xref: /freebsd/libexec/rtld-elf/rtld.c (revision a6ba0fd64d4743eba0a8f89de63ed72b031e9e00)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 #include "notes.h"
65 
66 #ifndef COMPAT_32BIT
67 #define PATH_RTLD	"/libexec/ld-elf.so.1"
68 #else
69 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
70 #endif
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static const char *basename(const char *);
80 static void die(void) __dead2;
81 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82     const Elf_Dyn **);
83 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
84 static void digest_dynamic(Obj_Entry *, int);
85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86 static Obj_Entry *dlcheck(void *);
87 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
88     int lo_flags, int mode);
89 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
90 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91 static bool donelist_check(DoneList *, const Obj_Entry *);
92 static void errmsg_restore(char *);
93 static char *errmsg_save(void);
94 static void *fill_search_info(const char *, size_t, void *);
95 static char *find_library(const char *, const Obj_Entry *);
96 static const char *gethints(void);
97 static void init_dag(Obj_Entry *);
98 static void init_rtld(caddr_t, Elf_Auxinfo **);
99 static void initlist_add_neededs(Needed_Entry *, Objlist *);
100 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
101 static void linkmap_add(Obj_Entry *);
102 static void linkmap_delete(Obj_Entry *);
103 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
104 static void unload_filtees(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *, int);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
108 static void map_stacks_exec(RtldLockState *);
109 static Obj_Entry *obj_from_addr(const void *);
110 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
111 static void objlist_call_init(Objlist *, RtldLockState *);
112 static void objlist_clear(Objlist *);
113 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114 static void objlist_init(Objlist *);
115 static void objlist_push_head(Objlist *, Obj_Entry *);
116 static void objlist_push_tail(Objlist *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
120     RtldLockState *);
121 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
122     int flags, RtldLockState *lockstate);
123 static int rtld_dirname(const char *, char *);
124 static int rtld_dirname_abs(const char *, char *);
125 static void *rtld_dlopen(const char *name, int fd, int mode);
126 static void rtld_exit(void);
127 static char *search_library_path(const char *, const char *);
128 static const void **get_program_var_addr(const char *, RtldLockState *);
129 static void set_program_var(const char *, const void *);
130 static int symlook_default(SymLook *, const Obj_Entry *refobj);
131 static int symlook_global(SymLook *, DoneList *);
132 static void symlook_init_from_req(SymLook *, const SymLook *);
133 static int symlook_list(SymLook *, const Objlist *, DoneList *);
134 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135 static int symlook_obj1(SymLook *, const Obj_Entry *);
136 static void trace_loaded_objects(Obj_Entry *);
137 static void unlink_object(Obj_Entry *);
138 static void unload_object(Obj_Entry *);
139 static void unref_dag(Obj_Entry *);
140 static void ref_dag(Obj_Entry *);
141 static int origin_subst_one(char **, const char *, const char *,
142   const char *, char *);
143 static char *origin_subst(const char *, const char *);
144 static void preinit_main(void);
145 static int  rtld_verify_versions(const Objlist *);
146 static int  rtld_verify_object_versions(Obj_Entry *);
147 static void object_add_name(Obj_Entry *, const char *);
148 static int  object_match_name(const Obj_Entry *, const char *);
149 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
150 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
151     struct dl_phdr_info *phdr_info);
152 
153 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
154 
155 /*
156  * Data declarations.
157  */
158 static char *error_message;	/* Message for dlerror(), or NULL */
159 struct r_debug r_debug;		/* for GDB; */
160 static bool libmap_disable;	/* Disable libmap */
161 static bool ld_loadfltr;	/* Immediate filters processing */
162 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
163 static bool trust;		/* False for setuid and setgid programs */
164 static bool dangerous_ld_env;	/* True if environment variables have been
165 				   used to affect the libraries loaded */
166 static char *ld_bind_now;	/* Environment variable for immediate binding */
167 static char *ld_debug;		/* Environment variable for debugging */
168 static char *ld_library_path;	/* Environment variable for search path */
169 static char *ld_preload;	/* Environment variable for libraries to
170 				   load first */
171 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
172 static char *ld_tracing;	/* Called from ldd to print libs */
173 static char *ld_utrace;		/* Use utrace() to log events. */
174 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
175 static Obj_Entry **obj_tail;	/* Link field of last object in list */
176 static Obj_Entry *obj_main;	/* The main program shared object */
177 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
178 static unsigned int obj_count;	/* Number of objects in obj_list */
179 static unsigned int obj_loads;	/* Number of objects in obj_list */
180 
181 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
182   STAILQ_HEAD_INITIALIZER(list_global);
183 static Objlist list_main =	/* Objects loaded at program startup */
184   STAILQ_HEAD_INITIALIZER(list_main);
185 static Objlist list_fini =	/* Objects needing fini() calls */
186   STAILQ_HEAD_INITIALIZER(list_fini);
187 
188 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
189 
190 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
191 
192 extern Elf_Dyn _DYNAMIC;
193 #pragma weak _DYNAMIC
194 #ifndef RTLD_IS_DYNAMIC
195 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
196 #endif
197 
198 int osreldate, pagesize;
199 
200 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
201 
202 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
203 static int max_stack_flags;
204 
205 /*
206  * Global declarations normally provided by crt1.  The dynamic linker is
207  * not built with crt1, so we have to provide them ourselves.
208  */
209 char *__progname;
210 char **environ;
211 
212 /*
213  * Used to pass argc, argv to init functions.
214  */
215 int main_argc;
216 char **main_argv;
217 
218 /*
219  * Globals to control TLS allocation.
220  */
221 size_t tls_last_offset;		/* Static TLS offset of last module */
222 size_t tls_last_size;		/* Static TLS size of last module */
223 size_t tls_static_space;	/* Static TLS space allocated */
224 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
225 int tls_max_index = 1;		/* Largest module index allocated */
226 
227 /*
228  * Fill in a DoneList with an allocation large enough to hold all of
229  * the currently-loaded objects.  Keep this as a macro since it calls
230  * alloca and we want that to occur within the scope of the caller.
231  */
232 #define donelist_init(dlp)					\
233     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
234     assert((dlp)->objs != NULL),				\
235     (dlp)->num_alloc = obj_count,				\
236     (dlp)->num_used = 0)
237 
238 #define	UTRACE_DLOPEN_START		1
239 #define	UTRACE_DLOPEN_STOP		2
240 #define	UTRACE_DLCLOSE_START		3
241 #define	UTRACE_DLCLOSE_STOP		4
242 #define	UTRACE_LOAD_OBJECT		5
243 #define	UTRACE_UNLOAD_OBJECT		6
244 #define	UTRACE_ADD_RUNDEP		7
245 #define	UTRACE_PRELOAD_FINISHED		8
246 #define	UTRACE_INIT_CALL		9
247 #define	UTRACE_FINI_CALL		10
248 
249 struct utrace_rtld {
250 	char sig[4];			/* 'RTLD' */
251 	int event;
252 	void *handle;
253 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
254 	size_t mapsize;
255 	int refcnt;			/* Used for 'mode' */
256 	char name[MAXPATHLEN];
257 };
258 
259 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
260 	if (ld_utrace != NULL)					\
261 		ld_utrace_log(e, h, mb, ms, r, n);		\
262 } while (0)
263 
264 static void
265 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
266     int refcnt, const char *name)
267 {
268 	struct utrace_rtld ut;
269 
270 	ut.sig[0] = 'R';
271 	ut.sig[1] = 'T';
272 	ut.sig[2] = 'L';
273 	ut.sig[3] = 'D';
274 	ut.event = event;
275 	ut.handle = handle;
276 	ut.mapbase = mapbase;
277 	ut.mapsize = mapsize;
278 	ut.refcnt = refcnt;
279 	bzero(ut.name, sizeof(ut.name));
280 	if (name)
281 		strlcpy(ut.name, name, sizeof(ut.name));
282 	utrace(&ut, sizeof(ut));
283 }
284 
285 /*
286  * Main entry point for dynamic linking.  The first argument is the
287  * stack pointer.  The stack is expected to be laid out as described
288  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
289  * Specifically, the stack pointer points to a word containing
290  * ARGC.  Following that in the stack is a null-terminated sequence
291  * of pointers to argument strings.  Then comes a null-terminated
292  * sequence of pointers to environment strings.  Finally, there is a
293  * sequence of "auxiliary vector" entries.
294  *
295  * The second argument points to a place to store the dynamic linker's
296  * exit procedure pointer and the third to a place to store the main
297  * program's object.
298  *
299  * The return value is the main program's entry point.
300  */
301 func_ptr_type
302 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
303 {
304     Elf_Auxinfo *aux_info[AT_COUNT];
305     int i;
306     int argc;
307     char **argv;
308     char **env;
309     Elf_Auxinfo *aux;
310     Elf_Auxinfo *auxp;
311     const char *argv0;
312     Objlist_Entry *entry;
313     Obj_Entry *obj;
314     Obj_Entry **preload_tail;
315     Objlist initlist;
316     RtldLockState lockstate;
317     int mib[2];
318     size_t len;
319 
320     /*
321      * On entry, the dynamic linker itself has not been relocated yet.
322      * Be very careful not to reference any global data until after
323      * init_rtld has returned.  It is OK to reference file-scope statics
324      * and string constants, and to call static and global functions.
325      */
326 
327     /* Find the auxiliary vector on the stack. */
328     argc = *sp++;
329     argv = (char **) sp;
330     sp += argc + 1;	/* Skip over arguments and NULL terminator */
331     env = (char **) sp;
332     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
333 	;
334     aux = (Elf_Auxinfo *) sp;
335 
336     /* Digest the auxiliary vector. */
337     for (i = 0;  i < AT_COUNT;  i++)
338 	aux_info[i] = NULL;
339     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
340 	if (auxp->a_type < AT_COUNT)
341 	    aux_info[auxp->a_type] = auxp;
342     }
343 
344     /* Initialize and relocate ourselves. */
345     assert(aux_info[AT_BASE] != NULL);
346     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
347 
348     __progname = obj_rtld.path;
349     argv0 = argv[0] != NULL ? argv[0] : "(null)";
350     environ = env;
351     main_argc = argc;
352     main_argv = argv;
353 
354     if (aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
355 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
356 	    if (i > sizeof(__stack_chk_guard))
357 		    i = sizeof(__stack_chk_guard);
358 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
359     } else {
360 	mib[0] = CTL_KERN;
361 	mib[1] = KERN_ARND;
362 
363 	len = sizeof(__stack_chk_guard);
364 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
365 	    len != sizeof(__stack_chk_guard)) {
366 		/* If sysctl was unsuccessful, use the "terminator canary". */
367 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
368 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
369 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
370 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
371 	}
372     }
373 
374     trust = !issetugid();
375 
376     ld_bind_now = getenv(LD_ "BIND_NOW");
377     /*
378      * If the process is tainted, then we un-set the dangerous environment
379      * variables.  The process will be marked as tainted until setuid(2)
380      * is called.  If any child process calls setuid(2) we do not want any
381      * future processes to honor the potentially un-safe variables.
382      */
383     if (!trust) {
384         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
385 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
386 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
387 	    unsetenv(LD_ "LOADFLTR")) {
388 		_rtld_error("environment corrupt; aborting");
389 		die();
390 	}
391     }
392     ld_debug = getenv(LD_ "DEBUG");
393     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
394     libmap_override = getenv(LD_ "LIBMAP");
395     ld_library_path = getenv(LD_ "LIBRARY_PATH");
396     ld_preload = getenv(LD_ "PRELOAD");
397     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
398     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
399     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
400 	(ld_library_path != NULL) || (ld_preload != NULL) ||
401 	(ld_elf_hints_path != NULL) || ld_loadfltr;
402     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
403     ld_utrace = getenv(LD_ "UTRACE");
404 
405     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
406 	ld_elf_hints_path = _PATH_ELF_HINTS;
407 
408     if (ld_debug != NULL && *ld_debug != '\0')
409 	debug = 1;
410     dbg("%s is initialized, base address = %p", __progname,
411 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
412     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
413     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
414 
415     dbg("initializing thread locks");
416     lockdflt_init();
417 
418     /*
419      * Load the main program, or process its program header if it is
420      * already loaded.
421      */
422     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
423 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
424 	dbg("loading main program");
425 	obj_main = map_object(fd, argv0, NULL);
426 	close(fd);
427 	if (obj_main == NULL)
428 	    die();
429 	max_stack_flags = obj->stack_flags;
430     } else {				/* Main program already loaded. */
431 	const Elf_Phdr *phdr;
432 	int phnum;
433 	caddr_t entry;
434 
435 	dbg("processing main program's program header");
436 	assert(aux_info[AT_PHDR] != NULL);
437 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
438 	assert(aux_info[AT_PHNUM] != NULL);
439 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
440 	assert(aux_info[AT_PHENT] != NULL);
441 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
442 	assert(aux_info[AT_ENTRY] != NULL);
443 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
444 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
445 	    die();
446     }
447 
448     if (aux_info[AT_EXECPATH] != 0) {
449 	    char *kexecpath;
450 	    char buf[MAXPATHLEN];
451 
452 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
453 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
454 	    if (kexecpath[0] == '/')
455 		    obj_main->path = kexecpath;
456 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
457 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
458 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
459 		    obj_main->path = xstrdup(argv0);
460 	    else
461 		    obj_main->path = xstrdup(buf);
462     } else {
463 	    dbg("No AT_EXECPATH");
464 	    obj_main->path = xstrdup(argv0);
465     }
466     dbg("obj_main path %s", obj_main->path);
467     obj_main->mainprog = true;
468 
469     if (aux_info[AT_STACKPROT] != NULL &&
470       aux_info[AT_STACKPROT]->a_un.a_val != 0)
471 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
472 
473     /*
474      * Get the actual dynamic linker pathname from the executable if
475      * possible.  (It should always be possible.)  That ensures that
476      * gdb will find the right dynamic linker even if a non-standard
477      * one is being used.
478      */
479     if (obj_main->interp != NULL &&
480       strcmp(obj_main->interp, obj_rtld.path) != 0) {
481 	free(obj_rtld.path);
482 	obj_rtld.path = xstrdup(obj_main->interp);
483         __progname = obj_rtld.path;
484     }
485 
486     digest_dynamic(obj_main, 0);
487 
488     linkmap_add(obj_main);
489     linkmap_add(&obj_rtld);
490 
491     /* Link the main program into the list of objects. */
492     *obj_tail = obj_main;
493     obj_tail = &obj_main->next;
494     obj_count++;
495     obj_loads++;
496 
497     /* Initialize a fake symbol for resolving undefined weak references. */
498     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
499     sym_zero.st_shndx = SHN_UNDEF;
500     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
501 
502     if (!libmap_disable)
503         libmap_disable = (bool)lm_init(libmap_override);
504 
505     dbg("loading LD_PRELOAD libraries");
506     if (load_preload_objects() == -1)
507 	die();
508     preload_tail = obj_tail;
509 
510     dbg("loading needed objects");
511     if (load_needed_objects(obj_main, 0) == -1)
512 	die();
513 
514     /* Make a list of all objects loaded at startup. */
515     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
516 	objlist_push_tail(&list_main, obj);
517     	obj->refcount++;
518     }
519 
520     dbg("checking for required versions");
521     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
522 	die();
523 
524     if (ld_tracing) {		/* We're done */
525 	trace_loaded_objects(obj_main);
526 	exit(0);
527     }
528 
529     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
530        dump_relocations(obj_main);
531        exit (0);
532     }
533 
534     /*
535      * Processing tls relocations requires having the tls offsets
536      * initialized.  Prepare offsets before starting initial
537      * relocation processing.
538      */
539     dbg("initializing initial thread local storage offsets");
540     STAILQ_FOREACH(entry, &list_main, link) {
541 	/*
542 	 * Allocate all the initial objects out of the static TLS
543 	 * block even if they didn't ask for it.
544 	 */
545 	allocate_tls_offset(entry->obj);
546     }
547 
548     if (relocate_objects(obj_main,
549       ld_bind_now != NULL && *ld_bind_now != '\0',
550       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
551 	die();
552 
553     dbg("doing copy relocations");
554     if (do_copy_relocations(obj_main) == -1)
555 	die();
556 
557     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
558        dump_relocations(obj_main);
559        exit (0);
560     }
561 
562     /*
563      * Setup TLS for main thread.  This must be done after the
564      * relocations are processed, since tls initialization section
565      * might be the subject for relocations.
566      */
567     dbg("initializing initial thread local storage");
568     allocate_initial_tls(obj_list);
569 
570     dbg("initializing key program variables");
571     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
572     set_program_var("environ", env);
573     set_program_var("__elf_aux_vector", aux);
574 
575     /* Make a list of init functions to call. */
576     objlist_init(&initlist);
577     initlist_add_objects(obj_list, preload_tail, &initlist);
578 
579     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
580 
581     map_stacks_exec(NULL);
582 
583     dbg("resolving ifuncs");
584     if (resolve_objects_ifunc(obj_main,
585       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
586       NULL) == -1)
587 	die();
588 
589     if (!obj_main->crt_no_init) {
590 	/*
591 	 * Make sure we don't call the main program's init and fini
592 	 * functions for binaries linked with old crt1 which calls
593 	 * _init itself.
594 	 */
595 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
596 	obj_main->preinit_array = obj_main->init_array =
597 	    obj_main->fini_array = (Elf_Addr)NULL;
598     }
599 
600     wlock_acquire(rtld_bind_lock, &lockstate);
601     if (obj_main->crt_no_init)
602 	preinit_main();
603     objlist_call_init(&initlist, &lockstate);
604     objlist_clear(&initlist);
605     dbg("loading filtees");
606     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
607 	if (ld_loadfltr || obj->z_loadfltr)
608 	    load_filtees(obj, 0, &lockstate);
609     }
610     lock_release(rtld_bind_lock, &lockstate);
611 
612     dbg("transferring control to program entry point = %p", obj_main->entry);
613 
614     /* Return the exit procedure and the program entry point. */
615     *exit_proc = rtld_exit;
616     *objp = obj_main;
617     return (func_ptr_type) obj_main->entry;
618 }
619 
620 void *
621 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
622 {
623 	void *ptr;
624 	Elf_Addr target;
625 
626 	ptr = (void *)make_function_pointer(def, obj);
627 	target = ((Elf_Addr (*)(void))ptr)();
628 	return ((void *)target);
629 }
630 
631 Elf_Addr
632 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
633 {
634     const Elf_Rel *rel;
635     const Elf_Sym *def;
636     const Obj_Entry *defobj;
637     Elf_Addr *where;
638     Elf_Addr target;
639     RtldLockState lockstate;
640 
641     rlock_acquire(rtld_bind_lock, &lockstate);
642     if (sigsetjmp(lockstate.env, 0) != 0)
643 	    lock_upgrade(rtld_bind_lock, &lockstate);
644     if (obj->pltrel)
645 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
646     else
647 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
648 
649     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
650     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
651 	&lockstate);
652     if (def == NULL)
653 	die();
654     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
655 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
656     else
657 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
658 
659     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
660       defobj->strtab + def->st_name, basename(obj->path),
661       (void *)target, basename(defobj->path));
662 
663     /*
664      * Write the new contents for the jmpslot. Note that depending on
665      * architecture, the value which we need to return back to the
666      * lazy binding trampoline may or may not be the target
667      * address. The value returned from reloc_jmpslot() is the value
668      * that the trampoline needs.
669      */
670     target = reloc_jmpslot(where, target, defobj, obj, rel);
671     lock_release(rtld_bind_lock, &lockstate);
672     return target;
673 }
674 
675 /*
676  * Error reporting function.  Use it like printf.  If formats the message
677  * into a buffer, and sets things up so that the next call to dlerror()
678  * will return the message.
679  */
680 void
681 _rtld_error(const char *fmt, ...)
682 {
683     static char buf[512];
684     va_list ap;
685 
686     va_start(ap, fmt);
687     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
688     error_message = buf;
689     va_end(ap);
690 }
691 
692 /*
693  * Return a dynamically-allocated copy of the current error message, if any.
694  */
695 static char *
696 errmsg_save(void)
697 {
698     return error_message == NULL ? NULL : xstrdup(error_message);
699 }
700 
701 /*
702  * Restore the current error message from a copy which was previously saved
703  * by errmsg_save().  The copy is freed.
704  */
705 static void
706 errmsg_restore(char *saved_msg)
707 {
708     if (saved_msg == NULL)
709 	error_message = NULL;
710     else {
711 	_rtld_error("%s", saved_msg);
712 	free(saved_msg);
713     }
714 }
715 
716 static const char *
717 basename(const char *name)
718 {
719     const char *p = strrchr(name, '/');
720     return p != NULL ? p + 1 : name;
721 }
722 
723 static struct utsname uts;
724 
725 static int
726 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
727     char *may_free)
728 {
729     const char *p, *p1;
730     char *res1;
731     int subst_len;
732     int kw_len;
733 
734     res1 = *res = NULL;
735     p = real;
736     subst_len = kw_len = 0;
737     for (;;) {
738 	 p1 = strstr(p, kw);
739 	 if (p1 != NULL) {
740 	     if (subst_len == 0) {
741 		 subst_len = strlen(subst);
742 		 kw_len = strlen(kw);
743 	     }
744 	     if (*res == NULL) {
745 		 *res = xmalloc(PATH_MAX);
746 		 res1 = *res;
747 	     }
748 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
749 		 _rtld_error("Substitution of %s in %s cannot be performed",
750 		     kw, real);
751 		 if (may_free != NULL)
752 		     free(may_free);
753 		 free(res);
754 		 return (false);
755 	     }
756 	     memcpy(res1, p, p1 - p);
757 	     res1 += p1 - p;
758 	     memcpy(res1, subst, subst_len);
759 	     res1 += subst_len;
760 	     p = p1 + kw_len;
761 	 } else {
762 	    if (*res == NULL) {
763 		if (may_free != NULL)
764 		    *res = may_free;
765 		else
766 		    *res = xstrdup(real);
767 		return (true);
768 	    }
769 	    *res1 = '\0';
770 	    if (may_free != NULL)
771 		free(may_free);
772 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
773 		free(res);
774 		return (false);
775 	    }
776 	    return (true);
777 	 }
778     }
779 }
780 
781 static char *
782 origin_subst(const char *real, const char *origin_path)
783 {
784     char *res1, *res2, *res3, *res4;
785 
786     if (uts.sysname[0] == '\0') {
787 	if (uname(&uts) != 0) {
788 	    _rtld_error("utsname failed: %d", errno);
789 	    return (NULL);
790 	}
791     }
792     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
793 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
794 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
795 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
796 	    return (NULL);
797     return (res4);
798 }
799 
800 static void
801 die(void)
802 {
803     const char *msg = dlerror();
804 
805     if (msg == NULL)
806 	msg = "Fatal error";
807     rtld_fdputstr(STDERR_FILENO, msg);
808     rtld_fdputchar(STDERR_FILENO, '\n');
809     _exit(1);
810 }
811 
812 /*
813  * Process a shared object's DYNAMIC section, and save the important
814  * information in its Obj_Entry structure.
815  */
816 static void
817 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
818     const Elf_Dyn **dyn_soname)
819 {
820     const Elf_Dyn *dynp;
821     Needed_Entry **needed_tail = &obj->needed;
822     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
823     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
824     int plttype = DT_REL;
825 
826     *dyn_rpath = NULL;
827     *dyn_soname = NULL;
828 
829     obj->bind_now = false;
830     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
831 	switch (dynp->d_tag) {
832 
833 	case DT_REL:
834 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
835 	    break;
836 
837 	case DT_RELSZ:
838 	    obj->relsize = dynp->d_un.d_val;
839 	    break;
840 
841 	case DT_RELENT:
842 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
843 	    break;
844 
845 	case DT_JMPREL:
846 	    obj->pltrel = (const Elf_Rel *)
847 	      (obj->relocbase + dynp->d_un.d_ptr);
848 	    break;
849 
850 	case DT_PLTRELSZ:
851 	    obj->pltrelsize = dynp->d_un.d_val;
852 	    break;
853 
854 	case DT_RELA:
855 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
856 	    break;
857 
858 	case DT_RELASZ:
859 	    obj->relasize = dynp->d_un.d_val;
860 	    break;
861 
862 	case DT_RELAENT:
863 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
864 	    break;
865 
866 	case DT_PLTREL:
867 	    plttype = dynp->d_un.d_val;
868 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
869 	    break;
870 
871 	case DT_SYMTAB:
872 	    obj->symtab = (const Elf_Sym *)
873 	      (obj->relocbase + dynp->d_un.d_ptr);
874 	    break;
875 
876 	case DT_SYMENT:
877 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
878 	    break;
879 
880 	case DT_STRTAB:
881 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
882 	    break;
883 
884 	case DT_STRSZ:
885 	    obj->strsize = dynp->d_un.d_val;
886 	    break;
887 
888 	case DT_VERNEED:
889 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
890 		dynp->d_un.d_val);
891 	    break;
892 
893 	case DT_VERNEEDNUM:
894 	    obj->verneednum = dynp->d_un.d_val;
895 	    break;
896 
897 	case DT_VERDEF:
898 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
899 		dynp->d_un.d_val);
900 	    break;
901 
902 	case DT_VERDEFNUM:
903 	    obj->verdefnum = dynp->d_un.d_val;
904 	    break;
905 
906 	case DT_VERSYM:
907 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
908 		dynp->d_un.d_val);
909 	    break;
910 
911 	case DT_HASH:
912 	    {
913 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
914 		  (obj->relocbase + dynp->d_un.d_ptr);
915 		obj->nbuckets = hashtab[0];
916 		obj->nchains = hashtab[1];
917 		obj->buckets = hashtab + 2;
918 		obj->chains = obj->buckets + obj->nbuckets;
919 	    }
920 	    break;
921 
922 	case DT_NEEDED:
923 	    if (!obj->rtld) {
924 		Needed_Entry *nep = NEW(Needed_Entry);
925 		nep->name = dynp->d_un.d_val;
926 		nep->obj = NULL;
927 		nep->next = NULL;
928 
929 		*needed_tail = nep;
930 		needed_tail = &nep->next;
931 	    }
932 	    break;
933 
934 	case DT_FILTER:
935 	    if (!obj->rtld) {
936 		Needed_Entry *nep = NEW(Needed_Entry);
937 		nep->name = dynp->d_un.d_val;
938 		nep->obj = NULL;
939 		nep->next = NULL;
940 
941 		*needed_filtees_tail = nep;
942 		needed_filtees_tail = &nep->next;
943 	    }
944 	    break;
945 
946 	case DT_AUXILIARY:
947 	    if (!obj->rtld) {
948 		Needed_Entry *nep = NEW(Needed_Entry);
949 		nep->name = dynp->d_un.d_val;
950 		nep->obj = NULL;
951 		nep->next = NULL;
952 
953 		*needed_aux_filtees_tail = nep;
954 		needed_aux_filtees_tail = &nep->next;
955 	    }
956 	    break;
957 
958 	case DT_PLTGOT:
959 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
960 	    break;
961 
962 	case DT_TEXTREL:
963 	    obj->textrel = true;
964 	    break;
965 
966 	case DT_SYMBOLIC:
967 	    obj->symbolic = true;
968 	    break;
969 
970 	case DT_RPATH:
971 	case DT_RUNPATH:	/* XXX: process separately */
972 	    /*
973 	     * We have to wait until later to process this, because we
974 	     * might not have gotten the address of the string table yet.
975 	     */
976 	    *dyn_rpath = dynp;
977 	    break;
978 
979 	case DT_SONAME:
980 	    *dyn_soname = dynp;
981 	    break;
982 
983 	case DT_INIT:
984 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
985 	    break;
986 
987 	case DT_PREINIT_ARRAY:
988 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
989 	    break;
990 
991 	case DT_PREINIT_ARRAYSZ:
992 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
993 	    break;
994 
995 	case DT_INIT_ARRAY:
996 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
997 	    break;
998 
999 	case DT_INIT_ARRAYSZ:
1000 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1001 	    break;
1002 
1003 	case DT_FINI:
1004 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1005 	    break;
1006 
1007 	case DT_FINI_ARRAY:
1008 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1009 	    break;
1010 
1011 	case DT_FINI_ARRAYSZ:
1012 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1013 	    break;
1014 
1015 	/*
1016 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1017 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1018 	 */
1019 
1020 #ifndef __mips__
1021 	case DT_DEBUG:
1022 	    /* XXX - not implemented yet */
1023 	    if (!early)
1024 		dbg("Filling in DT_DEBUG entry");
1025 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1026 	    break;
1027 #endif
1028 
1029 	case DT_FLAGS:
1030 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1031 		    obj->z_origin = true;
1032 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1033 		    obj->symbolic = true;
1034 		if (dynp->d_un.d_val & DF_TEXTREL)
1035 		    obj->textrel = true;
1036 		if (dynp->d_un.d_val & DF_BIND_NOW)
1037 		    obj->bind_now = true;
1038 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1039 		    ;*/
1040 	    break;
1041 #ifdef __mips__
1042 	case DT_MIPS_LOCAL_GOTNO:
1043 		obj->local_gotno = dynp->d_un.d_val;
1044 	    break;
1045 
1046 	case DT_MIPS_SYMTABNO:
1047 		obj->symtabno = dynp->d_un.d_val;
1048 		break;
1049 
1050 	case DT_MIPS_GOTSYM:
1051 		obj->gotsym = dynp->d_un.d_val;
1052 		break;
1053 
1054 	case DT_MIPS_RLD_MAP:
1055 #ifdef notyet
1056 		if (!early)
1057 			dbg("Filling in DT_DEBUG entry");
1058 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1059 #endif
1060 		break;
1061 #endif
1062 
1063 	case DT_FLAGS_1:
1064 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1065 		    obj->z_noopen = true;
1066 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1067 		    obj->z_origin = true;
1068 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1069 		    XXX ;*/
1070 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1071 		    obj->bind_now = true;
1072 		if (dynp->d_un.d_val & DF_1_NODELETE)
1073 		    obj->z_nodelete = true;
1074 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1075 		    obj->z_loadfltr = true;
1076 	    break;
1077 
1078 	default:
1079 	    if (!early) {
1080 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1081 		    (long)dynp->d_tag);
1082 	    }
1083 	    break;
1084 	}
1085     }
1086 
1087     obj->traced = false;
1088 
1089     if (plttype == DT_RELA) {
1090 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1091 	obj->pltrel = NULL;
1092 	obj->pltrelasize = obj->pltrelsize;
1093 	obj->pltrelsize = 0;
1094     }
1095 }
1096 
1097 static void
1098 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1099     const Elf_Dyn *dyn_soname)
1100 {
1101 
1102     if (obj->z_origin && obj->origin_path == NULL) {
1103 	obj->origin_path = xmalloc(PATH_MAX);
1104 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1105 	    die();
1106     }
1107 
1108     if (dyn_rpath != NULL) {
1109 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1110 	if (obj->z_origin)
1111 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1112     }
1113 
1114     if (dyn_soname != NULL)
1115 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1116 }
1117 
1118 static void
1119 digest_dynamic(Obj_Entry *obj, int early)
1120 {
1121 	const Elf_Dyn *dyn_rpath;
1122 	const Elf_Dyn *dyn_soname;
1123 
1124 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1125 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1126 }
1127 
1128 /*
1129  * Process a shared object's program header.  This is used only for the
1130  * main program, when the kernel has already loaded the main program
1131  * into memory before calling the dynamic linker.  It creates and
1132  * returns an Obj_Entry structure.
1133  */
1134 static Obj_Entry *
1135 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1136 {
1137     Obj_Entry *obj;
1138     const Elf_Phdr *phlimit = phdr + phnum;
1139     const Elf_Phdr *ph;
1140     Elf_Addr note_start, note_end;
1141     int nsegs = 0;
1142 
1143     obj = obj_new();
1144     for (ph = phdr;  ph < phlimit;  ph++) {
1145 	if (ph->p_type != PT_PHDR)
1146 	    continue;
1147 
1148 	obj->phdr = phdr;
1149 	obj->phsize = ph->p_memsz;
1150 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1151 	break;
1152     }
1153 
1154     obj->stack_flags = PF_X | PF_R | PF_W;
1155 
1156     for (ph = phdr;  ph < phlimit;  ph++) {
1157 	switch (ph->p_type) {
1158 
1159 	case PT_INTERP:
1160 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1161 	    break;
1162 
1163 	case PT_LOAD:
1164 	    if (nsegs == 0) {	/* First load segment */
1165 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1166 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1167 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1168 		  obj->vaddrbase;
1169 	    } else {		/* Last load segment */
1170 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1171 		  obj->vaddrbase;
1172 	    }
1173 	    nsegs++;
1174 	    break;
1175 
1176 	case PT_DYNAMIC:
1177 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1178 	    break;
1179 
1180 	case PT_TLS:
1181 	    obj->tlsindex = 1;
1182 	    obj->tlssize = ph->p_memsz;
1183 	    obj->tlsalign = ph->p_align;
1184 	    obj->tlsinitsize = ph->p_filesz;
1185 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1186 	    break;
1187 
1188 	case PT_GNU_STACK:
1189 	    obj->stack_flags = ph->p_flags;
1190 	    break;
1191 
1192 	case PT_GNU_RELRO:
1193 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1194 	    obj->relro_size = round_page(ph->p_memsz);
1195 	    break;
1196 
1197 	case PT_NOTE:
1198 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1199 	    note_end = note_start + ph->p_filesz;
1200 	    digest_notes(obj, note_start, note_end);
1201 	    break;
1202 	}
1203     }
1204     if (nsegs < 1) {
1205 	_rtld_error("%s: too few PT_LOAD segments", path);
1206 	return NULL;
1207     }
1208 
1209     obj->entry = entry;
1210     return obj;
1211 }
1212 
1213 void
1214 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1215 {
1216 	const Elf_Note *note;
1217 	const char *note_name;
1218 	uintptr_t p;
1219 
1220 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1221 	    note = (const Elf_Note *)((const char *)(note + 1) +
1222 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1223 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1224 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1225 		    note->n_descsz != sizeof(int32_t))
1226 			continue;
1227 		if (note->n_type != ABI_NOTETYPE &&
1228 		    note->n_type != CRT_NOINIT_NOTETYPE)
1229 			continue;
1230 		note_name = (const char *)(note + 1);
1231 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1232 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1233 			continue;
1234 		switch (note->n_type) {
1235 		case ABI_NOTETYPE:
1236 			/* FreeBSD osrel note */
1237 			p = (uintptr_t)(note + 1);
1238 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1239 			obj->osrel = *(const int32_t *)(p);
1240 			dbg("note osrel %d", obj->osrel);
1241 			break;
1242 		case CRT_NOINIT_NOTETYPE:
1243 			/* FreeBSD 'crt does not call init' note */
1244 			obj->crt_no_init = true;
1245 			dbg("note crt_no_init");
1246 			break;
1247 		}
1248 	}
1249 }
1250 
1251 static Obj_Entry *
1252 dlcheck(void *handle)
1253 {
1254     Obj_Entry *obj;
1255 
1256     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1257 	if (obj == (Obj_Entry *) handle)
1258 	    break;
1259 
1260     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1261 	_rtld_error("Invalid shared object handle %p", handle);
1262 	return NULL;
1263     }
1264     return obj;
1265 }
1266 
1267 /*
1268  * If the given object is already in the donelist, return true.  Otherwise
1269  * add the object to the list and return false.
1270  */
1271 static bool
1272 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1273 {
1274     unsigned int i;
1275 
1276     for (i = 0;  i < dlp->num_used;  i++)
1277 	if (dlp->objs[i] == obj)
1278 	    return true;
1279     /*
1280      * Our donelist allocation should always be sufficient.  But if
1281      * our threads locking isn't working properly, more shared objects
1282      * could have been loaded since we allocated the list.  That should
1283      * never happen, but we'll handle it properly just in case it does.
1284      */
1285     if (dlp->num_used < dlp->num_alloc)
1286 	dlp->objs[dlp->num_used++] = obj;
1287     return false;
1288 }
1289 
1290 /*
1291  * Hash function for symbol table lookup.  Don't even think about changing
1292  * this.  It is specified by the System V ABI.
1293  */
1294 unsigned long
1295 elf_hash(const char *name)
1296 {
1297     const unsigned char *p = (const unsigned char *) name;
1298     unsigned long h = 0;
1299     unsigned long g;
1300 
1301     while (*p != '\0') {
1302 	h = (h << 4) + *p++;
1303 	if ((g = h & 0xf0000000) != 0)
1304 	    h ^= g >> 24;
1305 	h &= ~g;
1306     }
1307     return h;
1308 }
1309 
1310 /*
1311  * Find the library with the given name, and return its full pathname.
1312  * The returned string is dynamically allocated.  Generates an error
1313  * message and returns NULL if the library cannot be found.
1314  *
1315  * If the second argument is non-NULL, then it refers to an already-
1316  * loaded shared object, whose library search path will be searched.
1317  *
1318  * The search order is:
1319  *   LD_LIBRARY_PATH
1320  *   rpath in the referencing file
1321  *   ldconfig hints
1322  *   /lib:/usr/lib
1323  */
1324 static char *
1325 find_library(const char *xname, const Obj_Entry *refobj)
1326 {
1327     char *pathname;
1328     char *name;
1329 
1330     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1331 	if (xname[0] != '/' && !trust) {
1332 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1333 	      xname);
1334 	    return NULL;
1335 	}
1336 	if (refobj != NULL && refobj->z_origin)
1337 	    return origin_subst(xname, refobj->origin_path);
1338 	else
1339 	    return xstrdup(xname);
1340     }
1341 
1342     if (libmap_disable || (refobj == NULL) ||
1343 	(name = lm_find(refobj->path, xname)) == NULL)
1344 	name = (char *)xname;
1345 
1346     dbg(" Searching for \"%s\"", name);
1347 
1348     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1349       (refobj != NULL &&
1350       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1351       (pathname = search_library_path(name, gethints())) != NULL ||
1352       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1353 	return pathname;
1354 
1355     if(refobj != NULL && refobj->path != NULL) {
1356 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1357 	  name, basename(refobj->path));
1358     } else {
1359 	_rtld_error("Shared object \"%s\" not found", name);
1360     }
1361     return NULL;
1362 }
1363 
1364 /*
1365  * Given a symbol number in a referencing object, find the corresponding
1366  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1367  * no definition was found.  Returns a pointer to the Obj_Entry of the
1368  * defining object via the reference parameter DEFOBJ_OUT.
1369  */
1370 const Elf_Sym *
1371 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1372     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1373     RtldLockState *lockstate)
1374 {
1375     const Elf_Sym *ref;
1376     const Elf_Sym *def;
1377     const Obj_Entry *defobj;
1378     SymLook req;
1379     const char *name;
1380     int res;
1381 
1382     /*
1383      * If we have already found this symbol, get the information from
1384      * the cache.
1385      */
1386     if (symnum >= refobj->nchains)
1387 	return NULL;	/* Bad object */
1388     if (cache != NULL && cache[symnum].sym != NULL) {
1389 	*defobj_out = cache[symnum].obj;
1390 	return cache[symnum].sym;
1391     }
1392 
1393     ref = refobj->symtab + symnum;
1394     name = refobj->strtab + ref->st_name;
1395     def = NULL;
1396     defobj = NULL;
1397 
1398     /*
1399      * We don't have to do a full scale lookup if the symbol is local.
1400      * We know it will bind to the instance in this load module; to
1401      * which we already have a pointer (ie ref). By not doing a lookup,
1402      * we not only improve performance, but it also avoids unresolvable
1403      * symbols when local symbols are not in the hash table. This has
1404      * been seen with the ia64 toolchain.
1405      */
1406     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1407 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1408 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1409 		symnum);
1410 	}
1411 	symlook_init(&req, name);
1412 	req.flags = flags;
1413 	req.ventry = fetch_ventry(refobj, symnum);
1414 	req.lockstate = lockstate;
1415 	res = symlook_default(&req, refobj);
1416 	if (res == 0) {
1417 	    def = req.sym_out;
1418 	    defobj = req.defobj_out;
1419 	}
1420     } else {
1421 	def = ref;
1422 	defobj = refobj;
1423     }
1424 
1425     /*
1426      * If we found no definition and the reference is weak, treat the
1427      * symbol as having the value zero.
1428      */
1429     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1430 	def = &sym_zero;
1431 	defobj = obj_main;
1432     }
1433 
1434     if (def != NULL) {
1435 	*defobj_out = defobj;
1436 	/* Record the information in the cache to avoid subsequent lookups. */
1437 	if (cache != NULL) {
1438 	    cache[symnum].sym = def;
1439 	    cache[symnum].obj = defobj;
1440 	}
1441     } else {
1442 	if (refobj != &obj_rtld)
1443 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1444     }
1445     return def;
1446 }
1447 
1448 /*
1449  * Return the search path from the ldconfig hints file, reading it if
1450  * necessary.  Returns NULL if there are problems with the hints file,
1451  * or if the search path there is empty.
1452  */
1453 static const char *
1454 gethints(void)
1455 {
1456     static char *hints;
1457 
1458     if (hints == NULL) {
1459 	int fd;
1460 	struct elfhints_hdr hdr;
1461 	char *p;
1462 
1463 	/* Keep from trying again in case the hints file is bad. */
1464 	hints = "";
1465 
1466 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1467 	    return NULL;
1468 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1469 	  hdr.magic != ELFHINTS_MAGIC ||
1470 	  hdr.version != 1) {
1471 	    close(fd);
1472 	    return NULL;
1473 	}
1474 	p = xmalloc(hdr.dirlistlen + 1);
1475 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1476 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1477 	    free(p);
1478 	    close(fd);
1479 	    return NULL;
1480 	}
1481 	hints = p;
1482 	close(fd);
1483     }
1484     return hints[0] != '\0' ? hints : NULL;
1485 }
1486 
1487 static void
1488 init_dag(Obj_Entry *root)
1489 {
1490     const Needed_Entry *needed;
1491     const Objlist_Entry *elm;
1492     DoneList donelist;
1493 
1494     if (root->dag_inited)
1495 	return;
1496     donelist_init(&donelist);
1497 
1498     /* Root object belongs to own DAG. */
1499     objlist_push_tail(&root->dldags, root);
1500     objlist_push_tail(&root->dagmembers, root);
1501     donelist_check(&donelist, root);
1502 
1503     /*
1504      * Add dependencies of root object to DAG in breadth order
1505      * by exploiting the fact that each new object get added
1506      * to the tail of the dagmembers list.
1507      */
1508     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1509 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1510 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1511 		continue;
1512 	    objlist_push_tail(&needed->obj->dldags, root);
1513 	    objlist_push_tail(&root->dagmembers, needed->obj);
1514 	}
1515     }
1516     root->dag_inited = true;
1517 }
1518 
1519 /*
1520  * Initialize the dynamic linker.  The argument is the address at which
1521  * the dynamic linker has been mapped into memory.  The primary task of
1522  * this function is to relocate the dynamic linker.
1523  */
1524 static void
1525 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1526 {
1527     Obj_Entry objtmp;	/* Temporary rtld object */
1528     const Elf_Dyn *dyn_rpath;
1529     const Elf_Dyn *dyn_soname;
1530 
1531     /*
1532      * Conjure up an Obj_Entry structure for the dynamic linker.
1533      *
1534      * The "path" member can't be initialized yet because string constants
1535      * cannot yet be accessed. Below we will set it correctly.
1536      */
1537     memset(&objtmp, 0, sizeof(objtmp));
1538     objtmp.path = NULL;
1539     objtmp.rtld = true;
1540     objtmp.mapbase = mapbase;
1541 #ifdef PIC
1542     objtmp.relocbase = mapbase;
1543 #endif
1544     if (RTLD_IS_DYNAMIC()) {
1545 	objtmp.dynamic = rtld_dynamic(&objtmp);
1546 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1547 	assert(objtmp.needed == NULL);
1548 #if !defined(__mips__)
1549 	/* MIPS has a bogus DT_TEXTREL. */
1550 	assert(!objtmp.textrel);
1551 #endif
1552 
1553 	/*
1554 	 * Temporarily put the dynamic linker entry into the object list, so
1555 	 * that symbols can be found.
1556 	 */
1557 
1558 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1559     }
1560 
1561     /* Initialize the object list. */
1562     obj_tail = &obj_list;
1563 
1564     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1565     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1566 
1567     if (aux_info[AT_PAGESZ] != NULL)
1568 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1569     if (aux_info[AT_OSRELDATE] != NULL)
1570 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1571 
1572     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1573 
1574     /* Replace the path with a dynamically allocated copy. */
1575     obj_rtld.path = xstrdup(PATH_RTLD);
1576 
1577     r_debug.r_brk = r_debug_state;
1578     r_debug.r_state = RT_CONSISTENT;
1579 }
1580 
1581 /*
1582  * Add the init functions from a needed object list (and its recursive
1583  * needed objects) to "list".  This is not used directly; it is a helper
1584  * function for initlist_add_objects().  The write lock must be held
1585  * when this function is called.
1586  */
1587 static void
1588 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1589 {
1590     /* Recursively process the successor needed objects. */
1591     if (needed->next != NULL)
1592 	initlist_add_neededs(needed->next, list);
1593 
1594     /* Process the current needed object. */
1595     if (needed->obj != NULL)
1596 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1597 }
1598 
1599 /*
1600  * Scan all of the DAGs rooted in the range of objects from "obj" to
1601  * "tail" and add their init functions to "list".  This recurses over
1602  * the DAGs and ensure the proper init ordering such that each object's
1603  * needed libraries are initialized before the object itself.  At the
1604  * same time, this function adds the objects to the global finalization
1605  * list "list_fini" in the opposite order.  The write lock must be
1606  * held when this function is called.
1607  */
1608 static void
1609 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1610 {
1611 
1612     if (obj->init_scanned || obj->init_done)
1613 	return;
1614     obj->init_scanned = true;
1615 
1616     /* Recursively process the successor objects. */
1617     if (&obj->next != tail)
1618 	initlist_add_objects(obj->next, tail, list);
1619 
1620     /* Recursively process the needed objects. */
1621     if (obj->needed != NULL)
1622 	initlist_add_neededs(obj->needed, list);
1623     if (obj->needed_filtees != NULL)
1624 	initlist_add_neededs(obj->needed_filtees, list);
1625     if (obj->needed_aux_filtees != NULL)
1626 	initlist_add_neededs(obj->needed_aux_filtees, list);
1627 
1628     /* Add the object to the init list. */
1629     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1630       obj->init_array != (Elf_Addr)NULL)
1631 	objlist_push_tail(list, obj);
1632 
1633     /* Add the object to the global fini list in the reverse order. */
1634     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1635       && !obj->on_fini_list) {
1636 	objlist_push_head(&list_fini, obj);
1637 	obj->on_fini_list = true;
1638     }
1639 }
1640 
1641 #ifndef FPTR_TARGET
1642 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1643 #endif
1644 
1645 static void
1646 free_needed_filtees(Needed_Entry *n)
1647 {
1648     Needed_Entry *needed, *needed1;
1649 
1650     for (needed = n; needed != NULL; needed = needed->next) {
1651 	if (needed->obj != NULL) {
1652 	    dlclose(needed->obj);
1653 	    needed->obj = NULL;
1654 	}
1655     }
1656     for (needed = n; needed != NULL; needed = needed1) {
1657 	needed1 = needed->next;
1658 	free(needed);
1659     }
1660 }
1661 
1662 static void
1663 unload_filtees(Obj_Entry *obj)
1664 {
1665 
1666     free_needed_filtees(obj->needed_filtees);
1667     obj->needed_filtees = NULL;
1668     free_needed_filtees(obj->needed_aux_filtees);
1669     obj->needed_aux_filtees = NULL;
1670     obj->filtees_loaded = false;
1671 }
1672 
1673 static void
1674 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1675 {
1676 
1677     for (; needed != NULL; needed = needed->next) {
1678 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1679 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1680 	  RTLD_LOCAL);
1681     }
1682 }
1683 
1684 static void
1685 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1686 {
1687 
1688     lock_restart_for_upgrade(lockstate);
1689     if (!obj->filtees_loaded) {
1690 	load_filtee1(obj, obj->needed_filtees, flags);
1691 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1692 	obj->filtees_loaded = true;
1693     }
1694 }
1695 
1696 static int
1697 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1698 {
1699     Obj_Entry *obj1;
1700 
1701     for (; needed != NULL; needed = needed->next) {
1702 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1703 	  flags & ~RTLD_LO_NOLOAD);
1704 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1705 	    return (-1);
1706 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1707 	    dbg("obj %s nodelete", obj1->path);
1708 	    init_dag(obj1);
1709 	    ref_dag(obj1);
1710 	    obj1->ref_nodel = true;
1711 	}
1712     }
1713     return (0);
1714 }
1715 
1716 /*
1717  * Given a shared object, traverse its list of needed objects, and load
1718  * each of them.  Returns 0 on success.  Generates an error message and
1719  * returns -1 on failure.
1720  */
1721 static int
1722 load_needed_objects(Obj_Entry *first, int flags)
1723 {
1724     Obj_Entry *obj;
1725 
1726     for (obj = first;  obj != NULL;  obj = obj->next) {
1727 	if (process_needed(obj, obj->needed, flags) == -1)
1728 	    return (-1);
1729     }
1730     return (0);
1731 }
1732 
1733 static int
1734 load_preload_objects(void)
1735 {
1736     char *p = ld_preload;
1737     static const char delim[] = " \t:;";
1738 
1739     if (p == NULL)
1740 	return 0;
1741 
1742     p += strspn(p, delim);
1743     while (*p != '\0') {
1744 	size_t len = strcspn(p, delim);
1745 	char savech;
1746 
1747 	savech = p[len];
1748 	p[len] = '\0';
1749 	if (load_object(p, -1, NULL, 0) == NULL)
1750 	    return -1;	/* XXX - cleanup */
1751 	p[len] = savech;
1752 	p += len;
1753 	p += strspn(p, delim);
1754     }
1755     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1756     return 0;
1757 }
1758 
1759 static const char *
1760 printable_path(const char *path)
1761 {
1762 
1763 	return (path == NULL ? "<unknown>" : path);
1764 }
1765 
1766 /*
1767  * Load a shared object into memory, if it is not already loaded.  The
1768  * object may be specified by name or by user-supplied file descriptor
1769  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1770  * duplicate is.
1771  *
1772  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1773  * on failure.
1774  */
1775 static Obj_Entry *
1776 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1777 {
1778     Obj_Entry *obj;
1779     int fd;
1780     struct stat sb;
1781     char *path;
1782 
1783     if (name != NULL) {
1784 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1785 	    if (object_match_name(obj, name))
1786 		return (obj);
1787 	}
1788 
1789 	path = find_library(name, refobj);
1790 	if (path == NULL)
1791 	    return (NULL);
1792     } else
1793 	path = NULL;
1794 
1795     /*
1796      * If we didn't find a match by pathname, or the name is not
1797      * supplied, open the file and check again by device and inode.
1798      * This avoids false mismatches caused by multiple links or ".."
1799      * in pathnames.
1800      *
1801      * To avoid a race, we open the file and use fstat() rather than
1802      * using stat().
1803      */
1804     fd = -1;
1805     if (fd_u == -1) {
1806 	if ((fd = open(path, O_RDONLY)) == -1) {
1807 	    _rtld_error("Cannot open \"%s\"", path);
1808 	    free(path);
1809 	    return (NULL);
1810 	}
1811     } else {
1812 	fd = dup(fd_u);
1813 	if (fd == -1) {
1814 	    _rtld_error("Cannot dup fd");
1815 	    free(path);
1816 	    return (NULL);
1817 	}
1818     }
1819     if (fstat(fd, &sb) == -1) {
1820 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1821 	close(fd);
1822 	free(path);
1823 	return NULL;
1824     }
1825     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1826 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1827 	    break;
1828     if (obj != NULL && name != NULL) {
1829 	object_add_name(obj, name);
1830 	free(path);
1831 	close(fd);
1832 	return obj;
1833     }
1834     if (flags & RTLD_LO_NOLOAD) {
1835 	free(path);
1836 	close(fd);
1837 	return (NULL);
1838     }
1839 
1840     /* First use of this object, so we must map it in */
1841     obj = do_load_object(fd, name, path, &sb, flags);
1842     if (obj == NULL)
1843 	free(path);
1844     close(fd);
1845 
1846     return obj;
1847 }
1848 
1849 static Obj_Entry *
1850 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1851   int flags)
1852 {
1853     Obj_Entry *obj;
1854     struct statfs fs;
1855 
1856     /*
1857      * but first, make sure that environment variables haven't been
1858      * used to circumvent the noexec flag on a filesystem.
1859      */
1860     if (dangerous_ld_env) {
1861 	if (fstatfs(fd, &fs) != 0) {
1862 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1863 	    return NULL;
1864 	}
1865 	if (fs.f_flags & MNT_NOEXEC) {
1866 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1867 	    return NULL;
1868 	}
1869     }
1870     dbg("loading \"%s\"", printable_path(path));
1871     obj = map_object(fd, printable_path(path), sbp);
1872     if (obj == NULL)
1873         return NULL;
1874 
1875     /*
1876      * If DT_SONAME is present in the object, digest_dynamic2 already
1877      * added it to the object names.
1878      */
1879     if (name != NULL)
1880 	object_add_name(obj, name);
1881     obj->path = path;
1882     digest_dynamic(obj, 0);
1883     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1884       RTLD_LO_DLOPEN) {
1885 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1886 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1887 	munmap(obj->mapbase, obj->mapsize);
1888 	obj_free(obj);
1889 	return (NULL);
1890     }
1891 
1892     *obj_tail = obj;
1893     obj_tail = &obj->next;
1894     obj_count++;
1895     obj_loads++;
1896     linkmap_add(obj);	/* for GDB & dlinfo() */
1897     max_stack_flags |= obj->stack_flags;
1898 
1899     dbg("  %p .. %p: %s", obj->mapbase,
1900          obj->mapbase + obj->mapsize - 1, obj->path);
1901     if (obj->textrel)
1902 	dbg("  WARNING: %s has impure text", obj->path);
1903     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1904 	obj->path);
1905 
1906     return obj;
1907 }
1908 
1909 static Obj_Entry *
1910 obj_from_addr(const void *addr)
1911 {
1912     Obj_Entry *obj;
1913 
1914     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1915 	if (addr < (void *) obj->mapbase)
1916 	    continue;
1917 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1918 	    return obj;
1919     }
1920     return NULL;
1921 }
1922 
1923 static void
1924 preinit_main(void)
1925 {
1926     Elf_Addr *preinit_addr;
1927     int index;
1928 
1929     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
1930     if (preinit_addr == NULL)
1931 	return;
1932 
1933     for (index = 0; index < obj_main->preinit_array_num; index++) {
1934 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
1935 	    dbg("calling preinit function for %s at %p", obj_main->path,
1936 	      (void *)preinit_addr[index]);
1937 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
1938 	      0, 0, obj_main->path);
1939 	    call_init_pointer(obj_main, preinit_addr[index]);
1940 	}
1941     }
1942 }
1943 
1944 /*
1945  * Call the finalization functions for each of the objects in "list"
1946  * belonging to the DAG of "root" and referenced once. If NULL "root"
1947  * is specified, every finalization function will be called regardless
1948  * of the reference count and the list elements won't be freed. All of
1949  * the objects are expected to have non-NULL fini functions.
1950  */
1951 static void
1952 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1953 {
1954     Objlist_Entry *elm;
1955     char *saved_msg;
1956     Elf_Addr *fini_addr;
1957     int index;
1958 
1959     assert(root == NULL || root->refcount == 1);
1960 
1961     /*
1962      * Preserve the current error message since a fini function might
1963      * call into the dynamic linker and overwrite it.
1964      */
1965     saved_msg = errmsg_save();
1966     do {
1967 	STAILQ_FOREACH(elm, list, link) {
1968 	    if (root != NULL && (elm->obj->refcount != 1 ||
1969 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1970 		continue;
1971 	    /* Remove object from fini list to prevent recursive invocation. */
1972 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1973 	    /*
1974 	     * XXX: If a dlopen() call references an object while the
1975 	     * fini function is in progress, we might end up trying to
1976 	     * unload the referenced object in dlclose() or the object
1977 	     * won't be unloaded although its fini function has been
1978 	     * called.
1979 	     */
1980 	    lock_release(rtld_bind_lock, lockstate);
1981 
1982 	    /*
1983 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
1984 	     * When this happens, DT_FINI_ARRAY is processed first.
1985 	     */
1986 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
1987 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
1988 		for (index = elm->obj->fini_array_num - 1; index >= 0;
1989 		  index--) {
1990 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
1991 			dbg("calling fini function for %s at %p",
1992 			    elm->obj->path, (void *)fini_addr[index]);
1993 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
1994 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
1995 			call_initfini_pointer(elm->obj, fini_addr[index]);
1996 		    }
1997 		}
1998 	    }
1999 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2000 		dbg("calling fini function for %s at %p", elm->obj->path,
2001 		    (void *)elm->obj->fini);
2002 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2003 		    0, 0, elm->obj->path);
2004 		call_initfini_pointer(elm->obj, elm->obj->fini);
2005 	    }
2006 	    wlock_acquire(rtld_bind_lock, lockstate);
2007 	    /* No need to free anything if process is going down. */
2008 	    if (root != NULL)
2009 	    	free(elm);
2010 	    /*
2011 	     * We must restart the list traversal after every fini call
2012 	     * because a dlclose() call from the fini function or from
2013 	     * another thread might have modified the reference counts.
2014 	     */
2015 	    break;
2016 	}
2017     } while (elm != NULL);
2018     errmsg_restore(saved_msg);
2019 }
2020 
2021 /*
2022  * Call the initialization functions for each of the objects in
2023  * "list".  All of the objects are expected to have non-NULL init
2024  * functions.
2025  */
2026 static void
2027 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2028 {
2029     Objlist_Entry *elm;
2030     Obj_Entry *obj;
2031     char *saved_msg;
2032     Elf_Addr *init_addr;
2033     int index;
2034 
2035     /*
2036      * Clean init_scanned flag so that objects can be rechecked and
2037      * possibly initialized earlier if any of vectors called below
2038      * cause the change by using dlopen.
2039      */
2040     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2041 	obj->init_scanned = false;
2042 
2043     /*
2044      * Preserve the current error message since an init function might
2045      * call into the dynamic linker and overwrite it.
2046      */
2047     saved_msg = errmsg_save();
2048     STAILQ_FOREACH(elm, list, link) {
2049 	if (elm->obj->init_done) /* Initialized early. */
2050 	    continue;
2051 	/*
2052 	 * Race: other thread might try to use this object before current
2053 	 * one completes the initilization. Not much can be done here
2054 	 * without better locking.
2055 	 */
2056 	elm->obj->init_done = true;
2057 	lock_release(rtld_bind_lock, lockstate);
2058 
2059         /*
2060          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2061          * When this happens, DT_INIT is processed first.
2062          */
2063 	if (elm->obj->init != (Elf_Addr)NULL) {
2064 	    dbg("calling init function for %s at %p", elm->obj->path,
2065 	        (void *)elm->obj->init);
2066 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2067 	        0, 0, elm->obj->path);
2068 	    call_initfini_pointer(elm->obj, elm->obj->init);
2069 	}
2070 	init_addr = (Elf_Addr *)elm->obj->init_array;
2071 	if (init_addr != NULL) {
2072 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2073 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2074 		    dbg("calling init function for %s at %p", elm->obj->path,
2075 			(void *)init_addr[index]);
2076 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2077 			(void *)init_addr[index], 0, 0, elm->obj->path);
2078 		    call_init_pointer(elm->obj, init_addr[index]);
2079 		}
2080 	    }
2081 	}
2082 	wlock_acquire(rtld_bind_lock, lockstate);
2083     }
2084     errmsg_restore(saved_msg);
2085 }
2086 
2087 static void
2088 objlist_clear(Objlist *list)
2089 {
2090     Objlist_Entry *elm;
2091 
2092     while (!STAILQ_EMPTY(list)) {
2093 	elm = STAILQ_FIRST(list);
2094 	STAILQ_REMOVE_HEAD(list, link);
2095 	free(elm);
2096     }
2097 }
2098 
2099 static Objlist_Entry *
2100 objlist_find(Objlist *list, const Obj_Entry *obj)
2101 {
2102     Objlist_Entry *elm;
2103 
2104     STAILQ_FOREACH(elm, list, link)
2105 	if (elm->obj == obj)
2106 	    return elm;
2107     return NULL;
2108 }
2109 
2110 static void
2111 objlist_init(Objlist *list)
2112 {
2113     STAILQ_INIT(list);
2114 }
2115 
2116 static void
2117 objlist_push_head(Objlist *list, Obj_Entry *obj)
2118 {
2119     Objlist_Entry *elm;
2120 
2121     elm = NEW(Objlist_Entry);
2122     elm->obj = obj;
2123     STAILQ_INSERT_HEAD(list, elm, link);
2124 }
2125 
2126 static void
2127 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2128 {
2129     Objlist_Entry *elm;
2130 
2131     elm = NEW(Objlist_Entry);
2132     elm->obj = obj;
2133     STAILQ_INSERT_TAIL(list, elm, link);
2134 }
2135 
2136 static void
2137 objlist_remove(Objlist *list, Obj_Entry *obj)
2138 {
2139     Objlist_Entry *elm;
2140 
2141     if ((elm = objlist_find(list, obj)) != NULL) {
2142 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2143 	free(elm);
2144     }
2145 }
2146 
2147 /*
2148  * Relocate newly-loaded shared objects.  The argument is a pointer to
2149  * the Obj_Entry for the first such object.  All objects from the first
2150  * to the end of the list of objects are relocated.  Returns 0 on success,
2151  * or -1 on failure.
2152  */
2153 static int
2154 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2155     int flags, RtldLockState *lockstate)
2156 {
2157     Obj_Entry *obj;
2158 
2159     for (obj = first;  obj != NULL;  obj = obj->next) {
2160 	if (obj->relocated)
2161 	    continue;
2162 	obj->relocated = true;
2163 	if (obj != rtldobj)
2164 	    dbg("relocating \"%s\"", obj->path);
2165 
2166 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
2167 	    obj->symtab == NULL || obj->strtab == NULL) {
2168 	    _rtld_error("%s: Shared object has no run-time symbol table",
2169 	      obj->path);
2170 	    return -1;
2171 	}
2172 
2173 	if (obj->textrel) {
2174 	    /* There are relocations to the write-protected text segment. */
2175 	    if (mprotect(obj->mapbase, obj->textsize,
2176 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2177 		_rtld_error("%s: Cannot write-enable text segment: %s",
2178 		  obj->path, rtld_strerror(errno));
2179 		return -1;
2180 	    }
2181 	}
2182 
2183 	/* Process the non-PLT relocations. */
2184 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2185 		return -1;
2186 
2187 	if (obj->textrel) {	/* Re-protected the text segment. */
2188 	    if (mprotect(obj->mapbase, obj->textsize,
2189 	      PROT_READ|PROT_EXEC) == -1) {
2190 		_rtld_error("%s: Cannot write-protect text segment: %s",
2191 		  obj->path, rtld_strerror(errno));
2192 		return -1;
2193 	    }
2194 	}
2195 
2196 
2197 	/* Set the special PLT or GOT entries. */
2198 	init_pltgot(obj);
2199 
2200 	/* Process the PLT relocations. */
2201 	if (reloc_plt(obj) == -1)
2202 	    return -1;
2203 	/* Relocate the jump slots if we are doing immediate binding. */
2204 	if (obj->bind_now || bind_now)
2205 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2206 		return -1;
2207 
2208 	if (obj->relro_size > 0) {
2209 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2210 		_rtld_error("%s: Cannot enforce relro protection: %s",
2211 		  obj->path, rtld_strerror(errno));
2212 		return -1;
2213 	    }
2214 	}
2215 
2216 	/*
2217 	 * Set up the magic number and version in the Obj_Entry.  These
2218 	 * were checked in the crt1.o from the original ElfKit, so we
2219 	 * set them for backward compatibility.
2220 	 */
2221 	obj->magic = RTLD_MAGIC;
2222 	obj->version = RTLD_VERSION;
2223     }
2224 
2225     return (0);
2226 }
2227 
2228 /*
2229  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2230  * referencing STT_GNU_IFUNC symbols is postponed till the other
2231  * relocations are done.  The indirect functions specified as
2232  * ifunc are allowed to call other symbols, so we need to have
2233  * objects relocated before asking for resolution from indirects.
2234  *
2235  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2236  * instead of the usual lazy handling of PLT slots.  It is
2237  * consistent with how GNU does it.
2238  */
2239 static int
2240 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2241     RtldLockState *lockstate)
2242 {
2243 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2244 		return (-1);
2245 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2246 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2247 		return (-1);
2248 	return (0);
2249 }
2250 
2251 static int
2252 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2253     RtldLockState *lockstate)
2254 {
2255 	Obj_Entry *obj;
2256 
2257 	for (obj = first;  obj != NULL;  obj = obj->next) {
2258 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2259 			return (-1);
2260 	}
2261 	return (0);
2262 }
2263 
2264 static int
2265 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2266     RtldLockState *lockstate)
2267 {
2268 	Objlist_Entry *elm;
2269 
2270 	STAILQ_FOREACH(elm, list, link) {
2271 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2272 		    lockstate) == -1)
2273 			return (-1);
2274 	}
2275 	return (0);
2276 }
2277 
2278 /*
2279  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2280  * before the process exits.
2281  */
2282 static void
2283 rtld_exit(void)
2284 {
2285     RtldLockState lockstate;
2286 
2287     wlock_acquire(rtld_bind_lock, &lockstate);
2288     dbg("rtld_exit()");
2289     objlist_call_fini(&list_fini, NULL, &lockstate);
2290     /* No need to remove the items from the list, since we are exiting. */
2291     if (!libmap_disable)
2292         lm_fini();
2293     lock_release(rtld_bind_lock, &lockstate);
2294 }
2295 
2296 static void *
2297 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2298 {
2299 #ifdef COMPAT_32BIT
2300     const char *trans;
2301 #endif
2302     if (path == NULL)
2303 	return (NULL);
2304 
2305     path += strspn(path, ":;");
2306     while (*path != '\0') {
2307 	size_t len;
2308 	char  *res;
2309 
2310 	len = strcspn(path, ":;");
2311 #ifdef COMPAT_32BIT
2312 	trans = lm_findn(NULL, path, len);
2313 	if (trans)
2314 	    res = callback(trans, strlen(trans), arg);
2315 	else
2316 #endif
2317 	res = callback(path, len, arg);
2318 
2319 	if (res != NULL)
2320 	    return (res);
2321 
2322 	path += len;
2323 	path += strspn(path, ":;");
2324     }
2325 
2326     return (NULL);
2327 }
2328 
2329 struct try_library_args {
2330     const char	*name;
2331     size_t	 namelen;
2332     char	*buffer;
2333     size_t	 buflen;
2334 };
2335 
2336 static void *
2337 try_library_path(const char *dir, size_t dirlen, void *param)
2338 {
2339     struct try_library_args *arg;
2340 
2341     arg = param;
2342     if (*dir == '/' || trust) {
2343 	char *pathname;
2344 
2345 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2346 		return (NULL);
2347 
2348 	pathname = arg->buffer;
2349 	strncpy(pathname, dir, dirlen);
2350 	pathname[dirlen] = '/';
2351 	strcpy(pathname + dirlen + 1, arg->name);
2352 
2353 	dbg("  Trying \"%s\"", pathname);
2354 	if (access(pathname, F_OK) == 0) {		/* We found it */
2355 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2356 	    strcpy(pathname, arg->buffer);
2357 	    return (pathname);
2358 	}
2359     }
2360     return (NULL);
2361 }
2362 
2363 static char *
2364 search_library_path(const char *name, const char *path)
2365 {
2366     char *p;
2367     struct try_library_args arg;
2368 
2369     if (path == NULL)
2370 	return NULL;
2371 
2372     arg.name = name;
2373     arg.namelen = strlen(name);
2374     arg.buffer = xmalloc(PATH_MAX);
2375     arg.buflen = PATH_MAX;
2376 
2377     p = path_enumerate(path, try_library_path, &arg);
2378 
2379     free(arg.buffer);
2380 
2381     return (p);
2382 }
2383 
2384 int
2385 dlclose(void *handle)
2386 {
2387     Obj_Entry *root;
2388     RtldLockState lockstate;
2389 
2390     wlock_acquire(rtld_bind_lock, &lockstate);
2391     root = dlcheck(handle);
2392     if (root == NULL) {
2393 	lock_release(rtld_bind_lock, &lockstate);
2394 	return -1;
2395     }
2396     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2397 	root->path);
2398 
2399     /* Unreference the object and its dependencies. */
2400     root->dl_refcount--;
2401 
2402     if (root->refcount == 1) {
2403 	/*
2404 	 * The object will be no longer referenced, so we must unload it.
2405 	 * First, call the fini functions.
2406 	 */
2407 	objlist_call_fini(&list_fini, root, &lockstate);
2408 
2409 	unref_dag(root);
2410 
2411 	/* Finish cleaning up the newly-unreferenced objects. */
2412 	GDB_STATE(RT_DELETE,&root->linkmap);
2413 	unload_object(root);
2414 	GDB_STATE(RT_CONSISTENT,NULL);
2415     } else
2416 	unref_dag(root);
2417 
2418     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2419     lock_release(rtld_bind_lock, &lockstate);
2420     return 0;
2421 }
2422 
2423 char *
2424 dlerror(void)
2425 {
2426     char *msg = error_message;
2427     error_message = NULL;
2428     return msg;
2429 }
2430 
2431 /*
2432  * This function is deprecated and has no effect.
2433  */
2434 void
2435 dllockinit(void *context,
2436 	   void *(*lock_create)(void *context),
2437            void (*rlock_acquire)(void *lock),
2438            void (*wlock_acquire)(void *lock),
2439            void (*lock_release)(void *lock),
2440            void (*lock_destroy)(void *lock),
2441 	   void (*context_destroy)(void *context))
2442 {
2443     static void *cur_context;
2444     static void (*cur_context_destroy)(void *);
2445 
2446     /* Just destroy the context from the previous call, if necessary. */
2447     if (cur_context_destroy != NULL)
2448 	cur_context_destroy(cur_context);
2449     cur_context = context;
2450     cur_context_destroy = context_destroy;
2451 }
2452 
2453 void *
2454 dlopen(const char *name, int mode)
2455 {
2456 
2457 	return (rtld_dlopen(name, -1, mode));
2458 }
2459 
2460 void *
2461 fdlopen(int fd, int mode)
2462 {
2463 
2464 	return (rtld_dlopen(NULL, fd, mode));
2465 }
2466 
2467 static void *
2468 rtld_dlopen(const char *name, int fd, int mode)
2469 {
2470     RtldLockState lockstate;
2471     int lo_flags;
2472 
2473     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2474     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2475     if (ld_tracing != NULL) {
2476 	rlock_acquire(rtld_bind_lock, &lockstate);
2477 	if (sigsetjmp(lockstate.env, 0) != 0)
2478 	    lock_upgrade(rtld_bind_lock, &lockstate);
2479 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2480 	lock_release(rtld_bind_lock, &lockstate);
2481     }
2482     lo_flags = RTLD_LO_DLOPEN;
2483     if (mode & RTLD_NODELETE)
2484 	    lo_flags |= RTLD_LO_NODELETE;
2485     if (mode & RTLD_NOLOAD)
2486 	    lo_flags |= RTLD_LO_NOLOAD;
2487     if (ld_tracing != NULL)
2488 	    lo_flags |= RTLD_LO_TRACE;
2489 
2490     return (dlopen_object(name, fd, obj_main, lo_flags,
2491       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2492 }
2493 
2494 static void
2495 dlopen_cleanup(Obj_Entry *obj)
2496 {
2497 
2498 	obj->dl_refcount--;
2499 	unref_dag(obj);
2500 	if (obj->refcount == 0)
2501 		unload_object(obj);
2502 }
2503 
2504 static Obj_Entry *
2505 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2506     int mode)
2507 {
2508     Obj_Entry **old_obj_tail;
2509     Obj_Entry *obj;
2510     Objlist initlist;
2511     RtldLockState lockstate;
2512     int result;
2513 
2514     objlist_init(&initlist);
2515 
2516     wlock_acquire(rtld_bind_lock, &lockstate);
2517     GDB_STATE(RT_ADD,NULL);
2518 
2519     old_obj_tail = obj_tail;
2520     obj = NULL;
2521     if (name == NULL && fd == -1) {
2522 	obj = obj_main;
2523 	obj->refcount++;
2524     } else {
2525 	obj = load_object(name, fd, refobj, lo_flags);
2526     }
2527 
2528     if (obj) {
2529 	obj->dl_refcount++;
2530 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2531 	    objlist_push_tail(&list_global, obj);
2532 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2533 	    assert(*old_obj_tail == obj);
2534 	    result = load_needed_objects(obj,
2535 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2536 	    init_dag(obj);
2537 	    ref_dag(obj);
2538 	    if (result != -1)
2539 		result = rtld_verify_versions(&obj->dagmembers);
2540 	    if (result != -1 && ld_tracing)
2541 		goto trace;
2542 	    if (result == -1 || (relocate_objects(obj,
2543 	     (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2544 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2545 	      &lockstate)) == -1) {
2546 		dlopen_cleanup(obj);
2547 		obj = NULL;
2548 	    } else if (lo_flags & RTLD_LO_EARLY) {
2549 		/*
2550 		 * Do not call the init functions for early loaded
2551 		 * filtees.  The image is still not initialized enough
2552 		 * for them to work.
2553 		 *
2554 		 * Our object is found by the global object list and
2555 		 * will be ordered among all init calls done right
2556 		 * before transferring control to main.
2557 		 */
2558 	    } else {
2559 		/* Make list of init functions to call. */
2560 		initlist_add_objects(obj, &obj->next, &initlist);
2561 	    }
2562 	} else {
2563 
2564 	    /*
2565 	     * Bump the reference counts for objects on this DAG.  If
2566 	     * this is the first dlopen() call for the object that was
2567 	     * already loaded as a dependency, initialize the dag
2568 	     * starting at it.
2569 	     */
2570 	    init_dag(obj);
2571 	    ref_dag(obj);
2572 
2573 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2574 		goto trace;
2575 	}
2576 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2577 	  obj->z_nodelete) && !obj->ref_nodel) {
2578 	    dbg("obj %s nodelete", obj->path);
2579 	    ref_dag(obj);
2580 	    obj->z_nodelete = obj->ref_nodel = true;
2581 	}
2582     }
2583 
2584     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2585 	name);
2586     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2587 
2588     map_stacks_exec(&lockstate);
2589 
2590     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2591       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2592       &lockstate) == -1) {
2593 	objlist_clear(&initlist);
2594 	dlopen_cleanup(obj);
2595 	lock_release(rtld_bind_lock, &lockstate);
2596 	return (NULL);
2597     }
2598 
2599     if (!(lo_flags & RTLD_LO_EARLY)) {
2600 	/* Call the init functions. */
2601 	objlist_call_init(&initlist, &lockstate);
2602     }
2603     objlist_clear(&initlist);
2604     lock_release(rtld_bind_lock, &lockstate);
2605     return obj;
2606 trace:
2607     trace_loaded_objects(obj);
2608     lock_release(rtld_bind_lock, &lockstate);
2609     exit(0);
2610 }
2611 
2612 static void *
2613 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2614     int flags)
2615 {
2616     DoneList donelist;
2617     const Obj_Entry *obj, *defobj;
2618     const Elf_Sym *def;
2619     SymLook req;
2620     RtldLockState lockstate;
2621 #ifndef __ia64__
2622     tls_index ti;
2623 #endif
2624     int res;
2625 
2626     def = NULL;
2627     defobj = NULL;
2628     symlook_init(&req, name);
2629     req.ventry = ve;
2630     req.flags = flags | SYMLOOK_IN_PLT;
2631     req.lockstate = &lockstate;
2632 
2633     rlock_acquire(rtld_bind_lock, &lockstate);
2634     if (sigsetjmp(lockstate.env, 0) != 0)
2635 	    lock_upgrade(rtld_bind_lock, &lockstate);
2636     if (handle == NULL || handle == RTLD_NEXT ||
2637 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2638 
2639 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2640 	    _rtld_error("Cannot determine caller's shared object");
2641 	    lock_release(rtld_bind_lock, &lockstate);
2642 	    return NULL;
2643 	}
2644 	if (handle == NULL) {	/* Just the caller's shared object. */
2645 	    res = symlook_obj(&req, obj);
2646 	    if (res == 0) {
2647 		def = req.sym_out;
2648 		defobj = req.defobj_out;
2649 	    }
2650 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2651 		   handle == RTLD_SELF) { /* ... caller included */
2652 	    if (handle == RTLD_NEXT)
2653 		obj = obj->next;
2654 	    for (; obj != NULL; obj = obj->next) {
2655 		res = symlook_obj(&req, obj);
2656 		if (res == 0) {
2657 		    if (def == NULL ||
2658 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2659 			def = req.sym_out;
2660 			defobj = req.defobj_out;
2661 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2662 			    break;
2663 		    }
2664 		}
2665 	    }
2666 	    /*
2667 	     * Search the dynamic linker itself, and possibly resolve the
2668 	     * symbol from there.  This is how the application links to
2669 	     * dynamic linker services such as dlopen.
2670 	     */
2671 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2672 		res = symlook_obj(&req, &obj_rtld);
2673 		if (res == 0) {
2674 		    def = req.sym_out;
2675 		    defobj = req.defobj_out;
2676 		}
2677 	    }
2678 	} else {
2679 	    assert(handle == RTLD_DEFAULT);
2680 	    res = symlook_default(&req, obj);
2681 	    if (res == 0) {
2682 		defobj = req.defobj_out;
2683 		def = req.sym_out;
2684 	    }
2685 	}
2686     } else {
2687 	if ((obj = dlcheck(handle)) == NULL) {
2688 	    lock_release(rtld_bind_lock, &lockstate);
2689 	    return NULL;
2690 	}
2691 
2692 	donelist_init(&donelist);
2693 	if (obj->mainprog) {
2694             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2695 	    res = symlook_global(&req, &donelist);
2696 	    if (res == 0) {
2697 		def = req.sym_out;
2698 		defobj = req.defobj_out;
2699 	    }
2700 	    /*
2701 	     * Search the dynamic linker itself, and possibly resolve the
2702 	     * symbol from there.  This is how the application links to
2703 	     * dynamic linker services such as dlopen.
2704 	     */
2705 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2706 		res = symlook_obj(&req, &obj_rtld);
2707 		if (res == 0) {
2708 		    def = req.sym_out;
2709 		    defobj = req.defobj_out;
2710 		}
2711 	    }
2712 	}
2713 	else {
2714 	    /* Search the whole DAG rooted at the given object. */
2715 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2716 	    if (res == 0) {
2717 		def = req.sym_out;
2718 		defobj = req.defobj_out;
2719 	    }
2720 	}
2721     }
2722 
2723     if (def != NULL) {
2724 	lock_release(rtld_bind_lock, &lockstate);
2725 
2726 	/*
2727 	 * The value required by the caller is derived from the value
2728 	 * of the symbol. For the ia64 architecture, we need to
2729 	 * construct a function descriptor which the caller can use to
2730 	 * call the function with the right 'gp' value. For other
2731 	 * architectures and for non-functions, the value is simply
2732 	 * the relocated value of the symbol.
2733 	 */
2734 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2735 	    return (make_function_pointer(def, defobj));
2736 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2737 	    return (rtld_resolve_ifunc(defobj, def));
2738 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
2739 #ifdef __ia64__
2740 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
2741 #else
2742 	    ti.ti_module = defobj->tlsindex;
2743 	    ti.ti_offset = def->st_value;
2744 	    return (__tls_get_addr(&ti));
2745 #endif
2746 	} else
2747 	    return (defobj->relocbase + def->st_value);
2748     }
2749 
2750     _rtld_error("Undefined symbol \"%s\"", name);
2751     lock_release(rtld_bind_lock, &lockstate);
2752     return NULL;
2753 }
2754 
2755 void *
2756 dlsym(void *handle, const char *name)
2757 {
2758 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2759 	    SYMLOOK_DLSYM);
2760 }
2761 
2762 dlfunc_t
2763 dlfunc(void *handle, const char *name)
2764 {
2765 	union {
2766 		void *d;
2767 		dlfunc_t f;
2768 	} rv;
2769 
2770 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2771 	    SYMLOOK_DLSYM);
2772 	return (rv.f);
2773 }
2774 
2775 void *
2776 dlvsym(void *handle, const char *name, const char *version)
2777 {
2778 	Ver_Entry ventry;
2779 
2780 	ventry.name = version;
2781 	ventry.file = NULL;
2782 	ventry.hash = elf_hash(version);
2783 	ventry.flags= 0;
2784 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2785 	    SYMLOOK_DLSYM);
2786 }
2787 
2788 int
2789 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2790 {
2791     const Obj_Entry *obj;
2792     RtldLockState lockstate;
2793 
2794     rlock_acquire(rtld_bind_lock, &lockstate);
2795     obj = obj_from_addr(addr);
2796     if (obj == NULL) {
2797         _rtld_error("No shared object contains address");
2798 	lock_release(rtld_bind_lock, &lockstate);
2799         return (0);
2800     }
2801     rtld_fill_dl_phdr_info(obj, phdr_info);
2802     lock_release(rtld_bind_lock, &lockstate);
2803     return (1);
2804 }
2805 
2806 int
2807 dladdr(const void *addr, Dl_info *info)
2808 {
2809     const Obj_Entry *obj;
2810     const Elf_Sym *def;
2811     void *symbol_addr;
2812     unsigned long symoffset;
2813     RtldLockState lockstate;
2814 
2815     rlock_acquire(rtld_bind_lock, &lockstate);
2816     obj = obj_from_addr(addr);
2817     if (obj == NULL) {
2818         _rtld_error("No shared object contains address");
2819 	lock_release(rtld_bind_lock, &lockstate);
2820         return 0;
2821     }
2822     info->dli_fname = obj->path;
2823     info->dli_fbase = obj->mapbase;
2824     info->dli_saddr = (void *)0;
2825     info->dli_sname = NULL;
2826 
2827     /*
2828      * Walk the symbol list looking for the symbol whose address is
2829      * closest to the address sent in.
2830      */
2831     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2832         def = obj->symtab + symoffset;
2833 
2834         /*
2835          * For skip the symbol if st_shndx is either SHN_UNDEF or
2836          * SHN_COMMON.
2837          */
2838         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2839             continue;
2840 
2841         /*
2842          * If the symbol is greater than the specified address, or if it
2843          * is further away from addr than the current nearest symbol,
2844          * then reject it.
2845          */
2846         symbol_addr = obj->relocbase + def->st_value;
2847         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2848             continue;
2849 
2850         /* Update our idea of the nearest symbol. */
2851         info->dli_sname = obj->strtab + def->st_name;
2852         info->dli_saddr = symbol_addr;
2853 
2854         /* Exact match? */
2855         if (info->dli_saddr == addr)
2856             break;
2857     }
2858     lock_release(rtld_bind_lock, &lockstate);
2859     return 1;
2860 }
2861 
2862 int
2863 dlinfo(void *handle, int request, void *p)
2864 {
2865     const Obj_Entry *obj;
2866     RtldLockState lockstate;
2867     int error;
2868 
2869     rlock_acquire(rtld_bind_lock, &lockstate);
2870 
2871     if (handle == NULL || handle == RTLD_SELF) {
2872 	void *retaddr;
2873 
2874 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2875 	if ((obj = obj_from_addr(retaddr)) == NULL)
2876 	    _rtld_error("Cannot determine caller's shared object");
2877     } else
2878 	obj = dlcheck(handle);
2879 
2880     if (obj == NULL) {
2881 	lock_release(rtld_bind_lock, &lockstate);
2882 	return (-1);
2883     }
2884 
2885     error = 0;
2886     switch (request) {
2887     case RTLD_DI_LINKMAP:
2888 	*((struct link_map const **)p) = &obj->linkmap;
2889 	break;
2890     case RTLD_DI_ORIGIN:
2891 	error = rtld_dirname(obj->path, p);
2892 	break;
2893 
2894     case RTLD_DI_SERINFOSIZE:
2895     case RTLD_DI_SERINFO:
2896 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2897 	break;
2898 
2899     default:
2900 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2901 	error = -1;
2902     }
2903 
2904     lock_release(rtld_bind_lock, &lockstate);
2905 
2906     return (error);
2907 }
2908 
2909 static void
2910 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2911 {
2912 
2913 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2914 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2915 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2916 	phdr_info->dlpi_phdr = obj->phdr;
2917 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2918 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2919 	phdr_info->dlpi_tls_data = obj->tlsinit;
2920 	phdr_info->dlpi_adds = obj_loads;
2921 	phdr_info->dlpi_subs = obj_loads - obj_count;
2922 }
2923 
2924 int
2925 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2926 {
2927     struct dl_phdr_info phdr_info;
2928     const Obj_Entry *obj;
2929     RtldLockState bind_lockstate, phdr_lockstate;
2930     int error;
2931 
2932     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2933     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2934 
2935     error = 0;
2936 
2937     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2938 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2939 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2940 		break;
2941 
2942     }
2943     lock_release(rtld_bind_lock, &bind_lockstate);
2944     lock_release(rtld_phdr_lock, &phdr_lockstate);
2945 
2946     return (error);
2947 }
2948 
2949 struct fill_search_info_args {
2950     int		 request;
2951     unsigned int flags;
2952     Dl_serinfo  *serinfo;
2953     Dl_serpath  *serpath;
2954     char	*strspace;
2955 };
2956 
2957 static void *
2958 fill_search_info(const char *dir, size_t dirlen, void *param)
2959 {
2960     struct fill_search_info_args *arg;
2961 
2962     arg = param;
2963 
2964     if (arg->request == RTLD_DI_SERINFOSIZE) {
2965 	arg->serinfo->dls_cnt ++;
2966 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2967     } else {
2968 	struct dl_serpath *s_entry;
2969 
2970 	s_entry = arg->serpath;
2971 	s_entry->dls_name  = arg->strspace;
2972 	s_entry->dls_flags = arg->flags;
2973 
2974 	strncpy(arg->strspace, dir, dirlen);
2975 	arg->strspace[dirlen] = '\0';
2976 
2977 	arg->strspace += dirlen + 1;
2978 	arg->serpath++;
2979     }
2980 
2981     return (NULL);
2982 }
2983 
2984 static int
2985 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2986 {
2987     struct dl_serinfo _info;
2988     struct fill_search_info_args args;
2989 
2990     args.request = RTLD_DI_SERINFOSIZE;
2991     args.serinfo = &_info;
2992 
2993     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2994     _info.dls_cnt  = 0;
2995 
2996     path_enumerate(ld_library_path, fill_search_info, &args);
2997     path_enumerate(obj->rpath, fill_search_info, &args);
2998     path_enumerate(gethints(), fill_search_info, &args);
2999     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3000 
3001 
3002     if (request == RTLD_DI_SERINFOSIZE) {
3003 	info->dls_size = _info.dls_size;
3004 	info->dls_cnt = _info.dls_cnt;
3005 	return (0);
3006     }
3007 
3008     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3009 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3010 	return (-1);
3011     }
3012 
3013     args.request  = RTLD_DI_SERINFO;
3014     args.serinfo  = info;
3015     args.serpath  = &info->dls_serpath[0];
3016     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3017 
3018     args.flags = LA_SER_LIBPATH;
3019     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3020 	return (-1);
3021 
3022     args.flags = LA_SER_RUNPATH;
3023     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3024 	return (-1);
3025 
3026     args.flags = LA_SER_CONFIG;
3027     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
3028 	return (-1);
3029 
3030     args.flags = LA_SER_DEFAULT;
3031     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3032 	return (-1);
3033     return (0);
3034 }
3035 
3036 static int
3037 rtld_dirname(const char *path, char *bname)
3038 {
3039     const char *endp;
3040 
3041     /* Empty or NULL string gets treated as "." */
3042     if (path == NULL || *path == '\0') {
3043 	bname[0] = '.';
3044 	bname[1] = '\0';
3045 	return (0);
3046     }
3047 
3048     /* Strip trailing slashes */
3049     endp = path + strlen(path) - 1;
3050     while (endp > path && *endp == '/')
3051 	endp--;
3052 
3053     /* Find the start of the dir */
3054     while (endp > path && *endp != '/')
3055 	endp--;
3056 
3057     /* Either the dir is "/" or there are no slashes */
3058     if (endp == path) {
3059 	bname[0] = *endp == '/' ? '/' : '.';
3060 	bname[1] = '\0';
3061 	return (0);
3062     } else {
3063 	do {
3064 	    endp--;
3065 	} while (endp > path && *endp == '/');
3066     }
3067 
3068     if (endp - path + 2 > PATH_MAX)
3069     {
3070 	_rtld_error("Filename is too long: %s", path);
3071 	return(-1);
3072     }
3073 
3074     strncpy(bname, path, endp - path + 1);
3075     bname[endp - path + 1] = '\0';
3076     return (0);
3077 }
3078 
3079 static int
3080 rtld_dirname_abs(const char *path, char *base)
3081 {
3082 	char base_rel[PATH_MAX];
3083 
3084 	if (rtld_dirname(path, base) == -1)
3085 		return (-1);
3086 	if (base[0] == '/')
3087 		return (0);
3088 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3089 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3090 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3091 		return (-1);
3092 	strcpy(base, base_rel);
3093 	return (0);
3094 }
3095 
3096 static void
3097 linkmap_add(Obj_Entry *obj)
3098 {
3099     struct link_map *l = &obj->linkmap;
3100     struct link_map *prev;
3101 
3102     obj->linkmap.l_name = obj->path;
3103     obj->linkmap.l_addr = obj->mapbase;
3104     obj->linkmap.l_ld = obj->dynamic;
3105 #ifdef __mips__
3106     /* GDB needs load offset on MIPS to use the symbols */
3107     obj->linkmap.l_offs = obj->relocbase;
3108 #endif
3109 
3110     if (r_debug.r_map == NULL) {
3111 	r_debug.r_map = l;
3112 	return;
3113     }
3114 
3115     /*
3116      * Scan to the end of the list, but not past the entry for the
3117      * dynamic linker, which we want to keep at the very end.
3118      */
3119     for (prev = r_debug.r_map;
3120       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3121       prev = prev->l_next)
3122 	;
3123 
3124     /* Link in the new entry. */
3125     l->l_prev = prev;
3126     l->l_next = prev->l_next;
3127     if (l->l_next != NULL)
3128 	l->l_next->l_prev = l;
3129     prev->l_next = l;
3130 }
3131 
3132 static void
3133 linkmap_delete(Obj_Entry *obj)
3134 {
3135     struct link_map *l = &obj->linkmap;
3136 
3137     if (l->l_prev == NULL) {
3138 	if ((r_debug.r_map = l->l_next) != NULL)
3139 	    l->l_next->l_prev = NULL;
3140 	return;
3141     }
3142 
3143     if ((l->l_prev->l_next = l->l_next) != NULL)
3144 	l->l_next->l_prev = l->l_prev;
3145 }
3146 
3147 /*
3148  * Function for the debugger to set a breakpoint on to gain control.
3149  *
3150  * The two parameters allow the debugger to easily find and determine
3151  * what the runtime loader is doing and to whom it is doing it.
3152  *
3153  * When the loadhook trap is hit (r_debug_state, set at program
3154  * initialization), the arguments can be found on the stack:
3155  *
3156  *  +8   struct link_map *m
3157  *  +4   struct r_debug  *rd
3158  *  +0   RetAddr
3159  */
3160 void
3161 r_debug_state(struct r_debug* rd, struct link_map *m)
3162 {
3163     /*
3164      * The following is a hack to force the compiler to emit calls to
3165      * this function, even when optimizing.  If the function is empty,
3166      * the compiler is not obliged to emit any code for calls to it,
3167      * even when marked __noinline.  However, gdb depends on those
3168      * calls being made.
3169      */
3170     __asm __volatile("" : : : "memory");
3171 }
3172 
3173 /*
3174  * Get address of the pointer variable in the main program.
3175  * Prefer non-weak symbol over the weak one.
3176  */
3177 static const void **
3178 get_program_var_addr(const char *name, RtldLockState *lockstate)
3179 {
3180     SymLook req;
3181     DoneList donelist;
3182 
3183     symlook_init(&req, name);
3184     req.lockstate = lockstate;
3185     donelist_init(&donelist);
3186     if (symlook_global(&req, &donelist) != 0)
3187 	return (NULL);
3188     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3189 	return ((const void **)make_function_pointer(req.sym_out,
3190 	  req.defobj_out));
3191     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3192 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3193     else
3194 	return ((const void **)(req.defobj_out->relocbase +
3195 	  req.sym_out->st_value));
3196 }
3197 
3198 /*
3199  * Set a pointer variable in the main program to the given value.  This
3200  * is used to set key variables such as "environ" before any of the
3201  * init functions are called.
3202  */
3203 static void
3204 set_program_var(const char *name, const void *value)
3205 {
3206     const void **addr;
3207 
3208     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3209 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3210 	*addr = value;
3211     }
3212 }
3213 
3214 /*
3215  * Search the global objects, including dependencies and main object,
3216  * for the given symbol.
3217  */
3218 static int
3219 symlook_global(SymLook *req, DoneList *donelist)
3220 {
3221     SymLook req1;
3222     const Objlist_Entry *elm;
3223     int res;
3224 
3225     symlook_init_from_req(&req1, req);
3226 
3227     /* Search all objects loaded at program start up. */
3228     if (req->defobj_out == NULL ||
3229       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3230 	res = symlook_list(&req1, &list_main, donelist);
3231 	if (res == 0 && (req->defobj_out == NULL ||
3232 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3233 	    req->sym_out = req1.sym_out;
3234 	    req->defobj_out = req1.defobj_out;
3235 	    assert(req->defobj_out != NULL);
3236 	}
3237     }
3238 
3239     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3240     STAILQ_FOREACH(elm, &list_global, link) {
3241 	if (req->defobj_out != NULL &&
3242 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3243 	    break;
3244 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3245 	if (res == 0 && (req->defobj_out == NULL ||
3246 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3247 	    req->sym_out = req1.sym_out;
3248 	    req->defobj_out = req1.defobj_out;
3249 	    assert(req->defobj_out != NULL);
3250 	}
3251     }
3252 
3253     return (req->sym_out != NULL ? 0 : ESRCH);
3254 }
3255 
3256 /*
3257  * Given a symbol name in a referencing object, find the corresponding
3258  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3259  * no definition was found.  Returns a pointer to the Obj_Entry of the
3260  * defining object via the reference parameter DEFOBJ_OUT.
3261  */
3262 static int
3263 symlook_default(SymLook *req, const Obj_Entry *refobj)
3264 {
3265     DoneList donelist;
3266     const Objlist_Entry *elm;
3267     SymLook req1;
3268     int res;
3269 
3270     donelist_init(&donelist);
3271     symlook_init_from_req(&req1, req);
3272 
3273     /* Look first in the referencing object if linked symbolically. */
3274     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3275 	res = symlook_obj(&req1, refobj);
3276 	if (res == 0) {
3277 	    req->sym_out = req1.sym_out;
3278 	    req->defobj_out = req1.defobj_out;
3279 	    assert(req->defobj_out != NULL);
3280 	}
3281     }
3282 
3283     symlook_global(req, &donelist);
3284 
3285     /* Search all dlopened DAGs containing the referencing object. */
3286     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3287 	if (req->sym_out != NULL &&
3288 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3289 	    break;
3290 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3291 	if (res == 0 && (req->sym_out == NULL ||
3292 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3293 	    req->sym_out = req1.sym_out;
3294 	    req->defobj_out = req1.defobj_out;
3295 	    assert(req->defobj_out != NULL);
3296 	}
3297     }
3298 
3299     /*
3300      * Search the dynamic linker itself, and possibly resolve the
3301      * symbol from there.  This is how the application links to
3302      * dynamic linker services such as dlopen.
3303      */
3304     if (req->sym_out == NULL ||
3305       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3306 	res = symlook_obj(&req1, &obj_rtld);
3307 	if (res == 0) {
3308 	    req->sym_out = req1.sym_out;
3309 	    req->defobj_out = req1.defobj_out;
3310 	    assert(req->defobj_out != NULL);
3311 	}
3312     }
3313 
3314     return (req->sym_out != NULL ? 0 : ESRCH);
3315 }
3316 
3317 static int
3318 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3319 {
3320     const Elf_Sym *def;
3321     const Obj_Entry *defobj;
3322     const Objlist_Entry *elm;
3323     SymLook req1;
3324     int res;
3325 
3326     def = NULL;
3327     defobj = NULL;
3328     STAILQ_FOREACH(elm, objlist, link) {
3329 	if (donelist_check(dlp, elm->obj))
3330 	    continue;
3331 	symlook_init_from_req(&req1, req);
3332 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3333 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3334 		def = req1.sym_out;
3335 		defobj = req1.defobj_out;
3336 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3337 		    break;
3338 	    }
3339 	}
3340     }
3341     if (def != NULL) {
3342 	req->sym_out = def;
3343 	req->defobj_out = defobj;
3344 	return (0);
3345     }
3346     return (ESRCH);
3347 }
3348 
3349 /*
3350  * Search the chain of DAGS cointed to by the given Needed_Entry
3351  * for a symbol of the given name.  Each DAG is scanned completely
3352  * before advancing to the next one.  Returns a pointer to the symbol,
3353  * or NULL if no definition was found.
3354  */
3355 static int
3356 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3357 {
3358     const Elf_Sym *def;
3359     const Needed_Entry *n;
3360     const Obj_Entry *defobj;
3361     SymLook req1;
3362     int res;
3363 
3364     def = NULL;
3365     defobj = NULL;
3366     symlook_init_from_req(&req1, req);
3367     for (n = needed; n != NULL; n = n->next) {
3368 	if (n->obj == NULL ||
3369 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3370 	    continue;
3371 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3372 	    def = req1.sym_out;
3373 	    defobj = req1.defobj_out;
3374 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3375 		break;
3376 	}
3377     }
3378     if (def != NULL) {
3379 	req->sym_out = def;
3380 	req->defobj_out = defobj;
3381 	return (0);
3382     }
3383     return (ESRCH);
3384 }
3385 
3386 /*
3387  * Search the symbol table of a single shared object for a symbol of
3388  * the given name and version, if requested.  Returns a pointer to the
3389  * symbol, or NULL if no definition was found.  If the object is
3390  * filter, return filtered symbol from filtee.
3391  *
3392  * The symbol's hash value is passed in for efficiency reasons; that
3393  * eliminates many recomputations of the hash value.
3394  */
3395 int
3396 symlook_obj(SymLook *req, const Obj_Entry *obj)
3397 {
3398     DoneList donelist;
3399     SymLook req1;
3400     int flags, res, mres;
3401 
3402     mres = symlook_obj1(req, obj);
3403     if (mres == 0) {
3404 	if (obj->needed_filtees != NULL) {
3405 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3406 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3407 	    donelist_init(&donelist);
3408 	    symlook_init_from_req(&req1, req);
3409 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3410 	    if (res == 0) {
3411 		req->sym_out = req1.sym_out;
3412 		req->defobj_out = req1.defobj_out;
3413 	    }
3414 	    return (res);
3415 	}
3416 	if (obj->needed_aux_filtees != NULL) {
3417 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3418 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3419 	    donelist_init(&donelist);
3420 	    symlook_init_from_req(&req1, req);
3421 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3422 	    if (res == 0) {
3423 		req->sym_out = req1.sym_out;
3424 		req->defobj_out = req1.defobj_out;
3425 		return (res);
3426 	    }
3427 	}
3428     }
3429     return (mres);
3430 }
3431 
3432 static int
3433 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3434 {
3435     unsigned long symnum;
3436     const Elf_Sym *vsymp;
3437     Elf_Versym verndx;
3438     int vcount;
3439 
3440     if (obj->buckets == NULL)
3441 	return (ESRCH);
3442 
3443     vsymp = NULL;
3444     vcount = 0;
3445     symnum = obj->buckets[req->hash % obj->nbuckets];
3446 
3447     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3448 	const Elf_Sym *symp;
3449 	const char *strp;
3450 
3451 	if (symnum >= obj->nchains)
3452 	    return (ESRCH);	/* Bad object */
3453 
3454 	symp = obj->symtab + symnum;
3455 	strp = obj->strtab + symp->st_name;
3456 
3457 	switch (ELF_ST_TYPE(symp->st_info)) {
3458 	case STT_FUNC:
3459 	case STT_NOTYPE:
3460 	case STT_OBJECT:
3461 	case STT_GNU_IFUNC:
3462 	    if (symp->st_value == 0)
3463 		continue;
3464 		/* fallthrough */
3465 	case STT_TLS:
3466 	    if (symp->st_shndx != SHN_UNDEF)
3467 		break;
3468 #ifndef __mips__
3469 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3470 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3471 		break;
3472 		/* fallthrough */
3473 #endif
3474 	default:
3475 	    continue;
3476 	}
3477 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3478 	    continue;
3479 
3480 	if (req->ventry == NULL) {
3481 	    if (obj->versyms != NULL) {
3482 		verndx = VER_NDX(obj->versyms[symnum]);
3483 		if (verndx > obj->vernum) {
3484 		    _rtld_error("%s: symbol %s references wrong version %d",
3485 			obj->path, obj->strtab + symnum, verndx);
3486 		    continue;
3487 		}
3488 		/*
3489 		 * If we are not called from dlsym (i.e. this is a normal
3490 		 * relocation from unversioned binary), accept the symbol
3491 		 * immediately if it happens to have first version after
3492 		 * this shared object became versioned. Otherwise, if
3493 		 * symbol is versioned and not hidden, remember it. If it
3494 		 * is the only symbol with this name exported by the
3495 		 * shared object, it will be returned as a match at the
3496 		 * end of the function. If symbol is global (verndx < 2)
3497 		 * accept it unconditionally.
3498 		 */
3499 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3500 		  verndx == VER_NDX_GIVEN) {
3501 		    req->sym_out = symp;
3502 		    req->defobj_out = obj;
3503 		    return (0);
3504 		}
3505 		else if (verndx >= VER_NDX_GIVEN) {
3506 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3507 			if (vsymp == NULL)
3508 			    vsymp = symp;
3509 			vcount ++;
3510 		    }
3511 		    continue;
3512 		}
3513 	    }
3514 	    req->sym_out = symp;
3515 	    req->defobj_out = obj;
3516 	    return (0);
3517 	} else {
3518 	    if (obj->versyms == NULL) {
3519 		if (object_match_name(obj, req->ventry->name)) {
3520 		    _rtld_error("%s: object %s should provide version %s for "
3521 			"symbol %s", obj_rtld.path, obj->path,
3522 			req->ventry->name, obj->strtab + symnum);
3523 		    continue;
3524 		}
3525 	    } else {
3526 		verndx = VER_NDX(obj->versyms[symnum]);
3527 		if (verndx > obj->vernum) {
3528 		    _rtld_error("%s: symbol %s references wrong version %d",
3529 			obj->path, obj->strtab + symnum, verndx);
3530 		    continue;
3531 		}
3532 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3533 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3534 		    /*
3535 		     * Version does not match. Look if this is a global symbol
3536 		     * and if it is not hidden. If global symbol (verndx < 2)
3537 		     * is available, use it. Do not return symbol if we are
3538 		     * called by dlvsym, because dlvsym looks for a specific
3539 		     * version and default one is not what dlvsym wants.
3540 		     */
3541 		    if ((req->flags & SYMLOOK_DLSYM) ||
3542 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3543 			(verndx >= VER_NDX_GIVEN))
3544 			continue;
3545 		}
3546 	    }
3547 	    req->sym_out = symp;
3548 	    req->defobj_out = obj;
3549 	    return (0);
3550 	}
3551     }
3552     if (vcount == 1) {
3553 	req->sym_out = vsymp;
3554 	req->defobj_out = obj;
3555 	return (0);
3556     }
3557     return (ESRCH);
3558 }
3559 
3560 static void
3561 trace_loaded_objects(Obj_Entry *obj)
3562 {
3563     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3564     int		c;
3565 
3566     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3567 	main_local = "";
3568 
3569     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3570 	fmt1 = "\t%o => %p (%x)\n";
3571 
3572     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3573 	fmt2 = "\t%o (%x)\n";
3574 
3575     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3576 
3577     for (; obj; obj = obj->next) {
3578 	Needed_Entry		*needed;
3579 	char			*name, *path;
3580 	bool			is_lib;
3581 
3582 	if (list_containers && obj->needed != NULL)
3583 	    rtld_printf("%s:\n", obj->path);
3584 	for (needed = obj->needed; needed; needed = needed->next) {
3585 	    if (needed->obj != NULL) {
3586 		if (needed->obj->traced && !list_containers)
3587 		    continue;
3588 		needed->obj->traced = true;
3589 		path = needed->obj->path;
3590 	    } else
3591 		path = "not found";
3592 
3593 	    name = (char *)obj->strtab + needed->name;
3594 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3595 
3596 	    fmt = is_lib ? fmt1 : fmt2;
3597 	    while ((c = *fmt++) != '\0') {
3598 		switch (c) {
3599 		default:
3600 		    rtld_putchar(c);
3601 		    continue;
3602 		case '\\':
3603 		    switch (c = *fmt) {
3604 		    case '\0':
3605 			continue;
3606 		    case 'n':
3607 			rtld_putchar('\n');
3608 			break;
3609 		    case 't':
3610 			rtld_putchar('\t');
3611 			break;
3612 		    }
3613 		    break;
3614 		case '%':
3615 		    switch (c = *fmt) {
3616 		    case '\0':
3617 			continue;
3618 		    case '%':
3619 		    default:
3620 			rtld_putchar(c);
3621 			break;
3622 		    case 'A':
3623 			rtld_putstr(main_local);
3624 			break;
3625 		    case 'a':
3626 			rtld_putstr(obj_main->path);
3627 			break;
3628 		    case 'o':
3629 			rtld_putstr(name);
3630 			break;
3631 #if 0
3632 		    case 'm':
3633 			rtld_printf("%d", sodp->sod_major);
3634 			break;
3635 		    case 'n':
3636 			rtld_printf("%d", sodp->sod_minor);
3637 			break;
3638 #endif
3639 		    case 'p':
3640 			rtld_putstr(path);
3641 			break;
3642 		    case 'x':
3643 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3644 			  0);
3645 			break;
3646 		    }
3647 		    break;
3648 		}
3649 		++fmt;
3650 	    }
3651 	}
3652     }
3653 }
3654 
3655 /*
3656  * Unload a dlopened object and its dependencies from memory and from
3657  * our data structures.  It is assumed that the DAG rooted in the
3658  * object has already been unreferenced, and that the object has a
3659  * reference count of 0.
3660  */
3661 static void
3662 unload_object(Obj_Entry *root)
3663 {
3664     Obj_Entry *obj;
3665     Obj_Entry **linkp;
3666 
3667     assert(root->refcount == 0);
3668 
3669     /*
3670      * Pass over the DAG removing unreferenced objects from
3671      * appropriate lists.
3672      */
3673     unlink_object(root);
3674 
3675     /* Unmap all objects that are no longer referenced. */
3676     linkp = &obj_list->next;
3677     while ((obj = *linkp) != NULL) {
3678 	if (obj->refcount == 0) {
3679 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3680 		obj->path);
3681 	    dbg("unloading \"%s\"", obj->path);
3682 	    unload_filtees(root);
3683 	    munmap(obj->mapbase, obj->mapsize);
3684 	    linkmap_delete(obj);
3685 	    *linkp = obj->next;
3686 	    obj_count--;
3687 	    obj_free(obj);
3688 	} else
3689 	    linkp = &obj->next;
3690     }
3691     obj_tail = linkp;
3692 }
3693 
3694 static void
3695 unlink_object(Obj_Entry *root)
3696 {
3697     Objlist_Entry *elm;
3698 
3699     if (root->refcount == 0) {
3700 	/* Remove the object from the RTLD_GLOBAL list. */
3701 	objlist_remove(&list_global, root);
3702 
3703     	/* Remove the object from all objects' DAG lists. */
3704     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3705 	    objlist_remove(&elm->obj->dldags, root);
3706 	    if (elm->obj != root)
3707 		unlink_object(elm->obj);
3708 	}
3709     }
3710 }
3711 
3712 static void
3713 ref_dag(Obj_Entry *root)
3714 {
3715     Objlist_Entry *elm;
3716 
3717     assert(root->dag_inited);
3718     STAILQ_FOREACH(elm, &root->dagmembers, link)
3719 	elm->obj->refcount++;
3720 }
3721 
3722 static void
3723 unref_dag(Obj_Entry *root)
3724 {
3725     Objlist_Entry *elm;
3726 
3727     assert(root->dag_inited);
3728     STAILQ_FOREACH(elm, &root->dagmembers, link)
3729 	elm->obj->refcount--;
3730 }
3731 
3732 /*
3733  * Common code for MD __tls_get_addr().
3734  */
3735 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3736 static void *
3737 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3738 {
3739     Elf_Addr *newdtv, *dtv;
3740     RtldLockState lockstate;
3741     int to_copy;
3742 
3743     dtv = *dtvp;
3744     /* Check dtv generation in case new modules have arrived */
3745     if (dtv[0] != tls_dtv_generation) {
3746 	wlock_acquire(rtld_bind_lock, &lockstate);
3747 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3748 	to_copy = dtv[1];
3749 	if (to_copy > tls_max_index)
3750 	    to_copy = tls_max_index;
3751 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3752 	newdtv[0] = tls_dtv_generation;
3753 	newdtv[1] = tls_max_index;
3754 	free(dtv);
3755 	lock_release(rtld_bind_lock, &lockstate);
3756 	dtv = *dtvp = newdtv;
3757     }
3758 
3759     /* Dynamically allocate module TLS if necessary */
3760     if (dtv[index + 1] == 0) {
3761 	/* Signal safe, wlock will block out signals. */
3762 	wlock_acquire(rtld_bind_lock, &lockstate);
3763 	if (!dtv[index + 1])
3764 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3765 	lock_release(rtld_bind_lock, &lockstate);
3766     }
3767     return ((void *)(dtv[index + 1] + offset));
3768 }
3769 
3770 void *
3771 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3772 {
3773 	Elf_Addr *dtv;
3774 
3775 	dtv = *dtvp;
3776 	/* Check dtv generation in case new modules have arrived */
3777 	if (__predict_true(dtv[0] == tls_dtv_generation &&
3778 	    dtv[index + 1] != 0))
3779 		return ((void *)(dtv[index + 1] + offset));
3780 	return (tls_get_addr_slow(dtvp, index, offset));
3781 }
3782 
3783 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3784 
3785 /*
3786  * Allocate Static TLS using the Variant I method.
3787  */
3788 void *
3789 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3790 {
3791     Obj_Entry *obj;
3792     char *tcb;
3793     Elf_Addr **tls;
3794     Elf_Addr *dtv;
3795     Elf_Addr addr;
3796     int i;
3797 
3798     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3799 	return (oldtcb);
3800 
3801     assert(tcbsize >= TLS_TCB_SIZE);
3802     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3803     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3804 
3805     if (oldtcb != NULL) {
3806 	memcpy(tls, oldtcb, tls_static_space);
3807 	free(oldtcb);
3808 
3809 	/* Adjust the DTV. */
3810 	dtv = tls[0];
3811 	for (i = 0; i < dtv[1]; i++) {
3812 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3813 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3814 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3815 	    }
3816 	}
3817     } else {
3818 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3819 	tls[0] = dtv;
3820 	dtv[0] = tls_dtv_generation;
3821 	dtv[1] = tls_max_index;
3822 
3823 	for (obj = objs; obj; obj = obj->next) {
3824 	    if (obj->tlsoffset > 0) {
3825 		addr = (Elf_Addr)tls + obj->tlsoffset;
3826 		if (obj->tlsinitsize > 0)
3827 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3828 		if (obj->tlssize > obj->tlsinitsize)
3829 		    memset((void*) (addr + obj->tlsinitsize), 0,
3830 			   obj->tlssize - obj->tlsinitsize);
3831 		dtv[obj->tlsindex + 1] = addr;
3832 	    }
3833 	}
3834     }
3835 
3836     return (tcb);
3837 }
3838 
3839 void
3840 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3841 {
3842     Elf_Addr *dtv;
3843     Elf_Addr tlsstart, tlsend;
3844     int dtvsize, i;
3845 
3846     assert(tcbsize >= TLS_TCB_SIZE);
3847 
3848     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3849     tlsend = tlsstart + tls_static_space;
3850 
3851     dtv = *(Elf_Addr **)tlsstart;
3852     dtvsize = dtv[1];
3853     for (i = 0; i < dtvsize; i++) {
3854 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3855 	    free((void*)dtv[i+2]);
3856 	}
3857     }
3858     free(dtv);
3859     free(tcb);
3860 }
3861 
3862 #endif
3863 
3864 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
3865 
3866 /*
3867  * Allocate Static TLS using the Variant II method.
3868  */
3869 void *
3870 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3871 {
3872     Obj_Entry *obj;
3873     size_t size;
3874     char *tls;
3875     Elf_Addr *dtv, *olddtv;
3876     Elf_Addr segbase, oldsegbase, addr;
3877     int i;
3878 
3879     size = round(tls_static_space, tcbalign);
3880 
3881     assert(tcbsize >= 2*sizeof(Elf_Addr));
3882     tls = xcalloc(1, size + tcbsize);
3883     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3884 
3885     segbase = (Elf_Addr)(tls + size);
3886     ((Elf_Addr*)segbase)[0] = segbase;
3887     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3888 
3889     dtv[0] = tls_dtv_generation;
3890     dtv[1] = tls_max_index;
3891 
3892     if (oldtls) {
3893 	/*
3894 	 * Copy the static TLS block over whole.
3895 	 */
3896 	oldsegbase = (Elf_Addr) oldtls;
3897 	memcpy((void *)(segbase - tls_static_space),
3898 	       (const void *)(oldsegbase - tls_static_space),
3899 	       tls_static_space);
3900 
3901 	/*
3902 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3903 	 * move them over.
3904 	 */
3905 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3906 	for (i = 0; i < olddtv[1]; i++) {
3907 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3908 		dtv[i+2] = olddtv[i+2];
3909 		olddtv[i+2] = 0;
3910 	    }
3911 	}
3912 
3913 	/*
3914 	 * We assume that this block was the one we created with
3915 	 * allocate_initial_tls().
3916 	 */
3917 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3918     } else {
3919 	for (obj = objs; obj; obj = obj->next) {
3920 	    if (obj->tlsoffset) {
3921 		addr = segbase - obj->tlsoffset;
3922 		memset((void*) (addr + obj->tlsinitsize),
3923 		       0, obj->tlssize - obj->tlsinitsize);
3924 		if (obj->tlsinit)
3925 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3926 		dtv[obj->tlsindex + 1] = addr;
3927 	    }
3928 	}
3929     }
3930 
3931     return (void*) segbase;
3932 }
3933 
3934 void
3935 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3936 {
3937     size_t size;
3938     Elf_Addr* dtv;
3939     int dtvsize, i;
3940     Elf_Addr tlsstart, tlsend;
3941 
3942     /*
3943      * Figure out the size of the initial TLS block so that we can
3944      * find stuff which ___tls_get_addr() allocated dynamically.
3945      */
3946     size = round(tls_static_space, tcbalign);
3947 
3948     dtv = ((Elf_Addr**)tls)[1];
3949     dtvsize = dtv[1];
3950     tlsend = (Elf_Addr) tls;
3951     tlsstart = tlsend - size;
3952     for (i = 0; i < dtvsize; i++) {
3953 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3954 	    free((void*) dtv[i+2]);
3955 	}
3956     }
3957 
3958     free((void*) tlsstart);
3959     free((void*) dtv);
3960 }
3961 
3962 #endif
3963 
3964 /*
3965  * Allocate TLS block for module with given index.
3966  */
3967 void *
3968 allocate_module_tls(int index)
3969 {
3970     Obj_Entry* obj;
3971     char* p;
3972 
3973     for (obj = obj_list; obj; obj = obj->next) {
3974 	if (obj->tlsindex == index)
3975 	    break;
3976     }
3977     if (!obj) {
3978 	_rtld_error("Can't find module with TLS index %d", index);
3979 	die();
3980     }
3981 
3982     p = malloc(obj->tlssize);
3983     if (p == NULL) {
3984 	_rtld_error("Cannot allocate TLS block for index %d", index);
3985 	die();
3986     }
3987     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3988     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3989 
3990     return p;
3991 }
3992 
3993 bool
3994 allocate_tls_offset(Obj_Entry *obj)
3995 {
3996     size_t off;
3997 
3998     if (obj->tls_done)
3999 	return true;
4000 
4001     if (obj->tlssize == 0) {
4002 	obj->tls_done = true;
4003 	return true;
4004     }
4005 
4006     if (obj->tlsindex == 1)
4007 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4008     else
4009 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4010 				   obj->tlssize, obj->tlsalign);
4011 
4012     /*
4013      * If we have already fixed the size of the static TLS block, we
4014      * must stay within that size. When allocating the static TLS, we
4015      * leave a small amount of space spare to be used for dynamically
4016      * loading modules which use static TLS.
4017      */
4018     if (tls_static_space) {
4019 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4020 	    return false;
4021     }
4022 
4023     tls_last_offset = obj->tlsoffset = off;
4024     tls_last_size = obj->tlssize;
4025     obj->tls_done = true;
4026 
4027     return true;
4028 }
4029 
4030 void
4031 free_tls_offset(Obj_Entry *obj)
4032 {
4033 
4034     /*
4035      * If we were the last thing to allocate out of the static TLS
4036      * block, we give our space back to the 'allocator'. This is a
4037      * simplistic workaround to allow libGL.so.1 to be loaded and
4038      * unloaded multiple times.
4039      */
4040     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4041 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4042 	tls_last_offset -= obj->tlssize;
4043 	tls_last_size = 0;
4044     }
4045 }
4046 
4047 void *
4048 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4049 {
4050     void *ret;
4051     RtldLockState lockstate;
4052 
4053     wlock_acquire(rtld_bind_lock, &lockstate);
4054     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4055     lock_release(rtld_bind_lock, &lockstate);
4056     return (ret);
4057 }
4058 
4059 void
4060 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4061 {
4062     RtldLockState lockstate;
4063 
4064     wlock_acquire(rtld_bind_lock, &lockstate);
4065     free_tls(tcb, tcbsize, tcbalign);
4066     lock_release(rtld_bind_lock, &lockstate);
4067 }
4068 
4069 static void
4070 object_add_name(Obj_Entry *obj, const char *name)
4071 {
4072     Name_Entry *entry;
4073     size_t len;
4074 
4075     len = strlen(name);
4076     entry = malloc(sizeof(Name_Entry) + len);
4077 
4078     if (entry != NULL) {
4079 	strcpy(entry->name, name);
4080 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4081     }
4082 }
4083 
4084 static int
4085 object_match_name(const Obj_Entry *obj, const char *name)
4086 {
4087     Name_Entry *entry;
4088 
4089     STAILQ_FOREACH(entry, &obj->names, link) {
4090 	if (strcmp(name, entry->name) == 0)
4091 	    return (1);
4092     }
4093     return (0);
4094 }
4095 
4096 static Obj_Entry *
4097 locate_dependency(const Obj_Entry *obj, const char *name)
4098 {
4099     const Objlist_Entry *entry;
4100     const Needed_Entry *needed;
4101 
4102     STAILQ_FOREACH(entry, &list_main, link) {
4103 	if (object_match_name(entry->obj, name))
4104 	    return entry->obj;
4105     }
4106 
4107     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4108 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4109 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4110 	    /*
4111 	     * If there is DT_NEEDED for the name we are looking for,
4112 	     * we are all set.  Note that object might not be found if
4113 	     * dependency was not loaded yet, so the function can
4114 	     * return NULL here.  This is expected and handled
4115 	     * properly by the caller.
4116 	     */
4117 	    return (needed->obj);
4118 	}
4119     }
4120     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4121 	obj->path, name);
4122     die();
4123 }
4124 
4125 static int
4126 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4127     const Elf_Vernaux *vna)
4128 {
4129     const Elf_Verdef *vd;
4130     const char *vername;
4131 
4132     vername = refobj->strtab + vna->vna_name;
4133     vd = depobj->verdef;
4134     if (vd == NULL) {
4135 	_rtld_error("%s: version %s required by %s not defined",
4136 	    depobj->path, vername, refobj->path);
4137 	return (-1);
4138     }
4139     for (;;) {
4140 	if (vd->vd_version != VER_DEF_CURRENT) {
4141 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4142 		depobj->path, vd->vd_version);
4143 	    return (-1);
4144 	}
4145 	if (vna->vna_hash == vd->vd_hash) {
4146 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4147 		((char *)vd + vd->vd_aux);
4148 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4149 		return (0);
4150 	}
4151 	if (vd->vd_next == 0)
4152 	    break;
4153 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4154     }
4155     if (vna->vna_flags & VER_FLG_WEAK)
4156 	return (0);
4157     _rtld_error("%s: version %s required by %s not found",
4158 	depobj->path, vername, refobj->path);
4159     return (-1);
4160 }
4161 
4162 static int
4163 rtld_verify_object_versions(Obj_Entry *obj)
4164 {
4165     const Elf_Verneed *vn;
4166     const Elf_Verdef  *vd;
4167     const Elf_Verdaux *vda;
4168     const Elf_Vernaux *vna;
4169     const Obj_Entry *depobj;
4170     int maxvernum, vernum;
4171 
4172     if (obj->ver_checked)
4173 	return (0);
4174     obj->ver_checked = true;
4175 
4176     maxvernum = 0;
4177     /*
4178      * Walk over defined and required version records and figure out
4179      * max index used by any of them. Do very basic sanity checking
4180      * while there.
4181      */
4182     vn = obj->verneed;
4183     while (vn != NULL) {
4184 	if (vn->vn_version != VER_NEED_CURRENT) {
4185 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4186 		obj->path, vn->vn_version);
4187 	    return (-1);
4188 	}
4189 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4190 	for (;;) {
4191 	    vernum = VER_NEED_IDX(vna->vna_other);
4192 	    if (vernum > maxvernum)
4193 		maxvernum = vernum;
4194 	    if (vna->vna_next == 0)
4195 		 break;
4196 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4197 	}
4198 	if (vn->vn_next == 0)
4199 	    break;
4200 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4201     }
4202 
4203     vd = obj->verdef;
4204     while (vd != NULL) {
4205 	if (vd->vd_version != VER_DEF_CURRENT) {
4206 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4207 		obj->path, vd->vd_version);
4208 	    return (-1);
4209 	}
4210 	vernum = VER_DEF_IDX(vd->vd_ndx);
4211 	if (vernum > maxvernum)
4212 		maxvernum = vernum;
4213 	if (vd->vd_next == 0)
4214 	    break;
4215 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4216     }
4217 
4218     if (maxvernum == 0)
4219 	return (0);
4220 
4221     /*
4222      * Store version information in array indexable by version index.
4223      * Verify that object version requirements are satisfied along the
4224      * way.
4225      */
4226     obj->vernum = maxvernum + 1;
4227     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4228 
4229     vd = obj->verdef;
4230     while (vd != NULL) {
4231 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4232 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4233 	    assert(vernum <= maxvernum);
4234 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4235 	    obj->vertab[vernum].hash = vd->vd_hash;
4236 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4237 	    obj->vertab[vernum].file = NULL;
4238 	    obj->vertab[vernum].flags = 0;
4239 	}
4240 	if (vd->vd_next == 0)
4241 	    break;
4242 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4243     }
4244 
4245     vn = obj->verneed;
4246     while (vn != NULL) {
4247 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4248 	if (depobj == NULL)
4249 	    return (-1);
4250 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4251 	for (;;) {
4252 	    if (check_object_provided_version(obj, depobj, vna))
4253 		return (-1);
4254 	    vernum = VER_NEED_IDX(vna->vna_other);
4255 	    assert(vernum <= maxvernum);
4256 	    obj->vertab[vernum].hash = vna->vna_hash;
4257 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4258 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4259 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4260 		VER_INFO_HIDDEN : 0;
4261 	    if (vna->vna_next == 0)
4262 		 break;
4263 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4264 	}
4265 	if (vn->vn_next == 0)
4266 	    break;
4267 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4268     }
4269     return 0;
4270 }
4271 
4272 static int
4273 rtld_verify_versions(const Objlist *objlist)
4274 {
4275     Objlist_Entry *entry;
4276     int rc;
4277 
4278     rc = 0;
4279     STAILQ_FOREACH(entry, objlist, link) {
4280 	/*
4281 	 * Skip dummy objects or objects that have their version requirements
4282 	 * already checked.
4283 	 */
4284 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4285 	    continue;
4286 	if (rtld_verify_object_versions(entry->obj) == -1) {
4287 	    rc = -1;
4288 	    if (ld_tracing == NULL)
4289 		break;
4290 	}
4291     }
4292     if (rc == 0 || ld_tracing != NULL)
4293     	rc = rtld_verify_object_versions(&obj_rtld);
4294     return rc;
4295 }
4296 
4297 const Ver_Entry *
4298 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4299 {
4300     Elf_Versym vernum;
4301 
4302     if (obj->vertab) {
4303 	vernum = VER_NDX(obj->versyms[symnum]);
4304 	if (vernum >= obj->vernum) {
4305 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4306 		obj->path, obj->strtab + symnum, vernum);
4307 	} else if (obj->vertab[vernum].hash != 0) {
4308 	    return &obj->vertab[vernum];
4309 	}
4310     }
4311     return NULL;
4312 }
4313 
4314 int
4315 _rtld_get_stack_prot(void)
4316 {
4317 
4318 	return (stack_prot);
4319 }
4320 
4321 static void
4322 map_stacks_exec(RtldLockState *lockstate)
4323 {
4324 	void (*thr_map_stacks_exec)(void);
4325 
4326 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4327 		return;
4328 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4329 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4330 	if (thr_map_stacks_exec != NULL) {
4331 		stack_prot |= PROT_EXEC;
4332 		thr_map_stacks_exec();
4333 	}
4334 }
4335 
4336 void
4337 symlook_init(SymLook *dst, const char *name)
4338 {
4339 
4340 	bzero(dst, sizeof(*dst));
4341 	dst->name = name;
4342 	dst->hash = elf_hash(name);
4343 }
4344 
4345 static void
4346 symlook_init_from_req(SymLook *dst, const SymLook *src)
4347 {
4348 
4349 	dst->name = src->name;
4350 	dst->hash = src->hash;
4351 	dst->ventry = src->ventry;
4352 	dst->flags = src->flags;
4353 	dst->defobj_out = NULL;
4354 	dst->sym_out = NULL;
4355 	dst->lockstate = src->lockstate;
4356 }
4357 
4358 /*
4359  * Overrides for libc_pic-provided functions.
4360  */
4361 
4362 int
4363 __getosreldate(void)
4364 {
4365 	size_t len;
4366 	int oid[2];
4367 	int error, osrel;
4368 
4369 	if (osreldate != 0)
4370 		return (osreldate);
4371 
4372 	oid[0] = CTL_KERN;
4373 	oid[1] = KERN_OSRELDATE;
4374 	osrel = 0;
4375 	len = sizeof(osrel);
4376 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4377 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4378 		osreldate = osrel;
4379 	return (osreldate);
4380 }
4381 
4382 void
4383 exit(int status)
4384 {
4385 
4386 	_exit(status);
4387 }
4388 
4389 void (*__cleanup)(void);
4390 int __isthreaded = 0;
4391 int _thread_autoinit_dummy_decl = 1;
4392 
4393 /*
4394  * No unresolved symbols for rtld.
4395  */
4396 void
4397 __pthread_cxa_finalize(struct dl_phdr_info *a)
4398 {
4399 }
4400 
4401 void
4402 __stack_chk_fail(void)
4403 {
4404 
4405 	_rtld_error("stack overflow detected; terminated");
4406 	die();
4407 }
4408 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4409 
4410 void
4411 __chk_fail(void)
4412 {
4413 
4414 	_rtld_error("buffer overflow detected; terminated");
4415 	die();
4416 }
4417 
4418 const char *
4419 rtld_strerror(int errnum)
4420 {
4421 
4422 	if (errnum < 0 || errnum >= sys_nerr)
4423 		return ("Unknown error");
4424 	return (sys_errlist[errnum]);
4425 }
4426