump_relocations(obj_main);
678        exit (0);
679     }
680 
681     /*
682      * Processing tls relocations requires having the tls offsets
683      * initialized.  Prepare offsets before starting initial
684      * relocation processing.
685      */
686     dbg("initializing initial thread local storage offsets");
687     STAILQ_FOREACH(entry, &list_main, link) {
688 	/*
689 	 * Allocate all the initial objects out of the static TLS
690 	 * block even if they didn't ask for it.
691 	 */
692 	allocate_tls_offset(entry->obj);
693     }
694 
695     if (relocate_objects(obj_main,
696       ld_bind_now != NULL && *ld_bind_now != '\0',
697       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
698 	rtld_die();
699 
700     dbg("doing copy relocations");
701     if (do_copy_relocations(obj_main) == -1)
702 	rtld_die();
703 
704     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
705        dump_relocations(obj_main);
706        exit (0);
707     }
708 
709     ifunc_init(aux);
710 
711     /*
712      * Setup TLS for main thread.  This must be done after the
713      * relocations are processed, since tls initialization section
714      * might be the subject for relocations.
715      */
716     dbg("initializing initial thread local storage");
717     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
718 
719     dbg("initializing key program variables");
720     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
721     set_program_var("environ", env);
722     set_program_var("__elf_aux_vector", aux);
723 
724     /* Make a list of init functions to call. */
725     objlist_init(&initlist);
726     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
727       preload_tail, &initlist);
728 
729     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
730 
731     map_stacks_exec(NULL);
732 
733     dbg("resolving ifuncs");
734     if (resolve_objects_ifunc(obj_main,
735       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
736       NULL) == -1)
737 	rtld_die();
738 
739     dbg("enforcing main obj relro");
740     if (obj_enforce_relro(obj_main) == -1)
741 	rtld_die();
742 
743     if (!obj_main->crt_no_init) {
744 	/*
745 	 * Make sure we don't call the main program's init and fini
746 	 * functions for binaries linked with old crt1 which calls
747 	 * _init itself.
748 	 */
749 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
750 	obj_main->preinit_array = obj_main->init_array =
751 	    obj_main->fini_array = (Elf_Addr)NULL;
752     }
753 
754     /*
755      * Execute MD initializers required before we call the objects'
756      * init functions.
757      */
758     pre_init();
759 
760     wlock_acquire(rtld_bind_lock, &lockstate);
761     if (obj_main->crt_no_init)
762 	preinit_main();
763     objlist_call_init(&initlist, &lockstate);
764     _r_debug_postinit(&obj_main->linkmap);
765     objlist_clear(&initlist);
766     dbg("loading filtees");
767     TAILQ_FOREACH(obj, &obj_list, next) {
768 	if (obj->marker)
769 	    continue;
770 	if (ld_loadfltr || obj->z_loadfltr)
771 	    load_filtees(obj, 0, &lockstate);
772     }
773     lock_release(rtld_bind_lock, &lockstate);
774 
775     dbg("transferring control to program entry point = %p", obj_main->entry);
776 
777     /* Return the exit procedure and the program entry point. */
778     *exit_proc = rtld_exit;
779     *objp = obj_main;
780     return (func_ptr_type) obj_main->entry;
781 }
782 
783 void *
784 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
785 {
786 	void *ptr;
787 	Elf_Addr target;
788 
789 	ptr = (void *)make_function_pointer(def, obj);
790 	target = call_ifunc_resolver(ptr);
791 	return ((void *)target);
792 }
793 
794 /*
795  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
796  * Changes to this function should be applied there as well.
797  */
798 Elf_Addr
799 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
800 {
801     const Elf_Rel *rel;
802     const Elf_Sym *def;
803     const Obj_Entry *defobj;
804     Elf_Addr *where;
805     Elf_Addr target;
806     RtldLockState lockstate;
807 
808     rlock_acquire(rtld_bind_lock, &lockstate);
809     if (sigsetjmp(lockstate.env, 0) != 0)
810 	    lock_upgrade(rtld_bind_lock, &lockstate);
811     if (obj->pltrel)
812 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
813     else
814 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
815 
816     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
817     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
818 	NULL, &lockstate);
819     if (def == NULL)
820 	rtld_die();
821     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
822 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
823     else
824 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
825 
826     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
827       defobj->strtab + def->st_name, basename(obj->path),
828       (void *)target, basename(defobj->path));
829 
830     /*
831      * Write the new contents for the jmpslot. Note that depending on
832      * architecture, the value which we need to return back to the
833      * lazy binding trampoline may or may not be the target
834      * address. The value returned from reloc_jmpslot() is the value
835      * that the trampoline needs.
836      */
837     target = reloc_jmpslot(where, target, defobj, obj, rel);
838     lock_release(rtld_bind_lock, &lockstate);
839     return target;
840 }
841 
842 /*
843  * Error reporting function.  Use it like printf.  If formats the message
844  * into a buffer, and sets things up so that the next call to dlerror()
845  * will return the message.
846  */
847 void
848 _rtld_error(const char *fmt, ...)
849 {
850     static char buf[512];
851     va_list ap;
852 
853     va_start(ap, fmt);
854     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
855     error_message = buf;
856     va_end(ap);
857     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
858 }
859 
860 /*
861  * Return a dynamically-allocated copy of the current error message, if any.
862  */
863 static char *
864 errmsg_save(void)
865 {
866     return error_message == NULL ? NULL : xstrdup(error_message);
867 }
868 
869 /*
870  * Restore the current error message from a copy which was previously saved
871  * by errmsg_save().  The copy is freed.
872  */
873 static void
874 errmsg_restore(char *saved_msg)
875 {
876     if (saved_msg == NULL)
877 	error_message = NULL;
878     else {
879 	_rtld_error("%s", saved_msg);
880 	free(saved_msg);
881     }
882 }
883 
884 static const char *
885 basename(const char *name)
886 {
887     const char *p = strrchr(name, '/');
888     return p != NULL ? p + 1 : name;
889 }
890 
891 static struct utsname uts;
892 
893 static char *
894 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
895     const char *subst, bool may_free)
896 {
897 	char *p, *p1, *res, *resp;
898 	int subst_len, kw_len, subst_count, old_len, new_len;
899 
900 	kw_len = strlen(kw);
901 
902 	/*
903 	 * First, count the number of the keyword occurrences, to
904 	 * preallocate the final string.
905 	 */
906 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
907 		p1 = strstr(p, kw);
908 		if (p1 == NULL)
909 			break;
910 	}
911 
912 	/*
913 	 * If the keyword is not found, just return.
914 	 *
915 	 * Return non-substituted string if resolution failed.  We
916 	 * cannot do anything more reasonable, the failure mode of the
917 	 * caller is unresolved library anyway.
918 	 */
919 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
920 		return (may_free ? real : xstrdup(real));
921 	if (obj != NULL)
922 		subst = obj->origin_path;
923 
924 	/*
925 	 * There is indeed something to substitute.  Calculate the
926 	 * length of the resulting string, and allocate it.
927 	 */
928 	subst_len = strlen(subst);
929 	old_len = strlen(real);
930 	new_len = old_len + (subst_len - kw_len) * subst_count;
931 	res = xmalloc(new_len + 1);
932 
933 	/*
934 	 * Now, execute the substitution loop.
935 	 */
936 	for (p = real, resp = res, *resp = '\0';;) {
937 		p1 = strstr(p, kw);
938 		if (p1 != NULL) {
939 			/* Copy the prefix before keyword. */
940 			memcpy(resp, p, p1 - p);
941 			resp += p1 - p;
942 			/* Keyword replacement. */
943 			memcpy(resp, subst, subst_len);
944 			resp += subst_len;
945 			*resp = '\0';
946 			p = p1 + kw_len;
947 		} else
948 			break;
949 	}
950 
951 	/* Copy to the end of string and finish. */
952 	strcat(resp, p);
953 	if (may_free)
954 		free(real);
955 	return (res);
956 }
957 
958 static char *
959 origin_subst(Obj_Entry *obj, const char *real)
960 {
961 	char *res1, *res2, *res3, *res4;
962 
963 	if (obj == NULL || !trust)
964 		return (xstrdup(real));
965 	if (uts.sysname[0] == '\0') {
966 		if (uname(&uts) != 0) {
967 			_rtld_error("utsname failed: %d", errno);
968 			return (NULL);
969 		}
970 	}
971 	/* __DECONST is safe here since without may_free real is unchanged */
972 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
973 	    false);
974 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
975 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
976 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
977 	return (res4);
978 }
979 
980 void
981 rtld_die(void)
982 {
983     const char *msg = dlerror();
984 
985     if (msg == NULL)
986 	msg = "Fatal error";
987     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
988     rtld_fdputstr(STDERR_FILENO, msg);
989     rtld_fdputchar(STDERR_FILENO, '\n');
990     _exit(1);
991 }
992 
993 /*
994  * Process a shared object's DYNAMIC section, and save the important
995  * information in its Obj_Entry structure.
996  */
997 static void
998 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
999     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1000 {
1001     const Elf_Dyn *dynp;
1002     Needed_Entry **needed_tail = &obj->needed;
1003     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1004     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1005     const Elf_Hashelt *hashtab;
1006     const Elf32_Word *hashval;
1007     Elf32_Word bkt, nmaskwords;
1008     int bloom_size32;
1009     int plttype = DT_REL;
1010 
1011     *dyn_rpath = NULL;
1012     *dyn_soname = NULL;
1013     *dyn_runpath = NULL;
1014 
1015     obj->bind_now = false;
1016     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1017 	switch (dynp->d_tag) {
1018 
1019 	case DT_REL:
1020 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1021 	    break;
1022 
1023 	case DT_RELSZ:
1024 	    obj->relsize = dynp->d_un.d_val;
1025 	    break;
1026 
1027 	case DT_RELENT:
1028 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1029 	    break;
1030 
1031 	case DT_JMPREL:
1032 	    obj->pltrel = (const Elf_Rel *)
1033 	      (obj->relocbase + dynp->d_un.d_ptr);
1034 	    break;
1035 
1036 	case DT_PLTRELSZ:
1037 	    obj->pltrelsize = dynp->d_un.d_val;
1038 	    break;
1039 
1040 	case DT_RELA:
1041 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1042 	    break;
1043 
1044 	case DT_RELASZ:
1045 	    obj->relasize = dynp->d_un.d_val;
1046 	    break;
1047 
1048 	case DT_RELAENT:
1049 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1050 	    break;
1051 
1052 	case DT_PLTREL:
1053 	    plttype = dynp->d_un.d_val;
1054 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1055 	    break;
1056 
1057 	case DT_SYMTAB:
1058 	    obj->symtab = (const Elf_Sym *)
1059 	      (obj->relocbase + dynp->d_un.d_ptr);
1060 	    break;
1061 
1062 	case DT_SYMENT:
1063 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1064 	    break;
1065 
1066 	case DT_STRTAB:
1067 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1068 	    break;
1069 
1070 	case DT_STRSZ:
1071 	    obj->strsize = dynp->d_un.d_val;
1072 	    break;
1073 
1074 	case DT_VERNEED:
1075 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1076 		dynp->d_un.d_val);
1077 	    break;
1078 
1079 	case DT_VERNEEDNUM:
1080 	    obj->verneednum = dynp->d_un.d_val;
1081 	    break;
1082 
1083 	case DT_VERDEF:
1084 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1085 		dynp->d_un.d_val);
1086 	    break;
1087 
1088 	case DT_VERDEFNUM:
1089 	    obj->verdefnum = dynp->d_un.d_val;
1090 	    break;
1091 
1092 	case DT_VERSYM:
1093 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1094 		dynp->d_un.d_val);
1095 	    break;
1096 
1097 	case DT_HASH:
1098 	    {
1099 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1100 		    dynp->d_un.d_ptr);
1101 		obj->nbuckets = hashtab[0];
1102 		obj->nchains = hashtab[1];
1103 		obj->buckets = hashtab + 2;
1104 		obj->chains = obj->buckets + obj->nbuckets;
1105 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1106 		  obj->buckets != NULL;
1107 	    }
1108 	    break;
1109 
1110 	case DT_GNU_HASH:
1111 	    {
1112 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1113 		    dynp->d_un.d_ptr);
1114 		obj->nbuckets_gnu = hashtab[0];
1115 		obj->symndx_gnu = hashtab[1];
1116 		nmaskwords = hashtab[2];
1117 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1118 		obj->maskwords_bm_gnu = nmaskwords - 1;
1119 		obj->shift2_gnu = hashtab[3];
1120 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1121 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1122 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1123 		  obj->symndx_gnu;
1124 		/* Number of bitmask words is required to be power of 2 */
1125 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1126 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1127 	    }
1128 	    break;
1129 
1130 	case DT_NEEDED:
1131 	    if (!obj->rtld) {
1132 		Needed_Entry *nep = NEW(Needed_Entry);
1133 		nep->name = dynp->d_un.d_val;
1134 		nep->obj = NULL;
1135 		nep->next = NULL;
1136 
1137 		*needed_tail = nep;
1138 		needed_tail = &nep->next;
1139 	    }
1140 	    break;
1141 
1142 	case DT_FILTER:
1143 	    if (!obj->rtld) {
1144 		Needed_Entry *nep = NEW(Needed_Entry);
1145 		nep->name = dynp->d_un.d_val;
1146 		nep->obj = NULL;
1147 		nep->next = NULL;
1148 
1149 		*needed_filtees_tail = nep;
1150 		needed_filtees_tail = &nep->next;
1151 	    }
1152 	    break;
1153 
1154 	case DT_AUXILIARY:
1155 	    if (!obj->rtld) {
1156 		Needed_Entry *nep = NEW(Needed_Entry);
1157 		nep->name = dynp->d_un.d_val;
1158 		nep->obj = NULL;
1159 		nep->next = NULL;
1160 
1161 		*needed_aux_filtees_tail = nep;
1162 		needed_aux_filtees_tail = &nep->next;
1163 	    }
1164 	    break;
1165 
1166 	case DT_PLTGOT:
1167 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1168 	    break;
1169 
1170 	case DT_TEXTREL:
1171 	    obj->textrel = true;
1172 	    break;
1173 
1174 	case DT_SYMBOLIC:
1175 	    obj->symbolic = true;
1176 	    break;
1177 
1178 	case DT_RPATH:
1179 	    /*
1180 	     * We have to wait until later to process this, because we
1181 	     * might not have gotten the address of the string table yet.
1182 	     */
1183 	    *dyn_rpath = dynp;
1184 	    break;
1185 
1186 	case DT_SONAME:
1187 	    *dyn_soname = dynp;
1188 	    break;
1189 
1190 	case DT_RUNPATH:
1191 	    *dyn_runpath = dynp;
1192 	    break;
1193 
1194 	case DT_INIT:
1195 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1196 	    break;
1197 
1198 	case DT_PREINIT_ARRAY:
1199 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1200 	    break;
1201 
1202 	case DT_PREINIT_ARRAYSZ:
1203 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1204 	    break;
1205 
1206 	case DT_INIT_ARRAY:
1207 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1208 	    break;
1209 
1210 	case DT_INIT_ARRAYSZ:
1211 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1212 	    break;
1213 
1214 	case DT_FINI:
1215 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1216 	    break;
1217 
1218 	case DT_FINI_ARRAY:
1219 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1220 	    break;
1221 
1222 	case DT_FINI_ARRAYSZ:
1223 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1224 	    break;
1225 
1226 	/*
1227 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1228 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1229 	 */
1230 
1231 #ifndef __mips__
1232 	case DT_DEBUG:
1233 	    if (!early)
1234 		dbg("Filling in DT_DEBUG entry");
1235 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1236 	    break;
1237 #endif
1238 
1239 	case DT_FLAGS:
1240 		if (dynp->d_un.d_val & DF_ORIGIN)
1241 		    obj->z_origin = true;
1242 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1243 		    obj->symbolic = true;
1244 		if (dynp->d_un.d_val & DF_TEXTREL)
1245 		    obj->textrel = true;
1246 		if (dynp->d_un.d_val & DF_BIND_NOW)
1247 		    obj->bind_now = true;
1248 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1249 		    ;*/
1250 	    break;
1251 #ifdef __mips__
1252 	case DT_MIPS_LOCAL_GOTNO:
1253 		obj->local_gotno = dynp->d_un.d_val;
1254 		break;
1255 
1256 	case DT_MIPS_SYMTABNO:
1257 		obj->symtabno = dynp->d_un.d_val;
1258 		break;
1259 
1260 	case DT_MIPS_GOTSYM:
1261 		obj->gotsym = dynp->d_un.d_val;
1262 		break;
1263 
1264 	case DT_MIPS_RLD_MAP:
1265 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1266 		break;
1267 
1268 	case DT_MIPS_RLD_MAP_REL:
1269 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1270 		// section relative to the address of the tag itself.
1271 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1272 		    (Elf_Addr) &r_debug;
1273 		break;
1274 
1275 	case DT_MIPS_PLTGOT:
1276 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1277 		    dynp->d_un.d_ptr);
1278 		break;
1279 
1280 #endif
1281 
1282 #ifdef __powerpc64__
1283 	case DT_PPC64_GLINK:
1284 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1285 		break;
1286 #endif
1287 
1288 	case DT_FLAGS_1:
1289 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1290 		    obj->z_noopen = true;
1291 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1292 		    obj->z_origin = true;
1293 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1294 		    obj->z_global = true;
1295 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1296 		    obj->bind_now = true;
1297 		if (dynp->d_un.d_val & DF_1_NODELETE)
1298 		    obj->z_nodelete = true;
1299 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1300 		    obj->z_loadfltr = true;
1301 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1302 		    obj->z_interpose = true;
1303 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1304 		    obj->z_nodeflib = true;
1305 	    break;
1306 
1307 	default:
1308 	    if (!early) {
1309 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1310 		    (long)dynp->d_tag);
1311 	    }
1312 	    break;
1313 	}
1314     }
1315 
1316     obj->traced = false;
1317 
1318     if (plttype == DT_RELA) {
1319 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1320 	obj->pltrel = NULL;
1321 	obj->pltrelasize = obj->pltrelsize;
1322 	obj->pltrelsize = 0;
1323     }
1324 
1325     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1326     if (obj->valid_hash_sysv)
1327 	obj->dynsymcount = obj->nchains;
1328     else if (obj->valid_hash_gnu) {
1329 	obj->dynsymcount = 0;
1330 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1331 	    if (obj->buckets_gnu[bkt] == 0)
1332 		continue;
1333 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1334 	    do
1335 		obj->dynsymcount++;
1336 	    while ((*hashval++ & 1u) == 0);
1337 	}
1338 	obj->dynsymcount += obj->symndx_gnu;
1339     }
1340 }
1341 
1342 static bool
1343 obj_resolve_origin(Obj_Entry *obj)
1344 {
1345 
1346 	if (obj->origin_path != NULL)
1347 		return (true);
1348 	obj->origin_path = xmalloc(PATH_MAX);
1349 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1350 }
1351 
1352 static void
1353 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1354     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1355 {
1356 
1357 	if (obj->z_origin && !obj_resolve_origin(obj))
1358 		rtld_die();
1359 
1360 	if (dyn_runpath != NULL) {
1361 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1362 		obj->runpath = origin_subst(obj, obj->runpath);
1363 	} else if (dyn_rpath != NULL) {
1364 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1365 		obj->rpath = origin_subst(obj, obj->rpath);
1366 	}
1367 	if (dyn_soname != NULL)
1368 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1369 }
1370 
1371 static void
1372 digest_dynamic(Obj_Entry *obj, int early)
1373 {
1374 	const Elf_Dyn *dyn_rpath;
1375 	const Elf_Dyn *dyn_soname;
1376 	const Elf_Dyn *dyn_runpath;
1377 
1378 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1379 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1380 }
1381 
1382 /*
1383  * Process a shared object's program header.  This is used only for the
1384  * main program, when the kernel has already loaded the main program
1385  * into memory before calling the dynamic linker.  It creates and
1386  * returns an Obj_Entry structure.
1387  */
1388 static Obj_Entry *
1389 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1390 {
1391     Obj_Entry *obj;
1392     const Elf_Phdr *phlimit = phdr + phnum;
1393     const Elf_Phdr *ph;
1394     Elf_Addr note_start, note_end;
1395     int nsegs = 0;
1396 
1397     obj = obj_new();
1398     for (ph = phdr;  ph < phlimit;  ph++) {
1399 	if (ph->p_type != PT_PHDR)
1400 	    continue;
1401 
1402 	obj->phdr = phdr;
1403 	obj->phsize = ph->p_memsz;
1404 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1405 	break;
1406     }
1407 
1408     obj->stack_flags = PF_X | PF_R | PF_W;
1409 
1410     for (ph = phdr;  ph < phlimit;  ph++) {
1411 	switch (ph->p_type) {
1412 
1413 	case PT_INTERP:
1414 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1415 	    break;
1416 
1417 	case PT_LOAD:
1418 	    if (nsegs == 0) {	/* First load segment */
1419 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1420 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1421 	    } else {		/* Last load segment */
1422 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1423 		  obj->vaddrbase;
1424 	    }
1425 	    nsegs++;
1426 	    break;
1427 
1428 	case PT_DYNAMIC:
1429 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1430 	    break;
1431 
1432 	case PT_TLS:
1433 	    obj->tlsindex = 1;
1434 	    obj->tlssize = ph->p_memsz;
1435 	    obj->tlsalign = ph->p_align;
1436 	    obj->tlsinitsize = ph->p_filesz;
1437 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1438 	    break;
1439 
1440 	case PT_GNU_STACK:
1441 	    obj->stack_flags = ph->p_flags;
1442 	    break;
1443 
1444 	case PT_GNU_RELRO:
1445 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1446 	    obj->relro_size = round_page(ph->p_memsz);
1447 	    break;
1448 
1449 	case PT_NOTE:
1450 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1451 	    note_end = note_start + ph->p_filesz;
1452 	    digest_notes(obj, note_start, note_end);
1453 	    break;
1454 	}
1455     }
1456     if (nsegs < 1) {
1457 	_rtld_error("%s: too few PT_LOAD segments", path);
1458 	return NULL;
1459     }
1460 
1461     obj->entry = entry;
1462     return obj;
1463 }
1464 
1465 void
1466 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1467 {
1468 	const Elf_Note *note;
1469 	const char *note_name;
1470 	uintptr_t p;
1471 
1472 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1473 	    note = (const Elf_Note *)((const char *)(note + 1) +
1474 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1475 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1476 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1477 		    note->n_descsz != sizeof(int32_t))
1478 			continue;
1479 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1480 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1481 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1482 			continue;
1483 		note_name = (const char *)(note + 1);
1484 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1485 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1486 			continue;
1487 		switch (note->n_type) {
1488 		case NT_FREEBSD_ABI_TAG:
1489 			/* FreeBSD osrel note */
1490 			p = (uintptr_t)(note + 1);
1491 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1492 			obj->osrel = *(const int32_t *)(p);
1493 			dbg("note osrel %d", obj->osrel);
1494 			break;
1495 		case NT_FREEBSD_FEATURE_CTL:
1496 			/* FreeBSD ABI feature control note */
1497 			p = (uintptr_t)(note + 1);
1498 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1499 			obj->fctl0 = *(const uint32_t *)(p);
1500 			dbg("note fctl0 %#x", obj->fctl0);
1501 			break;
1502 		case NT_FREEBSD_NOINIT_TAG:
1503 			/* FreeBSD 'crt does not call init' note */
1504 			obj->crt_no_init = true;
1505 			dbg("note crt_no_init");
1506 			break;
1507 		}
1508 	}
1509 }
1510 
1511 static Obj_Entry *
1512 dlcheck(void *handle)
1513 {
1514     Obj_Entry *obj;
1515 
1516     TAILQ_FOREACH(obj, &obj_list, next) {
1517 	if (obj == (Obj_Entry *) handle)
1518 	    break;
1519     }
1520 
1521     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1522 	_rtld_error("Invalid shared object handle %p", handle);
1523 	return NULL;
1524     }
1525     return obj;
1526 }
1527 
1528 /*
1529  * If the given object is already in the donelist, return true.  Otherwise
1530  * add the object to the list and return false.
1531  */
1532 static bool
1533 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1534 {
1535     unsigned int i;
1536 
1537     for (i = 0;  i < dlp->num_used;  i++)
1538 	if (dlp->objs[i] == obj)
1539 	    return true;
1540     /*
1541      * Our donelist allocation should always be sufficient.  But if
1542      * our threads locking isn't working properly, more shared objects
1543      * could have been loaded since we allocated the list.  That should
1544      * never happen, but we'll handle it properly just in case it does.
1545      */
1546     if (dlp->num_used < dlp->num_alloc)
1547 	dlp->objs[dlp->num_used++] = obj;
1548     return false;
1549 }
1550 
1551 /*
1552  * Hash function for symbol table lookup.  Don't even think about changing
1553  * this.  It is specified by the System V ABI.
1554  */
1555 unsigned long
1556 elf_hash(const char *name)
1557 {
1558     const unsigned char *p = (const unsigned char *) name;
1559     unsigned long h = 0;
1560     unsigned long g;
1561 
1562     while (*p != '\0') {
1563 	h = (h << 4) + *p++;
1564 	if ((g = h & 0xf0000000) != 0)
1565 	    h ^= g >> 24;
1566 	h &= ~g;
1567     }
1568     return h;
1569 }
1570 
1571 /*
1572  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1573  * unsigned in case it's implemented with a wider type.
1574  */
1575 static uint32_t
1576 gnu_hash(const char *s)
1577 {
1578 	uint32_t h;
1579 	unsigned char c;
1580 
1581 	h = 5381;
1582 	for (c = *s; c != '\0'; c = *++s)
1583 		h = h * 33 + c;
1584 	return (h & 0xffffffff);
1585 }
1586 
1587 
1588 /*
1589  * Find the library with the given name, and return its full pathname.
1590  * The returned string is dynamically allocated.  Generates an error
1591  * message and returns NULL if the library cannot be found.
1592  *
1593  * If the second argument is non-NULL, then it refers to an already-
1594  * loaded shared object, whose library search path will be searched.
1595  *
1596  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1597  * descriptor (which is close-on-exec) will be passed out via the third
1598  * argument.
1599  *
1600  * The search order is:
1601  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1602  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1603  *   LD_LIBRARY_PATH
1604  *   DT_RUNPATH in the referencing file
1605  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1606  *	 from list)
1607  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1608  *
1609  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1610  */
1611 static char *
1612 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1613 {
1614 	char *pathname, *refobj_path;
1615 	const char *name;
1616 	bool nodeflib, objgiven;
1617 
1618 	objgiven = refobj != NULL;
1619 
1620 	if (libmap_disable || !objgiven ||
1621 	    (name = lm_find(refobj->path, xname)) == NULL)
1622 		name = xname;
1623 
1624 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1625 		if (name[0] != '/' && !trust) {
1626 			_rtld_error("Absolute pathname required "
1627 			    "for shared object \"%s\"", name);
1628 			return (NULL);
1629 		}
1630 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1631 		    __DECONST(char *, name)));
1632 	}
1633 
1634 	dbg(" Searching for \"%s\"", name);
1635 	refobj_path = objgiven ? refobj->path : NULL;
1636 
1637 	/*
1638 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1639 	 * back to pre-conforming behaviour if user requested so with
1640 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1641 	 * nodeflib.
1642 	 */
1643 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1644 		pathname = search_library_path(name, ld_library_path,
1645 		    refobj_path, fdp);
1646 		if (pathname != NULL)
1647 			return (pathname);
1648 		if (refobj != NULL) {
1649 			pathname = search_library_path(name, refobj->rpath,
1650 			    refobj_path, fdp);
1651 			if (pathname != NULL)
1652 				return (pathname);
1653 		}
1654 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1655 		if (pathname != NULL)
1656 			return (pathname);
1657 		pathname = search_library_path(name, gethints(false),
1658 		    refobj_path, fdp);
1659 		if (pathname != NULL)
1660 			return (pathname);
1661 		pathname = search_library_path(name, ld_standard_library_path,
1662 		    refobj_path, fdp);
1663 		if (pathname != NULL)
1664 			return (pathname);
1665 	} else {
1666 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1667 		if (objgiven) {
1668 			pathname = search_library_path(name, refobj->rpath,
1669 			    refobj->path, fdp);
1670 			if (pathname != NULL)
1671 				return (pathname);
1672 		}
1673 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1674 			pathname = search_library_path(name, obj_main->rpath,
1675 			    refobj_path, fdp);
1676 			if (pathname != NULL)
1677 				return (pathname);
1678 		}
1679 		pathname = search_library_path(name, ld_library_path,
1680 		    refobj_path, fdp);
1681 		if (pathname != NULL)
1682 			return (pathname);
1683 		if (objgiven) {
1684 			pathname = search_library_path(name, refobj->runpath,
1685 			    refobj_path, fdp);
1686 			if (pathname != NULL)
1687 				return (pathname);
1688 		}
1689 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1690 		if (pathname != NULL)
1691 			return (pathname);
1692 		pathname = search_library_path(name, gethints(nodeflib),
1693 		    refobj_path, fdp);
1694 		if (pathname != NULL)
1695 			return (pathname);
1696 		if (objgiven && !nodeflib) {
1697 			pathname = search_library_path(name,
1698 			    ld_standard_library_path, refobj_path, fdp);
1699 			if (pathname != NULL)
1700 				return (pathname);
1701 		}
1702 	}
1703 
1704 	if (objgiven && refobj->path != NULL) {
1705 		_rtld_error("Shared object \"%s\" not found, "
1706 		    "required by \"%s\"", name, basename(refobj->path));
1707 	} else {
1708 		_rtld_error("Shared object \"%s\" not found", name);
1709 	}
1710 	return (NULL);
1711 }
1712 
1713 /*
1714  * Given a symbol number in a referencing object, find the corresponding
1715  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1716  * no definition was found.  Returns a pointer to the Obj_Entry of the
1717  * defining object via the reference parameter DEFOBJ_OUT.
1718  */
1719 const Elf_Sym *
1720 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1721     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1722     RtldLockState *lockstate)
1723 {
1724     const Elf_Sym *ref;
1725     const Elf_Sym *def;
1726     const Obj_Entry *defobj;
1727     const Ver_Entry *ve;
1728     SymLook req;
1729     const char *name;
1730     int res;
1731 
1732     /*
1733      * If we have already found this symbol, get the information from
1734      * the cache.
1735      */
1736     if (symnum >= refobj->dynsymcount)
1737 	return NULL;	/* Bad object */
1738     if (cache != NULL && cache[symnum].sym != NULL) {
1739 	*defobj_out = cache[symnum].obj;
1740 	return cache[symnum].sym;
1741     }
1742 
1743     ref = refobj->symtab + symnum;
1744     name = refobj->strtab + ref->st_name;
1745     def = NULL;
1746     defobj = NULL;
1747     ve = NULL;
1748 
1749     /*
1750      * We don't have to do a full scale lookup if the symbol is local.
1751      * We know it will bind to the instance in this load module; to
1752      * which we already have a pointer (ie ref). By not doing a lookup,
1753      * we not only improve performance, but it also avoids unresolvable
1754      * symbols when local symbols are not in the hash table. This has
1755      * been seen with the ia64 toolchain.
1756      */
1757     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1758 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1759 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1760 		symnum);
1761 	}
1762 	symlook_init(&req, name);
1763 	req.flags = flags;
1764 	ve = req.ventry = fetch_ventry(refobj, symnum);
1765 	req.lockstate = lockstate;
1766 	res = symlook_default(&req, refobj);
1767 	if (res == 0) {
1768 	    def = req.sym_out;
1769 	    defobj = req.defobj_out;
1770 	}
1771     } else {
1772 	def = ref;
1773 	defobj = refobj;
1774     }
1775 
1776     /*
1777      * If we found no definition and the reference is weak, treat the
1778      * symbol as having the value zero.
1779      */
1780     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1781 	def = &sym_zero;
1782 	defobj = obj_main;
1783     }
1784 
1785     if (def != NULL) {
1786 	*defobj_out = defobj;
1787 	/* Record the information in the cache to avoid subsequent lookups. */
1788 	if (cache != NULL) {
1789 	    cache[symnum].sym = def;
1790 	    cache[symnum].obj = defobj;
1791 	}
1792     } else {
1793 	if (refobj != &obj_rtld)
1794 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1795 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1796     }
1797     return def;
1798 }
1799 
1800 /*
1801  * Return the search path from the ldconfig hints file, reading it if
1802  * necessary.  If nostdlib is true, then the default search paths are
1803  * not added to result.
1804  *
1805  * Returns NULL if there are problems with the hints file,
1806  * or if the search path there is empty.
1807  */
1808 static const char *
1809 gethints(bool nostdlib)
1810 {
1811 	static char *filtered_path;
1812 	static const char *hints;
1813 	static struct elfhints_hdr hdr;
1814 	struct fill_search_info_args sargs, hargs;
1815 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1816 	struct dl_serpath *SLPpath, *hintpath;
1817 	char *p;
1818 	struct stat hint_stat;
1819 	unsigned int SLPndx, hintndx, fndx, fcount;
1820 	int fd;
1821 	size_t flen;
1822 	uint32_t dl;
1823 	bool skip;
1824 
1825 	/* First call, read the hints file */
1826 	if (hints == NULL) {
1827 		/* Keep from trying again in case the hints file is bad. */
1828 		hints = "";
1829 
1830 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1831 			return (NULL);
1832 
1833 		/*
1834 		 * Check of hdr.dirlistlen value against type limit
1835 		 * intends to pacify static analyzers.  Further
1836 		 * paranoia leads to checks that dirlist is fully
1837 		 * contained in the file range.
1838 		 */
1839 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1840 		    hdr.magic != ELFHINTS_MAGIC ||
1841 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1842 		    fstat(fd, &hint_stat) == -1) {
1843 cleanup1:
1844 			close(fd);
1845 			hdr.dirlistlen = 0;
1846 			return (NULL);
1847 		}
1848 		dl = hdr.strtab;
1849 		if (dl + hdr.dirlist < dl)
1850 			goto cleanup1;
1851 		dl += hdr.dirlist;
1852 		if (dl + hdr.dirlistlen < dl)
1853 			goto cleanup1;
1854 		dl += hdr.dirlistlen;
1855 		if (dl > hint_stat.st_size)
1856 			goto cleanup1;
1857 		p = xmalloc(hdr.dirlistlen + 1);
1858 		if (pread(fd, p, hdr.dirlistlen + 1,
1859 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1860 		    p[hdr.dirlistlen] != '\0') {
1861 			free(p);
1862 			goto cleanup1;
1863 		}
1864 		hints = p;
1865 		close(fd);
1866 	}
1867 
1868 	/*
1869 	 * If caller agreed to receive list which includes the default
1870 	 * paths, we are done. Otherwise, if we still did not
1871 	 * calculated filtered result, do it now.
1872 	 */
1873 	if (!nostdlib)
1874 		return (hints[0] != '\0' ? hints : NULL);
1875 	if (filtered_path != NULL)
1876 		goto filt_ret;
1877 
1878 	/*
1879 	 * Obtain the list of all configured search paths, and the
1880 	 * list of the default paths.
1881 	 *
1882 	 * First estimate the size of the results.
1883 	 */
1884 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1885 	smeta.dls_cnt = 0;
1886 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1887 	hmeta.dls_cnt = 0;
1888 
1889 	sargs.request = RTLD_DI_SERINFOSIZE;
1890 	sargs.serinfo = &smeta;
1891 	hargs.request = RTLD_DI_SERINFOSIZE;
1892 	hargs.serinfo = &hmeta;
1893 
1894 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1895 	    &sargs);
1896 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1897 
1898 	SLPinfo = xmalloc(smeta.dls_size);
1899 	hintinfo = xmalloc(hmeta.dls_size);
1900 
1901 	/*
1902 	 * Next fetch both sets of paths.
1903 	 */
1904 	sargs.request = RTLD_DI_SERINFO;
1905 	sargs.serinfo = SLPinfo;
1906 	sargs.serpath = &SLPinfo->dls_serpath[0];
1907 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1908 
1909 	hargs.request = RTLD_DI_SERINFO;
1910 	hargs.serinfo = hintinfo;
1911 	hargs.serpath = &hintinfo->dls_serpath[0];
1912 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1913 
1914 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1915 	    &sargs);
1916 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1917 
1918 	/*
1919 	 * Now calculate the difference between two sets, by excluding
1920 	 * standard paths from the full set.
1921 	 */
1922 	fndx = 0;
1923 	fcount = 0;
1924 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1925 	hintpath = &hintinfo->dls_serpath[0];
1926 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1927 		skip = false;
1928 		SLPpath = &SLPinfo->dls_serpath[0];
1929 		/*
1930 		 * Check each standard path against current.
1931 		 */
1932 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1933 			/* matched, skip the path */
1934 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1935 				skip = true;
1936 				break;
1937 			}
1938 		}
1939 		if (skip)
1940 			continue;
1941 		/*
1942 		 * Not matched against any standard path, add the path
1943 		 * to result. Separate consequtive paths with ':'.
1944 		 */
1945 		if (fcount > 0) {
1946 			filtered_path[fndx] = ':';
1947 			fndx++;
1948 		}
1949 		fcount++;
1950 		flen = strlen(hintpath->dls_name);
1951 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1952 		fndx += flen;
1953 	}
1954 	filtered_path[fndx] = '\0';
1955 
1956 	free(SLPinfo);
1957 	free(hintinfo);
1958 
1959 filt_ret:
1960 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1961 }
1962 
1963 static void
1964 init_dag(Obj_Entry *root)
1965 {
1966     const Needed_Entry *needed;
1967     const Objlist_Entry *elm;
1968     DoneList donelist;
1969 
1970     if (root->dag_inited)
1971 	return;
1972     donelist_init(&donelist);
1973 
1974     /* Root object belongs to own DAG. */
1975     objlist_push_tail(&root->dldags, root);
1976     objlist_push_tail(&root->dagmembers, root);
1977     donelist_check(&donelist, root);
1978 
1979     /*
1980      * Add dependencies of root object to DAG in breadth order
1981      * by exploiting the fact that each new object get added
1982      * to the tail of the dagmembers list.
1983      */
1984     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1985 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1986 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1987 		continue;
1988 	    objlist_push_tail(&needed->obj->dldags, root);
1989 	    objlist_push_tail(&root->dagmembers, needed->obj);
1990 	}
1991     }
1992     root->dag_inited = true;
1993 }
1994 
1995 static void
1996 init_marker(Obj_Entry *marker)
1997 {
1998 
1999 	bzero(marker, sizeof(*marker));
2000 	marker->marker = true;
2001 }
2002 
2003 Obj_Entry *
2004 globallist_curr(const Obj_Entry *obj)
2005 {
2006 
2007 	for (;;) {
2008 		if (obj == NULL)
2009 			return (NULL);
2010 		if (!obj->marker)
2011 			return (__DECONST(Obj_Entry *, obj));
2012 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2013 	}
2014 }
2015 
2016 Obj_Entry *
2017 globallist_next(const Obj_Entry *obj)
2018 {
2019 
2020 	for (;;) {
2021 		obj = TAILQ_NEXT(obj, next);
2022 		if (obj == NULL)
2023 			return (NULL);
2024 		if (!obj->marker)
2025 			return (__DECONST(Obj_Entry *, obj));
2026 	}
2027 }
2028 
2029 /* Prevent the object from being unmapped while the bind lock is dropped. */
2030 static void
2031 hold_object(Obj_Entry *obj)
2032 {
2033 
2034 	obj->holdcount++;
2035 }
2036 
2037 static void
2038 unhold_object(Obj_Entry *obj)
2039 {
2040 
2041 	assert(obj->holdcount > 0);
2042 	if (--obj->holdcount == 0 && obj->unholdfree)
2043 		release_object(obj);
2044 }
2045 
2046 static void
2047 process_z(Obj_Entry *root)
2048 {
2049 	const Objlist_Entry *elm;
2050 	Obj_Entry *obj;
2051 
2052 	/*
2053 	 * Walk over object DAG and process every dependent object
2054 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2055 	 * to grow their own DAG.
2056 	 *
2057 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2058 	 * symlook_global() to work.
2059 	 *
2060 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2061 	 */
2062 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2063 		obj = elm->obj;
2064 		if (obj == NULL)
2065 			continue;
2066 		if (obj->z_nodelete && !obj->ref_nodel) {
2067 			dbg("obj %s -z nodelete", obj->path);
2068 			init_dag(obj);
2069 			ref_dag(obj);
2070 			obj->ref_nodel = true;
2071 		}
2072 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2073 			dbg("obj %s -z global", obj->path);
2074 			objlist_push_tail(&list_global, obj);
2075 			init_dag(obj);
2076 		}
2077 	}
2078 }
2079 /*
2080  * Initialize the dynamic linker.  The argument is the address at which
2081  * the dynamic linker has been mapped into memory.  The primary task of
2082  * this function is to relocate the dynamic linker.
2083  */
2084 static void
2085 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2086 {
2087     Obj_Entry objtmp;	/* Temporary rtld object */
2088     const Elf_Ehdr *ehdr;
2089     const Elf_Dyn *dyn_rpath;
2090     const Elf_Dyn *dyn_soname;
2091     const Elf_Dyn *dyn_runpath;
2092 
2093 #ifdef RTLD_INIT_PAGESIZES_EARLY
2094     /* The page size is required by the dynamic memory allocator. */
2095     init_pagesizes(aux_info);
2096 #endif
2097 
2098     /*
2099      * Conjure up an Obj_Entry structure for the dynamic linker.
2100      *
2101      * The "path" member can't be initialized yet because string constants
2102      * cannot yet be accessed. Below we will set it correctly.
2103      */
2104     memset(&objtmp, 0, sizeof(objtmp));
2105     objtmp.path = NULL;
2106     objtmp.rtld = true;
2107     objtmp.mapbase = mapbase;
2108 #ifdef PIC
2109     objtmp.relocbase = mapbase;
2110 #endif
2111 
2112     objtmp.dynamic = rtld_dynamic(&objtmp);
2113     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2114     assert(objtmp.needed == NULL);
2115 #if !defined(__mips__)
2116     /* MIPS has a bogus DT_TEXTREL. */
2117     assert(!objtmp.textrel);
2118 #endif
2119     /*
2120      * Temporarily put the dynamic linker entry into the object list, so
2121      * that symbols can be found.
2122      */
2123     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2124 
2125     ehdr = (Elf_Ehdr *)mapbase;
2126     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2127     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2128 
2129     /* Initialize the object list. */
2130     TAILQ_INIT(&obj_list);
2131 
2132     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2133     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2134 
2135 #ifndef RTLD_INIT_PAGESIZES_EARLY
2136     /* The page size is required by the dynamic memory allocator. */
2137     init_pagesizes(aux_info);
2138 #endif
2139 
2140     if (aux_info[AT_OSRELDATE] != NULL)
2141 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2142 
2143     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2144 
2145     /* Replace the path with a dynamically allocated copy. */
2146     obj_rtld.path = xstrdup(ld_path_rtld);
2147 
2148     r_debug.r_brk = r_debug_state;
2149     r_debug.r_state = RT_CONSISTENT;
2150 }
2151 
2152 /*
2153  * Retrieve the array of supported page sizes.  The kernel provides the page
2154  * sizes in increasing order.
2155  */
2156 static void
2157 init_pagesizes(Elf_Auxinfo **aux_info)
2158 {
2159 	static size_t psa[MAXPAGESIZES];
2160 	int mib[2];
2161 	size_t len, size;
2162 
2163 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2164 	    NULL) {
2165 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2166 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2167 	} else {
2168 		len = 2;
2169 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2170 			size = sizeof(psa);
2171 		else {
2172 			/* As a fallback, retrieve the base page size. */
2173 			size = sizeof(psa[0]);
2174 			if (aux_info[AT_PAGESZ] != NULL) {
2175 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2176 				goto psa_filled;
2177 			} else {
2178 				mib[0] = CTL_HW;
2179 				mib[1] = HW_PAGESIZE;
2180 				len = 2;
2181 			}
2182 		}
2183 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2184 			_rtld_error("sysctl for hw.pagesize(s) failed");
2185 			rtld_die();
2186 		}
2187 psa_filled:
2188 		pagesizes = psa;
2189 	}
2190 	npagesizes = size / sizeof(pagesizes[0]);
2191 	/* Discard any invalid entries at the end of the array. */
2192 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2193 		npagesizes--;
2194 }
2195 
2196 /*
2197  * Add the init functions from a needed object list (and its recursive
2198  * needed objects) to "list".  This is not used directly; it is a helper
2199  * function for initlist_add_objects().  The write lock must be held
2200  * when this function is called.
2201  */
2202 static void
2203 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2204 {
2205     /* Recursively process the successor needed objects. */
2206     if (needed->next != NULL)
2207 	initlist_add_neededs(needed->next, list);
2208 
2209     /* Process the current needed object. */
2210     if (needed->obj != NULL)
2211 	initlist_add_objects(needed->obj, needed->obj, list);
2212 }
2213 
2214 /*
2215  * Scan all of the DAGs rooted in the range of objects from "obj" to
2216  * "tail" and add their init functions to "list".  This recurses over
2217  * the DAGs and ensure the proper init ordering such that each object's
2218  * needed libraries are initialized before the object itself.  At the
2219  * same time, this function adds the objects to the global finalization
2220  * list "list_fini" in the opposite order.  The write lock must be
2221  * held when this function is called.
2222  */
2223 static void
2224 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2225 {
2226     Obj_Entry *nobj;
2227 
2228     if (obj->init_scanned || obj->init_done)
2229 	return;
2230     obj->init_scanned = true;
2231 
2232     /* Recursively process the successor objects. */
2233     nobj = globallist_next(obj);
2234     if (nobj != NULL && obj != tail)
2235 	initlist_add_objects(nobj, tail, list);
2236 
2237     /* Recursively process the needed objects. */
2238     if (obj->needed != NULL)
2239 	initlist_add_neededs(obj->needed, list);
2240     if (obj->needed_filtees != NULL)
2241 	initlist_add_neededs(obj->needed_filtees, list);
2242     if (obj->needed_aux_filtees != NULL)
2243 	initlist_add_neededs(obj->needed_aux_filtees, list);
2244 
2245     /* Add the object to the init list. */
2246     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2247       obj->init_array != (Elf_Addr)NULL)
2248 	objlist_push_tail(list, obj);
2249 
2250     /* Add the object to the global fini list in the reverse order. */
2251     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2252       && !obj->on_fini_list) {
2253 	objlist_push_head(&list_fini, obj);
2254 	obj->on_fini_list = true;
2255     }
2256 }
2257 
2258 #ifndef FPTR_TARGET
2259 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2260 #endif
2261 
2262 static void
2263 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2264 {
2265     Needed_Entry *needed, *needed1;
2266 
2267     for (needed = n; needed != NULL; needed = needed->next) {
2268 	if (needed->obj != NULL) {
2269 	    dlclose_locked(needed->obj, lockstate);
2270 	    needed->obj = NULL;
2271 	}
2272     }
2273     for (needed = n; needed != NULL; needed = needed1) {
2274 	needed1 = needed->next;
2275 	free(needed);
2276     }
2277 }
2278 
2279 static void
2280 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2281 {
2282 
2283 	free_needed_filtees(obj->needed_filtees, lockstate);
2284 	obj->needed_filtees = NULL;
2285 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2286 	obj->needed_aux_filtees = NULL;
2287 	obj->filtees_loaded = false;
2288 }
2289 
2290 static void
2291 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2292     RtldLockState *lockstate)
2293 {
2294 
2295     for (; needed != NULL; needed = needed->next) {
2296 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2297 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2298 	  RTLD_LOCAL, lockstate);
2299     }
2300 }
2301 
2302 static void
2303 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2304 {
2305 
2306     lock_restart_for_upgrade(lockstate);
2307     if (!obj->filtees_loaded) {
2308 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2309 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2310 	obj->filtees_loaded = true;
2311     }
2312 }
2313 
2314 static int
2315 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2316 {
2317     Obj_Entry *obj1;
2318 
2319     for (; needed != NULL; needed = needed->next) {
2320 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2321 	  flags & ~RTLD_LO_NOLOAD);
2322 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2323 	    return (-1);
2324     }
2325     return (0);
2326 }
2327 
2328 /*
2329  * Given a shared object, traverse its list of needed objects, and load
2330  * each of them.  Returns 0 on success.  Generates an error message and
2331  * returns -1 on failure.
2332  */
2333 static int
2334 load_needed_objects(Obj_Entry *first, int flags)
2335 {
2336     Obj_Entry *obj;
2337 
2338     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2339 	if (obj->marker)
2340 	    continue;
2341 	if (process_needed(obj, obj->needed, flags) == -1)
2342 	    return (-1);
2343     }
2344     return (0);
2345 }
2346 
2347 static int
2348 load_preload_objects(void)
2349 {
2350     char *p = ld_preload;
2351     Obj_Entry *obj;
2352     static const char delim[] = " \t:;";
2353 
2354     if (p == NULL)
2355 	return 0;
2356 
2357     p += strspn(p, delim);
2358     while (*p != '\0') {
2359 	size_t len = strcspn(p, delim);
2360 	char savech;
2361 
2362 	savech = p[len];
2363 	p[len] = '\0';
2364 	obj = load_object(p, -1, NULL, 0);
2365 	if (obj == NULL)
2366 	    return -1;	/* XXX - cleanup */
2367 	obj->z_interpose = true;
2368 	p[len] = savech;
2369 	p += len;
2370 	p += strspn(p, delim);
2371     }
2372     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2373     return 0;
2374 }
2375 
2376 static const char *
2377 printable_path(const char *path)
2378 {
2379 
2380 	return (path == NULL ? "<unknown>" : path);
2381 }
2382 
2383 /*
2384  * Load a shared object into memory, if it is not already loaded.  The
2385  * object may be specified by name or by user-supplied file descriptor
2386  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2387  * duplicate is.
2388  *
2389  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2390  * on failure.
2391  */
2392 static Obj_Entry *
2393 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2394 {
2395     Obj_Entry *obj;
2396     int fd;
2397     struct stat sb;
2398     char *path;
2399 
2400     fd = -1;
2401     if (name != NULL) {
2402 	TAILQ_FOREACH(obj, &obj_list, next) {
2403 	    if (obj->marker || obj->doomed)
2404 		continue;
2405 	    if (object_match_name(obj, name))
2406 		return (obj);
2407 	}
2408 
2409 	path = find_library(name, refobj, &fd);
2410 	if (path == NULL)
2411 	    return (NULL);
2412     } else
2413 	path = NULL;
2414 
2415     if (fd >= 0) {
2416 	/*
2417 	 * search_library_pathfds() opens a fresh file descriptor for the
2418 	 * library, so there is no need to dup().
2419 	 */
2420     } else if (fd_u == -1) {
2421 	/*
2422 	 * If we didn't find a match by pathname, or the name is not
2423 	 * supplied, open the file and check again by device and inode.
2424 	 * This avoids false mismatches caused by multiple links or ".."
2425 	 * in pathnames.
2426 	 *
2427 	 * To avoid a race, we open the file and use fstat() rather than
2428 	 * using stat().
2429 	 */
2430 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2431 	    _rtld_error("Cannot open \"%s\"", path);
2432 	    free(path);
2433 	    return (NULL);
2434 	}
2435     } else {
2436 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2437 	if (fd == -1) {
2438 	    _rtld_error("Cannot dup fd");
2439 	    free(path);
2440 	    return (NULL);
2441 	}
2442     }
2443     if (fstat(fd, &sb) == -1) {
2444 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2445 	close(fd);
2446 	free(path);
2447 	return NULL;
2448     }
2449     TAILQ_FOREACH(obj, &obj_list, next) {
2450 	if (obj->marker || obj->doomed)
2451 	    continue;
2452 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2453 	    break;
2454     }
2455     if (obj != NULL && name != NULL) {
2456 	object_add_name(obj, name);
2457 	free(path);
2458 	close(fd);
2459 	return obj;
2460     }
2461     if (flags & RTLD_LO_NOLOAD) {
2462 	free(path);
2463 	close(fd);
2464 	return (NULL);
2465     }
2466 
2467     /* First use of this object, so we must map it in */
2468     obj = do_load_object(fd, name, path, &sb, flags);
2469     if (obj == NULL)
2470 	free(path);
2471     close(fd);
2472 
2473     return obj;
2474 }
2475 
2476 static Obj_Entry *
2477 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2478   int flags)
2479 {
2480     Obj_Entry *obj;
2481     struct statfs fs;
2482 
2483     /*
2484      * but first, make sure that environment variables haven't been
2485      * used to circumvent the noexec flag on a filesystem.
2486      */
2487     if (dangerous_ld_env) {
2488 	if (fstatfs(fd, &fs) != 0) {
2489 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2490 	    return NULL;
2491 	}
2492 	if (fs.f_flags & MNT_NOEXEC) {
2493 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2494 	    return NULL;
2495 	}
2496     }
2497     dbg("loading \"%s\"", printable_path(path));
2498     obj = map_object(fd, printable_path(path), sbp);
2499     if (obj == NULL)
2500         return NULL;
2501 
2502     /*
2503      * If DT_SONAME is present in the object, digest_dynamic2 already
2504      * added it to the object names.
2505      */
2506     if (name != NULL)
2507 	object_add_name(obj, name);
2508     obj->path = path;
2509     digest_dynamic(obj, 0);
2510     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2511 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2512     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2513       RTLD_LO_DLOPEN) {
2514 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2515 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2516 	munmap(obj->mapbase, obj->mapsize);
2517 	obj_free(obj);
2518 	return (NULL);
2519     }
2520 
2521     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2522     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2523     obj_count++;
2524     obj_loads++;
2525     linkmap_add(obj);	/* for GDB & dlinfo() */
2526     max_stack_flags |= obj->stack_flags;
2527 
2528     dbg("  %p .. %p: %s", obj->mapbase,
2529          obj->mapbase + obj->mapsize - 1, obj->path);
2530     if (obj->textrel)
2531 	dbg("  WARNING: %s has impure text", obj->path);
2532     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2533 	obj->path);
2534 
2535     return obj;
2536 }
2537 
2538 static Obj_Entry *
2539 obj_from_addr(const void *addr)
2540 {
2541     Obj_Entry *obj;
2542 
2543     TAILQ_FOREACH(obj, &obj_list, next) {
2544 	if (obj->marker)
2545 	    continue;
2546 	if (addr < (void *) obj->mapbase)
2547 	    continue;
2548 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2549 	    return obj;
2550     }
2551     return NULL;
2552 }
2553 
2554 static void
2555 preinit_main(void)
2556 {
2557     Elf_Addr *preinit_addr;
2558     int index;
2559 
2560     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2561     if (preinit_addr == NULL)
2562 	return;
2563 
2564     for (index = 0; index < obj_main->preinit_array_num; index++) {
2565 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2566 	    dbg("calling preinit function for %s at %p", obj_main->path,
2567 	      (void *)preinit_addr[index]);
2568 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2569 	      0, 0, obj_main->path);
2570 	    call_init_pointer(obj_main, preinit_addr[index]);
2571 	}
2572     }
2573 }
2574 
2575 /*
2576  * Call the finalization functions for each of the objects in "list"
2577  * belonging to the DAG of "root" and referenced once. If NULL "root"
2578  * is specified, every finalization function will be called regardless
2579  * of the reference count and the list elements won't be freed. All of
2580  * the objects are expected to have non-NULL fini functions.
2581  */
2582 static void
2583 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2584 {
2585     Objlist_Entry *elm;
2586     char *saved_msg;
2587     Elf_Addr *fini_addr;
2588     int index;
2589 
2590     assert(root == NULL || root->refcount == 1);
2591 
2592     if (root != NULL)
2593 	root->doomed = true;
2594 
2595     /*
2596      * Preserve the current error message since a fini function might
2597      * call into the dynamic linker and overwrite it.
2598      */
2599     saved_msg = errmsg_save();
2600     do {
2601 	STAILQ_FOREACH(elm, list, link) {
2602 	    if (root != NULL && (elm->obj->refcount != 1 ||
2603 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2604 		continue;
2605 	    /* Remove object from fini list to prevent recursive invocation. */
2606 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2607 	    /* Ensure that new references cannot be acquired. */
2608 	    elm->obj->doomed = true;
2609 
2610 	    hold_object(elm->obj);
2611 	    lock_release(rtld_bind_lock, lockstate);
2612 	    /*
2613 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2614 	     * When this happens, DT_FINI_ARRAY is processed first.
2615 	     */
2616 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2617 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2618 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2619 		  index--) {
2620 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2621 			dbg("calling fini function for %s at %p",
2622 			    elm->obj->path, (void *)fini_addr[index]);
2623 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2624 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2625 			call_initfini_pointer(elm->obj, fini_addr[index]);
2626 		    }
2627 		}
2628 	    }
2629 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2630 		dbg("calling fini function for %s at %p", elm->obj->path,
2631 		    (void *)elm->obj->fini);
2632 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2633 		    0, 0, elm->obj->path);
2634 		call_initfini_pointer(elm->obj, elm->obj->fini);
2635 	    }
2636 	    wlock_acquire(rtld_bind_lock, lockstate);
2637 	    unhold_object(elm->obj);
2638 	    /* No need to free anything if process is going down. */
2639 	    if (root != NULL)
2640 	    	free(elm);
2641 	    /*
2642 	     * We must restart the list traversal after every fini call
2643 	     * because a dlclose() call from the fini function or from
2644 	     * another thread might have modified the reference counts.
2645 	     */
2646 	    break;
2647 	}
2648     } while (elm != NULL);
2649     errmsg_restore(saved_msg);
2650 }
2651 
2652 /*
2653  * Call the initialization functions for each of the objects in
2654  * "list".  All of the objects are expected to have non-NULL init
2655  * functions.
2656  */
2657 static void
2658 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2659 {
2660     Objlist_Entry *elm;
2661     Obj_Entry *obj;
2662     char *saved_msg;
2663     Elf_Addr *init_addr;
2664     int index;
2665 
2666     /*
2667      * Clean init_scanned flag so that objects can be rechecked and
2668      * possibly initialized earlier if any of vectors called below
2669      * cause the change by using dlopen.
2670      */
2671     TAILQ_FOREACH(obj, &obj_list, next) {
2672 	if (obj->marker)
2673 	    continue;
2674 	obj->init_scanned = false;
2675     }
2676 
2677     /*
2678      * Preserve the current error message since an init function might
2679      * call into the dynamic linker and overwrite it.
2680      */
2681     saved_msg = errmsg_save();
2682     STAILQ_FOREACH(elm, list, link) {
2683 	if (elm->obj->init_done) /* Initialized early. */
2684 	    continue;
2685 	/*
2686 	 * Race: other thread might try to use this object before current
2687 	 * one completes the initialization. Not much can be done here
2688 	 * without better locking.
2689 	 */
2690 	elm->obj->init_done = true;
2691 	hold_object(elm->obj);
2692 	lock_release(rtld_bind_lock, lockstate);
2693 
2694         /*
2695          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2696          * When this happens, DT_INIT is processed first.
2697          */
2698 	if (elm->obj->init != (Elf_Addr)NULL) {
2699 	    dbg("calling init function for %s at %p", elm->obj->path,
2700 	        (void *)elm->obj->init);
2701 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2702 	        0, 0, elm->obj->path);
2703 	    call_initfini_pointer(elm->obj, elm->obj->init);
2704 	}
2705 	init_addr = (Elf_Addr *)elm->obj->init_array;
2706 	if (init_addr != NULL) {
2707 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2708 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2709 		    dbg("calling init function for %s at %p", elm->obj->path,
2710 			(void *)init_addr[index]);
2711 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2712 			(void *)init_addr[index], 0, 0, elm->obj->path);
2713 		    call_init_pointer(elm->obj, init_addr[index]);
2714 		}
2715 	    }
2716 	}
2717 	wlock_acquire(rtld_bind_lock, lockstate);
2718 	unhold_object(elm->obj);
2719     }
2720     errmsg_restore(saved_msg);
2721 }
2722 
2723 static void
2724 objlist_clear(Objlist *list)
2725 {
2726     Objlist_Entry *elm;
2727 
2728     while (!STAILQ_EMPTY(list)) {
2729 	elm = STAILQ_FIRST(list);
2730 	STAILQ_REMOVE_HEAD(list, link);
2731 	free(elm);
2732     }
2733 }
2734 
2735 static Objlist_Entry *
2736 objlist_find(Objlist *list, const Obj_Entry *obj)
2737 {
2738     Objlist_Entry *elm;
2739 
2740     STAILQ_FOREACH(elm, list, link)
2741 	if (elm->obj == obj)
2742 	    return elm;
2743     return NULL;
2744 }
2745 
2746 static void
2747 objlist_init(Objlist *list)
2748 {
2749     STAILQ_INIT(list);
2750 }
2751 
2752 static void
2753 objlist_push_head(Objlist *list, Obj_Entry *obj)
2754 {
2755     Objlist_Entry *elm;
2756 
2757     elm = NEW(Objlist_Entry);
2758     elm->obj = obj;
2759     STAILQ_INSERT_HEAD(list, elm, link);
2760 }
2761 
2762 static void
2763 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2764 {
2765     Objlist_Entry *elm;
2766 
2767     elm = NEW(Objlist_Entry);
2768     elm->obj = obj;
2769     STAILQ_INSERT_TAIL(list, elm, link);
2770 }
2771 
2772 static void
2773 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2774 {
2775 	Objlist_Entry *elm, *listelm;
2776 
2777 	STAILQ_FOREACH(listelm, list, link) {
2778 		if (listelm->obj == listobj)
2779 			break;
2780 	}
2781 	elm = NEW(Objlist_Entry);
2782 	elm->obj = obj;
2783 	if (listelm != NULL)
2784 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2785 	else
2786 		STAILQ_INSERT_TAIL(list, elm, link);
2787 }
2788 
2789 static void
2790 objlist_remove(Objlist *list, Obj_Entry *obj)
2791 {
2792     Objlist_Entry *elm;
2793 
2794     if ((elm = objlist_find(list, obj)) != NULL) {
2795 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2796 	free(elm);
2797     }
2798 }
2799 
2800 /*
2801  * Relocate dag rooted in the specified object.
2802  * Returns 0 on success, or -1 on failure.
2803  */
2804 
2805 static int
2806 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2807     int flags, RtldLockState *lockstate)
2808 {
2809 	Objlist_Entry *elm;
2810 	int error;
2811 
2812 	error = 0;
2813 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2814 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2815 		    lockstate);
2816 		if (error == -1)
2817 			break;
2818 	}
2819 	return (error);
2820 }
2821 
2822 /*
2823  * Prepare for, or clean after, relocating an object marked with
2824  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2825  * segments are remapped read-write.  After relocations are done, the
2826  * segment's permissions are returned back to the modes specified in
2827  * the phdrs.  If any relocation happened, or always for wired
2828  * program, COW is triggered.
2829  */
2830 static int
2831 reloc_textrel_prot(Obj_Entry *obj, bool before)
2832 {
2833 	const Elf_Phdr *ph;
2834 	void *base;
2835 	size_t l, sz;
2836 	int prot;
2837 
2838 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2839 	    l--, ph++) {
2840 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2841 			continue;
2842 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2843 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2844 		    trunc_page(ph->p_vaddr);
2845 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2846 		if (mprotect(base, sz, prot) == -1) {
2847 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2848 			    obj->path, before ? "en" : "dis",
2849 			    rtld_strerror(errno));
2850 			return (-1);
2851 		}
2852 	}
2853 	return (0);
2854 }
2855 
2856 /*
2857  * Relocate single object.
2858  * Returns 0 on success, or -1 on failure.
2859  */
2860 static int
2861 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2862     int flags, RtldLockState *lockstate)
2863 {
2864 
2865 	if (obj->relocated)
2866 		return (0);
2867 	obj->relocated = true;
2868 	if (obj != rtldobj)
2869 		dbg("relocating \"%s\"", obj->path);
2870 
2871 	if (obj->symtab == NULL || obj->strtab == NULL ||
2872 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2873 		_rtld_error("%s: Shared object has no run-time symbol table",
2874 			    obj->path);
2875 		return (-1);
2876 	}
2877 
2878 	/* There are relocations to the write-protected text segment. */
2879 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2880 		return (-1);
2881 
2882 	/* Process the non-PLT non-IFUNC relocations. */
2883 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2884 		return (-1);
2885 
2886 	/* Re-protected the text segment. */
2887 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2888 		return (-1);
2889 
2890 	/* Set the special PLT or GOT entries. */
2891 	init_pltgot(obj);
2892 
2893 	/* Process the PLT relocations. */
2894 	if (reloc_plt(obj) == -1)
2895 		return (-1);
2896 	/* Relocate the jump slots if we are doing immediate binding. */
2897 	if (obj->bind_now || bind_now) {
2898 		if (reloc_jmpslots(obj, flags, lockstate) == -1 ||
2899 		    resolve_object_ifunc(obj, true, flags, lockstate) == -1)
2900 			return (-1);
2901 	}
2902 
2903 	/*
2904 	 * Process the non-PLT IFUNC relocations.  The relocations are
2905 	 * processed in two phases, because IFUNC resolvers may
2906 	 * reference other symbols, which must be readily processed
2907 	 * before resolvers are called.
2908 	 */
2909 	if (obj->non_plt_gnu_ifunc &&
2910 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2911 		return (-1);
2912 
2913 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2914 		return (-1);
2915 
2916 	/*
2917 	 * Set up the magic number and version in the Obj_Entry.  These
2918 	 * were checked in the crt1.o from the original ElfKit, so we
2919 	 * set them for backward compatibility.
2920 	 */
2921 	obj->magic = RTLD_MAGIC;
2922 	obj->version = RTLD_VERSION;
2923 
2924 	return (0);
2925 }
2926 
2927 /*
2928  * Relocate newly-loaded shared objects.  The argument is a pointer to
2929  * the Obj_Entry for the first such object.  All objects from the first
2930  * to the end of the list of objects are relocated.  Returns 0 on success,
2931  * or -1 on failure.
2932  */
2933 static int
2934 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2935     int flags, RtldLockState *lockstate)
2936 {
2937 	Obj_Entry *obj;
2938 	int error;
2939 
2940 	for (error = 0, obj = first;  obj != NULL;
2941 	    obj = TAILQ_NEXT(obj, next)) {
2942 		if (obj->marker)
2943 			continue;
2944 		error = relocate_object(obj, bind_now, rtldobj, flags,
2945 		    lockstate);
2946 		if (error == -1)
2947 			break;
2948 	}
2949 	return (error);
2950 }
2951 
2952 /*
2953  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2954  * referencing STT_GNU_IFUNC symbols is postponed till the other
2955  * relocations are done.  The indirect functions specified as
2956  * ifunc are allowed to call other symbols, so we need to have
2957  * objects relocated before asking for resolution from indirects.
2958  *
2959  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2960  * instead of the usual lazy handling of PLT slots.  It is
2961  * consistent with how GNU does it.
2962  */
2963 static int
2964 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2965     RtldLockState *lockstate)
2966 {
2967 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2968 		return (-1);
2969 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2970 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2971 		return (-1);
2972 	return (0);
2973 }
2974 
2975 static int
2976 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2977     RtldLockState *lockstate)
2978 {
2979 	Obj_Entry *obj;
2980 
2981 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2982 		if (obj->marker)
2983 			continue;
2984 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2985 			return (-1);
2986 	}
2987 	return (0);
2988 }
2989 
2990 static int
2991 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2992     RtldLockState *lockstate)
2993 {
2994 	Objlist_Entry *elm;
2995 
2996 	STAILQ_FOREACH(elm, list, link) {
2997 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2998 		    lockstate) == -1)
2999 			return (-1);
3000 	}
3001 	return (0);
3002 }
3003 
3004 /*
3005  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3006  * before the process exits.
3007  */
3008 static void
3009 rtld_exit(void)
3010 {
3011     RtldLockState lockstate;
3012 
3013     wlock_acquire(rtld_bind_lock, &lockstate);
3014     dbg("rtld_exit()");
3015     objlist_call_fini(&list_fini, NULL, &lockstate);
3016     /* No need to remove the items from the list, since we are exiting. */
3017     if (!libmap_disable)
3018         lm_fini();
3019     lock_release(rtld_bind_lock, &lockstate);
3020 }
3021 
3022 /*
3023  * Iterate over a search path, translate each element, and invoke the
3024  * callback on the result.
3025  */
3026 static void *
3027 path_enumerate(const char *path, path_enum_proc callback,
3028     const char *refobj_path, void *arg)
3029 {
3030     const char *trans;
3031     if (path == NULL)
3032 	return (NULL);
3033 
3034     path += strspn(path, ":;");
3035     while (*path != '\0') {
3036 	size_t len;
3037 	char  *res;
3038 
3039 	len = strcspn(path, ":;");
3040 	trans = lm_findn(refobj_path, path, len);
3041 	if (trans)
3042 	    res = callback(trans, strlen(trans), arg);
3043 	else
3044 	    res = callback(path, len, arg);
3045 
3046 	if (res != NULL)
3047 	    return (res);
3048 
3049 	path += len;
3050 	path += strspn(path, ":;");
3051     }
3052 
3053     return (NULL);
3054 }
3055 
3056 struct try_library_args {
3057     const char	*name;
3058     size_t	 namelen;
3059     char	*buffer;
3060     size_t	 buflen;
3061     int		 fd;
3062 };
3063 
3064 static void *
3065 try_library_path(const char *dir, size_t dirlen, void *param)
3066 {
3067     struct try_library_args *arg;
3068     int fd;
3069 
3070     arg = param;
3071     if (*dir == '/' || trust) {
3072 	char *pathname;
3073 
3074 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3075 		return (NULL);
3076 
3077 	pathname = arg->buffer;
3078 	strncpy(pathname, dir, dirlen);
3079 	pathname[dirlen] = '/';
3080 	strcpy(pathname + dirlen + 1, arg->name);
3081 
3082 	dbg("  Trying \"%s\"", pathname);
3083 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3084 	if (fd >= 0) {
3085 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3086 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3087 	    strcpy(pathname, arg->buffer);
3088 	    arg->fd = fd;
3089 	    return (pathname);
3090 	} else {
3091 	    dbg("  Failed to open \"%s\": %s",
3092 		pathname, rtld_strerror(errno));
3093 	}
3094     }
3095     return (NULL);
3096 }
3097 
3098 static char *
3099 search_library_path(const char *name, const char *path,
3100     const char *refobj_path, int *fdp)
3101 {
3102     char *p;
3103     struct try_library_args arg;
3104 
3105     if (path == NULL)
3106 	return NULL;
3107 
3108     arg.name = name;
3109     arg.namelen = strlen(name);
3110     arg.buffer = xmalloc(PATH_MAX);
3111     arg.buflen = PATH_MAX;
3112     arg.fd = -1;
3113 
3114     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3115     *fdp = arg.fd;
3116 
3117     free(arg.buffer);
3118 
3119     return (p);
3120 }
3121 
3122 
3123 /*
3124  * Finds the library with the given name using the directory descriptors
3125  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3126  *
3127  * Returns a freshly-opened close-on-exec file descriptor for the library,
3128  * or -1 if the library cannot be found.
3129  */
3130 static char *
3131 search_library_pathfds(const char *name, const char *path, int *fdp)
3132 {
3133 	char *envcopy, *fdstr, *found, *last_token;
3134 	size_t len;
3135 	int dirfd, fd;
3136 
3137 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3138 
3139 	/* Don't load from user-specified libdirs into setuid binaries. */
3140 	if (!trust)
3141 		return (NULL);
3142 
3143 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3144 	if (path == NULL)
3145 		return (NULL);
3146 
3147 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3148 	if (name[0] == '/') {
3149 		dbg("Absolute path (%s) passed to %s", name, __func__);
3150 		return (NULL);
3151 	}
3152 
3153 	/*
3154 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3155 	 * copy of the path, as strtok_r rewrites separator tokens
3156 	 * with '\0'.
3157 	 */
3158 	found = NULL;
3159 	envcopy = xstrdup(path);
3160 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3161 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3162 		dirfd = parse_integer(fdstr);
3163 		if (dirfd < 0) {
3164 			_rtld_error("failed to parse directory FD: '%s'",
3165 				fdstr);
3166 			break;
3167 		}
3168 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3169 		if (fd >= 0) {
3170 			*fdp = fd;
3171 			len = strlen(fdstr) + strlen(name) + 3;
3172 			found = xmalloc(len);
3173 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3174 				_rtld_error("error generating '%d/%s'",
3175 				    dirfd, name);
3176 				rtld_die();
3177 			}
3178 			dbg("open('%s') => %d", found, fd);
3179 			break;
3180 		}
3181 	}
3182 	free(envcopy);
3183 
3184 	return (found);
3185 }
3186 
3187 
3188 int
3189 dlclose(void *handle)
3190 {
3191 	RtldLockState lockstate;
3192 	int error;
3193 
3194 	wlock_acquire(rtld_bind_lock, &lockstate);
3195 	error = dlclose_locked(handle, &lockstate);
3196 	lock_release(rtld_bind_lock, &lockstate);
3197 	return (error);
3198 }
3199 
3200 static int
3201 dlclose_locked(void *handle, RtldLockState *lockstate)
3202 {
3203     Obj_Entry *root;
3204 
3205     root = dlcheck(handle);
3206     if (root == NULL)
3207 	return -1;
3208     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3209 	root->path);
3210 
3211     /* Unreference the object and its dependencies. */
3212     root->dl_refcount--;
3213 
3214     if (root->refcount == 1) {
3215 	/*
3216 	 * The object will be no longer referenced, so we must unload it.
3217 	 * First, call the fini functions.
3218 	 */
3219 	objlist_call_fini(&list_fini, root, lockstate);
3220 
3221 	unref_dag(root);
3222 
3223 	/* Finish cleaning up the newly-unreferenced objects. */
3224 	GDB_STATE(RT_DELETE,&root->linkmap);
3225 	unload_object(root, lockstate);
3226 	GDB_STATE(RT_CONSISTENT,NULL);
3227     } else
3228 	unref_dag(root);
3229 
3230     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3231     return 0;
3232 }
3233 
3234 char *
3235 dlerror(void)
3236 {
3237     char *msg = error_message;
3238     error_message = NULL;
3239     return msg;
3240 }
3241 
3242 /*
3243  * This function is deprecated and has no effect.
3244  */
3245 void
3246 dllockinit(void *context,
3247     void *(*_lock_create)(void *context) __unused,
3248     void (*_rlock_acquire)(void *lock) __unused,
3249     void (*_wlock_acquire)(void *lock)  __unused,
3250     void (*_lock_release)(void *lock) __unused,
3251     void (*_lock_destroy)(void *lock) __unused,
3252     void (*context_destroy)(void *context))
3253 {
3254     static void *cur_context;
3255     static void (*cur_context_destroy)(void *);
3256 
3257     /* Just destroy the context from the previous call, if necessary. */
3258     if (cur_context_destroy != NULL)
3259 	cur_context_destroy(cur_context);
3260     cur_context = context;
3261     cur_context_destroy = context_destroy;
3262 }
3263 
3264 void *
3265 dlopen(const char *name, int mode)
3266 {
3267 
3268 	return (rtld_dlopen(name, -1, mode));
3269 }
3270 
3271 void *
3272 fdlopen(int fd, int mode)
3273 {
3274 
3275 	return (rtld_dlopen(NULL, fd, mode));
3276 }
3277 
3278 static void *
3279 rtld_dlopen(const char *name, int fd, int mode)
3280 {
3281     RtldLockState lockstate;
3282     int lo_flags;
3283 
3284     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3285     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3286     if (ld_tracing != NULL) {
3287 	rlock_acquire(rtld_bind_lock, &lockstate);
3288 	if (sigsetjmp(lockstate.env, 0) != 0)
3289 	    lock_upgrade(rtld_bind_lock, &lockstate);
3290 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3291 	lock_release(rtld_bind_lock, &lockstate);
3292     }
3293     lo_flags = RTLD_LO_DLOPEN;
3294     if (mode & RTLD_NODELETE)
3295 	    lo_flags |= RTLD_LO_NODELETE;
3296     if (mode & RTLD_NOLOAD)
3297 	    lo_flags |= RTLD_LO_NOLOAD;
3298     if (ld_tracing != NULL)
3299 	    lo_flags |= RTLD_LO_TRACE;
3300 
3301     return (dlopen_object(name, fd, obj_main, lo_flags,
3302       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3303 }
3304 
3305 static void
3306 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3307 {
3308 
3309 	obj->dl_refcount--;
3310 	unref_dag(obj);
3311 	if (obj->refcount == 0)
3312 		unload_object(obj, lockstate);
3313 }
3314 
3315 static Obj_Entry *
3316 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3317     int mode, RtldLockState *lockstate)
3318 {
3319     Obj_Entry *old_obj_tail;
3320     Obj_Entry *obj;
3321     Objlist initlist;
3322     RtldLockState mlockstate;
3323     int result;
3324 
3325     objlist_init(&initlist);
3326 
3327     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3328 	wlock_acquire(rtld_bind_lock, &mlockstate);
3329 	lockstate = &mlockstate;
3330     }
3331     GDB_STATE(RT_ADD,NULL);
3332 
3333     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3334     obj = NULL;
3335     if (name == NULL && fd == -1) {
3336 	obj = obj_main;
3337 	obj->refcount++;
3338     } else {
3339 	obj = load_object(name, fd, refobj, lo_flags);
3340     }
3341 
3342     if (obj) {
3343 	obj->dl_refcount++;
3344 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3345 	    objlist_push_tail(&list_global, obj);
3346 	if (globallist_next(old_obj_tail) != NULL) {
3347 	    /* We loaded something new. */
3348 	    assert(globallist_next(old_obj_tail) == obj);
3349 	    result = load_needed_objects(obj,
3350 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3351 	    init_dag(obj);
3352 	    ref_dag(obj);
3353 	    if (result != -1)
3354 		result = rtld_verify_versions(&obj->dagmembers);
3355 	    if (result != -1 && ld_tracing)
3356 		goto trace;
3357 	    if (result == -1 || relocate_object_dag(obj,
3358 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3359 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3360 	      lockstate) == -1) {
3361 		dlopen_cleanup(obj, lockstate);
3362 		obj = NULL;
3363 	    } else if (lo_flags & RTLD_LO_EARLY) {
3364 		/*
3365 		 * Do not call the init functions for early loaded
3366 		 * filtees.  The image is still not initialized enough
3367 		 * for them to work.
3368 		 *
3369 		 * Our object is found by the global object list and
3370 		 * will be ordered among all init calls done right
3371 		 * before transferring control to main.
3372 		 */
3373 	    } else {
3374 		/* Make list of init functions to call. */
3375 		initlist_add_objects(obj, obj, &initlist);
3376 	    }
3377 	    /*
3378 	     * Process all no_delete or global objects here, given
3379 	     * them own DAGs to prevent their dependencies from being
3380 	     * unloaded.  This has to be done after we have loaded all
3381 	     * of the dependencies, so that we do not miss any.
3382 	     */
3383 	    if (obj != NULL)
3384 		process_z(obj);
3385 	} else {
3386 	    /*
3387 	     * Bump the reference counts for objects on this DAG.  If
3388 	     * this is the first dlopen() call for the object that was
3389 	     * already loaded as a dependency, initialize the dag
3390 	     * starting at it.
3391 	     */
3392 	    init_dag(obj);
3393 	    ref_dag(obj);
3394 
3395 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3396 		goto trace;
3397 	}
3398 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3399 	  obj->z_nodelete) && !obj->ref_nodel) {
3400 	    dbg("obj %s nodelete", obj->path);
3401 	    ref_dag(obj);
3402 	    obj->z_nodelete = obj->ref_nodel = true;
3403 	}
3404     }
3405 
3406     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3407 	name);
3408     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3409 
3410     if (!(lo_flags & RTLD_LO_EARLY)) {
3411 	map_stacks_exec(lockstate);
3412     }
3413 
3414     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3415       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3416       lockstate) == -1) {
3417 	objlist_clear(&initlist);
3418 	dlopen_cleanup(obj, lockstate);
3419 	if (lockstate == &mlockstate)
3420 	    lock_release(rtld_bind_lock, lockstate);
3421 	return (NULL);
3422     }
3423 
3424     if (!(lo_flags & RTLD_LO_EARLY)) {
3425 	/* Call the init functions. */
3426 	objlist_call_init(&initlist, lockstate);
3427     }
3428     objlist_clear(&initlist);
3429     if (lockstate == &mlockstate)
3430 	lock_release(rtld_bind_lock, lockstate);
3431     return obj;
3432 trace:
3433     trace_loaded_objects(obj);
3434     if (lockstate == &mlockstate)
3435 	lock_release(rtld_bind_lock, lockstate);
3436     exit(0);
3437 }
3438 
3439 static void *
3440 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3441     int flags)
3442 {
3443     DoneList donelist;
3444     const Obj_Entry *obj, *defobj;
3445     const Elf_Sym *def;
3446     SymLook req;
3447     RtldLockState lockstate;
3448     tls_index ti;
3449     void *sym;
3450     int res;
3451 
3452     def = NULL;
3453     defobj = NULL;
3454     symlook_init(&req, name);
3455     req.ventry = ve;
3456     req.flags = flags | SYMLOOK_IN_PLT;
3457     req.lockstate = &lockstate;
3458 
3459     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3460     rlock_acquire(rtld_bind_lock, &lockstate);
3461     if (sigsetjmp(lockstate.env, 0) != 0)
3462 	    lock_upgrade(rtld_bind_lock, &lockstate);
3463     if (handle == NULL || handle == RTLD_NEXT ||
3464 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3465 
3466 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3467 	    _rtld_error("Cannot determine caller's shared object");
3468 	    lock_release(rtld_bind_lock, &lockstate);
3469 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3470 	    return NULL;
3471 	}
3472 	if (handle == NULL) {	/* Just the caller's shared object. */
3473 	    res = symlook_obj(&req, obj);
3474 	    if (res == 0) {
3475 		def = req.sym_out;
3476 		defobj = req.defobj_out;
3477 	    }
3478 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3479 		   handle == RTLD_SELF) { /* ... caller included */
3480 	    if (handle == RTLD_NEXT)
3481 		obj = globallist_next(obj);
3482 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3483 		if (obj->marker)
3484 		    continue;
3485 		res = symlook_obj(&req, obj);
3486 		if (res == 0) {
3487 		    if (def == NULL ||
3488 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3489 			def = req.sym_out;
3490 			defobj = req.defobj_out;
3491 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3492 			    break;
3493 		    }
3494 		}
3495 	    }
3496 	    /*
3497 	     * Search the dynamic linker itself, and possibly resolve the
3498 	     * symbol from there.  This is how the application links to
3499 	     * dynamic linker services such as dlopen.
3500 	     */
3501 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3502 		res = symlook_obj(&req, &obj_rtld);
3503 		if (res == 0) {
3504 		    def = req.sym_out;
3505 		    defobj = req.defobj_out;
3506 		}
3507 	    }
3508 	} else {
3509 	    assert(handle == RTLD_DEFAULT);
3510 	    res = symlook_default(&req, obj);
3511 	    if (res == 0) {
3512 		defobj = req.defobj_out;
3513 		def = req.sym_out;
3514 	    }
3515 	}
3516     } else {
3517 	if ((obj = dlcheck(handle)) == NULL) {
3518 	    lock_release(rtld_bind_lock, &lockstate);
3519 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3520 	    return NULL;
3521 	}
3522 
3523 	donelist_init(&donelist);
3524 	if (obj->mainprog) {
3525             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3526 	    res = symlook_global(&req, &donelist);
3527 	    if (res == 0) {
3528 		def = req.sym_out;
3529 		defobj = req.defobj_out;
3530 	    }
3531 	    /*
3532 	     * Search the dynamic linker itself, and possibly resolve the
3533 	     * symbol from there.  This is how the application links to
3534 	     * dynamic linker services such as dlopen.
3535 	     */
3536 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3537 		res = symlook_obj(&req, &obj_rtld);
3538 		if (res == 0) {
3539 		    def = req.sym_out;
3540 		    defobj = req.defobj_out;
3541 		}
3542 	    }
3543 	}
3544 	else {
3545 	    /* Search the whole DAG rooted at the given object. */
3546 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3547 	    if (res == 0) {
3548 		def = req.sym_out;
3549 		defobj = req.defobj_out;
3550 	    }
3551 	}
3552     }
3553 
3554     if (def != NULL) {
3555 	lock_release(rtld_bind_lock, &lockstate);
3556 
3557 	/*
3558 	 * The value required by the caller is derived from the value
3559 	 * of the symbol. this is simply the relocated value of the
3560 	 * symbol.
3561 	 */
3562 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3563 	    sym = make_function_pointer(def, defobj);
3564 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3565 	    sym = rtld_resolve_ifunc(defobj, def);
3566 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3567 	    ti.ti_module = defobj->tlsindex;
3568 	    ti.ti_offset = def->st_value;
3569 	    sym = __tls_get_addr(&ti);
3570 	} else
3571 	    sym = defobj->relocbase + def->st_value;
3572 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3573 	return (sym);
3574     }
3575 
3576     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3577       ve != NULL ? ve->name : "");
3578     lock_release(rtld_bind_lock, &lockstate);
3579     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3580     return NULL;
3581 }
3582 
3583 void *
3584 dlsym(void *handle, const char *name)
3585 {
3586 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3587 	    SYMLOOK_DLSYM);
3588 }
3589 
3590 dlfunc_t
3591 dlfunc(void *handle, const char *name)
3592 {
3593 	union {
3594 		void *d;
3595 		dlfunc_t f;
3596 	} rv;
3597 
3598 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3599 	    SYMLOOK_DLSYM);
3600 	return (rv.f);
3601 }
3602 
3603 void *
3604 dlvsym(void *handle, const char *name, const char *version)
3605 {
3606 	Ver_Entry ventry;
3607 
3608 	ventry.name = version;
3609 	ventry.file = NULL;
3610 	ventry.hash = elf_hash(version);
3611 	ventry.flags= 0;
3612 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3613 	    SYMLOOK_DLSYM);
3614 }
3615 
3616 int
3617 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3618 {
3619     const Obj_Entry *obj;
3620     RtldLockState lockstate;
3621 
3622     rlock_acquire(rtld_bind_lock, &lockstate);
3623     obj = obj_from_addr(addr);
3624     if (obj == NULL) {
3625         _rtld_error("No shared object contains address");
3626 	lock_release(rtld_bind_lock, &lockstate);
3627         return (0);
3628     }
3629     rtld_fill_dl_phdr_info(obj, phdr_info);
3630     lock_release(rtld_bind_lock, &lockstate);
3631     return (1);
3632 }
3633 
3634 int
3635 dladdr(const void *addr, Dl_info *info)
3636 {
3637     const Obj_Entry *obj;
3638     const Elf_Sym *def;
3639     void *symbol_addr;
3640     unsigned long symoffset;
3641     RtldLockState lockstate;
3642 
3643     rlock_acquire(rtld_bind_lock, &lockstate);
3644     obj = obj_from_addr(addr);
3645     if (obj == NULL) {
3646         _rtld_error("No shared object contains address");
3647 	lock_release(rtld_bind_lock, &lockstate);
3648         return 0;
3649     }
3650     info->dli_fname = obj->path;
3651     info->dli_fbase = obj->mapbase;
3652     info->dli_saddr = (void *)0;
3653     info->dli_sname = NULL;
3654 
3655     /*
3656      * Walk the symbol list looking for the symbol whose address is
3657      * closest to the address sent in.
3658      */
3659     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3660         def = obj->symtab + symoffset;
3661 
3662         /*
3663          * For skip the symbol if st_shndx is either SHN_UNDEF or
3664          * SHN_COMMON.
3665          */
3666         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3667             continue;
3668 
3669         /*
3670          * If the symbol is greater than the specified address, or if it
3671          * is further away from addr than the current nearest symbol,
3672          * then reject it.
3673          */
3674         symbol_addr = obj->relocbase + def->st_value;
3675         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3676             continue;
3677 
3678         /* Update our idea of the nearest symbol. */
3679         info->dli_sname = obj->strtab + def->st_name;
3680         info->dli_saddr = symbol_addr;
3681 
3682         /* Exact match? */
3683         if (info->dli_saddr == addr)
3684             break;
3685     }
3686     lock_release(rtld_bind_lock, &lockstate);
3687     return 1;
3688 }
3689 
3690 int
3691 dlinfo(void *handle, int request, void *p)
3692 {
3693     const Obj_Entry *obj;
3694     RtldLockState lockstate;
3695     int error;
3696 
3697     rlock_acquire(rtld_bind_lock, &lockstate);
3698 
3699     if (handle == NULL || handle == RTLD_SELF) {
3700 	void *retaddr;
3701 
3702 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3703 	if ((obj = obj_from_addr(retaddr)) == NULL)
3704 	    _rtld_error("Cannot determine caller's shared object");
3705     } else
3706 	obj = dlcheck(handle);
3707 
3708     if (obj == NULL) {
3709 	lock_release(rtld_bind_lock, &lockstate);
3710 	return (-1);
3711     }
3712 
3713     error = 0;
3714     switch (request) {
3715     case RTLD_DI_LINKMAP:
3716 	*((struct link_map const **)p) = &obj->linkmap;
3717 	break;
3718     case RTLD_DI_ORIGIN:
3719 	error = rtld_dirname(obj->path, p);
3720 	break;
3721 
3722     case RTLD_DI_SERINFOSIZE:
3723     case RTLD_DI_SERINFO:
3724 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3725 	break;
3726 
3727     default:
3728 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3729 	error = -1;
3730     }
3731 
3732     lock_release(rtld_bind_lock, &lockstate);
3733 
3734     return (error);
3735 }
3736 
3737 static void
3738 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3739 {
3740 
3741 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3742 	phdr_info->dlpi_name = obj->path;
3743 	phdr_info->dlpi_phdr = obj->phdr;
3744 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3745 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3746 	phdr_info->dlpi_tls_data = obj->tlsinit;
3747 	phdr_info->dlpi_adds = obj_loads;
3748 	phdr_info->dlpi_subs = obj_loads - obj_count;
3749 }
3750 
3751 int
3752 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3753 {
3754 	struct dl_phdr_info phdr_info;
3755 	Obj_Entry *obj, marker;
3756 	RtldLockState bind_lockstate, phdr_lockstate;
3757 	int error;
3758 
3759 	init_marker(&marker);
3760 	error = 0;
3761 
3762 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3763 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3764 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3765 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3766 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3767 		hold_object(obj);
3768 		lock_release(rtld_bind_lock, &bind_lockstate);
3769 
3770 		error = callback(&phdr_info, sizeof phdr_info, param);
3771 
3772 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3773 		unhold_object(obj);
3774 		obj = globallist_next(&marker);
3775 		TAILQ_REMOVE(&obj_list, &marker, next);
3776 		if (error != 0) {
3777 			lock_release(rtld_bind_lock, &bind_lockstate);
3778 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3779 			return (error);
3780 		}
3781 	}
3782 
3783 	if (error == 0) {
3784 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3785 		lock_release(rtld_bind_lock, &bind_lockstate);
3786 		error = callback(&phdr_info, sizeof(phdr_info), param);
3787 	}
3788 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3789 	return (error);
3790 }
3791 
3792 static void *
3793 fill_search_info(const char *dir, size_t dirlen, void *param)
3794 {
3795     struct fill_search_info_args *arg;
3796 
3797     arg = param;
3798 
3799     if (arg->request == RTLD_DI_SERINFOSIZE) {
3800 	arg->serinfo->dls_cnt ++;
3801 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3802     } else {
3803 	struct dl_serpath *s_entry;
3804 
3805 	s_entry = arg->serpath;
3806 	s_entry->dls_name  = arg->strspace;
3807 	s_entry->dls_flags = arg->flags;
3808 
3809 	strncpy(arg->strspace, dir, dirlen);
3810 	arg->strspace[dirlen] = '\0';
3811 
3812 	arg->strspace += dirlen + 1;
3813 	arg->serpath++;
3814     }
3815 
3816     return (NULL);
3817 }
3818 
3819 static int
3820 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3821 {
3822     struct dl_serinfo _info;
3823     struct fill_search_info_args args;
3824 
3825     args.request = RTLD_DI_SERINFOSIZE;
3826     args.serinfo = &_info;
3827 
3828     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3829     _info.dls_cnt  = 0;
3830 
3831     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3832     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3833     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3834     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3835     if (!obj->z_nodeflib)
3836       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3837 
3838 
3839     if (request == RTLD_DI_SERINFOSIZE) {
3840 	info->dls_size = _info.dls_size;
3841 	info->dls_cnt = _info.dls_cnt;
3842 	return (0);
3843     }
3844 
3845     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3846 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3847 	return (-1);
3848     }
3849 
3850     args.request  = RTLD_DI_SERINFO;
3851     args.serinfo  = info;
3852     args.serpath  = &info->dls_serpath[0];
3853     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3854 
3855     args.flags = LA_SER_RUNPATH;
3856     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3857 	return (-1);
3858 
3859     args.flags = LA_SER_LIBPATH;
3860     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3861 	return (-1);
3862 
3863     args.flags = LA_SER_RUNPATH;
3864     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3865 	return (-1);
3866 
3867     args.flags = LA_SER_CONFIG;
3868     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3869       != NULL)
3870 	return (-1);
3871 
3872     args.flags = LA_SER_DEFAULT;
3873     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3874       fill_search_info, NULL, &args) != NULL)
3875 	return (-1);
3876     return (0);
3877 }
3878 
3879 static int
3880 rtld_dirname(const char *path, char *bname)
3881 {
3882     const char *endp;
3883 
3884     /* Empty or NULL string gets treated as "." */
3885     if (path == NULL || *path == '\0') {
3886 	bname[0] = '.';
3887 	bname[1] = '\0';
3888 	return (0);
3889     }
3890 
3891     /* Strip trailing slashes */
3892     endp = path + strlen(path) - 1;
3893     while (endp > path && *endp == '/')
3894 	endp--;
3895 
3896     /* Find the start of the dir */
3897     while (endp > path && *endp != '/')
3898 	endp--;
3899 
3900     /* Either the dir is "/" or there are no slashes */
3901     if (endp == path) {
3902 	bname[0] = *endp == '/' ? '/' : '.';
3903 	bname[1] = '\0';
3904 	return (0);
3905     } else {
3906 	do {
3907 	    endp--;
3908 	} while (endp > path && *endp == '/');
3909     }
3910 
3911     if (endp - path + 2 > PATH_MAX)
3912     {
3913 	_rtld_error("Filename is too long: %s", path);
3914 	return(-1);
3915     }
3916 
3917     strncpy(bname, path, endp - path + 1);
3918     bname[endp - path + 1] = '\0';
3919     return (0);
3920 }
3921 
3922 static int
3923 rtld_dirname_abs(const char *path, char *base)
3924 {
3925 	char *last;
3926 
3927 	if (realpath(path, base) == NULL)
3928 		return (-1);
3929 	dbg("%s -> %s", path, base);
3930 	last = strrchr(base, '/');
3931 	if (last == NULL)
3932 		return (-1);
3933 	if (last != base)
3934 		*last = '\0';
3935 	return (0);
3936 }
3937 
3938 static void
3939 linkmap_add(Obj_Entry *obj)
3940 {
3941     struct link_map *l = &obj->linkmap;
3942     struct link_map *prev;
3943 
3944     obj->linkmap.l_name = obj->path;
3945     obj->linkmap.l_addr = obj->mapbase;
3946     obj->linkmap.l_ld = obj->dynamic;
3947 #ifdef __mips__
3948     /* GDB needs load offset on MIPS to use the symbols */
3949     obj->linkmap.l_offs = obj->relocbase;
3950 #endif
3951 
3952     if (r_debug.r_map == NULL) {
3953 	r_debug.r_map = l;
3954 	return;
3955     }
3956 
3957     /*
3958      * Scan to the end of the list, but not past the entry for the
3959      * dynamic linker, which we want to keep at the very end.
3960      */
3961     for (prev = r_debug.r_map;
3962       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3963       prev = prev->l_next)
3964 	;
3965 
3966     /* Link in the new entry. */
3967     l->l_prev = prev;
3968     l->l_next = prev->l_next;
3969     if (l->l_next != NULL)
3970 	l->l_next->l_prev = l;
3971     prev->l_next = l;
3972 }
3973 
3974 static void
3975 linkmap_delete(Obj_Entry *obj)
3976 {
3977     struct link_map *l = &obj->linkmap;
3978 
3979     if (l->l_prev == NULL) {
3980 	if ((r_debug.r_map = l->l_next) != NULL)
3981 	    l->l_next->l_prev = NULL;
3982 	return;
3983     }
3984 
3985     if ((l->l_prev->l_next = l->l_next) != NULL)
3986 	l->l_next->l_prev = l->l_prev;
3987 }
3988 
3989 /*
3990  * Function for the debugger to set a breakpoint on to gain control.
3991  *
3992  * The two parameters allow the debugger to easily find and determine
3993  * what the runtime loader is doing and to whom it is doing it.
3994  *
3995  * When the loadhook trap is hit (r_debug_state, set at program
3996  * initialization), the arguments can be found on the stack:
3997  *
3998  *  +8   struct link_map *m
3999  *  +4   struct r_debug  *rd
4000  *  +0   RetAddr
4001  */
4002 void
4003 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4004 {
4005     /*
4006      * The following is a hack to force the compiler to emit calls to
4007      * this function, even when optimizing.  If the function is empty,
4008      * the compiler is not obliged to emit any code for calls to it,
4009      * even when marked __noinline.  However, gdb depends on those
4010      * calls being made.
4011      */
4012     __compiler_membar();
4013 }
4014 
4015 /*
4016  * A function called after init routines have completed. This can be used to
4017  * break before a program's entry routine is called, and can be used when
4018  * main is not available in the symbol table.
4019  */
4020 void
4021 _r_debug_postinit(struct link_map *m __unused)
4022 {
4023 
4024 	/* See r_debug_state(). */
4025 	__compiler_membar();
4026 }
4027 
4028 static void
4029 release_object(Obj_Entry *obj)
4030 {
4031 
4032 	if (obj->holdcount > 0) {
4033 		obj->unholdfree = true;
4034 		return;
4035 	}
4036 	munmap(obj->mapbase, obj->mapsize);
4037 	linkmap_delete(obj);
4038 	obj_free(obj);
4039 }
4040 
4041 /*
4042  * Get address of the pointer variable in the main program.
4043  * Prefer non-weak symbol over the weak one.
4044  */
4045 static const void **
4046 get_program_var_addr(const char *name, RtldLockState *lockstate)
4047 {
4048     SymLook req;
4049     DoneList donelist;
4050 
4051     symlook_init(&req, name);
4052     req.lockstate = lockstate;
4053     donelist_init(&donelist);
4054     if (symlook_global(&req, &donelist) != 0)
4055 	return (NULL);
4056     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4057 	return ((const void **)make_function_pointer(req.sym_out,
4058 	  req.defobj_out));
4059     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4060 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4061     else
4062 	return ((const void **)(req.defobj_out->relocbase +
4063 	  req.sym_out->st_value));
4064 }
4065 
4066 /*
4067  * Set a pointer variable in the main program to the given value.  This
4068  * is used to set key variables such as "environ" before any of the
4069  * init functions are called.
4070  */
4071 static void
4072 set_program_var(const char *name, const void *value)
4073 {
4074     const void **addr;
4075 
4076     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4077 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4078 	*addr = value;
4079     }
4080 }
4081 
4082 /*
4083  * Search the global objects, including dependencies and main object,
4084  * for the given symbol.
4085  */
4086 static int
4087 symlook_global(SymLook *req, DoneList *donelist)
4088 {
4089     SymLook req1;
4090     const Objlist_Entry *elm;
4091     int res;
4092 
4093     symlook_init_from_req(&req1, req);
4094 
4095     /* Search all objects loaded at program start up. */
4096     if (req->defobj_out == NULL ||
4097       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4098 	res = symlook_list(&req1, &list_main, donelist);
4099 	if (res == 0 && (req->defobj_out == NULL ||
4100 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4101 	    req->sym_out = req1.sym_out;
4102 	    req->defobj_out = req1.defobj_out;
4103 	    assert(req->defobj_out != NULL);
4104 	}
4105     }
4106 
4107     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4108     STAILQ_FOREACH(elm, &list_global, link) {
4109 	if (req->defobj_out != NULL &&
4110 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4111 	    break;
4112 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4113 	if (res == 0 && (req->defobj_out == NULL ||
4114 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4115 	    req->sym_out = req1.sym_out;
4116 	    req->defobj_out = req1.defobj_out;
4117 	    assert(req->defobj_out != NULL);
4118 	}
4119     }
4120 
4121     return (req->sym_out != NULL ? 0 : ESRCH);
4122 }
4123 
4124 /*
4125  * Given a symbol name in a referencing object, find the corresponding
4126  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4127  * no definition was found.  Returns a pointer to the Obj_Entry of the
4128  * defining object via the reference parameter DEFOBJ_OUT.
4129  */
4130 static int
4131 symlook_default(SymLook *req, const Obj_Entry *refobj)
4132 {
4133     DoneList donelist;
4134     const Objlist_Entry *elm;
4135     SymLook req1;
4136     int res;
4137 
4138     donelist_init(&donelist);
4139     symlook_init_from_req(&req1, req);
4140 
4141     /*
4142      * Look first in the referencing object if linked symbolically,
4143      * and similarly handle protected symbols.
4144      */
4145     res = symlook_obj(&req1, refobj);
4146     if (res == 0 && (refobj->symbolic ||
4147       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4148 	req->sym_out = req1.sym_out;
4149 	req->defobj_out = req1.defobj_out;
4150 	assert(req->defobj_out != NULL);
4151     }
4152     if (refobj->symbolic || req->defobj_out != NULL)
4153 	donelist_check(&donelist, refobj);
4154 
4155     symlook_global(req, &donelist);
4156 
4157     /* Search all dlopened DAGs containing the referencing object. */
4158     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4159 	if (req->sym_out != NULL &&
4160 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4161 	    break;
4162 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4163 	if (res == 0 && (req->sym_out == NULL ||
4164 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4165 	    req->sym_out = req1.sym_out;
4166 	    req->defobj_out = req1.defobj_out;
4167 	    assert(req->defobj_out != NULL);
4168 	}
4169     }
4170 
4171     /*
4172      * Search the dynamic linker itself, and possibly resolve the
4173      * symbol from there.  This is how the application links to
4174      * dynamic linker services such as dlopen.
4175      */
4176     if (req->sym_out == NULL ||
4177       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4178 	res = symlook_obj(&req1, &obj_rtld);
4179 	if (res == 0) {
4180 	    req->sym_out = req1.sym_out;
4181 	    req->defobj_out = req1.defobj_out;
4182 	    assert(req->defobj_out != NULL);
4183 	}
4184     }
4185 
4186     return (req->sym_out != NULL ? 0 : ESRCH);
4187 }
4188 
4189 static int
4190 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4191 {
4192     const Elf_Sym *def;
4193     const Obj_Entry *defobj;
4194     const Objlist_Entry *elm;
4195     SymLook req1;
4196     int res;
4197 
4198     def = NULL;
4199     defobj = NULL;
4200     STAILQ_FOREACH(elm, objlist, link) {
4201 	if (donelist_check(dlp, elm->obj))
4202 	    continue;
4203 	symlook_init_from_req(&req1, req);
4204 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4205 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4206 		def = req1.sym_out;
4207 		defobj = req1.defobj_out;
4208 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4209 		    break;
4210 	    }
4211 	}
4212     }
4213     if (def != NULL) {
4214 	req->sym_out = def;
4215 	req->defobj_out = defobj;
4216 	return (0);
4217     }
4218     return (ESRCH);
4219 }
4220 
4221 /*
4222  * Search the chain of DAGS cointed to by the given Needed_Entry
4223  * for a symbol of the given name.  Each DAG is scanned completely
4224  * before advancing to the next one.  Returns a pointer to the symbol,
4225  * or NULL if no definition was found.
4226  */
4227 static int
4228 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4229 {
4230     const Elf_Sym *def;
4231     const Needed_Entry *n;
4232     const Obj_Entry *defobj;
4233     SymLook req1;
4234     int res;
4235 
4236     def = NULL;
4237     defobj = NULL;
4238     symlook_init_from_req(&req1, req);
4239     for (n = needed; n != NULL; n = n->next) {
4240 	if (n->obj == NULL ||
4241 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4242 	    continue;
4243 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4244 	    def = req1.sym_out;
4245 	    defobj = req1.defobj_out;
4246 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4247 		break;
4248 	}
4249     }
4250     if (def != NULL) {
4251 	req->sym_out = def;
4252 	req->defobj_out = defobj;
4253 	return (0);
4254     }
4255     return (ESRCH);
4256 }
4257 
4258 /*
4259  * Search the symbol table of a single shared object for a symbol of
4260  * the given name and version, if requested.  Returns a pointer to the
4261  * symbol, or NULL if no definition was found.  If the object is
4262  * filter, return filtered symbol from filtee.
4263  *
4264  * The symbol's hash value is passed in for efficiency reasons; that
4265  * eliminates many recomputations of the hash value.
4266  */
4267 int
4268 symlook_obj(SymLook *req, const Obj_Entry *obj)
4269 {
4270     DoneList donelist;
4271     SymLook req1;
4272     int flags, res, mres;
4273 
4274     /*
4275      * If there is at least one valid hash at this point, we prefer to
4276      * use the faster GNU version if available.
4277      */
4278     if (obj->valid_hash_gnu)
4279 	mres = symlook_obj1_gnu(req, obj);
4280     else if (obj->valid_hash_sysv)
4281 	mres = symlook_obj1_sysv(req, obj);
4282     else
4283 	return (EINVAL);
4284 
4285     if (mres == 0) {
4286 	if (obj->needed_filtees != NULL) {
4287 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4288 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4289 	    donelist_init(&donelist);
4290 	    symlook_init_from_req(&req1, req);
4291 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4292 	    if (res == 0) {
4293 		req->sym_out = req1.sym_out;
4294 		req->defobj_out = req1.defobj_out;
4295 	    }
4296 	    return (res);
4297 	}
4298 	if (obj->needed_aux_filtees != NULL) {
4299 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4300 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4301 	    donelist_init(&donelist);
4302 	    symlook_init_from_req(&req1, req);
4303 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4304 	    if (res == 0) {
4305 		req->sym_out = req1.sym_out;
4306 		req->defobj_out = req1.defobj_out;
4307 		return (res);
4308 	    }
4309 	}
4310     }
4311     return (mres);
4312 }
4313 
4314 /* Symbol match routine common to both hash functions */
4315 static bool
4316 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4317     const unsigned long symnum)
4318 {
4319 	Elf_Versym verndx;
4320 	const Elf_Sym *symp;
4321 	const char *strp;
4322 
4323 	symp = obj->symtab + symnum;
4324 	strp = obj->strtab + symp->st_name;
4325 
4326 	switch (ELF_ST_TYPE(symp->st_info)) {
4327 	case STT_FUNC:
4328 	case STT_NOTYPE:
4329 	case STT_OBJECT:
4330 	case STT_COMMON:
4331 	case STT_GNU_IFUNC:
4332 		if (symp->st_value == 0)
4333 			return (false);
4334 		/* fallthrough */
4335 	case STT_TLS:
4336 		if (symp->st_shndx != SHN_UNDEF)
4337 			break;
4338 #ifndef __mips__
4339 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4340 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4341 			break;
4342 #endif
4343 		/* fallthrough */
4344 	default:
4345 		return (false);
4346 	}
4347 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4348 		return (false);
4349 
4350 	if (req->ventry == NULL) {
4351 		if (obj->versyms != NULL) {
4352 			verndx = VER_NDX(obj->versyms[symnum]);
4353 			if (verndx > obj->vernum) {
4354 				_rtld_error(
4355 				    "%s: symbol %s references wrong version %d",
4356 				    obj->path, obj->strtab + symnum, verndx);
4357 				return (false);
4358 			}
4359 			/*
4360 			 * If we are not called from dlsym (i.e. this
4361 			 * is a normal relocation from unversioned
4362 			 * binary), accept the symbol immediately if
4363 			 * it happens to have first version after this
4364 			 * shared object became versioned.  Otherwise,
4365 			 * if symbol is versioned and not hidden,
4366 			 * remember it. If it is the only symbol with
4367 			 * this name exported by the shared object, it
4368 			 * will be returned as a match by the calling
4369 			 * function. If symbol is global (verndx < 2)
4370 			 * accept it unconditionally.
4371 			 */
4372 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4373 			    verndx == VER_NDX_GIVEN) {
4374 				result->sym_out = symp;
4375 				return (true);
4376 			}
4377 			else if (verndx >= VER_NDX_GIVEN) {
4378 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4379 				    == 0) {
4380 					if (result->vsymp == NULL)
4381 						result->vsymp = symp;
4382 					result->vcount++;
4383 				}
4384 				return (false);
4385 			}
4386 		}
4387 		result->sym_out = symp;
4388 		return (true);
4389 	}
4390 	if (obj->versyms == NULL) {
4391 		if (object_match_name(obj, req->ventry->name)) {
4392 			_rtld_error("%s: object %s should provide version %s "
4393 			    "for symbol %s", obj_rtld.path, obj->path,
4394 			    req->ventry->name, obj->strtab + symnum);
4395 			return (false);
4396 		}
4397 	} else {
4398 		verndx = VER_NDX(obj->versyms[symnum]);
4399 		if (verndx > obj->vernum) {
4400 			_rtld_error("%s: symbol %s references wrong version %d",
4401 			    obj->path, obj->strtab + symnum, verndx);
4402 			return (false);
4403 		}
4404 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4405 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4406 			/*
4407 			 * Version does not match. Look if this is a
4408 			 * global symbol and if it is not hidden. If
4409 			 * global symbol (verndx < 2) is available,
4410 			 * use it. Do not return symbol if we are
4411 			 * called by dlvsym, because dlvsym looks for
4412 			 * a specific version and default one is not
4413 			 * what dlvsym wants.
4414 			 */
4415 			if ((req->flags & SYMLOOK_DLSYM) ||
4416 			    (verndx >= VER_NDX_GIVEN) ||
4417 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4418 				return (false);
4419 		}
4420 	}
4421 	result->sym_out = symp;
4422 	return (true);
4423 }
4424 
4425 /*
4426  * Search for symbol using SysV hash function.
4427  * obj->buckets is known not to be NULL at this point; the test for this was
4428  * performed with the obj->valid_hash_sysv assignment.
4429  */
4430 static int
4431 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4432 {
4433 	unsigned long symnum;
4434 	Sym_Match_Result matchres;
4435 
4436 	matchres.sym_out = NULL;
4437 	matchres.vsymp = NULL;
4438 	matchres.vcount = 0;
4439 
4440 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4441 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4442 		if (symnum >= obj->nchains)
4443 			return (ESRCH);	/* Bad object */
4444 
4445 		if (matched_symbol(req, obj, &matchres, symnum)) {
4446 			req->sym_out = matchres.sym_out;
4447 			req->defobj_out = obj;
4448 			return (0);
4449 		}
4450 	}
4451 	if (matchres.vcount == 1) {
4452 		req->sym_out = matchres.vsymp;
4453 		req->defobj_out = obj;
4454 		return (0);
4455 	}
4456 	return (ESRCH);
4457 }
4458 
4459 /* Search for symbol using GNU hash function */
4460 static int
4461 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4462 {
4463 	Elf_Addr bloom_word;
4464 	const Elf32_Word *hashval;
4465 	Elf32_Word bucket;
4466 	Sym_Match_Result matchres;
4467 	unsigned int h1, h2;
4468 	unsigned long symnum;
4469 
4470 	matchres.sym_out = NULL;
4471 	matchres.vsymp = NULL;
4472 	matchres.vcount = 0;
4473 
4474 	/* Pick right bitmask word from Bloom filter array */
4475 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4476 	    obj->maskwords_bm_gnu];
4477 
4478 	/* Calculate modulus word size of gnu hash and its derivative */
4479 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4480 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4481 
4482 	/* Filter out the "definitely not in set" queries */
4483 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4484 		return (ESRCH);
4485 
4486 	/* Locate hash chain and corresponding value element*/
4487 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4488 	if (bucket == 0)
4489 		return (ESRCH);
4490 	hashval = &obj->chain_zero_gnu[bucket];
4491 	do {
4492 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4493 			symnum = hashval - obj->chain_zero_gnu;
4494 			if (matched_symbol(req, obj, &matchres, symnum)) {
4495 				req->sym_out = matchres.sym_out;
4496 				req->defobj_out = obj;
4497 				return (0);
4498 			}
4499 		}
4500 	} while ((*hashval++ & 1) == 0);
4501 	if (matchres.vcount == 1) {
4502 		req->sym_out = matchres.vsymp;
4503 		req->defobj_out = obj;
4504 		return (0);
4505 	}
4506 	return (ESRCH);
4507 }
4508 
4509 static void
4510 trace_loaded_objects(Obj_Entry *obj)
4511 {
4512     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4513     int c;
4514 
4515     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4516 	main_local = "";
4517 
4518     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4519 	fmt1 = "\t%o => %p (%x)\n";
4520 
4521     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4522 	fmt2 = "\t%o (%x)\n";
4523 
4524     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4525 
4526     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4527 	Needed_Entry *needed;
4528 	const char *name, *path;
4529 	bool is_lib;
4530 
4531 	if (obj->marker)
4532 	    continue;
4533 	if (list_containers && obj->needed != NULL)
4534 	    rtld_printf("%s:\n", obj->path);
4535 	for (needed = obj->needed; needed; needed = needed->next) {
4536 	    if (needed->obj != NULL) {
4537 		if (needed->obj->traced && !list_containers)
4538 		    continue;
4539 		needed->obj->traced = true;
4540 		path = needed->obj->path;
4541 	    } else
4542 		path = "not found";
4543 
4544 	    name = obj->strtab + needed->name;
4545 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4546 
4547 	    fmt = is_lib ? fmt1 : fmt2;
4548 	    while ((c = *fmt++) != '\0') {
4549 		switch (c) {
4550 		default:
4551 		    rtld_putchar(c);
4552 		    continue;
4553 		case '\\':
4554 		    switch (c = *fmt) {
4555 		    case '\0':
4556 			continue;
4557 		    case 'n':
4558 			rtld_putchar('\n');
4559 			break;
4560 		    case 't':
4561 			rtld_putchar('\t');
4562 			break;
4563 		    }
4564 		    break;
4565 		case '%':
4566 		    switch (c = *fmt) {
4567 		    case '\0':
4568 			continue;
4569 		    case '%':
4570 		    default:
4571 			rtld_putchar(c);
4572 			break;
4573 		    case 'A':
4574 			rtld_putstr(main_local);
4575 			break;
4576 		    case 'a':
4577 			rtld_putstr(obj_main->path);
4578 			break;
4579 		    case 'o':
4580 			rtld_putstr(name);
4581 			break;
4582 #if 0
4583 		    case 'm':
4584 			rtld_printf("%d", sodp->sod_major);
4585 			break;
4586 		    case 'n':
4587 			rtld_printf("%d", sodp->sod_minor);
4588 			break;
4589 #endif
4590 		    case 'p':
4591 			rtld_putstr(path);
4592 			break;
4593 		    case 'x':
4594 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4595 			  0);
4596 			break;
4597 		    }
4598 		    break;
4599 		}
4600 		++fmt;
4601 	    }
4602 	}
4603     }
4604 }
4605 
4606 /*
4607  * Unload a dlopened object and its dependencies from memory and from
4608  * our data structures.  It is assumed that the DAG rooted in the
4609  * object has already been unreferenced, and that the object has a
4610  * reference count of 0.
4611  */
4612 static void
4613 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4614 {
4615 	Obj_Entry marker, *obj, *next;
4616 
4617 	assert(root->refcount == 0);
4618 
4619 	/*
4620 	 * Pass over the DAG removing unreferenced objects from
4621 	 * appropriate lists.
4622 	 */
4623 	unlink_object(root);
4624 
4625 	/* Unmap all objects that are no longer referenced. */
4626 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4627 		next = TAILQ_NEXT(obj, next);
4628 		if (obj->marker || obj->refcount != 0)
4629 			continue;
4630 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4631 		    obj->mapsize, 0, obj->path);
4632 		dbg("unloading \"%s\"", obj->path);
4633 		/*
4634 		 * Unlink the object now to prevent new references from
4635 		 * being acquired while the bind lock is dropped in
4636 		 * recursive dlclose() invocations.
4637 		 */
4638 		TAILQ_REMOVE(&obj_list, obj, next);
4639 		obj_count--;
4640 
4641 		if (obj->filtees_loaded) {
4642 			if (next != NULL) {
4643 				init_marker(&marker);
4644 				TAILQ_INSERT_BEFORE(next, &marker, next);
4645 				unload_filtees(obj, lockstate);
4646 				next = TAILQ_NEXT(&marker, next);
4647 				TAILQ_REMOVE(&obj_list, &marker, next);
4648 			} else
4649 				unload_filtees(obj, lockstate);
4650 		}
4651 		release_object(obj);
4652 	}
4653 }
4654 
4655 static void
4656 unlink_object(Obj_Entry *root)
4657 {
4658     Objlist_Entry *elm;
4659 
4660     if (root->refcount == 0) {
4661 	/* Remove the object from the RTLD_GLOBAL list. */
4662 	objlist_remove(&list_global, root);
4663 
4664     	/* Remove the object from all objects' DAG lists. */
4665     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4666 	    objlist_remove(&elm->obj->dldags, root);
4667 	    if (elm->obj != root)
4668 		unlink_object(elm->obj);
4669 	}
4670     }
4671 }
4672 
4673 static void
4674 ref_dag(Obj_Entry *root)
4675 {
4676     Objlist_Entry *elm;
4677 
4678     assert(root->dag_inited);
4679     STAILQ_FOREACH(elm, &root->dagmembers, link)
4680 	elm->obj->refcount++;
4681 }
4682 
4683 static void
4684 unref_dag(Obj_Entry *root)
4685 {
4686     Objlist_Entry *elm;
4687 
4688     assert(root->dag_inited);
4689     STAILQ_FOREACH(elm, &root->dagmembers, link)
4690 	elm->obj->refcount--;
4691 }
4692 
4693 /*
4694  * Common code for MD __tls_get_addr().
4695  */
4696 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4697 static void *
4698 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4699 {
4700     Elf_Addr *newdtv, *dtv;
4701     RtldLockState lockstate;
4702     int to_copy;
4703 
4704     dtv = *dtvp;
4705     /* Check dtv generation in case new modules have arrived */
4706     if (dtv[0] != tls_dtv_generation) {
4707 	wlock_acquire(rtld_bind_lock, &lockstate);
4708 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4709 	to_copy = dtv[1];
4710 	if (to_copy > tls_max_index)
4711 	    to_copy = tls_max_index;
4712 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4713 	newdtv[0] = tls_dtv_generation;
4714 	newdtv[1] = tls_max_index;
4715 	free(dtv);
4716 	lock_release(rtld_bind_lock, &lockstate);
4717 	dtv = *dtvp = newdtv;
4718     }
4719 
4720     /* Dynamically allocate module TLS if necessary */
4721     if (dtv[index + 1] == 0) {
4722 	/* Signal safe, wlock will block out signals. */
4723 	wlock_acquire(rtld_bind_lock, &lockstate);
4724 	if (!dtv[index + 1])
4725 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4726 	lock_release(rtld_bind_lock, &lockstate);
4727     }
4728     return ((void *)(dtv[index + 1] + offset));
4729 }
4730 
4731 void *
4732 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4733 {
4734 	Elf_Addr *dtv;
4735 
4736 	dtv = *dtvp;
4737 	/* Check dtv generation in case new modules have arrived */
4738 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4739 	    dtv[index + 1] != 0))
4740 		return ((void *)(dtv[index + 1] + offset));
4741 	return (tls_get_addr_slow(dtvp, index, offset));
4742 }
4743 
4744 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4745     defined(__powerpc__) || defined(__riscv)
4746 
4747 /*
4748  * Return pointer to allocated TLS block
4749  */
4750 static void *
4751 get_tls_block_ptr(void *tcb, size_t tcbsize)
4752 {
4753     size_t extra_size, post_size, pre_size, tls_block_size;
4754     size_t tls_init_align;
4755 
4756     tls_init_align = MAX(obj_main->tlsalign, 1);
4757 
4758     /* Compute fragments sizes. */
4759     extra_size = tcbsize - TLS_TCB_SIZE;
4760     post_size = calculate_tls_post_size(tls_init_align);
4761     tls_block_size = tcbsize + post_size;
4762     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4763 
4764     return ((char *)tcb - pre_size - extra_size);
4765 }
4766 
4767 /*
4768  * Allocate Static TLS using the Variant I method.
4769  *
4770  * For details on the layout, see lib/libc/gen/tls.c.
4771  *
4772  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4773  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4774  *     offsets, whereas libc's tls_static_space is just the executable's static
4775  *     TLS segment.
4776  */
4777 void *
4778 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4779 {
4780     Obj_Entry *obj;
4781     char *tls_block;
4782     Elf_Addr *dtv, **tcb;
4783     Elf_Addr addr;
4784     Elf_Addr i;
4785     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4786     size_t tls_init_align;
4787 
4788     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4789 	return (oldtcb);
4790 
4791     assert(tcbsize >= TLS_TCB_SIZE);
4792     maxalign = MAX(tcbalign, tls_static_max_align);
4793     tls_init_align = MAX(obj_main->tlsalign, 1);
4794 
4795     /* Compute fragmets sizes. */
4796     extra_size = tcbsize - TLS_TCB_SIZE;
4797     post_size = calculate_tls_post_size(tls_init_align);
4798     tls_block_size = tcbsize + post_size;
4799     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4800     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4801 
4802     /* Allocate whole TLS block */
4803     tls_block = malloc_aligned(tls_block_size, maxalign);
4804     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4805 
4806     if (oldtcb != NULL) {
4807 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4808 	    tls_static_space);
4809 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4810 
4811 	/* Adjust the DTV. */
4812 	dtv = tcb[0];
4813 	for (i = 0; i < dtv[1]; i++) {
4814 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4815 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4816 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4817 	    }
4818 	}
4819     } else {
4820 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4821 	tcb[0] = dtv;
4822 	dtv[0] = tls_dtv_generation;
4823 	dtv[1] = tls_max_index;
4824 
4825 	for (obj = globallist_curr(objs); obj != NULL;
4826 	  obj = globallist_next(obj)) {
4827 	    if (obj->tlsoffset > 0) {
4828 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4829 		if (obj->tlsinitsize > 0)
4830 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4831 		if (obj->tlssize > obj->tlsinitsize)
4832 		    memset((void*)(addr + obj->tlsinitsize), 0,
4833 			   obj->tlssize - obj->tlsinitsize);
4834 		dtv[obj->tlsindex + 1] = addr;
4835 	    }
4836 	}
4837     }
4838 
4839     return (tcb);
4840 }
4841 
4842 void
4843 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4844 {
4845     Elf_Addr *dtv;
4846     Elf_Addr tlsstart, tlsend;
4847     size_t post_size;
4848     size_t dtvsize, i, tls_init_align;
4849 
4850     assert(tcbsize >= TLS_TCB_SIZE);
4851     tls_init_align = MAX(obj_main->tlsalign, 1);
4852 
4853     /* Compute fragments sizes. */
4854     post_size = calculate_tls_post_size(tls_init_align);
4855 
4856     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4857     tlsend = (Elf_Addr)tcb + tls_static_space;
4858 
4859     dtv = *(Elf_Addr **)tcb;
4860     dtvsize = dtv[1];
4861     for (i = 0; i < dtvsize; i++) {
4862 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4863 	    free((void*)dtv[i+2]);
4864 	}
4865     }
4866     free(dtv);
4867     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4868 }
4869 
4870 #endif
4871 
4872 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4873 
4874 /*
4875  * Allocate Static TLS using the Variant II method.
4876  */
4877 void *
4878 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4879 {
4880     Obj_Entry *obj;
4881     size_t size, ralign;
4882     char *tls;
4883     Elf_Addr *dtv, *olddtv;
4884     Elf_Addr segbase, oldsegbase, addr;
4885     size_t i;
4886 
4887     ralign = tcbalign;
4888     if (tls_static_max_align > ralign)
4889 	    ralign = tls_static_max_align;
4890     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4891 
4892     assert(tcbsize >= 2*sizeof(Elf_Addr));
4893     tls = malloc_aligned(size, ralign);
4894     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4895 
4896     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4897     ((Elf_Addr*)segbase)[0] = segbase;
4898     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4899 
4900     dtv[0] = tls_dtv_generation;
4901     dtv[1] = tls_max_index;
4902 
4903     if (oldtls) {
4904 	/*
4905 	 * Copy the static TLS block over whole.
4906 	 */
4907 	oldsegbase = (Elf_Addr) oldtls;
4908 	memcpy((void *)(segbase - tls_static_space),
4909 	       (const void *)(oldsegbase - tls_static_space),
4910 	       tls_static_space);
4911 
4912 	/*
4913 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4914 	 * move them over.
4915 	 */
4916 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4917 	for (i = 0; i < olddtv[1]; i++) {
4918 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4919 		dtv[i+2] = olddtv[i+2];
4920 		olddtv[i+2] = 0;
4921 	    }
4922 	}
4923 
4924 	/*
4925 	 * We assume that this block was the one we created with
4926 	 * allocate_initial_tls().
4927 	 */
4928 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4929     } else {
4930 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4931 		if (obj->marker || obj->tlsoffset == 0)
4932 			continue;
4933 		addr = segbase - obj->tlsoffset;
4934 		memset((void*)(addr + obj->tlsinitsize),
4935 		       0, obj->tlssize - obj->tlsinitsize);
4936 		if (obj->tlsinit)
4937 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4938 		dtv[obj->tlsindex + 1] = addr;
4939 	}
4940     }
4941 
4942     return (void*) segbase;
4943 }
4944 
4945 void
4946 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
4947 {
4948     Elf_Addr* dtv;
4949     size_t size, ralign;
4950     int dtvsize, i;
4951     Elf_Addr tlsstart, tlsend;
4952 
4953     /*
4954      * Figure out the size of the initial TLS block so that we can
4955      * find stuff which ___tls_get_addr() allocated dynamically.
4956      */
4957     ralign = tcbalign;
4958     if (tls_static_max_align > ralign)
4959 	    ralign = tls_static_max_align;
4960     size = round(tls_static_space, ralign);
4961 
4962     dtv = ((Elf_Addr**)tls)[1];
4963     dtvsize = dtv[1];
4964     tlsend = (Elf_Addr) tls;
4965     tlsstart = tlsend - size;
4966     for (i = 0; i < dtvsize; i++) {
4967 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4968 		free_aligned((void *)dtv[i + 2]);
4969 	}
4970     }
4971 
4972     free_aligned((void *)tlsstart);
4973     free((void*) dtv);
4974 }
4975 
4976 #endif
4977 
4978 /*
4979  * Allocate TLS block for module with given index.
4980  */
4981 void *
4982 allocate_module_tls(int index)
4983 {
4984     Obj_Entry* obj;
4985     char* p;
4986 
4987     TAILQ_FOREACH(obj, &obj_list, next) {
4988 	if (obj->marker)
4989 	    continue;
4990 	if (obj->tlsindex == index)
4991 	    break;
4992     }
4993     if (!obj) {
4994 	_rtld_error("Can't find module with TLS index %d", index);
4995 	rtld_die();
4996     }
4997 
4998     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4999     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5000     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5001 
5002     return p;
5003 }
5004 
5005 bool
5006 allocate_tls_offset(Obj_Entry *obj)
5007 {
5008     size_t off;
5009 
5010     if (obj->tls_done)
5011 	return true;
5012 
5013     if (obj->tlssize == 0) {
5014 	obj->tls_done = true;
5015 	return true;
5016     }
5017 
5018     if (tls_last_offset == 0)
5019 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5020     else
5021 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5022 				   obj->tlssize, obj->tlsalign);
5023 
5024     /*
5025      * If we have already fixed the size of the static TLS block, we
5026      * must stay within that size. When allocating the static TLS, we
5027      * leave a small amount of space spare to be used for dynamically
5028      * loading modules which use static TLS.
5029      */
5030     if (tls_static_space != 0) {
5031 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5032 	    return false;
5033     } else if (obj->tlsalign > tls_static_max_align) {
5034 	    tls_static_max_align = obj->tlsalign;
5035     }
5036 
5037     tls_last_offset = obj->tlsoffset = off;
5038     tls_last_size = obj->tlssize;
5039     obj->tls_done = true;
5040 
5041     return true;
5042 }
5043 
5044 void
5045 free_tls_offset(Obj_Entry *obj)
5046 {
5047 
5048     /*
5049      * If we were the last thing to allocate out of the static TLS
5050      * block, we give our space back to the 'allocator'. This is a
5051      * simplistic workaround to allow libGL.so.1 to be loaded and
5052      * unloaded multiple times.
5053      */
5054     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5055 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5056 	tls_last_offset -= obj->tlssize;
5057 	tls_last_size = 0;
5058     }
5059 }
5060 
5061 void *
5062 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5063 {
5064     void *ret;
5065     RtldLockState lockstate;
5066 
5067     wlock_acquire(rtld_bind_lock, &lockstate);
5068     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5069       tcbsize, tcbalign);
5070     lock_release(rtld_bind_lock, &lockstate);
5071     return (ret);
5072 }
5073 
5074 void
5075 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5076 {
5077     RtldLockState lockstate;
5078 
5079     wlock_acquire(rtld_bind_lock, &lockstate);
5080     free_tls(tcb, tcbsize, tcbalign);
5081     lock_release(rtld_bind_lock, &lockstate);
5082 }
5083 
5084 static void
5085 object_add_name(Obj_Entry *obj, const char *name)
5086 {
5087     Name_Entry *entry;
5088     size_t len;
5089 
5090     len = strlen(name);
5091     entry = malloc(sizeof(Name_Entry) + len);
5092 
5093     if (entry != NULL) {
5094 	strcpy(entry->name, name);
5095 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5096     }
5097 }
5098 
5099 static int
5100 object_match_name(const Obj_Entry *obj, const char *name)
5101 {
5102     Name_Entry *entry;
5103 
5104     STAILQ_FOREACH(entry, &obj->names, link) {
5105 	if (strcmp(name, entry->name) == 0)
5106 	    return (1);
5107     }
5108     return (0);
5109 }
5110 
5111 static Obj_Entry *
5112 locate_dependency(const Obj_Entry *obj, const char *name)
5113 {
5114     const Objlist_Entry *entry;
5115     const Needed_Entry *needed;
5116 
5117     STAILQ_FOREACH(entry, &list_main, link) {
5118 	if (object_match_name(entry->obj, name))
5119 	    return entry->obj;
5120     }
5121 
5122     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5123 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5124 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5125 	    /*
5126 	     * If there is DT_NEEDED for the name we are looking for,
5127 	     * we are all set.  Note that object might not be found if
5128 	     * dependency was not loaded yet, so the function can
5129 	     * return NULL here.  This is expected and handled
5130 	     * properly by the caller.
5131 	     */
5132 	    return (needed->obj);
5133 	}
5134     }
5135     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5136 	obj->path, name);
5137     rtld_die();
5138 }
5139 
5140 static int
5141 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5142     const Elf_Vernaux *vna)
5143 {
5144     const Elf_Verdef *vd;
5145     const char *vername;
5146 
5147     vername = refobj->strtab + vna->vna_name;
5148     vd = depobj->verdef;
5149     if (vd == NULL) {
5150 	_rtld_error("%s: version %s required by %s not defined",
5151 	    depobj->path, vername, refobj->path);
5152 	return (-1);
5153     }
5154     for (;;) {
5155 	if (vd->vd_version != VER_DEF_CURRENT) {
5156 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5157 		depobj->path, vd->vd_version);
5158 	    return (-1);
5159 	}
5160 	if (vna->vna_hash == vd->vd_hash) {
5161 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5162 		((const char *)vd + vd->vd_aux);
5163 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5164 		return (0);
5165 	}
5166 	if (vd->vd_next == 0)
5167 	    break;
5168 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5169     }
5170     if (vna->vna_flags & VER_FLG_WEAK)
5171 	return (0);
5172     _rtld_error("%s: version %s required by %s not found",
5173 	depobj->path, vername, refobj->path);
5174     return (-1);
5175 }
5176 
5177 static int
5178 rtld_verify_object_versions(Obj_Entry *obj)
5179 {
5180     const Elf_Verneed *vn;
5181     const Elf_Verdef  *vd;
5182     const Elf_Verdaux *vda;
5183     const Elf_Vernaux *vna;
5184     const Obj_Entry *depobj;
5185     int maxvernum, vernum;
5186 
5187     if (obj->ver_checked)
5188 	return (0);
5189     obj->ver_checked = true;
5190 
5191     maxvernum = 0;
5192     /*
5193      * Walk over defined and required version records and figure out
5194      * max index used by any of them. Do very basic sanity checking
5195      * while there.
5196      */
5197     vn = obj->verneed;
5198     while (vn != NULL) {
5199 	if (vn->vn_version != VER_NEED_CURRENT) {
5200 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5201 		obj->path, vn->vn_version);
5202 	    return (-1);
5203 	}
5204 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5205 	for (;;) {
5206 	    vernum = VER_NEED_IDX(vna->vna_other);
5207 	    if (vernum > maxvernum)
5208 		maxvernum = vernum;
5209 	    if (vna->vna_next == 0)
5210 		 break;
5211 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5212 	}
5213 	if (vn->vn_next == 0)
5214 	    break;
5215 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5216     }
5217 
5218     vd = obj->verdef;
5219     while (vd != NULL) {
5220 	if (vd->vd_version != VER_DEF_CURRENT) {
5221 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5222 		obj->path, vd->vd_version);
5223 	    return (-1);
5224 	}
5225 	vernum = VER_DEF_IDX(vd->vd_ndx);
5226 	if (vernum > maxvernum)
5227 		maxvernum = vernum;
5228 	if (vd->vd_next == 0)
5229 	    break;
5230 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5231     }
5232 
5233     if (maxvernum == 0)
5234 	return (0);
5235 
5236     /*
5237      * Store version information in array indexable by version index.
5238      * Verify that object version requirements are satisfied along the
5239      * way.
5240      */
5241     obj->vernum = maxvernum + 1;
5242     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5243 
5244     vd = obj->verdef;
5245     while (vd != NULL) {
5246 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5247 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5248 	    assert(vernum <= maxvernum);
5249 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5250 	    obj->vertab[vernum].hash = vd->vd_hash;
5251 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5252 	    obj->vertab[vernum].file = NULL;
5253 	    obj->vertab[vernum].flags = 0;
5254 	}
5255 	if (vd->vd_next == 0)
5256 	    break;
5257 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5258     }
5259 
5260     vn = obj->verneed;
5261     while (vn != NULL) {
5262 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5263 	if (depobj == NULL)
5264 	    return (-1);
5265 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5266 	for (;;) {
5267 	    if (check_object_provided_version(obj, depobj, vna))
5268 		return (-1);
5269 	    vernum = VER_NEED_IDX(vna->vna_other);
5270 	    assert(vernum <= maxvernum);
5271 	    obj->vertab[vernum].hash = vna->vna_hash;
5272 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5273 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5274 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5275 		VER_INFO_HIDDEN : 0;
5276 	    if (vna->vna_next == 0)
5277 		 break;
5278 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5279 	}
5280 	if (vn->vn_next == 0)
5281 	    break;
5282 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5283     }
5284     return 0;
5285 }
5286 
5287 static int
5288 rtld_verify_versions(const Objlist *objlist)
5289 {
5290     Objlist_Entry *entry;
5291     int rc;
5292 
5293     rc = 0;
5294     STAILQ_FOREACH(entry, objlist, link) {
5295 	/*
5296 	 * Skip dummy objects or objects that have their version requirements
5297 	 * already checked.
5298 	 */
5299 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5300 	    continue;
5301 	if (rtld_verify_object_versions(entry->obj) == -1) {
5302 	    rc = -1;
5303 	    if (ld_tracing == NULL)
5304 		break;
5305 	}
5306     }
5307     if (rc == 0 || ld_tracing != NULL)
5308     	rc = rtld_verify_object_versions(&obj_rtld);
5309     return rc;
5310 }
5311 
5312 const Ver_Entry *
5313 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5314 {
5315     Elf_Versym vernum;
5316 
5317     if (obj->vertab) {
5318 	vernum = VER_NDX(obj->versyms[symnum]);
5319 	if (vernum >= obj->vernum) {
5320 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5321 		obj->path, obj->strtab + symnum, vernum);
5322 	} else if (obj->vertab[vernum].hash != 0) {
5323 	    return &obj->vertab[vernum];
5324 	}
5325     }
5326     return NULL;
5327 }
5328 
5329 int
5330 _rtld_get_stack_prot(void)
5331 {
5332 
5333 	return (stack_prot);
5334 }
5335 
5336 int
5337 _rtld_is_dlopened(void *arg)
5338 {
5339 	Obj_Entry *obj;
5340 	RtldLockState lockstate;
5341 	int res;
5342 
5343 	rlock_acquire(rtld_bind_lock, &lockstate);
5344 	obj = dlcheck(arg);
5345 	if (obj == NULL)
5346 		obj = obj_from_addr(arg);
5347 	if (obj == NULL) {
5348 		_rtld_error("No shared object contains address");
5349 		lock_release(rtld_bind_lock, &lockstate);
5350 		return (-1);
5351 	}
5352 	res = obj->dlopened ? 1 : 0;
5353 	lock_release(rtld_bind_lock, &lockstate);
5354 	return (res);
5355 }
5356 
5357 int
5358 obj_enforce_relro(Obj_Entry *obj)
5359 {
5360 
5361 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5362 	    PROT_READ) == -1) {
5363 		_rtld_error("%s: Cannot enforce relro protection: %s",
5364 		    obj->path, rtld_strerror(errno));
5365 		return (-1);
5366 	}
5367 	return (0);
5368 }
5369 
5370 static void
5371 map_stacks_exec(RtldLockState *lockstate)
5372 {
5373 	void (*thr_map_stacks_exec)(void);
5374 
5375 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5376 		return;
5377 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5378 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5379 	if (thr_map_stacks_exec != NULL) {
5380 		stack_prot |= PROT_EXEC;
5381 		thr_map_stacks_exec();
5382 	}
5383 }
5384 
5385 void
5386 symlook_init(SymLook *dst, const char *name)
5387 {
5388 
5389 	bzero(dst, sizeof(*dst));
5390 	dst->name = name;
5391 	dst->hash = elf_hash(name);
5392 	dst->hash_gnu = gnu_hash(name);
5393 }
5394 
5395 static void
5396 symlook_init_from_req(SymLook *dst, const SymLook *src)
5397 {
5398 
5399 	dst->name = src->name;
5400 	dst->hash = src->hash;
5401 	dst->hash_gnu = src->hash_gnu;
5402 	dst->ventry = src->ventry;
5403 	dst->flags = src->flags;
5404 	dst->defobj_out = NULL;
5405 	dst->sym_out = NULL;
5406 	dst->lockstate = src->lockstate;
5407 }
5408 
5409 static int
5410 open_binary_fd(const char *argv0, bool search_in_path)
5411 {
5412 	char *pathenv, *pe, binpath[PATH_MAX];
5413 	int fd;
5414 
5415 	if (search_in_path && strchr(argv0, '/') == NULL) {
5416 		pathenv = getenv("PATH");
5417 		if (pathenv == NULL) {
5418 			_rtld_error("-p and no PATH environment variable");
5419 			rtld_die();
5420 		}
5421 		pathenv = strdup(pathenv);
5422 		if (pathenv == NULL) {
5423 			_rtld_error("Cannot allocate memory");
5424 			rtld_die();
5425 		}
5426 		fd = -1;
5427 		errno = ENOENT;
5428 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5429 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5430 			    sizeof(binpath))
5431 				continue;
5432 			if (binpath[0] != '\0' &&
5433 			    strlcat(binpath, "/", sizeof(binpath)) >=
5434 			    sizeof(binpath))
5435 				continue;
5436 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5437 			    sizeof(binpath))
5438 				continue;
5439 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5440 			if (fd != -1 || errno != ENOENT)
5441 				break;
5442 		}
5443 		free(pathenv);
5444 	} else {
5445 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5446 	}
5447 
5448 	if (fd == -1) {
5449 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5450 		rtld_die();
5451 	}
5452 	return (fd);
5453 }
5454 
5455 /*
5456  * Parse a set of command-line arguments.
5457  */
5458 static int
5459 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5460 {
5461 	const char *arg;
5462 	int fd, i, j, arglen;
5463 	char opt;
5464 
5465 	dbg("Parsing command-line arguments");
5466 	*use_pathp = false;
5467 	*fdp = -1;
5468 
5469 	for (i = 1; i < argc; i++ ) {
5470 		arg = argv[i];
5471 		dbg("argv[%d]: '%s'", i, arg);
5472 
5473 		/*
5474 		 * rtld arguments end with an explicit "--" or with the first
5475 		 * non-prefixed argument.
5476 		 */
5477 		if (strcmp(arg, "--") == 0) {
5478 			i++;
5479 			break;
5480 		}
5481 		if (arg[0] != '-')
5482 			break;
5483 
5484 		/*
5485 		 * All other arguments are single-character options that can
5486 		 * be combined, so we need to search through `arg` for them.
5487 		 */
5488 		arglen = strlen(arg);
5489 		for (j = 1; j < arglen; j++) {
5490 			opt = arg[j];
5491 			if (opt == 'h') {
5492 				print_usage(argv[0]);
5493 				_exit(0);
5494 			} else if (opt == 'f') {
5495 			/*
5496 			 * -f XX can be used to specify a descriptor for the
5497 			 * binary named at the command line (i.e., the later
5498 			 * argument will specify the process name but the
5499 			 * descriptor is what will actually be executed)
5500 			 */
5501 			if (j != arglen - 1) {
5502 				/* -f must be the last option in, e.g., -abcf */
5503 				_rtld_error("Invalid options: %s", arg);
5504 				rtld_die();
5505 			}
5506 			i++;
5507 			fd = parse_integer(argv[i]);
5508 			if (fd == -1) {
5509 				_rtld_error("Invalid file descriptor: '%s'",
5510 				    argv[i]);
5511 				rtld_die();
5512 			}
5513 			*fdp = fd;
5514 			break;
5515 			} else if (opt == 'p') {
5516 				*use_pathp = true;
5517 			} else {
5518 				_rtld_error("Invalid argument: '%s'", arg);
5519 				print_usage(argv[0]);
5520 				rtld_die();
5521 			}
5522 		}
5523 	}
5524 
5525 	return (i);
5526 }
5527 
5528 /*
5529  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5530  */
5531 static int
5532 parse_integer(const char *str)
5533 {
5534 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5535 	const char *orig;
5536 	int n;
5537 	char c;
5538 
5539 	orig = str;
5540 	n = 0;
5541 	for (c = *str; c != '\0'; c = *++str) {
5542 		if (c < '0' || c > '9')
5543 			return (-1);
5544 
5545 		n *= RADIX;
5546 		n += c - '0';
5547 	}
5548 
5549 	/* Make sure we actually parsed something. */
5550 	if (str == orig)
5551 		return (-1);
5552 	return (n);
5553 }
5554 
5555 static void
5556 print_usage(const char *argv0)
5557 {
5558 
5559 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5560 		"\n"
5561 		"Options:\n"
5562 		"  -h        Display this help message\n"
5563 		"  -p        Search in PATH for named binary\n"
5564 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5565 		"  --        End of RTLD options\n"
5566 		"  <binary>  Name of process to execute\n"
5567 		"  <args>    Arguments to the executed process\n", argv0);
5568 }
5569 
5570 /*
5571  * Overrides for libc_pic-provided functions.
5572  */
5573 
5574 int
5575 __getosreldate(void)
5576 {
5577 	size_t len;
5578 	int oid[2];
5579 	int error, osrel;
5580 
5581 	if (osreldate != 0)
5582 		return (osreldate);
5583 
5584 	oid[0] = CTL_KERN;
5585 	oid[1] = KERN_OSRELDATE;
5586 	osrel = 0;
5587 	len = sizeof(osrel);
5588 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5589 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5590 		osreldate = osrel;
5591 	return (osreldate);
5592 }
5593 
5594 void
5595 exit(int status)
5596 {
5597 
5598 	_exit(status);
5599 }
5600 
5601 void (*__cleanup)(void);
5602 int __isthreaded = 0;
5603 int _thread_autoinit_dummy_decl = 1;
5604 
5605 /*
5606  * No unresolved symbols for rtld.
5607  */
5608 void
5609 __pthread_cxa_finalize(struct dl_phdr_info *a __unused)
5610 {
5611 }
5612 
5613 const char *
5614 rtld_strerror(int errnum)
5615 {
5616 
5617 	if (errnum < 0 || errnum >= sys_nerr)
5618 		return ("Unknown error");
5619 	return (sys_errlist[errnum]);
5620 }
5621