xref: /freebsd/libexec/rtld-elf/rtld.c (revision a58ece87303f882367105c92a27268ed6befa655)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_paths.h"
64 #include "rtld_tls.h"
65 #include "rtld_printf.h"
66 #include "rtld_malloc.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 #include "rtld_libc.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 
76 /* Variables that cannot be static: */
77 extern struct r_debug r_debug; /* For GDB */
78 extern int _thread_autoinit_dummy_decl;
79 extern void (*__cleanup)(void);
80 
81 struct dlerror_save {
82 	int seen;
83 	char *msg;
84 };
85 
86 /*
87  * Function declarations.
88  */
89 static const char *basename(const char *);
90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
91     const Elf_Dyn **, const Elf_Dyn **);
92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
93     const Elf_Dyn *);
94 static bool digest_dynamic(Obj_Entry *, int);
95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
96 static void distribute_static_tls(Objlist *, RtldLockState *);
97 static Obj_Entry *dlcheck(void *);
98 static int dlclose_locked(void *, RtldLockState *);
99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
100     int lo_flags, int mode, RtldLockState *lockstate);
101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
103 static bool donelist_check(DoneList *, const Obj_Entry *);
104 static void dump_auxv(Elf_Auxinfo **aux_info);
105 static void errmsg_restore(struct dlerror_save *);
106 static struct dlerror_save *errmsg_save(void);
107 static void *fill_search_info(const char *, size_t, void *);
108 static char *find_library(const char *, const Obj_Entry *, int *);
109 static const char *gethints(bool);
110 static void hold_object(Obj_Entry *);
111 static void unhold_object(Obj_Entry *);
112 static void init_dag(Obj_Entry *);
113 static void init_marker(Obj_Entry *);
114 static void init_pagesizes(Elf_Auxinfo **aux_info);
115 static void init_rtld(caddr_t, Elf_Auxinfo **);
116 static void initlist_add_neededs(Needed_Entry *, Objlist *);
117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
119 static void linkmap_add(Obj_Entry *);
120 static void linkmap_delete(Obj_Entry *);
121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
122 static void unload_filtees(Obj_Entry *, RtldLockState *);
123 static int load_needed_objects(Obj_Entry *, int);
124 static int load_preload_objects(const char *, bool);
125 static int load_kpreload(const void *addr);
126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
127 static void map_stacks_exec(RtldLockState *);
128 static int obj_disable_relro(Obj_Entry *);
129 static int obj_enforce_relro(Obj_Entry *);
130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
131 static void objlist_call_init(Objlist *, RtldLockState *);
132 static void objlist_clear(Objlist *);
133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
134 static void objlist_init(Objlist *);
135 static void objlist_push_head(Objlist *, Obj_Entry *);
136 static void objlist_push_tail(Objlist *, Obj_Entry *);
137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
138 static void objlist_remove(Objlist *, Obj_Entry *);
139 static int open_binary_fd(const char *argv0, bool search_in_path,
140     const char **binpath_res);
141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
142     const char **argv0, bool *dir_ignore);
143 static int parse_integer(const char *);
144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
145 static void print_usage(const char *argv0);
146 static void release_object(Obj_Entry *);
147 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
148     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
150     int flags, RtldLockState *lockstate);
151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
152     RtldLockState *);
153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
154 static int rtld_dirname(const char *, char *);
155 static int rtld_dirname_abs(const char *, char *);
156 static void *rtld_dlopen(const char *name, int fd, int mode);
157 static void rtld_exit(void);
158 static void rtld_nop_exit(void);
159 static char *search_library_path(const char *, const char *, const char *,
160     int *);
161 static char *search_library_pathfds(const char *, const char *, int *);
162 static const void **get_program_var_addr(const char *, RtldLockState *);
163 static void set_program_var(const char *, const void *);
164 static int symlook_default(SymLook *, const Obj_Entry *refobj);
165 static int symlook_global(SymLook *, DoneList *);
166 static void symlook_init_from_req(SymLook *, const SymLook *);
167 static int symlook_list(SymLook *, const Objlist *, DoneList *);
168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
172 static void trace_loaded_objects(Obj_Entry *, bool);
173 static void unlink_object(Obj_Entry *);
174 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
175 static void unref_dag(Obj_Entry *);
176 static void ref_dag(Obj_Entry *);
177 static char *origin_subst_one(Obj_Entry *, char *, const char *,
178     const char *, bool);
179 static char *origin_subst(Obj_Entry *, const char *);
180 static bool obj_resolve_origin(Obj_Entry *obj);
181 static void preinit_main(void);
182 static int  rtld_verify_versions(const Objlist *);
183 static int  rtld_verify_object_versions(Obj_Entry *);
184 static void object_add_name(Obj_Entry *, const char *);
185 static int  object_match_name(const Obj_Entry *, const char *);
186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
188     struct dl_phdr_info *phdr_info);
189 static uint32_t gnu_hash(const char *);
190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
191     const unsigned long);
192 
193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
194 void _r_debug_postinit(struct link_map *) __noinline __exported;
195 
196 int __sys_openat(int, const char *, int, ...);
197 
198 /*
199  * Data declarations.
200  */
201 struct r_debug r_debug __exported;	/* for GDB; */
202 static bool libmap_disable;	/* Disable libmap */
203 static bool ld_loadfltr;	/* Immediate filters processing */
204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
205 static bool trust;		/* False for setuid and setgid programs */
206 static bool dangerous_ld_env;	/* True if environment variables have been
207 				   used to affect the libraries loaded */
208 bool ld_bind_not;		/* Disable PLT update */
209 static const char *ld_bind_now;	/* Environment variable for immediate binding */
210 static const char *ld_debug;	/* Environment variable for debugging */
211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
212 				       weak definition */
213 static const char *ld_library_path;/* Environment variable for search path */
214 static const char *ld_library_dirs;/* Environment variable for library descriptors */
215 static const char *ld_preload;	/* Environment variable for libraries to
216 				   load first */
217 static const char *ld_preload_fds;/* Environment variable for libraries represented by
218 				   descriptors */
219 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
220 static const char *ld_tracing;	/* Called from ldd to print libs */
221 static const char *ld_utrace;	/* Use utrace() to log events. */
222 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
223 static Obj_Entry *obj_main;	/* The main program shared object */
224 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
225 static unsigned int obj_count;	/* Number of objects in obj_list */
226 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
227 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
228   RTLD_STATIC_TLS_EXTRA;
229 
230 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
231   STAILQ_HEAD_INITIALIZER(list_global);
232 static Objlist list_main =	/* Objects loaded at program startup */
233   STAILQ_HEAD_INITIALIZER(list_main);
234 static Objlist list_fini =	/* Objects needing fini() calls */
235   STAILQ_HEAD_INITIALIZER(list_fini);
236 
237 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
238 
239 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
240 
241 extern Elf_Dyn _DYNAMIC;
242 #pragma weak _DYNAMIC
243 
244 int dlclose(void *) __exported;
245 char *dlerror(void) __exported;
246 void *dlopen(const char *, int) __exported;
247 void *fdlopen(int, int) __exported;
248 void *dlsym(void *, const char *) __exported;
249 dlfunc_t dlfunc(void *, const char *) __exported;
250 void *dlvsym(void *, const char *, const char *) __exported;
251 int dladdr(const void *, Dl_info *) __exported;
252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
253     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
254 int dlinfo(void *, int , void *) __exported;
255 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
256 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
257 int _rtld_get_stack_prot(void) __exported;
258 int _rtld_is_dlopened(void *) __exported;
259 void _rtld_error(const char *, ...) __exported;
260 
261 /* Only here to fix -Wmissing-prototypes warnings */
262 int __getosreldate(void);
263 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
264 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
265 
266 int npagesizes;
267 static int osreldate;
268 size_t *pagesizes;
269 size_t page_size;
270 
271 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
272 static int max_stack_flags;
273 
274 /*
275  * Global declarations normally provided by crt1.  The dynamic linker is
276  * not built with crt1, so we have to provide them ourselves.
277  */
278 char *__progname;
279 char **environ;
280 
281 /*
282  * Used to pass argc, argv to init functions.
283  */
284 int main_argc;
285 char **main_argv;
286 
287 /*
288  * Globals to control TLS allocation.
289  */
290 size_t tls_last_offset;		/* Static TLS offset of last module */
291 size_t tls_last_size;		/* Static TLS size of last module */
292 size_t tls_static_space;	/* Static TLS space allocated */
293 static size_t tls_static_max_align;
294 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
295 int tls_max_index = 1;		/* Largest module index allocated */
296 
297 static bool ld_library_path_rpath = false;
298 bool ld_fast_sigblock = false;
299 
300 /*
301  * Globals for path names, and such
302  */
303 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
304 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
305 const char *ld_path_rtld = _PATH_RTLD;
306 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
307 const char *ld_env_prefix = LD_;
308 
309 static void (*rtld_exit_ptr)(void);
310 
311 /*
312  * Fill in a DoneList with an allocation large enough to hold all of
313  * the currently-loaded objects.  Keep this as a macro since it calls
314  * alloca and we want that to occur within the scope of the caller.
315  */
316 #define donelist_init(dlp)					\
317     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
318     assert((dlp)->objs != NULL),				\
319     (dlp)->num_alloc = obj_count,				\
320     (dlp)->num_used = 0)
321 
322 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
323 	if (ld_utrace != NULL)					\
324 		ld_utrace_log(e, h, mb, ms, r, n);		\
325 } while (0)
326 
327 static void
328 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
329     int refcnt, const char *name)
330 {
331 	struct utrace_rtld ut;
332 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
333 
334 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
335 	ut.event = event;
336 	ut.handle = handle;
337 	ut.mapbase = mapbase;
338 	ut.mapsize = mapsize;
339 	ut.refcnt = refcnt;
340 	bzero(ut.name, sizeof(ut.name));
341 	if (name)
342 		strlcpy(ut.name, name, sizeof(ut.name));
343 	utrace(&ut, sizeof(ut));
344 }
345 
346 struct ld_env_var_desc {
347 	const char * const n;
348 	const char *val;
349 	const bool unsecure;
350 };
351 #define LD_ENV_DESC(var, unsec) \
352     [LD_##var] = { .n = #var, .unsecure = unsec }
353 
354 static struct ld_env_var_desc ld_env_vars[] = {
355 	LD_ENV_DESC(BIND_NOW, false),
356 	LD_ENV_DESC(PRELOAD, true),
357 	LD_ENV_DESC(LIBMAP, true),
358 	LD_ENV_DESC(LIBRARY_PATH, true),
359 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
360 	LD_ENV_DESC(LIBMAP_DISABLE, true),
361 	LD_ENV_DESC(BIND_NOT, true),
362 	LD_ENV_DESC(DEBUG, true),
363 	LD_ENV_DESC(ELF_HINTS_PATH, true),
364 	LD_ENV_DESC(LOADFLTR, true),
365 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
366 	LD_ENV_DESC(PRELOAD_FDS, true),
367 	LD_ENV_DESC(DYNAMIC_WEAK, true),
368 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
369 	LD_ENV_DESC(UTRACE, false),
370 	LD_ENV_DESC(DUMP_REL_PRE, false),
371 	LD_ENV_DESC(DUMP_REL_POST, false),
372 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
373 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
374 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
375 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
376 	LD_ENV_DESC(SHOW_AUXV, false),
377 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
378 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
379 };
380 
381 const char *
382 ld_get_env_var(int idx)
383 {
384 	return (ld_env_vars[idx].val);
385 }
386 
387 static const char *
388 rtld_get_env_val(char **env, const char *name, size_t name_len)
389 {
390 	char **m, *n, *v;
391 
392 	for (m = env; *m != NULL; m++) {
393 		n = *m;
394 		v = strchr(n, '=');
395 		if (v == NULL) {
396 			/* corrupt environment? */
397 			continue;
398 		}
399 		if (v - n == (ptrdiff_t)name_len &&
400 		    strncmp(name, n, name_len) == 0)
401 			return (v + 1);
402 	}
403 	return (NULL);
404 }
405 
406 static void
407 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
408 {
409 	struct ld_env_var_desc *lvd;
410 	size_t prefix_len, nlen;
411 	char **m, *n, *v;
412 	int i;
413 
414 	prefix_len = strlen(env_prefix);
415 	for (m = env; *m != NULL; m++) {
416 		n = *m;
417 		if (strncmp(env_prefix, n, prefix_len) != 0) {
418 			/* Not a rtld environment variable. */
419 			continue;
420 		}
421 		n += prefix_len;
422 		v = strchr(n, '=');
423 		if (v == NULL) {
424 			/* corrupt environment? */
425 			continue;
426 		}
427 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
428 			lvd = &ld_env_vars[i];
429 			if (lvd->val != NULL) {
430 				/* Saw higher-priority variable name already. */
431 				continue;
432 			}
433 			nlen = strlen(lvd->n);
434 			if (v - n == (ptrdiff_t)nlen &&
435 			    strncmp(lvd->n, n, nlen) == 0) {
436 				lvd->val = v + 1;
437 				break;
438 			}
439 		}
440 	}
441 }
442 
443 static void
444 rtld_init_env_vars(char **env)
445 {
446 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
447 }
448 
449 static void
450 set_ld_elf_hints_path(void)
451 {
452 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
453 		ld_elf_hints_path = ld_elf_hints_default;
454 }
455 
456 uintptr_t
457 rtld_round_page(uintptr_t x)
458 {
459 	return (roundup2(x, page_size));
460 }
461 
462 uintptr_t
463 rtld_trunc_page(uintptr_t x)
464 {
465 	return (rounddown2(x, page_size));
466 }
467 
468 /*
469  * Main entry point for dynamic linking.  The first argument is the
470  * stack pointer.  The stack is expected to be laid out as described
471  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
472  * Specifically, the stack pointer points to a word containing
473  * ARGC.  Following that in the stack is a null-terminated sequence
474  * of pointers to argument strings.  Then comes a null-terminated
475  * sequence of pointers to environment strings.  Finally, there is a
476  * sequence of "auxiliary vector" entries.
477  *
478  * The second argument points to a place to store the dynamic linker's
479  * exit procedure pointer and the third to a place to store the main
480  * program's object.
481  *
482  * The return value is the main program's entry point.
483  */
484 func_ptr_type
485 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
486 {
487     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
488     Objlist_Entry *entry;
489     Obj_Entry *last_interposer, *obj, *preload_tail;
490     const Elf_Phdr *phdr;
491     Objlist initlist;
492     RtldLockState lockstate;
493     struct stat st;
494     Elf_Addr *argcp;
495     char **argv, **env, **envp, *kexecpath;
496     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
497     struct ld_env_var_desc *lvd;
498     caddr_t imgentry;
499     char buf[MAXPATHLEN];
500     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
501     size_t sz;
502 #ifdef __powerpc__
503     int old_auxv_format = 1;
504 #endif
505     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
506 
507     /*
508      * On entry, the dynamic linker itself has not been relocated yet.
509      * Be very careful not to reference any global data until after
510      * init_rtld has returned.  It is OK to reference file-scope statics
511      * and string constants, and to call static and global functions.
512      */
513 
514     /* Find the auxiliary vector on the stack. */
515     argcp = sp;
516     argc = *sp++;
517     argv = (char **) sp;
518     sp += argc + 1;	/* Skip over arguments and NULL terminator */
519     env = (char **) sp;
520     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
521 	;
522     aux = (Elf_Auxinfo *) sp;
523 
524     /* Digest the auxiliary vector. */
525     for (i = 0;  i < AT_COUNT;  i++)
526 	aux_info[i] = NULL;
527     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
528 	if (auxp->a_type < AT_COUNT)
529 	    aux_info[auxp->a_type] = auxp;
530 #ifdef __powerpc__
531 	if (auxp->a_type == 23) /* AT_STACKPROT */
532 	    old_auxv_format = 0;
533 #endif
534     }
535 
536 #ifdef __powerpc__
537     if (old_auxv_format) {
538 	/* Remap from old-style auxv numbers. */
539 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
540 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
541 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
542 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
543 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
544 	aux_info[13] = NULL;		/* AT_GID */
545 
546 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
547 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
548 	aux_info[16] = aux_info[14];	/* AT_CANARY */
549 	aux_info[14] = NULL;		/* AT_EGID */
550     }
551 #endif
552 
553     /* Initialize and relocate ourselves. */
554     assert(aux_info[AT_BASE] != NULL);
555     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
556 
557     dlerror_dflt_init();
558 
559     __progname = obj_rtld.path;
560     argv0 = argv[0] != NULL ? argv[0] : "(null)";
561     environ = env;
562     main_argc = argc;
563     main_argv = argv;
564 
565     if (aux_info[AT_BSDFLAGS] != NULL &&
566 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
567 	    ld_fast_sigblock = true;
568 
569     trust = !issetugid();
570     direct_exec = false;
571 
572     md_abi_variant_hook(aux_info);
573     rtld_init_env_vars(env);
574 
575     fd = -1;
576     if (aux_info[AT_EXECFD] != NULL) {
577 	fd = aux_info[AT_EXECFD]->a_un.a_val;
578     } else {
579 	assert(aux_info[AT_PHDR] != NULL);
580 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
581 	if (phdr == obj_rtld.phdr) {
582 	    if (!trust) {
583 		_rtld_error("Tainted process refusing to run binary %s",
584 		    argv0);
585 		rtld_die();
586 	    }
587 	    direct_exec = true;
588 
589 	    dbg("opening main program in direct exec mode");
590 	    if (argc >= 2) {
591 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
592 		  &argv0, &dir_ignore);
593 		explicit_fd = (fd != -1);
594 		binpath = NULL;
595 		if (!explicit_fd)
596 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
597 		if (fstat(fd, &st) == -1) {
598 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
599 		      explicit_fd ? "user-provided descriptor" : argv0,
600 		      rtld_strerror(errno));
601 		    rtld_die();
602 		}
603 
604 		/*
605 		 * Rough emulation of the permission checks done by
606 		 * execve(2), only Unix DACs are checked, ACLs are
607 		 * ignored.  Preserve the semantic of disabling owner
608 		 * to execute if owner x bit is cleared, even if
609 		 * others x bit is enabled.
610 		 * mmap(2) does not allow to mmap with PROT_EXEC if
611 		 * binary' file comes from noexec mount.  We cannot
612 		 * set a text reference on the binary.
613 		 */
614 		dir_enable = false;
615 		if (st.st_uid == geteuid()) {
616 		    if ((st.st_mode & S_IXUSR) != 0)
617 			dir_enable = true;
618 		} else if (st.st_gid == getegid()) {
619 		    if ((st.st_mode & S_IXGRP) != 0)
620 			dir_enable = true;
621 		} else if ((st.st_mode & S_IXOTH) != 0) {
622 		    dir_enable = true;
623 		}
624 		if (!dir_enable && !dir_ignore) {
625 		    _rtld_error("No execute permission for binary %s",
626 		        argv0);
627 		    rtld_die();
628 		}
629 
630 		/*
631 		 * For direct exec mode, argv[0] is the interpreter
632 		 * name, we must remove it and shift arguments left
633 		 * before invoking binary main.  Since stack layout
634 		 * places environment pointers and aux vectors right
635 		 * after the terminating NULL, we must shift
636 		 * environment and aux as well.
637 		 */
638 		main_argc = argc - rtld_argc;
639 		for (i = 0; i <= main_argc; i++)
640 		    argv[i] = argv[i + rtld_argc];
641 		*argcp -= rtld_argc;
642 		environ = env = envp = argv + main_argc + 1;
643 		dbg("move env from %p to %p", envp + rtld_argc, envp);
644 		do {
645 		    *envp = *(envp + rtld_argc);
646 		}  while (*envp++ != NULL);
647 		aux = auxp = (Elf_Auxinfo *)envp;
648 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
649 		dbg("move aux from %p to %p", auxpf, aux);
650 		/* XXXKIB insert place for AT_EXECPATH if not present */
651 		for (;; auxp++, auxpf++) {
652 		    *auxp = *auxpf;
653 		    if (auxp->a_type == AT_NULL)
654 			    break;
655 		}
656 		/* Since the auxiliary vector has moved, redigest it. */
657 		for (i = 0;  i < AT_COUNT;  i++)
658 		    aux_info[i] = NULL;
659 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
660 		    if (auxp->a_type < AT_COUNT)
661 			aux_info[auxp->a_type] = auxp;
662 		}
663 
664 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
665 		if (binpath == NULL) {
666 		    aux_info[AT_EXECPATH] = NULL;
667 		} else {
668 		    if (aux_info[AT_EXECPATH] == NULL) {
669 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
670 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
671 		    }
672 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
673 		      binpath);
674 		}
675 	    } else {
676 		_rtld_error("No binary");
677 		rtld_die();
678 	    }
679 	}
680     }
681 
682     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
683 
684     /*
685      * If the process is tainted, then we un-set the dangerous environment
686      * variables.  The process will be marked as tainted until setuid(2)
687      * is called.  If any child process calls setuid(2) we do not want any
688      * future processes to honor the potentially un-safe variables.
689      */
690     if (!trust) {
691 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
692 		    lvd = &ld_env_vars[i];
693 		    if (lvd->unsecure)
694 			    lvd->val = NULL;
695 	    }
696     }
697 
698     ld_debug = ld_get_env_var(LD_DEBUG);
699     if (ld_bind_now == NULL)
700 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
701     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
702     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
703     libmap_override = ld_get_env_var(LD_LIBMAP);
704     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
705     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
706     ld_preload = ld_get_env_var(LD_PRELOAD);
707     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
708     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
709     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
710     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
711     if (library_path_rpath != NULL) {
712 	    if (library_path_rpath[0] == 'y' ||
713 		library_path_rpath[0] == 'Y' ||
714 		library_path_rpath[0] == '1')
715 		    ld_library_path_rpath = true;
716 	    else
717 		    ld_library_path_rpath = false;
718     }
719     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
720     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
721 	sz = parse_integer(static_tls_extra);
722 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
723 	    ld_static_tls_extra = sz;
724     }
725     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
726 	ld_library_path != NULL || ld_preload != NULL ||
727 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
728 	static_tls_extra != NULL;
729     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
730     ld_utrace = ld_get_env_var(LD_UTRACE);
731 
732     set_ld_elf_hints_path();
733     if (ld_debug != NULL && *ld_debug != '\0')
734 	debug = 1;
735     dbg("%s is initialized, base address = %p", __progname,
736 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
737     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
738     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
739 
740     dbg("initializing thread locks");
741     lockdflt_init();
742 
743     /*
744      * Load the main program, or process its program header if it is
745      * already loaded.
746      */
747     if (fd != -1) {	/* Load the main program. */
748 	dbg("loading main program");
749 	obj_main = map_object(fd, argv0, NULL);
750 	close(fd);
751 	if (obj_main == NULL)
752 	    rtld_die();
753 	max_stack_flags = obj_main->stack_flags;
754     } else {				/* Main program already loaded. */
755 	dbg("processing main program's program header");
756 	assert(aux_info[AT_PHDR] != NULL);
757 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
758 	assert(aux_info[AT_PHNUM] != NULL);
759 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
760 	assert(aux_info[AT_PHENT] != NULL);
761 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
762 	assert(aux_info[AT_ENTRY] != NULL);
763 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
764 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
765 	    rtld_die();
766     }
767 
768     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
769 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
770 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
771 	    if (kexecpath[0] == '/')
772 		    obj_main->path = kexecpath;
773 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
774 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
775 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
776 		    obj_main->path = xstrdup(argv0);
777 	    else
778 		    obj_main->path = xstrdup(buf);
779     } else {
780 	    dbg("No AT_EXECPATH or direct exec");
781 	    obj_main->path = xstrdup(argv0);
782     }
783     dbg("obj_main path %s", obj_main->path);
784     obj_main->mainprog = true;
785 
786     if (aux_info[AT_STACKPROT] != NULL &&
787       aux_info[AT_STACKPROT]->a_un.a_val != 0)
788 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
789 
790 #ifndef COMPAT_libcompat
791     /*
792      * Get the actual dynamic linker pathname from the executable if
793      * possible.  (It should always be possible.)  That ensures that
794      * gdb will find the right dynamic linker even if a non-standard
795      * one is being used.
796      */
797     if (obj_main->interp != NULL &&
798       strcmp(obj_main->interp, obj_rtld.path) != 0) {
799 	free(obj_rtld.path);
800 	obj_rtld.path = xstrdup(obj_main->interp);
801         __progname = obj_rtld.path;
802     }
803 #endif
804 
805     if (!digest_dynamic(obj_main, 0))
806 	rtld_die();
807     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
808 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
809 	obj_main->dynsymcount);
810 
811     linkmap_add(obj_main);
812     linkmap_add(&obj_rtld);
813 
814     /* Link the main program into the list of objects. */
815     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
816     obj_count++;
817     obj_loads++;
818 
819     /* Initialize a fake symbol for resolving undefined weak references. */
820     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
821     sym_zero.st_shndx = SHN_UNDEF;
822     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
823 
824     if (!libmap_disable)
825         libmap_disable = (bool)lm_init(libmap_override);
826 
827     if (aux_info[AT_KPRELOAD] != NULL &&
828       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
829 	dbg("loading kernel vdso");
830 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
831 	    rtld_die();
832     }
833 
834     dbg("loading LD_PRELOAD_FDS libraries");
835     if (load_preload_objects(ld_preload_fds, true) == -1)
836 	rtld_die();
837 
838     dbg("loading LD_PRELOAD libraries");
839     if (load_preload_objects(ld_preload, false) == -1)
840 	rtld_die();
841     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
842 
843     dbg("loading needed objects");
844     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
845       0) == -1)
846 	rtld_die();
847 
848     /* Make a list of all objects loaded at startup. */
849     last_interposer = obj_main;
850     TAILQ_FOREACH(obj, &obj_list, next) {
851 	if (obj->marker)
852 	    continue;
853 	if (obj->z_interpose && obj != obj_main) {
854 	    objlist_put_after(&list_main, last_interposer, obj);
855 	    last_interposer = obj;
856 	} else {
857 	    objlist_push_tail(&list_main, obj);
858 	}
859     	obj->refcount++;
860     }
861 
862     dbg("checking for required versions");
863     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
864 	rtld_die();
865 
866     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
867        dump_auxv(aux_info);
868 
869     if (ld_tracing) {		/* We're done */
870 	trace_loaded_objects(obj_main, true);
871 	exit(0);
872     }
873 
874     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
875        dump_relocations(obj_main);
876        exit (0);
877     }
878 
879     /*
880      * Processing tls relocations requires having the tls offsets
881      * initialized.  Prepare offsets before starting initial
882      * relocation processing.
883      */
884     dbg("initializing initial thread local storage offsets");
885     STAILQ_FOREACH(entry, &list_main, link) {
886 	/*
887 	 * Allocate all the initial objects out of the static TLS
888 	 * block even if they didn't ask for it.
889 	 */
890 	allocate_tls_offset(entry->obj);
891     }
892 
893     if (relocate_objects(obj_main,
894       ld_bind_now != NULL && *ld_bind_now != '\0',
895       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
896 	rtld_die();
897 
898     dbg("doing copy relocations");
899     if (do_copy_relocations(obj_main) == -1)
900 	rtld_die();
901 
902     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
903        dump_relocations(obj_main);
904        exit (0);
905     }
906 
907     ifunc_init(aux_info);
908 
909     /*
910      * Setup TLS for main thread.  This must be done after the
911      * relocations are processed, since tls initialization section
912      * might be the subject for relocations.
913      */
914     dbg("initializing initial thread local storage");
915     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
916 
917     dbg("initializing key program variables");
918     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
919     set_program_var("environ", env);
920     set_program_var("__elf_aux_vector", aux);
921 
922     /* Make a list of init functions to call. */
923     objlist_init(&initlist);
924     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
925       preload_tail, &initlist);
926 
927     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
928 
929     map_stacks_exec(NULL);
930 
931     if (!obj_main->crt_no_init) {
932 	/*
933 	 * Make sure we don't call the main program's init and fini
934 	 * functions for binaries linked with old crt1 which calls
935 	 * _init itself.
936 	 */
937 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
938 	obj_main->preinit_array = obj_main->init_array =
939 	    obj_main->fini_array = (Elf_Addr)NULL;
940     }
941 
942     if (direct_exec) {
943 	/* Set osrel for direct-execed binary */
944 	mib[0] = CTL_KERN;
945 	mib[1] = KERN_PROC;
946 	mib[2] = KERN_PROC_OSREL;
947 	mib[3] = getpid();
948 	osrel = obj_main->osrel;
949 	sz = sizeof(old_osrel);
950 	dbg("setting osrel to %d", osrel);
951 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
952     }
953 
954     wlock_acquire(rtld_bind_lock, &lockstate);
955 
956     dbg("resolving ifuncs");
957     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
958       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
959 	rtld_die();
960 
961     rtld_exit_ptr = rtld_exit;
962     if (obj_main->crt_no_init)
963 	preinit_main();
964     objlist_call_init(&initlist, &lockstate);
965     _r_debug_postinit(&obj_main->linkmap);
966     objlist_clear(&initlist);
967     dbg("loading filtees");
968     TAILQ_FOREACH(obj, &obj_list, next) {
969 	if (obj->marker)
970 	    continue;
971 	if (ld_loadfltr || obj->z_loadfltr)
972 	    load_filtees(obj, 0, &lockstate);
973     }
974 
975     dbg("enforcing main obj relro");
976     if (obj_enforce_relro(obj_main) == -1)
977 	rtld_die();
978 
979     lock_release(rtld_bind_lock, &lockstate);
980 
981     dbg("transferring control to program entry point = %p", obj_main->entry);
982 
983     /* Return the exit procedure and the program entry point. */
984     *exit_proc = rtld_exit_ptr;
985     *objp = obj_main;
986     return ((func_ptr_type)obj_main->entry);
987 }
988 
989 void *
990 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
991 {
992 	void *ptr;
993 	Elf_Addr target;
994 
995 	ptr = (void *)make_function_pointer(def, obj);
996 	target = call_ifunc_resolver(ptr);
997 	return ((void *)target);
998 }
999 
1000 Elf_Addr
1001 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1002 {
1003     const Elf_Rel *rel;
1004     const Elf_Sym *def;
1005     const Obj_Entry *defobj;
1006     Elf_Addr *where;
1007     Elf_Addr target;
1008     RtldLockState lockstate;
1009 
1010     rlock_acquire(rtld_bind_lock, &lockstate);
1011     if (sigsetjmp(lockstate.env, 0) != 0)
1012 	    lock_upgrade(rtld_bind_lock, &lockstate);
1013     if (obj->pltrel)
1014 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1015     else
1016 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1017 
1018     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1019     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1020 	NULL, &lockstate);
1021     if (def == NULL)
1022 	rtld_die();
1023     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1024 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1025     else
1026 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1027 
1028     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1029       defobj->strtab + def->st_name,
1030       obj->path == NULL ? NULL : basename(obj->path),
1031       (void *)target,
1032       defobj->path == NULL ? NULL : basename(defobj->path));
1033 
1034     /*
1035      * Write the new contents for the jmpslot. Note that depending on
1036      * architecture, the value which we need to return back to the
1037      * lazy binding trampoline may or may not be the target
1038      * address. The value returned from reloc_jmpslot() is the value
1039      * that the trampoline needs.
1040      */
1041     target = reloc_jmpslot(where, target, defobj, obj, rel);
1042     lock_release(rtld_bind_lock, &lockstate);
1043     return (target);
1044 }
1045 
1046 /*
1047  * Error reporting function.  Use it like printf.  If formats the message
1048  * into a buffer, and sets things up so that the next call to dlerror()
1049  * will return the message.
1050  */
1051 void
1052 _rtld_error(const char *fmt, ...)
1053 {
1054 	va_list ap;
1055 
1056 	va_start(ap, fmt);
1057 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1058 	    fmt, ap);
1059 	va_end(ap);
1060 	*lockinfo.dlerror_seen() = 0;
1061 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1062 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1063 }
1064 
1065 /*
1066  * Return a dynamically-allocated copy of the current error message, if any.
1067  */
1068 static struct dlerror_save *
1069 errmsg_save(void)
1070 {
1071 	struct dlerror_save *res;
1072 
1073 	res = xmalloc(sizeof(*res));
1074 	res->seen = *lockinfo.dlerror_seen();
1075 	if (res->seen == 0)
1076 		res->msg = xstrdup(lockinfo.dlerror_loc());
1077 	return (res);
1078 }
1079 
1080 /*
1081  * Restore the current error message from a copy which was previously saved
1082  * by errmsg_save().  The copy is freed.
1083  */
1084 static void
1085 errmsg_restore(struct dlerror_save *saved_msg)
1086 {
1087 	if (saved_msg == NULL || saved_msg->seen == 1) {
1088 		*lockinfo.dlerror_seen() = 1;
1089 	} else {
1090 		*lockinfo.dlerror_seen() = 0;
1091 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1092 		    lockinfo.dlerror_loc_sz);
1093 		free(saved_msg->msg);
1094 	}
1095 	free(saved_msg);
1096 }
1097 
1098 static const char *
1099 basename(const char *name)
1100 {
1101 	const char *p;
1102 
1103 	p = strrchr(name, '/');
1104 	return (p != NULL ? p + 1 : name);
1105 }
1106 
1107 static struct utsname uts;
1108 
1109 static char *
1110 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1111     const char *subst, bool may_free)
1112 {
1113 	char *p, *p1, *res, *resp;
1114 	int subst_len, kw_len, subst_count, old_len, new_len;
1115 
1116 	kw_len = strlen(kw);
1117 
1118 	/*
1119 	 * First, count the number of the keyword occurrences, to
1120 	 * preallocate the final string.
1121 	 */
1122 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1123 		p1 = strstr(p, kw);
1124 		if (p1 == NULL)
1125 			break;
1126 	}
1127 
1128 	/*
1129 	 * If the keyword is not found, just return.
1130 	 *
1131 	 * Return non-substituted string if resolution failed.  We
1132 	 * cannot do anything more reasonable, the failure mode of the
1133 	 * caller is unresolved library anyway.
1134 	 */
1135 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1136 		return (may_free ? real : xstrdup(real));
1137 	if (obj != NULL)
1138 		subst = obj->origin_path;
1139 
1140 	/*
1141 	 * There is indeed something to substitute.  Calculate the
1142 	 * length of the resulting string, and allocate it.
1143 	 */
1144 	subst_len = strlen(subst);
1145 	old_len = strlen(real);
1146 	new_len = old_len + (subst_len - kw_len) * subst_count;
1147 	res = xmalloc(new_len + 1);
1148 
1149 	/*
1150 	 * Now, execute the substitution loop.
1151 	 */
1152 	for (p = real, resp = res, *resp = '\0';;) {
1153 		p1 = strstr(p, kw);
1154 		if (p1 != NULL) {
1155 			/* Copy the prefix before keyword. */
1156 			memcpy(resp, p, p1 - p);
1157 			resp += p1 - p;
1158 			/* Keyword replacement. */
1159 			memcpy(resp, subst, subst_len);
1160 			resp += subst_len;
1161 			*resp = '\0';
1162 			p = p1 + kw_len;
1163 		} else
1164 			break;
1165 	}
1166 
1167 	/* Copy to the end of string and finish. */
1168 	strcat(resp, p);
1169 	if (may_free)
1170 		free(real);
1171 	return (res);
1172 }
1173 
1174 static const struct {
1175 	const char *kw;
1176 	bool pass_obj;
1177 	const char *subst;
1178 } tokens[] = {
1179 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1180 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1181 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1182 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1183 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1184 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1185 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1186 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1187 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1188 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1189 };
1190 
1191 static char *
1192 origin_subst(Obj_Entry *obj, const char *real)
1193 {
1194 	char *res;
1195 	int i;
1196 
1197 	if (obj == NULL || !trust)
1198 		return (xstrdup(real));
1199 	if (uts.sysname[0] == '\0') {
1200 		if (uname(&uts) != 0) {
1201 			_rtld_error("utsname failed: %d", errno);
1202 			return (NULL);
1203 		}
1204 	}
1205 
1206 	/* __DECONST is safe here since without may_free real is unchanged */
1207 	res = __DECONST(char *, real);
1208 	for (i = 0; i < (int)nitems(tokens); i++) {
1209 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1210 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1211 	}
1212 	return (res);
1213 }
1214 
1215 void
1216 rtld_die(void)
1217 {
1218     const char *msg = dlerror();
1219 
1220     if (msg == NULL)
1221 	msg = "Fatal error";
1222     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1223     rtld_fdputstr(STDERR_FILENO, msg);
1224     rtld_fdputchar(STDERR_FILENO, '\n');
1225     _exit(1);
1226 }
1227 
1228 /*
1229  * Process a shared object's DYNAMIC section, and save the important
1230  * information in its Obj_Entry structure.
1231  */
1232 static void
1233 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1234     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1235 {
1236     const Elf_Dyn *dynp;
1237     Needed_Entry **needed_tail = &obj->needed;
1238     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1239     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1240     const Elf_Hashelt *hashtab;
1241     const Elf32_Word *hashval;
1242     Elf32_Word bkt, nmaskwords;
1243     int bloom_size32;
1244     int plttype = DT_REL;
1245 
1246     *dyn_rpath = NULL;
1247     *dyn_soname = NULL;
1248     *dyn_runpath = NULL;
1249 
1250     obj->bind_now = false;
1251     dynp = obj->dynamic;
1252     if (dynp == NULL)
1253 	return;
1254     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1255 	switch (dynp->d_tag) {
1256 
1257 	case DT_REL:
1258 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1259 	    break;
1260 
1261 	case DT_RELSZ:
1262 	    obj->relsize = dynp->d_un.d_val;
1263 	    break;
1264 
1265 	case DT_RELENT:
1266 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1267 	    break;
1268 
1269 	case DT_JMPREL:
1270 	    obj->pltrel = (const Elf_Rel *)
1271 	      (obj->relocbase + dynp->d_un.d_ptr);
1272 	    break;
1273 
1274 	case DT_PLTRELSZ:
1275 	    obj->pltrelsize = dynp->d_un.d_val;
1276 	    break;
1277 
1278 	case DT_RELA:
1279 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1280 	    break;
1281 
1282 	case DT_RELASZ:
1283 	    obj->relasize = dynp->d_un.d_val;
1284 	    break;
1285 
1286 	case DT_RELAENT:
1287 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1288 	    break;
1289 
1290 	case DT_RELR:
1291 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1292 	    break;
1293 
1294 	case DT_RELRSZ:
1295 	    obj->relrsize = dynp->d_un.d_val;
1296 	    break;
1297 
1298 	case DT_RELRENT:
1299 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1300 	    break;
1301 
1302 	case DT_PLTREL:
1303 	    plttype = dynp->d_un.d_val;
1304 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1305 	    break;
1306 
1307 	case DT_SYMTAB:
1308 	    obj->symtab = (const Elf_Sym *)
1309 	      (obj->relocbase + dynp->d_un.d_ptr);
1310 	    break;
1311 
1312 	case DT_SYMENT:
1313 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1314 	    break;
1315 
1316 	case DT_STRTAB:
1317 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1318 	    break;
1319 
1320 	case DT_STRSZ:
1321 	    obj->strsize = dynp->d_un.d_val;
1322 	    break;
1323 
1324 	case DT_VERNEED:
1325 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1326 		dynp->d_un.d_val);
1327 	    break;
1328 
1329 	case DT_VERNEEDNUM:
1330 	    obj->verneednum = dynp->d_un.d_val;
1331 	    break;
1332 
1333 	case DT_VERDEF:
1334 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1335 		dynp->d_un.d_val);
1336 	    break;
1337 
1338 	case DT_VERDEFNUM:
1339 	    obj->verdefnum = dynp->d_un.d_val;
1340 	    break;
1341 
1342 	case DT_VERSYM:
1343 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1344 		dynp->d_un.d_val);
1345 	    break;
1346 
1347 	case DT_HASH:
1348 	    {
1349 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1350 		    dynp->d_un.d_ptr);
1351 		obj->nbuckets = hashtab[0];
1352 		obj->nchains = hashtab[1];
1353 		obj->buckets = hashtab + 2;
1354 		obj->chains = obj->buckets + obj->nbuckets;
1355 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1356 		  obj->buckets != NULL;
1357 	    }
1358 	    break;
1359 
1360 	case DT_GNU_HASH:
1361 	    {
1362 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1363 		    dynp->d_un.d_ptr);
1364 		obj->nbuckets_gnu = hashtab[0];
1365 		obj->symndx_gnu = hashtab[1];
1366 		nmaskwords = hashtab[2];
1367 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1368 		obj->maskwords_bm_gnu = nmaskwords - 1;
1369 		obj->shift2_gnu = hashtab[3];
1370 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1371 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1372 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1373 		  obj->symndx_gnu;
1374 		/* Number of bitmask words is required to be power of 2 */
1375 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1376 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1377 	    }
1378 	    break;
1379 
1380 	case DT_NEEDED:
1381 	    if (!obj->rtld) {
1382 		Needed_Entry *nep = NEW(Needed_Entry);
1383 		nep->name = dynp->d_un.d_val;
1384 		nep->obj = NULL;
1385 		nep->next = NULL;
1386 
1387 		*needed_tail = nep;
1388 		needed_tail = &nep->next;
1389 	    }
1390 	    break;
1391 
1392 	case DT_FILTER:
1393 	    if (!obj->rtld) {
1394 		Needed_Entry *nep = NEW(Needed_Entry);
1395 		nep->name = dynp->d_un.d_val;
1396 		nep->obj = NULL;
1397 		nep->next = NULL;
1398 
1399 		*needed_filtees_tail = nep;
1400 		needed_filtees_tail = &nep->next;
1401 
1402 		if (obj->linkmap.l_refname == NULL)
1403 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1404 	    }
1405 	    break;
1406 
1407 	case DT_AUXILIARY:
1408 	    if (!obj->rtld) {
1409 		Needed_Entry *nep = NEW(Needed_Entry);
1410 		nep->name = dynp->d_un.d_val;
1411 		nep->obj = NULL;
1412 		nep->next = NULL;
1413 
1414 		*needed_aux_filtees_tail = nep;
1415 		needed_aux_filtees_tail = &nep->next;
1416 	    }
1417 	    break;
1418 
1419 	case DT_PLTGOT:
1420 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1421 	    break;
1422 
1423 	case DT_TEXTREL:
1424 	    obj->textrel = true;
1425 	    break;
1426 
1427 	case DT_SYMBOLIC:
1428 	    obj->symbolic = true;
1429 	    break;
1430 
1431 	case DT_RPATH:
1432 	    /*
1433 	     * We have to wait until later to process this, because we
1434 	     * might not have gotten the address of the string table yet.
1435 	     */
1436 	    *dyn_rpath = dynp;
1437 	    break;
1438 
1439 	case DT_SONAME:
1440 	    *dyn_soname = dynp;
1441 	    break;
1442 
1443 	case DT_RUNPATH:
1444 	    *dyn_runpath = dynp;
1445 	    break;
1446 
1447 	case DT_INIT:
1448 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1449 	    break;
1450 
1451 	case DT_PREINIT_ARRAY:
1452 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1453 	    break;
1454 
1455 	case DT_PREINIT_ARRAYSZ:
1456 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1457 	    break;
1458 
1459 	case DT_INIT_ARRAY:
1460 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1461 	    break;
1462 
1463 	case DT_INIT_ARRAYSZ:
1464 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1465 	    break;
1466 
1467 	case DT_FINI:
1468 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1469 	    break;
1470 
1471 	case DT_FINI_ARRAY:
1472 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1473 	    break;
1474 
1475 	case DT_FINI_ARRAYSZ:
1476 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1477 	    break;
1478 
1479 	case DT_DEBUG:
1480 	    if (!early)
1481 		dbg("Filling in DT_DEBUG entry");
1482 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1483 	    break;
1484 
1485 	case DT_FLAGS:
1486 		if (dynp->d_un.d_val & DF_ORIGIN)
1487 		    obj->z_origin = true;
1488 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1489 		    obj->symbolic = true;
1490 		if (dynp->d_un.d_val & DF_TEXTREL)
1491 		    obj->textrel = true;
1492 		if (dynp->d_un.d_val & DF_BIND_NOW)
1493 		    obj->bind_now = true;
1494 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1495 		    obj->static_tls = true;
1496 	    break;
1497 
1498 	case DT_FLAGS_1:
1499 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1500 		    obj->z_noopen = true;
1501 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1502 		    obj->z_origin = true;
1503 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1504 		    obj->z_global = true;
1505 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1506 		    obj->bind_now = true;
1507 		if (dynp->d_un.d_val & DF_1_NODELETE)
1508 		    obj->z_nodelete = true;
1509 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1510 		    obj->z_loadfltr = true;
1511 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1512 		    obj->z_interpose = true;
1513 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1514 		    obj->z_nodeflib = true;
1515 		if (dynp->d_un.d_val & DF_1_PIE)
1516 		    obj->z_pie = true;
1517 	    break;
1518 
1519 	default:
1520 	    if (arch_digest_dynamic(obj, dynp))
1521 		break;
1522 
1523 	    if (!early) {
1524 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1525 		    (long)dynp->d_tag);
1526 	    }
1527 	    break;
1528 	}
1529     }
1530 
1531     obj->traced = false;
1532 
1533     if (plttype == DT_RELA) {
1534 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1535 	obj->pltrel = NULL;
1536 	obj->pltrelasize = obj->pltrelsize;
1537 	obj->pltrelsize = 0;
1538     }
1539 
1540     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1541     if (obj->valid_hash_sysv)
1542 	obj->dynsymcount = obj->nchains;
1543     else if (obj->valid_hash_gnu) {
1544 	obj->dynsymcount = 0;
1545 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1546 	    if (obj->buckets_gnu[bkt] == 0)
1547 		continue;
1548 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1549 	    do
1550 		obj->dynsymcount++;
1551 	    while ((*hashval++ & 1u) == 0);
1552 	}
1553 	obj->dynsymcount += obj->symndx_gnu;
1554     }
1555 
1556     if (obj->linkmap.l_refname != NULL)
1557 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1558 	  linkmap.l_refname;
1559 }
1560 
1561 static bool
1562 obj_resolve_origin(Obj_Entry *obj)
1563 {
1564 
1565 	if (obj->origin_path != NULL)
1566 		return (true);
1567 	obj->origin_path = xmalloc(PATH_MAX);
1568 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1569 }
1570 
1571 static bool
1572 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1573     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1574 {
1575 
1576 	if (obj->z_origin && !obj_resolve_origin(obj))
1577 		return (false);
1578 
1579 	if (dyn_runpath != NULL) {
1580 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1581 		obj->runpath = origin_subst(obj, obj->runpath);
1582 	} else if (dyn_rpath != NULL) {
1583 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1584 		obj->rpath = origin_subst(obj, obj->rpath);
1585 	}
1586 	if (dyn_soname != NULL)
1587 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1588 	return (true);
1589 }
1590 
1591 static bool
1592 digest_dynamic(Obj_Entry *obj, int early)
1593 {
1594 	const Elf_Dyn *dyn_rpath;
1595 	const Elf_Dyn *dyn_soname;
1596 	const Elf_Dyn *dyn_runpath;
1597 
1598 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1599 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1600 }
1601 
1602 /*
1603  * Process a shared object's program header.  This is used only for the
1604  * main program, when the kernel has already loaded the main program
1605  * into memory before calling the dynamic linker.  It creates and
1606  * returns an Obj_Entry structure.
1607  */
1608 static Obj_Entry *
1609 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1610 {
1611     Obj_Entry *obj;
1612     const Elf_Phdr *phlimit = phdr + phnum;
1613     const Elf_Phdr *ph;
1614     Elf_Addr note_start, note_end;
1615     int nsegs = 0;
1616 
1617     obj = obj_new();
1618     for (ph = phdr;  ph < phlimit;  ph++) {
1619 	if (ph->p_type != PT_PHDR)
1620 	    continue;
1621 
1622 	obj->phdr = phdr;
1623 	obj->phsize = ph->p_memsz;
1624 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1625 	break;
1626     }
1627 
1628     obj->stack_flags = PF_X | PF_R | PF_W;
1629 
1630     for (ph = phdr;  ph < phlimit;  ph++) {
1631 	switch (ph->p_type) {
1632 
1633 	case PT_INTERP:
1634 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1635 	    break;
1636 
1637 	case PT_LOAD:
1638 	    if (nsegs == 0) {	/* First load segment */
1639 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1640 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1641 	    } else {		/* Last load segment */
1642 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1643 		  obj->vaddrbase;
1644 	    }
1645 	    nsegs++;
1646 	    break;
1647 
1648 	case PT_DYNAMIC:
1649 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1650 	    break;
1651 
1652 	case PT_TLS:
1653 	    obj->tlsindex = 1;
1654 	    obj->tlssize = ph->p_memsz;
1655 	    obj->tlsalign = ph->p_align;
1656 	    obj->tlsinitsize = ph->p_filesz;
1657 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1658 	    obj->tlspoffset = ph->p_offset;
1659 	    break;
1660 
1661 	case PT_GNU_STACK:
1662 	    obj->stack_flags = ph->p_flags;
1663 	    break;
1664 
1665 	case PT_GNU_RELRO:
1666 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1667 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1668 	      rtld_trunc_page(ph->p_vaddr);
1669 	    break;
1670 
1671 	case PT_NOTE:
1672 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1673 	    note_end = note_start + ph->p_filesz;
1674 	    digest_notes(obj, note_start, note_end);
1675 	    break;
1676 	}
1677     }
1678     if (nsegs < 1) {
1679 	_rtld_error("%s: too few PT_LOAD segments", path);
1680 	return (NULL);
1681     }
1682 
1683     obj->entry = entry;
1684     return (obj);
1685 }
1686 
1687 void
1688 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1689 {
1690 	const Elf_Note *note;
1691 	const char *note_name;
1692 	uintptr_t p;
1693 
1694 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1695 	    note = (const Elf_Note *)((const char *)(note + 1) +
1696 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1697 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1698 		if (arch_digest_note(obj, note))
1699 			continue;
1700 
1701 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1702 		    note->n_descsz != sizeof(int32_t))
1703 			continue;
1704 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1705 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1706 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1707 			continue;
1708 		note_name = (const char *)(note + 1);
1709 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1710 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1711 			continue;
1712 		switch (note->n_type) {
1713 		case NT_FREEBSD_ABI_TAG:
1714 			/* FreeBSD osrel note */
1715 			p = (uintptr_t)(note + 1);
1716 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1717 			obj->osrel = *(const int32_t *)(p);
1718 			dbg("note osrel %d", obj->osrel);
1719 			break;
1720 		case NT_FREEBSD_FEATURE_CTL:
1721 			/* FreeBSD ABI feature control note */
1722 			p = (uintptr_t)(note + 1);
1723 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1724 			obj->fctl0 = *(const uint32_t *)(p);
1725 			dbg("note fctl0 %#x", obj->fctl0);
1726 			break;
1727 		case NT_FREEBSD_NOINIT_TAG:
1728 			/* FreeBSD 'crt does not call init' note */
1729 			obj->crt_no_init = true;
1730 			dbg("note crt_no_init");
1731 			break;
1732 		}
1733 	}
1734 }
1735 
1736 static Obj_Entry *
1737 dlcheck(void *handle)
1738 {
1739     Obj_Entry *obj;
1740 
1741     TAILQ_FOREACH(obj, &obj_list, next) {
1742 	if (obj == (Obj_Entry *) handle)
1743 	    break;
1744     }
1745 
1746     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1747 	_rtld_error("Invalid shared object handle %p", handle);
1748 	return (NULL);
1749     }
1750     return (obj);
1751 }
1752 
1753 /*
1754  * If the given object is already in the donelist, return true.  Otherwise
1755  * add the object to the list and return false.
1756  */
1757 static bool
1758 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1759 {
1760     unsigned int i;
1761 
1762     for (i = 0;  i < dlp->num_used;  i++)
1763 	if (dlp->objs[i] == obj)
1764 	    return (true);
1765     /*
1766      * Our donelist allocation should always be sufficient.  But if
1767      * our threads locking isn't working properly, more shared objects
1768      * could have been loaded since we allocated the list.  That should
1769      * never happen, but we'll handle it properly just in case it does.
1770      */
1771     if (dlp->num_used < dlp->num_alloc)
1772 	dlp->objs[dlp->num_used++] = obj;
1773     return (false);
1774 }
1775 
1776 /*
1777  * SysV hash function for symbol table lookup.  It is a slightly optimized
1778  * version of the hash specified by the System V ABI.
1779  */
1780 Elf32_Word
1781 elf_hash(const char *name)
1782 {
1783 	const unsigned char *p = (const unsigned char *)name;
1784 	Elf32_Word h = 0;
1785 
1786 	while (*p != '\0') {
1787 		h = (h << 4) + *p++;
1788 		h ^= (h >> 24) & 0xf0;
1789 	}
1790 	return (h & 0x0fffffff);
1791 }
1792 
1793 /*
1794  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1795  * unsigned in case it's implemented with a wider type.
1796  */
1797 static uint32_t
1798 gnu_hash(const char *s)
1799 {
1800 	uint32_t h;
1801 	unsigned char c;
1802 
1803 	h = 5381;
1804 	for (c = *s; c != '\0'; c = *++s)
1805 		h = h * 33 + c;
1806 	return (h & 0xffffffff);
1807 }
1808 
1809 
1810 /*
1811  * Find the library with the given name, and return its full pathname.
1812  * The returned string is dynamically allocated.  Generates an error
1813  * message and returns NULL if the library cannot be found.
1814  *
1815  * If the second argument is non-NULL, then it refers to an already-
1816  * loaded shared object, whose library search path will be searched.
1817  *
1818  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1819  * descriptor (which is close-on-exec) will be passed out via the third
1820  * argument.
1821  *
1822  * The search order is:
1823  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1824  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1825  *   LD_LIBRARY_PATH
1826  *   DT_RUNPATH in the referencing file
1827  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1828  *	 from list)
1829  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1830  *
1831  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1832  */
1833 static char *
1834 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1835 {
1836 	char *pathname, *refobj_path;
1837 	const char *name;
1838 	bool nodeflib, objgiven;
1839 
1840 	objgiven = refobj != NULL;
1841 
1842 	if (libmap_disable || !objgiven ||
1843 	    (name = lm_find(refobj->path, xname)) == NULL)
1844 		name = xname;
1845 
1846 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1847 		if (name[0] != '/' && !trust) {
1848 			_rtld_error("Absolute pathname required "
1849 			    "for shared object \"%s\"", name);
1850 			return (NULL);
1851 		}
1852 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1853 		    __DECONST(char *, name)));
1854 	}
1855 
1856 	dbg(" Searching for \"%s\"", name);
1857 	refobj_path = objgiven ? refobj->path : NULL;
1858 
1859 	/*
1860 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1861 	 * back to pre-conforming behaviour if user requested so with
1862 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1863 	 * nodeflib.
1864 	 */
1865 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1866 		pathname = search_library_path(name, ld_library_path,
1867 		    refobj_path, fdp);
1868 		if (pathname != NULL)
1869 			return (pathname);
1870 		if (refobj != NULL) {
1871 			pathname = search_library_path(name, refobj->rpath,
1872 			    refobj_path, fdp);
1873 			if (pathname != NULL)
1874 				return (pathname);
1875 		}
1876 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1877 		if (pathname != NULL)
1878 			return (pathname);
1879 		pathname = search_library_path(name, gethints(false),
1880 		    refobj_path, fdp);
1881 		if (pathname != NULL)
1882 			return (pathname);
1883 		pathname = search_library_path(name, ld_standard_library_path,
1884 		    refobj_path, fdp);
1885 		if (pathname != NULL)
1886 			return (pathname);
1887 	} else {
1888 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1889 		if (objgiven) {
1890 			pathname = search_library_path(name, refobj->rpath,
1891 			    refobj->path, fdp);
1892 			if (pathname != NULL)
1893 				return (pathname);
1894 		}
1895 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1896 			pathname = search_library_path(name, obj_main->rpath,
1897 			    refobj_path, fdp);
1898 			if (pathname != NULL)
1899 				return (pathname);
1900 		}
1901 		pathname = search_library_path(name, ld_library_path,
1902 		    refobj_path, fdp);
1903 		if (pathname != NULL)
1904 			return (pathname);
1905 		if (objgiven) {
1906 			pathname = search_library_path(name, refobj->runpath,
1907 			    refobj_path, fdp);
1908 			if (pathname != NULL)
1909 				return (pathname);
1910 		}
1911 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1912 		if (pathname != NULL)
1913 			return (pathname);
1914 		pathname = search_library_path(name, gethints(nodeflib),
1915 		    refobj_path, fdp);
1916 		if (pathname != NULL)
1917 			return (pathname);
1918 		if (objgiven && !nodeflib) {
1919 			pathname = search_library_path(name,
1920 			    ld_standard_library_path, refobj_path, fdp);
1921 			if (pathname != NULL)
1922 				return (pathname);
1923 		}
1924 	}
1925 
1926 	if (objgiven && refobj->path != NULL) {
1927 		_rtld_error("Shared object \"%s\" not found, "
1928 		    "required by \"%s\"", name, basename(refobj->path));
1929 	} else {
1930 		_rtld_error("Shared object \"%s\" not found", name);
1931 	}
1932 	return (NULL);
1933 }
1934 
1935 /*
1936  * Given a symbol number in a referencing object, find the corresponding
1937  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1938  * no definition was found.  Returns a pointer to the Obj_Entry of the
1939  * defining object via the reference parameter DEFOBJ_OUT.
1940  */
1941 const Elf_Sym *
1942 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1943     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1944     RtldLockState *lockstate)
1945 {
1946     const Elf_Sym *ref;
1947     const Elf_Sym *def;
1948     const Obj_Entry *defobj;
1949     const Ver_Entry *ve;
1950     SymLook req;
1951     const char *name;
1952     int res;
1953 
1954     /*
1955      * If we have already found this symbol, get the information from
1956      * the cache.
1957      */
1958     if (symnum >= refobj->dynsymcount)
1959 	return (NULL);	/* Bad object */
1960     if (cache != NULL && cache[symnum].sym != NULL) {
1961 	*defobj_out = cache[symnum].obj;
1962 	return (cache[symnum].sym);
1963     }
1964 
1965     ref = refobj->symtab + symnum;
1966     name = refobj->strtab + ref->st_name;
1967     def = NULL;
1968     defobj = NULL;
1969     ve = NULL;
1970 
1971     /*
1972      * We don't have to do a full scale lookup if the symbol is local.
1973      * We know it will bind to the instance in this load module; to
1974      * which we already have a pointer (ie ref). By not doing a lookup,
1975      * we not only improve performance, but it also avoids unresolvable
1976      * symbols when local symbols are not in the hash table. This has
1977      * been seen with the ia64 toolchain.
1978      */
1979     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1980 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1981 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1982 		symnum);
1983 	}
1984 	symlook_init(&req, name);
1985 	req.flags = flags;
1986 	ve = req.ventry = fetch_ventry(refobj, symnum);
1987 	req.lockstate = lockstate;
1988 	res = symlook_default(&req, refobj);
1989 	if (res == 0) {
1990 	    def = req.sym_out;
1991 	    defobj = req.defobj_out;
1992 	}
1993     } else {
1994 	def = ref;
1995 	defobj = refobj;
1996     }
1997 
1998     /*
1999      * If we found no definition and the reference is weak, treat the
2000      * symbol as having the value zero.
2001      */
2002     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2003 	def = &sym_zero;
2004 	defobj = obj_main;
2005     }
2006 
2007     if (def != NULL) {
2008 	*defobj_out = defobj;
2009 	/* Record the information in the cache to avoid subsequent lookups. */
2010 	if (cache != NULL) {
2011 	    cache[symnum].sym = def;
2012 	    cache[symnum].obj = defobj;
2013 	}
2014     } else {
2015 	if (refobj != &obj_rtld)
2016 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2017 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2018     }
2019     return (def);
2020 }
2021 
2022 /* Convert between native byte order and forced little resp. big endian. */
2023 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2024 
2025 /*
2026  * Return the search path from the ldconfig hints file, reading it if
2027  * necessary.  If nostdlib is true, then the default search paths are
2028  * not added to result.
2029  *
2030  * Returns NULL if there are problems with the hints file,
2031  * or if the search path there is empty.
2032  */
2033 static const char *
2034 gethints(bool nostdlib)
2035 {
2036 	static char *filtered_path;
2037 	static const char *hints;
2038 	static struct elfhints_hdr hdr;
2039 	struct fill_search_info_args sargs, hargs;
2040 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2041 	struct dl_serpath *SLPpath, *hintpath;
2042 	char *p;
2043 	struct stat hint_stat;
2044 	unsigned int SLPndx, hintndx, fndx, fcount;
2045 	int fd;
2046 	size_t flen;
2047 	uint32_t dl;
2048 	uint32_t magic;		/* Magic number */
2049 	uint32_t version;	/* File version (1) */
2050 	uint32_t strtab;	/* Offset of string table in file */
2051 	uint32_t dirlist;	/* Offset of directory list in string table */
2052 	uint32_t dirlistlen;	/* strlen(dirlist) */
2053 	bool is_le;		/* Does the hints file use little endian */
2054 	bool skip;
2055 
2056 	/* First call, read the hints file */
2057 	if (hints == NULL) {
2058 		/* Keep from trying again in case the hints file is bad. */
2059 		hints = "";
2060 
2061 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2062 			dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2063 			return (NULL);
2064 		}
2065 
2066 		/*
2067 		 * Check of hdr.dirlistlen value against type limit
2068 		 * intends to pacify static analyzers.  Further
2069 		 * paranoia leads to checks that dirlist is fully
2070 		 * contained in the file range.
2071 		 */
2072 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2073 			dbg("failed to read %lu bytes from hints file \"%s\"",
2074 			    (u_long)sizeof hdr, ld_elf_hints_path);
2075 cleanup1:
2076 			close(fd);
2077 			hdr.dirlistlen = 0;
2078 			return (NULL);
2079 		}
2080 		dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2081 		dbg("hints file byte-order: %s-endian",
2082 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2083 		is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2084 		magic = COND_SWAP(hdr.magic);
2085 		version = COND_SWAP(hdr.version);
2086 		strtab = COND_SWAP(hdr.strtab);
2087 		dirlist = COND_SWAP(hdr.dirlist);
2088 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2089 		if (magic != ELFHINTS_MAGIC) {
2090 			dbg("invalid magic number %#08x (expected: %#08x)",
2091 			    magic, ELFHINTS_MAGIC);
2092 			goto cleanup1;
2093 		}
2094 		if (version != 1) {
2095 			dbg("hints file version %d (expected: 1)", version);
2096 			goto cleanup1;
2097 		}
2098 		if (dirlistlen > UINT_MAX / 2) {
2099 			dbg("directory list is to long: %d > %d",
2100 			    dirlistlen, UINT_MAX / 2);
2101 			goto cleanup1;
2102 		}
2103 		if (fstat(fd, &hint_stat) == -1) {
2104 			dbg("failed to find length of hints file \"%s\"",
2105 			    ld_elf_hints_path);
2106 			goto cleanup1;
2107 		}
2108 		dl = strtab;
2109 		if (dl + dirlist < dl) {
2110 			dbg("invalid string table position %d", dl);
2111 			goto cleanup1;
2112 		}
2113 		dl += dirlist;
2114 		if (dl + dirlistlen < dl) {
2115 			dbg("invalid directory list offset %d", dirlist);
2116 			goto cleanup1;
2117 		}
2118 		dl += dirlistlen;
2119 		if (dl > hint_stat.st_size) {
2120 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2121 			    ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2122 			goto cleanup1;
2123 		}
2124 		p = xmalloc(dirlistlen + 1);
2125 		if (pread(fd, p, dirlistlen + 1,
2126 		    strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2127 		    p[dirlistlen] != '\0') {
2128 			free(p);
2129 			dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2130 			    dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2131 			goto cleanup1;
2132 		}
2133 		hints = p;
2134 		close(fd);
2135 	}
2136 
2137 	/*
2138 	 * If caller agreed to receive list which includes the default
2139 	 * paths, we are done. Otherwise, if we still did not
2140 	 * calculated filtered result, do it now.
2141 	 */
2142 	if (!nostdlib)
2143 		return (hints[0] != '\0' ? hints : NULL);
2144 	if (filtered_path != NULL)
2145 		goto filt_ret;
2146 
2147 	/*
2148 	 * Obtain the list of all configured search paths, and the
2149 	 * list of the default paths.
2150 	 *
2151 	 * First estimate the size of the results.
2152 	 */
2153 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2154 	smeta.dls_cnt = 0;
2155 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2156 	hmeta.dls_cnt = 0;
2157 
2158 	sargs.request = RTLD_DI_SERINFOSIZE;
2159 	sargs.serinfo = &smeta;
2160 	hargs.request = RTLD_DI_SERINFOSIZE;
2161 	hargs.serinfo = &hmeta;
2162 
2163 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2164 	    &sargs);
2165 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2166 
2167 	SLPinfo = xmalloc(smeta.dls_size);
2168 	hintinfo = xmalloc(hmeta.dls_size);
2169 
2170 	/*
2171 	 * Next fetch both sets of paths.
2172 	 */
2173 	sargs.request = RTLD_DI_SERINFO;
2174 	sargs.serinfo = SLPinfo;
2175 	sargs.serpath = &SLPinfo->dls_serpath[0];
2176 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2177 
2178 	hargs.request = RTLD_DI_SERINFO;
2179 	hargs.serinfo = hintinfo;
2180 	hargs.serpath = &hintinfo->dls_serpath[0];
2181 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2182 
2183 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2184 	    &sargs);
2185 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2186 
2187 	/*
2188 	 * Now calculate the difference between two sets, by excluding
2189 	 * standard paths from the full set.
2190 	 */
2191 	fndx = 0;
2192 	fcount = 0;
2193 	filtered_path = xmalloc(dirlistlen + 1);
2194 	hintpath = &hintinfo->dls_serpath[0];
2195 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2196 		skip = false;
2197 		SLPpath = &SLPinfo->dls_serpath[0];
2198 		/*
2199 		 * Check each standard path against current.
2200 		 */
2201 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2202 			/* matched, skip the path */
2203 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2204 				skip = true;
2205 				break;
2206 			}
2207 		}
2208 		if (skip)
2209 			continue;
2210 		/*
2211 		 * Not matched against any standard path, add the path
2212 		 * to result. Separate consequtive paths with ':'.
2213 		 */
2214 		if (fcount > 0) {
2215 			filtered_path[fndx] = ':';
2216 			fndx++;
2217 		}
2218 		fcount++;
2219 		flen = strlen(hintpath->dls_name);
2220 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2221 		fndx += flen;
2222 	}
2223 	filtered_path[fndx] = '\0';
2224 
2225 	free(SLPinfo);
2226 	free(hintinfo);
2227 
2228 filt_ret:
2229 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2230 }
2231 
2232 static void
2233 init_dag(Obj_Entry *root)
2234 {
2235     const Needed_Entry *needed;
2236     const Objlist_Entry *elm;
2237     DoneList donelist;
2238 
2239     if (root->dag_inited)
2240 	return;
2241     donelist_init(&donelist);
2242 
2243     /* Root object belongs to own DAG. */
2244     objlist_push_tail(&root->dldags, root);
2245     objlist_push_tail(&root->dagmembers, root);
2246     donelist_check(&donelist, root);
2247 
2248     /*
2249      * Add dependencies of root object to DAG in breadth order
2250      * by exploiting the fact that each new object get added
2251      * to the tail of the dagmembers list.
2252      */
2253     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2254 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2255 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2256 		continue;
2257 	    objlist_push_tail(&needed->obj->dldags, root);
2258 	    objlist_push_tail(&root->dagmembers, needed->obj);
2259 	}
2260     }
2261     root->dag_inited = true;
2262 }
2263 
2264 static void
2265 init_marker(Obj_Entry *marker)
2266 {
2267 
2268 	bzero(marker, sizeof(*marker));
2269 	marker->marker = true;
2270 }
2271 
2272 Obj_Entry *
2273 globallist_curr(const Obj_Entry *obj)
2274 {
2275 
2276 	for (;;) {
2277 		if (obj == NULL)
2278 			return (NULL);
2279 		if (!obj->marker)
2280 			return (__DECONST(Obj_Entry *, obj));
2281 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2282 	}
2283 }
2284 
2285 Obj_Entry *
2286 globallist_next(const Obj_Entry *obj)
2287 {
2288 
2289 	for (;;) {
2290 		obj = TAILQ_NEXT(obj, next);
2291 		if (obj == NULL)
2292 			return (NULL);
2293 		if (!obj->marker)
2294 			return (__DECONST(Obj_Entry *, obj));
2295 	}
2296 }
2297 
2298 /* Prevent the object from being unmapped while the bind lock is dropped. */
2299 static void
2300 hold_object(Obj_Entry *obj)
2301 {
2302 
2303 	obj->holdcount++;
2304 }
2305 
2306 static void
2307 unhold_object(Obj_Entry *obj)
2308 {
2309 
2310 	assert(obj->holdcount > 0);
2311 	if (--obj->holdcount == 0 && obj->unholdfree)
2312 		release_object(obj);
2313 }
2314 
2315 static void
2316 process_z(Obj_Entry *root)
2317 {
2318 	const Objlist_Entry *elm;
2319 	Obj_Entry *obj;
2320 
2321 	/*
2322 	 * Walk over object DAG and process every dependent object
2323 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2324 	 * to grow their own DAG.
2325 	 *
2326 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2327 	 * symlook_global() to work.
2328 	 *
2329 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2330 	 */
2331 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2332 		obj = elm->obj;
2333 		if (obj == NULL)
2334 			continue;
2335 		if (obj->z_nodelete && !obj->ref_nodel) {
2336 			dbg("obj %s -z nodelete", obj->path);
2337 			init_dag(obj);
2338 			ref_dag(obj);
2339 			obj->ref_nodel = true;
2340 		}
2341 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2342 			dbg("obj %s -z global", obj->path);
2343 			objlist_push_tail(&list_global, obj);
2344 			init_dag(obj);
2345 		}
2346 	}
2347 }
2348 
2349 static void
2350 parse_rtld_phdr(Obj_Entry *obj)
2351 {
2352 	const Elf_Phdr *ph;
2353 	Elf_Addr note_start, note_end;
2354 
2355 	obj->stack_flags = PF_X | PF_R | PF_W;
2356 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2357 	    obj->phsize; ph++) {
2358 		switch (ph->p_type) {
2359 		case PT_GNU_STACK:
2360 			obj->stack_flags = ph->p_flags;
2361 			break;
2362 		case PT_GNU_RELRO:
2363 			obj->relro_page = obj->relocbase +
2364 			    rtld_trunc_page(ph->p_vaddr);
2365 			obj->relro_size = rtld_round_page(ph->p_memsz);
2366 			break;
2367 		case PT_NOTE:
2368 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2369 			note_end = note_start + ph->p_filesz;
2370 			digest_notes(obj, note_start, note_end);
2371 			break;
2372 		}
2373 	}
2374 }
2375 
2376 /*
2377  * Initialize the dynamic linker.  The argument is the address at which
2378  * the dynamic linker has been mapped into memory.  The primary task of
2379  * this function is to relocate the dynamic linker.
2380  */
2381 static void
2382 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2383 {
2384     Obj_Entry objtmp;	/* Temporary rtld object */
2385     const Elf_Ehdr *ehdr;
2386     const Elf_Dyn *dyn_rpath;
2387     const Elf_Dyn *dyn_soname;
2388     const Elf_Dyn *dyn_runpath;
2389 
2390 #ifdef RTLD_INIT_PAGESIZES_EARLY
2391     /* The page size is required by the dynamic memory allocator. */
2392     init_pagesizes(aux_info);
2393 #endif
2394 
2395     /*
2396      * Conjure up an Obj_Entry structure for the dynamic linker.
2397      *
2398      * The "path" member can't be initialized yet because string constants
2399      * cannot yet be accessed. Below we will set it correctly.
2400      */
2401     memset(&objtmp, 0, sizeof(objtmp));
2402     objtmp.path = NULL;
2403     objtmp.rtld = true;
2404     objtmp.mapbase = mapbase;
2405 #ifdef PIC
2406     objtmp.relocbase = mapbase;
2407 #endif
2408 
2409     objtmp.dynamic = rtld_dynamic(&objtmp);
2410     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2411     assert(objtmp.needed == NULL);
2412     assert(!objtmp.textrel);
2413     /*
2414      * Temporarily put the dynamic linker entry into the object list, so
2415      * that symbols can be found.
2416      */
2417     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2418 
2419     ehdr = (Elf_Ehdr *)mapbase;
2420     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2421     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2422 
2423     /* Initialize the object list. */
2424     TAILQ_INIT(&obj_list);
2425 
2426     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2427     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2428 
2429 #ifndef RTLD_INIT_PAGESIZES_EARLY
2430     /* The page size is required by the dynamic memory allocator. */
2431     init_pagesizes(aux_info);
2432 #endif
2433 
2434     if (aux_info[AT_OSRELDATE] != NULL)
2435 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2436 
2437     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2438 
2439     /* Replace the path with a dynamically allocated copy. */
2440     obj_rtld.path = xstrdup(ld_path_rtld);
2441 
2442     parse_rtld_phdr(&obj_rtld);
2443     if (obj_enforce_relro(&obj_rtld) == -1)
2444 	rtld_die();
2445 
2446     r_debug.r_version = R_DEBUG_VERSION;
2447     r_debug.r_brk = r_debug_state;
2448     r_debug.r_state = RT_CONSISTENT;
2449     r_debug.r_ldbase = obj_rtld.relocbase;
2450 }
2451 
2452 /*
2453  * Retrieve the array of supported page sizes.  The kernel provides the page
2454  * sizes in increasing order.
2455  */
2456 static void
2457 init_pagesizes(Elf_Auxinfo **aux_info)
2458 {
2459 	static size_t psa[MAXPAGESIZES];
2460 	int mib[2];
2461 	size_t len, size;
2462 
2463 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2464 	    NULL) {
2465 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2466 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2467 	} else {
2468 		len = 2;
2469 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2470 			size = sizeof(psa);
2471 		else {
2472 			/* As a fallback, retrieve the base page size. */
2473 			size = sizeof(psa[0]);
2474 			if (aux_info[AT_PAGESZ] != NULL) {
2475 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2476 				goto psa_filled;
2477 			} else {
2478 				mib[0] = CTL_HW;
2479 				mib[1] = HW_PAGESIZE;
2480 				len = 2;
2481 			}
2482 		}
2483 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2484 			_rtld_error("sysctl for hw.pagesize(s) failed");
2485 			rtld_die();
2486 		}
2487 psa_filled:
2488 		pagesizes = psa;
2489 	}
2490 	npagesizes = size / sizeof(pagesizes[0]);
2491 	/* Discard any invalid entries at the end of the array. */
2492 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2493 		npagesizes--;
2494 
2495 	page_size = pagesizes[0];
2496 }
2497 
2498 /*
2499  * Add the init functions from a needed object list (and its recursive
2500  * needed objects) to "list".  This is not used directly; it is a helper
2501  * function for initlist_add_objects().  The write lock must be held
2502  * when this function is called.
2503  */
2504 static void
2505 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2506 {
2507     /* Recursively process the successor needed objects. */
2508     if (needed->next != NULL)
2509 	initlist_add_neededs(needed->next, list);
2510 
2511     /* Process the current needed object. */
2512     if (needed->obj != NULL)
2513 	initlist_add_objects(needed->obj, needed->obj, list);
2514 }
2515 
2516 /*
2517  * Scan all of the DAGs rooted in the range of objects from "obj" to
2518  * "tail" and add their init functions to "list".  This recurses over
2519  * the DAGs and ensure the proper init ordering such that each object's
2520  * needed libraries are initialized before the object itself.  At the
2521  * same time, this function adds the objects to the global finalization
2522  * list "list_fini" in the opposite order.  The write lock must be
2523  * held when this function is called.
2524  */
2525 static void
2526 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2527 {
2528     Obj_Entry *nobj;
2529 
2530     if (obj->init_scanned || obj->init_done)
2531 	return;
2532     obj->init_scanned = true;
2533 
2534     /* Recursively process the successor objects. */
2535     nobj = globallist_next(obj);
2536     if (nobj != NULL && obj != tail)
2537 	initlist_add_objects(nobj, tail, list);
2538 
2539     /* Recursively process the needed objects. */
2540     if (obj->needed != NULL)
2541 	initlist_add_neededs(obj->needed, list);
2542     if (obj->needed_filtees != NULL)
2543 	initlist_add_neededs(obj->needed_filtees, list);
2544     if (obj->needed_aux_filtees != NULL)
2545 	initlist_add_neededs(obj->needed_aux_filtees, list);
2546 
2547     /* Add the object to the init list. */
2548     objlist_push_tail(list, obj);
2549 
2550     /* Add the object to the global fini list in the reverse order. */
2551     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2552       && !obj->on_fini_list) {
2553 	objlist_push_head(&list_fini, obj);
2554 	obj->on_fini_list = true;
2555     }
2556 }
2557 
2558 static void
2559 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2560 {
2561     Needed_Entry *needed, *needed1;
2562 
2563     for (needed = n; needed != NULL; needed = needed->next) {
2564 	if (needed->obj != NULL) {
2565 	    dlclose_locked(needed->obj, lockstate);
2566 	    needed->obj = NULL;
2567 	}
2568     }
2569     for (needed = n; needed != NULL; needed = needed1) {
2570 	needed1 = needed->next;
2571 	free(needed);
2572     }
2573 }
2574 
2575 static void
2576 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2577 {
2578 
2579 	free_needed_filtees(obj->needed_filtees, lockstate);
2580 	obj->needed_filtees = NULL;
2581 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2582 	obj->needed_aux_filtees = NULL;
2583 	obj->filtees_loaded = false;
2584 }
2585 
2586 static void
2587 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2588     RtldLockState *lockstate)
2589 {
2590 
2591     for (; needed != NULL; needed = needed->next) {
2592 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2593 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2594 	  RTLD_LOCAL, lockstate);
2595     }
2596 }
2597 
2598 static void
2599 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2600 {
2601 	if (obj->filtees_loaded || obj->filtees_loading)
2602 		return;
2603 	lock_restart_for_upgrade(lockstate);
2604 	obj->filtees_loading = true;
2605 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2606 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2607 	obj->filtees_loaded = true;
2608 	obj->filtees_loading = false;
2609 }
2610 
2611 static int
2612 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2613 {
2614     Obj_Entry *obj1;
2615 
2616     for (; needed != NULL; needed = needed->next) {
2617 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2618 	  flags & ~RTLD_LO_NOLOAD);
2619 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2620 	    return (-1);
2621     }
2622     return (0);
2623 }
2624 
2625 /*
2626  * Given a shared object, traverse its list of needed objects, and load
2627  * each of them.  Returns 0 on success.  Generates an error message and
2628  * returns -1 on failure.
2629  */
2630 static int
2631 load_needed_objects(Obj_Entry *first, int flags)
2632 {
2633     Obj_Entry *obj;
2634 
2635     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2636 	if (obj->marker)
2637 	    continue;
2638 	if (process_needed(obj, obj->needed, flags) == -1)
2639 	    return (-1);
2640     }
2641     return (0);
2642 }
2643 
2644 static int
2645 load_preload_objects(const char *penv, bool isfd)
2646 {
2647 	Obj_Entry *obj;
2648 	const char *name;
2649 	size_t len;
2650 	char savech, *p, *psave;
2651 	int fd;
2652 	static const char delim[] = " \t:;";
2653 
2654 	if (penv == NULL)
2655 		return (0);
2656 
2657 	p = psave = xstrdup(penv);
2658 	p += strspn(p, delim);
2659 	while (*p != '\0') {
2660 		len = strcspn(p, delim);
2661 
2662 		savech = p[len];
2663 		p[len] = '\0';
2664 		if (isfd) {
2665 			name = NULL;
2666 			fd = parse_integer(p);
2667 			if (fd == -1) {
2668 				free(psave);
2669 				return (-1);
2670 			}
2671 		} else {
2672 			name = p;
2673 			fd = -1;
2674 		}
2675 
2676 		obj = load_object(name, fd, NULL, 0);
2677 		if (obj == NULL) {
2678 			free(psave);
2679 			return (-1);	/* XXX - cleanup */
2680 		}
2681 		obj->z_interpose = true;
2682 		p[len] = savech;
2683 		p += len;
2684 		p += strspn(p, delim);
2685 	}
2686 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2687 
2688 	free(psave);
2689 	return (0);
2690 }
2691 
2692 static const char *
2693 printable_path(const char *path)
2694 {
2695 
2696 	return (path == NULL ? "<unknown>" : path);
2697 }
2698 
2699 /*
2700  * Load a shared object into memory, if it is not already loaded.  The
2701  * object may be specified by name or by user-supplied file descriptor
2702  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2703  * duplicate is.
2704  *
2705  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2706  * on failure.
2707  */
2708 static Obj_Entry *
2709 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2710 {
2711     Obj_Entry *obj;
2712     int fd;
2713     struct stat sb;
2714     char *path;
2715 
2716     fd = -1;
2717     if (name != NULL) {
2718 	TAILQ_FOREACH(obj, &obj_list, next) {
2719 	    if (obj->marker || obj->doomed)
2720 		continue;
2721 	    if (object_match_name(obj, name))
2722 		return (obj);
2723 	}
2724 
2725 	path = find_library(name, refobj, &fd);
2726 	if (path == NULL)
2727 	    return (NULL);
2728     } else
2729 	path = NULL;
2730 
2731     if (fd >= 0) {
2732 	/*
2733 	 * search_library_pathfds() opens a fresh file descriptor for the
2734 	 * library, so there is no need to dup().
2735 	 */
2736     } else if (fd_u == -1) {
2737 	/*
2738 	 * If we didn't find a match by pathname, or the name is not
2739 	 * supplied, open the file and check again by device and inode.
2740 	 * This avoids false mismatches caused by multiple links or ".."
2741 	 * in pathnames.
2742 	 *
2743 	 * To avoid a race, we open the file and use fstat() rather than
2744 	 * using stat().
2745 	 */
2746 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2747 	    _rtld_error("Cannot open \"%s\"", path);
2748 	    free(path);
2749 	    return (NULL);
2750 	}
2751     } else {
2752 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2753 	if (fd == -1) {
2754 	    _rtld_error("Cannot dup fd");
2755 	    free(path);
2756 	    return (NULL);
2757 	}
2758     }
2759     if (fstat(fd, &sb) == -1) {
2760 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2761 	close(fd);
2762 	free(path);
2763 	return (NULL);
2764     }
2765     TAILQ_FOREACH(obj, &obj_list, next) {
2766 	if (obj->marker || obj->doomed)
2767 	    continue;
2768 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2769 	    break;
2770     }
2771     if (obj != NULL) {
2772 	if (name != NULL)
2773 	    object_add_name(obj, name);
2774 	free(path);
2775 	close(fd);
2776 	return (obj);
2777     }
2778     if (flags & RTLD_LO_NOLOAD) {
2779 	free(path);
2780 	close(fd);
2781 	return (NULL);
2782     }
2783 
2784     /* First use of this object, so we must map it in */
2785     obj = do_load_object(fd, name, path, &sb, flags);
2786     if (obj == NULL)
2787 	free(path);
2788     close(fd);
2789 
2790     return (obj);
2791 }
2792 
2793 static Obj_Entry *
2794 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2795   int flags)
2796 {
2797     Obj_Entry *obj;
2798     struct statfs fs;
2799 
2800     /*
2801      * First, make sure that environment variables haven't been
2802      * used to circumvent the noexec flag on a filesystem.
2803      * We ignore fstatfs(2) failures, since fd might reference
2804      * not a file, e.g. shmfd.
2805      */
2806     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2807 	(fs.f_flags & MNT_NOEXEC) != 0) {
2808 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2809 	    return (NULL);
2810     }
2811 
2812     dbg("loading \"%s\"", printable_path(path));
2813     obj = map_object(fd, printable_path(path), sbp);
2814     if (obj == NULL)
2815         return (NULL);
2816 
2817     /*
2818      * If DT_SONAME is present in the object, digest_dynamic2 already
2819      * added it to the object names.
2820      */
2821     if (name != NULL)
2822 	object_add_name(obj, name);
2823     obj->path = path;
2824     if (!digest_dynamic(obj, 0))
2825 	goto errp;
2826     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2827 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2828     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2829 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2830 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2831 	goto errp;
2832     }
2833     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2834       RTLD_LO_DLOPEN) {
2835 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2836 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2837 	goto errp;
2838     }
2839 
2840     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2841     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2842     obj_count++;
2843     obj_loads++;
2844     linkmap_add(obj);	/* for GDB & dlinfo() */
2845     max_stack_flags |= obj->stack_flags;
2846 
2847     dbg("  %p .. %p: %s", obj->mapbase,
2848          obj->mapbase + obj->mapsize - 1, obj->path);
2849     if (obj->textrel)
2850 	dbg("  WARNING: %s has impure text", obj->path);
2851     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2852 	obj->path);
2853 
2854     return (obj);
2855 
2856 errp:
2857     munmap(obj->mapbase, obj->mapsize);
2858     obj_free(obj);
2859     return (NULL);
2860 }
2861 
2862 static int
2863 load_kpreload(const void *addr)
2864 {
2865 	Obj_Entry *obj;
2866 	const Elf_Ehdr *ehdr;
2867 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2868 	static const char kname[] = "[vdso]";
2869 
2870 	ehdr = addr;
2871 	if (!check_elf_headers(ehdr, "kpreload"))
2872 		return (-1);
2873 	obj = obj_new();
2874 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2875 	obj->phdr = phdr;
2876 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2877 	phlimit = phdr + ehdr->e_phnum;
2878 	seg0 = segn = NULL;
2879 
2880 	for (; phdr < phlimit; phdr++) {
2881 		switch (phdr->p_type) {
2882 		case PT_DYNAMIC:
2883 			phdyn = phdr;
2884 			break;
2885 		case PT_GNU_STACK:
2886 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2887 			obj->stack_flags = phdr->p_flags;
2888 			break;
2889 		case PT_LOAD:
2890 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2891 				seg0 = phdr;
2892 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2893 			    phdr->p_vaddr + phdr->p_memsz)
2894 				segn = phdr;
2895 			break;
2896 		}
2897 	}
2898 
2899 	obj->mapbase = __DECONST(caddr_t, addr);
2900 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2901 	obj->vaddrbase = 0;
2902 	obj->relocbase = obj->mapbase;
2903 
2904 	object_add_name(obj, kname);
2905 	obj->path = xstrdup(kname);
2906 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2907 
2908 	if (!digest_dynamic(obj, 0)) {
2909 		obj_free(obj);
2910 		return (-1);
2911 	}
2912 
2913 	/*
2914 	 * We assume that kernel-preloaded object does not need
2915 	 * relocation.  It is currently written into read-only page,
2916 	 * handling relocations would mean we need to allocate at
2917 	 * least one additional page per AS.
2918 	 */
2919 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2920 	    obj->path, obj->mapbase, obj->phdr, seg0,
2921 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2922 
2923 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2924 	obj_count++;
2925 	obj_loads++;
2926 	linkmap_add(obj);	/* for GDB & dlinfo() */
2927 	max_stack_flags |= obj->stack_flags;
2928 
2929 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2930 	return (0);
2931 }
2932 
2933 Obj_Entry *
2934 obj_from_addr(const void *addr)
2935 {
2936     Obj_Entry *obj;
2937 
2938     TAILQ_FOREACH(obj, &obj_list, next) {
2939 	if (obj->marker)
2940 	    continue;
2941 	if (addr < (void *) obj->mapbase)
2942 	    continue;
2943 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2944 	    return obj;
2945     }
2946     return (NULL);
2947 }
2948 
2949 static void
2950 preinit_main(void)
2951 {
2952     Elf_Addr *preinit_addr;
2953     int index;
2954 
2955     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2956     if (preinit_addr == NULL)
2957 	return;
2958 
2959     for (index = 0; index < obj_main->preinit_array_num; index++) {
2960 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2961 	    dbg("calling preinit function for %s at %p", obj_main->path,
2962 	      (void *)preinit_addr[index]);
2963 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2964 	      0, 0, obj_main->path);
2965 	    call_init_pointer(obj_main, preinit_addr[index]);
2966 	}
2967     }
2968 }
2969 
2970 /*
2971  * Call the finalization functions for each of the objects in "list"
2972  * belonging to the DAG of "root" and referenced once. If NULL "root"
2973  * is specified, every finalization function will be called regardless
2974  * of the reference count and the list elements won't be freed. All of
2975  * the objects are expected to have non-NULL fini functions.
2976  */
2977 static void
2978 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2979 {
2980     Objlist_Entry *elm;
2981     struct dlerror_save *saved_msg;
2982     Elf_Addr *fini_addr;
2983     int index;
2984 
2985     assert(root == NULL || root->refcount == 1);
2986 
2987     if (root != NULL)
2988 	root->doomed = true;
2989 
2990     /*
2991      * Preserve the current error message since a fini function might
2992      * call into the dynamic linker and overwrite it.
2993      */
2994     saved_msg = errmsg_save();
2995     do {
2996 	STAILQ_FOREACH(elm, list, link) {
2997 	    if (root != NULL && (elm->obj->refcount != 1 ||
2998 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2999 		continue;
3000 	    /* Remove object from fini list to prevent recursive invocation. */
3001 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3002 	    /* Ensure that new references cannot be acquired. */
3003 	    elm->obj->doomed = true;
3004 
3005 	    hold_object(elm->obj);
3006 	    lock_release(rtld_bind_lock, lockstate);
3007 	    /*
3008 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3009 	     * When this happens, DT_FINI_ARRAY is processed first.
3010 	     */
3011 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3012 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3013 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3014 		  index--) {
3015 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3016 			dbg("calling fini function for %s at %p",
3017 			    elm->obj->path, (void *)fini_addr[index]);
3018 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3019 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3020 			call_initfini_pointer(elm->obj, fini_addr[index]);
3021 		    }
3022 		}
3023 	    }
3024 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3025 		dbg("calling fini function for %s at %p", elm->obj->path,
3026 		    (void *)elm->obj->fini);
3027 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3028 		    0, 0, elm->obj->path);
3029 		call_initfini_pointer(elm->obj, elm->obj->fini);
3030 	    }
3031 	    wlock_acquire(rtld_bind_lock, lockstate);
3032 	    unhold_object(elm->obj);
3033 	    /* No need to free anything if process is going down. */
3034 	    if (root != NULL)
3035 	    	free(elm);
3036 	    /*
3037 	     * We must restart the list traversal after every fini call
3038 	     * because a dlclose() call from the fini function or from
3039 	     * another thread might have modified the reference counts.
3040 	     */
3041 	    break;
3042 	}
3043     } while (elm != NULL);
3044     errmsg_restore(saved_msg);
3045 }
3046 
3047 /*
3048  * Call the initialization functions for each of the objects in
3049  * "list".  All of the objects are expected to have non-NULL init
3050  * functions.
3051  */
3052 static void
3053 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3054 {
3055     Objlist_Entry *elm;
3056     Obj_Entry *obj;
3057     struct dlerror_save *saved_msg;
3058     Elf_Addr *init_addr;
3059     void (*reg)(void (*)(void));
3060     int index;
3061 
3062     /*
3063      * Clean init_scanned flag so that objects can be rechecked and
3064      * possibly initialized earlier if any of vectors called below
3065      * cause the change by using dlopen.
3066      */
3067     TAILQ_FOREACH(obj, &obj_list, next) {
3068 	if (obj->marker)
3069 	    continue;
3070 	obj->init_scanned = false;
3071     }
3072 
3073     /*
3074      * Preserve the current error message since an init function might
3075      * call into the dynamic linker and overwrite it.
3076      */
3077     saved_msg = errmsg_save();
3078     STAILQ_FOREACH(elm, list, link) {
3079 	if (elm->obj->init_done) /* Initialized early. */
3080 	    continue;
3081 	/*
3082 	 * Race: other thread might try to use this object before current
3083 	 * one completes the initialization. Not much can be done here
3084 	 * without better locking.
3085 	 */
3086 	elm->obj->init_done = true;
3087 	hold_object(elm->obj);
3088 	reg = NULL;
3089 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3090 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3091 		    "__libc_atexit", lockstate);
3092 	}
3093 	lock_release(rtld_bind_lock, lockstate);
3094 	if (reg != NULL) {
3095 		reg(rtld_exit);
3096 		rtld_exit_ptr = rtld_nop_exit;
3097 	}
3098 
3099         /*
3100          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3101          * When this happens, DT_INIT is processed first.
3102          */
3103 	if (elm->obj->init != (Elf_Addr)NULL) {
3104 	    dbg("calling init function for %s at %p", elm->obj->path,
3105 	        (void *)elm->obj->init);
3106 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3107 	        0, 0, elm->obj->path);
3108 	    call_init_pointer(elm->obj, elm->obj->init);
3109 	}
3110 	init_addr = (Elf_Addr *)elm->obj->init_array;
3111 	if (init_addr != NULL) {
3112 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3113 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3114 		    dbg("calling init function for %s at %p", elm->obj->path,
3115 			(void *)init_addr[index]);
3116 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3117 			(void *)init_addr[index], 0, 0, elm->obj->path);
3118 		    call_init_pointer(elm->obj, init_addr[index]);
3119 		}
3120 	    }
3121 	}
3122 	wlock_acquire(rtld_bind_lock, lockstate);
3123 	unhold_object(elm->obj);
3124     }
3125     errmsg_restore(saved_msg);
3126 }
3127 
3128 static void
3129 objlist_clear(Objlist *list)
3130 {
3131     Objlist_Entry *elm;
3132 
3133     while (!STAILQ_EMPTY(list)) {
3134 	elm = STAILQ_FIRST(list);
3135 	STAILQ_REMOVE_HEAD(list, link);
3136 	free(elm);
3137     }
3138 }
3139 
3140 static Objlist_Entry *
3141 objlist_find(Objlist *list, const Obj_Entry *obj)
3142 {
3143     Objlist_Entry *elm;
3144 
3145     STAILQ_FOREACH(elm, list, link)
3146 	if (elm->obj == obj)
3147 	    return elm;
3148     return (NULL);
3149 }
3150 
3151 static void
3152 objlist_init(Objlist *list)
3153 {
3154     STAILQ_INIT(list);
3155 }
3156 
3157 static void
3158 objlist_push_head(Objlist *list, Obj_Entry *obj)
3159 {
3160     Objlist_Entry *elm;
3161 
3162     elm = NEW(Objlist_Entry);
3163     elm->obj = obj;
3164     STAILQ_INSERT_HEAD(list, elm, link);
3165 }
3166 
3167 static void
3168 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3169 {
3170     Objlist_Entry *elm;
3171 
3172     elm = NEW(Objlist_Entry);
3173     elm->obj = obj;
3174     STAILQ_INSERT_TAIL(list, elm, link);
3175 }
3176 
3177 static void
3178 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3179 {
3180 	Objlist_Entry *elm, *listelm;
3181 
3182 	STAILQ_FOREACH(listelm, list, link) {
3183 		if (listelm->obj == listobj)
3184 			break;
3185 	}
3186 	elm = NEW(Objlist_Entry);
3187 	elm->obj = obj;
3188 	if (listelm != NULL)
3189 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3190 	else
3191 		STAILQ_INSERT_TAIL(list, elm, link);
3192 }
3193 
3194 static void
3195 objlist_remove(Objlist *list, Obj_Entry *obj)
3196 {
3197     Objlist_Entry *elm;
3198 
3199     if ((elm = objlist_find(list, obj)) != NULL) {
3200 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3201 	free(elm);
3202     }
3203 }
3204 
3205 /*
3206  * Relocate dag rooted in the specified object.
3207  * Returns 0 on success, or -1 on failure.
3208  */
3209 
3210 static int
3211 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3212     int flags, RtldLockState *lockstate)
3213 {
3214 	Objlist_Entry *elm;
3215 	int error;
3216 
3217 	error = 0;
3218 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3219 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3220 		    lockstate);
3221 		if (error == -1)
3222 			break;
3223 	}
3224 	return (error);
3225 }
3226 
3227 /*
3228  * Prepare for, or clean after, relocating an object marked with
3229  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3230  * segments are remapped read-write.  After relocations are done, the
3231  * segment's permissions are returned back to the modes specified in
3232  * the phdrs.  If any relocation happened, or always for wired
3233  * program, COW is triggered.
3234  */
3235 static int
3236 reloc_textrel_prot(Obj_Entry *obj, bool before)
3237 {
3238 	const Elf_Phdr *ph;
3239 	void *base;
3240 	size_t l, sz;
3241 	int prot;
3242 
3243 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3244 	    l--, ph++) {
3245 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3246 			continue;
3247 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3248 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3249 		    rtld_trunc_page(ph->p_vaddr);
3250 		prot = before ? (PROT_READ | PROT_WRITE) :
3251 		    convert_prot(ph->p_flags);
3252 		if (mprotect(base, sz, prot) == -1) {
3253 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3254 			    obj->path, before ? "en" : "dis",
3255 			    rtld_strerror(errno));
3256 			return (-1);
3257 		}
3258 	}
3259 	return (0);
3260 }
3261 
3262 /* Process RELR relative relocations. */
3263 static void
3264 reloc_relr(Obj_Entry *obj)
3265 {
3266 	const Elf_Relr *relr, *relrlim;
3267 	Elf_Addr *where;
3268 
3269 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3270 	for (relr = obj->relr; relr < relrlim; relr++) {
3271 	    Elf_Relr entry = *relr;
3272 
3273 	    if ((entry & 1) == 0) {
3274 		where = (Elf_Addr *)(obj->relocbase + entry);
3275 		*where++ += (Elf_Addr)obj->relocbase;
3276 	    } else {
3277 		for (long i = 0; (entry >>= 1) != 0; i++)
3278 		    if ((entry & 1) != 0)
3279 			where[i] += (Elf_Addr)obj->relocbase;
3280 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3281 	    }
3282 	}
3283 }
3284 
3285 /*
3286  * Relocate single object.
3287  * Returns 0 on success, or -1 on failure.
3288  */
3289 static int
3290 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3291     int flags, RtldLockState *lockstate)
3292 {
3293 
3294 	if (obj->relocated)
3295 		return (0);
3296 	obj->relocated = true;
3297 	if (obj != rtldobj)
3298 		dbg("relocating \"%s\"", obj->path);
3299 
3300 	if (obj->symtab == NULL || obj->strtab == NULL ||
3301 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3302 		dbg("object %s has no run-time symbol table", obj->path);
3303 
3304 	/* There are relocations to the write-protected text segment. */
3305 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3306 		return (-1);
3307 
3308 	/* Process the non-PLT non-IFUNC relocations. */
3309 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3310 		return (-1);
3311 	reloc_relr(obj);
3312 
3313 	/* Re-protected the text segment. */
3314 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3315 		return (-1);
3316 
3317 	/* Set the special PLT or GOT entries. */
3318 	init_pltgot(obj);
3319 
3320 	/* Process the PLT relocations. */
3321 	if (reloc_plt(obj, flags, lockstate) == -1)
3322 		return (-1);
3323 	/* Relocate the jump slots if we are doing immediate binding. */
3324 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3325 	    lockstate) == -1)
3326 		return (-1);
3327 
3328 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3329 		return (-1);
3330 
3331 	/*
3332 	 * Set up the magic number and version in the Obj_Entry.  These
3333 	 * were checked in the crt1.o from the original ElfKit, so we
3334 	 * set them for backward compatibility.
3335 	 */
3336 	obj->magic = RTLD_MAGIC;
3337 	obj->version = RTLD_VERSION;
3338 
3339 	return (0);
3340 }
3341 
3342 /*
3343  * Relocate newly-loaded shared objects.  The argument is a pointer to
3344  * the Obj_Entry for the first such object.  All objects from the first
3345  * to the end of the list of objects are relocated.  Returns 0 on success,
3346  * or -1 on failure.
3347  */
3348 static int
3349 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3350     int flags, RtldLockState *lockstate)
3351 {
3352 	Obj_Entry *obj;
3353 	int error;
3354 
3355 	for (error = 0, obj = first;  obj != NULL;
3356 	    obj = TAILQ_NEXT(obj, next)) {
3357 		if (obj->marker)
3358 			continue;
3359 		error = relocate_object(obj, bind_now, rtldobj, flags,
3360 		    lockstate);
3361 		if (error == -1)
3362 			break;
3363 	}
3364 	return (error);
3365 }
3366 
3367 /*
3368  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3369  * referencing STT_GNU_IFUNC symbols is postponed till the other
3370  * relocations are done.  The indirect functions specified as
3371  * ifunc are allowed to call other symbols, so we need to have
3372  * objects relocated before asking for resolution from indirects.
3373  *
3374  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3375  * instead of the usual lazy handling of PLT slots.  It is
3376  * consistent with how GNU does it.
3377  */
3378 static int
3379 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3380     RtldLockState *lockstate)
3381 {
3382 
3383 	if (obj->ifuncs_resolved)
3384 		return (0);
3385 	obj->ifuncs_resolved = true;
3386 	if (!obj->irelative && !obj->irelative_nonplt &&
3387 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3388 	    !obj->non_plt_gnu_ifunc)
3389 		return (0);
3390 	if (obj_disable_relro(obj) == -1 ||
3391 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3392 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3393 	    lockstate) == -1) ||
3394 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3395 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3396 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3397 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3398 	    obj_enforce_relro(obj) == -1)
3399 		return (-1);
3400 	return (0);
3401 }
3402 
3403 static int
3404 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3405     RtldLockState *lockstate)
3406 {
3407 	Objlist_Entry *elm;
3408 	Obj_Entry *obj;
3409 
3410 	STAILQ_FOREACH(elm, list, link) {
3411 		obj = elm->obj;
3412 		if (obj->marker)
3413 			continue;
3414 		if (resolve_object_ifunc(obj, bind_now, flags,
3415 		    lockstate) == -1)
3416 			return (-1);
3417 	}
3418 	return (0);
3419 }
3420 
3421 /*
3422  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3423  * before the process exits.
3424  */
3425 static void
3426 rtld_exit(void)
3427 {
3428     RtldLockState lockstate;
3429 
3430     wlock_acquire(rtld_bind_lock, &lockstate);
3431     dbg("rtld_exit()");
3432     objlist_call_fini(&list_fini, NULL, &lockstate);
3433     /* No need to remove the items from the list, since we are exiting. */
3434     if (!libmap_disable)
3435         lm_fini();
3436     lock_release(rtld_bind_lock, &lockstate);
3437 }
3438 
3439 static void
3440 rtld_nop_exit(void)
3441 {
3442 }
3443 
3444 /*
3445  * Iterate over a search path, translate each element, and invoke the
3446  * callback on the result.
3447  */
3448 static void *
3449 path_enumerate(const char *path, path_enum_proc callback,
3450     const char *refobj_path, void *arg)
3451 {
3452     const char *trans;
3453     if (path == NULL)
3454 	return (NULL);
3455 
3456     path += strspn(path, ":;");
3457     while (*path != '\0') {
3458 	size_t len;
3459 	char  *res;
3460 
3461 	len = strcspn(path, ":;");
3462 	trans = lm_findn(refobj_path, path, len);
3463 	if (trans)
3464 	    res = callback(trans, strlen(trans), arg);
3465 	else
3466 	    res = callback(path, len, arg);
3467 
3468 	if (res != NULL)
3469 	    return (res);
3470 
3471 	path += len;
3472 	path += strspn(path, ":;");
3473     }
3474 
3475     return (NULL);
3476 }
3477 
3478 struct try_library_args {
3479     const char	*name;
3480     size_t	 namelen;
3481     char	*buffer;
3482     size_t	 buflen;
3483     int		 fd;
3484 };
3485 
3486 static void *
3487 try_library_path(const char *dir, size_t dirlen, void *param)
3488 {
3489     struct try_library_args *arg;
3490     int fd;
3491 
3492     arg = param;
3493     if (*dir == '/' || trust) {
3494 	char *pathname;
3495 
3496 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3497 		return (NULL);
3498 
3499 	pathname = arg->buffer;
3500 	strncpy(pathname, dir, dirlen);
3501 	pathname[dirlen] = '/';
3502 	strcpy(pathname + dirlen + 1, arg->name);
3503 
3504 	dbg("  Trying \"%s\"", pathname);
3505 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3506 	if (fd >= 0) {
3507 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3508 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3509 	    strcpy(pathname, arg->buffer);
3510 	    arg->fd = fd;
3511 	    return (pathname);
3512 	} else {
3513 	    dbg("  Failed to open \"%s\": %s",
3514 		pathname, rtld_strerror(errno));
3515 	}
3516     }
3517     return (NULL);
3518 }
3519 
3520 static char *
3521 search_library_path(const char *name, const char *path,
3522     const char *refobj_path, int *fdp)
3523 {
3524     char *p;
3525     struct try_library_args arg;
3526 
3527     if (path == NULL)
3528 	return (NULL);
3529 
3530     arg.name = name;
3531     arg.namelen = strlen(name);
3532     arg.buffer = xmalloc(PATH_MAX);
3533     arg.buflen = PATH_MAX;
3534     arg.fd = -1;
3535 
3536     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3537     *fdp = arg.fd;
3538 
3539     free(arg.buffer);
3540 
3541     return (p);
3542 }
3543 
3544 
3545 /*
3546  * Finds the library with the given name using the directory descriptors
3547  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3548  *
3549  * Returns a freshly-opened close-on-exec file descriptor for the library,
3550  * or -1 if the library cannot be found.
3551  */
3552 static char *
3553 search_library_pathfds(const char *name, const char *path, int *fdp)
3554 {
3555 	char *envcopy, *fdstr, *found, *last_token;
3556 	size_t len;
3557 	int dirfd, fd;
3558 
3559 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3560 
3561 	/* Don't load from user-specified libdirs into setuid binaries. */
3562 	if (!trust)
3563 		return (NULL);
3564 
3565 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3566 	if (path == NULL)
3567 		return (NULL);
3568 
3569 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3570 	if (name[0] == '/') {
3571 		dbg("Absolute path (%s) passed to %s", name, __func__);
3572 		return (NULL);
3573 	}
3574 
3575 	/*
3576 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3577 	 * copy of the path, as strtok_r rewrites separator tokens
3578 	 * with '\0'.
3579 	 */
3580 	found = NULL;
3581 	envcopy = xstrdup(path);
3582 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3583 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3584 		dirfd = parse_integer(fdstr);
3585 		if (dirfd < 0) {
3586 			_rtld_error("failed to parse directory FD: '%s'",
3587 				fdstr);
3588 			break;
3589 		}
3590 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3591 		if (fd >= 0) {
3592 			*fdp = fd;
3593 			len = strlen(fdstr) + strlen(name) + 3;
3594 			found = xmalloc(len);
3595 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3596 				_rtld_error("error generating '%d/%s'",
3597 				    dirfd, name);
3598 				rtld_die();
3599 			}
3600 			dbg("open('%s') => %d", found, fd);
3601 			break;
3602 		}
3603 	}
3604 	free(envcopy);
3605 
3606 	return (found);
3607 }
3608 
3609 
3610 int
3611 dlclose(void *handle)
3612 {
3613 	RtldLockState lockstate;
3614 	int error;
3615 
3616 	wlock_acquire(rtld_bind_lock, &lockstate);
3617 	error = dlclose_locked(handle, &lockstate);
3618 	lock_release(rtld_bind_lock, &lockstate);
3619 	return (error);
3620 }
3621 
3622 static int
3623 dlclose_locked(void *handle, RtldLockState *lockstate)
3624 {
3625     Obj_Entry *root;
3626 
3627     root = dlcheck(handle);
3628     if (root == NULL)
3629 	return (-1);
3630     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3631 	root->path);
3632 
3633     /* Unreference the object and its dependencies. */
3634     root->dl_refcount--;
3635 
3636     if (root->refcount == 1) {
3637 	/*
3638 	 * The object will be no longer referenced, so we must unload it.
3639 	 * First, call the fini functions.
3640 	 */
3641 	objlist_call_fini(&list_fini, root, lockstate);
3642 
3643 	unref_dag(root);
3644 
3645 	/* Finish cleaning up the newly-unreferenced objects. */
3646 	GDB_STATE(RT_DELETE,&root->linkmap);
3647 	unload_object(root, lockstate);
3648 	GDB_STATE(RT_CONSISTENT,NULL);
3649     } else
3650 	unref_dag(root);
3651 
3652     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3653     return (0);
3654 }
3655 
3656 char *
3657 dlerror(void)
3658 {
3659 	if (*(lockinfo.dlerror_seen()) != 0)
3660 		return (NULL);
3661 	*lockinfo.dlerror_seen() = 1;
3662 	return (lockinfo.dlerror_loc());
3663 }
3664 
3665 /*
3666  * This function is deprecated and has no effect.
3667  */
3668 void
3669 dllockinit(void *context,
3670     void *(*_lock_create)(void *context) __unused,
3671     void (*_rlock_acquire)(void *lock) __unused,
3672     void (*_wlock_acquire)(void *lock)  __unused,
3673     void (*_lock_release)(void *lock) __unused,
3674     void (*_lock_destroy)(void *lock) __unused,
3675     void (*context_destroy)(void *context))
3676 {
3677     static void *cur_context;
3678     static void (*cur_context_destroy)(void *);
3679 
3680     /* Just destroy the context from the previous call, if necessary. */
3681     if (cur_context_destroy != NULL)
3682 	cur_context_destroy(cur_context);
3683     cur_context = context;
3684     cur_context_destroy = context_destroy;
3685 }
3686 
3687 void *
3688 dlopen(const char *name, int mode)
3689 {
3690 
3691 	return (rtld_dlopen(name, -1, mode));
3692 }
3693 
3694 void *
3695 fdlopen(int fd, int mode)
3696 {
3697 
3698 	return (rtld_dlopen(NULL, fd, mode));
3699 }
3700 
3701 static void *
3702 rtld_dlopen(const char *name, int fd, int mode)
3703 {
3704     RtldLockState lockstate;
3705     int lo_flags;
3706 
3707     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3708     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3709     if (ld_tracing != NULL) {
3710 	rlock_acquire(rtld_bind_lock, &lockstate);
3711 	if (sigsetjmp(lockstate.env, 0) != 0)
3712 	    lock_upgrade(rtld_bind_lock, &lockstate);
3713 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3714 	lock_release(rtld_bind_lock, &lockstate);
3715     }
3716     lo_flags = RTLD_LO_DLOPEN;
3717     if (mode & RTLD_NODELETE)
3718 	    lo_flags |= RTLD_LO_NODELETE;
3719     if (mode & RTLD_NOLOAD)
3720 	    lo_flags |= RTLD_LO_NOLOAD;
3721     if (mode & RTLD_DEEPBIND)
3722 	    lo_flags |= RTLD_LO_DEEPBIND;
3723     if (ld_tracing != NULL)
3724 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3725 
3726     return (dlopen_object(name, fd, obj_main, lo_flags,
3727       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3728 }
3729 
3730 static void
3731 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3732 {
3733 
3734 	obj->dl_refcount--;
3735 	unref_dag(obj);
3736 	if (obj->refcount == 0)
3737 		unload_object(obj, lockstate);
3738 }
3739 
3740 static Obj_Entry *
3741 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3742     int mode, RtldLockState *lockstate)
3743 {
3744     Obj_Entry *obj;
3745     Objlist initlist;
3746     RtldLockState mlockstate;
3747     int result;
3748 
3749     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3750       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3751       refobj->path, lo_flags, mode);
3752     objlist_init(&initlist);
3753 
3754     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3755 	wlock_acquire(rtld_bind_lock, &mlockstate);
3756 	lockstate = &mlockstate;
3757     }
3758     GDB_STATE(RT_ADD,NULL);
3759 
3760     obj = NULL;
3761     if (name == NULL && fd == -1) {
3762 	obj = obj_main;
3763 	obj->refcount++;
3764     } else {
3765 	obj = load_object(name, fd, refobj, lo_flags);
3766     }
3767 
3768     if (obj) {
3769 	obj->dl_refcount++;
3770 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3771 	    objlist_push_tail(&list_global, obj);
3772 
3773 	if (!obj->init_done) {
3774 	    /* We loaded something new and have to init something. */
3775 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3776 		obj->deepbind = true;
3777 	    result = 0;
3778 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3779 	      obj->static_tls && !allocate_tls_offset(obj)) {
3780 		_rtld_error("%s: No space available "
3781 		  "for static Thread Local Storage", obj->path);
3782 		result = -1;
3783 	    }
3784 	    if (result != -1)
3785 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3786 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3787 	    init_dag(obj);
3788 	    ref_dag(obj);
3789 	    if (result != -1)
3790 		result = rtld_verify_versions(&obj->dagmembers);
3791 	    if (result != -1 && ld_tracing)
3792 		goto trace;
3793 	    if (result == -1 || relocate_object_dag(obj,
3794 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3795 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3796 	      lockstate) == -1) {
3797 		dlopen_cleanup(obj, lockstate);
3798 		obj = NULL;
3799 	    } else if (lo_flags & RTLD_LO_EARLY) {
3800 		/*
3801 		 * Do not call the init functions for early loaded
3802 		 * filtees.  The image is still not initialized enough
3803 		 * for them to work.
3804 		 *
3805 		 * Our object is found by the global object list and
3806 		 * will be ordered among all init calls done right
3807 		 * before transferring control to main.
3808 		 */
3809 	    } else {
3810 		/* Make list of init functions to call. */
3811 		initlist_add_objects(obj, obj, &initlist);
3812 	    }
3813 	    /*
3814 	     * Process all no_delete or global objects here, given
3815 	     * them own DAGs to prevent their dependencies from being
3816 	     * unloaded.  This has to be done after we have loaded all
3817 	     * of the dependencies, so that we do not miss any.
3818 	     */
3819 	    if (obj != NULL)
3820 		process_z(obj);
3821 	} else {
3822 	    /*
3823 	     * Bump the reference counts for objects on this DAG.  If
3824 	     * this is the first dlopen() call for the object that was
3825 	     * already loaded as a dependency, initialize the dag
3826 	     * starting at it.
3827 	     */
3828 	    init_dag(obj);
3829 	    ref_dag(obj);
3830 
3831 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3832 		goto trace;
3833 	}
3834 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3835 	  obj->z_nodelete) && !obj->ref_nodel) {
3836 	    dbg("obj %s nodelete", obj->path);
3837 	    ref_dag(obj);
3838 	    obj->z_nodelete = obj->ref_nodel = true;
3839 	}
3840     }
3841 
3842     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3843 	name);
3844     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3845 
3846     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3847 	map_stacks_exec(lockstate);
3848 	if (obj != NULL)
3849 	    distribute_static_tls(&initlist, lockstate);
3850     }
3851 
3852     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3853       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3854       lockstate) == -1) {
3855 	objlist_clear(&initlist);
3856 	dlopen_cleanup(obj, lockstate);
3857 	if (lockstate == &mlockstate)
3858 	    lock_release(rtld_bind_lock, lockstate);
3859 	return (NULL);
3860     }
3861 
3862     if (!(lo_flags & RTLD_LO_EARLY)) {
3863 	/* Call the init functions. */
3864 	objlist_call_init(&initlist, lockstate);
3865     }
3866     objlist_clear(&initlist);
3867     if (lockstate == &mlockstate)
3868 	lock_release(rtld_bind_lock, lockstate);
3869     return (obj);
3870 trace:
3871     trace_loaded_objects(obj, false);
3872     if (lockstate == &mlockstate)
3873 	lock_release(rtld_bind_lock, lockstate);
3874     exit(0);
3875 }
3876 
3877 static void *
3878 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3879     int flags)
3880 {
3881     DoneList donelist;
3882     const Obj_Entry *obj, *defobj;
3883     const Elf_Sym *def;
3884     SymLook req;
3885     RtldLockState lockstate;
3886     tls_index ti;
3887     void *sym;
3888     int res;
3889 
3890     def = NULL;
3891     defobj = NULL;
3892     symlook_init(&req, name);
3893     req.ventry = ve;
3894     req.flags = flags | SYMLOOK_IN_PLT;
3895     req.lockstate = &lockstate;
3896 
3897     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3898     rlock_acquire(rtld_bind_lock, &lockstate);
3899     if (sigsetjmp(lockstate.env, 0) != 0)
3900 	    lock_upgrade(rtld_bind_lock, &lockstate);
3901     if (handle == NULL || handle == RTLD_NEXT ||
3902 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3903 
3904 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3905 	    _rtld_error("Cannot determine caller's shared object");
3906 	    lock_release(rtld_bind_lock, &lockstate);
3907 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3908 	    return (NULL);
3909 	}
3910 	if (handle == NULL) {	/* Just the caller's shared object. */
3911 	    res = symlook_obj(&req, obj);
3912 	    if (res == 0) {
3913 		def = req.sym_out;
3914 		defobj = req.defobj_out;
3915 	    }
3916 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3917 		   handle == RTLD_SELF) { /* ... caller included */
3918 	    if (handle == RTLD_NEXT)
3919 		obj = globallist_next(obj);
3920 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3921 		if (obj->marker)
3922 		    continue;
3923 		res = symlook_obj(&req, obj);
3924 		if (res == 0) {
3925 		    if (def == NULL || (ld_dynamic_weak &&
3926                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3927 			def = req.sym_out;
3928 			defobj = req.defobj_out;
3929 			if (!ld_dynamic_weak ||
3930 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3931 			    break;
3932 		    }
3933 		}
3934 	    }
3935 	    /*
3936 	     * Search the dynamic linker itself, and possibly resolve the
3937 	     * symbol from there.  This is how the application links to
3938 	     * dynamic linker services such as dlopen.
3939 	     * Note that we ignore ld_dynamic_weak == false case,
3940 	     * always overriding weak symbols by rtld definitions.
3941 	     */
3942 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3943 		res = symlook_obj(&req, &obj_rtld);
3944 		if (res == 0) {
3945 		    def = req.sym_out;
3946 		    defobj = req.defobj_out;
3947 		}
3948 	    }
3949 	} else {
3950 	    assert(handle == RTLD_DEFAULT);
3951 	    res = symlook_default(&req, obj);
3952 	    if (res == 0) {
3953 		defobj = req.defobj_out;
3954 		def = req.sym_out;
3955 	    }
3956 	}
3957     } else {
3958 	if ((obj = dlcheck(handle)) == NULL) {
3959 	    lock_release(rtld_bind_lock, &lockstate);
3960 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3961 	    return (NULL);
3962 	}
3963 
3964 	donelist_init(&donelist);
3965 	if (obj->mainprog) {
3966             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3967 	    res = symlook_global(&req, &donelist);
3968 	    if (res == 0) {
3969 		def = req.sym_out;
3970 		defobj = req.defobj_out;
3971 	    }
3972 	    /*
3973 	     * Search the dynamic linker itself, and possibly resolve the
3974 	     * symbol from there.  This is how the application links to
3975 	     * dynamic linker services such as dlopen.
3976 	     */
3977 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3978 		res = symlook_obj(&req, &obj_rtld);
3979 		if (res == 0) {
3980 		    def = req.sym_out;
3981 		    defobj = req.defobj_out;
3982 		}
3983 	    }
3984 	}
3985 	else {
3986 	    /* Search the whole DAG rooted at the given object. */
3987 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3988 	    if (res == 0) {
3989 		def = req.sym_out;
3990 		defobj = req.defobj_out;
3991 	    }
3992 	}
3993     }
3994 
3995     if (def != NULL) {
3996 	lock_release(rtld_bind_lock, &lockstate);
3997 
3998 	/*
3999 	 * The value required by the caller is derived from the value
4000 	 * of the symbol. this is simply the relocated value of the
4001 	 * symbol.
4002 	 */
4003 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4004 	    sym = make_function_pointer(def, defobj);
4005 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4006 	    sym = rtld_resolve_ifunc(defobj, def);
4007 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4008 	    ti.ti_module = defobj->tlsindex;
4009 	    ti.ti_offset = def->st_value;
4010 	    sym = __tls_get_addr(&ti);
4011 	} else
4012 	    sym = defobj->relocbase + def->st_value;
4013 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4014 	return (sym);
4015     }
4016 
4017     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4018       ve != NULL ? ve->name : "");
4019     lock_release(rtld_bind_lock, &lockstate);
4020     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4021     return (NULL);
4022 }
4023 
4024 void *
4025 dlsym(void *handle, const char *name)
4026 {
4027 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4028 	    SYMLOOK_DLSYM));
4029 }
4030 
4031 dlfunc_t
4032 dlfunc(void *handle, const char *name)
4033 {
4034 	union {
4035 		void *d;
4036 		dlfunc_t f;
4037 	} rv;
4038 
4039 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4040 	    SYMLOOK_DLSYM);
4041 	return (rv.f);
4042 }
4043 
4044 void *
4045 dlvsym(void *handle, const char *name, const char *version)
4046 {
4047 	Ver_Entry ventry;
4048 
4049 	ventry.name = version;
4050 	ventry.file = NULL;
4051 	ventry.hash = elf_hash(version);
4052 	ventry.flags= 0;
4053 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4054 	    SYMLOOK_DLSYM));
4055 }
4056 
4057 int
4058 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4059 {
4060     const Obj_Entry *obj;
4061     RtldLockState lockstate;
4062 
4063     rlock_acquire(rtld_bind_lock, &lockstate);
4064     obj = obj_from_addr(addr);
4065     if (obj == NULL) {
4066         _rtld_error("No shared object contains address");
4067 	lock_release(rtld_bind_lock, &lockstate);
4068         return (0);
4069     }
4070     rtld_fill_dl_phdr_info(obj, phdr_info);
4071     lock_release(rtld_bind_lock, &lockstate);
4072     return (1);
4073 }
4074 
4075 int
4076 dladdr(const void *addr, Dl_info *info)
4077 {
4078     const Obj_Entry *obj;
4079     const Elf_Sym *def;
4080     void *symbol_addr;
4081     unsigned long symoffset;
4082     RtldLockState lockstate;
4083 
4084     rlock_acquire(rtld_bind_lock, &lockstate);
4085     obj = obj_from_addr(addr);
4086     if (obj == NULL) {
4087         _rtld_error("No shared object contains address");
4088 	lock_release(rtld_bind_lock, &lockstate);
4089         return (0);
4090     }
4091     info->dli_fname = obj->path;
4092     info->dli_fbase = obj->mapbase;
4093     info->dli_saddr = (void *)0;
4094     info->dli_sname = NULL;
4095 
4096     /*
4097      * Walk the symbol list looking for the symbol whose address is
4098      * closest to the address sent in.
4099      */
4100     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4101         def = obj->symtab + symoffset;
4102 
4103         /*
4104          * For skip the symbol if st_shndx is either SHN_UNDEF or
4105          * SHN_COMMON.
4106          */
4107         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4108             continue;
4109 
4110         /*
4111          * If the symbol is greater than the specified address, or if it
4112          * is further away from addr than the current nearest symbol,
4113          * then reject it.
4114          */
4115         symbol_addr = obj->relocbase + def->st_value;
4116         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4117             continue;
4118 
4119         /* Update our idea of the nearest symbol. */
4120         info->dli_sname = obj->strtab + def->st_name;
4121         info->dli_saddr = symbol_addr;
4122 
4123         /* Exact match? */
4124         if (info->dli_saddr == addr)
4125             break;
4126     }
4127     lock_release(rtld_bind_lock, &lockstate);
4128     return (1);
4129 }
4130 
4131 int
4132 dlinfo(void *handle, int request, void *p)
4133 {
4134     const Obj_Entry *obj;
4135     RtldLockState lockstate;
4136     int error;
4137 
4138     rlock_acquire(rtld_bind_lock, &lockstate);
4139 
4140     if (handle == NULL || handle == RTLD_SELF) {
4141 	void *retaddr;
4142 
4143 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4144 	if ((obj = obj_from_addr(retaddr)) == NULL)
4145 	    _rtld_error("Cannot determine caller's shared object");
4146     } else
4147 	obj = dlcheck(handle);
4148 
4149     if (obj == NULL) {
4150 	lock_release(rtld_bind_lock, &lockstate);
4151 	return (-1);
4152     }
4153 
4154     error = 0;
4155     switch (request) {
4156     case RTLD_DI_LINKMAP:
4157 	*((struct link_map const **)p) = &obj->linkmap;
4158 	break;
4159     case RTLD_DI_ORIGIN:
4160 	error = rtld_dirname(obj->path, p);
4161 	break;
4162 
4163     case RTLD_DI_SERINFOSIZE:
4164     case RTLD_DI_SERINFO:
4165 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4166 	break;
4167 
4168     default:
4169 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4170 	error = -1;
4171     }
4172 
4173     lock_release(rtld_bind_lock, &lockstate);
4174 
4175     return (error);
4176 }
4177 
4178 static void
4179 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4180 {
4181 	uintptr_t **dtvp;
4182 
4183 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4184 	phdr_info->dlpi_name = obj->path;
4185 	phdr_info->dlpi_phdr = obj->phdr;
4186 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4187 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4188 	dtvp = &_tcb_get()->tcb_dtv;
4189 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4190 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4191 	phdr_info->dlpi_adds = obj_loads;
4192 	phdr_info->dlpi_subs = obj_loads - obj_count;
4193 }
4194 
4195 int
4196 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4197 {
4198 	struct dl_phdr_info phdr_info;
4199 	Obj_Entry *obj, marker;
4200 	RtldLockState bind_lockstate, phdr_lockstate;
4201 	int error;
4202 
4203 	init_marker(&marker);
4204 	error = 0;
4205 
4206 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4207 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4208 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4209 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4210 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4211 		hold_object(obj);
4212 		lock_release(rtld_bind_lock, &bind_lockstate);
4213 
4214 		error = callback(&phdr_info, sizeof phdr_info, param);
4215 
4216 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4217 		unhold_object(obj);
4218 		obj = globallist_next(&marker);
4219 		TAILQ_REMOVE(&obj_list, &marker, next);
4220 		if (error != 0) {
4221 			lock_release(rtld_bind_lock, &bind_lockstate);
4222 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4223 			return (error);
4224 		}
4225 	}
4226 
4227 	if (error == 0) {
4228 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4229 		lock_release(rtld_bind_lock, &bind_lockstate);
4230 		error = callback(&phdr_info, sizeof(phdr_info), param);
4231 	}
4232 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4233 	return (error);
4234 }
4235 
4236 static void *
4237 fill_search_info(const char *dir, size_t dirlen, void *param)
4238 {
4239     struct fill_search_info_args *arg;
4240 
4241     arg = param;
4242 
4243     if (arg->request == RTLD_DI_SERINFOSIZE) {
4244 	arg->serinfo->dls_cnt ++;
4245 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4246     } else {
4247 	struct dl_serpath *s_entry;
4248 
4249 	s_entry = arg->serpath;
4250 	s_entry->dls_name  = arg->strspace;
4251 	s_entry->dls_flags = arg->flags;
4252 
4253 	strncpy(arg->strspace, dir, dirlen);
4254 	arg->strspace[dirlen] = '\0';
4255 
4256 	arg->strspace += dirlen + 1;
4257 	arg->serpath++;
4258     }
4259 
4260     return (NULL);
4261 }
4262 
4263 static int
4264 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4265 {
4266     struct dl_serinfo _info;
4267     struct fill_search_info_args args;
4268 
4269     args.request = RTLD_DI_SERINFOSIZE;
4270     args.serinfo = &_info;
4271 
4272     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4273     _info.dls_cnt  = 0;
4274 
4275     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4276     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4277     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4278     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4279     if (!obj->z_nodeflib)
4280       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4281 
4282 
4283     if (request == RTLD_DI_SERINFOSIZE) {
4284 	info->dls_size = _info.dls_size;
4285 	info->dls_cnt = _info.dls_cnt;
4286 	return (0);
4287     }
4288 
4289     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4290 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4291 	return (-1);
4292     }
4293 
4294     args.request  = RTLD_DI_SERINFO;
4295     args.serinfo  = info;
4296     args.serpath  = &info->dls_serpath[0];
4297     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4298 
4299     args.flags = LA_SER_RUNPATH;
4300     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4301 	return (-1);
4302 
4303     args.flags = LA_SER_LIBPATH;
4304     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4305 	return (-1);
4306 
4307     args.flags = LA_SER_RUNPATH;
4308     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4309 	return (-1);
4310 
4311     args.flags = LA_SER_CONFIG;
4312     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4313       != NULL)
4314 	return (-1);
4315 
4316     args.flags = LA_SER_DEFAULT;
4317     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4318       fill_search_info, NULL, &args) != NULL)
4319 	return (-1);
4320     return (0);
4321 }
4322 
4323 static int
4324 rtld_dirname(const char *path, char *bname)
4325 {
4326     const char *endp;
4327 
4328     /* Empty or NULL string gets treated as "." */
4329     if (path == NULL || *path == '\0') {
4330 	bname[0] = '.';
4331 	bname[1] = '\0';
4332 	return (0);
4333     }
4334 
4335     /* Strip trailing slashes */
4336     endp = path + strlen(path) - 1;
4337     while (endp > path && *endp == '/')
4338 	endp--;
4339 
4340     /* Find the start of the dir */
4341     while (endp > path && *endp != '/')
4342 	endp--;
4343 
4344     /* Either the dir is "/" or there are no slashes */
4345     if (endp == path) {
4346 	bname[0] = *endp == '/' ? '/' : '.';
4347 	bname[1] = '\0';
4348 	return (0);
4349     } else {
4350 	do {
4351 	    endp--;
4352 	} while (endp > path && *endp == '/');
4353     }
4354 
4355     if (endp - path + 2 > PATH_MAX)
4356     {
4357 	_rtld_error("Filename is too long: %s", path);
4358 	return(-1);
4359     }
4360 
4361     strncpy(bname, path, endp - path + 1);
4362     bname[endp - path + 1] = '\0';
4363     return (0);
4364 }
4365 
4366 static int
4367 rtld_dirname_abs(const char *path, char *base)
4368 {
4369 	char *last;
4370 
4371 	if (realpath(path, base) == NULL) {
4372 		_rtld_error("realpath \"%s\" failed (%s)", path,
4373 		    rtld_strerror(errno));
4374 		return (-1);
4375 	}
4376 	dbg("%s -> %s", path, base);
4377 	last = strrchr(base, '/');
4378 	if (last == NULL) {
4379 		_rtld_error("non-abs result from realpath \"%s\"", path);
4380 		return (-1);
4381 	}
4382 	if (last != base)
4383 		*last = '\0';
4384 	return (0);
4385 }
4386 
4387 static void
4388 linkmap_add(Obj_Entry *obj)
4389 {
4390 	struct link_map *l, *prev;
4391 
4392 	l = &obj->linkmap;
4393 	l->l_name = obj->path;
4394 	l->l_base = obj->mapbase;
4395 	l->l_ld = obj->dynamic;
4396 	l->l_addr = obj->relocbase;
4397 
4398 	if (r_debug.r_map == NULL) {
4399 		r_debug.r_map = l;
4400 		return;
4401 	}
4402 
4403 	/*
4404 	 * Scan to the end of the list, but not past the entry for the
4405 	 * dynamic linker, which we want to keep at the very end.
4406 	 */
4407 	for (prev = r_debug.r_map;
4408 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4409 	     prev = prev->l_next)
4410 		;
4411 
4412 	/* Link in the new entry. */
4413 	l->l_prev = prev;
4414 	l->l_next = prev->l_next;
4415 	if (l->l_next != NULL)
4416 		l->l_next->l_prev = l;
4417 	prev->l_next = l;
4418 }
4419 
4420 static void
4421 linkmap_delete(Obj_Entry *obj)
4422 {
4423 	struct link_map *l;
4424 
4425 	l = &obj->linkmap;
4426 	if (l->l_prev == NULL) {
4427 		if ((r_debug.r_map = l->l_next) != NULL)
4428 			l->l_next->l_prev = NULL;
4429 		return;
4430 	}
4431 
4432 	if ((l->l_prev->l_next = l->l_next) != NULL)
4433 		l->l_next->l_prev = l->l_prev;
4434 }
4435 
4436 /*
4437  * Function for the debugger to set a breakpoint on to gain control.
4438  *
4439  * The two parameters allow the debugger to easily find and determine
4440  * what the runtime loader is doing and to whom it is doing it.
4441  *
4442  * When the loadhook trap is hit (r_debug_state, set at program
4443  * initialization), the arguments can be found on the stack:
4444  *
4445  *  +8   struct link_map *m
4446  *  +4   struct r_debug  *rd
4447  *  +0   RetAddr
4448  */
4449 void
4450 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4451 {
4452     /*
4453      * The following is a hack to force the compiler to emit calls to
4454      * this function, even when optimizing.  If the function is empty,
4455      * the compiler is not obliged to emit any code for calls to it,
4456      * even when marked __noinline.  However, gdb depends on those
4457      * calls being made.
4458      */
4459     __compiler_membar();
4460 }
4461 
4462 /*
4463  * A function called after init routines have completed. This can be used to
4464  * break before a program's entry routine is called, and can be used when
4465  * main is not available in the symbol table.
4466  */
4467 void
4468 _r_debug_postinit(struct link_map *m __unused)
4469 {
4470 
4471 	/* See r_debug_state(). */
4472 	__compiler_membar();
4473 }
4474 
4475 static void
4476 release_object(Obj_Entry *obj)
4477 {
4478 
4479 	if (obj->holdcount > 0) {
4480 		obj->unholdfree = true;
4481 		return;
4482 	}
4483 	munmap(obj->mapbase, obj->mapsize);
4484 	linkmap_delete(obj);
4485 	obj_free(obj);
4486 }
4487 
4488 /*
4489  * Get address of the pointer variable in the main program.
4490  * Prefer non-weak symbol over the weak one.
4491  */
4492 static const void **
4493 get_program_var_addr(const char *name, RtldLockState *lockstate)
4494 {
4495     SymLook req;
4496     DoneList donelist;
4497 
4498     symlook_init(&req, name);
4499     req.lockstate = lockstate;
4500     donelist_init(&donelist);
4501     if (symlook_global(&req, &donelist) != 0)
4502 	return (NULL);
4503     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4504 	return ((const void **)make_function_pointer(req.sym_out,
4505 	  req.defobj_out));
4506     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4507 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4508     else
4509 	return ((const void **)(req.defobj_out->relocbase +
4510 	  req.sym_out->st_value));
4511 }
4512 
4513 /*
4514  * Set a pointer variable in the main program to the given value.  This
4515  * is used to set key variables such as "environ" before any of the
4516  * init functions are called.
4517  */
4518 static void
4519 set_program_var(const char *name, const void *value)
4520 {
4521     const void **addr;
4522 
4523     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4524 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4525 	*addr = value;
4526     }
4527 }
4528 
4529 /*
4530  * Search the global objects, including dependencies and main object,
4531  * for the given symbol.
4532  */
4533 static int
4534 symlook_global(SymLook *req, DoneList *donelist)
4535 {
4536     SymLook req1;
4537     const Objlist_Entry *elm;
4538     int res;
4539 
4540     symlook_init_from_req(&req1, req);
4541 
4542     /* Search all objects loaded at program start up. */
4543     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4544       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4545 	res = symlook_list(&req1, &list_main, donelist);
4546 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4547 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4548 	    req->sym_out = req1.sym_out;
4549 	    req->defobj_out = req1.defobj_out;
4550 	    assert(req->defobj_out != NULL);
4551 	}
4552     }
4553 
4554     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4555     STAILQ_FOREACH(elm, &list_global, link) {
4556 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4557           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4558 	    break;
4559 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4560 	if (res == 0 && (req->defobj_out == NULL ||
4561 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4562 	    req->sym_out = req1.sym_out;
4563 	    req->defobj_out = req1.defobj_out;
4564 	    assert(req->defobj_out != NULL);
4565 	}
4566     }
4567 
4568     return (req->sym_out != NULL ? 0 : ESRCH);
4569 }
4570 
4571 /*
4572  * Given a symbol name in a referencing object, find the corresponding
4573  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4574  * no definition was found.  Returns a pointer to the Obj_Entry of the
4575  * defining object via the reference parameter DEFOBJ_OUT.
4576  */
4577 static int
4578 symlook_default(SymLook *req, const Obj_Entry *refobj)
4579 {
4580     DoneList donelist;
4581     const Objlist_Entry *elm;
4582     SymLook req1;
4583     int res;
4584 
4585     donelist_init(&donelist);
4586     symlook_init_from_req(&req1, req);
4587 
4588     /*
4589      * Look first in the referencing object if linked symbolically,
4590      * and similarly handle protected symbols.
4591      */
4592     res = symlook_obj(&req1, refobj);
4593     if (res == 0 && (refobj->symbolic ||
4594       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4595 	req->sym_out = req1.sym_out;
4596 	req->defobj_out = req1.defobj_out;
4597 	assert(req->defobj_out != NULL);
4598     }
4599     if (refobj->symbolic || req->defobj_out != NULL)
4600 	donelist_check(&donelist, refobj);
4601 
4602     if (!refobj->deepbind)
4603         symlook_global(req, &donelist);
4604 
4605     /* Search all dlopened DAGs containing the referencing object. */
4606     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4607 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4608           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4609 	    break;
4610 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4611 	if (res == 0 && (req->sym_out == NULL ||
4612 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4613 	    req->sym_out = req1.sym_out;
4614 	    req->defobj_out = req1.defobj_out;
4615 	    assert(req->defobj_out != NULL);
4616 	}
4617     }
4618 
4619     if (refobj->deepbind)
4620         symlook_global(req, &donelist);
4621 
4622     /*
4623      * Search the dynamic linker itself, and possibly resolve the
4624      * symbol from there.  This is how the application links to
4625      * dynamic linker services such as dlopen.
4626      */
4627     if (req->sym_out == NULL ||
4628       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4629 	res = symlook_obj(&req1, &obj_rtld);
4630 	if (res == 0) {
4631 	    req->sym_out = req1.sym_out;
4632 	    req->defobj_out = req1.defobj_out;
4633 	    assert(req->defobj_out != NULL);
4634 	}
4635     }
4636 
4637     return (req->sym_out != NULL ? 0 : ESRCH);
4638 }
4639 
4640 static int
4641 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4642 {
4643     const Elf_Sym *def;
4644     const Obj_Entry *defobj;
4645     const Objlist_Entry *elm;
4646     SymLook req1;
4647     int res;
4648 
4649     def = NULL;
4650     defobj = NULL;
4651     STAILQ_FOREACH(elm, objlist, link) {
4652 	if (donelist_check(dlp, elm->obj))
4653 	    continue;
4654 	symlook_init_from_req(&req1, req);
4655 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4656 	    if (def == NULL || (ld_dynamic_weak &&
4657               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4658 		def = req1.sym_out;
4659 		defobj = req1.defobj_out;
4660 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4661 		    break;
4662 	    }
4663 	}
4664     }
4665     if (def != NULL) {
4666 	req->sym_out = def;
4667 	req->defobj_out = defobj;
4668 	return (0);
4669     }
4670     return (ESRCH);
4671 }
4672 
4673 /*
4674  * Search the chain of DAGS cointed to by the given Needed_Entry
4675  * for a symbol of the given name.  Each DAG is scanned completely
4676  * before advancing to the next one.  Returns a pointer to the symbol,
4677  * or NULL if no definition was found.
4678  */
4679 static int
4680 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4681 {
4682     const Elf_Sym *def;
4683     const Needed_Entry *n;
4684     const Obj_Entry *defobj;
4685     SymLook req1;
4686     int res;
4687 
4688     def = NULL;
4689     defobj = NULL;
4690     symlook_init_from_req(&req1, req);
4691     for (n = needed; n != NULL; n = n->next) {
4692 	if (n->obj == NULL ||
4693 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4694 	    continue;
4695 	if (def == NULL || (ld_dynamic_weak &&
4696           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4697 	    def = req1.sym_out;
4698 	    defobj = req1.defobj_out;
4699 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4700 		break;
4701 	}
4702     }
4703     if (def != NULL) {
4704 	req->sym_out = def;
4705 	req->defobj_out = defobj;
4706 	return (0);
4707     }
4708     return (ESRCH);
4709 }
4710 
4711 static int
4712 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4713     Needed_Entry *needed)
4714 {
4715 	DoneList donelist;
4716 	int flags;
4717 
4718 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4719 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4720 	donelist_init(&donelist);
4721 	symlook_init_from_req(req1, req);
4722 	return (symlook_needed(req1, needed, &donelist));
4723 }
4724 
4725 /*
4726  * Search the symbol table of a single shared object for a symbol of
4727  * the given name and version, if requested.  Returns a pointer to the
4728  * symbol, or NULL if no definition was found.  If the object is
4729  * filter, return filtered symbol from filtee.
4730  *
4731  * The symbol's hash value is passed in for efficiency reasons; that
4732  * eliminates many recomputations of the hash value.
4733  */
4734 int
4735 symlook_obj(SymLook *req, const Obj_Entry *obj)
4736 {
4737     SymLook req1;
4738     int res, mres;
4739 
4740     /*
4741      * If there is at least one valid hash at this point, we prefer to
4742      * use the faster GNU version if available.
4743      */
4744     if (obj->valid_hash_gnu)
4745 	mres = symlook_obj1_gnu(req, obj);
4746     else if (obj->valid_hash_sysv)
4747 	mres = symlook_obj1_sysv(req, obj);
4748     else
4749 	return (EINVAL);
4750 
4751     if (mres == 0) {
4752 	if (obj->needed_filtees != NULL) {
4753 	    res = symlook_obj_load_filtees(req, &req1, obj,
4754 		obj->needed_filtees);
4755 	    if (res == 0) {
4756 		req->sym_out = req1.sym_out;
4757 		req->defobj_out = req1.defobj_out;
4758 	    }
4759 	    return (res);
4760 	}
4761 	if (obj->needed_aux_filtees != NULL) {
4762 	    res = symlook_obj_load_filtees(req, &req1, obj,
4763 		obj->needed_aux_filtees);
4764 	    if (res == 0) {
4765 		req->sym_out = req1.sym_out;
4766 		req->defobj_out = req1.defobj_out;
4767 		return (res);
4768 	    }
4769 	}
4770     }
4771     return (mres);
4772 }
4773 
4774 /* Symbol match routine common to both hash functions */
4775 static bool
4776 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4777     const unsigned long symnum)
4778 {
4779 	Elf_Versym verndx;
4780 	const Elf_Sym *symp;
4781 	const char *strp;
4782 
4783 	symp = obj->symtab + symnum;
4784 	strp = obj->strtab + symp->st_name;
4785 
4786 	switch (ELF_ST_TYPE(symp->st_info)) {
4787 	case STT_FUNC:
4788 	case STT_NOTYPE:
4789 	case STT_OBJECT:
4790 	case STT_COMMON:
4791 	case STT_GNU_IFUNC:
4792 		if (symp->st_value == 0)
4793 			return (false);
4794 		/* fallthrough */
4795 	case STT_TLS:
4796 		if (symp->st_shndx != SHN_UNDEF)
4797 			break;
4798 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4799 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4800 			break;
4801 		/* fallthrough */
4802 	default:
4803 		return (false);
4804 	}
4805 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4806 		return (false);
4807 
4808 	if (req->ventry == NULL) {
4809 		if (obj->versyms != NULL) {
4810 			verndx = VER_NDX(obj->versyms[symnum]);
4811 			if (verndx > obj->vernum) {
4812 				_rtld_error(
4813 				    "%s: symbol %s references wrong version %d",
4814 				    obj->path, obj->strtab + symnum, verndx);
4815 				return (false);
4816 			}
4817 			/*
4818 			 * If we are not called from dlsym (i.e. this
4819 			 * is a normal relocation from unversioned
4820 			 * binary), accept the symbol immediately if
4821 			 * it happens to have first version after this
4822 			 * shared object became versioned.  Otherwise,
4823 			 * if symbol is versioned and not hidden,
4824 			 * remember it. If it is the only symbol with
4825 			 * this name exported by the shared object, it
4826 			 * will be returned as a match by the calling
4827 			 * function. If symbol is global (verndx < 2)
4828 			 * accept it unconditionally.
4829 			 */
4830 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4831 			    verndx == VER_NDX_GIVEN) {
4832 				result->sym_out = symp;
4833 				return (true);
4834 			}
4835 			else if (verndx >= VER_NDX_GIVEN) {
4836 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4837 				    == 0) {
4838 					if (result->vsymp == NULL)
4839 						result->vsymp = symp;
4840 					result->vcount++;
4841 				}
4842 				return (false);
4843 			}
4844 		}
4845 		result->sym_out = symp;
4846 		return (true);
4847 	}
4848 	if (obj->versyms == NULL) {
4849 		if (object_match_name(obj, req->ventry->name)) {
4850 			_rtld_error("%s: object %s should provide version %s "
4851 			    "for symbol %s", obj_rtld.path, obj->path,
4852 			    req->ventry->name, obj->strtab + symnum);
4853 			return (false);
4854 		}
4855 	} else {
4856 		verndx = VER_NDX(obj->versyms[symnum]);
4857 		if (verndx > obj->vernum) {
4858 			_rtld_error("%s: symbol %s references wrong version %d",
4859 			    obj->path, obj->strtab + symnum, verndx);
4860 			return (false);
4861 		}
4862 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4863 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4864 			/*
4865 			 * Version does not match. Look if this is a
4866 			 * global symbol and if it is not hidden. If
4867 			 * global symbol (verndx < 2) is available,
4868 			 * use it. Do not return symbol if we are
4869 			 * called by dlvsym, because dlvsym looks for
4870 			 * a specific version and default one is not
4871 			 * what dlvsym wants.
4872 			 */
4873 			if ((req->flags & SYMLOOK_DLSYM) ||
4874 			    (verndx >= VER_NDX_GIVEN) ||
4875 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4876 				return (false);
4877 		}
4878 	}
4879 	result->sym_out = symp;
4880 	return (true);
4881 }
4882 
4883 /*
4884  * Search for symbol using SysV hash function.
4885  * obj->buckets is known not to be NULL at this point; the test for this was
4886  * performed with the obj->valid_hash_sysv assignment.
4887  */
4888 static int
4889 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4890 {
4891 	unsigned long symnum;
4892 	Sym_Match_Result matchres;
4893 
4894 	matchres.sym_out = NULL;
4895 	matchres.vsymp = NULL;
4896 	matchres.vcount = 0;
4897 
4898 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4899 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4900 		if (symnum >= obj->nchains)
4901 			return (ESRCH);	/* Bad object */
4902 
4903 		if (matched_symbol(req, obj, &matchres, symnum)) {
4904 			req->sym_out = matchres.sym_out;
4905 			req->defobj_out = obj;
4906 			return (0);
4907 		}
4908 	}
4909 	if (matchres.vcount == 1) {
4910 		req->sym_out = matchres.vsymp;
4911 		req->defobj_out = obj;
4912 		return (0);
4913 	}
4914 	return (ESRCH);
4915 }
4916 
4917 /* Search for symbol using GNU hash function */
4918 static int
4919 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4920 {
4921 	Elf_Addr bloom_word;
4922 	const Elf32_Word *hashval;
4923 	Elf32_Word bucket;
4924 	Sym_Match_Result matchres;
4925 	unsigned int h1, h2;
4926 	unsigned long symnum;
4927 
4928 	matchres.sym_out = NULL;
4929 	matchres.vsymp = NULL;
4930 	matchres.vcount = 0;
4931 
4932 	/* Pick right bitmask word from Bloom filter array */
4933 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4934 	    obj->maskwords_bm_gnu];
4935 
4936 	/* Calculate modulus word size of gnu hash and its derivative */
4937 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4938 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4939 
4940 	/* Filter out the "definitely not in set" queries */
4941 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4942 		return (ESRCH);
4943 
4944 	/* Locate hash chain and corresponding value element*/
4945 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4946 	if (bucket == 0)
4947 		return (ESRCH);
4948 	hashval = &obj->chain_zero_gnu[bucket];
4949 	do {
4950 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4951 			symnum = hashval - obj->chain_zero_gnu;
4952 			if (matched_symbol(req, obj, &matchres, symnum)) {
4953 				req->sym_out = matchres.sym_out;
4954 				req->defobj_out = obj;
4955 				return (0);
4956 			}
4957 		}
4958 	} while ((*hashval++ & 1) == 0);
4959 	if (matchres.vcount == 1) {
4960 		req->sym_out = matchres.vsymp;
4961 		req->defobj_out = obj;
4962 		return (0);
4963 	}
4964 	return (ESRCH);
4965 }
4966 
4967 static void
4968 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4969 {
4970 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4971 	if (*main_local == NULL)
4972 		*main_local = "";
4973 
4974 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4975 	if (*fmt1 == NULL)
4976 		*fmt1 = "\t%o => %p (%x)\n";
4977 
4978 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4979 	if (*fmt2 == NULL)
4980 		*fmt2 = "\t%o (%x)\n";
4981 }
4982 
4983 static void
4984 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4985     const char *main_local, const char *fmt1, const char *fmt2)
4986 {
4987 	const char *fmt;
4988 	int c;
4989 
4990 	if (fmt1 == NULL)
4991 		fmt = fmt2;
4992 	else
4993 		/* XXX bogus */
4994 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
4995 
4996 	while ((c = *fmt++) != '\0') {
4997 		switch (c) {
4998 		default:
4999 			rtld_putchar(c);
5000 			continue;
5001 		case '\\':
5002 			switch (c = *fmt) {
5003 			case '\0':
5004 				continue;
5005 			case 'n':
5006 				rtld_putchar('\n');
5007 				break;
5008 			case 't':
5009 				rtld_putchar('\t');
5010 				break;
5011 			}
5012 			break;
5013 		case '%':
5014 			switch (c = *fmt) {
5015 			case '\0':
5016 				continue;
5017 			case '%':
5018 			default:
5019 				rtld_putchar(c);
5020 				break;
5021 			case 'A':
5022 				rtld_putstr(main_local);
5023 				break;
5024 			case 'a':
5025 				rtld_putstr(obj_main->path);
5026 				break;
5027 			case 'o':
5028 				rtld_putstr(name);
5029 				break;
5030 			case 'p':
5031 				rtld_putstr(path);
5032 				break;
5033 			case 'x':
5034 				rtld_printf("%p", obj != NULL ?
5035 				    obj->mapbase : NULL);
5036 				break;
5037 			}
5038 			break;
5039 		}
5040 		++fmt;
5041 	}
5042 }
5043 
5044 static void
5045 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5046 {
5047 	const char *fmt1, *fmt2, *main_local;
5048 	const char *name, *path;
5049 	bool first_spurious, list_containers;
5050 
5051 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5052 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5053 
5054 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5055 		Needed_Entry *needed;
5056 
5057 		if (obj->marker)
5058 			continue;
5059 		if (list_containers && obj->needed != NULL)
5060 			rtld_printf("%s:\n", obj->path);
5061 		for (needed = obj->needed; needed; needed = needed->next) {
5062 			if (needed->obj != NULL) {
5063 				if (needed->obj->traced && !list_containers)
5064 					continue;
5065 				needed->obj->traced = true;
5066 				path = needed->obj->path;
5067 			} else
5068 				path = "not found";
5069 
5070 			name = obj->strtab + needed->name;
5071 			trace_print_obj(needed->obj, name, path, main_local,
5072 			    fmt1, fmt2);
5073 		}
5074 	}
5075 
5076 	if (show_preload) {
5077 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5078 			fmt2 = "\t%p (%x)\n";
5079 		first_spurious = true;
5080 
5081 		TAILQ_FOREACH(obj, &obj_list, next) {
5082 			if (obj->marker || obj == obj_main || obj->traced)
5083 				continue;
5084 
5085 			if (list_containers && first_spurious) {
5086 				rtld_printf("[preloaded]\n");
5087 				first_spurious = false;
5088 			}
5089 
5090 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5091 			name = fname == NULL ? "<unknown>" : fname->name;
5092 			trace_print_obj(obj, name, obj->path, main_local,
5093 			    NULL, fmt2);
5094 		}
5095 	}
5096 }
5097 
5098 /*
5099  * Unload a dlopened object and its dependencies from memory and from
5100  * our data structures.  It is assumed that the DAG rooted in the
5101  * object has already been unreferenced, and that the object has a
5102  * reference count of 0.
5103  */
5104 static void
5105 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5106 {
5107 	Obj_Entry marker, *obj, *next;
5108 
5109 	assert(root->refcount == 0);
5110 
5111 	/*
5112 	 * Pass over the DAG removing unreferenced objects from
5113 	 * appropriate lists.
5114 	 */
5115 	unlink_object(root);
5116 
5117 	/* Unmap all objects that are no longer referenced. */
5118 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5119 		next = TAILQ_NEXT(obj, next);
5120 		if (obj->marker || obj->refcount != 0)
5121 			continue;
5122 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5123 		    obj->mapsize, 0, obj->path);
5124 		dbg("unloading \"%s\"", obj->path);
5125 		/*
5126 		 * Unlink the object now to prevent new references from
5127 		 * being acquired while the bind lock is dropped in
5128 		 * recursive dlclose() invocations.
5129 		 */
5130 		TAILQ_REMOVE(&obj_list, obj, next);
5131 		obj_count--;
5132 
5133 		if (obj->filtees_loaded) {
5134 			if (next != NULL) {
5135 				init_marker(&marker);
5136 				TAILQ_INSERT_BEFORE(next, &marker, next);
5137 				unload_filtees(obj, lockstate);
5138 				next = TAILQ_NEXT(&marker, next);
5139 				TAILQ_REMOVE(&obj_list, &marker, next);
5140 			} else
5141 				unload_filtees(obj, lockstate);
5142 		}
5143 		release_object(obj);
5144 	}
5145 }
5146 
5147 static void
5148 unlink_object(Obj_Entry *root)
5149 {
5150     Objlist_Entry *elm;
5151 
5152     if (root->refcount == 0) {
5153 	/* Remove the object from the RTLD_GLOBAL list. */
5154 	objlist_remove(&list_global, root);
5155 
5156     	/* Remove the object from all objects' DAG lists. */
5157     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5158 	    objlist_remove(&elm->obj->dldags, root);
5159 	    if (elm->obj != root)
5160 		unlink_object(elm->obj);
5161 	}
5162     }
5163 }
5164 
5165 static void
5166 ref_dag(Obj_Entry *root)
5167 {
5168     Objlist_Entry *elm;
5169 
5170     assert(root->dag_inited);
5171     STAILQ_FOREACH(elm, &root->dagmembers, link)
5172 	elm->obj->refcount++;
5173 }
5174 
5175 static void
5176 unref_dag(Obj_Entry *root)
5177 {
5178     Objlist_Entry *elm;
5179 
5180     assert(root->dag_inited);
5181     STAILQ_FOREACH(elm, &root->dagmembers, link)
5182 	elm->obj->refcount--;
5183 }
5184 
5185 /*
5186  * Common code for MD __tls_get_addr().
5187  */
5188 static void *
5189 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5190 {
5191 	Elf_Addr *newdtv, *dtv;
5192 	RtldLockState lockstate;
5193 	int to_copy;
5194 
5195 	dtv = *dtvp;
5196 	/* Check dtv generation in case new modules have arrived */
5197 	if (dtv[0] != tls_dtv_generation) {
5198 		if (!locked)
5199 			wlock_acquire(rtld_bind_lock, &lockstate);
5200 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5201 		to_copy = dtv[1];
5202 		if (to_copy > tls_max_index)
5203 			to_copy = tls_max_index;
5204 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5205 		newdtv[0] = tls_dtv_generation;
5206 		newdtv[1] = tls_max_index;
5207 		free(dtv);
5208 		if (!locked)
5209 			lock_release(rtld_bind_lock, &lockstate);
5210 		dtv = *dtvp = newdtv;
5211 	}
5212 
5213 	/* Dynamically allocate module TLS if necessary */
5214 	if (dtv[index + 1] == 0) {
5215 		/* Signal safe, wlock will block out signals. */
5216 		if (!locked)
5217 			wlock_acquire(rtld_bind_lock, &lockstate);
5218 		if (!dtv[index + 1])
5219 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5220 		if (!locked)
5221 			lock_release(rtld_bind_lock, &lockstate);
5222 	}
5223 	return ((void *)(dtv[index + 1] + offset));
5224 }
5225 
5226 void *
5227 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5228 {
5229 	uintptr_t *dtv;
5230 
5231 	dtv = *dtvp;
5232 	/* Check dtv generation in case new modules have arrived */
5233 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5234 	    dtv[index + 1] != 0))
5235 		return ((void *)(dtv[index + 1] + offset));
5236 	return (tls_get_addr_slow(dtvp, index, offset, false));
5237 }
5238 
5239 #ifdef TLS_VARIANT_I
5240 
5241 /*
5242  * Return pointer to allocated TLS block
5243  */
5244 static void *
5245 get_tls_block_ptr(void *tcb, size_t tcbsize)
5246 {
5247     size_t extra_size, post_size, pre_size, tls_block_size;
5248     size_t tls_init_align;
5249 
5250     tls_init_align = MAX(obj_main->tlsalign, 1);
5251 
5252     /* Compute fragments sizes. */
5253     extra_size = tcbsize - TLS_TCB_SIZE;
5254     post_size = calculate_tls_post_size(tls_init_align);
5255     tls_block_size = tcbsize + post_size;
5256     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5257 
5258     return ((char *)tcb - pre_size - extra_size);
5259 }
5260 
5261 /*
5262  * Allocate Static TLS using the Variant I method.
5263  *
5264  * For details on the layout, see lib/libc/gen/tls.c.
5265  *
5266  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5267  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5268  *     offsets, whereas libc's tls_static_space is just the executable's static
5269  *     TLS segment.
5270  */
5271 void *
5272 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5273 {
5274     Obj_Entry *obj;
5275     char *tls_block;
5276     Elf_Addr *dtv, **tcb;
5277     Elf_Addr addr;
5278     Elf_Addr i;
5279     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5280     size_t tls_init_align, tls_init_offset;
5281 
5282     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5283 	return (oldtcb);
5284 
5285     assert(tcbsize >= TLS_TCB_SIZE);
5286     maxalign = MAX(tcbalign, tls_static_max_align);
5287     tls_init_align = MAX(obj_main->tlsalign, 1);
5288 
5289     /* Compute fragmets sizes. */
5290     extra_size = tcbsize - TLS_TCB_SIZE;
5291     post_size = calculate_tls_post_size(tls_init_align);
5292     tls_block_size = tcbsize + post_size;
5293     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5294     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5295 
5296     /* Allocate whole TLS block */
5297     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5298     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5299 
5300     if (oldtcb != NULL) {
5301 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5302 	    tls_static_space);
5303 	free(get_tls_block_ptr(oldtcb, tcbsize));
5304 
5305 	/* Adjust the DTV. */
5306 	dtv = tcb[0];
5307 	for (i = 0; i < dtv[1]; i++) {
5308 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5309 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5310 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5311 	    }
5312 	}
5313     } else {
5314 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5315 	tcb[0] = dtv;
5316 	dtv[0] = tls_dtv_generation;
5317 	dtv[1] = tls_max_index;
5318 
5319 	for (obj = globallist_curr(objs); obj != NULL;
5320 	  obj = globallist_next(obj)) {
5321 	    if (obj->tlsoffset == 0)
5322 		continue;
5323 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5324 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5325 	    if (tls_init_offset > 0)
5326 		memset((void *)addr, 0, tls_init_offset);
5327 	    if (obj->tlsinitsize > 0) {
5328 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5329 		    obj->tlsinitsize);
5330 	    }
5331 	    if (obj->tlssize > obj->tlsinitsize) {
5332 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5333 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5334 	    }
5335 	    dtv[obj->tlsindex + 1] = addr;
5336 	}
5337     }
5338 
5339     return (tcb);
5340 }
5341 
5342 void
5343 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5344 {
5345     Elf_Addr *dtv;
5346     Elf_Addr tlsstart, tlsend;
5347     size_t post_size;
5348     size_t dtvsize, i, tls_init_align __unused;
5349 
5350     assert(tcbsize >= TLS_TCB_SIZE);
5351     tls_init_align = MAX(obj_main->tlsalign, 1);
5352 
5353     /* Compute fragments sizes. */
5354     post_size = calculate_tls_post_size(tls_init_align);
5355 
5356     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5357     tlsend = (Elf_Addr)tcb + tls_static_space;
5358 
5359     dtv = *(Elf_Addr **)tcb;
5360     dtvsize = dtv[1];
5361     for (i = 0; i < dtvsize; i++) {
5362 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5363 	    free((void*)dtv[i+2]);
5364 	}
5365     }
5366     free(dtv);
5367     free(get_tls_block_ptr(tcb, tcbsize));
5368 }
5369 
5370 #endif	/* TLS_VARIANT_I */
5371 
5372 #ifdef TLS_VARIANT_II
5373 
5374 /*
5375  * Allocate Static TLS using the Variant II method.
5376  */
5377 void *
5378 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5379 {
5380     Obj_Entry *obj;
5381     size_t size, ralign;
5382     char *tls;
5383     Elf_Addr *dtv, *olddtv;
5384     Elf_Addr segbase, oldsegbase, addr;
5385     size_t i;
5386 
5387     ralign = tcbalign;
5388     if (tls_static_max_align > ralign)
5389 	    ralign = tls_static_max_align;
5390     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5391 
5392     assert(tcbsize >= 2*sizeof(Elf_Addr));
5393     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5394     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5395 
5396     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5397     ((Elf_Addr *)segbase)[0] = segbase;
5398     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5399 
5400     dtv[0] = tls_dtv_generation;
5401     dtv[1] = tls_max_index;
5402 
5403     if (oldtls) {
5404 	/*
5405 	 * Copy the static TLS block over whole.
5406 	 */
5407 	oldsegbase = (Elf_Addr) oldtls;
5408 	memcpy((void *)(segbase - tls_static_space),
5409 	   (const void *)(oldsegbase - tls_static_space),
5410 	   tls_static_space);
5411 
5412 	/*
5413 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5414 	 * move them over.
5415 	 */
5416 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5417 	for (i = 0; i < olddtv[1]; i++) {
5418 	    if (olddtv[i + 2] < oldsegbase - size ||
5419 		olddtv[i + 2] > oldsegbase) {
5420 		    dtv[i + 2] = olddtv[i + 2];
5421 		    olddtv[i + 2] = 0;
5422 	    }
5423 	}
5424 
5425 	/*
5426 	 * We assume that this block was the one we created with
5427 	 * allocate_initial_tls().
5428 	 */
5429 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5430     } else {
5431 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5432 		if (obj->marker || obj->tlsoffset == 0)
5433 			continue;
5434 		addr = segbase - obj->tlsoffset;
5435 		memset((void *)(addr + obj->tlsinitsize),
5436 		    0, obj->tlssize - obj->tlsinitsize);
5437 		if (obj->tlsinit) {
5438 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5439 			obj->static_tls_copied = true;
5440 		}
5441 		dtv[obj->tlsindex + 1] = addr;
5442 	}
5443     }
5444 
5445     return ((void *)segbase);
5446 }
5447 
5448 void
5449 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5450 {
5451     Elf_Addr* dtv;
5452     size_t size, ralign;
5453     int dtvsize, i;
5454     Elf_Addr tlsstart, tlsend;
5455 
5456     /*
5457      * Figure out the size of the initial TLS block so that we can
5458      * find stuff which ___tls_get_addr() allocated dynamically.
5459      */
5460     ralign = tcbalign;
5461     if (tls_static_max_align > ralign)
5462 	    ralign = tls_static_max_align;
5463     size = roundup(tls_static_space, ralign);
5464 
5465     dtv = ((Elf_Addr **)tls)[1];
5466     dtvsize = dtv[1];
5467     tlsend = (Elf_Addr)tls;
5468     tlsstart = tlsend - size;
5469     for (i = 0; i < dtvsize; i++) {
5470 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5471 	        dtv[i + 2] > tlsend)) {
5472 		    free((void *)dtv[i + 2]);
5473 	}
5474     }
5475 
5476     free((void *)tlsstart);
5477     free((void *)dtv);
5478 }
5479 
5480 #endif	/* TLS_VARIANT_II */
5481 
5482 /*
5483  * Allocate TLS block for module with given index.
5484  */
5485 void *
5486 allocate_module_tls(int index)
5487 {
5488 	Obj_Entry *obj;
5489 	char *p;
5490 
5491 	TAILQ_FOREACH(obj, &obj_list, next) {
5492 		if (obj->marker)
5493 			continue;
5494 		if (obj->tlsindex == index)
5495 			break;
5496 	}
5497 	if (obj == NULL) {
5498 		_rtld_error("Can't find module with TLS index %d", index);
5499 		rtld_die();
5500 	}
5501 
5502 	if (obj->tls_static) {
5503 #ifdef TLS_VARIANT_I
5504 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5505 #else
5506 		p = (char *)_tcb_get() - obj->tlsoffset;
5507 #endif
5508 		return (p);
5509 	}
5510 
5511 	obj->tls_dynamic = true;
5512 
5513 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5514 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5515 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5516 	return (p);
5517 }
5518 
5519 bool
5520 allocate_tls_offset(Obj_Entry *obj)
5521 {
5522     size_t off;
5523 
5524     if (obj->tls_dynamic)
5525 	return (false);
5526 
5527     if (obj->tls_static)
5528 	return (true);
5529 
5530     if (obj->tlssize == 0) {
5531 	obj->tls_static = true;
5532 	return (true);
5533     }
5534 
5535     if (tls_last_offset == 0)
5536 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5537 	  obj->tlspoffset);
5538     else
5539 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5540 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5541 
5542     obj->tlsoffset = off;
5543 #ifdef TLS_VARIANT_I
5544     off += obj->tlssize;
5545 #endif
5546 
5547     /*
5548      * If we have already fixed the size of the static TLS block, we
5549      * must stay within that size. When allocating the static TLS, we
5550      * leave a small amount of space spare to be used for dynamically
5551      * loading modules which use static TLS.
5552      */
5553     if (tls_static_space != 0) {
5554 	if (off > tls_static_space)
5555 	    return (false);
5556     } else if (obj->tlsalign > tls_static_max_align) {
5557 	    tls_static_max_align = obj->tlsalign;
5558     }
5559 
5560     tls_last_offset = off;
5561     tls_last_size = obj->tlssize;
5562     obj->tls_static = true;
5563 
5564     return (true);
5565 }
5566 
5567 void
5568 free_tls_offset(Obj_Entry *obj)
5569 {
5570 
5571     /*
5572      * If we were the last thing to allocate out of the static TLS
5573      * block, we give our space back to the 'allocator'. This is a
5574      * simplistic workaround to allow libGL.so.1 to be loaded and
5575      * unloaded multiple times.
5576      */
5577     size_t off = obj->tlsoffset;
5578 #ifdef TLS_VARIANT_I
5579     off += obj->tlssize;
5580 #endif
5581     if (off == tls_last_offset) {
5582 	tls_last_offset -= obj->tlssize;
5583 	tls_last_size = 0;
5584     }
5585 }
5586 
5587 void *
5588 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5589 {
5590     void *ret;
5591     RtldLockState lockstate;
5592 
5593     wlock_acquire(rtld_bind_lock, &lockstate);
5594     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5595       tcbsize, tcbalign);
5596     lock_release(rtld_bind_lock, &lockstate);
5597     return (ret);
5598 }
5599 
5600 void
5601 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5602 {
5603     RtldLockState lockstate;
5604 
5605     wlock_acquire(rtld_bind_lock, &lockstate);
5606     free_tls(tcb, tcbsize, tcbalign);
5607     lock_release(rtld_bind_lock, &lockstate);
5608 }
5609 
5610 static void
5611 object_add_name(Obj_Entry *obj, const char *name)
5612 {
5613     Name_Entry *entry;
5614     size_t len;
5615 
5616     len = strlen(name);
5617     entry = malloc(sizeof(Name_Entry) + len);
5618 
5619     if (entry != NULL) {
5620 	strcpy(entry->name, name);
5621 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5622     }
5623 }
5624 
5625 static int
5626 object_match_name(const Obj_Entry *obj, const char *name)
5627 {
5628     Name_Entry *entry;
5629 
5630     STAILQ_FOREACH(entry, &obj->names, link) {
5631 	if (strcmp(name, entry->name) == 0)
5632 	    return (1);
5633     }
5634     return (0);
5635 }
5636 
5637 static Obj_Entry *
5638 locate_dependency(const Obj_Entry *obj, const char *name)
5639 {
5640     const Objlist_Entry *entry;
5641     const Needed_Entry *needed;
5642 
5643     STAILQ_FOREACH(entry, &list_main, link) {
5644 	if (object_match_name(entry->obj, name))
5645 	    return (entry->obj);
5646     }
5647 
5648     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5649 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5650 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5651 	    /*
5652 	     * If there is DT_NEEDED for the name we are looking for,
5653 	     * we are all set.  Note that object might not be found if
5654 	     * dependency was not loaded yet, so the function can
5655 	     * return NULL here.  This is expected and handled
5656 	     * properly by the caller.
5657 	     */
5658 	    return (needed->obj);
5659 	}
5660     }
5661     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5662 	obj->path, name);
5663     rtld_die();
5664 }
5665 
5666 static int
5667 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5668     const Elf_Vernaux *vna)
5669 {
5670     const Elf_Verdef *vd;
5671     const char *vername;
5672 
5673     vername = refobj->strtab + vna->vna_name;
5674     vd = depobj->verdef;
5675     if (vd == NULL) {
5676 	_rtld_error("%s: version %s required by %s not defined",
5677 	    depobj->path, vername, refobj->path);
5678 	return (-1);
5679     }
5680     for (;;) {
5681 	if (vd->vd_version != VER_DEF_CURRENT) {
5682 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5683 		depobj->path, vd->vd_version);
5684 	    return (-1);
5685 	}
5686 	if (vna->vna_hash == vd->vd_hash) {
5687 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5688 		((const char *)vd + vd->vd_aux);
5689 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5690 		return (0);
5691 	}
5692 	if (vd->vd_next == 0)
5693 	    break;
5694 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5695     }
5696     if (vna->vna_flags & VER_FLG_WEAK)
5697 	return (0);
5698     _rtld_error("%s: version %s required by %s not found",
5699 	depobj->path, vername, refobj->path);
5700     return (-1);
5701 }
5702 
5703 static int
5704 rtld_verify_object_versions(Obj_Entry *obj)
5705 {
5706     const Elf_Verneed *vn;
5707     const Elf_Verdef  *vd;
5708     const Elf_Verdaux *vda;
5709     const Elf_Vernaux *vna;
5710     const Obj_Entry *depobj;
5711     int maxvernum, vernum;
5712 
5713     if (obj->ver_checked)
5714 	return (0);
5715     obj->ver_checked = true;
5716 
5717     maxvernum = 0;
5718     /*
5719      * Walk over defined and required version records and figure out
5720      * max index used by any of them. Do very basic sanity checking
5721      * while there.
5722      */
5723     vn = obj->verneed;
5724     while (vn != NULL) {
5725 	if (vn->vn_version != VER_NEED_CURRENT) {
5726 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5727 		obj->path, vn->vn_version);
5728 	    return (-1);
5729 	}
5730 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5731 	for (;;) {
5732 	    vernum = VER_NEED_IDX(vna->vna_other);
5733 	    if (vernum > maxvernum)
5734 		maxvernum = vernum;
5735 	    if (vna->vna_next == 0)
5736 		 break;
5737 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5738 	}
5739 	if (vn->vn_next == 0)
5740 	    break;
5741 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5742     }
5743 
5744     vd = obj->verdef;
5745     while (vd != NULL) {
5746 	if (vd->vd_version != VER_DEF_CURRENT) {
5747 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5748 		obj->path, vd->vd_version);
5749 	    return (-1);
5750 	}
5751 	vernum = VER_DEF_IDX(vd->vd_ndx);
5752 	if (vernum > maxvernum)
5753 		maxvernum = vernum;
5754 	if (vd->vd_next == 0)
5755 	    break;
5756 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5757     }
5758 
5759     if (maxvernum == 0)
5760 	return (0);
5761 
5762     /*
5763      * Store version information in array indexable by version index.
5764      * Verify that object version requirements are satisfied along the
5765      * way.
5766      */
5767     obj->vernum = maxvernum + 1;
5768     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5769 
5770     vd = obj->verdef;
5771     while (vd != NULL) {
5772 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5773 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5774 	    assert(vernum <= maxvernum);
5775 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5776 	    obj->vertab[vernum].hash = vd->vd_hash;
5777 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5778 	    obj->vertab[vernum].file = NULL;
5779 	    obj->vertab[vernum].flags = 0;
5780 	}
5781 	if (vd->vd_next == 0)
5782 	    break;
5783 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5784     }
5785 
5786     vn = obj->verneed;
5787     while (vn != NULL) {
5788 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5789 	if (depobj == NULL)
5790 	    return (-1);
5791 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5792 	for (;;) {
5793 	    if (check_object_provided_version(obj, depobj, vna))
5794 		return (-1);
5795 	    vernum = VER_NEED_IDX(vna->vna_other);
5796 	    assert(vernum <= maxvernum);
5797 	    obj->vertab[vernum].hash = vna->vna_hash;
5798 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5799 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5800 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5801 		VER_INFO_HIDDEN : 0;
5802 	    if (vna->vna_next == 0)
5803 		 break;
5804 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5805 	}
5806 	if (vn->vn_next == 0)
5807 	    break;
5808 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5809     }
5810     return (0);
5811 }
5812 
5813 static int
5814 rtld_verify_versions(const Objlist *objlist)
5815 {
5816     Objlist_Entry *entry;
5817     int rc;
5818 
5819     rc = 0;
5820     STAILQ_FOREACH(entry, objlist, link) {
5821 	/*
5822 	 * Skip dummy objects or objects that have their version requirements
5823 	 * already checked.
5824 	 */
5825 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5826 	    continue;
5827 	if (rtld_verify_object_versions(entry->obj) == -1) {
5828 	    rc = -1;
5829 	    if (ld_tracing == NULL)
5830 		break;
5831 	}
5832     }
5833     if (rc == 0 || ld_tracing != NULL)
5834     	rc = rtld_verify_object_versions(&obj_rtld);
5835     return (rc);
5836 }
5837 
5838 const Ver_Entry *
5839 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5840 {
5841     Elf_Versym vernum;
5842 
5843     if (obj->vertab) {
5844 	vernum = VER_NDX(obj->versyms[symnum]);
5845 	if (vernum >= obj->vernum) {
5846 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5847 		obj->path, obj->strtab + symnum, vernum);
5848 	} else if (obj->vertab[vernum].hash != 0) {
5849 	    return (&obj->vertab[vernum]);
5850 	}
5851     }
5852     return (NULL);
5853 }
5854 
5855 int
5856 _rtld_get_stack_prot(void)
5857 {
5858 
5859 	return (stack_prot);
5860 }
5861 
5862 int
5863 _rtld_is_dlopened(void *arg)
5864 {
5865 	Obj_Entry *obj;
5866 	RtldLockState lockstate;
5867 	int res;
5868 
5869 	rlock_acquire(rtld_bind_lock, &lockstate);
5870 	obj = dlcheck(arg);
5871 	if (obj == NULL)
5872 		obj = obj_from_addr(arg);
5873 	if (obj == NULL) {
5874 		_rtld_error("No shared object contains address");
5875 		lock_release(rtld_bind_lock, &lockstate);
5876 		return (-1);
5877 	}
5878 	res = obj->dlopened ? 1 : 0;
5879 	lock_release(rtld_bind_lock, &lockstate);
5880 	return (res);
5881 }
5882 
5883 static int
5884 obj_remap_relro(Obj_Entry *obj, int prot)
5885 {
5886 
5887 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5888 	    prot) == -1) {
5889 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5890 		    obj->path, prot, rtld_strerror(errno));
5891 		return (-1);
5892 	}
5893 	return (0);
5894 }
5895 
5896 static int
5897 obj_disable_relro(Obj_Entry *obj)
5898 {
5899 
5900 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5901 }
5902 
5903 static int
5904 obj_enforce_relro(Obj_Entry *obj)
5905 {
5906 
5907 	return (obj_remap_relro(obj, PROT_READ));
5908 }
5909 
5910 static void
5911 map_stacks_exec(RtldLockState *lockstate)
5912 {
5913 	void (*thr_map_stacks_exec)(void);
5914 
5915 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5916 		return;
5917 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5918 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5919 	if (thr_map_stacks_exec != NULL) {
5920 		stack_prot |= PROT_EXEC;
5921 		thr_map_stacks_exec();
5922 	}
5923 }
5924 
5925 static void
5926 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5927 {
5928 	Objlist_Entry *elm;
5929 	Obj_Entry *obj;
5930 	void (*distrib)(size_t, void *, size_t, size_t);
5931 
5932 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5933 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5934 	if (distrib == NULL)
5935 		return;
5936 	STAILQ_FOREACH(elm, list, link) {
5937 		obj = elm->obj;
5938 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5939 			continue;
5940 		lock_release(rtld_bind_lock, lockstate);
5941 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5942 		    obj->tlssize);
5943 		wlock_acquire(rtld_bind_lock, lockstate);
5944 		obj->static_tls_copied = true;
5945 	}
5946 }
5947 
5948 void
5949 symlook_init(SymLook *dst, const char *name)
5950 {
5951 
5952 	bzero(dst, sizeof(*dst));
5953 	dst->name = name;
5954 	dst->hash = elf_hash(name);
5955 	dst->hash_gnu = gnu_hash(name);
5956 }
5957 
5958 static void
5959 symlook_init_from_req(SymLook *dst, const SymLook *src)
5960 {
5961 
5962 	dst->name = src->name;
5963 	dst->hash = src->hash;
5964 	dst->hash_gnu = src->hash_gnu;
5965 	dst->ventry = src->ventry;
5966 	dst->flags = src->flags;
5967 	dst->defobj_out = NULL;
5968 	dst->sym_out = NULL;
5969 	dst->lockstate = src->lockstate;
5970 }
5971 
5972 static int
5973 open_binary_fd(const char *argv0, bool search_in_path,
5974     const char **binpath_res)
5975 {
5976 	char *binpath, *pathenv, *pe, *res1;
5977 	const char *res;
5978 	int fd;
5979 
5980 	binpath = NULL;
5981 	res = NULL;
5982 	if (search_in_path && strchr(argv0, '/') == NULL) {
5983 		binpath = xmalloc(PATH_MAX);
5984 		pathenv = getenv("PATH");
5985 		if (pathenv == NULL) {
5986 			_rtld_error("-p and no PATH environment variable");
5987 			rtld_die();
5988 		}
5989 		pathenv = strdup(pathenv);
5990 		if (pathenv == NULL) {
5991 			_rtld_error("Cannot allocate memory");
5992 			rtld_die();
5993 		}
5994 		fd = -1;
5995 		errno = ENOENT;
5996 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5997 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5998 				continue;
5999 			if (binpath[0] != '\0' &&
6000 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6001 				continue;
6002 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6003 				continue;
6004 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6005 			if (fd != -1 || errno != ENOENT) {
6006 				res = binpath;
6007 				break;
6008 			}
6009 		}
6010 		free(pathenv);
6011 	} else {
6012 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6013 		res = argv0;
6014 	}
6015 
6016 	if (fd == -1) {
6017 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6018 		rtld_die();
6019 	}
6020 	if (res != NULL && res[0] != '/') {
6021 		res1 = xmalloc(PATH_MAX);
6022 		if (realpath(res, res1) != NULL) {
6023 			if (res != argv0)
6024 				free(__DECONST(char *, res));
6025 			res = res1;
6026 		} else {
6027 			free(res1);
6028 		}
6029 	}
6030 	*binpath_res = res;
6031 	return (fd);
6032 }
6033 
6034 /*
6035  * Parse a set of command-line arguments.
6036  */
6037 static int
6038 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6039     const char **argv0, bool *dir_ignore)
6040 {
6041 	const char *arg;
6042 	char machine[64];
6043 	size_t sz;
6044 	int arglen, fd, i, j, mib[2];
6045 	char opt;
6046 	bool seen_b, seen_f;
6047 
6048 	dbg("Parsing command-line arguments");
6049 	*use_pathp = false;
6050 	*fdp = -1;
6051 	*dir_ignore = false;
6052 	seen_b = seen_f = false;
6053 
6054 	for (i = 1; i < argc; i++ ) {
6055 		arg = argv[i];
6056 		dbg("argv[%d]: '%s'", i, arg);
6057 
6058 		/*
6059 		 * rtld arguments end with an explicit "--" or with the first
6060 		 * non-prefixed argument.
6061 		 */
6062 		if (strcmp(arg, "--") == 0) {
6063 			i++;
6064 			break;
6065 		}
6066 		if (arg[0] != '-')
6067 			break;
6068 
6069 		/*
6070 		 * All other arguments are single-character options that can
6071 		 * be combined, so we need to search through `arg` for them.
6072 		 */
6073 		arglen = strlen(arg);
6074 		for (j = 1; j < arglen; j++) {
6075 			opt = arg[j];
6076 			if (opt == 'h') {
6077 				print_usage(argv[0]);
6078 				_exit(0);
6079 			} else if (opt == 'b') {
6080 				if (seen_f) {
6081 					_rtld_error("Both -b and -f specified");
6082 					rtld_die();
6083 				}
6084 				if (j != arglen - 1) {
6085 					_rtld_error("Invalid options: %s", arg);
6086 					rtld_die();
6087 				}
6088 				i++;
6089 				*argv0 = argv[i];
6090 				seen_b = true;
6091 				break;
6092 			} else if (opt == 'd') {
6093 				*dir_ignore = true;
6094 			} else if (opt == 'f') {
6095 				if (seen_b) {
6096 					_rtld_error("Both -b and -f specified");
6097 					rtld_die();
6098 				}
6099 
6100 				/*
6101 				 * -f XX can be used to specify a
6102 				 * descriptor for the binary named at
6103 				 * the command line (i.e., the later
6104 				 * argument will specify the process
6105 				 * name but the descriptor is what
6106 				 * will actually be executed).
6107 				 *
6108 				 * -f must be the last option in the
6109 				 * group, e.g., -abcf <fd>.
6110 				 */
6111 				if (j != arglen - 1) {
6112 					_rtld_error("Invalid options: %s", arg);
6113 					rtld_die();
6114 				}
6115 				i++;
6116 				fd = parse_integer(argv[i]);
6117 				if (fd == -1) {
6118 					_rtld_error(
6119 					    "Invalid file descriptor: '%s'",
6120 					    argv[i]);
6121 					rtld_die();
6122 				}
6123 				*fdp = fd;
6124 				seen_f = true;
6125 				break;
6126 			} else if (opt == 'o') {
6127 				struct ld_env_var_desc *l;
6128 				char *n, *v;
6129 				u_int ll;
6130 
6131 				if (j != arglen - 1) {
6132 					_rtld_error("Invalid options: %s", arg);
6133 					rtld_die();
6134 				}
6135 				i++;
6136 				n = argv[i];
6137 				v = strchr(n, '=');
6138 				if (v == NULL) {
6139 					_rtld_error("No '=' in -o parameter");
6140 					rtld_die();
6141 				}
6142 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6143 					l = &ld_env_vars[ll];
6144 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6145 					    strncmp(n, l->n, v - n) == 0) {
6146 						l->val = v + 1;
6147 						break;
6148 					}
6149 				}
6150 				if (ll == nitems(ld_env_vars)) {
6151 					_rtld_error("Unknown LD_ option %s",
6152 					    n);
6153 					rtld_die();
6154 				}
6155 			} else if (opt == 'p') {
6156 				*use_pathp = true;
6157 			} else if (opt == 'u') {
6158 				u_int ll;
6159 
6160 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6161 					ld_env_vars[ll].val = NULL;
6162 			} else if (opt == 'v') {
6163 				machine[0] = '\0';
6164 				mib[0] = CTL_HW;
6165 				mib[1] = HW_MACHINE;
6166 				sz = sizeof(machine);
6167 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6168 				ld_elf_hints_path = ld_get_env_var(
6169 				    LD_ELF_HINTS_PATH);
6170 				set_ld_elf_hints_path();
6171 				rtld_printf(
6172 				    "FreeBSD ld-elf.so.1 %s\n"
6173 				    "FreeBSD_version %d\n"
6174 				    "Default lib path %s\n"
6175 				    "Hints lib path %s\n"
6176 				    "Env prefix %s\n"
6177 				    "Default hint file %s\n"
6178 				    "Hint file %s\n"
6179 				    "libmap file %s\n"
6180 				    "Optional static TLS size %zd bytes\n",
6181 				    machine,
6182 				    __FreeBSD_version, ld_standard_library_path,
6183 				    gethints(false),
6184 				    ld_env_prefix, ld_elf_hints_default,
6185 				    ld_elf_hints_path,
6186 				    ld_path_libmap_conf,
6187 				    ld_static_tls_extra);
6188 				_exit(0);
6189 			} else {
6190 				_rtld_error("Invalid argument: '%s'", arg);
6191 				print_usage(argv[0]);
6192 				rtld_die();
6193 			}
6194 		}
6195 	}
6196 
6197 	if (!seen_b)
6198 		*argv0 = argv[i];
6199 	return (i);
6200 }
6201 
6202 /*
6203  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6204  */
6205 static int
6206 parse_integer(const char *str)
6207 {
6208 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6209 	const char *orig;
6210 	int n;
6211 	char c;
6212 
6213 	orig = str;
6214 	n = 0;
6215 	for (c = *str; c != '\0'; c = *++str) {
6216 		if (c < '0' || c > '9')
6217 			return (-1);
6218 
6219 		n *= RADIX;
6220 		n += c - '0';
6221 	}
6222 
6223 	/* Make sure we actually parsed something. */
6224 	if (str == orig)
6225 		return (-1);
6226 	return (n);
6227 }
6228 
6229 static void
6230 print_usage(const char *argv0)
6231 {
6232 
6233 	rtld_printf(
6234 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6235 	    "\n"
6236 	    "Options:\n"
6237 	    "  -h        Display this help message\n"
6238 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6239 	    "  -d        Ignore lack of exec permissions for the binary\n"
6240 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6241 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6242 	    "  -p        Search in PATH for named binary\n"
6243 	    "  -u        Ignore LD_ environment variables\n"
6244 	    "  -v        Display identification information\n"
6245 	    "  --        End of RTLD options\n"
6246 	    "  <binary>  Name of process to execute\n"
6247 	    "  <args>    Arguments to the executed process\n", argv0);
6248 }
6249 
6250 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6251 static const struct auxfmt {
6252 	const char *name;
6253 	const char *fmt;
6254 } auxfmts[] = {
6255 	AUXFMT(AT_NULL, NULL),
6256 	AUXFMT(AT_IGNORE, NULL),
6257 	AUXFMT(AT_EXECFD, "%ld"),
6258 	AUXFMT(AT_PHDR, "%p"),
6259 	AUXFMT(AT_PHENT, "%lu"),
6260 	AUXFMT(AT_PHNUM, "%lu"),
6261 	AUXFMT(AT_PAGESZ, "%lu"),
6262 	AUXFMT(AT_BASE, "%#lx"),
6263 	AUXFMT(AT_FLAGS, "%#lx"),
6264 	AUXFMT(AT_ENTRY, "%p"),
6265 	AUXFMT(AT_NOTELF, NULL),
6266 	AUXFMT(AT_UID, "%ld"),
6267 	AUXFMT(AT_EUID, "%ld"),
6268 	AUXFMT(AT_GID, "%ld"),
6269 	AUXFMT(AT_EGID, "%ld"),
6270 	AUXFMT(AT_EXECPATH, "%s"),
6271 	AUXFMT(AT_CANARY, "%p"),
6272 	AUXFMT(AT_CANARYLEN, "%lu"),
6273 	AUXFMT(AT_OSRELDATE, "%lu"),
6274 	AUXFMT(AT_NCPUS, "%lu"),
6275 	AUXFMT(AT_PAGESIZES, "%p"),
6276 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6277 	AUXFMT(AT_TIMEKEEP, "%p"),
6278 	AUXFMT(AT_STACKPROT, "%#lx"),
6279 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6280 	AUXFMT(AT_HWCAP, "%#lx"),
6281 	AUXFMT(AT_HWCAP2, "%#lx"),
6282 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6283 	AUXFMT(AT_ARGC, "%lu"),
6284 	AUXFMT(AT_ARGV, "%p"),
6285 	AUXFMT(AT_ENVC, "%p"),
6286 	AUXFMT(AT_ENVV, "%p"),
6287 	AUXFMT(AT_PS_STRINGS, "%p"),
6288 	AUXFMT(AT_FXRNG, "%p"),
6289 	AUXFMT(AT_KPRELOAD, "%p"),
6290 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6291 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6292 };
6293 
6294 static bool
6295 is_ptr_fmt(const char *fmt)
6296 {
6297 	char last;
6298 
6299 	last = fmt[strlen(fmt) - 1];
6300 	return (last == 'p' || last == 's');
6301 }
6302 
6303 static void
6304 dump_auxv(Elf_Auxinfo **aux_info)
6305 {
6306 	Elf_Auxinfo *auxp;
6307 	const struct auxfmt *fmt;
6308 	int i;
6309 
6310 	for (i = 0; i < AT_COUNT; i++) {
6311 		auxp = aux_info[i];
6312 		if (auxp == NULL)
6313 			continue;
6314 		fmt = &auxfmts[i];
6315 		if (fmt->fmt == NULL)
6316 			continue;
6317 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6318 		if (is_ptr_fmt(fmt->fmt)) {
6319 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6320 			    auxp->a_un.a_ptr);
6321 		} else {
6322 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6323 			    auxp->a_un.a_val);
6324 		}
6325 		rtld_fdprintf(STDOUT_FILENO, "\n");
6326 	}
6327 }
6328 
6329 /*
6330  * Overrides for libc_pic-provided functions.
6331  */
6332 
6333 int
6334 __getosreldate(void)
6335 {
6336 	size_t len;
6337 	int oid[2];
6338 	int error, osrel;
6339 
6340 	if (osreldate != 0)
6341 		return (osreldate);
6342 
6343 	oid[0] = CTL_KERN;
6344 	oid[1] = KERN_OSRELDATE;
6345 	osrel = 0;
6346 	len = sizeof(osrel);
6347 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6348 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6349 		osreldate = osrel;
6350 	return (osreldate);
6351 }
6352 const char *
6353 rtld_strerror(int errnum)
6354 {
6355 
6356 	if (errnum < 0 || errnum >= sys_nerr)
6357 		return ("Unknown error");
6358 	return (sys_errlist[errnum]);
6359 }
6360 
6361 char *
6362 getenv(const char *name)
6363 {
6364 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6365 	    strlen(name))));
6366 }
6367 
6368 /* malloc */
6369 void *
6370 malloc(size_t nbytes)
6371 {
6372 
6373 	return (__crt_malloc(nbytes));
6374 }
6375 
6376 void *
6377 calloc(size_t num, size_t size)
6378 {
6379 
6380 	return (__crt_calloc(num, size));
6381 }
6382 
6383 void
6384 free(void *cp)
6385 {
6386 
6387 	__crt_free(cp);
6388 }
6389 
6390 void *
6391 realloc(void *cp, size_t nbytes)
6392 {
6393 
6394 	return (__crt_realloc(cp, nbytes));
6395 }
6396 
6397 extern int _rtld_version__FreeBSD_version __exported;
6398 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6399 
6400 extern char _rtld_version_laddr_offset __exported;
6401 char _rtld_version_laddr_offset;
6402 
6403 extern char _rtld_version_dlpi_tls_data __exported;
6404 char _rtld_version_dlpi_tls_data;
6405