xref: /freebsd/libexec/rtld-elf/rtld.c (revision a831d7d1c538b93ffec095657d9a6e6e778db195)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *, int *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static int parse_libdir(const char *);
123 static void *path_enumerate(const char *, path_enum_proc, void *);
124 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
125     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
126 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
127     int flags, RtldLockState *lockstate);
128 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
129     RtldLockState *);
130 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
131     int flags, RtldLockState *lockstate);
132 static int rtld_dirname(const char *, char *);
133 static int rtld_dirname_abs(const char *, char *);
134 static void *rtld_dlopen(const char *name, int fd, int mode);
135 static void rtld_exit(void);
136 static char *search_library_path(const char *, const char *);
137 static char *search_library_pathfds(const char *, const char *, int *);
138 static const void **get_program_var_addr(const char *, RtldLockState *);
139 static void set_program_var(const char *, const void *);
140 static int symlook_default(SymLook *, const Obj_Entry *refobj);
141 static int symlook_global(SymLook *, DoneList *);
142 static void symlook_init_from_req(SymLook *, const SymLook *);
143 static int symlook_list(SymLook *, const Objlist *, DoneList *);
144 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
145 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
146 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
147 static void trace_loaded_objects(Obj_Entry *);
148 static void unlink_object(Obj_Entry *);
149 static void unload_object(Obj_Entry *);
150 static void unref_dag(Obj_Entry *);
151 static void ref_dag(Obj_Entry *);
152 static char *origin_subst_one(char *, const char *, const char *, bool);
153 static char *origin_subst(char *, const char *);
154 static void preinit_main(void);
155 static int  rtld_verify_versions(const Objlist *);
156 static int  rtld_verify_object_versions(Obj_Entry *);
157 static void object_add_name(Obj_Entry *, const char *);
158 static int  object_match_name(const Obj_Entry *, const char *);
159 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
160 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
161     struct dl_phdr_info *phdr_info);
162 static uint32_t gnu_hash(const char *);
163 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
164     const unsigned long);
165 
166 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
167 void _r_debug_postinit(struct link_map *) __noinline;
168 
169 int __sys_openat(int, const char *, int, ...);
170 
171 /*
172  * Data declarations.
173  */
174 static char *error_message;	/* Message for dlerror(), or NULL */
175 struct r_debug r_debug;		/* for GDB; */
176 static bool libmap_disable;	/* Disable libmap */
177 static bool ld_loadfltr;	/* Immediate filters processing */
178 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
179 static bool trust;		/* False for setuid and setgid programs */
180 static bool dangerous_ld_env;	/* True if environment variables have been
181 				   used to affect the libraries loaded */
182 static char *ld_bind_now;	/* Environment variable for immediate binding */
183 static char *ld_debug;		/* Environment variable for debugging */
184 static char *ld_library_path;	/* Environment variable for search path */
185 static char *ld_library_dirs;	/* Environment variable for library descriptors */
186 static char *ld_preload;	/* Environment variable for libraries to
187 				   load first */
188 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
189 static char *ld_tracing;	/* Called from ldd to print libs */
190 static char *ld_utrace;		/* Use utrace() to log events. */
191 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
192 static Obj_Entry **obj_tail;	/* Link field of last object in list */
193 static Obj_Entry *obj_main;	/* The main program shared object */
194 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
195 static unsigned int obj_count;	/* Number of objects in obj_list */
196 static unsigned int obj_loads;	/* Number of objects in obj_list */
197 
198 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
199   STAILQ_HEAD_INITIALIZER(list_global);
200 static Objlist list_main =	/* Objects loaded at program startup */
201   STAILQ_HEAD_INITIALIZER(list_main);
202 static Objlist list_fini =	/* Objects needing fini() calls */
203   STAILQ_HEAD_INITIALIZER(list_fini);
204 
205 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
206 
207 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
208 
209 extern Elf_Dyn _DYNAMIC;
210 #pragma weak _DYNAMIC
211 #ifndef RTLD_IS_DYNAMIC
212 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
213 #endif
214 
215 int npagesizes, osreldate;
216 size_t *pagesizes;
217 
218 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
219 
220 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
221 static int max_stack_flags;
222 
223 /*
224  * Global declarations normally provided by crt1.  The dynamic linker is
225  * not built with crt1, so we have to provide them ourselves.
226  */
227 char *__progname;
228 char **environ;
229 
230 /*
231  * Used to pass argc, argv to init functions.
232  */
233 int main_argc;
234 char **main_argv;
235 
236 /*
237  * Globals to control TLS allocation.
238  */
239 size_t tls_last_offset;		/* Static TLS offset of last module */
240 size_t tls_last_size;		/* Static TLS size of last module */
241 size_t tls_static_space;	/* Static TLS space allocated */
242 size_t tls_static_max_align;
243 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
244 int tls_max_index = 1;		/* Largest module index allocated */
245 
246 bool ld_library_path_rpath = false;
247 
248 /*
249  * Fill in a DoneList with an allocation large enough to hold all of
250  * the currently-loaded objects.  Keep this as a macro since it calls
251  * alloca and we want that to occur within the scope of the caller.
252  */
253 #define donelist_init(dlp)					\
254     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
255     assert((dlp)->objs != NULL),				\
256     (dlp)->num_alloc = obj_count,				\
257     (dlp)->num_used = 0)
258 
259 #define	UTRACE_DLOPEN_START		1
260 #define	UTRACE_DLOPEN_STOP		2
261 #define	UTRACE_DLCLOSE_START		3
262 #define	UTRACE_DLCLOSE_STOP		4
263 #define	UTRACE_LOAD_OBJECT		5
264 #define	UTRACE_UNLOAD_OBJECT		6
265 #define	UTRACE_ADD_RUNDEP		7
266 #define	UTRACE_PRELOAD_FINISHED		8
267 #define	UTRACE_INIT_CALL		9
268 #define	UTRACE_FINI_CALL		10
269 #define	UTRACE_DLSYM_START		11
270 #define	UTRACE_DLSYM_STOP		12
271 
272 struct utrace_rtld {
273 	char sig[4];			/* 'RTLD' */
274 	int event;
275 	void *handle;
276 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
277 	size_t mapsize;
278 	int refcnt;			/* Used for 'mode' */
279 	char name[MAXPATHLEN];
280 };
281 
282 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
283 	if (ld_utrace != NULL)					\
284 		ld_utrace_log(e, h, mb, ms, r, n);		\
285 } while (0)
286 
287 static void
288 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
289     int refcnt, const char *name)
290 {
291 	struct utrace_rtld ut;
292 
293 	ut.sig[0] = 'R';
294 	ut.sig[1] = 'T';
295 	ut.sig[2] = 'L';
296 	ut.sig[3] = 'D';
297 	ut.event = event;
298 	ut.handle = handle;
299 	ut.mapbase = mapbase;
300 	ut.mapsize = mapsize;
301 	ut.refcnt = refcnt;
302 	bzero(ut.name, sizeof(ut.name));
303 	if (name)
304 		strlcpy(ut.name, name, sizeof(ut.name));
305 	utrace(&ut, sizeof(ut));
306 }
307 
308 /*
309  * Main entry point for dynamic linking.  The first argument is the
310  * stack pointer.  The stack is expected to be laid out as described
311  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
312  * Specifically, the stack pointer points to a word containing
313  * ARGC.  Following that in the stack is a null-terminated sequence
314  * of pointers to argument strings.  Then comes a null-terminated
315  * sequence of pointers to environment strings.  Finally, there is a
316  * sequence of "auxiliary vector" entries.
317  *
318  * The second argument points to a place to store the dynamic linker's
319  * exit procedure pointer and the third to a place to store the main
320  * program's object.
321  *
322  * The return value is the main program's entry point.
323  */
324 func_ptr_type
325 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
326 {
327     Elf_Auxinfo *aux_info[AT_COUNT];
328     int i;
329     int argc;
330     char **argv;
331     char **env;
332     Elf_Auxinfo *aux;
333     Elf_Auxinfo *auxp;
334     const char *argv0;
335     Objlist_Entry *entry;
336     Obj_Entry *obj;
337     Obj_Entry **preload_tail;
338     Obj_Entry *last_interposer;
339     Objlist initlist;
340     RtldLockState lockstate;
341     char *library_path_rpath;
342     int mib[2];
343     size_t len;
344 
345     /*
346      * On entry, the dynamic linker itself has not been relocated yet.
347      * Be very careful not to reference any global data until after
348      * init_rtld has returned.  It is OK to reference file-scope statics
349      * and string constants, and to call static and global functions.
350      */
351 
352     /* Find the auxiliary vector on the stack. */
353     argc = *sp++;
354     argv = (char **) sp;
355     sp += argc + 1;	/* Skip over arguments and NULL terminator */
356     env = (char **) sp;
357     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
358 	;
359     aux = (Elf_Auxinfo *) sp;
360 
361     /* Digest the auxiliary vector. */
362     for (i = 0;  i < AT_COUNT;  i++)
363 	aux_info[i] = NULL;
364     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
365 	if (auxp->a_type < AT_COUNT)
366 	    aux_info[auxp->a_type] = auxp;
367     }
368 
369     /* Initialize and relocate ourselves. */
370     assert(aux_info[AT_BASE] != NULL);
371     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
372 
373     __progname = obj_rtld.path;
374     argv0 = argv[0] != NULL ? argv[0] : "(null)";
375     environ = env;
376     main_argc = argc;
377     main_argv = argv;
378 
379     if (aux_info[AT_CANARY] != NULL &&
380 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
381 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
382 	    if (i > sizeof(__stack_chk_guard))
383 		    i = sizeof(__stack_chk_guard);
384 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
385     } else {
386 	mib[0] = CTL_KERN;
387 	mib[1] = KERN_ARND;
388 
389 	len = sizeof(__stack_chk_guard);
390 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
391 	    len != sizeof(__stack_chk_guard)) {
392 		/* If sysctl was unsuccessful, use the "terminator canary". */
393 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
394 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
395 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
396 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
397 	}
398     }
399 
400     trust = !issetugid();
401 
402     ld_bind_now = getenv(LD_ "BIND_NOW");
403     /*
404      * If the process is tainted, then we un-set the dangerous environment
405      * variables.  The process will be marked as tainted until setuid(2)
406      * is called.  If any child process calls setuid(2) we do not want any
407      * future processes to honor the potentially un-safe variables.
408      */
409     if (!trust) {
410         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
411 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
412 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
413 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
414 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
415 		_rtld_error("environment corrupt; aborting");
416 		die();
417 	}
418     }
419     ld_debug = getenv(LD_ "DEBUG");
420     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
421     libmap_override = getenv(LD_ "LIBMAP");
422     ld_library_path = getenv(LD_ "LIBRARY_PATH");
423     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
424     ld_preload = getenv(LD_ "PRELOAD");
425     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
426     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
427     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
428     if (library_path_rpath != NULL) {
429 	    if (library_path_rpath[0] == 'y' ||
430 		library_path_rpath[0] == 'Y' ||
431 		library_path_rpath[0] == '1')
432 		    ld_library_path_rpath = true;
433 	    else
434 		    ld_library_path_rpath = false;
435     }
436     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
437 	(ld_library_path != NULL) || (ld_preload != NULL) ||
438 	(ld_elf_hints_path != NULL) || ld_loadfltr;
439     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
440     ld_utrace = getenv(LD_ "UTRACE");
441 
442     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
443 	ld_elf_hints_path = _PATH_ELF_HINTS;
444 
445     if (ld_debug != NULL && *ld_debug != '\0')
446 	debug = 1;
447     dbg("%s is initialized, base address = %p", __progname,
448 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
449     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
450     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
451 
452     dbg("initializing thread locks");
453     lockdflt_init();
454 
455     /*
456      * Load the main program, or process its program header if it is
457      * already loaded.
458      */
459     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
460 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
461 	dbg("loading main program");
462 	obj_main = map_object(fd, argv0, NULL);
463 	close(fd);
464 	if (obj_main == NULL)
465 	    die();
466 	max_stack_flags = obj->stack_flags;
467     } else {				/* Main program already loaded. */
468 	const Elf_Phdr *phdr;
469 	int phnum;
470 	caddr_t entry;
471 
472 	dbg("processing main program's program header");
473 	assert(aux_info[AT_PHDR] != NULL);
474 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
475 	assert(aux_info[AT_PHNUM] != NULL);
476 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
477 	assert(aux_info[AT_PHENT] != NULL);
478 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
479 	assert(aux_info[AT_ENTRY] != NULL);
480 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
481 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
482 	    die();
483     }
484 
485     if (aux_info[AT_EXECPATH] != 0) {
486 	    char *kexecpath;
487 	    char buf[MAXPATHLEN];
488 
489 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
490 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
491 	    if (kexecpath[0] == '/')
492 		    obj_main->path = kexecpath;
493 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
494 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
495 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
496 		    obj_main->path = xstrdup(argv0);
497 	    else
498 		    obj_main->path = xstrdup(buf);
499     } else {
500 	    dbg("No AT_EXECPATH");
501 	    obj_main->path = xstrdup(argv0);
502     }
503     dbg("obj_main path %s", obj_main->path);
504     obj_main->mainprog = true;
505 
506     if (aux_info[AT_STACKPROT] != NULL &&
507       aux_info[AT_STACKPROT]->a_un.a_val != 0)
508 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
509 
510 #ifndef COMPAT_32BIT
511     /*
512      * Get the actual dynamic linker pathname from the executable if
513      * possible.  (It should always be possible.)  That ensures that
514      * gdb will find the right dynamic linker even if a non-standard
515      * one is being used.
516      */
517     if (obj_main->interp != NULL &&
518       strcmp(obj_main->interp, obj_rtld.path) != 0) {
519 	free(obj_rtld.path);
520 	obj_rtld.path = xstrdup(obj_main->interp);
521         __progname = obj_rtld.path;
522     }
523 #endif
524 
525     digest_dynamic(obj_main, 0);
526     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
527 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
528 	obj_main->dynsymcount);
529 
530     linkmap_add(obj_main);
531     linkmap_add(&obj_rtld);
532 
533     /* Link the main program into the list of objects. */
534     *obj_tail = obj_main;
535     obj_tail = &obj_main->next;
536     obj_count++;
537     obj_loads++;
538 
539     /* Initialize a fake symbol for resolving undefined weak references. */
540     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
541     sym_zero.st_shndx = SHN_UNDEF;
542     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
543 
544     if (!libmap_disable)
545         libmap_disable = (bool)lm_init(libmap_override);
546 
547     dbg("loading LD_PRELOAD libraries");
548     if (load_preload_objects() == -1)
549 	die();
550     preload_tail = obj_tail;
551 
552     dbg("loading needed objects");
553     if (load_needed_objects(obj_main, 0) == -1)
554 	die();
555 
556     /* Make a list of all objects loaded at startup. */
557     last_interposer = obj_main;
558     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
559 	if (obj->z_interpose && obj != obj_main) {
560 	    objlist_put_after(&list_main, last_interposer, obj);
561 	    last_interposer = obj;
562 	} else {
563 	    objlist_push_tail(&list_main, obj);
564 	}
565     	obj->refcount++;
566     }
567 
568     dbg("checking for required versions");
569     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
570 	die();
571 
572     if (ld_tracing) {		/* We're done */
573 	trace_loaded_objects(obj_main);
574 	exit(0);
575     }
576 
577     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
578        dump_relocations(obj_main);
579        exit (0);
580     }
581 
582     /*
583      * Processing tls relocations requires having the tls offsets
584      * initialized.  Prepare offsets before starting initial
585      * relocation processing.
586      */
587     dbg("initializing initial thread local storage offsets");
588     STAILQ_FOREACH(entry, &list_main, link) {
589 	/*
590 	 * Allocate all the initial objects out of the static TLS
591 	 * block even if they didn't ask for it.
592 	 */
593 	allocate_tls_offset(entry->obj);
594     }
595 
596     if (relocate_objects(obj_main,
597       ld_bind_now != NULL && *ld_bind_now != '\0',
598       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
599 	die();
600 
601     dbg("doing copy relocations");
602     if (do_copy_relocations(obj_main) == -1)
603 	die();
604 
605     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
606        dump_relocations(obj_main);
607        exit (0);
608     }
609 
610     /*
611      * Setup TLS for main thread.  This must be done after the
612      * relocations are processed, since tls initialization section
613      * might be the subject for relocations.
614      */
615     dbg("initializing initial thread local storage");
616     allocate_initial_tls(obj_list);
617 
618     dbg("initializing key program variables");
619     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
620     set_program_var("environ", env);
621     set_program_var("__elf_aux_vector", aux);
622 
623     /* Make a list of init functions to call. */
624     objlist_init(&initlist);
625     initlist_add_objects(obj_list, preload_tail, &initlist);
626 
627     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
628 
629     map_stacks_exec(NULL);
630 
631     dbg("resolving ifuncs");
632     if (resolve_objects_ifunc(obj_main,
633       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
634       NULL) == -1)
635 	die();
636 
637     if (!obj_main->crt_no_init) {
638 	/*
639 	 * Make sure we don't call the main program's init and fini
640 	 * functions for binaries linked with old crt1 which calls
641 	 * _init itself.
642 	 */
643 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
644 	obj_main->preinit_array = obj_main->init_array =
645 	    obj_main->fini_array = (Elf_Addr)NULL;
646     }
647 
648     wlock_acquire(rtld_bind_lock, &lockstate);
649     if (obj_main->crt_no_init)
650 	preinit_main();
651     objlist_call_init(&initlist, &lockstate);
652     _r_debug_postinit(&obj_main->linkmap);
653     objlist_clear(&initlist);
654     dbg("loading filtees");
655     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
656 	if (ld_loadfltr || obj->z_loadfltr)
657 	    load_filtees(obj, 0, &lockstate);
658     }
659     lock_release(rtld_bind_lock, &lockstate);
660 
661     dbg("transferring control to program entry point = %p", obj_main->entry);
662 
663     /* Return the exit procedure and the program entry point. */
664     *exit_proc = rtld_exit;
665     *objp = obj_main;
666     return (func_ptr_type) obj_main->entry;
667 }
668 
669 void *
670 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
671 {
672 	void *ptr;
673 	Elf_Addr target;
674 
675 	ptr = (void *)make_function_pointer(def, obj);
676 	target = ((Elf_Addr (*)(void))ptr)();
677 	return ((void *)target);
678 }
679 
680 Elf_Addr
681 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
682 {
683     const Elf_Rel *rel;
684     const Elf_Sym *def;
685     const Obj_Entry *defobj;
686     Elf_Addr *where;
687     Elf_Addr target;
688     RtldLockState lockstate;
689 
690     rlock_acquire(rtld_bind_lock, &lockstate);
691     if (sigsetjmp(lockstate.env, 0) != 0)
692 	    lock_upgrade(rtld_bind_lock, &lockstate);
693     if (obj->pltrel)
694 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
695     else
696 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
697 
698     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
699     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
700 	&lockstate);
701     if (def == NULL)
702 	die();
703     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
704 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
705     else
706 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
707 
708     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
709       defobj->strtab + def->st_name, basename(obj->path),
710       (void *)target, basename(defobj->path));
711 
712     /*
713      * Write the new contents for the jmpslot. Note that depending on
714      * architecture, the value which we need to return back to the
715      * lazy binding trampoline may or may not be the target
716      * address. The value returned from reloc_jmpslot() is the value
717      * that the trampoline needs.
718      */
719     target = reloc_jmpslot(where, target, defobj, obj, rel);
720     lock_release(rtld_bind_lock, &lockstate);
721     return target;
722 }
723 
724 /*
725  * Error reporting function.  Use it like printf.  If formats the message
726  * into a buffer, and sets things up so that the next call to dlerror()
727  * will return the message.
728  */
729 void
730 _rtld_error(const char *fmt, ...)
731 {
732     static char buf[512];
733     va_list ap;
734 
735     va_start(ap, fmt);
736     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
737     error_message = buf;
738     va_end(ap);
739 }
740 
741 /*
742  * Return a dynamically-allocated copy of the current error message, if any.
743  */
744 static char *
745 errmsg_save(void)
746 {
747     return error_message == NULL ? NULL : xstrdup(error_message);
748 }
749 
750 /*
751  * Restore the current error message from a copy which was previously saved
752  * by errmsg_save().  The copy is freed.
753  */
754 static void
755 errmsg_restore(char *saved_msg)
756 {
757     if (saved_msg == NULL)
758 	error_message = NULL;
759     else {
760 	_rtld_error("%s", saved_msg);
761 	free(saved_msg);
762     }
763 }
764 
765 static const char *
766 basename(const char *name)
767 {
768     const char *p = strrchr(name, '/');
769     return p != NULL ? p + 1 : name;
770 }
771 
772 static struct utsname uts;
773 
774 static char *
775 origin_subst_one(char *real, const char *kw, const char *subst,
776     bool may_free)
777 {
778 	char *p, *p1, *res, *resp;
779 	int subst_len, kw_len, subst_count, old_len, new_len;
780 
781 	kw_len = strlen(kw);
782 
783 	/*
784 	 * First, count the number of the keyword occurences, to
785 	 * preallocate the final string.
786 	 */
787 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
788 		p1 = strstr(p, kw);
789 		if (p1 == NULL)
790 			break;
791 	}
792 
793 	/*
794 	 * If the keyword is not found, just return.
795 	 */
796 	if (subst_count == 0)
797 		return (may_free ? real : xstrdup(real));
798 
799 	/*
800 	 * There is indeed something to substitute.  Calculate the
801 	 * length of the resulting string, and allocate it.
802 	 */
803 	subst_len = strlen(subst);
804 	old_len = strlen(real);
805 	new_len = old_len + (subst_len - kw_len) * subst_count;
806 	res = xmalloc(new_len + 1);
807 
808 	/*
809 	 * Now, execute the substitution loop.
810 	 */
811 	for (p = real, resp = res, *resp = '\0';;) {
812 		p1 = strstr(p, kw);
813 		if (p1 != NULL) {
814 			/* Copy the prefix before keyword. */
815 			memcpy(resp, p, p1 - p);
816 			resp += p1 - p;
817 			/* Keyword replacement. */
818 			memcpy(resp, subst, subst_len);
819 			resp += subst_len;
820 			*resp = '\0';
821 			p = p1 + kw_len;
822 		} else
823 			break;
824 	}
825 
826 	/* Copy to the end of string and finish. */
827 	strcat(resp, p);
828 	if (may_free)
829 		free(real);
830 	return (res);
831 }
832 
833 static char *
834 origin_subst(char *real, const char *origin_path)
835 {
836 	char *res1, *res2, *res3, *res4;
837 
838 	if (uts.sysname[0] == '\0') {
839 		if (uname(&uts) != 0) {
840 			_rtld_error("utsname failed: %d", errno);
841 			return (NULL);
842 		}
843 	}
844 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
845 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
846 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
847 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
848 	return (res4);
849 }
850 
851 static void
852 die(void)
853 {
854     const char *msg = dlerror();
855 
856     if (msg == NULL)
857 	msg = "Fatal error";
858     rtld_fdputstr(STDERR_FILENO, msg);
859     rtld_fdputchar(STDERR_FILENO, '\n');
860     _exit(1);
861 }
862 
863 /*
864  * Process a shared object's DYNAMIC section, and save the important
865  * information in its Obj_Entry structure.
866  */
867 static void
868 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
869     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
870 {
871     const Elf_Dyn *dynp;
872     Needed_Entry **needed_tail = &obj->needed;
873     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
874     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
875     const Elf_Hashelt *hashtab;
876     const Elf32_Word *hashval;
877     Elf32_Word bkt, nmaskwords;
878     int bloom_size32;
879     int plttype = DT_REL;
880 
881     *dyn_rpath = NULL;
882     *dyn_soname = NULL;
883     *dyn_runpath = NULL;
884 
885     obj->bind_now = false;
886     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
887 	switch (dynp->d_tag) {
888 
889 	case DT_REL:
890 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
891 	    break;
892 
893 	case DT_RELSZ:
894 	    obj->relsize = dynp->d_un.d_val;
895 	    break;
896 
897 	case DT_RELENT:
898 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
899 	    break;
900 
901 	case DT_JMPREL:
902 	    obj->pltrel = (const Elf_Rel *)
903 	      (obj->relocbase + dynp->d_un.d_ptr);
904 	    break;
905 
906 	case DT_PLTRELSZ:
907 	    obj->pltrelsize = dynp->d_un.d_val;
908 	    break;
909 
910 	case DT_RELA:
911 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
912 	    break;
913 
914 	case DT_RELASZ:
915 	    obj->relasize = dynp->d_un.d_val;
916 	    break;
917 
918 	case DT_RELAENT:
919 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
920 	    break;
921 
922 	case DT_PLTREL:
923 	    plttype = dynp->d_un.d_val;
924 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
925 	    break;
926 
927 	case DT_SYMTAB:
928 	    obj->symtab = (const Elf_Sym *)
929 	      (obj->relocbase + dynp->d_un.d_ptr);
930 	    break;
931 
932 	case DT_SYMENT:
933 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
934 	    break;
935 
936 	case DT_STRTAB:
937 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
938 	    break;
939 
940 	case DT_STRSZ:
941 	    obj->strsize = dynp->d_un.d_val;
942 	    break;
943 
944 	case DT_VERNEED:
945 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
946 		dynp->d_un.d_val);
947 	    break;
948 
949 	case DT_VERNEEDNUM:
950 	    obj->verneednum = dynp->d_un.d_val;
951 	    break;
952 
953 	case DT_VERDEF:
954 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
955 		dynp->d_un.d_val);
956 	    break;
957 
958 	case DT_VERDEFNUM:
959 	    obj->verdefnum = dynp->d_un.d_val;
960 	    break;
961 
962 	case DT_VERSYM:
963 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
964 		dynp->d_un.d_val);
965 	    break;
966 
967 	case DT_HASH:
968 	    {
969 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
970 		    dynp->d_un.d_ptr);
971 		obj->nbuckets = hashtab[0];
972 		obj->nchains = hashtab[1];
973 		obj->buckets = hashtab + 2;
974 		obj->chains = obj->buckets + obj->nbuckets;
975 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
976 		  obj->buckets != NULL;
977 	    }
978 	    break;
979 
980 	case DT_GNU_HASH:
981 	    {
982 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
983 		    dynp->d_un.d_ptr);
984 		obj->nbuckets_gnu = hashtab[0];
985 		obj->symndx_gnu = hashtab[1];
986 		nmaskwords = hashtab[2];
987 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
988 		obj->maskwords_bm_gnu = nmaskwords - 1;
989 		obj->shift2_gnu = hashtab[3];
990 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
991 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
992 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
993 		  obj->symndx_gnu;
994 		/* Number of bitmask words is required to be power of 2 */
995 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
996 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
997 	    }
998 	    break;
999 
1000 	case DT_NEEDED:
1001 	    if (!obj->rtld) {
1002 		Needed_Entry *nep = NEW(Needed_Entry);
1003 		nep->name = dynp->d_un.d_val;
1004 		nep->obj = NULL;
1005 		nep->next = NULL;
1006 
1007 		*needed_tail = nep;
1008 		needed_tail = &nep->next;
1009 	    }
1010 	    break;
1011 
1012 	case DT_FILTER:
1013 	    if (!obj->rtld) {
1014 		Needed_Entry *nep = NEW(Needed_Entry);
1015 		nep->name = dynp->d_un.d_val;
1016 		nep->obj = NULL;
1017 		nep->next = NULL;
1018 
1019 		*needed_filtees_tail = nep;
1020 		needed_filtees_tail = &nep->next;
1021 	    }
1022 	    break;
1023 
1024 	case DT_AUXILIARY:
1025 	    if (!obj->rtld) {
1026 		Needed_Entry *nep = NEW(Needed_Entry);
1027 		nep->name = dynp->d_un.d_val;
1028 		nep->obj = NULL;
1029 		nep->next = NULL;
1030 
1031 		*needed_aux_filtees_tail = nep;
1032 		needed_aux_filtees_tail = &nep->next;
1033 	    }
1034 	    break;
1035 
1036 	case DT_PLTGOT:
1037 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1038 	    break;
1039 
1040 	case DT_TEXTREL:
1041 	    obj->textrel = true;
1042 	    break;
1043 
1044 	case DT_SYMBOLIC:
1045 	    obj->symbolic = true;
1046 	    break;
1047 
1048 	case DT_RPATH:
1049 	    /*
1050 	     * We have to wait until later to process this, because we
1051 	     * might not have gotten the address of the string table yet.
1052 	     */
1053 	    *dyn_rpath = dynp;
1054 	    break;
1055 
1056 	case DT_SONAME:
1057 	    *dyn_soname = dynp;
1058 	    break;
1059 
1060 	case DT_RUNPATH:
1061 	    *dyn_runpath = dynp;
1062 	    break;
1063 
1064 	case DT_INIT:
1065 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1066 	    break;
1067 
1068 	case DT_PREINIT_ARRAY:
1069 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1070 	    break;
1071 
1072 	case DT_PREINIT_ARRAYSZ:
1073 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1074 	    break;
1075 
1076 	case DT_INIT_ARRAY:
1077 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1078 	    break;
1079 
1080 	case DT_INIT_ARRAYSZ:
1081 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1082 	    break;
1083 
1084 	case DT_FINI:
1085 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1086 	    break;
1087 
1088 	case DT_FINI_ARRAY:
1089 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1090 	    break;
1091 
1092 	case DT_FINI_ARRAYSZ:
1093 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1094 	    break;
1095 
1096 	/*
1097 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1098 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1099 	 */
1100 
1101 #ifndef __mips__
1102 	case DT_DEBUG:
1103 	    /* XXX - not implemented yet */
1104 	    if (!early)
1105 		dbg("Filling in DT_DEBUG entry");
1106 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1107 	    break;
1108 #endif
1109 
1110 	case DT_FLAGS:
1111 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1112 		    obj->z_origin = true;
1113 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1114 		    obj->symbolic = true;
1115 		if (dynp->d_un.d_val & DF_TEXTREL)
1116 		    obj->textrel = true;
1117 		if (dynp->d_un.d_val & DF_BIND_NOW)
1118 		    obj->bind_now = true;
1119 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1120 		    ;*/
1121 	    break;
1122 #ifdef __mips__
1123 	case DT_MIPS_LOCAL_GOTNO:
1124 		obj->local_gotno = dynp->d_un.d_val;
1125 	    break;
1126 
1127 	case DT_MIPS_SYMTABNO:
1128 		obj->symtabno = dynp->d_un.d_val;
1129 		break;
1130 
1131 	case DT_MIPS_GOTSYM:
1132 		obj->gotsym = dynp->d_un.d_val;
1133 		break;
1134 
1135 	case DT_MIPS_RLD_MAP:
1136 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1137 		break;
1138 #endif
1139 
1140 	case DT_FLAGS_1:
1141 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1142 		    obj->z_noopen = true;
1143 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1144 		    obj->z_origin = true;
1145 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1146 		    XXX ;*/
1147 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1148 		    obj->bind_now = true;
1149 		if (dynp->d_un.d_val & DF_1_NODELETE)
1150 		    obj->z_nodelete = true;
1151 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1152 		    obj->z_loadfltr = true;
1153 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1154 		    obj->z_interpose = true;
1155 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1156 		    obj->z_nodeflib = true;
1157 	    break;
1158 
1159 	default:
1160 	    if (!early) {
1161 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1162 		    (long)dynp->d_tag);
1163 	    }
1164 	    break;
1165 	}
1166     }
1167 
1168     obj->traced = false;
1169 
1170     if (plttype == DT_RELA) {
1171 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1172 	obj->pltrel = NULL;
1173 	obj->pltrelasize = obj->pltrelsize;
1174 	obj->pltrelsize = 0;
1175     }
1176 
1177     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1178     if (obj->valid_hash_sysv)
1179 	obj->dynsymcount = obj->nchains;
1180     else if (obj->valid_hash_gnu) {
1181 	obj->dynsymcount = 0;
1182 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1183 	    if (obj->buckets_gnu[bkt] == 0)
1184 		continue;
1185 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1186 	    do
1187 		obj->dynsymcount++;
1188 	    while ((*hashval++ & 1u) == 0);
1189 	}
1190 	obj->dynsymcount += obj->symndx_gnu;
1191     }
1192 }
1193 
1194 static void
1195 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1196     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1197 {
1198 
1199     if (obj->z_origin && obj->origin_path == NULL) {
1200 	obj->origin_path = xmalloc(PATH_MAX);
1201 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1202 	    die();
1203     }
1204 
1205     if (dyn_runpath != NULL) {
1206 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1207 	if (obj->z_origin)
1208 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1209     }
1210     else if (dyn_rpath != NULL) {
1211 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1212 	if (obj->z_origin)
1213 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1214     }
1215 
1216     if (dyn_soname != NULL)
1217 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1218 }
1219 
1220 static void
1221 digest_dynamic(Obj_Entry *obj, int early)
1222 {
1223 	const Elf_Dyn *dyn_rpath;
1224 	const Elf_Dyn *dyn_soname;
1225 	const Elf_Dyn *dyn_runpath;
1226 
1227 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1228 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1229 }
1230 
1231 /*
1232  * Process a shared object's program header.  This is used only for the
1233  * main program, when the kernel has already loaded the main program
1234  * into memory before calling the dynamic linker.  It creates and
1235  * returns an Obj_Entry structure.
1236  */
1237 static Obj_Entry *
1238 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1239 {
1240     Obj_Entry *obj;
1241     const Elf_Phdr *phlimit = phdr + phnum;
1242     const Elf_Phdr *ph;
1243     Elf_Addr note_start, note_end;
1244     int nsegs = 0;
1245 
1246     obj = obj_new();
1247     for (ph = phdr;  ph < phlimit;  ph++) {
1248 	if (ph->p_type != PT_PHDR)
1249 	    continue;
1250 
1251 	obj->phdr = phdr;
1252 	obj->phsize = ph->p_memsz;
1253 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1254 	break;
1255     }
1256 
1257     obj->stack_flags = PF_X | PF_R | PF_W;
1258 
1259     for (ph = phdr;  ph < phlimit;  ph++) {
1260 	switch (ph->p_type) {
1261 
1262 	case PT_INTERP:
1263 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1264 	    break;
1265 
1266 	case PT_LOAD:
1267 	    if (nsegs == 0) {	/* First load segment */
1268 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1269 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1270 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1271 		  obj->vaddrbase;
1272 	    } else {		/* Last load segment */
1273 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1274 		  obj->vaddrbase;
1275 	    }
1276 	    nsegs++;
1277 	    break;
1278 
1279 	case PT_DYNAMIC:
1280 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1281 	    break;
1282 
1283 	case PT_TLS:
1284 	    obj->tlsindex = 1;
1285 	    obj->tlssize = ph->p_memsz;
1286 	    obj->tlsalign = ph->p_align;
1287 	    obj->tlsinitsize = ph->p_filesz;
1288 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1289 	    break;
1290 
1291 	case PT_GNU_STACK:
1292 	    obj->stack_flags = ph->p_flags;
1293 	    break;
1294 
1295 	case PT_GNU_RELRO:
1296 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1297 	    obj->relro_size = round_page(ph->p_memsz);
1298 	    break;
1299 
1300 	case PT_NOTE:
1301 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1302 	    note_end = note_start + ph->p_filesz;
1303 	    digest_notes(obj, note_start, note_end);
1304 	    break;
1305 	}
1306     }
1307     if (nsegs < 1) {
1308 	_rtld_error("%s: too few PT_LOAD segments", path);
1309 	return NULL;
1310     }
1311 
1312     obj->entry = entry;
1313     return obj;
1314 }
1315 
1316 void
1317 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1318 {
1319 	const Elf_Note *note;
1320 	const char *note_name;
1321 	uintptr_t p;
1322 
1323 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1324 	    note = (const Elf_Note *)((const char *)(note + 1) +
1325 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1326 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1327 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1328 		    note->n_descsz != sizeof(int32_t))
1329 			continue;
1330 		if (note->n_type != ABI_NOTETYPE &&
1331 		    note->n_type != CRT_NOINIT_NOTETYPE)
1332 			continue;
1333 		note_name = (const char *)(note + 1);
1334 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1335 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1336 			continue;
1337 		switch (note->n_type) {
1338 		case ABI_NOTETYPE:
1339 			/* FreeBSD osrel note */
1340 			p = (uintptr_t)(note + 1);
1341 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1342 			obj->osrel = *(const int32_t *)(p);
1343 			dbg("note osrel %d", obj->osrel);
1344 			break;
1345 		case CRT_NOINIT_NOTETYPE:
1346 			/* FreeBSD 'crt does not call init' note */
1347 			obj->crt_no_init = true;
1348 			dbg("note crt_no_init");
1349 			break;
1350 		}
1351 	}
1352 }
1353 
1354 static Obj_Entry *
1355 dlcheck(void *handle)
1356 {
1357     Obj_Entry *obj;
1358 
1359     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1360 	if (obj == (Obj_Entry *) handle)
1361 	    break;
1362 
1363     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1364 	_rtld_error("Invalid shared object handle %p", handle);
1365 	return NULL;
1366     }
1367     return obj;
1368 }
1369 
1370 /*
1371  * If the given object is already in the donelist, return true.  Otherwise
1372  * add the object to the list and return false.
1373  */
1374 static bool
1375 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1376 {
1377     unsigned int i;
1378 
1379     for (i = 0;  i < dlp->num_used;  i++)
1380 	if (dlp->objs[i] == obj)
1381 	    return true;
1382     /*
1383      * Our donelist allocation should always be sufficient.  But if
1384      * our threads locking isn't working properly, more shared objects
1385      * could have been loaded since we allocated the list.  That should
1386      * never happen, but we'll handle it properly just in case it does.
1387      */
1388     if (dlp->num_used < dlp->num_alloc)
1389 	dlp->objs[dlp->num_used++] = obj;
1390     return false;
1391 }
1392 
1393 /*
1394  * Hash function for symbol table lookup.  Don't even think about changing
1395  * this.  It is specified by the System V ABI.
1396  */
1397 unsigned long
1398 elf_hash(const char *name)
1399 {
1400     const unsigned char *p = (const unsigned char *) name;
1401     unsigned long h = 0;
1402     unsigned long g;
1403 
1404     while (*p != '\0') {
1405 	h = (h << 4) + *p++;
1406 	if ((g = h & 0xf0000000) != 0)
1407 	    h ^= g >> 24;
1408 	h &= ~g;
1409     }
1410     return h;
1411 }
1412 
1413 /*
1414  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1415  * unsigned in case it's implemented with a wider type.
1416  */
1417 static uint32_t
1418 gnu_hash(const char *s)
1419 {
1420 	uint32_t h;
1421 	unsigned char c;
1422 
1423 	h = 5381;
1424 	for (c = *s; c != '\0'; c = *++s)
1425 		h = h * 33 + c;
1426 	return (h & 0xffffffff);
1427 }
1428 
1429 
1430 /*
1431  * Find the library with the given name, and return its full pathname.
1432  * The returned string is dynamically allocated.  Generates an error
1433  * message and returns NULL if the library cannot be found.
1434  *
1435  * If the second argument is non-NULL, then it refers to an already-
1436  * loaded shared object, whose library search path will be searched.
1437  *
1438  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1439  * descriptor (which is close-on-exec) will be passed out via the third
1440  * argument.
1441  *
1442  * The search order is:
1443  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1444  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1445  *   LD_LIBRARY_PATH
1446  *   DT_RUNPATH in the referencing file
1447  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1448  *	 from list)
1449  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1450  *
1451  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1452  */
1453 static char *
1454 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1455 {
1456     char *pathname;
1457     char *name;
1458     bool nodeflib, objgiven;
1459 
1460     objgiven = refobj != NULL;
1461     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1462 	if (xname[0] != '/' && !trust) {
1463 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1464 	      xname);
1465 	    return NULL;
1466 	}
1467 	if (objgiven && refobj->z_origin) {
1468 		return (origin_subst(__DECONST(char *, xname),
1469 		    refobj->origin_path));
1470 	} else {
1471 		return (xstrdup(xname));
1472 	}
1473     }
1474 
1475     if (libmap_disable || !objgiven ||
1476 	(name = lm_find(refobj->path, xname)) == NULL)
1477 	name = (char *)xname;
1478 
1479     dbg(" Searching for \"%s\"", name);
1480 
1481     /*
1482      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1483      * back to pre-conforming behaviour if user requested so with
1484      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1485      * nodeflib.
1486      */
1487     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1488 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1489 	  (refobj != NULL &&
1490 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1491 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1492           (pathname = search_library_path(name, gethints(false))) != NULL ||
1493 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1494 	    return (pathname);
1495     } else {
1496 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1497 	if ((objgiven &&
1498 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1499 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1500 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1501 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1502 	  (objgiven &&
1503 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1504 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1505 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1506 	  (objgiven && !nodeflib &&
1507 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1508 	    return (pathname);
1509     }
1510 
1511     if (objgiven && refobj->path != NULL) {
1512 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1513 	  name, basename(refobj->path));
1514     } else {
1515 	_rtld_error("Shared object \"%s\" not found", name);
1516     }
1517     return NULL;
1518 }
1519 
1520 /*
1521  * Given a symbol number in a referencing object, find the corresponding
1522  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1523  * no definition was found.  Returns a pointer to the Obj_Entry of the
1524  * defining object via the reference parameter DEFOBJ_OUT.
1525  */
1526 const Elf_Sym *
1527 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1528     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1529     RtldLockState *lockstate)
1530 {
1531     const Elf_Sym *ref;
1532     const Elf_Sym *def;
1533     const Obj_Entry *defobj;
1534     SymLook req;
1535     const char *name;
1536     int res;
1537 
1538     /*
1539      * If we have already found this symbol, get the information from
1540      * the cache.
1541      */
1542     if (symnum >= refobj->dynsymcount)
1543 	return NULL;	/* Bad object */
1544     if (cache != NULL && cache[symnum].sym != NULL) {
1545 	*defobj_out = cache[symnum].obj;
1546 	return cache[symnum].sym;
1547     }
1548 
1549     ref = refobj->symtab + symnum;
1550     name = refobj->strtab + ref->st_name;
1551     def = NULL;
1552     defobj = NULL;
1553 
1554     /*
1555      * We don't have to do a full scale lookup if the symbol is local.
1556      * We know it will bind to the instance in this load module; to
1557      * which we already have a pointer (ie ref). By not doing a lookup,
1558      * we not only improve performance, but it also avoids unresolvable
1559      * symbols when local symbols are not in the hash table. This has
1560      * been seen with the ia64 toolchain.
1561      */
1562     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1563 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1564 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1565 		symnum);
1566 	}
1567 	symlook_init(&req, name);
1568 	req.flags = flags;
1569 	req.ventry = fetch_ventry(refobj, symnum);
1570 	req.lockstate = lockstate;
1571 	res = symlook_default(&req, refobj);
1572 	if (res == 0) {
1573 	    def = req.sym_out;
1574 	    defobj = req.defobj_out;
1575 	}
1576     } else {
1577 	def = ref;
1578 	defobj = refobj;
1579     }
1580 
1581     /*
1582      * If we found no definition and the reference is weak, treat the
1583      * symbol as having the value zero.
1584      */
1585     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1586 	def = &sym_zero;
1587 	defobj = obj_main;
1588     }
1589 
1590     if (def != NULL) {
1591 	*defobj_out = defobj;
1592 	/* Record the information in the cache to avoid subsequent lookups. */
1593 	if (cache != NULL) {
1594 	    cache[symnum].sym = def;
1595 	    cache[symnum].obj = defobj;
1596 	}
1597     } else {
1598 	if (refobj != &obj_rtld)
1599 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1600     }
1601     return def;
1602 }
1603 
1604 /*
1605  * Return the search path from the ldconfig hints file, reading it if
1606  * necessary.  If nostdlib is true, then the default search paths are
1607  * not added to result.
1608  *
1609  * Returns NULL if there are problems with the hints file,
1610  * or if the search path there is empty.
1611  */
1612 static const char *
1613 gethints(bool nostdlib)
1614 {
1615 	static char *hints, *filtered_path;
1616 	struct elfhints_hdr hdr;
1617 	struct fill_search_info_args sargs, hargs;
1618 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1619 	struct dl_serpath *SLPpath, *hintpath;
1620 	char *p;
1621 	unsigned int SLPndx, hintndx, fndx, fcount;
1622 	int fd;
1623 	size_t flen;
1624 	bool skip;
1625 
1626 	/* First call, read the hints file */
1627 	if (hints == NULL) {
1628 		/* Keep from trying again in case the hints file is bad. */
1629 		hints = "";
1630 
1631 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1632 			return (NULL);
1633 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1634 		    hdr.magic != ELFHINTS_MAGIC ||
1635 		    hdr.version != 1) {
1636 			close(fd);
1637 			return (NULL);
1638 		}
1639 		p = xmalloc(hdr.dirlistlen + 1);
1640 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1641 		    read(fd, p, hdr.dirlistlen + 1) !=
1642 		    (ssize_t)hdr.dirlistlen + 1) {
1643 			free(p);
1644 			close(fd);
1645 			return (NULL);
1646 		}
1647 		hints = p;
1648 		close(fd);
1649 	}
1650 
1651 	/*
1652 	 * If caller agreed to receive list which includes the default
1653 	 * paths, we are done. Otherwise, if we still did not
1654 	 * calculated filtered result, do it now.
1655 	 */
1656 	if (!nostdlib)
1657 		return (hints[0] != '\0' ? hints : NULL);
1658 	if (filtered_path != NULL)
1659 		goto filt_ret;
1660 
1661 	/*
1662 	 * Obtain the list of all configured search paths, and the
1663 	 * list of the default paths.
1664 	 *
1665 	 * First estimate the size of the results.
1666 	 */
1667 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1668 	smeta.dls_cnt = 0;
1669 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1670 	hmeta.dls_cnt = 0;
1671 
1672 	sargs.request = RTLD_DI_SERINFOSIZE;
1673 	sargs.serinfo = &smeta;
1674 	hargs.request = RTLD_DI_SERINFOSIZE;
1675 	hargs.serinfo = &hmeta;
1676 
1677 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1678 	path_enumerate(p, fill_search_info, &hargs);
1679 
1680 	SLPinfo = xmalloc(smeta.dls_size);
1681 	hintinfo = xmalloc(hmeta.dls_size);
1682 
1683 	/*
1684 	 * Next fetch both sets of paths.
1685 	 */
1686 	sargs.request = RTLD_DI_SERINFO;
1687 	sargs.serinfo = SLPinfo;
1688 	sargs.serpath = &SLPinfo->dls_serpath[0];
1689 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1690 
1691 	hargs.request = RTLD_DI_SERINFO;
1692 	hargs.serinfo = hintinfo;
1693 	hargs.serpath = &hintinfo->dls_serpath[0];
1694 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1695 
1696 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1697 	path_enumerate(p, fill_search_info, &hargs);
1698 
1699 	/*
1700 	 * Now calculate the difference between two sets, by excluding
1701 	 * standard paths from the full set.
1702 	 */
1703 	fndx = 0;
1704 	fcount = 0;
1705 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1706 	hintpath = &hintinfo->dls_serpath[0];
1707 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1708 		skip = false;
1709 		SLPpath = &SLPinfo->dls_serpath[0];
1710 		/*
1711 		 * Check each standard path against current.
1712 		 */
1713 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1714 			/* matched, skip the path */
1715 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1716 				skip = true;
1717 				break;
1718 			}
1719 		}
1720 		if (skip)
1721 			continue;
1722 		/*
1723 		 * Not matched against any standard path, add the path
1724 		 * to result. Separate consequtive paths with ':'.
1725 		 */
1726 		if (fcount > 0) {
1727 			filtered_path[fndx] = ':';
1728 			fndx++;
1729 		}
1730 		fcount++;
1731 		flen = strlen(hintpath->dls_name);
1732 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1733 		fndx += flen;
1734 	}
1735 	filtered_path[fndx] = '\0';
1736 
1737 	free(SLPinfo);
1738 	free(hintinfo);
1739 
1740 filt_ret:
1741 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1742 }
1743 
1744 static void
1745 init_dag(Obj_Entry *root)
1746 {
1747     const Needed_Entry *needed;
1748     const Objlist_Entry *elm;
1749     DoneList donelist;
1750 
1751     if (root->dag_inited)
1752 	return;
1753     donelist_init(&donelist);
1754 
1755     /* Root object belongs to own DAG. */
1756     objlist_push_tail(&root->dldags, root);
1757     objlist_push_tail(&root->dagmembers, root);
1758     donelist_check(&donelist, root);
1759 
1760     /*
1761      * Add dependencies of root object to DAG in breadth order
1762      * by exploiting the fact that each new object get added
1763      * to the tail of the dagmembers list.
1764      */
1765     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1766 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1767 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1768 		continue;
1769 	    objlist_push_tail(&needed->obj->dldags, root);
1770 	    objlist_push_tail(&root->dagmembers, needed->obj);
1771 	}
1772     }
1773     root->dag_inited = true;
1774 }
1775 
1776 static void
1777 process_nodelete(Obj_Entry *root)
1778 {
1779 	const Objlist_Entry *elm;
1780 
1781 	/*
1782 	 * Walk over object DAG and process every dependent object that
1783 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1784 	 * which then should have its reference upped separately.
1785 	 */
1786 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1787 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1788 		    !elm->obj->ref_nodel) {
1789 			dbg("obj %s nodelete", elm->obj->path);
1790 			init_dag(elm->obj);
1791 			ref_dag(elm->obj);
1792 			elm->obj->ref_nodel = true;
1793 		}
1794 	}
1795 }
1796 /*
1797  * Initialize the dynamic linker.  The argument is the address at which
1798  * the dynamic linker has been mapped into memory.  The primary task of
1799  * this function is to relocate the dynamic linker.
1800  */
1801 static void
1802 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1803 {
1804     Obj_Entry objtmp;	/* Temporary rtld object */
1805     const Elf_Dyn *dyn_rpath;
1806     const Elf_Dyn *dyn_soname;
1807     const Elf_Dyn *dyn_runpath;
1808 
1809 #ifdef RTLD_INIT_PAGESIZES_EARLY
1810     /* The page size is required by the dynamic memory allocator. */
1811     init_pagesizes(aux_info);
1812 #endif
1813 
1814     /*
1815      * Conjure up an Obj_Entry structure for the dynamic linker.
1816      *
1817      * The "path" member can't be initialized yet because string constants
1818      * cannot yet be accessed. Below we will set it correctly.
1819      */
1820     memset(&objtmp, 0, sizeof(objtmp));
1821     objtmp.path = NULL;
1822     objtmp.rtld = true;
1823     objtmp.mapbase = mapbase;
1824 #ifdef PIC
1825     objtmp.relocbase = mapbase;
1826 #endif
1827     if (RTLD_IS_DYNAMIC()) {
1828 	objtmp.dynamic = rtld_dynamic(&objtmp);
1829 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1830 	assert(objtmp.needed == NULL);
1831 #if !defined(__mips__)
1832 	/* MIPS has a bogus DT_TEXTREL. */
1833 	assert(!objtmp.textrel);
1834 #endif
1835 
1836 	/*
1837 	 * Temporarily put the dynamic linker entry into the object list, so
1838 	 * that symbols can be found.
1839 	 */
1840 
1841 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1842     }
1843 
1844     /* Initialize the object list. */
1845     obj_tail = &obj_list;
1846 
1847     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1848     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1849 
1850 #ifndef RTLD_INIT_PAGESIZES_EARLY
1851     /* The page size is required by the dynamic memory allocator. */
1852     init_pagesizes(aux_info);
1853 #endif
1854 
1855     if (aux_info[AT_OSRELDATE] != NULL)
1856 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1857 
1858     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1859 
1860     /* Replace the path with a dynamically allocated copy. */
1861     obj_rtld.path = xstrdup(PATH_RTLD);
1862 
1863     r_debug.r_brk = r_debug_state;
1864     r_debug.r_state = RT_CONSISTENT;
1865 }
1866 
1867 /*
1868  * Retrieve the array of supported page sizes.  The kernel provides the page
1869  * sizes in increasing order.
1870  */
1871 static void
1872 init_pagesizes(Elf_Auxinfo **aux_info)
1873 {
1874 	static size_t psa[MAXPAGESIZES];
1875 	int mib[2];
1876 	size_t len, size;
1877 
1878 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1879 	    NULL) {
1880 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1881 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1882 	} else {
1883 		len = 2;
1884 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1885 			size = sizeof(psa);
1886 		else {
1887 			/* As a fallback, retrieve the base page size. */
1888 			size = sizeof(psa[0]);
1889 			if (aux_info[AT_PAGESZ] != NULL) {
1890 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1891 				goto psa_filled;
1892 			} else {
1893 				mib[0] = CTL_HW;
1894 				mib[1] = HW_PAGESIZE;
1895 				len = 2;
1896 			}
1897 		}
1898 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1899 			_rtld_error("sysctl for hw.pagesize(s) failed");
1900 			die();
1901 		}
1902 psa_filled:
1903 		pagesizes = psa;
1904 	}
1905 	npagesizes = size / sizeof(pagesizes[0]);
1906 	/* Discard any invalid entries at the end of the array. */
1907 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1908 		npagesizes--;
1909 }
1910 
1911 /*
1912  * Add the init functions from a needed object list (and its recursive
1913  * needed objects) to "list".  This is not used directly; it is a helper
1914  * function for initlist_add_objects().  The write lock must be held
1915  * when this function is called.
1916  */
1917 static void
1918 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1919 {
1920     /* Recursively process the successor needed objects. */
1921     if (needed->next != NULL)
1922 	initlist_add_neededs(needed->next, list);
1923 
1924     /* Process the current needed object. */
1925     if (needed->obj != NULL)
1926 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1927 }
1928 
1929 /*
1930  * Scan all of the DAGs rooted in the range of objects from "obj" to
1931  * "tail" and add their init functions to "list".  This recurses over
1932  * the DAGs and ensure the proper init ordering such that each object's
1933  * needed libraries are initialized before the object itself.  At the
1934  * same time, this function adds the objects to the global finalization
1935  * list "list_fini" in the opposite order.  The write lock must be
1936  * held when this function is called.
1937  */
1938 static void
1939 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1940 {
1941 
1942     if (obj->init_scanned || obj->init_done)
1943 	return;
1944     obj->init_scanned = true;
1945 
1946     /* Recursively process the successor objects. */
1947     if (&obj->next != tail)
1948 	initlist_add_objects(obj->next, tail, list);
1949 
1950     /* Recursively process the needed objects. */
1951     if (obj->needed != NULL)
1952 	initlist_add_neededs(obj->needed, list);
1953     if (obj->needed_filtees != NULL)
1954 	initlist_add_neededs(obj->needed_filtees, list);
1955     if (obj->needed_aux_filtees != NULL)
1956 	initlist_add_neededs(obj->needed_aux_filtees, list);
1957 
1958     /* Add the object to the init list. */
1959     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1960       obj->init_array != (Elf_Addr)NULL)
1961 	objlist_push_tail(list, obj);
1962 
1963     /* Add the object to the global fini list in the reverse order. */
1964     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1965       && !obj->on_fini_list) {
1966 	objlist_push_head(&list_fini, obj);
1967 	obj->on_fini_list = true;
1968     }
1969 }
1970 
1971 #ifndef FPTR_TARGET
1972 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1973 #endif
1974 
1975 static void
1976 free_needed_filtees(Needed_Entry *n)
1977 {
1978     Needed_Entry *needed, *needed1;
1979 
1980     for (needed = n; needed != NULL; needed = needed->next) {
1981 	if (needed->obj != NULL) {
1982 	    dlclose(needed->obj);
1983 	    needed->obj = NULL;
1984 	}
1985     }
1986     for (needed = n; needed != NULL; needed = needed1) {
1987 	needed1 = needed->next;
1988 	free(needed);
1989     }
1990 }
1991 
1992 static void
1993 unload_filtees(Obj_Entry *obj)
1994 {
1995 
1996     free_needed_filtees(obj->needed_filtees);
1997     obj->needed_filtees = NULL;
1998     free_needed_filtees(obj->needed_aux_filtees);
1999     obj->needed_aux_filtees = NULL;
2000     obj->filtees_loaded = false;
2001 }
2002 
2003 static void
2004 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2005     RtldLockState *lockstate)
2006 {
2007 
2008     for (; needed != NULL; needed = needed->next) {
2009 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2010 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2011 	  RTLD_LOCAL, lockstate);
2012     }
2013 }
2014 
2015 static void
2016 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2017 {
2018 
2019     lock_restart_for_upgrade(lockstate);
2020     if (!obj->filtees_loaded) {
2021 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2022 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2023 	obj->filtees_loaded = true;
2024     }
2025 }
2026 
2027 static int
2028 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2029 {
2030     Obj_Entry *obj1;
2031 
2032     for (; needed != NULL; needed = needed->next) {
2033 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2034 	  flags & ~RTLD_LO_NOLOAD);
2035 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2036 	    return (-1);
2037     }
2038     return (0);
2039 }
2040 
2041 /*
2042  * Given a shared object, traverse its list of needed objects, and load
2043  * each of them.  Returns 0 on success.  Generates an error message and
2044  * returns -1 on failure.
2045  */
2046 static int
2047 load_needed_objects(Obj_Entry *first, int flags)
2048 {
2049     Obj_Entry *obj;
2050 
2051     for (obj = first;  obj != NULL;  obj = obj->next) {
2052 	if (process_needed(obj, obj->needed, flags) == -1)
2053 	    return (-1);
2054     }
2055     return (0);
2056 }
2057 
2058 static int
2059 load_preload_objects(void)
2060 {
2061     char *p = ld_preload;
2062     Obj_Entry *obj;
2063     static const char delim[] = " \t:;";
2064 
2065     if (p == NULL)
2066 	return 0;
2067 
2068     p += strspn(p, delim);
2069     while (*p != '\0') {
2070 	size_t len = strcspn(p, delim);
2071 	char savech;
2072 
2073 	savech = p[len];
2074 	p[len] = '\0';
2075 	obj = load_object(p, -1, NULL, 0);
2076 	if (obj == NULL)
2077 	    return -1;	/* XXX - cleanup */
2078 	obj->z_interpose = true;
2079 	p[len] = savech;
2080 	p += len;
2081 	p += strspn(p, delim);
2082     }
2083     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2084     return 0;
2085 }
2086 
2087 static const char *
2088 printable_path(const char *path)
2089 {
2090 
2091 	return (path == NULL ? "<unknown>" : path);
2092 }
2093 
2094 /*
2095  * Load a shared object into memory, if it is not already loaded.  The
2096  * object may be specified by name or by user-supplied file descriptor
2097  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2098  * duplicate is.
2099  *
2100  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2101  * on failure.
2102  */
2103 static Obj_Entry *
2104 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2105 {
2106     Obj_Entry *obj;
2107     int fd;
2108     struct stat sb;
2109     char *path;
2110 
2111     fd = -1;
2112     if (name != NULL) {
2113 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2114 	    if (object_match_name(obj, name))
2115 		return (obj);
2116 	}
2117 
2118 	path = find_library(name, refobj, &fd);
2119 	if (path == NULL)
2120 	    return (NULL);
2121     } else
2122 	path = NULL;
2123 
2124     if (fd >= 0) {
2125 	/*
2126 	 * search_library_pathfds() opens a fresh file descriptor for the
2127 	 * library, so there is no need to dup().
2128 	 */
2129     } else if (fd_u == -1) {
2130 	/*
2131 	 * If we didn't find a match by pathname, or the name is not
2132 	 * supplied, open the file and check again by device and inode.
2133 	 * This avoids false mismatches caused by multiple links or ".."
2134 	 * in pathnames.
2135 	 *
2136 	 * To avoid a race, we open the file and use fstat() rather than
2137 	 * using stat().
2138 	 */
2139 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2140 	    _rtld_error("Cannot open \"%s\"", path);
2141 	    free(path);
2142 	    return (NULL);
2143 	}
2144     } else {
2145 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2146 	if (fd == -1) {
2147 	    _rtld_error("Cannot dup fd");
2148 	    free(path);
2149 	    return (NULL);
2150 	}
2151     }
2152     if (fstat(fd, &sb) == -1) {
2153 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2154 	close(fd);
2155 	free(path);
2156 	return NULL;
2157     }
2158     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2159 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2160 	    break;
2161     if (obj != NULL && name != NULL) {
2162 	object_add_name(obj, name);
2163 	free(path);
2164 	close(fd);
2165 	return obj;
2166     }
2167     if (flags & RTLD_LO_NOLOAD) {
2168 	free(path);
2169 	close(fd);
2170 	return (NULL);
2171     }
2172 
2173     /* First use of this object, so we must map it in */
2174     obj = do_load_object(fd, name, path, &sb, flags);
2175     if (obj == NULL)
2176 	free(path);
2177     close(fd);
2178 
2179     return obj;
2180 }
2181 
2182 static Obj_Entry *
2183 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2184   int flags)
2185 {
2186     Obj_Entry *obj;
2187     struct statfs fs;
2188 
2189     /*
2190      * but first, make sure that environment variables haven't been
2191      * used to circumvent the noexec flag on a filesystem.
2192      */
2193     if (dangerous_ld_env) {
2194 	if (fstatfs(fd, &fs) != 0) {
2195 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2196 	    return NULL;
2197 	}
2198 	if (fs.f_flags & MNT_NOEXEC) {
2199 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2200 	    return NULL;
2201 	}
2202     }
2203     dbg("loading \"%s\"", printable_path(path));
2204     obj = map_object(fd, printable_path(path), sbp);
2205     if (obj == NULL)
2206         return NULL;
2207 
2208     /*
2209      * If DT_SONAME is present in the object, digest_dynamic2 already
2210      * added it to the object names.
2211      */
2212     if (name != NULL)
2213 	object_add_name(obj, name);
2214     obj->path = path;
2215     digest_dynamic(obj, 0);
2216     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2217 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2218     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2219       RTLD_LO_DLOPEN) {
2220 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2221 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2222 	munmap(obj->mapbase, obj->mapsize);
2223 	obj_free(obj);
2224 	return (NULL);
2225     }
2226 
2227     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2228     *obj_tail = obj;
2229     obj_tail = &obj->next;
2230     obj_count++;
2231     obj_loads++;
2232     linkmap_add(obj);	/* for GDB & dlinfo() */
2233     max_stack_flags |= obj->stack_flags;
2234 
2235     dbg("  %p .. %p: %s", obj->mapbase,
2236          obj->mapbase + obj->mapsize - 1, obj->path);
2237     if (obj->textrel)
2238 	dbg("  WARNING: %s has impure text", obj->path);
2239     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2240 	obj->path);
2241 
2242     return obj;
2243 }
2244 
2245 static Obj_Entry *
2246 obj_from_addr(const void *addr)
2247 {
2248     Obj_Entry *obj;
2249 
2250     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2251 	if (addr < (void *) obj->mapbase)
2252 	    continue;
2253 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2254 	    return obj;
2255     }
2256     return NULL;
2257 }
2258 
2259 static void
2260 preinit_main(void)
2261 {
2262     Elf_Addr *preinit_addr;
2263     int index;
2264 
2265     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2266     if (preinit_addr == NULL)
2267 	return;
2268 
2269     for (index = 0; index < obj_main->preinit_array_num; index++) {
2270 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2271 	    dbg("calling preinit function for %s at %p", obj_main->path,
2272 	      (void *)preinit_addr[index]);
2273 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2274 	      0, 0, obj_main->path);
2275 	    call_init_pointer(obj_main, preinit_addr[index]);
2276 	}
2277     }
2278 }
2279 
2280 /*
2281  * Call the finalization functions for each of the objects in "list"
2282  * belonging to the DAG of "root" and referenced once. If NULL "root"
2283  * is specified, every finalization function will be called regardless
2284  * of the reference count and the list elements won't be freed. All of
2285  * the objects are expected to have non-NULL fini functions.
2286  */
2287 static void
2288 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2289 {
2290     Objlist_Entry *elm;
2291     char *saved_msg;
2292     Elf_Addr *fini_addr;
2293     int index;
2294 
2295     assert(root == NULL || root->refcount == 1);
2296 
2297     /*
2298      * Preserve the current error message since a fini function might
2299      * call into the dynamic linker and overwrite it.
2300      */
2301     saved_msg = errmsg_save();
2302     do {
2303 	STAILQ_FOREACH(elm, list, link) {
2304 	    if (root != NULL && (elm->obj->refcount != 1 ||
2305 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2306 		continue;
2307 	    /* Remove object from fini list to prevent recursive invocation. */
2308 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2309 	    /*
2310 	     * XXX: If a dlopen() call references an object while the
2311 	     * fini function is in progress, we might end up trying to
2312 	     * unload the referenced object in dlclose() or the object
2313 	     * won't be unloaded although its fini function has been
2314 	     * called.
2315 	     */
2316 	    lock_release(rtld_bind_lock, lockstate);
2317 
2318 	    /*
2319 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2320 	     * When this happens, DT_FINI_ARRAY is processed first.
2321 	     */
2322 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2323 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2324 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2325 		  index--) {
2326 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2327 			dbg("calling fini function for %s at %p",
2328 			    elm->obj->path, (void *)fini_addr[index]);
2329 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2330 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2331 			call_initfini_pointer(elm->obj, fini_addr[index]);
2332 		    }
2333 		}
2334 	    }
2335 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2336 		dbg("calling fini function for %s at %p", elm->obj->path,
2337 		    (void *)elm->obj->fini);
2338 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2339 		    0, 0, elm->obj->path);
2340 		call_initfini_pointer(elm->obj, elm->obj->fini);
2341 	    }
2342 	    wlock_acquire(rtld_bind_lock, lockstate);
2343 	    /* No need to free anything if process is going down. */
2344 	    if (root != NULL)
2345 	    	free(elm);
2346 	    /*
2347 	     * We must restart the list traversal after every fini call
2348 	     * because a dlclose() call from the fini function or from
2349 	     * another thread might have modified the reference counts.
2350 	     */
2351 	    break;
2352 	}
2353     } while (elm != NULL);
2354     errmsg_restore(saved_msg);
2355 }
2356 
2357 /*
2358  * Call the initialization functions for each of the objects in
2359  * "list".  All of the objects are expected to have non-NULL init
2360  * functions.
2361  */
2362 static void
2363 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2364 {
2365     Objlist_Entry *elm;
2366     Obj_Entry *obj;
2367     char *saved_msg;
2368     Elf_Addr *init_addr;
2369     int index;
2370 
2371     /*
2372      * Clean init_scanned flag so that objects can be rechecked and
2373      * possibly initialized earlier if any of vectors called below
2374      * cause the change by using dlopen.
2375      */
2376     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2377 	obj->init_scanned = false;
2378 
2379     /*
2380      * Preserve the current error message since an init function might
2381      * call into the dynamic linker and overwrite it.
2382      */
2383     saved_msg = errmsg_save();
2384     STAILQ_FOREACH(elm, list, link) {
2385 	if (elm->obj->init_done) /* Initialized early. */
2386 	    continue;
2387 	/*
2388 	 * Race: other thread might try to use this object before current
2389 	 * one completes the initilization. Not much can be done here
2390 	 * without better locking.
2391 	 */
2392 	elm->obj->init_done = true;
2393 	lock_release(rtld_bind_lock, lockstate);
2394 
2395         /*
2396          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2397          * When this happens, DT_INIT is processed first.
2398          */
2399 	if (elm->obj->init != (Elf_Addr)NULL) {
2400 	    dbg("calling init function for %s at %p", elm->obj->path,
2401 	        (void *)elm->obj->init);
2402 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2403 	        0, 0, elm->obj->path);
2404 	    call_initfini_pointer(elm->obj, elm->obj->init);
2405 	}
2406 	init_addr = (Elf_Addr *)elm->obj->init_array;
2407 	if (init_addr != NULL) {
2408 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2409 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2410 		    dbg("calling init function for %s at %p", elm->obj->path,
2411 			(void *)init_addr[index]);
2412 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2413 			(void *)init_addr[index], 0, 0, elm->obj->path);
2414 		    call_init_pointer(elm->obj, init_addr[index]);
2415 		}
2416 	    }
2417 	}
2418 	wlock_acquire(rtld_bind_lock, lockstate);
2419     }
2420     errmsg_restore(saved_msg);
2421 }
2422 
2423 static void
2424 objlist_clear(Objlist *list)
2425 {
2426     Objlist_Entry *elm;
2427 
2428     while (!STAILQ_EMPTY(list)) {
2429 	elm = STAILQ_FIRST(list);
2430 	STAILQ_REMOVE_HEAD(list, link);
2431 	free(elm);
2432     }
2433 }
2434 
2435 static Objlist_Entry *
2436 objlist_find(Objlist *list, const Obj_Entry *obj)
2437 {
2438     Objlist_Entry *elm;
2439 
2440     STAILQ_FOREACH(elm, list, link)
2441 	if (elm->obj == obj)
2442 	    return elm;
2443     return NULL;
2444 }
2445 
2446 static void
2447 objlist_init(Objlist *list)
2448 {
2449     STAILQ_INIT(list);
2450 }
2451 
2452 static void
2453 objlist_push_head(Objlist *list, Obj_Entry *obj)
2454 {
2455     Objlist_Entry *elm;
2456 
2457     elm = NEW(Objlist_Entry);
2458     elm->obj = obj;
2459     STAILQ_INSERT_HEAD(list, elm, link);
2460 }
2461 
2462 static void
2463 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2464 {
2465     Objlist_Entry *elm;
2466 
2467     elm = NEW(Objlist_Entry);
2468     elm->obj = obj;
2469     STAILQ_INSERT_TAIL(list, elm, link);
2470 }
2471 
2472 static void
2473 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2474 {
2475 	Objlist_Entry *elm, *listelm;
2476 
2477 	STAILQ_FOREACH(listelm, list, link) {
2478 		if (listelm->obj == listobj)
2479 			break;
2480 	}
2481 	elm = NEW(Objlist_Entry);
2482 	elm->obj = obj;
2483 	if (listelm != NULL)
2484 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2485 	else
2486 		STAILQ_INSERT_TAIL(list, elm, link);
2487 }
2488 
2489 static void
2490 objlist_remove(Objlist *list, Obj_Entry *obj)
2491 {
2492     Objlist_Entry *elm;
2493 
2494     if ((elm = objlist_find(list, obj)) != NULL) {
2495 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2496 	free(elm);
2497     }
2498 }
2499 
2500 /*
2501  * Relocate dag rooted in the specified object.
2502  * Returns 0 on success, or -1 on failure.
2503  */
2504 
2505 static int
2506 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2507     int flags, RtldLockState *lockstate)
2508 {
2509 	Objlist_Entry *elm;
2510 	int error;
2511 
2512 	error = 0;
2513 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2514 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2515 		    lockstate);
2516 		if (error == -1)
2517 			break;
2518 	}
2519 	return (error);
2520 }
2521 
2522 /*
2523  * Relocate single object.
2524  * Returns 0 on success, or -1 on failure.
2525  */
2526 static int
2527 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2528     int flags, RtldLockState *lockstate)
2529 {
2530 
2531 	if (obj->relocated)
2532 		return (0);
2533 	obj->relocated = true;
2534 	if (obj != rtldobj)
2535 		dbg("relocating \"%s\"", obj->path);
2536 
2537 	if (obj->symtab == NULL || obj->strtab == NULL ||
2538 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2539 		_rtld_error("%s: Shared object has no run-time symbol table",
2540 			    obj->path);
2541 		return (-1);
2542 	}
2543 
2544 	if (obj->textrel) {
2545 		/* There are relocations to the write-protected text segment. */
2546 		if (mprotect(obj->mapbase, obj->textsize,
2547 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2548 			_rtld_error("%s: Cannot write-enable text segment: %s",
2549 			    obj->path, rtld_strerror(errno));
2550 			return (-1);
2551 		}
2552 	}
2553 
2554 	/* Process the non-PLT non-IFUNC relocations. */
2555 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2556 		return (-1);
2557 
2558 	if (obj->textrel) {	/* Re-protected the text segment. */
2559 		if (mprotect(obj->mapbase, obj->textsize,
2560 		    PROT_READ|PROT_EXEC) == -1) {
2561 			_rtld_error("%s: Cannot write-protect text segment: %s",
2562 			    obj->path, rtld_strerror(errno));
2563 			return (-1);
2564 		}
2565 	}
2566 
2567 	/* Set the special PLT or GOT entries. */
2568 	init_pltgot(obj);
2569 
2570 	/* Process the PLT relocations. */
2571 	if (reloc_plt(obj) == -1)
2572 		return (-1);
2573 	/* Relocate the jump slots if we are doing immediate binding. */
2574 	if (obj->bind_now || bind_now)
2575 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2576 			return (-1);
2577 
2578 	/*
2579 	 * Process the non-PLT IFUNC relocations.  The relocations are
2580 	 * processed in two phases, because IFUNC resolvers may
2581 	 * reference other symbols, which must be readily processed
2582 	 * before resolvers are called.
2583 	 */
2584 	if (obj->non_plt_gnu_ifunc &&
2585 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2586 		return (-1);
2587 
2588 	if (obj->relro_size > 0) {
2589 		if (mprotect(obj->relro_page, obj->relro_size,
2590 		    PROT_READ) == -1) {
2591 			_rtld_error("%s: Cannot enforce relro protection: %s",
2592 			    obj->path, rtld_strerror(errno));
2593 			return (-1);
2594 		}
2595 	}
2596 
2597 	/*
2598 	 * Set up the magic number and version in the Obj_Entry.  These
2599 	 * were checked in the crt1.o from the original ElfKit, so we
2600 	 * set them for backward compatibility.
2601 	 */
2602 	obj->magic = RTLD_MAGIC;
2603 	obj->version = RTLD_VERSION;
2604 
2605 	return (0);
2606 }
2607 
2608 /*
2609  * Relocate newly-loaded shared objects.  The argument is a pointer to
2610  * the Obj_Entry for the first such object.  All objects from the first
2611  * to the end of the list of objects are relocated.  Returns 0 on success,
2612  * or -1 on failure.
2613  */
2614 static int
2615 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2616     int flags, RtldLockState *lockstate)
2617 {
2618 	Obj_Entry *obj;
2619 	int error;
2620 
2621 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2622 		error = relocate_object(obj, bind_now, rtldobj, flags,
2623 		    lockstate);
2624 		if (error == -1)
2625 			break;
2626 	}
2627 	return (error);
2628 }
2629 
2630 /*
2631  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2632  * referencing STT_GNU_IFUNC symbols is postponed till the other
2633  * relocations are done.  The indirect functions specified as
2634  * ifunc are allowed to call other symbols, so we need to have
2635  * objects relocated before asking for resolution from indirects.
2636  *
2637  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2638  * instead of the usual lazy handling of PLT slots.  It is
2639  * consistent with how GNU does it.
2640  */
2641 static int
2642 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2643     RtldLockState *lockstate)
2644 {
2645 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2646 		return (-1);
2647 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2648 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2649 		return (-1);
2650 	return (0);
2651 }
2652 
2653 static int
2654 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2655     RtldLockState *lockstate)
2656 {
2657 	Obj_Entry *obj;
2658 
2659 	for (obj = first;  obj != NULL;  obj = obj->next) {
2660 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2661 			return (-1);
2662 	}
2663 	return (0);
2664 }
2665 
2666 static int
2667 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2668     RtldLockState *lockstate)
2669 {
2670 	Objlist_Entry *elm;
2671 
2672 	STAILQ_FOREACH(elm, list, link) {
2673 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2674 		    lockstate) == -1)
2675 			return (-1);
2676 	}
2677 	return (0);
2678 }
2679 
2680 /*
2681  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2682  * before the process exits.
2683  */
2684 static void
2685 rtld_exit(void)
2686 {
2687     RtldLockState lockstate;
2688 
2689     wlock_acquire(rtld_bind_lock, &lockstate);
2690     dbg("rtld_exit()");
2691     objlist_call_fini(&list_fini, NULL, &lockstate);
2692     /* No need to remove the items from the list, since we are exiting. */
2693     if (!libmap_disable)
2694         lm_fini();
2695     lock_release(rtld_bind_lock, &lockstate);
2696 }
2697 
2698 /*
2699  * Iterate over a search path, translate each element, and invoke the
2700  * callback on the result.
2701  */
2702 static void *
2703 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2704 {
2705     const char *trans;
2706     if (path == NULL)
2707 	return (NULL);
2708 
2709     path += strspn(path, ":;");
2710     while (*path != '\0') {
2711 	size_t len;
2712 	char  *res;
2713 
2714 	len = strcspn(path, ":;");
2715 	trans = lm_findn(NULL, path, len);
2716 	if (trans)
2717 	    res = callback(trans, strlen(trans), arg);
2718 	else
2719 	    res = callback(path, len, arg);
2720 
2721 	if (res != NULL)
2722 	    return (res);
2723 
2724 	path += len;
2725 	path += strspn(path, ":;");
2726     }
2727 
2728     return (NULL);
2729 }
2730 
2731 struct try_library_args {
2732     const char	*name;
2733     size_t	 namelen;
2734     char	*buffer;
2735     size_t	 buflen;
2736 };
2737 
2738 static void *
2739 try_library_path(const char *dir, size_t dirlen, void *param)
2740 {
2741     struct try_library_args *arg;
2742 
2743     arg = param;
2744     if (*dir == '/' || trust) {
2745 	char *pathname;
2746 
2747 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2748 		return (NULL);
2749 
2750 	pathname = arg->buffer;
2751 	strncpy(pathname, dir, dirlen);
2752 	pathname[dirlen] = '/';
2753 	strcpy(pathname + dirlen + 1, arg->name);
2754 
2755 	dbg("  Trying \"%s\"", pathname);
2756 	if (access(pathname, F_OK) == 0) {		/* We found it */
2757 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2758 	    strcpy(pathname, arg->buffer);
2759 	    return (pathname);
2760 	}
2761     }
2762     return (NULL);
2763 }
2764 
2765 static char *
2766 search_library_path(const char *name, const char *path)
2767 {
2768     char *p;
2769     struct try_library_args arg;
2770 
2771     if (path == NULL)
2772 	return NULL;
2773 
2774     arg.name = name;
2775     arg.namelen = strlen(name);
2776     arg.buffer = xmalloc(PATH_MAX);
2777     arg.buflen = PATH_MAX;
2778 
2779     p = path_enumerate(path, try_library_path, &arg);
2780 
2781     free(arg.buffer);
2782 
2783     return (p);
2784 }
2785 
2786 
2787 /*
2788  * Finds the library with the given name using the directory descriptors
2789  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2790  *
2791  * Returns a freshly-opened close-on-exec file descriptor for the library,
2792  * or -1 if the library cannot be found.
2793  */
2794 static char *
2795 search_library_pathfds(const char *name, const char *path, int *fdp)
2796 {
2797 	char *envcopy, *fdstr, *found, *last_token;
2798 	size_t len;
2799 	int dirfd, fd;
2800 
2801 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2802 
2803 	/* Don't load from user-specified libdirs into setuid binaries. */
2804 	if (!trust)
2805 		return (NULL);
2806 
2807 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2808 	if (path == NULL)
2809 		return (NULL);
2810 
2811 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2812 	if (name[0] == '/') {
2813 		dbg("Absolute path (%s) passed to %s", name, __func__);
2814 		return (NULL);
2815 	}
2816 
2817 	/*
2818 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2819 	 * copy of the path, as strtok_r rewrites separator tokens
2820 	 * with '\0'.
2821 	 */
2822 	found = NULL;
2823 	envcopy = xstrdup(path);
2824 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2825 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2826 		dirfd = parse_libdir(fdstr);
2827 		if (dirfd < 0)
2828 			break;
2829 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2830 		if (fd >= 0) {
2831 			*fdp = fd;
2832 			len = strlen(fdstr) + strlen(name) + 3;
2833 			found = xmalloc(len);
2834 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2835 				_rtld_error("error generating '%d/%s'",
2836 				    dirfd, name);
2837 				die();
2838 			}
2839 			dbg("open('%s') => %d", found, fd);
2840 			break;
2841 		}
2842 	}
2843 	free(envcopy);
2844 
2845 	return (found);
2846 }
2847 
2848 
2849 int
2850 dlclose(void *handle)
2851 {
2852     Obj_Entry *root;
2853     RtldLockState lockstate;
2854 
2855     wlock_acquire(rtld_bind_lock, &lockstate);
2856     root = dlcheck(handle);
2857     if (root == NULL) {
2858 	lock_release(rtld_bind_lock, &lockstate);
2859 	return -1;
2860     }
2861     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2862 	root->path);
2863 
2864     /* Unreference the object and its dependencies. */
2865     root->dl_refcount--;
2866 
2867     if (root->refcount == 1) {
2868 	/*
2869 	 * The object will be no longer referenced, so we must unload it.
2870 	 * First, call the fini functions.
2871 	 */
2872 	objlist_call_fini(&list_fini, root, &lockstate);
2873 
2874 	unref_dag(root);
2875 
2876 	/* Finish cleaning up the newly-unreferenced objects. */
2877 	GDB_STATE(RT_DELETE,&root->linkmap);
2878 	unload_object(root);
2879 	GDB_STATE(RT_CONSISTENT,NULL);
2880     } else
2881 	unref_dag(root);
2882 
2883     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2884     lock_release(rtld_bind_lock, &lockstate);
2885     return 0;
2886 }
2887 
2888 char *
2889 dlerror(void)
2890 {
2891     char *msg = error_message;
2892     error_message = NULL;
2893     return msg;
2894 }
2895 
2896 /*
2897  * This function is deprecated and has no effect.
2898  */
2899 void
2900 dllockinit(void *context,
2901 	   void *(*lock_create)(void *context),
2902            void (*rlock_acquire)(void *lock),
2903            void (*wlock_acquire)(void *lock),
2904            void (*lock_release)(void *lock),
2905            void (*lock_destroy)(void *lock),
2906 	   void (*context_destroy)(void *context))
2907 {
2908     static void *cur_context;
2909     static void (*cur_context_destroy)(void *);
2910 
2911     /* Just destroy the context from the previous call, if necessary. */
2912     if (cur_context_destroy != NULL)
2913 	cur_context_destroy(cur_context);
2914     cur_context = context;
2915     cur_context_destroy = context_destroy;
2916 }
2917 
2918 void *
2919 dlopen(const char *name, int mode)
2920 {
2921 
2922 	return (rtld_dlopen(name, -1, mode));
2923 }
2924 
2925 void *
2926 fdlopen(int fd, int mode)
2927 {
2928 
2929 	return (rtld_dlopen(NULL, fd, mode));
2930 }
2931 
2932 static void *
2933 rtld_dlopen(const char *name, int fd, int mode)
2934 {
2935     RtldLockState lockstate;
2936     int lo_flags;
2937 
2938     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2939     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2940     if (ld_tracing != NULL) {
2941 	rlock_acquire(rtld_bind_lock, &lockstate);
2942 	if (sigsetjmp(lockstate.env, 0) != 0)
2943 	    lock_upgrade(rtld_bind_lock, &lockstate);
2944 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2945 	lock_release(rtld_bind_lock, &lockstate);
2946     }
2947     lo_flags = RTLD_LO_DLOPEN;
2948     if (mode & RTLD_NODELETE)
2949 	    lo_flags |= RTLD_LO_NODELETE;
2950     if (mode & RTLD_NOLOAD)
2951 	    lo_flags |= RTLD_LO_NOLOAD;
2952     if (ld_tracing != NULL)
2953 	    lo_flags |= RTLD_LO_TRACE;
2954 
2955     return (dlopen_object(name, fd, obj_main, lo_flags,
2956       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2957 }
2958 
2959 static void
2960 dlopen_cleanup(Obj_Entry *obj)
2961 {
2962 
2963 	obj->dl_refcount--;
2964 	unref_dag(obj);
2965 	if (obj->refcount == 0)
2966 		unload_object(obj);
2967 }
2968 
2969 static Obj_Entry *
2970 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2971     int mode, RtldLockState *lockstate)
2972 {
2973     Obj_Entry **old_obj_tail;
2974     Obj_Entry *obj;
2975     Objlist initlist;
2976     RtldLockState mlockstate;
2977     int result;
2978 
2979     objlist_init(&initlist);
2980 
2981     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2982 	wlock_acquire(rtld_bind_lock, &mlockstate);
2983 	lockstate = &mlockstate;
2984     }
2985     GDB_STATE(RT_ADD,NULL);
2986 
2987     old_obj_tail = obj_tail;
2988     obj = NULL;
2989     if (name == NULL && fd == -1) {
2990 	obj = obj_main;
2991 	obj->refcount++;
2992     } else {
2993 	obj = load_object(name, fd, refobj, lo_flags);
2994     }
2995 
2996     if (obj) {
2997 	obj->dl_refcount++;
2998 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2999 	    objlist_push_tail(&list_global, obj);
3000 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3001 	    assert(*old_obj_tail == obj);
3002 	    result = load_needed_objects(obj,
3003 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3004 	    init_dag(obj);
3005 	    ref_dag(obj);
3006 	    if (result != -1)
3007 		result = rtld_verify_versions(&obj->dagmembers);
3008 	    if (result != -1 && ld_tracing)
3009 		goto trace;
3010 	    if (result == -1 || relocate_object_dag(obj,
3011 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3012 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3013 	      lockstate) == -1) {
3014 		dlopen_cleanup(obj);
3015 		obj = NULL;
3016 	    } else if (lo_flags & RTLD_LO_EARLY) {
3017 		/*
3018 		 * Do not call the init functions for early loaded
3019 		 * filtees.  The image is still not initialized enough
3020 		 * for them to work.
3021 		 *
3022 		 * Our object is found by the global object list and
3023 		 * will be ordered among all init calls done right
3024 		 * before transferring control to main.
3025 		 */
3026 	    } else {
3027 		/* Make list of init functions to call. */
3028 		initlist_add_objects(obj, &obj->next, &initlist);
3029 	    }
3030 	    /*
3031 	     * Process all no_delete objects here, given them own
3032 	     * DAGs to prevent their dependencies from being unloaded.
3033 	     * This has to be done after we have loaded all of the
3034 	     * dependencies, so that we do not miss any.
3035 	     */
3036 	    if (obj != NULL)
3037 		process_nodelete(obj);
3038 	} else {
3039 	    /*
3040 	     * Bump the reference counts for objects on this DAG.  If
3041 	     * this is the first dlopen() call for the object that was
3042 	     * already loaded as a dependency, initialize the dag
3043 	     * starting at it.
3044 	     */
3045 	    init_dag(obj);
3046 	    ref_dag(obj);
3047 
3048 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3049 		goto trace;
3050 	}
3051 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3052 	  obj->z_nodelete) && !obj->ref_nodel) {
3053 	    dbg("obj %s nodelete", obj->path);
3054 	    ref_dag(obj);
3055 	    obj->z_nodelete = obj->ref_nodel = true;
3056 	}
3057     }
3058 
3059     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3060 	name);
3061     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3062 
3063     if (!(lo_flags & RTLD_LO_EARLY)) {
3064 	map_stacks_exec(lockstate);
3065     }
3066 
3067     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3068       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3069       lockstate) == -1) {
3070 	objlist_clear(&initlist);
3071 	dlopen_cleanup(obj);
3072 	if (lockstate == &mlockstate)
3073 	    lock_release(rtld_bind_lock, lockstate);
3074 	return (NULL);
3075     }
3076 
3077     if (!(lo_flags & RTLD_LO_EARLY)) {
3078 	/* Call the init functions. */
3079 	objlist_call_init(&initlist, lockstate);
3080     }
3081     objlist_clear(&initlist);
3082     if (lockstate == &mlockstate)
3083 	lock_release(rtld_bind_lock, lockstate);
3084     return obj;
3085 trace:
3086     trace_loaded_objects(obj);
3087     if (lockstate == &mlockstate)
3088 	lock_release(rtld_bind_lock, lockstate);
3089     exit(0);
3090 }
3091 
3092 static void *
3093 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3094     int flags)
3095 {
3096     DoneList donelist;
3097     const Obj_Entry *obj, *defobj;
3098     const Elf_Sym *def;
3099     SymLook req;
3100     RtldLockState lockstate;
3101     tls_index ti;
3102     void *sym;
3103     int res;
3104 
3105     def = NULL;
3106     defobj = NULL;
3107     symlook_init(&req, name);
3108     req.ventry = ve;
3109     req.flags = flags | SYMLOOK_IN_PLT;
3110     req.lockstate = &lockstate;
3111 
3112     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3113     rlock_acquire(rtld_bind_lock, &lockstate);
3114     if (sigsetjmp(lockstate.env, 0) != 0)
3115 	    lock_upgrade(rtld_bind_lock, &lockstate);
3116     if (handle == NULL || handle == RTLD_NEXT ||
3117 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3118 
3119 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3120 	    _rtld_error("Cannot determine caller's shared object");
3121 	    lock_release(rtld_bind_lock, &lockstate);
3122 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3123 	    return NULL;
3124 	}
3125 	if (handle == NULL) {	/* Just the caller's shared object. */
3126 	    res = symlook_obj(&req, obj);
3127 	    if (res == 0) {
3128 		def = req.sym_out;
3129 		defobj = req.defobj_out;
3130 	    }
3131 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3132 		   handle == RTLD_SELF) { /* ... caller included */
3133 	    if (handle == RTLD_NEXT)
3134 		obj = obj->next;
3135 	    for (; obj != NULL; obj = obj->next) {
3136 		res = symlook_obj(&req, obj);
3137 		if (res == 0) {
3138 		    if (def == NULL ||
3139 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3140 			def = req.sym_out;
3141 			defobj = req.defobj_out;
3142 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3143 			    break;
3144 		    }
3145 		}
3146 	    }
3147 	    /*
3148 	     * Search the dynamic linker itself, and possibly resolve the
3149 	     * symbol from there.  This is how the application links to
3150 	     * dynamic linker services such as dlopen.
3151 	     */
3152 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3153 		res = symlook_obj(&req, &obj_rtld);
3154 		if (res == 0) {
3155 		    def = req.sym_out;
3156 		    defobj = req.defobj_out;
3157 		}
3158 	    }
3159 	} else {
3160 	    assert(handle == RTLD_DEFAULT);
3161 	    res = symlook_default(&req, obj);
3162 	    if (res == 0) {
3163 		defobj = req.defobj_out;
3164 		def = req.sym_out;
3165 	    }
3166 	}
3167     } else {
3168 	if ((obj = dlcheck(handle)) == NULL) {
3169 	    lock_release(rtld_bind_lock, &lockstate);
3170 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3171 	    return NULL;
3172 	}
3173 
3174 	donelist_init(&donelist);
3175 	if (obj->mainprog) {
3176             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3177 	    res = symlook_global(&req, &donelist);
3178 	    if (res == 0) {
3179 		def = req.sym_out;
3180 		defobj = req.defobj_out;
3181 	    }
3182 	    /*
3183 	     * Search the dynamic linker itself, and possibly resolve the
3184 	     * symbol from there.  This is how the application links to
3185 	     * dynamic linker services such as dlopen.
3186 	     */
3187 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3188 		res = symlook_obj(&req, &obj_rtld);
3189 		if (res == 0) {
3190 		    def = req.sym_out;
3191 		    defobj = req.defobj_out;
3192 		}
3193 	    }
3194 	}
3195 	else {
3196 	    /* Search the whole DAG rooted at the given object. */
3197 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3198 	    if (res == 0) {
3199 		def = req.sym_out;
3200 		defobj = req.defobj_out;
3201 	    }
3202 	}
3203     }
3204 
3205     if (def != NULL) {
3206 	lock_release(rtld_bind_lock, &lockstate);
3207 
3208 	/*
3209 	 * The value required by the caller is derived from the value
3210 	 * of the symbol. this is simply the relocated value of the
3211 	 * symbol.
3212 	 */
3213 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3214 	    sym = make_function_pointer(def, defobj);
3215 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3216 	    sym = rtld_resolve_ifunc(defobj, def);
3217 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3218 	    ti.ti_module = defobj->tlsindex;
3219 	    ti.ti_offset = def->st_value;
3220 	    sym = __tls_get_addr(&ti);
3221 	} else
3222 	    sym = defobj->relocbase + def->st_value;
3223 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3224 	return (sym);
3225     }
3226 
3227     _rtld_error("Undefined symbol \"%s\"", name);
3228     lock_release(rtld_bind_lock, &lockstate);
3229     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3230     return NULL;
3231 }
3232 
3233 void *
3234 dlsym(void *handle, const char *name)
3235 {
3236 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3237 	    SYMLOOK_DLSYM);
3238 }
3239 
3240 dlfunc_t
3241 dlfunc(void *handle, const char *name)
3242 {
3243 	union {
3244 		void *d;
3245 		dlfunc_t f;
3246 	} rv;
3247 
3248 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3249 	    SYMLOOK_DLSYM);
3250 	return (rv.f);
3251 }
3252 
3253 void *
3254 dlvsym(void *handle, const char *name, const char *version)
3255 {
3256 	Ver_Entry ventry;
3257 
3258 	ventry.name = version;
3259 	ventry.file = NULL;
3260 	ventry.hash = elf_hash(version);
3261 	ventry.flags= 0;
3262 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3263 	    SYMLOOK_DLSYM);
3264 }
3265 
3266 int
3267 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3268 {
3269     const Obj_Entry *obj;
3270     RtldLockState lockstate;
3271 
3272     rlock_acquire(rtld_bind_lock, &lockstate);
3273     obj = obj_from_addr(addr);
3274     if (obj == NULL) {
3275         _rtld_error("No shared object contains address");
3276 	lock_release(rtld_bind_lock, &lockstate);
3277         return (0);
3278     }
3279     rtld_fill_dl_phdr_info(obj, phdr_info);
3280     lock_release(rtld_bind_lock, &lockstate);
3281     return (1);
3282 }
3283 
3284 int
3285 dladdr(const void *addr, Dl_info *info)
3286 {
3287     const Obj_Entry *obj;
3288     const Elf_Sym *def;
3289     void *symbol_addr;
3290     unsigned long symoffset;
3291     RtldLockState lockstate;
3292 
3293     rlock_acquire(rtld_bind_lock, &lockstate);
3294     obj = obj_from_addr(addr);
3295     if (obj == NULL) {
3296         _rtld_error("No shared object contains address");
3297 	lock_release(rtld_bind_lock, &lockstate);
3298         return 0;
3299     }
3300     info->dli_fname = obj->path;
3301     info->dli_fbase = obj->mapbase;
3302     info->dli_saddr = (void *)0;
3303     info->dli_sname = NULL;
3304 
3305     /*
3306      * Walk the symbol list looking for the symbol whose address is
3307      * closest to the address sent in.
3308      */
3309     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3310         def = obj->symtab + symoffset;
3311 
3312         /*
3313          * For skip the symbol if st_shndx is either SHN_UNDEF or
3314          * SHN_COMMON.
3315          */
3316         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3317             continue;
3318 
3319         /*
3320          * If the symbol is greater than the specified address, or if it
3321          * is further away from addr than the current nearest symbol,
3322          * then reject it.
3323          */
3324         symbol_addr = obj->relocbase + def->st_value;
3325         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3326             continue;
3327 
3328         /* Update our idea of the nearest symbol. */
3329         info->dli_sname = obj->strtab + def->st_name;
3330         info->dli_saddr = symbol_addr;
3331 
3332         /* Exact match? */
3333         if (info->dli_saddr == addr)
3334             break;
3335     }
3336     lock_release(rtld_bind_lock, &lockstate);
3337     return 1;
3338 }
3339 
3340 int
3341 dlinfo(void *handle, int request, void *p)
3342 {
3343     const Obj_Entry *obj;
3344     RtldLockState lockstate;
3345     int error;
3346 
3347     rlock_acquire(rtld_bind_lock, &lockstate);
3348 
3349     if (handle == NULL || handle == RTLD_SELF) {
3350 	void *retaddr;
3351 
3352 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3353 	if ((obj = obj_from_addr(retaddr)) == NULL)
3354 	    _rtld_error("Cannot determine caller's shared object");
3355     } else
3356 	obj = dlcheck(handle);
3357 
3358     if (obj == NULL) {
3359 	lock_release(rtld_bind_lock, &lockstate);
3360 	return (-1);
3361     }
3362 
3363     error = 0;
3364     switch (request) {
3365     case RTLD_DI_LINKMAP:
3366 	*((struct link_map const **)p) = &obj->linkmap;
3367 	break;
3368     case RTLD_DI_ORIGIN:
3369 	error = rtld_dirname(obj->path, p);
3370 	break;
3371 
3372     case RTLD_DI_SERINFOSIZE:
3373     case RTLD_DI_SERINFO:
3374 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3375 	break;
3376 
3377     default:
3378 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3379 	error = -1;
3380     }
3381 
3382     lock_release(rtld_bind_lock, &lockstate);
3383 
3384     return (error);
3385 }
3386 
3387 static void
3388 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3389 {
3390 
3391 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3392 	phdr_info->dlpi_name = obj->path;
3393 	phdr_info->dlpi_phdr = obj->phdr;
3394 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3395 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3396 	phdr_info->dlpi_tls_data = obj->tlsinit;
3397 	phdr_info->dlpi_adds = obj_loads;
3398 	phdr_info->dlpi_subs = obj_loads - obj_count;
3399 }
3400 
3401 int
3402 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3403 {
3404     struct dl_phdr_info phdr_info;
3405     const Obj_Entry *obj;
3406     RtldLockState bind_lockstate, phdr_lockstate;
3407     int error;
3408 
3409     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3410     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3411 
3412     error = 0;
3413 
3414     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3415 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3416 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3417 		break;
3418 
3419     }
3420     if (error == 0) {
3421 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3422 	error = callback(&phdr_info, sizeof(phdr_info), param);
3423     }
3424 
3425     lock_release(rtld_bind_lock, &bind_lockstate);
3426     lock_release(rtld_phdr_lock, &phdr_lockstate);
3427 
3428     return (error);
3429 }
3430 
3431 static void *
3432 fill_search_info(const char *dir, size_t dirlen, void *param)
3433 {
3434     struct fill_search_info_args *arg;
3435 
3436     arg = param;
3437 
3438     if (arg->request == RTLD_DI_SERINFOSIZE) {
3439 	arg->serinfo->dls_cnt ++;
3440 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3441     } else {
3442 	struct dl_serpath *s_entry;
3443 
3444 	s_entry = arg->serpath;
3445 	s_entry->dls_name  = arg->strspace;
3446 	s_entry->dls_flags = arg->flags;
3447 
3448 	strncpy(arg->strspace, dir, dirlen);
3449 	arg->strspace[dirlen] = '\0';
3450 
3451 	arg->strspace += dirlen + 1;
3452 	arg->serpath++;
3453     }
3454 
3455     return (NULL);
3456 }
3457 
3458 static int
3459 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3460 {
3461     struct dl_serinfo _info;
3462     struct fill_search_info_args args;
3463 
3464     args.request = RTLD_DI_SERINFOSIZE;
3465     args.serinfo = &_info;
3466 
3467     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3468     _info.dls_cnt  = 0;
3469 
3470     path_enumerate(obj->rpath, fill_search_info, &args);
3471     path_enumerate(ld_library_path, fill_search_info, &args);
3472     path_enumerate(obj->runpath, fill_search_info, &args);
3473     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3474     if (!obj->z_nodeflib)
3475       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3476 
3477 
3478     if (request == RTLD_DI_SERINFOSIZE) {
3479 	info->dls_size = _info.dls_size;
3480 	info->dls_cnt = _info.dls_cnt;
3481 	return (0);
3482     }
3483 
3484     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3485 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3486 	return (-1);
3487     }
3488 
3489     args.request  = RTLD_DI_SERINFO;
3490     args.serinfo  = info;
3491     args.serpath  = &info->dls_serpath[0];
3492     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3493 
3494     args.flags = LA_SER_RUNPATH;
3495     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3496 	return (-1);
3497 
3498     args.flags = LA_SER_LIBPATH;
3499     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3500 	return (-1);
3501 
3502     args.flags = LA_SER_RUNPATH;
3503     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3504 	return (-1);
3505 
3506     args.flags = LA_SER_CONFIG;
3507     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3508       != NULL)
3509 	return (-1);
3510 
3511     args.flags = LA_SER_DEFAULT;
3512     if (!obj->z_nodeflib &&
3513       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3514 	return (-1);
3515     return (0);
3516 }
3517 
3518 static int
3519 rtld_dirname(const char *path, char *bname)
3520 {
3521     const char *endp;
3522 
3523     /* Empty or NULL string gets treated as "." */
3524     if (path == NULL || *path == '\0') {
3525 	bname[0] = '.';
3526 	bname[1] = '\0';
3527 	return (0);
3528     }
3529 
3530     /* Strip trailing slashes */
3531     endp = path + strlen(path) - 1;
3532     while (endp > path && *endp == '/')
3533 	endp--;
3534 
3535     /* Find the start of the dir */
3536     while (endp > path && *endp != '/')
3537 	endp--;
3538 
3539     /* Either the dir is "/" or there are no slashes */
3540     if (endp == path) {
3541 	bname[0] = *endp == '/' ? '/' : '.';
3542 	bname[1] = '\0';
3543 	return (0);
3544     } else {
3545 	do {
3546 	    endp--;
3547 	} while (endp > path && *endp == '/');
3548     }
3549 
3550     if (endp - path + 2 > PATH_MAX)
3551     {
3552 	_rtld_error("Filename is too long: %s", path);
3553 	return(-1);
3554     }
3555 
3556     strncpy(bname, path, endp - path + 1);
3557     bname[endp - path + 1] = '\0';
3558     return (0);
3559 }
3560 
3561 static int
3562 rtld_dirname_abs(const char *path, char *base)
3563 {
3564 	char base_rel[PATH_MAX];
3565 
3566 	if (rtld_dirname(path, base) == -1)
3567 		return (-1);
3568 	if (base[0] == '/')
3569 		return (0);
3570 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3571 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3572 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3573 		return (-1);
3574 	strcpy(base, base_rel);
3575 	return (0);
3576 }
3577 
3578 static void
3579 linkmap_add(Obj_Entry *obj)
3580 {
3581     struct link_map *l = &obj->linkmap;
3582     struct link_map *prev;
3583 
3584     obj->linkmap.l_name = obj->path;
3585     obj->linkmap.l_addr = obj->mapbase;
3586     obj->linkmap.l_ld = obj->dynamic;
3587 #ifdef __mips__
3588     /* GDB needs load offset on MIPS to use the symbols */
3589     obj->linkmap.l_offs = obj->relocbase;
3590 #endif
3591 
3592     if (r_debug.r_map == NULL) {
3593 	r_debug.r_map = l;
3594 	return;
3595     }
3596 
3597     /*
3598      * Scan to the end of the list, but not past the entry for the
3599      * dynamic linker, which we want to keep at the very end.
3600      */
3601     for (prev = r_debug.r_map;
3602       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3603       prev = prev->l_next)
3604 	;
3605 
3606     /* Link in the new entry. */
3607     l->l_prev = prev;
3608     l->l_next = prev->l_next;
3609     if (l->l_next != NULL)
3610 	l->l_next->l_prev = l;
3611     prev->l_next = l;
3612 }
3613 
3614 static void
3615 linkmap_delete(Obj_Entry *obj)
3616 {
3617     struct link_map *l = &obj->linkmap;
3618 
3619     if (l->l_prev == NULL) {
3620 	if ((r_debug.r_map = l->l_next) != NULL)
3621 	    l->l_next->l_prev = NULL;
3622 	return;
3623     }
3624 
3625     if ((l->l_prev->l_next = l->l_next) != NULL)
3626 	l->l_next->l_prev = l->l_prev;
3627 }
3628 
3629 /*
3630  * Function for the debugger to set a breakpoint on to gain control.
3631  *
3632  * The two parameters allow the debugger to easily find and determine
3633  * what the runtime loader is doing and to whom it is doing it.
3634  *
3635  * When the loadhook trap is hit (r_debug_state, set at program
3636  * initialization), the arguments can be found on the stack:
3637  *
3638  *  +8   struct link_map *m
3639  *  +4   struct r_debug  *rd
3640  *  +0   RetAddr
3641  */
3642 void
3643 r_debug_state(struct r_debug* rd, struct link_map *m)
3644 {
3645     /*
3646      * The following is a hack to force the compiler to emit calls to
3647      * this function, even when optimizing.  If the function is empty,
3648      * the compiler is not obliged to emit any code for calls to it,
3649      * even when marked __noinline.  However, gdb depends on those
3650      * calls being made.
3651      */
3652     __compiler_membar();
3653 }
3654 
3655 /*
3656  * A function called after init routines have completed. This can be used to
3657  * break before a program's entry routine is called, and can be used when
3658  * main is not available in the symbol table.
3659  */
3660 void
3661 _r_debug_postinit(struct link_map *m)
3662 {
3663 
3664 	/* See r_debug_state(). */
3665 	__compiler_membar();
3666 }
3667 
3668 /*
3669  * Get address of the pointer variable in the main program.
3670  * Prefer non-weak symbol over the weak one.
3671  */
3672 static const void **
3673 get_program_var_addr(const char *name, RtldLockState *lockstate)
3674 {
3675     SymLook req;
3676     DoneList donelist;
3677 
3678     symlook_init(&req, name);
3679     req.lockstate = lockstate;
3680     donelist_init(&donelist);
3681     if (symlook_global(&req, &donelist) != 0)
3682 	return (NULL);
3683     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3684 	return ((const void **)make_function_pointer(req.sym_out,
3685 	  req.defobj_out));
3686     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3687 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3688     else
3689 	return ((const void **)(req.defobj_out->relocbase +
3690 	  req.sym_out->st_value));
3691 }
3692 
3693 /*
3694  * Set a pointer variable in the main program to the given value.  This
3695  * is used to set key variables such as "environ" before any of the
3696  * init functions are called.
3697  */
3698 static void
3699 set_program_var(const char *name, const void *value)
3700 {
3701     const void **addr;
3702 
3703     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3704 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3705 	*addr = value;
3706     }
3707 }
3708 
3709 /*
3710  * Search the global objects, including dependencies and main object,
3711  * for the given symbol.
3712  */
3713 static int
3714 symlook_global(SymLook *req, DoneList *donelist)
3715 {
3716     SymLook req1;
3717     const Objlist_Entry *elm;
3718     int res;
3719 
3720     symlook_init_from_req(&req1, req);
3721 
3722     /* Search all objects loaded at program start up. */
3723     if (req->defobj_out == NULL ||
3724       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3725 	res = symlook_list(&req1, &list_main, donelist);
3726 	if (res == 0 && (req->defobj_out == NULL ||
3727 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3728 	    req->sym_out = req1.sym_out;
3729 	    req->defobj_out = req1.defobj_out;
3730 	    assert(req->defobj_out != NULL);
3731 	}
3732     }
3733 
3734     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3735     STAILQ_FOREACH(elm, &list_global, link) {
3736 	if (req->defobj_out != NULL &&
3737 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3738 	    break;
3739 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3740 	if (res == 0 && (req->defobj_out == NULL ||
3741 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3742 	    req->sym_out = req1.sym_out;
3743 	    req->defobj_out = req1.defobj_out;
3744 	    assert(req->defobj_out != NULL);
3745 	}
3746     }
3747 
3748     return (req->sym_out != NULL ? 0 : ESRCH);
3749 }
3750 
3751 /*
3752  * Given a symbol name in a referencing object, find the corresponding
3753  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3754  * no definition was found.  Returns a pointer to the Obj_Entry of the
3755  * defining object via the reference parameter DEFOBJ_OUT.
3756  */
3757 static int
3758 symlook_default(SymLook *req, const Obj_Entry *refobj)
3759 {
3760     DoneList donelist;
3761     const Objlist_Entry *elm;
3762     SymLook req1;
3763     int res;
3764 
3765     donelist_init(&donelist);
3766     symlook_init_from_req(&req1, req);
3767 
3768     /* Look first in the referencing object if linked symbolically. */
3769     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3770 	res = symlook_obj(&req1, refobj);
3771 	if (res == 0) {
3772 	    req->sym_out = req1.sym_out;
3773 	    req->defobj_out = req1.defobj_out;
3774 	    assert(req->defobj_out != NULL);
3775 	}
3776     }
3777 
3778     symlook_global(req, &donelist);
3779 
3780     /* Search all dlopened DAGs containing the referencing object. */
3781     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3782 	if (req->sym_out != NULL &&
3783 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3784 	    break;
3785 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3786 	if (res == 0 && (req->sym_out == NULL ||
3787 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3788 	    req->sym_out = req1.sym_out;
3789 	    req->defobj_out = req1.defobj_out;
3790 	    assert(req->defobj_out != NULL);
3791 	}
3792     }
3793 
3794     /*
3795      * Search the dynamic linker itself, and possibly resolve the
3796      * symbol from there.  This is how the application links to
3797      * dynamic linker services such as dlopen.
3798      */
3799     if (req->sym_out == NULL ||
3800       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3801 	res = symlook_obj(&req1, &obj_rtld);
3802 	if (res == 0) {
3803 	    req->sym_out = req1.sym_out;
3804 	    req->defobj_out = req1.defobj_out;
3805 	    assert(req->defobj_out != NULL);
3806 	}
3807     }
3808 
3809     return (req->sym_out != NULL ? 0 : ESRCH);
3810 }
3811 
3812 static int
3813 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3814 {
3815     const Elf_Sym *def;
3816     const Obj_Entry *defobj;
3817     const Objlist_Entry *elm;
3818     SymLook req1;
3819     int res;
3820 
3821     def = NULL;
3822     defobj = NULL;
3823     STAILQ_FOREACH(elm, objlist, link) {
3824 	if (donelist_check(dlp, elm->obj))
3825 	    continue;
3826 	symlook_init_from_req(&req1, req);
3827 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3828 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3829 		def = req1.sym_out;
3830 		defobj = req1.defobj_out;
3831 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3832 		    break;
3833 	    }
3834 	}
3835     }
3836     if (def != NULL) {
3837 	req->sym_out = def;
3838 	req->defobj_out = defobj;
3839 	return (0);
3840     }
3841     return (ESRCH);
3842 }
3843 
3844 /*
3845  * Search the chain of DAGS cointed to by the given Needed_Entry
3846  * for a symbol of the given name.  Each DAG is scanned completely
3847  * before advancing to the next one.  Returns a pointer to the symbol,
3848  * or NULL if no definition was found.
3849  */
3850 static int
3851 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3852 {
3853     const Elf_Sym *def;
3854     const Needed_Entry *n;
3855     const Obj_Entry *defobj;
3856     SymLook req1;
3857     int res;
3858 
3859     def = NULL;
3860     defobj = NULL;
3861     symlook_init_from_req(&req1, req);
3862     for (n = needed; n != NULL; n = n->next) {
3863 	if (n->obj == NULL ||
3864 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3865 	    continue;
3866 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3867 	    def = req1.sym_out;
3868 	    defobj = req1.defobj_out;
3869 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3870 		break;
3871 	}
3872     }
3873     if (def != NULL) {
3874 	req->sym_out = def;
3875 	req->defobj_out = defobj;
3876 	return (0);
3877     }
3878     return (ESRCH);
3879 }
3880 
3881 /*
3882  * Search the symbol table of a single shared object for a symbol of
3883  * the given name and version, if requested.  Returns a pointer to the
3884  * symbol, or NULL if no definition was found.  If the object is
3885  * filter, return filtered symbol from filtee.
3886  *
3887  * The symbol's hash value is passed in for efficiency reasons; that
3888  * eliminates many recomputations of the hash value.
3889  */
3890 int
3891 symlook_obj(SymLook *req, const Obj_Entry *obj)
3892 {
3893     DoneList donelist;
3894     SymLook req1;
3895     int flags, res, mres;
3896 
3897     /*
3898      * If there is at least one valid hash at this point, we prefer to
3899      * use the faster GNU version if available.
3900      */
3901     if (obj->valid_hash_gnu)
3902 	mres = symlook_obj1_gnu(req, obj);
3903     else if (obj->valid_hash_sysv)
3904 	mres = symlook_obj1_sysv(req, obj);
3905     else
3906 	return (EINVAL);
3907 
3908     if (mres == 0) {
3909 	if (obj->needed_filtees != NULL) {
3910 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3911 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3912 	    donelist_init(&donelist);
3913 	    symlook_init_from_req(&req1, req);
3914 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3915 	    if (res == 0) {
3916 		req->sym_out = req1.sym_out;
3917 		req->defobj_out = req1.defobj_out;
3918 	    }
3919 	    return (res);
3920 	}
3921 	if (obj->needed_aux_filtees != NULL) {
3922 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3923 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3924 	    donelist_init(&donelist);
3925 	    symlook_init_from_req(&req1, req);
3926 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3927 	    if (res == 0) {
3928 		req->sym_out = req1.sym_out;
3929 		req->defobj_out = req1.defobj_out;
3930 		return (res);
3931 	    }
3932 	}
3933     }
3934     return (mres);
3935 }
3936 
3937 /* Symbol match routine common to both hash functions */
3938 static bool
3939 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3940     const unsigned long symnum)
3941 {
3942 	Elf_Versym verndx;
3943 	const Elf_Sym *symp;
3944 	const char *strp;
3945 
3946 	symp = obj->symtab + symnum;
3947 	strp = obj->strtab + symp->st_name;
3948 
3949 	switch (ELF_ST_TYPE(symp->st_info)) {
3950 	case STT_FUNC:
3951 	case STT_NOTYPE:
3952 	case STT_OBJECT:
3953 	case STT_COMMON:
3954 	case STT_GNU_IFUNC:
3955 		if (symp->st_value == 0)
3956 			return (false);
3957 		/* fallthrough */
3958 	case STT_TLS:
3959 		if (symp->st_shndx != SHN_UNDEF)
3960 			break;
3961 #ifndef __mips__
3962 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3963 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3964 			break;
3965 		/* fallthrough */
3966 #endif
3967 	default:
3968 		return (false);
3969 	}
3970 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3971 		return (false);
3972 
3973 	if (req->ventry == NULL) {
3974 		if (obj->versyms != NULL) {
3975 			verndx = VER_NDX(obj->versyms[symnum]);
3976 			if (verndx > obj->vernum) {
3977 				_rtld_error(
3978 				    "%s: symbol %s references wrong version %d",
3979 				    obj->path, obj->strtab + symnum, verndx);
3980 				return (false);
3981 			}
3982 			/*
3983 			 * If we are not called from dlsym (i.e. this
3984 			 * is a normal relocation from unversioned
3985 			 * binary), accept the symbol immediately if
3986 			 * it happens to have first version after this
3987 			 * shared object became versioned.  Otherwise,
3988 			 * if symbol is versioned and not hidden,
3989 			 * remember it. If it is the only symbol with
3990 			 * this name exported by the shared object, it
3991 			 * will be returned as a match by the calling
3992 			 * function. If symbol is global (verndx < 2)
3993 			 * accept it unconditionally.
3994 			 */
3995 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3996 			    verndx == VER_NDX_GIVEN) {
3997 				result->sym_out = symp;
3998 				return (true);
3999 			}
4000 			else if (verndx >= VER_NDX_GIVEN) {
4001 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4002 				    == 0) {
4003 					if (result->vsymp == NULL)
4004 						result->vsymp = symp;
4005 					result->vcount++;
4006 				}
4007 				return (false);
4008 			}
4009 		}
4010 		result->sym_out = symp;
4011 		return (true);
4012 	}
4013 	if (obj->versyms == NULL) {
4014 		if (object_match_name(obj, req->ventry->name)) {
4015 			_rtld_error("%s: object %s should provide version %s "
4016 			    "for symbol %s", obj_rtld.path, obj->path,
4017 			    req->ventry->name, obj->strtab + symnum);
4018 			return (false);
4019 		}
4020 	} else {
4021 		verndx = VER_NDX(obj->versyms[symnum]);
4022 		if (verndx > obj->vernum) {
4023 			_rtld_error("%s: symbol %s references wrong version %d",
4024 			    obj->path, obj->strtab + symnum, verndx);
4025 			return (false);
4026 		}
4027 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4028 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4029 			/*
4030 			 * Version does not match. Look if this is a
4031 			 * global symbol and if it is not hidden. If
4032 			 * global symbol (verndx < 2) is available,
4033 			 * use it. Do not return symbol if we are
4034 			 * called by dlvsym, because dlvsym looks for
4035 			 * a specific version and default one is not
4036 			 * what dlvsym wants.
4037 			 */
4038 			if ((req->flags & SYMLOOK_DLSYM) ||
4039 			    (verndx >= VER_NDX_GIVEN) ||
4040 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4041 				return (false);
4042 		}
4043 	}
4044 	result->sym_out = symp;
4045 	return (true);
4046 }
4047 
4048 /*
4049  * Search for symbol using SysV hash function.
4050  * obj->buckets is known not to be NULL at this point; the test for this was
4051  * performed with the obj->valid_hash_sysv assignment.
4052  */
4053 static int
4054 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4055 {
4056 	unsigned long symnum;
4057 	Sym_Match_Result matchres;
4058 
4059 	matchres.sym_out = NULL;
4060 	matchres.vsymp = NULL;
4061 	matchres.vcount = 0;
4062 
4063 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4064 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4065 		if (symnum >= obj->nchains)
4066 			return (ESRCH);	/* Bad object */
4067 
4068 		if (matched_symbol(req, obj, &matchres, symnum)) {
4069 			req->sym_out = matchres.sym_out;
4070 			req->defobj_out = obj;
4071 			return (0);
4072 		}
4073 	}
4074 	if (matchres.vcount == 1) {
4075 		req->sym_out = matchres.vsymp;
4076 		req->defobj_out = obj;
4077 		return (0);
4078 	}
4079 	return (ESRCH);
4080 }
4081 
4082 /* Search for symbol using GNU hash function */
4083 static int
4084 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4085 {
4086 	Elf_Addr bloom_word;
4087 	const Elf32_Word *hashval;
4088 	Elf32_Word bucket;
4089 	Sym_Match_Result matchres;
4090 	unsigned int h1, h2;
4091 	unsigned long symnum;
4092 
4093 	matchres.sym_out = NULL;
4094 	matchres.vsymp = NULL;
4095 	matchres.vcount = 0;
4096 
4097 	/* Pick right bitmask word from Bloom filter array */
4098 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4099 	    obj->maskwords_bm_gnu];
4100 
4101 	/* Calculate modulus word size of gnu hash and its derivative */
4102 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4103 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4104 
4105 	/* Filter out the "definitely not in set" queries */
4106 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4107 		return (ESRCH);
4108 
4109 	/* Locate hash chain and corresponding value element*/
4110 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4111 	if (bucket == 0)
4112 		return (ESRCH);
4113 	hashval = &obj->chain_zero_gnu[bucket];
4114 	do {
4115 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4116 			symnum = hashval - obj->chain_zero_gnu;
4117 			if (matched_symbol(req, obj, &matchres, symnum)) {
4118 				req->sym_out = matchres.sym_out;
4119 				req->defobj_out = obj;
4120 				return (0);
4121 			}
4122 		}
4123 	} while ((*hashval++ & 1) == 0);
4124 	if (matchres.vcount == 1) {
4125 		req->sym_out = matchres.vsymp;
4126 		req->defobj_out = obj;
4127 		return (0);
4128 	}
4129 	return (ESRCH);
4130 }
4131 
4132 static void
4133 trace_loaded_objects(Obj_Entry *obj)
4134 {
4135     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4136     int		c;
4137 
4138     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4139 	main_local = "";
4140 
4141     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4142 	fmt1 = "\t%o => %p (%x)\n";
4143 
4144     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4145 	fmt2 = "\t%o (%x)\n";
4146 
4147     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4148 
4149     for (; obj; obj = obj->next) {
4150 	Needed_Entry		*needed;
4151 	char			*name, *path;
4152 	bool			is_lib;
4153 
4154 	if (list_containers && obj->needed != NULL)
4155 	    rtld_printf("%s:\n", obj->path);
4156 	for (needed = obj->needed; needed; needed = needed->next) {
4157 	    if (needed->obj != NULL) {
4158 		if (needed->obj->traced && !list_containers)
4159 		    continue;
4160 		needed->obj->traced = true;
4161 		path = needed->obj->path;
4162 	    } else
4163 		path = "not found";
4164 
4165 	    name = (char *)obj->strtab + needed->name;
4166 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4167 
4168 	    fmt = is_lib ? fmt1 : fmt2;
4169 	    while ((c = *fmt++) != '\0') {
4170 		switch (c) {
4171 		default:
4172 		    rtld_putchar(c);
4173 		    continue;
4174 		case '\\':
4175 		    switch (c = *fmt) {
4176 		    case '\0':
4177 			continue;
4178 		    case 'n':
4179 			rtld_putchar('\n');
4180 			break;
4181 		    case 't':
4182 			rtld_putchar('\t');
4183 			break;
4184 		    }
4185 		    break;
4186 		case '%':
4187 		    switch (c = *fmt) {
4188 		    case '\0':
4189 			continue;
4190 		    case '%':
4191 		    default:
4192 			rtld_putchar(c);
4193 			break;
4194 		    case 'A':
4195 			rtld_putstr(main_local);
4196 			break;
4197 		    case 'a':
4198 			rtld_putstr(obj_main->path);
4199 			break;
4200 		    case 'o':
4201 			rtld_putstr(name);
4202 			break;
4203 #if 0
4204 		    case 'm':
4205 			rtld_printf("%d", sodp->sod_major);
4206 			break;
4207 		    case 'n':
4208 			rtld_printf("%d", sodp->sod_minor);
4209 			break;
4210 #endif
4211 		    case 'p':
4212 			rtld_putstr(path);
4213 			break;
4214 		    case 'x':
4215 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4216 			  0);
4217 			break;
4218 		    }
4219 		    break;
4220 		}
4221 		++fmt;
4222 	    }
4223 	}
4224     }
4225 }
4226 
4227 /*
4228  * Unload a dlopened object and its dependencies from memory and from
4229  * our data structures.  It is assumed that the DAG rooted in the
4230  * object has already been unreferenced, and that the object has a
4231  * reference count of 0.
4232  */
4233 static void
4234 unload_object(Obj_Entry *root)
4235 {
4236     Obj_Entry *obj;
4237     Obj_Entry **linkp;
4238 
4239     assert(root->refcount == 0);
4240 
4241     /*
4242      * Pass over the DAG removing unreferenced objects from
4243      * appropriate lists.
4244      */
4245     unlink_object(root);
4246 
4247     /* Unmap all objects that are no longer referenced. */
4248     linkp = &obj_list->next;
4249     while ((obj = *linkp) != NULL) {
4250 	if (obj->refcount == 0) {
4251 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4252 		obj->path);
4253 	    dbg("unloading \"%s\"", obj->path);
4254 	    unload_filtees(root);
4255 	    munmap(obj->mapbase, obj->mapsize);
4256 	    linkmap_delete(obj);
4257 	    *linkp = obj->next;
4258 	    obj_count--;
4259 	    obj_free(obj);
4260 	} else
4261 	    linkp = &obj->next;
4262     }
4263     obj_tail = linkp;
4264 }
4265 
4266 static void
4267 unlink_object(Obj_Entry *root)
4268 {
4269     Objlist_Entry *elm;
4270 
4271     if (root->refcount == 0) {
4272 	/* Remove the object from the RTLD_GLOBAL list. */
4273 	objlist_remove(&list_global, root);
4274 
4275     	/* Remove the object from all objects' DAG lists. */
4276     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4277 	    objlist_remove(&elm->obj->dldags, root);
4278 	    if (elm->obj != root)
4279 		unlink_object(elm->obj);
4280 	}
4281     }
4282 }
4283 
4284 static void
4285 ref_dag(Obj_Entry *root)
4286 {
4287     Objlist_Entry *elm;
4288 
4289     assert(root->dag_inited);
4290     STAILQ_FOREACH(elm, &root->dagmembers, link)
4291 	elm->obj->refcount++;
4292 }
4293 
4294 static void
4295 unref_dag(Obj_Entry *root)
4296 {
4297     Objlist_Entry *elm;
4298 
4299     assert(root->dag_inited);
4300     STAILQ_FOREACH(elm, &root->dagmembers, link)
4301 	elm->obj->refcount--;
4302 }
4303 
4304 /*
4305  * Common code for MD __tls_get_addr().
4306  */
4307 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4308 static void *
4309 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4310 {
4311     Elf_Addr *newdtv, *dtv;
4312     RtldLockState lockstate;
4313     int to_copy;
4314 
4315     dtv = *dtvp;
4316     /* Check dtv generation in case new modules have arrived */
4317     if (dtv[0] != tls_dtv_generation) {
4318 	wlock_acquire(rtld_bind_lock, &lockstate);
4319 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4320 	to_copy = dtv[1];
4321 	if (to_copy > tls_max_index)
4322 	    to_copy = tls_max_index;
4323 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4324 	newdtv[0] = tls_dtv_generation;
4325 	newdtv[1] = tls_max_index;
4326 	free(dtv);
4327 	lock_release(rtld_bind_lock, &lockstate);
4328 	dtv = *dtvp = newdtv;
4329     }
4330 
4331     /* Dynamically allocate module TLS if necessary */
4332     if (dtv[index + 1] == 0) {
4333 	/* Signal safe, wlock will block out signals. */
4334 	wlock_acquire(rtld_bind_lock, &lockstate);
4335 	if (!dtv[index + 1])
4336 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4337 	lock_release(rtld_bind_lock, &lockstate);
4338     }
4339     return ((void *)(dtv[index + 1] + offset));
4340 }
4341 
4342 void *
4343 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4344 {
4345 	Elf_Addr *dtv;
4346 
4347 	dtv = *dtvp;
4348 	/* Check dtv generation in case new modules have arrived */
4349 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4350 	    dtv[index + 1] != 0))
4351 		return ((void *)(dtv[index + 1] + offset));
4352 	return (tls_get_addr_slow(dtvp, index, offset));
4353 }
4354 
4355 #if defined(__arm__) || defined(__mips__) || defined(__powerpc__)
4356 
4357 /*
4358  * Allocate Static TLS using the Variant I method.
4359  */
4360 void *
4361 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4362 {
4363     Obj_Entry *obj;
4364     char *tcb;
4365     Elf_Addr **tls;
4366     Elf_Addr *dtv;
4367     Elf_Addr addr;
4368     int i;
4369 
4370     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4371 	return (oldtcb);
4372 
4373     assert(tcbsize >= TLS_TCB_SIZE);
4374     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4375     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4376 
4377     if (oldtcb != NULL) {
4378 	memcpy(tls, oldtcb, tls_static_space);
4379 	free(oldtcb);
4380 
4381 	/* Adjust the DTV. */
4382 	dtv = tls[0];
4383 	for (i = 0; i < dtv[1]; i++) {
4384 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4385 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4386 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4387 	    }
4388 	}
4389     } else {
4390 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4391 	tls[0] = dtv;
4392 	dtv[0] = tls_dtv_generation;
4393 	dtv[1] = tls_max_index;
4394 
4395 	for (obj = objs; obj; obj = obj->next) {
4396 	    if (obj->tlsoffset > 0) {
4397 		addr = (Elf_Addr)tls + obj->tlsoffset;
4398 		if (obj->tlsinitsize > 0)
4399 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4400 		if (obj->tlssize > obj->tlsinitsize)
4401 		    memset((void*) (addr + obj->tlsinitsize), 0,
4402 			   obj->tlssize - obj->tlsinitsize);
4403 		dtv[obj->tlsindex + 1] = addr;
4404 	    }
4405 	}
4406     }
4407 
4408     return (tcb);
4409 }
4410 
4411 void
4412 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4413 {
4414     Elf_Addr *dtv;
4415     Elf_Addr tlsstart, tlsend;
4416     int dtvsize, i;
4417 
4418     assert(tcbsize >= TLS_TCB_SIZE);
4419 
4420     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4421     tlsend = tlsstart + tls_static_space;
4422 
4423     dtv = *(Elf_Addr **)tlsstart;
4424     dtvsize = dtv[1];
4425     for (i = 0; i < dtvsize; i++) {
4426 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4427 	    free((void*)dtv[i+2]);
4428 	}
4429     }
4430     free(dtv);
4431     free(tcb);
4432 }
4433 
4434 #endif
4435 
4436 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4437 
4438 /*
4439  * Allocate Static TLS using the Variant II method.
4440  */
4441 void *
4442 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4443 {
4444     Obj_Entry *obj;
4445     size_t size, ralign;
4446     char *tls;
4447     Elf_Addr *dtv, *olddtv;
4448     Elf_Addr segbase, oldsegbase, addr;
4449     int i;
4450 
4451     ralign = tcbalign;
4452     if (tls_static_max_align > ralign)
4453 	    ralign = tls_static_max_align;
4454     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4455 
4456     assert(tcbsize >= 2*sizeof(Elf_Addr));
4457     tls = malloc_aligned(size, ralign);
4458     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4459 
4460     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4461     ((Elf_Addr*)segbase)[0] = segbase;
4462     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4463 
4464     dtv[0] = tls_dtv_generation;
4465     dtv[1] = tls_max_index;
4466 
4467     if (oldtls) {
4468 	/*
4469 	 * Copy the static TLS block over whole.
4470 	 */
4471 	oldsegbase = (Elf_Addr) oldtls;
4472 	memcpy((void *)(segbase - tls_static_space),
4473 	       (const void *)(oldsegbase - tls_static_space),
4474 	       tls_static_space);
4475 
4476 	/*
4477 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4478 	 * move them over.
4479 	 */
4480 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4481 	for (i = 0; i < olddtv[1]; i++) {
4482 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4483 		dtv[i+2] = olddtv[i+2];
4484 		olddtv[i+2] = 0;
4485 	    }
4486 	}
4487 
4488 	/*
4489 	 * We assume that this block was the one we created with
4490 	 * allocate_initial_tls().
4491 	 */
4492 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4493     } else {
4494 	for (obj = objs; obj; obj = obj->next) {
4495 	    if (obj->tlsoffset) {
4496 		addr = segbase - obj->tlsoffset;
4497 		memset((void*) (addr + obj->tlsinitsize),
4498 		       0, obj->tlssize - obj->tlsinitsize);
4499 		if (obj->tlsinit)
4500 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4501 		dtv[obj->tlsindex + 1] = addr;
4502 	    }
4503 	}
4504     }
4505 
4506     return (void*) segbase;
4507 }
4508 
4509 void
4510 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4511 {
4512     Elf_Addr* dtv;
4513     size_t size, ralign;
4514     int dtvsize, i;
4515     Elf_Addr tlsstart, tlsend;
4516 
4517     /*
4518      * Figure out the size of the initial TLS block so that we can
4519      * find stuff which ___tls_get_addr() allocated dynamically.
4520      */
4521     ralign = tcbalign;
4522     if (tls_static_max_align > ralign)
4523 	    ralign = tls_static_max_align;
4524     size = round(tls_static_space, ralign);
4525 
4526     dtv = ((Elf_Addr**)tls)[1];
4527     dtvsize = dtv[1];
4528     tlsend = (Elf_Addr) tls;
4529     tlsstart = tlsend - size;
4530     for (i = 0; i < dtvsize; i++) {
4531 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4532 		free_aligned((void *)dtv[i + 2]);
4533 	}
4534     }
4535 
4536     free_aligned((void *)tlsstart);
4537     free((void*) dtv);
4538 }
4539 
4540 #endif
4541 
4542 /*
4543  * Allocate TLS block for module with given index.
4544  */
4545 void *
4546 allocate_module_tls(int index)
4547 {
4548     Obj_Entry* obj;
4549     char* p;
4550 
4551     for (obj = obj_list; obj; obj = obj->next) {
4552 	if (obj->tlsindex == index)
4553 	    break;
4554     }
4555     if (!obj) {
4556 	_rtld_error("Can't find module with TLS index %d", index);
4557 	die();
4558     }
4559 
4560     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4561     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4562     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4563 
4564     return p;
4565 }
4566 
4567 bool
4568 allocate_tls_offset(Obj_Entry *obj)
4569 {
4570     size_t off;
4571 
4572     if (obj->tls_done)
4573 	return true;
4574 
4575     if (obj->tlssize == 0) {
4576 	obj->tls_done = true;
4577 	return true;
4578     }
4579 
4580     if (obj->tlsindex == 1)
4581 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4582     else
4583 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4584 				   obj->tlssize, obj->tlsalign);
4585 
4586     /*
4587      * If we have already fixed the size of the static TLS block, we
4588      * must stay within that size. When allocating the static TLS, we
4589      * leave a small amount of space spare to be used for dynamically
4590      * loading modules which use static TLS.
4591      */
4592     if (tls_static_space != 0) {
4593 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4594 	    return false;
4595     } else if (obj->tlsalign > tls_static_max_align) {
4596 	    tls_static_max_align = obj->tlsalign;
4597     }
4598 
4599     tls_last_offset = obj->tlsoffset = off;
4600     tls_last_size = obj->tlssize;
4601     obj->tls_done = true;
4602 
4603     return true;
4604 }
4605 
4606 void
4607 free_tls_offset(Obj_Entry *obj)
4608 {
4609 
4610     /*
4611      * If we were the last thing to allocate out of the static TLS
4612      * block, we give our space back to the 'allocator'. This is a
4613      * simplistic workaround to allow libGL.so.1 to be loaded and
4614      * unloaded multiple times.
4615      */
4616     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4617 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4618 	tls_last_offset -= obj->tlssize;
4619 	tls_last_size = 0;
4620     }
4621 }
4622 
4623 void *
4624 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4625 {
4626     void *ret;
4627     RtldLockState lockstate;
4628 
4629     wlock_acquire(rtld_bind_lock, &lockstate);
4630     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4631     lock_release(rtld_bind_lock, &lockstate);
4632     return (ret);
4633 }
4634 
4635 void
4636 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4637 {
4638     RtldLockState lockstate;
4639 
4640     wlock_acquire(rtld_bind_lock, &lockstate);
4641     free_tls(tcb, tcbsize, tcbalign);
4642     lock_release(rtld_bind_lock, &lockstate);
4643 }
4644 
4645 static void
4646 object_add_name(Obj_Entry *obj, const char *name)
4647 {
4648     Name_Entry *entry;
4649     size_t len;
4650 
4651     len = strlen(name);
4652     entry = malloc(sizeof(Name_Entry) + len);
4653 
4654     if (entry != NULL) {
4655 	strcpy(entry->name, name);
4656 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4657     }
4658 }
4659 
4660 static int
4661 object_match_name(const Obj_Entry *obj, const char *name)
4662 {
4663     Name_Entry *entry;
4664 
4665     STAILQ_FOREACH(entry, &obj->names, link) {
4666 	if (strcmp(name, entry->name) == 0)
4667 	    return (1);
4668     }
4669     return (0);
4670 }
4671 
4672 static Obj_Entry *
4673 locate_dependency(const Obj_Entry *obj, const char *name)
4674 {
4675     const Objlist_Entry *entry;
4676     const Needed_Entry *needed;
4677 
4678     STAILQ_FOREACH(entry, &list_main, link) {
4679 	if (object_match_name(entry->obj, name))
4680 	    return entry->obj;
4681     }
4682 
4683     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4684 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4685 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4686 	    /*
4687 	     * If there is DT_NEEDED for the name we are looking for,
4688 	     * we are all set.  Note that object might not be found if
4689 	     * dependency was not loaded yet, so the function can
4690 	     * return NULL here.  This is expected and handled
4691 	     * properly by the caller.
4692 	     */
4693 	    return (needed->obj);
4694 	}
4695     }
4696     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4697 	obj->path, name);
4698     die();
4699 }
4700 
4701 static int
4702 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4703     const Elf_Vernaux *vna)
4704 {
4705     const Elf_Verdef *vd;
4706     const char *vername;
4707 
4708     vername = refobj->strtab + vna->vna_name;
4709     vd = depobj->verdef;
4710     if (vd == NULL) {
4711 	_rtld_error("%s: version %s required by %s not defined",
4712 	    depobj->path, vername, refobj->path);
4713 	return (-1);
4714     }
4715     for (;;) {
4716 	if (vd->vd_version != VER_DEF_CURRENT) {
4717 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4718 		depobj->path, vd->vd_version);
4719 	    return (-1);
4720 	}
4721 	if (vna->vna_hash == vd->vd_hash) {
4722 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4723 		((char *)vd + vd->vd_aux);
4724 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4725 		return (0);
4726 	}
4727 	if (vd->vd_next == 0)
4728 	    break;
4729 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4730     }
4731     if (vna->vna_flags & VER_FLG_WEAK)
4732 	return (0);
4733     _rtld_error("%s: version %s required by %s not found",
4734 	depobj->path, vername, refobj->path);
4735     return (-1);
4736 }
4737 
4738 static int
4739 rtld_verify_object_versions(Obj_Entry *obj)
4740 {
4741     const Elf_Verneed *vn;
4742     const Elf_Verdef  *vd;
4743     const Elf_Verdaux *vda;
4744     const Elf_Vernaux *vna;
4745     const Obj_Entry *depobj;
4746     int maxvernum, vernum;
4747 
4748     if (obj->ver_checked)
4749 	return (0);
4750     obj->ver_checked = true;
4751 
4752     maxvernum = 0;
4753     /*
4754      * Walk over defined and required version records and figure out
4755      * max index used by any of them. Do very basic sanity checking
4756      * while there.
4757      */
4758     vn = obj->verneed;
4759     while (vn != NULL) {
4760 	if (vn->vn_version != VER_NEED_CURRENT) {
4761 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4762 		obj->path, vn->vn_version);
4763 	    return (-1);
4764 	}
4765 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4766 	for (;;) {
4767 	    vernum = VER_NEED_IDX(vna->vna_other);
4768 	    if (vernum > maxvernum)
4769 		maxvernum = vernum;
4770 	    if (vna->vna_next == 0)
4771 		 break;
4772 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4773 	}
4774 	if (vn->vn_next == 0)
4775 	    break;
4776 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4777     }
4778 
4779     vd = obj->verdef;
4780     while (vd != NULL) {
4781 	if (vd->vd_version != VER_DEF_CURRENT) {
4782 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4783 		obj->path, vd->vd_version);
4784 	    return (-1);
4785 	}
4786 	vernum = VER_DEF_IDX(vd->vd_ndx);
4787 	if (vernum > maxvernum)
4788 		maxvernum = vernum;
4789 	if (vd->vd_next == 0)
4790 	    break;
4791 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4792     }
4793 
4794     if (maxvernum == 0)
4795 	return (0);
4796 
4797     /*
4798      * Store version information in array indexable by version index.
4799      * Verify that object version requirements are satisfied along the
4800      * way.
4801      */
4802     obj->vernum = maxvernum + 1;
4803     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4804 
4805     vd = obj->verdef;
4806     while (vd != NULL) {
4807 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4808 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4809 	    assert(vernum <= maxvernum);
4810 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4811 	    obj->vertab[vernum].hash = vd->vd_hash;
4812 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4813 	    obj->vertab[vernum].file = NULL;
4814 	    obj->vertab[vernum].flags = 0;
4815 	}
4816 	if (vd->vd_next == 0)
4817 	    break;
4818 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4819     }
4820 
4821     vn = obj->verneed;
4822     while (vn != NULL) {
4823 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4824 	if (depobj == NULL)
4825 	    return (-1);
4826 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4827 	for (;;) {
4828 	    if (check_object_provided_version(obj, depobj, vna))
4829 		return (-1);
4830 	    vernum = VER_NEED_IDX(vna->vna_other);
4831 	    assert(vernum <= maxvernum);
4832 	    obj->vertab[vernum].hash = vna->vna_hash;
4833 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4834 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4835 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4836 		VER_INFO_HIDDEN : 0;
4837 	    if (vna->vna_next == 0)
4838 		 break;
4839 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4840 	}
4841 	if (vn->vn_next == 0)
4842 	    break;
4843 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4844     }
4845     return 0;
4846 }
4847 
4848 static int
4849 rtld_verify_versions(const Objlist *objlist)
4850 {
4851     Objlist_Entry *entry;
4852     int rc;
4853 
4854     rc = 0;
4855     STAILQ_FOREACH(entry, objlist, link) {
4856 	/*
4857 	 * Skip dummy objects or objects that have their version requirements
4858 	 * already checked.
4859 	 */
4860 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4861 	    continue;
4862 	if (rtld_verify_object_versions(entry->obj) == -1) {
4863 	    rc = -1;
4864 	    if (ld_tracing == NULL)
4865 		break;
4866 	}
4867     }
4868     if (rc == 0 || ld_tracing != NULL)
4869     	rc = rtld_verify_object_versions(&obj_rtld);
4870     return rc;
4871 }
4872 
4873 const Ver_Entry *
4874 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4875 {
4876     Elf_Versym vernum;
4877 
4878     if (obj->vertab) {
4879 	vernum = VER_NDX(obj->versyms[symnum]);
4880 	if (vernum >= obj->vernum) {
4881 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4882 		obj->path, obj->strtab + symnum, vernum);
4883 	} else if (obj->vertab[vernum].hash != 0) {
4884 	    return &obj->vertab[vernum];
4885 	}
4886     }
4887     return NULL;
4888 }
4889 
4890 int
4891 _rtld_get_stack_prot(void)
4892 {
4893 
4894 	return (stack_prot);
4895 }
4896 
4897 int
4898 _rtld_is_dlopened(void *arg)
4899 {
4900 	Obj_Entry *obj;
4901 	RtldLockState lockstate;
4902 	int res;
4903 
4904 	rlock_acquire(rtld_bind_lock, &lockstate);
4905 	obj = dlcheck(arg);
4906 	if (obj == NULL)
4907 		obj = obj_from_addr(arg);
4908 	if (obj == NULL) {
4909 		_rtld_error("No shared object contains address");
4910 		lock_release(rtld_bind_lock, &lockstate);
4911 		return (-1);
4912 	}
4913 	res = obj->dlopened ? 1 : 0;
4914 	lock_release(rtld_bind_lock, &lockstate);
4915 	return (res);
4916 }
4917 
4918 static void
4919 map_stacks_exec(RtldLockState *lockstate)
4920 {
4921 	void (*thr_map_stacks_exec)(void);
4922 
4923 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4924 		return;
4925 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4926 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4927 	if (thr_map_stacks_exec != NULL) {
4928 		stack_prot |= PROT_EXEC;
4929 		thr_map_stacks_exec();
4930 	}
4931 }
4932 
4933 void
4934 symlook_init(SymLook *dst, const char *name)
4935 {
4936 
4937 	bzero(dst, sizeof(*dst));
4938 	dst->name = name;
4939 	dst->hash = elf_hash(name);
4940 	dst->hash_gnu = gnu_hash(name);
4941 }
4942 
4943 static void
4944 symlook_init_from_req(SymLook *dst, const SymLook *src)
4945 {
4946 
4947 	dst->name = src->name;
4948 	dst->hash = src->hash;
4949 	dst->hash_gnu = src->hash_gnu;
4950 	dst->ventry = src->ventry;
4951 	dst->flags = src->flags;
4952 	dst->defobj_out = NULL;
4953 	dst->sym_out = NULL;
4954 	dst->lockstate = src->lockstate;
4955 }
4956 
4957 
4958 /*
4959  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4960  */
4961 static int
4962 parse_libdir(const char *str)
4963 {
4964 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4965 	const char *orig;
4966 	int fd;
4967 	char c;
4968 
4969 	orig = str;
4970 	fd = 0;
4971 	for (c = *str; c != '\0'; c = *++str) {
4972 		if (c < '0' || c > '9')
4973 			return (-1);
4974 
4975 		fd *= RADIX;
4976 		fd += c - '0';
4977 	}
4978 
4979 	/* Make sure we actually parsed something. */
4980 	if (str == orig) {
4981 		_rtld_error("failed to parse directory FD from '%s'", str);
4982 		return (-1);
4983 	}
4984 	return (fd);
4985 }
4986 
4987 /*
4988  * Overrides for libc_pic-provided functions.
4989  */
4990 
4991 int
4992 __getosreldate(void)
4993 {
4994 	size_t len;
4995 	int oid[2];
4996 	int error, osrel;
4997 
4998 	if (osreldate != 0)
4999 		return (osreldate);
5000 
5001 	oid[0] = CTL_KERN;
5002 	oid[1] = KERN_OSRELDATE;
5003 	osrel = 0;
5004 	len = sizeof(osrel);
5005 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5006 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5007 		osreldate = osrel;
5008 	return (osreldate);
5009 }
5010 
5011 void
5012 exit(int status)
5013 {
5014 
5015 	_exit(status);
5016 }
5017 
5018 void (*__cleanup)(void);
5019 int __isthreaded = 0;
5020 int _thread_autoinit_dummy_decl = 1;
5021 
5022 /*
5023  * No unresolved symbols for rtld.
5024  */
5025 void
5026 __pthread_cxa_finalize(struct dl_phdr_info *a)
5027 {
5028 }
5029 
5030 void
5031 __stack_chk_fail(void)
5032 {
5033 
5034 	_rtld_error("stack overflow detected; terminated");
5035 	die();
5036 }
5037 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5038 
5039 void
5040 __chk_fail(void)
5041 {
5042 
5043 	_rtld_error("buffer overflow detected; terminated");
5044 	die();
5045 }
5046 
5047 const char *
5048 rtld_strerror(int errnum)
5049 {
5050 
5051 	if (errnum < 0 || errnum >= sys_nerr)
5052 		return ("Unknown error");
5053 	return (sys_errlist[errnum]);
5054 }
5055