xref: /freebsd/libexec/rtld-elf/rtld.c (revision a476e3a5678de5ca7ad765315f28308410d4f09e)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "notes.h"
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * Function declarations.
70  */
71 static const char *basename(const char *);
72 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
73     const Elf_Dyn **, const Elf_Dyn **);
74 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
75     const Elf_Dyn *);
76 static void digest_dynamic(Obj_Entry *, int);
77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
78 static Obj_Entry *dlcheck(void *);
79 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
80     int lo_flags, int mode, RtldLockState *lockstate);
81 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
82 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
83 static bool donelist_check(DoneList *, const Obj_Entry *);
84 static void errmsg_restore(char *);
85 static char *errmsg_save(void);
86 static void *fill_search_info(const char *, size_t, void *);
87 static char *find_library(const char *, const Obj_Entry *, int *);
88 static const char *gethints(bool);
89 static void init_dag(Obj_Entry *);
90 static void init_pagesizes(Elf_Auxinfo **aux_info);
91 static void init_rtld(caddr_t, Elf_Auxinfo **);
92 static void initlist_add_neededs(Needed_Entry *, Objlist *);
93 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
94 static void linkmap_add(Obj_Entry *);
95 static void linkmap_delete(Obj_Entry *);
96 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
97 static void unload_filtees(Obj_Entry *);
98 static int load_needed_objects(Obj_Entry *, int);
99 static int load_preload_objects(void);
100 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
101 static void map_stacks_exec(RtldLockState *);
102 static Obj_Entry *obj_from_addr(const void *);
103 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
104 static void objlist_call_init(Objlist *, RtldLockState *);
105 static void objlist_clear(Objlist *);
106 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
107 static void objlist_init(Objlist *);
108 static void objlist_push_head(Objlist *, Obj_Entry *);
109 static void objlist_push_tail(Objlist *, Obj_Entry *);
110 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
111 static void objlist_remove(Objlist *, Obj_Entry *);
112 static int parse_libdir(const char *);
113 static void *path_enumerate(const char *, path_enum_proc, void *);
114 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
115     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
116 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
117     int flags, RtldLockState *lockstate);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
119     RtldLockState *);
120 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
121     int flags, RtldLockState *lockstate);
122 static int rtld_dirname(const char *, char *);
123 static int rtld_dirname_abs(const char *, char *);
124 static void *rtld_dlopen(const char *name, int fd, int mode);
125 static void rtld_exit(void);
126 static char *search_library_path(const char *, const char *);
127 static char *search_library_pathfds(const char *, const char *, int *);
128 static const void **get_program_var_addr(const char *, RtldLockState *);
129 static void set_program_var(const char *, const void *);
130 static int symlook_default(SymLook *, const Obj_Entry *refobj);
131 static int symlook_global(SymLook *, DoneList *);
132 static void symlook_init_from_req(SymLook *, const SymLook *);
133 static int symlook_list(SymLook *, const Objlist *, DoneList *);
134 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
136 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
137 static void trace_loaded_objects(Obj_Entry *);
138 static void unlink_object(Obj_Entry *);
139 static void unload_object(Obj_Entry *);
140 static void unref_dag(Obj_Entry *);
141 static void ref_dag(Obj_Entry *);
142 static char *origin_subst_one(Obj_Entry *, char *, const char *,
143     const char *, bool);
144 static char *origin_subst(Obj_Entry *, char *);
145 static bool obj_resolve_origin(Obj_Entry *obj);
146 static void preinit_main(void);
147 static int  rtld_verify_versions(const Objlist *);
148 static int  rtld_verify_object_versions(Obj_Entry *);
149 static void object_add_name(Obj_Entry *, const char *);
150 static int  object_match_name(const Obj_Entry *, const char *);
151 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
152 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
153     struct dl_phdr_info *phdr_info);
154 static uint32_t gnu_hash(const char *);
155 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
156     const unsigned long);
157 
158 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
159 void _r_debug_postinit(struct link_map *) __noinline __exported;
160 
161 int __sys_openat(int, const char *, int, ...);
162 
163 /*
164  * Data declarations.
165  */
166 static char *error_message;	/* Message for dlerror(), or NULL */
167 struct r_debug r_debug __exported;	/* for GDB; */
168 static bool libmap_disable;	/* Disable libmap */
169 static bool ld_loadfltr;	/* Immediate filters processing */
170 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
171 static bool trust;		/* False for setuid and setgid programs */
172 static bool dangerous_ld_env;	/* True if environment variables have been
173 				   used to affect the libraries loaded */
174 static char *ld_bind_now;	/* Environment variable for immediate binding */
175 static char *ld_debug;		/* Environment variable for debugging */
176 static char *ld_library_path;	/* Environment variable for search path */
177 static char *ld_library_dirs;	/* Environment variable for library descriptors */
178 static char *ld_preload;	/* Environment variable for libraries to
179 				   load first */
180 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181 static char *ld_tracing;	/* Called from ldd to print libs */
182 static char *ld_utrace;		/* Use utrace() to log events. */
183 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
184 static Obj_Entry **obj_tail;	/* Link field of last object in list */
185 static Obj_Entry *obj_main;	/* The main program shared object */
186 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187 static unsigned int obj_count;	/* Number of objects in obj_list */
188 static unsigned int obj_loads;	/* Number of objects in obj_list */
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 int dlclose(void *) __exported;
208 char *dlerror(void) __exported;
209 void *dlopen(const char *, int) __exported;
210 void *fdlopen(int, int) __exported;
211 void *dlsym(void *, const char *) __exported;
212 dlfunc_t dlfunc(void *, const char *) __exported;
213 void *dlvsym(void *, const char *, const char *) __exported;
214 int dladdr(const void *, Dl_info *) __exported;
215 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217 int dlinfo(void *, int , void *) __exported;
218 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220 int _rtld_get_stack_prot(void) __exported;
221 int _rtld_is_dlopened(void *) __exported;
222 void _rtld_error(const char *, ...) __exported;
223 
224 int npagesizes, osreldate;
225 size_t *pagesizes;
226 
227 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228 
229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230 static int max_stack_flags;
231 
232 /*
233  * Global declarations normally provided by crt1.  The dynamic linker is
234  * not built with crt1, so we have to provide them ourselves.
235  */
236 char *__progname;
237 char **environ;
238 
239 /*
240  * Used to pass argc, argv to init functions.
241  */
242 int main_argc;
243 char **main_argv;
244 
245 /*
246  * Globals to control TLS allocation.
247  */
248 size_t tls_last_offset;		/* Static TLS offset of last module */
249 size_t tls_last_size;		/* Static TLS size of last module */
250 size_t tls_static_space;	/* Static TLS space allocated */
251 size_t tls_static_max_align;
252 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253 int tls_max_index = 1;		/* Largest module index allocated */
254 
255 bool ld_library_path_rpath = false;
256 
257 /*
258  * Globals for path names, and such
259  */
260 char *ld_path_elf_hints = _PATH_ELF_HINTS;
261 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
262 char *ld_path_rtld = _PATH_RTLD;
263 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
264 char *ld_env_prefix = LD_;
265 
266 /*
267  * Fill in a DoneList with an allocation large enough to hold all of
268  * the currently-loaded objects.  Keep this as a macro since it calls
269  * alloca and we want that to occur within the scope of the caller.
270  */
271 #define donelist_init(dlp)					\
272     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
273     assert((dlp)->objs != NULL),				\
274     (dlp)->num_alloc = obj_count,				\
275     (dlp)->num_used = 0)
276 
277 #define	UTRACE_DLOPEN_START		1
278 #define	UTRACE_DLOPEN_STOP		2
279 #define	UTRACE_DLCLOSE_START		3
280 #define	UTRACE_DLCLOSE_STOP		4
281 #define	UTRACE_LOAD_OBJECT		5
282 #define	UTRACE_UNLOAD_OBJECT		6
283 #define	UTRACE_ADD_RUNDEP		7
284 #define	UTRACE_PRELOAD_FINISHED		8
285 #define	UTRACE_INIT_CALL		9
286 #define	UTRACE_FINI_CALL		10
287 #define	UTRACE_DLSYM_START		11
288 #define	UTRACE_DLSYM_STOP		12
289 
290 struct utrace_rtld {
291 	char sig[4];			/* 'RTLD' */
292 	int event;
293 	void *handle;
294 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
295 	size_t mapsize;
296 	int refcnt;			/* Used for 'mode' */
297 	char name[MAXPATHLEN];
298 };
299 
300 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
301 	if (ld_utrace != NULL)					\
302 		ld_utrace_log(e, h, mb, ms, r, n);		\
303 } while (0)
304 
305 static void
306 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
307     int refcnt, const char *name)
308 {
309 	struct utrace_rtld ut;
310 
311 	ut.sig[0] = 'R';
312 	ut.sig[1] = 'T';
313 	ut.sig[2] = 'L';
314 	ut.sig[3] = 'D';
315 	ut.event = event;
316 	ut.handle = handle;
317 	ut.mapbase = mapbase;
318 	ut.mapsize = mapsize;
319 	ut.refcnt = refcnt;
320 	bzero(ut.name, sizeof(ut.name));
321 	if (name)
322 		strlcpy(ut.name, name, sizeof(ut.name));
323 	utrace(&ut, sizeof(ut));
324 }
325 
326 /*
327  * Main entry point for dynamic linking.  The first argument is the
328  * stack pointer.  The stack is expected to be laid out as described
329  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
330  * Specifically, the stack pointer points to a word containing
331  * ARGC.  Following that in the stack is a null-terminated sequence
332  * of pointers to argument strings.  Then comes a null-terminated
333  * sequence of pointers to environment strings.  Finally, there is a
334  * sequence of "auxiliary vector" entries.
335  *
336  * The second argument points to a place to store the dynamic linker's
337  * exit procedure pointer and the third to a place to store the main
338  * program's object.
339  *
340  * The return value is the main program's entry point.
341  */
342 func_ptr_type
343 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
344 {
345     Elf_Auxinfo *aux_info[AT_COUNT];
346     int i;
347     int argc;
348     char **argv;
349     char **env;
350     Elf_Auxinfo *aux;
351     Elf_Auxinfo *auxp;
352     const char *argv0;
353     Objlist_Entry *entry;
354     Obj_Entry *obj;
355     Obj_Entry **preload_tail;
356     Obj_Entry *last_interposer;
357     Objlist initlist;
358     RtldLockState lockstate;
359     char *library_path_rpath;
360     int mib[2];
361     size_t len;
362 
363     /*
364      * On entry, the dynamic linker itself has not been relocated yet.
365      * Be very careful not to reference any global data until after
366      * init_rtld has returned.  It is OK to reference file-scope statics
367      * and string constants, and to call static and global functions.
368      */
369 
370     /* Find the auxiliary vector on the stack. */
371     argc = *sp++;
372     argv = (char **) sp;
373     sp += argc + 1;	/* Skip over arguments and NULL terminator */
374     env = (char **) sp;
375     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
376 	;
377     aux = (Elf_Auxinfo *) sp;
378 
379     /* Digest the auxiliary vector. */
380     for (i = 0;  i < AT_COUNT;  i++)
381 	aux_info[i] = NULL;
382     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
383 	if (auxp->a_type < AT_COUNT)
384 	    aux_info[auxp->a_type] = auxp;
385     }
386 
387     /* Initialize and relocate ourselves. */
388     assert(aux_info[AT_BASE] != NULL);
389     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
390 
391     __progname = obj_rtld.path;
392     argv0 = argv[0] != NULL ? argv[0] : "(null)";
393     environ = env;
394     main_argc = argc;
395     main_argv = argv;
396 
397     if (aux_info[AT_CANARY] != NULL &&
398 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
399 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
400 	    if (i > sizeof(__stack_chk_guard))
401 		    i = sizeof(__stack_chk_guard);
402 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
403     } else {
404 	mib[0] = CTL_KERN;
405 	mib[1] = KERN_ARND;
406 
407 	len = sizeof(__stack_chk_guard);
408 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
409 	    len != sizeof(__stack_chk_guard)) {
410 		/* If sysctl was unsuccessful, use the "terminator canary". */
411 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
412 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
413 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
414 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
415 	}
416     }
417 
418     trust = !issetugid();
419 
420     ld_bind_now = getenv(LD_ "BIND_NOW");
421     /*
422      * If the process is tainted, then we un-set the dangerous environment
423      * variables.  The process will be marked as tainted until setuid(2)
424      * is called.  If any child process calls setuid(2) we do not want any
425      * future processes to honor the potentially un-safe variables.
426      */
427     if (!trust) {
428         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
429 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
430 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
431 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
432 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
433 		_rtld_error("environment corrupt; aborting");
434 		rtld_die();
435 	}
436     }
437     ld_debug = getenv(LD_ "DEBUG");
438     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
439     libmap_override = getenv(LD_ "LIBMAP");
440     ld_library_path = getenv(LD_ "LIBRARY_PATH");
441     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
442     ld_preload = getenv(LD_ "PRELOAD");
443     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
444     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
445     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
446     if (library_path_rpath != NULL) {
447 	    if (library_path_rpath[0] == 'y' ||
448 		library_path_rpath[0] == 'Y' ||
449 		library_path_rpath[0] == '1')
450 		    ld_library_path_rpath = true;
451 	    else
452 		    ld_library_path_rpath = false;
453     }
454     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
455 	(ld_library_path != NULL) || (ld_preload != NULL) ||
456 	(ld_elf_hints_path != NULL) || ld_loadfltr;
457     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
458     ld_utrace = getenv(LD_ "UTRACE");
459 
460     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
461 	ld_elf_hints_path = ld_path_elf_hints;
462 
463     if (ld_debug != NULL && *ld_debug != '\0')
464 	debug = 1;
465     dbg("%s is initialized, base address = %p", __progname,
466 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
467     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
468     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
469 
470     dbg("initializing thread locks");
471     lockdflt_init();
472 
473     /*
474      * Load the main program, or process its program header if it is
475      * already loaded.
476      */
477     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
478 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
479 	dbg("loading main program");
480 	obj_main = map_object(fd, argv0, NULL);
481 	close(fd);
482 	if (obj_main == NULL)
483 	    rtld_die();
484 	max_stack_flags = obj->stack_flags;
485     } else {				/* Main program already loaded. */
486 	const Elf_Phdr *phdr;
487 	int phnum;
488 	caddr_t entry;
489 
490 	dbg("processing main program's program header");
491 	assert(aux_info[AT_PHDR] != NULL);
492 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
493 	assert(aux_info[AT_PHNUM] != NULL);
494 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
495 	assert(aux_info[AT_PHENT] != NULL);
496 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
497 	assert(aux_info[AT_ENTRY] != NULL);
498 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
499 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
500 	    rtld_die();
501     }
502 
503     if (aux_info[AT_EXECPATH] != 0) {
504 	    char *kexecpath;
505 	    char buf[MAXPATHLEN];
506 
507 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
508 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
509 	    if (kexecpath[0] == '/')
510 		    obj_main->path = kexecpath;
511 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
512 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
513 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
514 		    obj_main->path = xstrdup(argv0);
515 	    else
516 		    obj_main->path = xstrdup(buf);
517     } else {
518 	    dbg("No AT_EXECPATH");
519 	    obj_main->path = xstrdup(argv0);
520     }
521     dbg("obj_main path %s", obj_main->path);
522     obj_main->mainprog = true;
523 
524     if (aux_info[AT_STACKPROT] != NULL &&
525       aux_info[AT_STACKPROT]->a_un.a_val != 0)
526 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
527 
528 #ifndef COMPAT_32BIT
529     /*
530      * Get the actual dynamic linker pathname from the executable if
531      * possible.  (It should always be possible.)  That ensures that
532      * gdb will find the right dynamic linker even if a non-standard
533      * one is being used.
534      */
535     if (obj_main->interp != NULL &&
536       strcmp(obj_main->interp, obj_rtld.path) != 0) {
537 	free(obj_rtld.path);
538 	obj_rtld.path = xstrdup(obj_main->interp);
539         __progname = obj_rtld.path;
540     }
541 #endif
542 
543     digest_dynamic(obj_main, 0);
544     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
545 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
546 	obj_main->dynsymcount);
547 
548     linkmap_add(obj_main);
549     linkmap_add(&obj_rtld);
550 
551     /* Link the main program into the list of objects. */
552     *obj_tail = obj_main;
553     obj_tail = &obj_main->next;
554     obj_count++;
555     obj_loads++;
556 
557     /* Initialize a fake symbol for resolving undefined weak references. */
558     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
559     sym_zero.st_shndx = SHN_UNDEF;
560     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
561 
562     if (!libmap_disable)
563         libmap_disable = (bool)lm_init(libmap_override);
564 
565     dbg("loading LD_PRELOAD libraries");
566     if (load_preload_objects() == -1)
567 	rtld_die();
568     preload_tail = obj_tail;
569 
570     dbg("loading needed objects");
571     if (load_needed_objects(obj_main, 0) == -1)
572 	rtld_die();
573 
574     /* Make a list of all objects loaded at startup. */
575     last_interposer = obj_main;
576     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
577 	if (obj->z_interpose && obj != obj_main) {
578 	    objlist_put_after(&list_main, last_interposer, obj);
579 	    last_interposer = obj;
580 	} else {
581 	    objlist_push_tail(&list_main, obj);
582 	}
583     	obj->refcount++;
584     }
585 
586     dbg("checking for required versions");
587     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
588 	rtld_die();
589 
590     if (ld_tracing) {		/* We're done */
591 	trace_loaded_objects(obj_main);
592 	exit(0);
593     }
594 
595     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
596        dump_relocations(obj_main);
597        exit (0);
598     }
599 
600     /*
601      * Processing tls relocations requires having the tls offsets
602      * initialized.  Prepare offsets before starting initial
603      * relocation processing.
604      */
605     dbg("initializing initial thread local storage offsets");
606     STAILQ_FOREACH(entry, &list_main, link) {
607 	/*
608 	 * Allocate all the initial objects out of the static TLS
609 	 * block even if they didn't ask for it.
610 	 */
611 	allocate_tls_offset(entry->obj);
612     }
613 
614     if (relocate_objects(obj_main,
615       ld_bind_now != NULL && *ld_bind_now != '\0',
616       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
617 	rtld_die();
618 
619     dbg("doing copy relocations");
620     if (do_copy_relocations(obj_main) == -1)
621 	rtld_die();
622 
623     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
624        dump_relocations(obj_main);
625        exit (0);
626     }
627 
628     /*
629      * Setup TLS for main thread.  This must be done after the
630      * relocations are processed, since tls initialization section
631      * might be the subject for relocations.
632      */
633     dbg("initializing initial thread local storage");
634     allocate_initial_tls(obj_list);
635 
636     dbg("initializing key program variables");
637     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
638     set_program_var("environ", env);
639     set_program_var("__elf_aux_vector", aux);
640 
641     /* Make a list of init functions to call. */
642     objlist_init(&initlist);
643     initlist_add_objects(obj_list, preload_tail, &initlist);
644 
645     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
646 
647     map_stacks_exec(NULL);
648 
649     dbg("resolving ifuncs");
650     if (resolve_objects_ifunc(obj_main,
651       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
652       NULL) == -1)
653 	rtld_die();
654 
655     if (!obj_main->crt_no_init) {
656 	/*
657 	 * Make sure we don't call the main program's init and fini
658 	 * functions for binaries linked with old crt1 which calls
659 	 * _init itself.
660 	 */
661 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
662 	obj_main->preinit_array = obj_main->init_array =
663 	    obj_main->fini_array = (Elf_Addr)NULL;
664     }
665 
666     wlock_acquire(rtld_bind_lock, &lockstate);
667     if (obj_main->crt_no_init)
668 	preinit_main();
669     objlist_call_init(&initlist, &lockstate);
670     _r_debug_postinit(&obj_main->linkmap);
671     objlist_clear(&initlist);
672     dbg("loading filtees");
673     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
674 	if (ld_loadfltr || obj->z_loadfltr)
675 	    load_filtees(obj, 0, &lockstate);
676     }
677     lock_release(rtld_bind_lock, &lockstate);
678 
679     dbg("transferring control to program entry point = %p", obj_main->entry);
680 
681     /* Return the exit procedure and the program entry point. */
682     *exit_proc = rtld_exit;
683     *objp = obj_main;
684     return (func_ptr_type) obj_main->entry;
685 }
686 
687 void *
688 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
689 {
690 	void *ptr;
691 	Elf_Addr target;
692 
693 	ptr = (void *)make_function_pointer(def, obj);
694 	target = ((Elf_Addr (*)(void))ptr)();
695 	return ((void *)target);
696 }
697 
698 Elf_Addr
699 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
700 {
701     const Elf_Rel *rel;
702     const Elf_Sym *def;
703     const Obj_Entry *defobj;
704     Elf_Addr *where;
705     Elf_Addr target;
706     RtldLockState lockstate;
707 
708     rlock_acquire(rtld_bind_lock, &lockstate);
709     if (sigsetjmp(lockstate.env, 0) != 0)
710 	    lock_upgrade(rtld_bind_lock, &lockstate);
711     if (obj->pltrel)
712 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
713     else
714 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
715 
716     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
717     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
718 	&lockstate);
719     if (def == NULL)
720 	rtld_die();
721     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
722 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
723     else
724 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
725 
726     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
727       defobj->strtab + def->st_name, basename(obj->path),
728       (void *)target, basename(defobj->path));
729 
730     /*
731      * Write the new contents for the jmpslot. Note that depending on
732      * architecture, the value which we need to return back to the
733      * lazy binding trampoline may or may not be the target
734      * address. The value returned from reloc_jmpslot() is the value
735      * that the trampoline needs.
736      */
737     target = reloc_jmpslot(where, target, defobj, obj, rel);
738     lock_release(rtld_bind_lock, &lockstate);
739     return target;
740 }
741 
742 /*
743  * Error reporting function.  Use it like printf.  If formats the message
744  * into a buffer, and sets things up so that the next call to dlerror()
745  * will return the message.
746  */
747 void
748 _rtld_error(const char *fmt, ...)
749 {
750     static char buf[512];
751     va_list ap;
752 
753     va_start(ap, fmt);
754     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
755     error_message = buf;
756     va_end(ap);
757 }
758 
759 /*
760  * Return a dynamically-allocated copy of the current error message, if any.
761  */
762 static char *
763 errmsg_save(void)
764 {
765     return error_message == NULL ? NULL : xstrdup(error_message);
766 }
767 
768 /*
769  * Restore the current error message from a copy which was previously saved
770  * by errmsg_save().  The copy is freed.
771  */
772 static void
773 errmsg_restore(char *saved_msg)
774 {
775     if (saved_msg == NULL)
776 	error_message = NULL;
777     else {
778 	_rtld_error("%s", saved_msg);
779 	free(saved_msg);
780     }
781 }
782 
783 static const char *
784 basename(const char *name)
785 {
786     const char *p = strrchr(name, '/');
787     return p != NULL ? p + 1 : name;
788 }
789 
790 static struct utsname uts;
791 
792 static char *
793 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
794     const char *subst, bool may_free)
795 {
796 	char *p, *p1, *res, *resp;
797 	int subst_len, kw_len, subst_count, old_len, new_len;
798 
799 	kw_len = strlen(kw);
800 
801 	/*
802 	 * First, count the number of the keyword occurences, to
803 	 * preallocate the final string.
804 	 */
805 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
806 		p1 = strstr(p, kw);
807 		if (p1 == NULL)
808 			break;
809 	}
810 
811 	/*
812 	 * If the keyword is not found, just return.
813 	 *
814 	 * Return non-substituted string if resolution failed.  We
815 	 * cannot do anything more reasonable, the failure mode of the
816 	 * caller is unresolved library anyway.
817 	 */
818 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
819 		return (may_free ? real : xstrdup(real));
820 	if (obj != NULL)
821 		subst = obj->origin_path;
822 
823 	/*
824 	 * There is indeed something to substitute.  Calculate the
825 	 * length of the resulting string, and allocate it.
826 	 */
827 	subst_len = strlen(subst);
828 	old_len = strlen(real);
829 	new_len = old_len + (subst_len - kw_len) * subst_count;
830 	res = xmalloc(new_len + 1);
831 
832 	/*
833 	 * Now, execute the substitution loop.
834 	 */
835 	for (p = real, resp = res, *resp = '\0';;) {
836 		p1 = strstr(p, kw);
837 		if (p1 != NULL) {
838 			/* Copy the prefix before keyword. */
839 			memcpy(resp, p, p1 - p);
840 			resp += p1 - p;
841 			/* Keyword replacement. */
842 			memcpy(resp, subst, subst_len);
843 			resp += subst_len;
844 			*resp = '\0';
845 			p = p1 + kw_len;
846 		} else
847 			break;
848 	}
849 
850 	/* Copy to the end of string and finish. */
851 	strcat(resp, p);
852 	if (may_free)
853 		free(real);
854 	return (res);
855 }
856 
857 static char *
858 origin_subst(Obj_Entry *obj, char *real)
859 {
860 	char *res1, *res2, *res3, *res4;
861 
862 	if (obj == NULL || !trust)
863 		return (xstrdup(real));
864 	if (uts.sysname[0] == '\0') {
865 		if (uname(&uts) != 0) {
866 			_rtld_error("utsname failed: %d", errno);
867 			return (NULL);
868 		}
869 	}
870 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
871 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
872 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
873 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
874 	return (res4);
875 }
876 
877 void
878 rtld_die(void)
879 {
880     const char *msg = dlerror();
881 
882     if (msg == NULL)
883 	msg = "Fatal error";
884     rtld_fdputstr(STDERR_FILENO, msg);
885     rtld_fdputchar(STDERR_FILENO, '\n');
886     _exit(1);
887 }
888 
889 /*
890  * Process a shared object's DYNAMIC section, and save the important
891  * information in its Obj_Entry structure.
892  */
893 static void
894 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
895     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
896 {
897     const Elf_Dyn *dynp;
898     Needed_Entry **needed_tail = &obj->needed;
899     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
900     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
901     const Elf_Hashelt *hashtab;
902     const Elf32_Word *hashval;
903     Elf32_Word bkt, nmaskwords;
904     int bloom_size32;
905     int plttype = DT_REL;
906 
907     *dyn_rpath = NULL;
908     *dyn_soname = NULL;
909     *dyn_runpath = NULL;
910 
911     obj->bind_now = false;
912     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
913 	switch (dynp->d_tag) {
914 
915 	case DT_REL:
916 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
917 	    break;
918 
919 	case DT_RELSZ:
920 	    obj->relsize = dynp->d_un.d_val;
921 	    break;
922 
923 	case DT_RELENT:
924 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
925 	    break;
926 
927 	case DT_JMPREL:
928 	    obj->pltrel = (const Elf_Rel *)
929 	      (obj->relocbase + dynp->d_un.d_ptr);
930 	    break;
931 
932 	case DT_PLTRELSZ:
933 	    obj->pltrelsize = dynp->d_un.d_val;
934 	    break;
935 
936 	case DT_RELA:
937 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
938 	    break;
939 
940 	case DT_RELASZ:
941 	    obj->relasize = dynp->d_un.d_val;
942 	    break;
943 
944 	case DT_RELAENT:
945 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
946 	    break;
947 
948 	case DT_PLTREL:
949 	    plttype = dynp->d_un.d_val;
950 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
951 	    break;
952 
953 	case DT_SYMTAB:
954 	    obj->symtab = (const Elf_Sym *)
955 	      (obj->relocbase + dynp->d_un.d_ptr);
956 	    break;
957 
958 	case DT_SYMENT:
959 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
960 	    break;
961 
962 	case DT_STRTAB:
963 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
964 	    break;
965 
966 	case DT_STRSZ:
967 	    obj->strsize = dynp->d_un.d_val;
968 	    break;
969 
970 	case DT_VERNEED:
971 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
972 		dynp->d_un.d_val);
973 	    break;
974 
975 	case DT_VERNEEDNUM:
976 	    obj->verneednum = dynp->d_un.d_val;
977 	    break;
978 
979 	case DT_VERDEF:
980 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
981 		dynp->d_un.d_val);
982 	    break;
983 
984 	case DT_VERDEFNUM:
985 	    obj->verdefnum = dynp->d_un.d_val;
986 	    break;
987 
988 	case DT_VERSYM:
989 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
990 		dynp->d_un.d_val);
991 	    break;
992 
993 	case DT_HASH:
994 	    {
995 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
996 		    dynp->d_un.d_ptr);
997 		obj->nbuckets = hashtab[0];
998 		obj->nchains = hashtab[1];
999 		obj->buckets = hashtab + 2;
1000 		obj->chains = obj->buckets + obj->nbuckets;
1001 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1002 		  obj->buckets != NULL;
1003 	    }
1004 	    break;
1005 
1006 	case DT_GNU_HASH:
1007 	    {
1008 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1009 		    dynp->d_un.d_ptr);
1010 		obj->nbuckets_gnu = hashtab[0];
1011 		obj->symndx_gnu = hashtab[1];
1012 		nmaskwords = hashtab[2];
1013 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1014 		obj->maskwords_bm_gnu = nmaskwords - 1;
1015 		obj->shift2_gnu = hashtab[3];
1016 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1017 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1018 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1019 		  obj->symndx_gnu;
1020 		/* Number of bitmask words is required to be power of 2 */
1021 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1022 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1023 	    }
1024 	    break;
1025 
1026 	case DT_NEEDED:
1027 	    if (!obj->rtld) {
1028 		Needed_Entry *nep = NEW(Needed_Entry);
1029 		nep->name = dynp->d_un.d_val;
1030 		nep->obj = NULL;
1031 		nep->next = NULL;
1032 
1033 		*needed_tail = nep;
1034 		needed_tail = &nep->next;
1035 	    }
1036 	    break;
1037 
1038 	case DT_FILTER:
1039 	    if (!obj->rtld) {
1040 		Needed_Entry *nep = NEW(Needed_Entry);
1041 		nep->name = dynp->d_un.d_val;
1042 		nep->obj = NULL;
1043 		nep->next = NULL;
1044 
1045 		*needed_filtees_tail = nep;
1046 		needed_filtees_tail = &nep->next;
1047 	    }
1048 	    break;
1049 
1050 	case DT_AUXILIARY:
1051 	    if (!obj->rtld) {
1052 		Needed_Entry *nep = NEW(Needed_Entry);
1053 		nep->name = dynp->d_un.d_val;
1054 		nep->obj = NULL;
1055 		nep->next = NULL;
1056 
1057 		*needed_aux_filtees_tail = nep;
1058 		needed_aux_filtees_tail = &nep->next;
1059 	    }
1060 	    break;
1061 
1062 	case DT_PLTGOT:
1063 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1064 	    break;
1065 
1066 	case DT_TEXTREL:
1067 	    obj->textrel = true;
1068 	    break;
1069 
1070 	case DT_SYMBOLIC:
1071 	    obj->symbolic = true;
1072 	    break;
1073 
1074 	case DT_RPATH:
1075 	    /*
1076 	     * We have to wait until later to process this, because we
1077 	     * might not have gotten the address of the string table yet.
1078 	     */
1079 	    *dyn_rpath = dynp;
1080 	    break;
1081 
1082 	case DT_SONAME:
1083 	    *dyn_soname = dynp;
1084 	    break;
1085 
1086 	case DT_RUNPATH:
1087 	    *dyn_runpath = dynp;
1088 	    break;
1089 
1090 	case DT_INIT:
1091 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1092 	    break;
1093 
1094 	case DT_PREINIT_ARRAY:
1095 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1096 	    break;
1097 
1098 	case DT_PREINIT_ARRAYSZ:
1099 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1100 	    break;
1101 
1102 	case DT_INIT_ARRAY:
1103 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1104 	    break;
1105 
1106 	case DT_INIT_ARRAYSZ:
1107 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1108 	    break;
1109 
1110 	case DT_FINI:
1111 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1112 	    break;
1113 
1114 	case DT_FINI_ARRAY:
1115 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1116 	    break;
1117 
1118 	case DT_FINI_ARRAYSZ:
1119 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1120 	    break;
1121 
1122 	/*
1123 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1124 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1125 	 */
1126 
1127 #ifndef __mips__
1128 	case DT_DEBUG:
1129 	    /* XXX - not implemented yet */
1130 	    if (!early)
1131 		dbg("Filling in DT_DEBUG entry");
1132 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1133 	    break;
1134 #endif
1135 
1136 	case DT_FLAGS:
1137 		if (dynp->d_un.d_val & DF_ORIGIN)
1138 		    obj->z_origin = true;
1139 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1140 		    obj->symbolic = true;
1141 		if (dynp->d_un.d_val & DF_TEXTREL)
1142 		    obj->textrel = true;
1143 		if (dynp->d_un.d_val & DF_BIND_NOW)
1144 		    obj->bind_now = true;
1145 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1146 		    ;*/
1147 	    break;
1148 #ifdef __mips__
1149 	case DT_MIPS_LOCAL_GOTNO:
1150 		obj->local_gotno = dynp->d_un.d_val;
1151 		break;
1152 
1153 	case DT_MIPS_SYMTABNO:
1154 		obj->symtabno = dynp->d_un.d_val;
1155 		break;
1156 
1157 	case DT_MIPS_GOTSYM:
1158 		obj->gotsym = dynp->d_un.d_val;
1159 		break;
1160 
1161 	case DT_MIPS_RLD_MAP:
1162 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1163 		break;
1164 #endif
1165 
1166 #ifdef __powerpc64__
1167 	case DT_PPC64_GLINK:
1168 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1169 		break;
1170 #endif
1171 
1172 	case DT_FLAGS_1:
1173 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1174 		    obj->z_noopen = true;
1175 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1176 		    obj->z_origin = true;
1177 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1178 		    obj->z_global = true;
1179 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1180 		    obj->bind_now = true;
1181 		if (dynp->d_un.d_val & DF_1_NODELETE)
1182 		    obj->z_nodelete = true;
1183 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1184 		    obj->z_loadfltr = true;
1185 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1186 		    obj->z_interpose = true;
1187 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1188 		    obj->z_nodeflib = true;
1189 	    break;
1190 
1191 	default:
1192 	    if (!early) {
1193 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1194 		    (long)dynp->d_tag);
1195 	    }
1196 	    break;
1197 	}
1198     }
1199 
1200     obj->traced = false;
1201 
1202     if (plttype == DT_RELA) {
1203 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1204 	obj->pltrel = NULL;
1205 	obj->pltrelasize = obj->pltrelsize;
1206 	obj->pltrelsize = 0;
1207     }
1208 
1209     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1210     if (obj->valid_hash_sysv)
1211 	obj->dynsymcount = obj->nchains;
1212     else if (obj->valid_hash_gnu) {
1213 	obj->dynsymcount = 0;
1214 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1215 	    if (obj->buckets_gnu[bkt] == 0)
1216 		continue;
1217 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1218 	    do
1219 		obj->dynsymcount++;
1220 	    while ((*hashval++ & 1u) == 0);
1221 	}
1222 	obj->dynsymcount += obj->symndx_gnu;
1223     }
1224 }
1225 
1226 static bool
1227 obj_resolve_origin(Obj_Entry *obj)
1228 {
1229 
1230 	if (obj->origin_path != NULL)
1231 		return (true);
1232 	obj->origin_path = xmalloc(PATH_MAX);
1233 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1234 }
1235 
1236 static void
1237 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1238     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1239 {
1240 
1241 	if (obj->z_origin && !obj_resolve_origin(obj))
1242 		rtld_die();
1243 
1244 	if (dyn_runpath != NULL) {
1245 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1246 		obj->runpath = origin_subst(obj, obj->runpath);
1247 	} else if (dyn_rpath != NULL) {
1248 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1249 		obj->rpath = origin_subst(obj, obj->rpath);
1250 	}
1251 	if (dyn_soname != NULL)
1252 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1253 }
1254 
1255 static void
1256 digest_dynamic(Obj_Entry *obj, int early)
1257 {
1258 	const Elf_Dyn *dyn_rpath;
1259 	const Elf_Dyn *dyn_soname;
1260 	const Elf_Dyn *dyn_runpath;
1261 
1262 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1263 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1264 }
1265 
1266 /*
1267  * Process a shared object's program header.  This is used only for the
1268  * main program, when the kernel has already loaded the main program
1269  * into memory before calling the dynamic linker.  It creates and
1270  * returns an Obj_Entry structure.
1271  */
1272 static Obj_Entry *
1273 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1274 {
1275     Obj_Entry *obj;
1276     const Elf_Phdr *phlimit = phdr + phnum;
1277     const Elf_Phdr *ph;
1278     Elf_Addr note_start, note_end;
1279     int nsegs = 0;
1280 
1281     obj = obj_new();
1282     for (ph = phdr;  ph < phlimit;  ph++) {
1283 	if (ph->p_type != PT_PHDR)
1284 	    continue;
1285 
1286 	obj->phdr = phdr;
1287 	obj->phsize = ph->p_memsz;
1288 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1289 	break;
1290     }
1291 
1292     obj->stack_flags = PF_X | PF_R | PF_W;
1293 
1294     for (ph = phdr;  ph < phlimit;  ph++) {
1295 	switch (ph->p_type) {
1296 
1297 	case PT_INTERP:
1298 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1299 	    break;
1300 
1301 	case PT_LOAD:
1302 	    if (nsegs == 0) {	/* First load segment */
1303 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1304 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1305 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1306 		  obj->vaddrbase;
1307 	    } else {		/* Last load segment */
1308 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1309 		  obj->vaddrbase;
1310 	    }
1311 	    nsegs++;
1312 	    break;
1313 
1314 	case PT_DYNAMIC:
1315 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1316 	    break;
1317 
1318 	case PT_TLS:
1319 	    obj->tlsindex = 1;
1320 	    obj->tlssize = ph->p_memsz;
1321 	    obj->tlsalign = ph->p_align;
1322 	    obj->tlsinitsize = ph->p_filesz;
1323 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1324 	    break;
1325 
1326 	case PT_GNU_STACK:
1327 	    obj->stack_flags = ph->p_flags;
1328 	    break;
1329 
1330 	case PT_GNU_RELRO:
1331 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1332 	    obj->relro_size = round_page(ph->p_memsz);
1333 	    break;
1334 
1335 	case PT_NOTE:
1336 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1337 	    note_end = note_start + ph->p_filesz;
1338 	    digest_notes(obj, note_start, note_end);
1339 	    break;
1340 	}
1341     }
1342     if (nsegs < 1) {
1343 	_rtld_error("%s: too few PT_LOAD segments", path);
1344 	return NULL;
1345     }
1346 
1347     obj->entry = entry;
1348     return obj;
1349 }
1350 
1351 void
1352 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1353 {
1354 	const Elf_Note *note;
1355 	const char *note_name;
1356 	uintptr_t p;
1357 
1358 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1359 	    note = (const Elf_Note *)((const char *)(note + 1) +
1360 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1361 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1362 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1363 		    note->n_descsz != sizeof(int32_t))
1364 			continue;
1365 		if (note->n_type != ABI_NOTETYPE &&
1366 		    note->n_type != CRT_NOINIT_NOTETYPE)
1367 			continue;
1368 		note_name = (const char *)(note + 1);
1369 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1370 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1371 			continue;
1372 		switch (note->n_type) {
1373 		case ABI_NOTETYPE:
1374 			/* FreeBSD osrel note */
1375 			p = (uintptr_t)(note + 1);
1376 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1377 			obj->osrel = *(const int32_t *)(p);
1378 			dbg("note osrel %d", obj->osrel);
1379 			break;
1380 		case CRT_NOINIT_NOTETYPE:
1381 			/* FreeBSD 'crt does not call init' note */
1382 			obj->crt_no_init = true;
1383 			dbg("note crt_no_init");
1384 			break;
1385 		}
1386 	}
1387 }
1388 
1389 static Obj_Entry *
1390 dlcheck(void *handle)
1391 {
1392     Obj_Entry *obj;
1393 
1394     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1395 	if (obj == (Obj_Entry *) handle)
1396 	    break;
1397 
1398     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1399 	_rtld_error("Invalid shared object handle %p", handle);
1400 	return NULL;
1401     }
1402     return obj;
1403 }
1404 
1405 /*
1406  * If the given object is already in the donelist, return true.  Otherwise
1407  * add the object to the list and return false.
1408  */
1409 static bool
1410 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1411 {
1412     unsigned int i;
1413 
1414     for (i = 0;  i < dlp->num_used;  i++)
1415 	if (dlp->objs[i] == obj)
1416 	    return true;
1417     /*
1418      * Our donelist allocation should always be sufficient.  But if
1419      * our threads locking isn't working properly, more shared objects
1420      * could have been loaded since we allocated the list.  That should
1421      * never happen, but we'll handle it properly just in case it does.
1422      */
1423     if (dlp->num_used < dlp->num_alloc)
1424 	dlp->objs[dlp->num_used++] = obj;
1425     return false;
1426 }
1427 
1428 /*
1429  * Hash function for symbol table lookup.  Don't even think about changing
1430  * this.  It is specified by the System V ABI.
1431  */
1432 unsigned long
1433 elf_hash(const char *name)
1434 {
1435     const unsigned char *p = (const unsigned char *) name;
1436     unsigned long h = 0;
1437     unsigned long g;
1438 
1439     while (*p != '\0') {
1440 	h = (h << 4) + *p++;
1441 	if ((g = h & 0xf0000000) != 0)
1442 	    h ^= g >> 24;
1443 	h &= ~g;
1444     }
1445     return h;
1446 }
1447 
1448 /*
1449  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1450  * unsigned in case it's implemented with a wider type.
1451  */
1452 static uint32_t
1453 gnu_hash(const char *s)
1454 {
1455 	uint32_t h;
1456 	unsigned char c;
1457 
1458 	h = 5381;
1459 	for (c = *s; c != '\0'; c = *++s)
1460 		h = h * 33 + c;
1461 	return (h & 0xffffffff);
1462 }
1463 
1464 
1465 /*
1466  * Find the library with the given name, and return its full pathname.
1467  * The returned string is dynamically allocated.  Generates an error
1468  * message and returns NULL if the library cannot be found.
1469  *
1470  * If the second argument is non-NULL, then it refers to an already-
1471  * loaded shared object, whose library search path will be searched.
1472  *
1473  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1474  * descriptor (which is close-on-exec) will be passed out via the third
1475  * argument.
1476  *
1477  * The search order is:
1478  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1479  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1480  *   LD_LIBRARY_PATH
1481  *   DT_RUNPATH in the referencing file
1482  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1483  *	 from list)
1484  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1485  *
1486  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1487  */
1488 static char *
1489 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1490 {
1491     char *pathname;
1492     char *name;
1493     bool nodeflib, objgiven;
1494 
1495     objgiven = refobj != NULL;
1496     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1497 	if (xname[0] != '/' && !trust) {
1498 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1499 	      xname);
1500 	    return NULL;
1501 	}
1502 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1503 	  __DECONST(char *, xname)));
1504     }
1505 
1506     if (libmap_disable || !objgiven ||
1507 	(name = lm_find(refobj->path, xname)) == NULL)
1508 	name = (char *)xname;
1509 
1510     dbg(" Searching for \"%s\"", name);
1511 
1512     /*
1513      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1514      * back to pre-conforming behaviour if user requested so with
1515      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1516      * nodeflib.
1517      */
1518     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1519 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1520 	  (refobj != NULL &&
1521 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1522 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1523           (pathname = search_library_path(name, gethints(false))) != NULL ||
1524 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1525 	    return (pathname);
1526     } else {
1527 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1528 	if ((objgiven &&
1529 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1530 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1531 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1532 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1533 	  (objgiven &&
1534 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1535 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1536 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1537 	  (objgiven && !nodeflib &&
1538 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1539 	    return (pathname);
1540     }
1541 
1542     if (objgiven && refobj->path != NULL) {
1543 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1544 	  name, basename(refobj->path));
1545     } else {
1546 	_rtld_error("Shared object \"%s\" not found", name);
1547     }
1548     return NULL;
1549 }
1550 
1551 /*
1552  * Given a symbol number in a referencing object, find the corresponding
1553  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1554  * no definition was found.  Returns a pointer to the Obj_Entry of the
1555  * defining object via the reference parameter DEFOBJ_OUT.
1556  */
1557 const Elf_Sym *
1558 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1559     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1560     RtldLockState *lockstate)
1561 {
1562     const Elf_Sym *ref;
1563     const Elf_Sym *def;
1564     const Obj_Entry *defobj;
1565     SymLook req;
1566     const char *name;
1567     int res;
1568 
1569     /*
1570      * If we have already found this symbol, get the information from
1571      * the cache.
1572      */
1573     if (symnum >= refobj->dynsymcount)
1574 	return NULL;	/* Bad object */
1575     if (cache != NULL && cache[symnum].sym != NULL) {
1576 	*defobj_out = cache[symnum].obj;
1577 	return cache[symnum].sym;
1578     }
1579 
1580     ref = refobj->symtab + symnum;
1581     name = refobj->strtab + ref->st_name;
1582     def = NULL;
1583     defobj = NULL;
1584 
1585     /*
1586      * We don't have to do a full scale lookup if the symbol is local.
1587      * We know it will bind to the instance in this load module; to
1588      * which we already have a pointer (ie ref). By not doing a lookup,
1589      * we not only improve performance, but it also avoids unresolvable
1590      * symbols when local symbols are not in the hash table. This has
1591      * been seen with the ia64 toolchain.
1592      */
1593     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1594 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1595 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1596 		symnum);
1597 	}
1598 	symlook_init(&req, name);
1599 	req.flags = flags;
1600 	req.ventry = fetch_ventry(refobj, symnum);
1601 	req.lockstate = lockstate;
1602 	res = symlook_default(&req, refobj);
1603 	if (res == 0) {
1604 	    def = req.sym_out;
1605 	    defobj = req.defobj_out;
1606 	}
1607     } else {
1608 	def = ref;
1609 	defobj = refobj;
1610     }
1611 
1612     /*
1613      * If we found no definition and the reference is weak, treat the
1614      * symbol as having the value zero.
1615      */
1616     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1617 	def = &sym_zero;
1618 	defobj = obj_main;
1619     }
1620 
1621     if (def != NULL) {
1622 	*defobj_out = defobj;
1623 	/* Record the information in the cache to avoid subsequent lookups. */
1624 	if (cache != NULL) {
1625 	    cache[symnum].sym = def;
1626 	    cache[symnum].obj = defobj;
1627 	}
1628     } else {
1629 	if (refobj != &obj_rtld)
1630 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1631     }
1632     return def;
1633 }
1634 
1635 /*
1636  * Return the search path from the ldconfig hints file, reading it if
1637  * necessary.  If nostdlib is true, then the default search paths are
1638  * not added to result.
1639  *
1640  * Returns NULL if there are problems with the hints file,
1641  * or if the search path there is empty.
1642  */
1643 static const char *
1644 gethints(bool nostdlib)
1645 {
1646 	static char *hints, *filtered_path;
1647 	struct elfhints_hdr hdr;
1648 	struct fill_search_info_args sargs, hargs;
1649 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1650 	struct dl_serpath *SLPpath, *hintpath;
1651 	char *p;
1652 	unsigned int SLPndx, hintndx, fndx, fcount;
1653 	int fd;
1654 	size_t flen;
1655 	bool skip;
1656 
1657 	/* First call, read the hints file */
1658 	if (hints == NULL) {
1659 		/* Keep from trying again in case the hints file is bad. */
1660 		hints = "";
1661 
1662 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1663 			return (NULL);
1664 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1665 		    hdr.magic != ELFHINTS_MAGIC ||
1666 		    hdr.version != 1) {
1667 			close(fd);
1668 			return (NULL);
1669 		}
1670 		p = xmalloc(hdr.dirlistlen + 1);
1671 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1672 		    read(fd, p, hdr.dirlistlen + 1) !=
1673 		    (ssize_t)hdr.dirlistlen + 1) {
1674 			free(p);
1675 			close(fd);
1676 			return (NULL);
1677 		}
1678 		hints = p;
1679 		close(fd);
1680 	}
1681 
1682 	/*
1683 	 * If caller agreed to receive list which includes the default
1684 	 * paths, we are done. Otherwise, if we still did not
1685 	 * calculated filtered result, do it now.
1686 	 */
1687 	if (!nostdlib)
1688 		return (hints[0] != '\0' ? hints : NULL);
1689 	if (filtered_path != NULL)
1690 		goto filt_ret;
1691 
1692 	/*
1693 	 * Obtain the list of all configured search paths, and the
1694 	 * list of the default paths.
1695 	 *
1696 	 * First estimate the size of the results.
1697 	 */
1698 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1699 	smeta.dls_cnt = 0;
1700 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1701 	hmeta.dls_cnt = 0;
1702 
1703 	sargs.request = RTLD_DI_SERINFOSIZE;
1704 	sargs.serinfo = &smeta;
1705 	hargs.request = RTLD_DI_SERINFOSIZE;
1706 	hargs.serinfo = &hmeta;
1707 
1708 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1709 	path_enumerate(p, fill_search_info, &hargs);
1710 
1711 	SLPinfo = xmalloc(smeta.dls_size);
1712 	hintinfo = xmalloc(hmeta.dls_size);
1713 
1714 	/*
1715 	 * Next fetch both sets of paths.
1716 	 */
1717 	sargs.request = RTLD_DI_SERINFO;
1718 	sargs.serinfo = SLPinfo;
1719 	sargs.serpath = &SLPinfo->dls_serpath[0];
1720 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1721 
1722 	hargs.request = RTLD_DI_SERINFO;
1723 	hargs.serinfo = hintinfo;
1724 	hargs.serpath = &hintinfo->dls_serpath[0];
1725 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1726 
1727 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1728 	path_enumerate(p, fill_search_info, &hargs);
1729 
1730 	/*
1731 	 * Now calculate the difference between two sets, by excluding
1732 	 * standard paths from the full set.
1733 	 */
1734 	fndx = 0;
1735 	fcount = 0;
1736 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1737 	hintpath = &hintinfo->dls_serpath[0];
1738 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1739 		skip = false;
1740 		SLPpath = &SLPinfo->dls_serpath[0];
1741 		/*
1742 		 * Check each standard path against current.
1743 		 */
1744 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1745 			/* matched, skip the path */
1746 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1747 				skip = true;
1748 				break;
1749 			}
1750 		}
1751 		if (skip)
1752 			continue;
1753 		/*
1754 		 * Not matched against any standard path, add the path
1755 		 * to result. Separate consequtive paths with ':'.
1756 		 */
1757 		if (fcount > 0) {
1758 			filtered_path[fndx] = ':';
1759 			fndx++;
1760 		}
1761 		fcount++;
1762 		flen = strlen(hintpath->dls_name);
1763 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1764 		fndx += flen;
1765 	}
1766 	filtered_path[fndx] = '\0';
1767 
1768 	free(SLPinfo);
1769 	free(hintinfo);
1770 
1771 filt_ret:
1772 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1773 }
1774 
1775 static void
1776 init_dag(Obj_Entry *root)
1777 {
1778     const Needed_Entry *needed;
1779     const Objlist_Entry *elm;
1780     DoneList donelist;
1781 
1782     if (root->dag_inited)
1783 	return;
1784     donelist_init(&donelist);
1785 
1786     /* Root object belongs to own DAG. */
1787     objlist_push_tail(&root->dldags, root);
1788     objlist_push_tail(&root->dagmembers, root);
1789     donelist_check(&donelist, root);
1790 
1791     /*
1792      * Add dependencies of root object to DAG in breadth order
1793      * by exploiting the fact that each new object get added
1794      * to the tail of the dagmembers list.
1795      */
1796     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1797 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1798 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1799 		continue;
1800 	    objlist_push_tail(&needed->obj->dldags, root);
1801 	    objlist_push_tail(&root->dagmembers, needed->obj);
1802 	}
1803     }
1804     root->dag_inited = true;
1805 }
1806 
1807 static void
1808 process_z(Obj_Entry *root)
1809 {
1810 	const Objlist_Entry *elm;
1811 	Obj_Entry *obj;
1812 
1813 	/*
1814 	 * Walk over object DAG and process every dependent object
1815 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1816 	 * to grow their own DAG.
1817 	 *
1818 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1819 	 * symlook_global() to work.
1820 	 *
1821 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1822 	 */
1823 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1824 		obj = elm->obj;
1825 		if (obj == NULL)
1826 			continue;
1827 		if (obj->z_nodelete && !obj->ref_nodel) {
1828 			dbg("obj %s -z nodelete", obj->path);
1829 			init_dag(obj);
1830 			ref_dag(obj);
1831 			obj->ref_nodel = true;
1832 		}
1833 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1834 			dbg("obj %s -z global", obj->path);
1835 			objlist_push_tail(&list_global, obj);
1836 			init_dag(obj);
1837 		}
1838 	}
1839 }
1840 /*
1841  * Initialize the dynamic linker.  The argument is the address at which
1842  * the dynamic linker has been mapped into memory.  The primary task of
1843  * this function is to relocate the dynamic linker.
1844  */
1845 static void
1846 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1847 {
1848     Obj_Entry objtmp;	/* Temporary rtld object */
1849     const Elf_Dyn *dyn_rpath;
1850     const Elf_Dyn *dyn_soname;
1851     const Elf_Dyn *dyn_runpath;
1852 
1853 #ifdef RTLD_INIT_PAGESIZES_EARLY
1854     /* The page size is required by the dynamic memory allocator. */
1855     init_pagesizes(aux_info);
1856 #endif
1857 
1858     /*
1859      * Conjure up an Obj_Entry structure for the dynamic linker.
1860      *
1861      * The "path" member can't be initialized yet because string constants
1862      * cannot yet be accessed. Below we will set it correctly.
1863      */
1864     memset(&objtmp, 0, sizeof(objtmp));
1865     objtmp.path = NULL;
1866     objtmp.rtld = true;
1867     objtmp.mapbase = mapbase;
1868 #ifdef PIC
1869     objtmp.relocbase = mapbase;
1870 #endif
1871     if (RTLD_IS_DYNAMIC()) {
1872 	objtmp.dynamic = rtld_dynamic(&objtmp);
1873 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1874 	assert(objtmp.needed == NULL);
1875 #if !defined(__mips__)
1876 	/* MIPS has a bogus DT_TEXTREL. */
1877 	assert(!objtmp.textrel);
1878 #endif
1879 
1880 	/*
1881 	 * Temporarily put the dynamic linker entry into the object list, so
1882 	 * that symbols can be found.
1883 	 */
1884 
1885 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1886     }
1887 
1888     /* Initialize the object list. */
1889     obj_tail = &obj_list;
1890 
1891     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1892     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1893 
1894 #ifndef RTLD_INIT_PAGESIZES_EARLY
1895     /* The page size is required by the dynamic memory allocator. */
1896     init_pagesizes(aux_info);
1897 #endif
1898 
1899     if (aux_info[AT_OSRELDATE] != NULL)
1900 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1901 
1902     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1903 
1904     /* Replace the path with a dynamically allocated copy. */
1905     obj_rtld.path = xstrdup(ld_path_rtld);
1906 
1907     r_debug.r_brk = r_debug_state;
1908     r_debug.r_state = RT_CONSISTENT;
1909 }
1910 
1911 /*
1912  * Retrieve the array of supported page sizes.  The kernel provides the page
1913  * sizes in increasing order.
1914  */
1915 static void
1916 init_pagesizes(Elf_Auxinfo **aux_info)
1917 {
1918 	static size_t psa[MAXPAGESIZES];
1919 	int mib[2];
1920 	size_t len, size;
1921 
1922 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1923 	    NULL) {
1924 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1925 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1926 	} else {
1927 		len = 2;
1928 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1929 			size = sizeof(psa);
1930 		else {
1931 			/* As a fallback, retrieve the base page size. */
1932 			size = sizeof(psa[0]);
1933 			if (aux_info[AT_PAGESZ] != NULL) {
1934 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1935 				goto psa_filled;
1936 			} else {
1937 				mib[0] = CTL_HW;
1938 				mib[1] = HW_PAGESIZE;
1939 				len = 2;
1940 			}
1941 		}
1942 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1943 			_rtld_error("sysctl for hw.pagesize(s) failed");
1944 			rtld_die();
1945 		}
1946 psa_filled:
1947 		pagesizes = psa;
1948 	}
1949 	npagesizes = size / sizeof(pagesizes[0]);
1950 	/* Discard any invalid entries at the end of the array. */
1951 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1952 		npagesizes--;
1953 }
1954 
1955 /*
1956  * Add the init functions from a needed object list (and its recursive
1957  * needed objects) to "list".  This is not used directly; it is a helper
1958  * function for initlist_add_objects().  The write lock must be held
1959  * when this function is called.
1960  */
1961 static void
1962 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1963 {
1964     /* Recursively process the successor needed objects. */
1965     if (needed->next != NULL)
1966 	initlist_add_neededs(needed->next, list);
1967 
1968     /* Process the current needed object. */
1969     if (needed->obj != NULL)
1970 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1971 }
1972 
1973 /*
1974  * Scan all of the DAGs rooted in the range of objects from "obj" to
1975  * "tail" and add their init functions to "list".  This recurses over
1976  * the DAGs and ensure the proper init ordering such that each object's
1977  * needed libraries are initialized before the object itself.  At the
1978  * same time, this function adds the objects to the global finalization
1979  * list "list_fini" in the opposite order.  The write lock must be
1980  * held when this function is called.
1981  */
1982 static void
1983 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1984 {
1985 
1986     if (obj->init_scanned || obj->init_done)
1987 	return;
1988     obj->init_scanned = true;
1989 
1990     /* Recursively process the successor objects. */
1991     if (&obj->next != tail)
1992 	initlist_add_objects(obj->next, tail, list);
1993 
1994     /* Recursively process the needed objects. */
1995     if (obj->needed != NULL)
1996 	initlist_add_neededs(obj->needed, list);
1997     if (obj->needed_filtees != NULL)
1998 	initlist_add_neededs(obj->needed_filtees, list);
1999     if (obj->needed_aux_filtees != NULL)
2000 	initlist_add_neededs(obj->needed_aux_filtees, list);
2001 
2002     /* Add the object to the init list. */
2003     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2004       obj->init_array != (Elf_Addr)NULL)
2005 	objlist_push_tail(list, obj);
2006 
2007     /* Add the object to the global fini list in the reverse order. */
2008     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2009       && !obj->on_fini_list) {
2010 	objlist_push_head(&list_fini, obj);
2011 	obj->on_fini_list = true;
2012     }
2013 }
2014 
2015 #ifndef FPTR_TARGET
2016 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2017 #endif
2018 
2019 static void
2020 free_needed_filtees(Needed_Entry *n)
2021 {
2022     Needed_Entry *needed, *needed1;
2023 
2024     for (needed = n; needed != NULL; needed = needed->next) {
2025 	if (needed->obj != NULL) {
2026 	    dlclose(needed->obj);
2027 	    needed->obj = NULL;
2028 	}
2029     }
2030     for (needed = n; needed != NULL; needed = needed1) {
2031 	needed1 = needed->next;
2032 	free(needed);
2033     }
2034 }
2035 
2036 static void
2037 unload_filtees(Obj_Entry *obj)
2038 {
2039 
2040     free_needed_filtees(obj->needed_filtees);
2041     obj->needed_filtees = NULL;
2042     free_needed_filtees(obj->needed_aux_filtees);
2043     obj->needed_aux_filtees = NULL;
2044     obj->filtees_loaded = false;
2045 }
2046 
2047 static void
2048 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2049     RtldLockState *lockstate)
2050 {
2051 
2052     for (; needed != NULL; needed = needed->next) {
2053 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2054 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2055 	  RTLD_LOCAL, lockstate);
2056     }
2057 }
2058 
2059 static void
2060 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2061 {
2062 
2063     lock_restart_for_upgrade(lockstate);
2064     if (!obj->filtees_loaded) {
2065 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2066 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2067 	obj->filtees_loaded = true;
2068     }
2069 }
2070 
2071 static int
2072 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2073 {
2074     Obj_Entry *obj1;
2075 
2076     for (; needed != NULL; needed = needed->next) {
2077 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2078 	  flags & ~RTLD_LO_NOLOAD);
2079 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2080 	    return (-1);
2081     }
2082     return (0);
2083 }
2084 
2085 /*
2086  * Given a shared object, traverse its list of needed objects, and load
2087  * each of them.  Returns 0 on success.  Generates an error message and
2088  * returns -1 on failure.
2089  */
2090 static int
2091 load_needed_objects(Obj_Entry *first, int flags)
2092 {
2093     Obj_Entry *obj;
2094 
2095     for (obj = first;  obj != NULL;  obj = obj->next) {
2096 	if (process_needed(obj, obj->needed, flags) == -1)
2097 	    return (-1);
2098     }
2099     return (0);
2100 }
2101 
2102 static int
2103 load_preload_objects(void)
2104 {
2105     char *p = ld_preload;
2106     Obj_Entry *obj;
2107     static const char delim[] = " \t:;";
2108 
2109     if (p == NULL)
2110 	return 0;
2111 
2112     p += strspn(p, delim);
2113     while (*p != '\0') {
2114 	size_t len = strcspn(p, delim);
2115 	char savech;
2116 
2117 	savech = p[len];
2118 	p[len] = '\0';
2119 	obj = load_object(p, -1, NULL, 0);
2120 	if (obj == NULL)
2121 	    return -1;	/* XXX - cleanup */
2122 	obj->z_interpose = true;
2123 	p[len] = savech;
2124 	p += len;
2125 	p += strspn(p, delim);
2126     }
2127     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2128     return 0;
2129 }
2130 
2131 static const char *
2132 printable_path(const char *path)
2133 {
2134 
2135 	return (path == NULL ? "<unknown>" : path);
2136 }
2137 
2138 /*
2139  * Load a shared object into memory, if it is not already loaded.  The
2140  * object may be specified by name or by user-supplied file descriptor
2141  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2142  * duplicate is.
2143  *
2144  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2145  * on failure.
2146  */
2147 static Obj_Entry *
2148 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2149 {
2150     Obj_Entry *obj;
2151     int fd;
2152     struct stat sb;
2153     char *path;
2154 
2155     fd = -1;
2156     if (name != NULL) {
2157 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2158 	    if (object_match_name(obj, name))
2159 		return (obj);
2160 	}
2161 
2162 	path = find_library(name, refobj, &fd);
2163 	if (path == NULL)
2164 	    return (NULL);
2165     } else
2166 	path = NULL;
2167 
2168     if (fd >= 0) {
2169 	/*
2170 	 * search_library_pathfds() opens a fresh file descriptor for the
2171 	 * library, so there is no need to dup().
2172 	 */
2173     } else if (fd_u == -1) {
2174 	/*
2175 	 * If we didn't find a match by pathname, or the name is not
2176 	 * supplied, open the file and check again by device and inode.
2177 	 * This avoids false mismatches caused by multiple links or ".."
2178 	 * in pathnames.
2179 	 *
2180 	 * To avoid a race, we open the file and use fstat() rather than
2181 	 * using stat().
2182 	 */
2183 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2184 	    _rtld_error("Cannot open \"%s\"", path);
2185 	    free(path);
2186 	    return (NULL);
2187 	}
2188     } else {
2189 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2190 	if (fd == -1) {
2191 	    _rtld_error("Cannot dup fd");
2192 	    free(path);
2193 	    return (NULL);
2194 	}
2195     }
2196     if (fstat(fd, &sb) == -1) {
2197 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2198 	close(fd);
2199 	free(path);
2200 	return NULL;
2201     }
2202     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2203 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2204 	    break;
2205     if (obj != NULL && name != NULL) {
2206 	object_add_name(obj, name);
2207 	free(path);
2208 	close(fd);
2209 	return obj;
2210     }
2211     if (flags & RTLD_LO_NOLOAD) {
2212 	free(path);
2213 	close(fd);
2214 	return (NULL);
2215     }
2216 
2217     /* First use of this object, so we must map it in */
2218     obj = do_load_object(fd, name, path, &sb, flags);
2219     if (obj == NULL)
2220 	free(path);
2221     close(fd);
2222 
2223     return obj;
2224 }
2225 
2226 static Obj_Entry *
2227 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2228   int flags)
2229 {
2230     Obj_Entry *obj;
2231     struct statfs fs;
2232 
2233     /*
2234      * but first, make sure that environment variables haven't been
2235      * used to circumvent the noexec flag on a filesystem.
2236      */
2237     if (dangerous_ld_env) {
2238 	if (fstatfs(fd, &fs) != 0) {
2239 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2240 	    return NULL;
2241 	}
2242 	if (fs.f_flags & MNT_NOEXEC) {
2243 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2244 	    return NULL;
2245 	}
2246     }
2247     dbg("loading \"%s\"", printable_path(path));
2248     obj = map_object(fd, printable_path(path), sbp);
2249     if (obj == NULL)
2250         return NULL;
2251 
2252     /*
2253      * If DT_SONAME is present in the object, digest_dynamic2 already
2254      * added it to the object names.
2255      */
2256     if (name != NULL)
2257 	object_add_name(obj, name);
2258     obj->path = path;
2259     digest_dynamic(obj, 0);
2260     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2261 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2262     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2263       RTLD_LO_DLOPEN) {
2264 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2265 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2266 	munmap(obj->mapbase, obj->mapsize);
2267 	obj_free(obj);
2268 	return (NULL);
2269     }
2270 
2271     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2272     *obj_tail = obj;
2273     obj_tail = &obj->next;
2274     obj_count++;
2275     obj_loads++;
2276     linkmap_add(obj);	/* for GDB & dlinfo() */
2277     max_stack_flags |= obj->stack_flags;
2278 
2279     dbg("  %p .. %p: %s", obj->mapbase,
2280          obj->mapbase + obj->mapsize - 1, obj->path);
2281     if (obj->textrel)
2282 	dbg("  WARNING: %s has impure text", obj->path);
2283     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2284 	obj->path);
2285 
2286     return obj;
2287 }
2288 
2289 static Obj_Entry *
2290 obj_from_addr(const void *addr)
2291 {
2292     Obj_Entry *obj;
2293 
2294     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2295 	if (addr < (void *) obj->mapbase)
2296 	    continue;
2297 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2298 	    return obj;
2299     }
2300     return NULL;
2301 }
2302 
2303 static void
2304 preinit_main(void)
2305 {
2306     Elf_Addr *preinit_addr;
2307     int index;
2308 
2309     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2310     if (preinit_addr == NULL)
2311 	return;
2312 
2313     for (index = 0; index < obj_main->preinit_array_num; index++) {
2314 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2315 	    dbg("calling preinit function for %s at %p", obj_main->path,
2316 	      (void *)preinit_addr[index]);
2317 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2318 	      0, 0, obj_main->path);
2319 	    call_init_pointer(obj_main, preinit_addr[index]);
2320 	}
2321     }
2322 }
2323 
2324 /*
2325  * Call the finalization functions for each of the objects in "list"
2326  * belonging to the DAG of "root" and referenced once. If NULL "root"
2327  * is specified, every finalization function will be called regardless
2328  * of the reference count and the list elements won't be freed. All of
2329  * the objects are expected to have non-NULL fini functions.
2330  */
2331 static void
2332 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2333 {
2334     Objlist_Entry *elm;
2335     char *saved_msg;
2336     Elf_Addr *fini_addr;
2337     int index;
2338 
2339     assert(root == NULL || root->refcount == 1);
2340 
2341     /*
2342      * Preserve the current error message since a fini function might
2343      * call into the dynamic linker and overwrite it.
2344      */
2345     saved_msg = errmsg_save();
2346     do {
2347 	STAILQ_FOREACH(elm, list, link) {
2348 	    if (root != NULL && (elm->obj->refcount != 1 ||
2349 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2350 		continue;
2351 	    /* Remove object from fini list to prevent recursive invocation. */
2352 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2353 	    /*
2354 	     * XXX: If a dlopen() call references an object while the
2355 	     * fini function is in progress, we might end up trying to
2356 	     * unload the referenced object in dlclose() or the object
2357 	     * won't be unloaded although its fini function has been
2358 	     * called.
2359 	     */
2360 	    lock_release(rtld_bind_lock, lockstate);
2361 
2362 	    /*
2363 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2364 	     * When this happens, DT_FINI_ARRAY is processed first.
2365 	     */
2366 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2367 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2368 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2369 		  index--) {
2370 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2371 			dbg("calling fini function for %s at %p",
2372 			    elm->obj->path, (void *)fini_addr[index]);
2373 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2374 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2375 			call_initfini_pointer(elm->obj, fini_addr[index]);
2376 		    }
2377 		}
2378 	    }
2379 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2380 		dbg("calling fini function for %s at %p", elm->obj->path,
2381 		    (void *)elm->obj->fini);
2382 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2383 		    0, 0, elm->obj->path);
2384 		call_initfini_pointer(elm->obj, elm->obj->fini);
2385 	    }
2386 	    wlock_acquire(rtld_bind_lock, lockstate);
2387 	    /* No need to free anything if process is going down. */
2388 	    if (root != NULL)
2389 	    	free(elm);
2390 	    /*
2391 	     * We must restart the list traversal after every fini call
2392 	     * because a dlclose() call from the fini function or from
2393 	     * another thread might have modified the reference counts.
2394 	     */
2395 	    break;
2396 	}
2397     } while (elm != NULL);
2398     errmsg_restore(saved_msg);
2399 }
2400 
2401 /*
2402  * Call the initialization functions for each of the objects in
2403  * "list".  All of the objects are expected to have non-NULL init
2404  * functions.
2405  */
2406 static void
2407 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2408 {
2409     Objlist_Entry *elm;
2410     Obj_Entry *obj;
2411     char *saved_msg;
2412     Elf_Addr *init_addr;
2413     int index;
2414 
2415     /*
2416      * Clean init_scanned flag so that objects can be rechecked and
2417      * possibly initialized earlier if any of vectors called below
2418      * cause the change by using dlopen.
2419      */
2420     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2421 	obj->init_scanned = false;
2422 
2423     /*
2424      * Preserve the current error message since an init function might
2425      * call into the dynamic linker and overwrite it.
2426      */
2427     saved_msg = errmsg_save();
2428     STAILQ_FOREACH(elm, list, link) {
2429 	if (elm->obj->init_done) /* Initialized early. */
2430 	    continue;
2431 	/*
2432 	 * Race: other thread might try to use this object before current
2433 	 * one completes the initilization. Not much can be done here
2434 	 * without better locking.
2435 	 */
2436 	elm->obj->init_done = true;
2437 	lock_release(rtld_bind_lock, lockstate);
2438 
2439         /*
2440          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2441          * When this happens, DT_INIT is processed first.
2442          */
2443 	if (elm->obj->init != (Elf_Addr)NULL) {
2444 	    dbg("calling init function for %s at %p", elm->obj->path,
2445 	        (void *)elm->obj->init);
2446 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2447 	        0, 0, elm->obj->path);
2448 	    call_initfini_pointer(elm->obj, elm->obj->init);
2449 	}
2450 	init_addr = (Elf_Addr *)elm->obj->init_array;
2451 	if (init_addr != NULL) {
2452 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2453 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2454 		    dbg("calling init function for %s at %p", elm->obj->path,
2455 			(void *)init_addr[index]);
2456 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2457 			(void *)init_addr[index], 0, 0, elm->obj->path);
2458 		    call_init_pointer(elm->obj, init_addr[index]);
2459 		}
2460 	    }
2461 	}
2462 	wlock_acquire(rtld_bind_lock, lockstate);
2463     }
2464     errmsg_restore(saved_msg);
2465 }
2466 
2467 static void
2468 objlist_clear(Objlist *list)
2469 {
2470     Objlist_Entry *elm;
2471 
2472     while (!STAILQ_EMPTY(list)) {
2473 	elm = STAILQ_FIRST(list);
2474 	STAILQ_REMOVE_HEAD(list, link);
2475 	free(elm);
2476     }
2477 }
2478 
2479 static Objlist_Entry *
2480 objlist_find(Objlist *list, const Obj_Entry *obj)
2481 {
2482     Objlist_Entry *elm;
2483 
2484     STAILQ_FOREACH(elm, list, link)
2485 	if (elm->obj == obj)
2486 	    return elm;
2487     return NULL;
2488 }
2489 
2490 static void
2491 objlist_init(Objlist *list)
2492 {
2493     STAILQ_INIT(list);
2494 }
2495 
2496 static void
2497 objlist_push_head(Objlist *list, Obj_Entry *obj)
2498 {
2499     Objlist_Entry *elm;
2500 
2501     elm = NEW(Objlist_Entry);
2502     elm->obj = obj;
2503     STAILQ_INSERT_HEAD(list, elm, link);
2504 }
2505 
2506 static void
2507 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2508 {
2509     Objlist_Entry *elm;
2510 
2511     elm = NEW(Objlist_Entry);
2512     elm->obj = obj;
2513     STAILQ_INSERT_TAIL(list, elm, link);
2514 }
2515 
2516 static void
2517 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2518 {
2519 	Objlist_Entry *elm, *listelm;
2520 
2521 	STAILQ_FOREACH(listelm, list, link) {
2522 		if (listelm->obj == listobj)
2523 			break;
2524 	}
2525 	elm = NEW(Objlist_Entry);
2526 	elm->obj = obj;
2527 	if (listelm != NULL)
2528 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2529 	else
2530 		STAILQ_INSERT_TAIL(list, elm, link);
2531 }
2532 
2533 static void
2534 objlist_remove(Objlist *list, Obj_Entry *obj)
2535 {
2536     Objlist_Entry *elm;
2537 
2538     if ((elm = objlist_find(list, obj)) != NULL) {
2539 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2540 	free(elm);
2541     }
2542 }
2543 
2544 /*
2545  * Relocate dag rooted in the specified object.
2546  * Returns 0 on success, or -1 on failure.
2547  */
2548 
2549 static int
2550 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2551     int flags, RtldLockState *lockstate)
2552 {
2553 	Objlist_Entry *elm;
2554 	int error;
2555 
2556 	error = 0;
2557 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2558 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2559 		    lockstate);
2560 		if (error == -1)
2561 			break;
2562 	}
2563 	return (error);
2564 }
2565 
2566 /*
2567  * Relocate single object.
2568  * Returns 0 on success, or -1 on failure.
2569  */
2570 static int
2571 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2572     int flags, RtldLockState *lockstate)
2573 {
2574 
2575 	if (obj->relocated)
2576 		return (0);
2577 	obj->relocated = true;
2578 	if (obj != rtldobj)
2579 		dbg("relocating \"%s\"", obj->path);
2580 
2581 	if (obj->symtab == NULL || obj->strtab == NULL ||
2582 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2583 		_rtld_error("%s: Shared object has no run-time symbol table",
2584 			    obj->path);
2585 		return (-1);
2586 	}
2587 
2588 	if (obj->textrel) {
2589 		/* There are relocations to the write-protected text segment. */
2590 		if (mprotect(obj->mapbase, obj->textsize,
2591 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2592 			_rtld_error("%s: Cannot write-enable text segment: %s",
2593 			    obj->path, rtld_strerror(errno));
2594 			return (-1);
2595 		}
2596 	}
2597 
2598 	/* Process the non-PLT non-IFUNC relocations. */
2599 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2600 		return (-1);
2601 
2602 	if (obj->textrel) {	/* Re-protected the text segment. */
2603 		if (mprotect(obj->mapbase, obj->textsize,
2604 		    PROT_READ|PROT_EXEC) == -1) {
2605 			_rtld_error("%s: Cannot write-protect text segment: %s",
2606 			    obj->path, rtld_strerror(errno));
2607 			return (-1);
2608 		}
2609 	}
2610 
2611 	/* Set the special PLT or GOT entries. */
2612 	init_pltgot(obj);
2613 
2614 	/* Process the PLT relocations. */
2615 	if (reloc_plt(obj) == -1)
2616 		return (-1);
2617 	/* Relocate the jump slots if we are doing immediate binding. */
2618 	if (obj->bind_now || bind_now)
2619 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2620 			return (-1);
2621 
2622 	/*
2623 	 * Process the non-PLT IFUNC relocations.  The relocations are
2624 	 * processed in two phases, because IFUNC resolvers may
2625 	 * reference other symbols, which must be readily processed
2626 	 * before resolvers are called.
2627 	 */
2628 	if (obj->non_plt_gnu_ifunc &&
2629 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2630 		return (-1);
2631 
2632 	if (obj->relro_size > 0) {
2633 		if (mprotect(obj->relro_page, obj->relro_size,
2634 		    PROT_READ) == -1) {
2635 			_rtld_error("%s: Cannot enforce relro protection: %s",
2636 			    obj->path, rtld_strerror(errno));
2637 			return (-1);
2638 		}
2639 	}
2640 
2641 	/*
2642 	 * Set up the magic number and version in the Obj_Entry.  These
2643 	 * were checked in the crt1.o from the original ElfKit, so we
2644 	 * set them for backward compatibility.
2645 	 */
2646 	obj->magic = RTLD_MAGIC;
2647 	obj->version = RTLD_VERSION;
2648 
2649 	return (0);
2650 }
2651 
2652 /*
2653  * Relocate newly-loaded shared objects.  The argument is a pointer to
2654  * the Obj_Entry for the first such object.  All objects from the first
2655  * to the end of the list of objects are relocated.  Returns 0 on success,
2656  * or -1 on failure.
2657  */
2658 static int
2659 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2660     int flags, RtldLockState *lockstate)
2661 {
2662 	Obj_Entry *obj;
2663 	int error;
2664 
2665 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2666 		error = relocate_object(obj, bind_now, rtldobj, flags,
2667 		    lockstate);
2668 		if (error == -1)
2669 			break;
2670 	}
2671 	return (error);
2672 }
2673 
2674 /*
2675  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2676  * referencing STT_GNU_IFUNC symbols is postponed till the other
2677  * relocations are done.  The indirect functions specified as
2678  * ifunc are allowed to call other symbols, so we need to have
2679  * objects relocated before asking for resolution from indirects.
2680  *
2681  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2682  * instead of the usual lazy handling of PLT slots.  It is
2683  * consistent with how GNU does it.
2684  */
2685 static int
2686 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2687     RtldLockState *lockstate)
2688 {
2689 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2690 		return (-1);
2691 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2692 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2693 		return (-1);
2694 	return (0);
2695 }
2696 
2697 static int
2698 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2699     RtldLockState *lockstate)
2700 {
2701 	Obj_Entry *obj;
2702 
2703 	for (obj = first;  obj != NULL;  obj = obj->next) {
2704 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2705 			return (-1);
2706 	}
2707 	return (0);
2708 }
2709 
2710 static int
2711 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2712     RtldLockState *lockstate)
2713 {
2714 	Objlist_Entry *elm;
2715 
2716 	STAILQ_FOREACH(elm, list, link) {
2717 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2718 		    lockstate) == -1)
2719 			return (-1);
2720 	}
2721 	return (0);
2722 }
2723 
2724 /*
2725  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2726  * before the process exits.
2727  */
2728 static void
2729 rtld_exit(void)
2730 {
2731     RtldLockState lockstate;
2732 
2733     wlock_acquire(rtld_bind_lock, &lockstate);
2734     dbg("rtld_exit()");
2735     objlist_call_fini(&list_fini, NULL, &lockstate);
2736     /* No need to remove the items from the list, since we are exiting. */
2737     if (!libmap_disable)
2738         lm_fini();
2739     lock_release(rtld_bind_lock, &lockstate);
2740 }
2741 
2742 /*
2743  * Iterate over a search path, translate each element, and invoke the
2744  * callback on the result.
2745  */
2746 static void *
2747 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2748 {
2749     const char *trans;
2750     if (path == NULL)
2751 	return (NULL);
2752 
2753     path += strspn(path, ":;");
2754     while (*path != '\0') {
2755 	size_t len;
2756 	char  *res;
2757 
2758 	len = strcspn(path, ":;");
2759 	trans = lm_findn(NULL, path, len);
2760 	if (trans)
2761 	    res = callback(trans, strlen(trans), arg);
2762 	else
2763 	    res = callback(path, len, arg);
2764 
2765 	if (res != NULL)
2766 	    return (res);
2767 
2768 	path += len;
2769 	path += strspn(path, ":;");
2770     }
2771 
2772     return (NULL);
2773 }
2774 
2775 struct try_library_args {
2776     const char	*name;
2777     size_t	 namelen;
2778     char	*buffer;
2779     size_t	 buflen;
2780 };
2781 
2782 static void *
2783 try_library_path(const char *dir, size_t dirlen, void *param)
2784 {
2785     struct try_library_args *arg;
2786 
2787     arg = param;
2788     if (*dir == '/' || trust) {
2789 	char *pathname;
2790 
2791 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2792 		return (NULL);
2793 
2794 	pathname = arg->buffer;
2795 	strncpy(pathname, dir, dirlen);
2796 	pathname[dirlen] = '/';
2797 	strcpy(pathname + dirlen + 1, arg->name);
2798 
2799 	dbg("  Trying \"%s\"", pathname);
2800 	if (access(pathname, F_OK) == 0) {		/* We found it */
2801 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2802 	    strcpy(pathname, arg->buffer);
2803 	    return (pathname);
2804 	}
2805     }
2806     return (NULL);
2807 }
2808 
2809 static char *
2810 search_library_path(const char *name, const char *path)
2811 {
2812     char *p;
2813     struct try_library_args arg;
2814 
2815     if (path == NULL)
2816 	return NULL;
2817 
2818     arg.name = name;
2819     arg.namelen = strlen(name);
2820     arg.buffer = xmalloc(PATH_MAX);
2821     arg.buflen = PATH_MAX;
2822 
2823     p = path_enumerate(path, try_library_path, &arg);
2824 
2825     free(arg.buffer);
2826 
2827     return (p);
2828 }
2829 
2830 
2831 /*
2832  * Finds the library with the given name using the directory descriptors
2833  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2834  *
2835  * Returns a freshly-opened close-on-exec file descriptor for the library,
2836  * or -1 if the library cannot be found.
2837  */
2838 static char *
2839 search_library_pathfds(const char *name, const char *path, int *fdp)
2840 {
2841 	char *envcopy, *fdstr, *found, *last_token;
2842 	size_t len;
2843 	int dirfd, fd;
2844 
2845 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2846 
2847 	/* Don't load from user-specified libdirs into setuid binaries. */
2848 	if (!trust)
2849 		return (NULL);
2850 
2851 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2852 	if (path == NULL)
2853 		return (NULL);
2854 
2855 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2856 	if (name[0] == '/') {
2857 		dbg("Absolute path (%s) passed to %s", name, __func__);
2858 		return (NULL);
2859 	}
2860 
2861 	/*
2862 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2863 	 * copy of the path, as strtok_r rewrites separator tokens
2864 	 * with '\0'.
2865 	 */
2866 	found = NULL;
2867 	envcopy = xstrdup(path);
2868 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2869 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2870 		dirfd = parse_libdir(fdstr);
2871 		if (dirfd < 0)
2872 			break;
2873 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2874 		if (fd >= 0) {
2875 			*fdp = fd;
2876 			len = strlen(fdstr) + strlen(name) + 3;
2877 			found = xmalloc(len);
2878 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2879 				_rtld_error("error generating '%d/%s'",
2880 				    dirfd, name);
2881 				rtld_die();
2882 			}
2883 			dbg("open('%s') => %d", found, fd);
2884 			break;
2885 		}
2886 	}
2887 	free(envcopy);
2888 
2889 	return (found);
2890 }
2891 
2892 
2893 int
2894 dlclose(void *handle)
2895 {
2896     Obj_Entry *root;
2897     RtldLockState lockstate;
2898 
2899     wlock_acquire(rtld_bind_lock, &lockstate);
2900     root = dlcheck(handle);
2901     if (root == NULL) {
2902 	lock_release(rtld_bind_lock, &lockstate);
2903 	return -1;
2904     }
2905     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2906 	root->path);
2907 
2908     /* Unreference the object and its dependencies. */
2909     root->dl_refcount--;
2910 
2911     if (root->refcount == 1) {
2912 	/*
2913 	 * The object will be no longer referenced, so we must unload it.
2914 	 * First, call the fini functions.
2915 	 */
2916 	objlist_call_fini(&list_fini, root, &lockstate);
2917 
2918 	unref_dag(root);
2919 
2920 	/* Finish cleaning up the newly-unreferenced objects. */
2921 	GDB_STATE(RT_DELETE,&root->linkmap);
2922 	unload_object(root);
2923 	GDB_STATE(RT_CONSISTENT,NULL);
2924     } else
2925 	unref_dag(root);
2926 
2927     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2928     lock_release(rtld_bind_lock, &lockstate);
2929     return 0;
2930 }
2931 
2932 char *
2933 dlerror(void)
2934 {
2935     char *msg = error_message;
2936     error_message = NULL;
2937     return msg;
2938 }
2939 
2940 /*
2941  * This function is deprecated and has no effect.
2942  */
2943 void
2944 dllockinit(void *context,
2945 	   void *(*lock_create)(void *context),
2946            void (*rlock_acquire)(void *lock),
2947            void (*wlock_acquire)(void *lock),
2948            void (*lock_release)(void *lock),
2949            void (*lock_destroy)(void *lock),
2950 	   void (*context_destroy)(void *context))
2951 {
2952     static void *cur_context;
2953     static void (*cur_context_destroy)(void *);
2954 
2955     /* Just destroy the context from the previous call, if necessary. */
2956     if (cur_context_destroy != NULL)
2957 	cur_context_destroy(cur_context);
2958     cur_context = context;
2959     cur_context_destroy = context_destroy;
2960 }
2961 
2962 void *
2963 dlopen(const char *name, int mode)
2964 {
2965 
2966 	return (rtld_dlopen(name, -1, mode));
2967 }
2968 
2969 void *
2970 fdlopen(int fd, int mode)
2971 {
2972 
2973 	return (rtld_dlopen(NULL, fd, mode));
2974 }
2975 
2976 static void *
2977 rtld_dlopen(const char *name, int fd, int mode)
2978 {
2979     RtldLockState lockstate;
2980     int lo_flags;
2981 
2982     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2983     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2984     if (ld_tracing != NULL) {
2985 	rlock_acquire(rtld_bind_lock, &lockstate);
2986 	if (sigsetjmp(lockstate.env, 0) != 0)
2987 	    lock_upgrade(rtld_bind_lock, &lockstate);
2988 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2989 	lock_release(rtld_bind_lock, &lockstate);
2990     }
2991     lo_flags = RTLD_LO_DLOPEN;
2992     if (mode & RTLD_NODELETE)
2993 	    lo_flags |= RTLD_LO_NODELETE;
2994     if (mode & RTLD_NOLOAD)
2995 	    lo_flags |= RTLD_LO_NOLOAD;
2996     if (ld_tracing != NULL)
2997 	    lo_flags |= RTLD_LO_TRACE;
2998 
2999     return (dlopen_object(name, fd, obj_main, lo_flags,
3000       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3001 }
3002 
3003 static void
3004 dlopen_cleanup(Obj_Entry *obj)
3005 {
3006 
3007 	obj->dl_refcount--;
3008 	unref_dag(obj);
3009 	if (obj->refcount == 0)
3010 		unload_object(obj);
3011 }
3012 
3013 static Obj_Entry *
3014 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3015     int mode, RtldLockState *lockstate)
3016 {
3017     Obj_Entry **old_obj_tail;
3018     Obj_Entry *obj;
3019     Objlist initlist;
3020     RtldLockState mlockstate;
3021     int result;
3022 
3023     objlist_init(&initlist);
3024 
3025     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3026 	wlock_acquire(rtld_bind_lock, &mlockstate);
3027 	lockstate = &mlockstate;
3028     }
3029     GDB_STATE(RT_ADD,NULL);
3030 
3031     old_obj_tail = obj_tail;
3032     obj = NULL;
3033     if (name == NULL && fd == -1) {
3034 	obj = obj_main;
3035 	obj->refcount++;
3036     } else {
3037 	obj = load_object(name, fd, refobj, lo_flags);
3038     }
3039 
3040     if (obj) {
3041 	obj->dl_refcount++;
3042 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3043 	    objlist_push_tail(&list_global, obj);
3044 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3045 	    assert(*old_obj_tail == obj);
3046 	    result = load_needed_objects(obj,
3047 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3048 	    init_dag(obj);
3049 	    ref_dag(obj);
3050 	    if (result != -1)
3051 		result = rtld_verify_versions(&obj->dagmembers);
3052 	    if (result != -1 && ld_tracing)
3053 		goto trace;
3054 	    if (result == -1 || relocate_object_dag(obj,
3055 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3056 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3057 	      lockstate) == -1) {
3058 		dlopen_cleanup(obj);
3059 		obj = NULL;
3060 	    } else if (lo_flags & RTLD_LO_EARLY) {
3061 		/*
3062 		 * Do not call the init functions for early loaded
3063 		 * filtees.  The image is still not initialized enough
3064 		 * for them to work.
3065 		 *
3066 		 * Our object is found by the global object list and
3067 		 * will be ordered among all init calls done right
3068 		 * before transferring control to main.
3069 		 */
3070 	    } else {
3071 		/* Make list of init functions to call. */
3072 		initlist_add_objects(obj, &obj->next, &initlist);
3073 	    }
3074 	    /*
3075 	     * Process all no_delete or global objects here, given
3076 	     * them own DAGs to prevent their dependencies from being
3077 	     * unloaded.  This has to be done after we have loaded all
3078 	     * of the dependencies, so that we do not miss any.
3079 	     */
3080 	    if (obj != NULL)
3081 		process_z(obj);
3082 	} else {
3083 	    /*
3084 	     * Bump the reference counts for objects on this DAG.  If
3085 	     * this is the first dlopen() call for the object that was
3086 	     * already loaded as a dependency, initialize the dag
3087 	     * starting at it.
3088 	     */
3089 	    init_dag(obj);
3090 	    ref_dag(obj);
3091 
3092 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3093 		goto trace;
3094 	}
3095 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3096 	  obj->z_nodelete) && !obj->ref_nodel) {
3097 	    dbg("obj %s nodelete", obj->path);
3098 	    ref_dag(obj);
3099 	    obj->z_nodelete = obj->ref_nodel = true;
3100 	}
3101     }
3102 
3103     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3104 	name);
3105     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3106 
3107     if (!(lo_flags & RTLD_LO_EARLY)) {
3108 	map_stacks_exec(lockstate);
3109     }
3110 
3111     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3112       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3113       lockstate) == -1) {
3114 	objlist_clear(&initlist);
3115 	dlopen_cleanup(obj);
3116 	if (lockstate == &mlockstate)
3117 	    lock_release(rtld_bind_lock, lockstate);
3118 	return (NULL);
3119     }
3120 
3121     if (!(lo_flags & RTLD_LO_EARLY)) {
3122 	/* Call the init functions. */
3123 	objlist_call_init(&initlist, lockstate);
3124     }
3125     objlist_clear(&initlist);
3126     if (lockstate == &mlockstate)
3127 	lock_release(rtld_bind_lock, lockstate);
3128     return obj;
3129 trace:
3130     trace_loaded_objects(obj);
3131     if (lockstate == &mlockstate)
3132 	lock_release(rtld_bind_lock, lockstate);
3133     exit(0);
3134 }
3135 
3136 static void *
3137 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3138     int flags)
3139 {
3140     DoneList donelist;
3141     const Obj_Entry *obj, *defobj;
3142     const Elf_Sym *def;
3143     SymLook req;
3144     RtldLockState lockstate;
3145     tls_index ti;
3146     void *sym;
3147     int res;
3148 
3149     def = NULL;
3150     defobj = NULL;
3151     symlook_init(&req, name);
3152     req.ventry = ve;
3153     req.flags = flags | SYMLOOK_IN_PLT;
3154     req.lockstate = &lockstate;
3155 
3156     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3157     rlock_acquire(rtld_bind_lock, &lockstate);
3158     if (sigsetjmp(lockstate.env, 0) != 0)
3159 	    lock_upgrade(rtld_bind_lock, &lockstate);
3160     if (handle == NULL || handle == RTLD_NEXT ||
3161 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3162 
3163 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3164 	    _rtld_error("Cannot determine caller's shared object");
3165 	    lock_release(rtld_bind_lock, &lockstate);
3166 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3167 	    return NULL;
3168 	}
3169 	if (handle == NULL) {	/* Just the caller's shared object. */
3170 	    res = symlook_obj(&req, obj);
3171 	    if (res == 0) {
3172 		def = req.sym_out;
3173 		defobj = req.defobj_out;
3174 	    }
3175 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3176 		   handle == RTLD_SELF) { /* ... caller included */
3177 	    if (handle == RTLD_NEXT)
3178 		obj = obj->next;
3179 	    for (; obj != NULL; obj = obj->next) {
3180 		res = symlook_obj(&req, obj);
3181 		if (res == 0) {
3182 		    if (def == NULL ||
3183 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3184 			def = req.sym_out;
3185 			defobj = req.defobj_out;
3186 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3187 			    break;
3188 		    }
3189 		}
3190 	    }
3191 	    /*
3192 	     * Search the dynamic linker itself, and possibly resolve the
3193 	     * symbol from there.  This is how the application links to
3194 	     * dynamic linker services such as dlopen.
3195 	     */
3196 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3197 		res = symlook_obj(&req, &obj_rtld);
3198 		if (res == 0) {
3199 		    def = req.sym_out;
3200 		    defobj = req.defobj_out;
3201 		}
3202 	    }
3203 	} else {
3204 	    assert(handle == RTLD_DEFAULT);
3205 	    res = symlook_default(&req, obj);
3206 	    if (res == 0) {
3207 		defobj = req.defobj_out;
3208 		def = req.sym_out;
3209 	    }
3210 	}
3211     } else {
3212 	if ((obj = dlcheck(handle)) == NULL) {
3213 	    lock_release(rtld_bind_lock, &lockstate);
3214 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3215 	    return NULL;
3216 	}
3217 
3218 	donelist_init(&donelist);
3219 	if (obj->mainprog) {
3220             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3221 	    res = symlook_global(&req, &donelist);
3222 	    if (res == 0) {
3223 		def = req.sym_out;
3224 		defobj = req.defobj_out;
3225 	    }
3226 	    /*
3227 	     * Search the dynamic linker itself, and possibly resolve the
3228 	     * symbol from there.  This is how the application links to
3229 	     * dynamic linker services such as dlopen.
3230 	     */
3231 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3232 		res = symlook_obj(&req, &obj_rtld);
3233 		if (res == 0) {
3234 		    def = req.sym_out;
3235 		    defobj = req.defobj_out;
3236 		}
3237 	    }
3238 	}
3239 	else {
3240 	    /* Search the whole DAG rooted at the given object. */
3241 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3242 	    if (res == 0) {
3243 		def = req.sym_out;
3244 		defobj = req.defobj_out;
3245 	    }
3246 	}
3247     }
3248 
3249     if (def != NULL) {
3250 	lock_release(rtld_bind_lock, &lockstate);
3251 
3252 	/*
3253 	 * The value required by the caller is derived from the value
3254 	 * of the symbol. this is simply the relocated value of the
3255 	 * symbol.
3256 	 */
3257 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3258 	    sym = make_function_pointer(def, defobj);
3259 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3260 	    sym = rtld_resolve_ifunc(defobj, def);
3261 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3262 	    ti.ti_module = defobj->tlsindex;
3263 	    ti.ti_offset = def->st_value;
3264 	    sym = __tls_get_addr(&ti);
3265 	} else
3266 	    sym = defobj->relocbase + def->st_value;
3267 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3268 	return (sym);
3269     }
3270 
3271     _rtld_error("Undefined symbol \"%s\"", name);
3272     lock_release(rtld_bind_lock, &lockstate);
3273     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3274     return NULL;
3275 }
3276 
3277 void *
3278 dlsym(void *handle, const char *name)
3279 {
3280 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3281 	    SYMLOOK_DLSYM);
3282 }
3283 
3284 dlfunc_t
3285 dlfunc(void *handle, const char *name)
3286 {
3287 	union {
3288 		void *d;
3289 		dlfunc_t f;
3290 	} rv;
3291 
3292 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3293 	    SYMLOOK_DLSYM);
3294 	return (rv.f);
3295 }
3296 
3297 void *
3298 dlvsym(void *handle, const char *name, const char *version)
3299 {
3300 	Ver_Entry ventry;
3301 
3302 	ventry.name = version;
3303 	ventry.file = NULL;
3304 	ventry.hash = elf_hash(version);
3305 	ventry.flags= 0;
3306 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3307 	    SYMLOOK_DLSYM);
3308 }
3309 
3310 int
3311 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3312 {
3313     const Obj_Entry *obj;
3314     RtldLockState lockstate;
3315 
3316     rlock_acquire(rtld_bind_lock, &lockstate);
3317     obj = obj_from_addr(addr);
3318     if (obj == NULL) {
3319         _rtld_error("No shared object contains address");
3320 	lock_release(rtld_bind_lock, &lockstate);
3321         return (0);
3322     }
3323     rtld_fill_dl_phdr_info(obj, phdr_info);
3324     lock_release(rtld_bind_lock, &lockstate);
3325     return (1);
3326 }
3327 
3328 int
3329 dladdr(const void *addr, Dl_info *info)
3330 {
3331     const Obj_Entry *obj;
3332     const Elf_Sym *def;
3333     void *symbol_addr;
3334     unsigned long symoffset;
3335     RtldLockState lockstate;
3336 
3337     rlock_acquire(rtld_bind_lock, &lockstate);
3338     obj = obj_from_addr(addr);
3339     if (obj == NULL) {
3340         _rtld_error("No shared object contains address");
3341 	lock_release(rtld_bind_lock, &lockstate);
3342         return 0;
3343     }
3344     info->dli_fname = obj->path;
3345     info->dli_fbase = obj->mapbase;
3346     info->dli_saddr = (void *)0;
3347     info->dli_sname = NULL;
3348 
3349     /*
3350      * Walk the symbol list looking for the symbol whose address is
3351      * closest to the address sent in.
3352      */
3353     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3354         def = obj->symtab + symoffset;
3355 
3356         /*
3357          * For skip the symbol if st_shndx is either SHN_UNDEF or
3358          * SHN_COMMON.
3359          */
3360         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3361             continue;
3362 
3363         /*
3364          * If the symbol is greater than the specified address, or if it
3365          * is further away from addr than the current nearest symbol,
3366          * then reject it.
3367          */
3368         symbol_addr = obj->relocbase + def->st_value;
3369         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3370             continue;
3371 
3372         /* Update our idea of the nearest symbol. */
3373         info->dli_sname = obj->strtab + def->st_name;
3374         info->dli_saddr = symbol_addr;
3375 
3376         /* Exact match? */
3377         if (info->dli_saddr == addr)
3378             break;
3379     }
3380     lock_release(rtld_bind_lock, &lockstate);
3381     return 1;
3382 }
3383 
3384 int
3385 dlinfo(void *handle, int request, void *p)
3386 {
3387     const Obj_Entry *obj;
3388     RtldLockState lockstate;
3389     int error;
3390 
3391     rlock_acquire(rtld_bind_lock, &lockstate);
3392 
3393     if (handle == NULL || handle == RTLD_SELF) {
3394 	void *retaddr;
3395 
3396 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3397 	if ((obj = obj_from_addr(retaddr)) == NULL)
3398 	    _rtld_error("Cannot determine caller's shared object");
3399     } else
3400 	obj = dlcheck(handle);
3401 
3402     if (obj == NULL) {
3403 	lock_release(rtld_bind_lock, &lockstate);
3404 	return (-1);
3405     }
3406 
3407     error = 0;
3408     switch (request) {
3409     case RTLD_DI_LINKMAP:
3410 	*((struct link_map const **)p) = &obj->linkmap;
3411 	break;
3412     case RTLD_DI_ORIGIN:
3413 	error = rtld_dirname(obj->path, p);
3414 	break;
3415 
3416     case RTLD_DI_SERINFOSIZE:
3417     case RTLD_DI_SERINFO:
3418 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3419 	break;
3420 
3421     default:
3422 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3423 	error = -1;
3424     }
3425 
3426     lock_release(rtld_bind_lock, &lockstate);
3427 
3428     return (error);
3429 }
3430 
3431 static void
3432 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3433 {
3434 
3435 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3436 	phdr_info->dlpi_name = obj->path;
3437 	phdr_info->dlpi_phdr = obj->phdr;
3438 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3439 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3440 	phdr_info->dlpi_tls_data = obj->tlsinit;
3441 	phdr_info->dlpi_adds = obj_loads;
3442 	phdr_info->dlpi_subs = obj_loads - obj_count;
3443 }
3444 
3445 int
3446 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3447 {
3448     struct dl_phdr_info phdr_info;
3449     const Obj_Entry *obj;
3450     RtldLockState bind_lockstate, phdr_lockstate;
3451     int error;
3452 
3453     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3454     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3455 
3456     error = 0;
3457 
3458     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3459 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3460 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3461 		break;
3462 
3463     }
3464     if (error == 0) {
3465 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3466 	error = callback(&phdr_info, sizeof(phdr_info), param);
3467     }
3468 
3469     lock_release(rtld_bind_lock, &bind_lockstate);
3470     lock_release(rtld_phdr_lock, &phdr_lockstate);
3471 
3472     return (error);
3473 }
3474 
3475 static void *
3476 fill_search_info(const char *dir, size_t dirlen, void *param)
3477 {
3478     struct fill_search_info_args *arg;
3479 
3480     arg = param;
3481 
3482     if (arg->request == RTLD_DI_SERINFOSIZE) {
3483 	arg->serinfo->dls_cnt ++;
3484 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3485     } else {
3486 	struct dl_serpath *s_entry;
3487 
3488 	s_entry = arg->serpath;
3489 	s_entry->dls_name  = arg->strspace;
3490 	s_entry->dls_flags = arg->flags;
3491 
3492 	strncpy(arg->strspace, dir, dirlen);
3493 	arg->strspace[dirlen] = '\0';
3494 
3495 	arg->strspace += dirlen + 1;
3496 	arg->serpath++;
3497     }
3498 
3499     return (NULL);
3500 }
3501 
3502 static int
3503 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3504 {
3505     struct dl_serinfo _info;
3506     struct fill_search_info_args args;
3507 
3508     args.request = RTLD_DI_SERINFOSIZE;
3509     args.serinfo = &_info;
3510 
3511     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3512     _info.dls_cnt  = 0;
3513 
3514     path_enumerate(obj->rpath, fill_search_info, &args);
3515     path_enumerate(ld_library_path, fill_search_info, &args);
3516     path_enumerate(obj->runpath, fill_search_info, &args);
3517     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3518     if (!obj->z_nodeflib)
3519       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3520 
3521 
3522     if (request == RTLD_DI_SERINFOSIZE) {
3523 	info->dls_size = _info.dls_size;
3524 	info->dls_cnt = _info.dls_cnt;
3525 	return (0);
3526     }
3527 
3528     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3529 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3530 	return (-1);
3531     }
3532 
3533     args.request  = RTLD_DI_SERINFO;
3534     args.serinfo  = info;
3535     args.serpath  = &info->dls_serpath[0];
3536     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3537 
3538     args.flags = LA_SER_RUNPATH;
3539     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3540 	return (-1);
3541 
3542     args.flags = LA_SER_LIBPATH;
3543     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3544 	return (-1);
3545 
3546     args.flags = LA_SER_RUNPATH;
3547     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3548 	return (-1);
3549 
3550     args.flags = LA_SER_CONFIG;
3551     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3552       != NULL)
3553 	return (-1);
3554 
3555     args.flags = LA_SER_DEFAULT;
3556     if (!obj->z_nodeflib &&
3557       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3558 	return (-1);
3559     return (0);
3560 }
3561 
3562 static int
3563 rtld_dirname(const char *path, char *bname)
3564 {
3565     const char *endp;
3566 
3567     /* Empty or NULL string gets treated as "." */
3568     if (path == NULL || *path == '\0') {
3569 	bname[0] = '.';
3570 	bname[1] = '\0';
3571 	return (0);
3572     }
3573 
3574     /* Strip trailing slashes */
3575     endp = path + strlen(path) - 1;
3576     while (endp > path && *endp == '/')
3577 	endp--;
3578 
3579     /* Find the start of the dir */
3580     while (endp > path && *endp != '/')
3581 	endp--;
3582 
3583     /* Either the dir is "/" or there are no slashes */
3584     if (endp == path) {
3585 	bname[0] = *endp == '/' ? '/' : '.';
3586 	bname[1] = '\0';
3587 	return (0);
3588     } else {
3589 	do {
3590 	    endp--;
3591 	} while (endp > path && *endp == '/');
3592     }
3593 
3594     if (endp - path + 2 > PATH_MAX)
3595     {
3596 	_rtld_error("Filename is too long: %s", path);
3597 	return(-1);
3598     }
3599 
3600     strncpy(bname, path, endp - path + 1);
3601     bname[endp - path + 1] = '\0';
3602     return (0);
3603 }
3604 
3605 static int
3606 rtld_dirname_abs(const char *path, char *base)
3607 {
3608 	char *last;
3609 
3610 	if (realpath(path, base) == NULL)
3611 		return (-1);
3612 	dbg("%s -> %s", path, base);
3613 	last = strrchr(base, '/');
3614 	if (last == NULL)
3615 		return (-1);
3616 	if (last != base)
3617 		*last = '\0';
3618 	return (0);
3619 }
3620 
3621 static void
3622 linkmap_add(Obj_Entry *obj)
3623 {
3624     struct link_map *l = &obj->linkmap;
3625     struct link_map *prev;
3626 
3627     obj->linkmap.l_name = obj->path;
3628     obj->linkmap.l_addr = obj->mapbase;
3629     obj->linkmap.l_ld = obj->dynamic;
3630 #ifdef __mips__
3631     /* GDB needs load offset on MIPS to use the symbols */
3632     obj->linkmap.l_offs = obj->relocbase;
3633 #endif
3634 
3635     if (r_debug.r_map == NULL) {
3636 	r_debug.r_map = l;
3637 	return;
3638     }
3639 
3640     /*
3641      * Scan to the end of the list, but not past the entry for the
3642      * dynamic linker, which we want to keep at the very end.
3643      */
3644     for (prev = r_debug.r_map;
3645       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3646       prev = prev->l_next)
3647 	;
3648 
3649     /* Link in the new entry. */
3650     l->l_prev = prev;
3651     l->l_next = prev->l_next;
3652     if (l->l_next != NULL)
3653 	l->l_next->l_prev = l;
3654     prev->l_next = l;
3655 }
3656 
3657 static void
3658 linkmap_delete(Obj_Entry *obj)
3659 {
3660     struct link_map *l = &obj->linkmap;
3661 
3662     if (l->l_prev == NULL) {
3663 	if ((r_debug.r_map = l->l_next) != NULL)
3664 	    l->l_next->l_prev = NULL;
3665 	return;
3666     }
3667 
3668     if ((l->l_prev->l_next = l->l_next) != NULL)
3669 	l->l_next->l_prev = l->l_prev;
3670 }
3671 
3672 /*
3673  * Function for the debugger to set a breakpoint on to gain control.
3674  *
3675  * The two parameters allow the debugger to easily find and determine
3676  * what the runtime loader is doing and to whom it is doing it.
3677  *
3678  * When the loadhook trap is hit (r_debug_state, set at program
3679  * initialization), the arguments can be found on the stack:
3680  *
3681  *  +8   struct link_map *m
3682  *  +4   struct r_debug  *rd
3683  *  +0   RetAddr
3684  */
3685 void
3686 r_debug_state(struct r_debug* rd, struct link_map *m)
3687 {
3688     /*
3689      * The following is a hack to force the compiler to emit calls to
3690      * this function, even when optimizing.  If the function is empty,
3691      * the compiler is not obliged to emit any code for calls to it,
3692      * even when marked __noinline.  However, gdb depends on those
3693      * calls being made.
3694      */
3695     __compiler_membar();
3696 }
3697 
3698 /*
3699  * A function called after init routines have completed. This can be used to
3700  * break before a program's entry routine is called, and can be used when
3701  * main is not available in the symbol table.
3702  */
3703 void
3704 _r_debug_postinit(struct link_map *m)
3705 {
3706 
3707 	/* See r_debug_state(). */
3708 	__compiler_membar();
3709 }
3710 
3711 /*
3712  * Get address of the pointer variable in the main program.
3713  * Prefer non-weak symbol over the weak one.
3714  */
3715 static const void **
3716 get_program_var_addr(const char *name, RtldLockState *lockstate)
3717 {
3718     SymLook req;
3719     DoneList donelist;
3720 
3721     symlook_init(&req, name);
3722     req.lockstate = lockstate;
3723     donelist_init(&donelist);
3724     if (symlook_global(&req, &donelist) != 0)
3725 	return (NULL);
3726     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3727 	return ((const void **)make_function_pointer(req.sym_out,
3728 	  req.defobj_out));
3729     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3730 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3731     else
3732 	return ((const void **)(req.defobj_out->relocbase +
3733 	  req.sym_out->st_value));
3734 }
3735 
3736 /*
3737  * Set a pointer variable in the main program to the given value.  This
3738  * is used to set key variables such as "environ" before any of the
3739  * init functions are called.
3740  */
3741 static void
3742 set_program_var(const char *name, const void *value)
3743 {
3744     const void **addr;
3745 
3746     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3747 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3748 	*addr = value;
3749     }
3750 }
3751 
3752 /*
3753  * Search the global objects, including dependencies and main object,
3754  * for the given symbol.
3755  */
3756 static int
3757 symlook_global(SymLook *req, DoneList *donelist)
3758 {
3759     SymLook req1;
3760     const Objlist_Entry *elm;
3761     int res;
3762 
3763     symlook_init_from_req(&req1, req);
3764 
3765     /* Search all objects loaded at program start up. */
3766     if (req->defobj_out == NULL ||
3767       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3768 	res = symlook_list(&req1, &list_main, donelist);
3769 	if (res == 0 && (req->defobj_out == NULL ||
3770 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3771 	    req->sym_out = req1.sym_out;
3772 	    req->defobj_out = req1.defobj_out;
3773 	    assert(req->defobj_out != NULL);
3774 	}
3775     }
3776 
3777     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3778     STAILQ_FOREACH(elm, &list_global, link) {
3779 	if (req->defobj_out != NULL &&
3780 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3781 	    break;
3782 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3783 	if (res == 0 && (req->defobj_out == NULL ||
3784 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3785 	    req->sym_out = req1.sym_out;
3786 	    req->defobj_out = req1.defobj_out;
3787 	    assert(req->defobj_out != NULL);
3788 	}
3789     }
3790 
3791     return (req->sym_out != NULL ? 0 : ESRCH);
3792 }
3793 
3794 /*
3795  * Given a symbol name in a referencing object, find the corresponding
3796  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3797  * no definition was found.  Returns a pointer to the Obj_Entry of the
3798  * defining object via the reference parameter DEFOBJ_OUT.
3799  */
3800 static int
3801 symlook_default(SymLook *req, const Obj_Entry *refobj)
3802 {
3803     DoneList donelist;
3804     const Objlist_Entry *elm;
3805     SymLook req1;
3806     int res;
3807 
3808     donelist_init(&donelist);
3809     symlook_init_from_req(&req1, req);
3810 
3811     /* Look first in the referencing object if linked symbolically. */
3812     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3813 	res = symlook_obj(&req1, refobj);
3814 	if (res == 0) {
3815 	    req->sym_out = req1.sym_out;
3816 	    req->defobj_out = req1.defobj_out;
3817 	    assert(req->defobj_out != NULL);
3818 	}
3819     }
3820 
3821     symlook_global(req, &donelist);
3822 
3823     /* Search all dlopened DAGs containing the referencing object. */
3824     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3825 	if (req->sym_out != NULL &&
3826 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3827 	    break;
3828 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3829 	if (res == 0 && (req->sym_out == NULL ||
3830 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3831 	    req->sym_out = req1.sym_out;
3832 	    req->defobj_out = req1.defobj_out;
3833 	    assert(req->defobj_out != NULL);
3834 	}
3835     }
3836 
3837     /*
3838      * Search the dynamic linker itself, and possibly resolve the
3839      * symbol from there.  This is how the application links to
3840      * dynamic linker services such as dlopen.
3841      */
3842     if (req->sym_out == NULL ||
3843       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3844 	res = symlook_obj(&req1, &obj_rtld);
3845 	if (res == 0) {
3846 	    req->sym_out = req1.sym_out;
3847 	    req->defobj_out = req1.defobj_out;
3848 	    assert(req->defobj_out != NULL);
3849 	}
3850     }
3851 
3852     return (req->sym_out != NULL ? 0 : ESRCH);
3853 }
3854 
3855 static int
3856 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3857 {
3858     const Elf_Sym *def;
3859     const Obj_Entry *defobj;
3860     const Objlist_Entry *elm;
3861     SymLook req1;
3862     int res;
3863 
3864     def = NULL;
3865     defobj = NULL;
3866     STAILQ_FOREACH(elm, objlist, link) {
3867 	if (donelist_check(dlp, elm->obj))
3868 	    continue;
3869 	symlook_init_from_req(&req1, req);
3870 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3871 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3872 		def = req1.sym_out;
3873 		defobj = req1.defobj_out;
3874 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3875 		    break;
3876 	    }
3877 	}
3878     }
3879     if (def != NULL) {
3880 	req->sym_out = def;
3881 	req->defobj_out = defobj;
3882 	return (0);
3883     }
3884     return (ESRCH);
3885 }
3886 
3887 /*
3888  * Search the chain of DAGS cointed to by the given Needed_Entry
3889  * for a symbol of the given name.  Each DAG is scanned completely
3890  * before advancing to the next one.  Returns a pointer to the symbol,
3891  * or NULL if no definition was found.
3892  */
3893 static int
3894 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3895 {
3896     const Elf_Sym *def;
3897     const Needed_Entry *n;
3898     const Obj_Entry *defobj;
3899     SymLook req1;
3900     int res;
3901 
3902     def = NULL;
3903     defobj = NULL;
3904     symlook_init_from_req(&req1, req);
3905     for (n = needed; n != NULL; n = n->next) {
3906 	if (n->obj == NULL ||
3907 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3908 	    continue;
3909 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3910 	    def = req1.sym_out;
3911 	    defobj = req1.defobj_out;
3912 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3913 		break;
3914 	}
3915     }
3916     if (def != NULL) {
3917 	req->sym_out = def;
3918 	req->defobj_out = defobj;
3919 	return (0);
3920     }
3921     return (ESRCH);
3922 }
3923 
3924 /*
3925  * Search the symbol table of a single shared object for a symbol of
3926  * the given name and version, if requested.  Returns a pointer to the
3927  * symbol, or NULL if no definition was found.  If the object is
3928  * filter, return filtered symbol from filtee.
3929  *
3930  * The symbol's hash value is passed in for efficiency reasons; that
3931  * eliminates many recomputations of the hash value.
3932  */
3933 int
3934 symlook_obj(SymLook *req, const Obj_Entry *obj)
3935 {
3936     DoneList donelist;
3937     SymLook req1;
3938     int flags, res, mres;
3939 
3940     /*
3941      * If there is at least one valid hash at this point, we prefer to
3942      * use the faster GNU version if available.
3943      */
3944     if (obj->valid_hash_gnu)
3945 	mres = symlook_obj1_gnu(req, obj);
3946     else if (obj->valid_hash_sysv)
3947 	mres = symlook_obj1_sysv(req, obj);
3948     else
3949 	return (EINVAL);
3950 
3951     if (mres == 0) {
3952 	if (obj->needed_filtees != NULL) {
3953 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3954 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3955 	    donelist_init(&donelist);
3956 	    symlook_init_from_req(&req1, req);
3957 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3958 	    if (res == 0) {
3959 		req->sym_out = req1.sym_out;
3960 		req->defobj_out = req1.defobj_out;
3961 	    }
3962 	    return (res);
3963 	}
3964 	if (obj->needed_aux_filtees != NULL) {
3965 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3966 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3967 	    donelist_init(&donelist);
3968 	    symlook_init_from_req(&req1, req);
3969 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3970 	    if (res == 0) {
3971 		req->sym_out = req1.sym_out;
3972 		req->defobj_out = req1.defobj_out;
3973 		return (res);
3974 	    }
3975 	}
3976     }
3977     return (mres);
3978 }
3979 
3980 /* Symbol match routine common to both hash functions */
3981 static bool
3982 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3983     const unsigned long symnum)
3984 {
3985 	Elf_Versym verndx;
3986 	const Elf_Sym *symp;
3987 	const char *strp;
3988 
3989 	symp = obj->symtab + symnum;
3990 	strp = obj->strtab + symp->st_name;
3991 
3992 	switch (ELF_ST_TYPE(symp->st_info)) {
3993 	case STT_FUNC:
3994 	case STT_NOTYPE:
3995 	case STT_OBJECT:
3996 	case STT_COMMON:
3997 	case STT_GNU_IFUNC:
3998 		if (symp->st_value == 0)
3999 			return (false);
4000 		/* fallthrough */
4001 	case STT_TLS:
4002 		if (symp->st_shndx != SHN_UNDEF)
4003 			break;
4004 #ifndef __mips__
4005 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4006 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4007 			break;
4008 		/* fallthrough */
4009 #endif
4010 	default:
4011 		return (false);
4012 	}
4013 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4014 		return (false);
4015 
4016 	if (req->ventry == NULL) {
4017 		if (obj->versyms != NULL) {
4018 			verndx = VER_NDX(obj->versyms[symnum]);
4019 			if (verndx > obj->vernum) {
4020 				_rtld_error(
4021 				    "%s: symbol %s references wrong version %d",
4022 				    obj->path, obj->strtab + symnum, verndx);
4023 				return (false);
4024 			}
4025 			/*
4026 			 * If we are not called from dlsym (i.e. this
4027 			 * is a normal relocation from unversioned
4028 			 * binary), accept the symbol immediately if
4029 			 * it happens to have first version after this
4030 			 * shared object became versioned.  Otherwise,
4031 			 * if symbol is versioned and not hidden,
4032 			 * remember it. If it is the only symbol with
4033 			 * this name exported by the shared object, it
4034 			 * will be returned as a match by the calling
4035 			 * function. If symbol is global (verndx < 2)
4036 			 * accept it unconditionally.
4037 			 */
4038 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4039 			    verndx == VER_NDX_GIVEN) {
4040 				result->sym_out = symp;
4041 				return (true);
4042 			}
4043 			else if (verndx >= VER_NDX_GIVEN) {
4044 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4045 				    == 0) {
4046 					if (result->vsymp == NULL)
4047 						result->vsymp = symp;
4048 					result->vcount++;
4049 				}
4050 				return (false);
4051 			}
4052 		}
4053 		result->sym_out = symp;
4054 		return (true);
4055 	}
4056 	if (obj->versyms == NULL) {
4057 		if (object_match_name(obj, req->ventry->name)) {
4058 			_rtld_error("%s: object %s should provide version %s "
4059 			    "for symbol %s", obj_rtld.path, obj->path,
4060 			    req->ventry->name, obj->strtab + symnum);
4061 			return (false);
4062 		}
4063 	} else {
4064 		verndx = VER_NDX(obj->versyms[symnum]);
4065 		if (verndx > obj->vernum) {
4066 			_rtld_error("%s: symbol %s references wrong version %d",
4067 			    obj->path, obj->strtab + symnum, verndx);
4068 			return (false);
4069 		}
4070 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4071 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4072 			/*
4073 			 * Version does not match. Look if this is a
4074 			 * global symbol and if it is not hidden. If
4075 			 * global symbol (verndx < 2) is available,
4076 			 * use it. Do not return symbol if we are
4077 			 * called by dlvsym, because dlvsym looks for
4078 			 * a specific version and default one is not
4079 			 * what dlvsym wants.
4080 			 */
4081 			if ((req->flags & SYMLOOK_DLSYM) ||
4082 			    (verndx >= VER_NDX_GIVEN) ||
4083 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4084 				return (false);
4085 		}
4086 	}
4087 	result->sym_out = symp;
4088 	return (true);
4089 }
4090 
4091 /*
4092  * Search for symbol using SysV hash function.
4093  * obj->buckets is known not to be NULL at this point; the test for this was
4094  * performed with the obj->valid_hash_sysv assignment.
4095  */
4096 static int
4097 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4098 {
4099 	unsigned long symnum;
4100 	Sym_Match_Result matchres;
4101 
4102 	matchres.sym_out = NULL;
4103 	matchres.vsymp = NULL;
4104 	matchres.vcount = 0;
4105 
4106 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4107 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4108 		if (symnum >= obj->nchains)
4109 			return (ESRCH);	/* Bad object */
4110 
4111 		if (matched_symbol(req, obj, &matchres, symnum)) {
4112 			req->sym_out = matchres.sym_out;
4113 			req->defobj_out = obj;
4114 			return (0);
4115 		}
4116 	}
4117 	if (matchres.vcount == 1) {
4118 		req->sym_out = matchres.vsymp;
4119 		req->defobj_out = obj;
4120 		return (0);
4121 	}
4122 	return (ESRCH);
4123 }
4124 
4125 /* Search for symbol using GNU hash function */
4126 static int
4127 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4128 {
4129 	Elf_Addr bloom_word;
4130 	const Elf32_Word *hashval;
4131 	Elf32_Word bucket;
4132 	Sym_Match_Result matchres;
4133 	unsigned int h1, h2;
4134 	unsigned long symnum;
4135 
4136 	matchres.sym_out = NULL;
4137 	matchres.vsymp = NULL;
4138 	matchres.vcount = 0;
4139 
4140 	/* Pick right bitmask word from Bloom filter array */
4141 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4142 	    obj->maskwords_bm_gnu];
4143 
4144 	/* Calculate modulus word size of gnu hash and its derivative */
4145 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4146 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4147 
4148 	/* Filter out the "definitely not in set" queries */
4149 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4150 		return (ESRCH);
4151 
4152 	/* Locate hash chain and corresponding value element*/
4153 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4154 	if (bucket == 0)
4155 		return (ESRCH);
4156 	hashval = &obj->chain_zero_gnu[bucket];
4157 	do {
4158 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4159 			symnum = hashval - obj->chain_zero_gnu;
4160 			if (matched_symbol(req, obj, &matchres, symnum)) {
4161 				req->sym_out = matchres.sym_out;
4162 				req->defobj_out = obj;
4163 				return (0);
4164 			}
4165 		}
4166 	} while ((*hashval++ & 1) == 0);
4167 	if (matchres.vcount == 1) {
4168 		req->sym_out = matchres.vsymp;
4169 		req->defobj_out = obj;
4170 		return (0);
4171 	}
4172 	return (ESRCH);
4173 }
4174 
4175 static void
4176 trace_loaded_objects(Obj_Entry *obj)
4177 {
4178     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4179     int		c;
4180 
4181     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4182 	main_local = "";
4183 
4184     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4185 	fmt1 = "\t%o => %p (%x)\n";
4186 
4187     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4188 	fmt2 = "\t%o (%x)\n";
4189 
4190     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4191 
4192     for (; obj; obj = obj->next) {
4193 	Needed_Entry		*needed;
4194 	char			*name, *path;
4195 	bool			is_lib;
4196 
4197 	if (list_containers && obj->needed != NULL)
4198 	    rtld_printf("%s:\n", obj->path);
4199 	for (needed = obj->needed; needed; needed = needed->next) {
4200 	    if (needed->obj != NULL) {
4201 		if (needed->obj->traced && !list_containers)
4202 		    continue;
4203 		needed->obj->traced = true;
4204 		path = needed->obj->path;
4205 	    } else
4206 		path = "not found";
4207 
4208 	    name = (char *)obj->strtab + needed->name;
4209 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4210 
4211 	    fmt = is_lib ? fmt1 : fmt2;
4212 	    while ((c = *fmt++) != '\0') {
4213 		switch (c) {
4214 		default:
4215 		    rtld_putchar(c);
4216 		    continue;
4217 		case '\\':
4218 		    switch (c = *fmt) {
4219 		    case '\0':
4220 			continue;
4221 		    case 'n':
4222 			rtld_putchar('\n');
4223 			break;
4224 		    case 't':
4225 			rtld_putchar('\t');
4226 			break;
4227 		    }
4228 		    break;
4229 		case '%':
4230 		    switch (c = *fmt) {
4231 		    case '\0':
4232 			continue;
4233 		    case '%':
4234 		    default:
4235 			rtld_putchar(c);
4236 			break;
4237 		    case 'A':
4238 			rtld_putstr(main_local);
4239 			break;
4240 		    case 'a':
4241 			rtld_putstr(obj_main->path);
4242 			break;
4243 		    case 'o':
4244 			rtld_putstr(name);
4245 			break;
4246 #if 0
4247 		    case 'm':
4248 			rtld_printf("%d", sodp->sod_major);
4249 			break;
4250 		    case 'n':
4251 			rtld_printf("%d", sodp->sod_minor);
4252 			break;
4253 #endif
4254 		    case 'p':
4255 			rtld_putstr(path);
4256 			break;
4257 		    case 'x':
4258 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4259 			  0);
4260 			break;
4261 		    }
4262 		    break;
4263 		}
4264 		++fmt;
4265 	    }
4266 	}
4267     }
4268 }
4269 
4270 /*
4271  * Unload a dlopened object and its dependencies from memory and from
4272  * our data structures.  It is assumed that the DAG rooted in the
4273  * object has already been unreferenced, and that the object has a
4274  * reference count of 0.
4275  */
4276 static void
4277 unload_object(Obj_Entry *root)
4278 {
4279     Obj_Entry *obj;
4280     Obj_Entry **linkp;
4281 
4282     assert(root->refcount == 0);
4283 
4284     /*
4285      * Pass over the DAG removing unreferenced objects from
4286      * appropriate lists.
4287      */
4288     unlink_object(root);
4289 
4290     /* Unmap all objects that are no longer referenced. */
4291     linkp = &obj_list->next;
4292     while ((obj = *linkp) != NULL) {
4293 	if (obj->refcount == 0) {
4294 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4295 		obj->path);
4296 	    dbg("unloading \"%s\"", obj->path);
4297 	    unload_filtees(root);
4298 	    munmap(obj->mapbase, obj->mapsize);
4299 	    linkmap_delete(obj);
4300 	    *linkp = obj->next;
4301 	    obj_count--;
4302 	    obj_free(obj);
4303 	} else
4304 	    linkp = &obj->next;
4305     }
4306     obj_tail = linkp;
4307 }
4308 
4309 static void
4310 unlink_object(Obj_Entry *root)
4311 {
4312     Objlist_Entry *elm;
4313 
4314     if (root->refcount == 0) {
4315 	/* Remove the object from the RTLD_GLOBAL list. */
4316 	objlist_remove(&list_global, root);
4317 
4318     	/* Remove the object from all objects' DAG lists. */
4319     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4320 	    objlist_remove(&elm->obj->dldags, root);
4321 	    if (elm->obj != root)
4322 		unlink_object(elm->obj);
4323 	}
4324     }
4325 }
4326 
4327 static void
4328 ref_dag(Obj_Entry *root)
4329 {
4330     Objlist_Entry *elm;
4331 
4332     assert(root->dag_inited);
4333     STAILQ_FOREACH(elm, &root->dagmembers, link)
4334 	elm->obj->refcount++;
4335 }
4336 
4337 static void
4338 unref_dag(Obj_Entry *root)
4339 {
4340     Objlist_Entry *elm;
4341 
4342     assert(root->dag_inited);
4343     STAILQ_FOREACH(elm, &root->dagmembers, link)
4344 	elm->obj->refcount--;
4345 }
4346 
4347 /*
4348  * Common code for MD __tls_get_addr().
4349  */
4350 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4351 static void *
4352 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4353 {
4354     Elf_Addr *newdtv, *dtv;
4355     RtldLockState lockstate;
4356     int to_copy;
4357 
4358     dtv = *dtvp;
4359     /* Check dtv generation in case new modules have arrived */
4360     if (dtv[0] != tls_dtv_generation) {
4361 	wlock_acquire(rtld_bind_lock, &lockstate);
4362 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4363 	to_copy = dtv[1];
4364 	if (to_copy > tls_max_index)
4365 	    to_copy = tls_max_index;
4366 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4367 	newdtv[0] = tls_dtv_generation;
4368 	newdtv[1] = tls_max_index;
4369 	free(dtv);
4370 	lock_release(rtld_bind_lock, &lockstate);
4371 	dtv = *dtvp = newdtv;
4372     }
4373 
4374     /* Dynamically allocate module TLS if necessary */
4375     if (dtv[index + 1] == 0) {
4376 	/* Signal safe, wlock will block out signals. */
4377 	wlock_acquire(rtld_bind_lock, &lockstate);
4378 	if (!dtv[index + 1])
4379 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4380 	lock_release(rtld_bind_lock, &lockstate);
4381     }
4382     return ((void *)(dtv[index + 1] + offset));
4383 }
4384 
4385 void *
4386 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4387 {
4388 	Elf_Addr *dtv;
4389 
4390 	dtv = *dtvp;
4391 	/* Check dtv generation in case new modules have arrived */
4392 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4393 	    dtv[index + 1] != 0))
4394 		return ((void *)(dtv[index + 1] + offset));
4395 	return (tls_get_addr_slow(dtvp, index, offset));
4396 }
4397 
4398 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4399     defined(__powerpc__)
4400 
4401 /*
4402  * Allocate Static TLS using the Variant I method.
4403  */
4404 void *
4405 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4406 {
4407     Obj_Entry *obj;
4408     char *tcb;
4409     Elf_Addr **tls;
4410     Elf_Addr *dtv;
4411     Elf_Addr addr;
4412     int i;
4413 
4414     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4415 	return (oldtcb);
4416 
4417     assert(tcbsize >= TLS_TCB_SIZE);
4418     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4419     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4420 
4421     if (oldtcb != NULL) {
4422 	memcpy(tls, oldtcb, tls_static_space);
4423 	free(oldtcb);
4424 
4425 	/* Adjust the DTV. */
4426 	dtv = tls[0];
4427 	for (i = 0; i < dtv[1]; i++) {
4428 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4429 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4430 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4431 	    }
4432 	}
4433     } else {
4434 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4435 	tls[0] = dtv;
4436 	dtv[0] = tls_dtv_generation;
4437 	dtv[1] = tls_max_index;
4438 
4439 	for (obj = objs; obj; obj = obj->next) {
4440 	    if (obj->tlsoffset > 0) {
4441 		addr = (Elf_Addr)tls + obj->tlsoffset;
4442 		if (obj->tlsinitsize > 0)
4443 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4444 		if (obj->tlssize > obj->tlsinitsize)
4445 		    memset((void*) (addr + obj->tlsinitsize), 0,
4446 			   obj->tlssize - obj->tlsinitsize);
4447 		dtv[obj->tlsindex + 1] = addr;
4448 	    }
4449 	}
4450     }
4451 
4452     return (tcb);
4453 }
4454 
4455 void
4456 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4457 {
4458     Elf_Addr *dtv;
4459     Elf_Addr tlsstart, tlsend;
4460     int dtvsize, i;
4461 
4462     assert(tcbsize >= TLS_TCB_SIZE);
4463 
4464     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4465     tlsend = tlsstart + tls_static_space;
4466 
4467     dtv = *(Elf_Addr **)tlsstart;
4468     dtvsize = dtv[1];
4469     for (i = 0; i < dtvsize; i++) {
4470 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4471 	    free((void*)dtv[i+2]);
4472 	}
4473     }
4474     free(dtv);
4475     free(tcb);
4476 }
4477 
4478 #endif
4479 
4480 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4481 
4482 /*
4483  * Allocate Static TLS using the Variant II method.
4484  */
4485 void *
4486 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4487 {
4488     Obj_Entry *obj;
4489     size_t size, ralign;
4490     char *tls;
4491     Elf_Addr *dtv, *olddtv;
4492     Elf_Addr segbase, oldsegbase, addr;
4493     int i;
4494 
4495     ralign = tcbalign;
4496     if (tls_static_max_align > ralign)
4497 	    ralign = tls_static_max_align;
4498     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4499 
4500     assert(tcbsize >= 2*sizeof(Elf_Addr));
4501     tls = malloc_aligned(size, ralign);
4502     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4503 
4504     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4505     ((Elf_Addr*)segbase)[0] = segbase;
4506     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4507 
4508     dtv[0] = tls_dtv_generation;
4509     dtv[1] = tls_max_index;
4510 
4511     if (oldtls) {
4512 	/*
4513 	 * Copy the static TLS block over whole.
4514 	 */
4515 	oldsegbase = (Elf_Addr) oldtls;
4516 	memcpy((void *)(segbase - tls_static_space),
4517 	       (const void *)(oldsegbase - tls_static_space),
4518 	       tls_static_space);
4519 
4520 	/*
4521 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4522 	 * move them over.
4523 	 */
4524 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4525 	for (i = 0; i < olddtv[1]; i++) {
4526 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4527 		dtv[i+2] = olddtv[i+2];
4528 		olddtv[i+2] = 0;
4529 	    }
4530 	}
4531 
4532 	/*
4533 	 * We assume that this block was the one we created with
4534 	 * allocate_initial_tls().
4535 	 */
4536 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4537     } else {
4538 	for (obj = objs; obj; obj = obj->next) {
4539 	    if (obj->tlsoffset) {
4540 		addr = segbase - obj->tlsoffset;
4541 		memset((void*) (addr + obj->tlsinitsize),
4542 		       0, obj->tlssize - obj->tlsinitsize);
4543 		if (obj->tlsinit)
4544 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4545 		dtv[obj->tlsindex + 1] = addr;
4546 	    }
4547 	}
4548     }
4549 
4550     return (void*) segbase;
4551 }
4552 
4553 void
4554 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4555 {
4556     Elf_Addr* dtv;
4557     size_t size, ralign;
4558     int dtvsize, i;
4559     Elf_Addr tlsstart, tlsend;
4560 
4561     /*
4562      * Figure out the size of the initial TLS block so that we can
4563      * find stuff which ___tls_get_addr() allocated dynamically.
4564      */
4565     ralign = tcbalign;
4566     if (tls_static_max_align > ralign)
4567 	    ralign = tls_static_max_align;
4568     size = round(tls_static_space, ralign);
4569 
4570     dtv = ((Elf_Addr**)tls)[1];
4571     dtvsize = dtv[1];
4572     tlsend = (Elf_Addr) tls;
4573     tlsstart = tlsend - size;
4574     for (i = 0; i < dtvsize; i++) {
4575 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4576 		free_aligned((void *)dtv[i + 2]);
4577 	}
4578     }
4579 
4580     free_aligned((void *)tlsstart);
4581     free((void*) dtv);
4582 }
4583 
4584 #endif
4585 
4586 /*
4587  * Allocate TLS block for module with given index.
4588  */
4589 void *
4590 allocate_module_tls(int index)
4591 {
4592     Obj_Entry* obj;
4593     char* p;
4594 
4595     for (obj = obj_list; obj; obj = obj->next) {
4596 	if (obj->tlsindex == index)
4597 	    break;
4598     }
4599     if (!obj) {
4600 	_rtld_error("Can't find module with TLS index %d", index);
4601 	rtld_die();
4602     }
4603 
4604     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4605     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4606     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4607 
4608     return p;
4609 }
4610 
4611 bool
4612 allocate_tls_offset(Obj_Entry *obj)
4613 {
4614     size_t off;
4615 
4616     if (obj->tls_done)
4617 	return true;
4618 
4619     if (obj->tlssize == 0) {
4620 	obj->tls_done = true;
4621 	return true;
4622     }
4623 
4624     if (tls_last_offset == 0)
4625 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4626     else
4627 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4628 				   obj->tlssize, obj->tlsalign);
4629 
4630     /*
4631      * If we have already fixed the size of the static TLS block, we
4632      * must stay within that size. When allocating the static TLS, we
4633      * leave a small amount of space spare to be used for dynamically
4634      * loading modules which use static TLS.
4635      */
4636     if (tls_static_space != 0) {
4637 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4638 	    return false;
4639     } else if (obj->tlsalign > tls_static_max_align) {
4640 	    tls_static_max_align = obj->tlsalign;
4641     }
4642 
4643     tls_last_offset = obj->tlsoffset = off;
4644     tls_last_size = obj->tlssize;
4645     obj->tls_done = true;
4646 
4647     return true;
4648 }
4649 
4650 void
4651 free_tls_offset(Obj_Entry *obj)
4652 {
4653 
4654     /*
4655      * If we were the last thing to allocate out of the static TLS
4656      * block, we give our space back to the 'allocator'. This is a
4657      * simplistic workaround to allow libGL.so.1 to be loaded and
4658      * unloaded multiple times.
4659      */
4660     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4661 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4662 	tls_last_offset -= obj->tlssize;
4663 	tls_last_size = 0;
4664     }
4665 }
4666 
4667 void *
4668 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4669 {
4670     void *ret;
4671     RtldLockState lockstate;
4672 
4673     wlock_acquire(rtld_bind_lock, &lockstate);
4674     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4675     lock_release(rtld_bind_lock, &lockstate);
4676     return (ret);
4677 }
4678 
4679 void
4680 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4681 {
4682     RtldLockState lockstate;
4683 
4684     wlock_acquire(rtld_bind_lock, &lockstate);
4685     free_tls(tcb, tcbsize, tcbalign);
4686     lock_release(rtld_bind_lock, &lockstate);
4687 }
4688 
4689 static void
4690 object_add_name(Obj_Entry *obj, const char *name)
4691 {
4692     Name_Entry *entry;
4693     size_t len;
4694 
4695     len = strlen(name);
4696     entry = malloc(sizeof(Name_Entry) + len);
4697 
4698     if (entry != NULL) {
4699 	strcpy(entry->name, name);
4700 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4701     }
4702 }
4703 
4704 static int
4705 object_match_name(const Obj_Entry *obj, const char *name)
4706 {
4707     Name_Entry *entry;
4708 
4709     STAILQ_FOREACH(entry, &obj->names, link) {
4710 	if (strcmp(name, entry->name) == 0)
4711 	    return (1);
4712     }
4713     return (0);
4714 }
4715 
4716 static Obj_Entry *
4717 locate_dependency(const Obj_Entry *obj, const char *name)
4718 {
4719     const Objlist_Entry *entry;
4720     const Needed_Entry *needed;
4721 
4722     STAILQ_FOREACH(entry, &list_main, link) {
4723 	if (object_match_name(entry->obj, name))
4724 	    return entry->obj;
4725     }
4726 
4727     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4728 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4729 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4730 	    /*
4731 	     * If there is DT_NEEDED for the name we are looking for,
4732 	     * we are all set.  Note that object might not be found if
4733 	     * dependency was not loaded yet, so the function can
4734 	     * return NULL here.  This is expected and handled
4735 	     * properly by the caller.
4736 	     */
4737 	    return (needed->obj);
4738 	}
4739     }
4740     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4741 	obj->path, name);
4742     rtld_die();
4743 }
4744 
4745 static int
4746 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4747     const Elf_Vernaux *vna)
4748 {
4749     const Elf_Verdef *vd;
4750     const char *vername;
4751 
4752     vername = refobj->strtab + vna->vna_name;
4753     vd = depobj->verdef;
4754     if (vd == NULL) {
4755 	_rtld_error("%s: version %s required by %s not defined",
4756 	    depobj->path, vername, refobj->path);
4757 	return (-1);
4758     }
4759     for (;;) {
4760 	if (vd->vd_version != VER_DEF_CURRENT) {
4761 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4762 		depobj->path, vd->vd_version);
4763 	    return (-1);
4764 	}
4765 	if (vna->vna_hash == vd->vd_hash) {
4766 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4767 		((char *)vd + vd->vd_aux);
4768 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4769 		return (0);
4770 	}
4771 	if (vd->vd_next == 0)
4772 	    break;
4773 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4774     }
4775     if (vna->vna_flags & VER_FLG_WEAK)
4776 	return (0);
4777     _rtld_error("%s: version %s required by %s not found",
4778 	depobj->path, vername, refobj->path);
4779     return (-1);
4780 }
4781 
4782 static int
4783 rtld_verify_object_versions(Obj_Entry *obj)
4784 {
4785     const Elf_Verneed *vn;
4786     const Elf_Verdef  *vd;
4787     const Elf_Verdaux *vda;
4788     const Elf_Vernaux *vna;
4789     const Obj_Entry *depobj;
4790     int maxvernum, vernum;
4791 
4792     if (obj->ver_checked)
4793 	return (0);
4794     obj->ver_checked = true;
4795 
4796     maxvernum = 0;
4797     /*
4798      * Walk over defined and required version records and figure out
4799      * max index used by any of them. Do very basic sanity checking
4800      * while there.
4801      */
4802     vn = obj->verneed;
4803     while (vn != NULL) {
4804 	if (vn->vn_version != VER_NEED_CURRENT) {
4805 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4806 		obj->path, vn->vn_version);
4807 	    return (-1);
4808 	}
4809 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4810 	for (;;) {
4811 	    vernum = VER_NEED_IDX(vna->vna_other);
4812 	    if (vernum > maxvernum)
4813 		maxvernum = vernum;
4814 	    if (vna->vna_next == 0)
4815 		 break;
4816 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4817 	}
4818 	if (vn->vn_next == 0)
4819 	    break;
4820 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4821     }
4822 
4823     vd = obj->verdef;
4824     while (vd != NULL) {
4825 	if (vd->vd_version != VER_DEF_CURRENT) {
4826 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4827 		obj->path, vd->vd_version);
4828 	    return (-1);
4829 	}
4830 	vernum = VER_DEF_IDX(vd->vd_ndx);
4831 	if (vernum > maxvernum)
4832 		maxvernum = vernum;
4833 	if (vd->vd_next == 0)
4834 	    break;
4835 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4836     }
4837 
4838     if (maxvernum == 0)
4839 	return (0);
4840 
4841     /*
4842      * Store version information in array indexable by version index.
4843      * Verify that object version requirements are satisfied along the
4844      * way.
4845      */
4846     obj->vernum = maxvernum + 1;
4847     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4848 
4849     vd = obj->verdef;
4850     while (vd != NULL) {
4851 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4852 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4853 	    assert(vernum <= maxvernum);
4854 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4855 	    obj->vertab[vernum].hash = vd->vd_hash;
4856 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4857 	    obj->vertab[vernum].file = NULL;
4858 	    obj->vertab[vernum].flags = 0;
4859 	}
4860 	if (vd->vd_next == 0)
4861 	    break;
4862 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4863     }
4864 
4865     vn = obj->verneed;
4866     while (vn != NULL) {
4867 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4868 	if (depobj == NULL)
4869 	    return (-1);
4870 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4871 	for (;;) {
4872 	    if (check_object_provided_version(obj, depobj, vna))
4873 		return (-1);
4874 	    vernum = VER_NEED_IDX(vna->vna_other);
4875 	    assert(vernum <= maxvernum);
4876 	    obj->vertab[vernum].hash = vna->vna_hash;
4877 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4878 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4879 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4880 		VER_INFO_HIDDEN : 0;
4881 	    if (vna->vna_next == 0)
4882 		 break;
4883 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4884 	}
4885 	if (vn->vn_next == 0)
4886 	    break;
4887 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4888     }
4889     return 0;
4890 }
4891 
4892 static int
4893 rtld_verify_versions(const Objlist *objlist)
4894 {
4895     Objlist_Entry *entry;
4896     int rc;
4897 
4898     rc = 0;
4899     STAILQ_FOREACH(entry, objlist, link) {
4900 	/*
4901 	 * Skip dummy objects or objects that have their version requirements
4902 	 * already checked.
4903 	 */
4904 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4905 	    continue;
4906 	if (rtld_verify_object_versions(entry->obj) == -1) {
4907 	    rc = -1;
4908 	    if (ld_tracing == NULL)
4909 		break;
4910 	}
4911     }
4912     if (rc == 0 || ld_tracing != NULL)
4913     	rc = rtld_verify_object_versions(&obj_rtld);
4914     return rc;
4915 }
4916 
4917 const Ver_Entry *
4918 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4919 {
4920     Elf_Versym vernum;
4921 
4922     if (obj->vertab) {
4923 	vernum = VER_NDX(obj->versyms[symnum]);
4924 	if (vernum >= obj->vernum) {
4925 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4926 		obj->path, obj->strtab + symnum, vernum);
4927 	} else if (obj->vertab[vernum].hash != 0) {
4928 	    return &obj->vertab[vernum];
4929 	}
4930     }
4931     return NULL;
4932 }
4933 
4934 int
4935 _rtld_get_stack_prot(void)
4936 {
4937 
4938 	return (stack_prot);
4939 }
4940 
4941 int
4942 _rtld_is_dlopened(void *arg)
4943 {
4944 	Obj_Entry *obj;
4945 	RtldLockState lockstate;
4946 	int res;
4947 
4948 	rlock_acquire(rtld_bind_lock, &lockstate);
4949 	obj = dlcheck(arg);
4950 	if (obj == NULL)
4951 		obj = obj_from_addr(arg);
4952 	if (obj == NULL) {
4953 		_rtld_error("No shared object contains address");
4954 		lock_release(rtld_bind_lock, &lockstate);
4955 		return (-1);
4956 	}
4957 	res = obj->dlopened ? 1 : 0;
4958 	lock_release(rtld_bind_lock, &lockstate);
4959 	return (res);
4960 }
4961 
4962 static void
4963 map_stacks_exec(RtldLockState *lockstate)
4964 {
4965 	void (*thr_map_stacks_exec)(void);
4966 
4967 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4968 		return;
4969 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4970 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4971 	if (thr_map_stacks_exec != NULL) {
4972 		stack_prot |= PROT_EXEC;
4973 		thr_map_stacks_exec();
4974 	}
4975 }
4976 
4977 void
4978 symlook_init(SymLook *dst, const char *name)
4979 {
4980 
4981 	bzero(dst, sizeof(*dst));
4982 	dst->name = name;
4983 	dst->hash = elf_hash(name);
4984 	dst->hash_gnu = gnu_hash(name);
4985 }
4986 
4987 static void
4988 symlook_init_from_req(SymLook *dst, const SymLook *src)
4989 {
4990 
4991 	dst->name = src->name;
4992 	dst->hash = src->hash;
4993 	dst->hash_gnu = src->hash_gnu;
4994 	dst->ventry = src->ventry;
4995 	dst->flags = src->flags;
4996 	dst->defobj_out = NULL;
4997 	dst->sym_out = NULL;
4998 	dst->lockstate = src->lockstate;
4999 }
5000 
5001 
5002 /*
5003  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5004  */
5005 static int
5006 parse_libdir(const char *str)
5007 {
5008 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5009 	const char *orig;
5010 	int fd;
5011 	char c;
5012 
5013 	orig = str;
5014 	fd = 0;
5015 	for (c = *str; c != '\0'; c = *++str) {
5016 		if (c < '0' || c > '9')
5017 			return (-1);
5018 
5019 		fd *= RADIX;
5020 		fd += c - '0';
5021 	}
5022 
5023 	/* Make sure we actually parsed something. */
5024 	if (str == orig) {
5025 		_rtld_error("failed to parse directory FD from '%s'", str);
5026 		return (-1);
5027 	}
5028 	return (fd);
5029 }
5030 
5031 /*
5032  * Overrides for libc_pic-provided functions.
5033  */
5034 
5035 int
5036 __getosreldate(void)
5037 {
5038 	size_t len;
5039 	int oid[2];
5040 	int error, osrel;
5041 
5042 	if (osreldate != 0)
5043 		return (osreldate);
5044 
5045 	oid[0] = CTL_KERN;
5046 	oid[1] = KERN_OSRELDATE;
5047 	osrel = 0;
5048 	len = sizeof(osrel);
5049 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5050 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5051 		osreldate = osrel;
5052 	return (osreldate);
5053 }
5054 
5055 void
5056 exit(int status)
5057 {
5058 
5059 	_exit(status);
5060 }
5061 
5062 void (*__cleanup)(void);
5063 int __isthreaded = 0;
5064 int _thread_autoinit_dummy_decl = 1;
5065 
5066 /*
5067  * No unresolved symbols for rtld.
5068  */
5069 void
5070 __pthread_cxa_finalize(struct dl_phdr_info *a)
5071 {
5072 }
5073 
5074 void
5075 __stack_chk_fail(void)
5076 {
5077 
5078 	_rtld_error("stack overflow detected; terminated");
5079 	rtld_die();
5080 }
5081 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5082 
5083 void
5084 __chk_fail(void)
5085 {
5086 
5087 	_rtld_error("buffer overflow detected; terminated");
5088 	rtld_die();
5089 }
5090 
5091 const char *
5092 rtld_strerror(int errnum)
5093 {
5094 
5095 	if (errnum < 0 || errnum >= sys_nerr)
5096 		return ("Unknown error");
5097 	return (sys_errlist[errnum]);
5098 }
5099