1 /*- 2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>. 4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>. 5 * Copyright 2012 John Marino <draco@marino.st>. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 /* 32 * Dynamic linker for ELF. 33 * 34 * John Polstra <jdp@polstra.com>. 35 */ 36 37 #include <sys/param.h> 38 #include <sys/mount.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/sysctl.h> 42 #include <sys/uio.h> 43 #include <sys/utsname.h> 44 #include <sys/ktrace.h> 45 46 #include <dlfcn.h> 47 #include <err.h> 48 #include <errno.h> 49 #include <fcntl.h> 50 #include <stdarg.h> 51 #include <stdio.h> 52 #include <stdlib.h> 53 #include <string.h> 54 #include <unistd.h> 55 56 #include "debug.h" 57 #include "rtld.h" 58 #include "libmap.h" 59 #include "paths.h" 60 #include "rtld_tls.h" 61 #include "rtld_printf.h" 62 #include "notes.h" 63 64 /* Types. */ 65 typedef void (*func_ptr_type)(); 66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); 67 68 /* 69 * Function declarations. 70 */ 71 static const char *basename(const char *); 72 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, 73 const Elf_Dyn **, const Elf_Dyn **); 74 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, 75 const Elf_Dyn *); 76 static void digest_dynamic(Obj_Entry *, int); 77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 78 static Obj_Entry *dlcheck(void *); 79 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, 80 int lo_flags, int mode, RtldLockState *lockstate); 81 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); 82 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); 83 static bool donelist_check(DoneList *, const Obj_Entry *); 84 static void errmsg_restore(char *); 85 static char *errmsg_save(void); 86 static void *fill_search_info(const char *, size_t, void *); 87 static char *find_library(const char *, const Obj_Entry *, int *); 88 static const char *gethints(bool); 89 static void init_dag(Obj_Entry *); 90 static void init_pagesizes(Elf_Auxinfo **aux_info); 91 static void init_rtld(caddr_t, Elf_Auxinfo **); 92 static void initlist_add_neededs(Needed_Entry *, Objlist *); 93 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *); 94 static void linkmap_add(Obj_Entry *); 95 static void linkmap_delete(Obj_Entry *); 96 static void load_filtees(Obj_Entry *, int flags, RtldLockState *); 97 static void unload_filtees(Obj_Entry *); 98 static int load_needed_objects(Obj_Entry *, int); 99 static int load_preload_objects(void); 100 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); 101 static void map_stacks_exec(RtldLockState *); 102 static Obj_Entry *obj_from_addr(const void *); 103 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); 104 static void objlist_call_init(Objlist *, RtldLockState *); 105 static void objlist_clear(Objlist *); 106 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 107 static void objlist_init(Objlist *); 108 static void objlist_push_head(Objlist *, Obj_Entry *); 109 static void objlist_push_tail(Objlist *, Obj_Entry *); 110 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); 111 static void objlist_remove(Objlist *, Obj_Entry *); 112 static int parse_libdir(const char *); 113 static void *path_enumerate(const char *, path_enum_proc, void *); 114 static int relocate_object_dag(Obj_Entry *root, bool bind_now, 115 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); 116 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 117 int flags, RtldLockState *lockstate); 118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, 119 RtldLockState *); 120 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, 121 int flags, RtldLockState *lockstate); 122 static int rtld_dirname(const char *, char *); 123 static int rtld_dirname_abs(const char *, char *); 124 static void *rtld_dlopen(const char *name, int fd, int mode); 125 static void rtld_exit(void); 126 static char *search_library_path(const char *, const char *); 127 static char *search_library_pathfds(const char *, const char *, int *); 128 static const void **get_program_var_addr(const char *, RtldLockState *); 129 static void set_program_var(const char *, const void *); 130 static int symlook_default(SymLook *, const Obj_Entry *refobj); 131 static int symlook_global(SymLook *, DoneList *); 132 static void symlook_init_from_req(SymLook *, const SymLook *); 133 static int symlook_list(SymLook *, const Objlist *, DoneList *); 134 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); 135 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); 136 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); 137 static void trace_loaded_objects(Obj_Entry *); 138 static void unlink_object(Obj_Entry *); 139 static void unload_object(Obj_Entry *); 140 static void unref_dag(Obj_Entry *); 141 static void ref_dag(Obj_Entry *); 142 static char *origin_subst_one(Obj_Entry *, char *, const char *, 143 const char *, bool); 144 static char *origin_subst(Obj_Entry *, char *); 145 static bool obj_resolve_origin(Obj_Entry *obj); 146 static void preinit_main(void); 147 static int rtld_verify_versions(const Objlist *); 148 static int rtld_verify_object_versions(Obj_Entry *); 149 static void object_add_name(Obj_Entry *, const char *); 150 static int object_match_name(const Obj_Entry *, const char *); 151 static void ld_utrace_log(int, void *, void *, size_t, int, const char *); 152 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, 153 struct dl_phdr_info *phdr_info); 154 static uint32_t gnu_hash(const char *); 155 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, 156 const unsigned long); 157 158 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; 159 void _r_debug_postinit(struct link_map *) __noinline __exported; 160 161 int __sys_openat(int, const char *, int, ...); 162 163 /* 164 * Data declarations. 165 */ 166 static char *error_message; /* Message for dlerror(), or NULL */ 167 struct r_debug r_debug __exported; /* for GDB; */ 168 static bool libmap_disable; /* Disable libmap */ 169 static bool ld_loadfltr; /* Immediate filters processing */ 170 static char *libmap_override; /* Maps to use in addition to libmap.conf */ 171 static bool trust; /* False for setuid and setgid programs */ 172 static bool dangerous_ld_env; /* True if environment variables have been 173 used to affect the libraries loaded */ 174 static char *ld_bind_now; /* Environment variable for immediate binding */ 175 static char *ld_debug; /* Environment variable for debugging */ 176 static char *ld_library_path; /* Environment variable for search path */ 177 static char *ld_library_dirs; /* Environment variable for library descriptors */ 178 static char *ld_preload; /* Environment variable for libraries to 179 load first */ 180 static char *ld_elf_hints_path; /* Environment variable for alternative hints path */ 181 static char *ld_tracing; /* Called from ldd to print libs */ 182 static char *ld_utrace; /* Use utrace() to log events. */ 183 static Obj_Entry *obj_list; /* Head of linked list of shared objects */ 184 static Obj_Entry **obj_tail; /* Link field of last object in list */ 185 static Obj_Entry *obj_main; /* The main program shared object */ 186 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 187 static unsigned int obj_count; /* Number of objects in obj_list */ 188 static unsigned int obj_loads; /* Number of objects in obj_list */ 189 190 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 191 STAILQ_HEAD_INITIALIZER(list_global); 192 static Objlist list_main = /* Objects loaded at program startup */ 193 STAILQ_HEAD_INITIALIZER(list_main); 194 static Objlist list_fini = /* Objects needing fini() calls */ 195 STAILQ_HEAD_INITIALIZER(list_fini); 196 197 Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 198 199 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 200 201 extern Elf_Dyn _DYNAMIC; 202 #pragma weak _DYNAMIC 203 #ifndef RTLD_IS_DYNAMIC 204 #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL) 205 #endif 206 207 int dlclose(void *) __exported; 208 char *dlerror(void) __exported; 209 void *dlopen(const char *, int) __exported; 210 void *fdlopen(int, int) __exported; 211 void *dlsym(void *, const char *) __exported; 212 dlfunc_t dlfunc(void *, const char *) __exported; 213 void *dlvsym(void *, const char *, const char *) __exported; 214 int dladdr(const void *, Dl_info *) __exported; 215 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), 216 void (*)(void *), void (*)(void *), void (*)(void *)) __exported; 217 int dlinfo(void *, int , void *) __exported; 218 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; 219 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; 220 int _rtld_get_stack_prot(void) __exported; 221 int _rtld_is_dlopened(void *) __exported; 222 void _rtld_error(const char *, ...) __exported; 223 224 int npagesizes, osreldate; 225 size_t *pagesizes; 226 227 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0}; 228 229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC; 230 static int max_stack_flags; 231 232 /* 233 * Global declarations normally provided by crt1. The dynamic linker is 234 * not built with crt1, so we have to provide them ourselves. 235 */ 236 char *__progname; 237 char **environ; 238 239 /* 240 * Used to pass argc, argv to init functions. 241 */ 242 int main_argc; 243 char **main_argv; 244 245 /* 246 * Globals to control TLS allocation. 247 */ 248 size_t tls_last_offset; /* Static TLS offset of last module */ 249 size_t tls_last_size; /* Static TLS size of last module */ 250 size_t tls_static_space; /* Static TLS space allocated */ 251 size_t tls_static_max_align; 252 int tls_dtv_generation = 1; /* Used to detect when dtv size changes */ 253 int tls_max_index = 1; /* Largest module index allocated */ 254 255 bool ld_library_path_rpath = false; 256 257 /* 258 * Globals for path names, and such 259 */ 260 char *ld_path_elf_hints = _PATH_ELF_HINTS; 261 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF; 262 char *ld_path_rtld = _PATH_RTLD; 263 char *ld_standard_library_path = STANDARD_LIBRARY_PATH; 264 char *ld_env_prefix = LD_; 265 266 /* 267 * Fill in a DoneList with an allocation large enough to hold all of 268 * the currently-loaded objects. Keep this as a macro since it calls 269 * alloca and we want that to occur within the scope of the caller. 270 */ 271 #define donelist_init(dlp) \ 272 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 273 assert((dlp)->objs != NULL), \ 274 (dlp)->num_alloc = obj_count, \ 275 (dlp)->num_used = 0) 276 277 #define UTRACE_DLOPEN_START 1 278 #define UTRACE_DLOPEN_STOP 2 279 #define UTRACE_DLCLOSE_START 3 280 #define UTRACE_DLCLOSE_STOP 4 281 #define UTRACE_LOAD_OBJECT 5 282 #define UTRACE_UNLOAD_OBJECT 6 283 #define UTRACE_ADD_RUNDEP 7 284 #define UTRACE_PRELOAD_FINISHED 8 285 #define UTRACE_INIT_CALL 9 286 #define UTRACE_FINI_CALL 10 287 #define UTRACE_DLSYM_START 11 288 #define UTRACE_DLSYM_STOP 12 289 290 struct utrace_rtld { 291 char sig[4]; /* 'RTLD' */ 292 int event; 293 void *handle; 294 void *mapbase; /* Used for 'parent' and 'init/fini' */ 295 size_t mapsize; 296 int refcnt; /* Used for 'mode' */ 297 char name[MAXPATHLEN]; 298 }; 299 300 #define LD_UTRACE(e, h, mb, ms, r, n) do { \ 301 if (ld_utrace != NULL) \ 302 ld_utrace_log(e, h, mb, ms, r, n); \ 303 } while (0) 304 305 static void 306 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, 307 int refcnt, const char *name) 308 { 309 struct utrace_rtld ut; 310 311 ut.sig[0] = 'R'; 312 ut.sig[1] = 'T'; 313 ut.sig[2] = 'L'; 314 ut.sig[3] = 'D'; 315 ut.event = event; 316 ut.handle = handle; 317 ut.mapbase = mapbase; 318 ut.mapsize = mapsize; 319 ut.refcnt = refcnt; 320 bzero(ut.name, sizeof(ut.name)); 321 if (name) 322 strlcpy(ut.name, name, sizeof(ut.name)); 323 utrace(&ut, sizeof(ut)); 324 } 325 326 /* 327 * Main entry point for dynamic linking. The first argument is the 328 * stack pointer. The stack is expected to be laid out as described 329 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 330 * Specifically, the stack pointer points to a word containing 331 * ARGC. Following that in the stack is a null-terminated sequence 332 * of pointers to argument strings. Then comes a null-terminated 333 * sequence of pointers to environment strings. Finally, there is a 334 * sequence of "auxiliary vector" entries. 335 * 336 * The second argument points to a place to store the dynamic linker's 337 * exit procedure pointer and the third to a place to store the main 338 * program's object. 339 * 340 * The return value is the main program's entry point. 341 */ 342 func_ptr_type 343 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 344 { 345 Elf_Auxinfo *aux_info[AT_COUNT]; 346 int i; 347 int argc; 348 char **argv; 349 char **env; 350 Elf_Auxinfo *aux; 351 Elf_Auxinfo *auxp; 352 const char *argv0; 353 Objlist_Entry *entry; 354 Obj_Entry *obj; 355 Obj_Entry **preload_tail; 356 Obj_Entry *last_interposer; 357 Objlist initlist; 358 RtldLockState lockstate; 359 char *library_path_rpath; 360 int mib[2]; 361 size_t len; 362 363 /* 364 * On entry, the dynamic linker itself has not been relocated yet. 365 * Be very careful not to reference any global data until after 366 * init_rtld has returned. It is OK to reference file-scope statics 367 * and string constants, and to call static and global functions. 368 */ 369 370 /* Find the auxiliary vector on the stack. */ 371 argc = *sp++; 372 argv = (char **) sp; 373 sp += argc + 1; /* Skip over arguments and NULL terminator */ 374 env = (char **) sp; 375 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 376 ; 377 aux = (Elf_Auxinfo *) sp; 378 379 /* Digest the auxiliary vector. */ 380 for (i = 0; i < AT_COUNT; i++) 381 aux_info[i] = NULL; 382 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 383 if (auxp->a_type < AT_COUNT) 384 aux_info[auxp->a_type] = auxp; 385 } 386 387 /* Initialize and relocate ourselves. */ 388 assert(aux_info[AT_BASE] != NULL); 389 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); 390 391 __progname = obj_rtld.path; 392 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 393 environ = env; 394 main_argc = argc; 395 main_argv = argv; 396 397 if (aux_info[AT_CANARY] != NULL && 398 aux_info[AT_CANARY]->a_un.a_ptr != NULL) { 399 i = aux_info[AT_CANARYLEN]->a_un.a_val; 400 if (i > sizeof(__stack_chk_guard)) 401 i = sizeof(__stack_chk_guard); 402 memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i); 403 } else { 404 mib[0] = CTL_KERN; 405 mib[1] = KERN_ARND; 406 407 len = sizeof(__stack_chk_guard); 408 if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 || 409 len != sizeof(__stack_chk_guard)) { 410 /* If sysctl was unsuccessful, use the "terminator canary". */ 411 ((unsigned char *)(void *)__stack_chk_guard)[0] = 0; 412 ((unsigned char *)(void *)__stack_chk_guard)[1] = 0; 413 ((unsigned char *)(void *)__stack_chk_guard)[2] = '\n'; 414 ((unsigned char *)(void *)__stack_chk_guard)[3] = 255; 415 } 416 } 417 418 trust = !issetugid(); 419 420 ld_bind_now = getenv(LD_ "BIND_NOW"); 421 /* 422 * If the process is tainted, then we un-set the dangerous environment 423 * variables. The process will be marked as tainted until setuid(2) 424 * is called. If any child process calls setuid(2) we do not want any 425 * future processes to honor the potentially un-safe variables. 426 */ 427 if (!trust) { 428 if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") || 429 unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") || 430 unsetenv(LD_ "LIBMAP_DISABLE") || 431 unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") || 432 unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) { 433 _rtld_error("environment corrupt; aborting"); 434 rtld_die(); 435 } 436 } 437 ld_debug = getenv(LD_ "DEBUG"); 438 libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL; 439 libmap_override = getenv(LD_ "LIBMAP"); 440 ld_library_path = getenv(LD_ "LIBRARY_PATH"); 441 ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS"); 442 ld_preload = getenv(LD_ "PRELOAD"); 443 ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH"); 444 ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL; 445 library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH"); 446 if (library_path_rpath != NULL) { 447 if (library_path_rpath[0] == 'y' || 448 library_path_rpath[0] == 'Y' || 449 library_path_rpath[0] == '1') 450 ld_library_path_rpath = true; 451 else 452 ld_library_path_rpath = false; 453 } 454 dangerous_ld_env = libmap_disable || (libmap_override != NULL) || 455 (ld_library_path != NULL) || (ld_preload != NULL) || 456 (ld_elf_hints_path != NULL) || ld_loadfltr; 457 ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS"); 458 ld_utrace = getenv(LD_ "UTRACE"); 459 460 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0) 461 ld_elf_hints_path = ld_path_elf_hints; 462 463 if (ld_debug != NULL && *ld_debug != '\0') 464 debug = 1; 465 dbg("%s is initialized, base address = %p", __progname, 466 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 467 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 468 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 469 470 dbg("initializing thread locks"); 471 lockdflt_init(); 472 473 /* 474 * Load the main program, or process its program header if it is 475 * already loaded. 476 */ 477 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ 478 int fd = aux_info[AT_EXECFD]->a_un.a_val; 479 dbg("loading main program"); 480 obj_main = map_object(fd, argv0, NULL); 481 close(fd); 482 if (obj_main == NULL) 483 rtld_die(); 484 max_stack_flags = obj->stack_flags; 485 } else { /* Main program already loaded. */ 486 const Elf_Phdr *phdr; 487 int phnum; 488 caddr_t entry; 489 490 dbg("processing main program's program header"); 491 assert(aux_info[AT_PHDR] != NULL); 492 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 493 assert(aux_info[AT_PHNUM] != NULL); 494 phnum = aux_info[AT_PHNUM]->a_un.a_val; 495 assert(aux_info[AT_PHENT] != NULL); 496 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 497 assert(aux_info[AT_ENTRY] != NULL); 498 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 499 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) 500 rtld_die(); 501 } 502 503 if (aux_info[AT_EXECPATH] != 0) { 504 char *kexecpath; 505 char buf[MAXPATHLEN]; 506 507 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; 508 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); 509 if (kexecpath[0] == '/') 510 obj_main->path = kexecpath; 511 else if (getcwd(buf, sizeof(buf)) == NULL || 512 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || 513 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) 514 obj_main->path = xstrdup(argv0); 515 else 516 obj_main->path = xstrdup(buf); 517 } else { 518 dbg("No AT_EXECPATH"); 519 obj_main->path = xstrdup(argv0); 520 } 521 dbg("obj_main path %s", obj_main->path); 522 obj_main->mainprog = true; 523 524 if (aux_info[AT_STACKPROT] != NULL && 525 aux_info[AT_STACKPROT]->a_un.a_val != 0) 526 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; 527 528 #ifndef COMPAT_32BIT 529 /* 530 * Get the actual dynamic linker pathname from the executable if 531 * possible. (It should always be possible.) That ensures that 532 * gdb will find the right dynamic linker even if a non-standard 533 * one is being used. 534 */ 535 if (obj_main->interp != NULL && 536 strcmp(obj_main->interp, obj_rtld.path) != 0) { 537 free(obj_rtld.path); 538 obj_rtld.path = xstrdup(obj_main->interp); 539 __progname = obj_rtld.path; 540 } 541 #endif 542 543 digest_dynamic(obj_main, 0); 544 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", 545 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, 546 obj_main->dynsymcount); 547 548 linkmap_add(obj_main); 549 linkmap_add(&obj_rtld); 550 551 /* Link the main program into the list of objects. */ 552 *obj_tail = obj_main; 553 obj_tail = &obj_main->next; 554 obj_count++; 555 obj_loads++; 556 557 /* Initialize a fake symbol for resolving undefined weak references. */ 558 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 559 sym_zero.st_shndx = SHN_UNDEF; 560 sym_zero.st_value = -(uintptr_t)obj_main->relocbase; 561 562 if (!libmap_disable) 563 libmap_disable = (bool)lm_init(libmap_override); 564 565 dbg("loading LD_PRELOAD libraries"); 566 if (load_preload_objects() == -1) 567 rtld_die(); 568 preload_tail = obj_tail; 569 570 dbg("loading needed objects"); 571 if (load_needed_objects(obj_main, 0) == -1) 572 rtld_die(); 573 574 /* Make a list of all objects loaded at startup. */ 575 last_interposer = obj_main; 576 for (obj = obj_list; obj != NULL; obj = obj->next) { 577 if (obj->z_interpose && obj != obj_main) { 578 objlist_put_after(&list_main, last_interposer, obj); 579 last_interposer = obj; 580 } else { 581 objlist_push_tail(&list_main, obj); 582 } 583 obj->refcount++; 584 } 585 586 dbg("checking for required versions"); 587 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) 588 rtld_die(); 589 590 if (ld_tracing) { /* We're done */ 591 trace_loaded_objects(obj_main); 592 exit(0); 593 } 594 595 if (getenv(LD_ "DUMP_REL_PRE") != NULL) { 596 dump_relocations(obj_main); 597 exit (0); 598 } 599 600 /* 601 * Processing tls relocations requires having the tls offsets 602 * initialized. Prepare offsets before starting initial 603 * relocation processing. 604 */ 605 dbg("initializing initial thread local storage offsets"); 606 STAILQ_FOREACH(entry, &list_main, link) { 607 /* 608 * Allocate all the initial objects out of the static TLS 609 * block even if they didn't ask for it. 610 */ 611 allocate_tls_offset(entry->obj); 612 } 613 614 if (relocate_objects(obj_main, 615 ld_bind_now != NULL && *ld_bind_now != '\0', 616 &obj_rtld, SYMLOOK_EARLY, NULL) == -1) 617 rtld_die(); 618 619 dbg("doing copy relocations"); 620 if (do_copy_relocations(obj_main) == -1) 621 rtld_die(); 622 623 if (getenv(LD_ "DUMP_REL_POST") != NULL) { 624 dump_relocations(obj_main); 625 exit (0); 626 } 627 628 /* 629 * Setup TLS for main thread. This must be done after the 630 * relocations are processed, since tls initialization section 631 * might be the subject for relocations. 632 */ 633 dbg("initializing initial thread local storage"); 634 allocate_initial_tls(obj_list); 635 636 dbg("initializing key program variables"); 637 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 638 set_program_var("environ", env); 639 set_program_var("__elf_aux_vector", aux); 640 641 /* Make a list of init functions to call. */ 642 objlist_init(&initlist); 643 initlist_add_objects(obj_list, preload_tail, &initlist); 644 645 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 646 647 map_stacks_exec(NULL); 648 649 dbg("resolving ifuncs"); 650 if (resolve_objects_ifunc(obj_main, 651 ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY, 652 NULL) == -1) 653 rtld_die(); 654 655 if (!obj_main->crt_no_init) { 656 /* 657 * Make sure we don't call the main program's init and fini 658 * functions for binaries linked with old crt1 which calls 659 * _init itself. 660 */ 661 obj_main->init = obj_main->fini = (Elf_Addr)NULL; 662 obj_main->preinit_array = obj_main->init_array = 663 obj_main->fini_array = (Elf_Addr)NULL; 664 } 665 666 wlock_acquire(rtld_bind_lock, &lockstate); 667 if (obj_main->crt_no_init) 668 preinit_main(); 669 objlist_call_init(&initlist, &lockstate); 670 _r_debug_postinit(&obj_main->linkmap); 671 objlist_clear(&initlist); 672 dbg("loading filtees"); 673 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 674 if (ld_loadfltr || obj->z_loadfltr) 675 load_filtees(obj, 0, &lockstate); 676 } 677 lock_release(rtld_bind_lock, &lockstate); 678 679 dbg("transferring control to program entry point = %p", obj_main->entry); 680 681 /* Return the exit procedure and the program entry point. */ 682 *exit_proc = rtld_exit; 683 *objp = obj_main; 684 return (func_ptr_type) obj_main->entry; 685 } 686 687 void * 688 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) 689 { 690 void *ptr; 691 Elf_Addr target; 692 693 ptr = (void *)make_function_pointer(def, obj); 694 target = ((Elf_Addr (*)(void))ptr)(); 695 return ((void *)target); 696 } 697 698 Elf_Addr 699 _rtld_bind(Obj_Entry *obj, Elf_Size reloff) 700 { 701 const Elf_Rel *rel; 702 const Elf_Sym *def; 703 const Obj_Entry *defobj; 704 Elf_Addr *where; 705 Elf_Addr target; 706 RtldLockState lockstate; 707 708 rlock_acquire(rtld_bind_lock, &lockstate); 709 if (sigsetjmp(lockstate.env, 0) != 0) 710 lock_upgrade(rtld_bind_lock, &lockstate); 711 if (obj->pltrel) 712 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 713 else 714 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 715 716 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 717 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL, 718 &lockstate); 719 if (def == NULL) 720 rtld_die(); 721 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 722 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); 723 else 724 target = (Elf_Addr)(defobj->relocbase + def->st_value); 725 726 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 727 defobj->strtab + def->st_name, basename(obj->path), 728 (void *)target, basename(defobj->path)); 729 730 /* 731 * Write the new contents for the jmpslot. Note that depending on 732 * architecture, the value which we need to return back to the 733 * lazy binding trampoline may or may not be the target 734 * address. The value returned from reloc_jmpslot() is the value 735 * that the trampoline needs. 736 */ 737 target = reloc_jmpslot(where, target, defobj, obj, rel); 738 lock_release(rtld_bind_lock, &lockstate); 739 return target; 740 } 741 742 /* 743 * Error reporting function. Use it like printf. If formats the message 744 * into a buffer, and sets things up so that the next call to dlerror() 745 * will return the message. 746 */ 747 void 748 _rtld_error(const char *fmt, ...) 749 { 750 static char buf[512]; 751 va_list ap; 752 753 va_start(ap, fmt); 754 rtld_vsnprintf(buf, sizeof buf, fmt, ap); 755 error_message = buf; 756 va_end(ap); 757 } 758 759 /* 760 * Return a dynamically-allocated copy of the current error message, if any. 761 */ 762 static char * 763 errmsg_save(void) 764 { 765 return error_message == NULL ? NULL : xstrdup(error_message); 766 } 767 768 /* 769 * Restore the current error message from a copy which was previously saved 770 * by errmsg_save(). The copy is freed. 771 */ 772 static void 773 errmsg_restore(char *saved_msg) 774 { 775 if (saved_msg == NULL) 776 error_message = NULL; 777 else { 778 _rtld_error("%s", saved_msg); 779 free(saved_msg); 780 } 781 } 782 783 static const char * 784 basename(const char *name) 785 { 786 const char *p = strrchr(name, '/'); 787 return p != NULL ? p + 1 : name; 788 } 789 790 static struct utsname uts; 791 792 static char * 793 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, 794 const char *subst, bool may_free) 795 { 796 char *p, *p1, *res, *resp; 797 int subst_len, kw_len, subst_count, old_len, new_len; 798 799 kw_len = strlen(kw); 800 801 /* 802 * First, count the number of the keyword occurences, to 803 * preallocate the final string. 804 */ 805 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { 806 p1 = strstr(p, kw); 807 if (p1 == NULL) 808 break; 809 } 810 811 /* 812 * If the keyword is not found, just return. 813 * 814 * Return non-substituted string if resolution failed. We 815 * cannot do anything more reasonable, the failure mode of the 816 * caller is unresolved library anyway. 817 */ 818 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj))) 819 return (may_free ? real : xstrdup(real)); 820 if (obj != NULL) 821 subst = obj->origin_path; 822 823 /* 824 * There is indeed something to substitute. Calculate the 825 * length of the resulting string, and allocate it. 826 */ 827 subst_len = strlen(subst); 828 old_len = strlen(real); 829 new_len = old_len + (subst_len - kw_len) * subst_count; 830 res = xmalloc(new_len + 1); 831 832 /* 833 * Now, execute the substitution loop. 834 */ 835 for (p = real, resp = res, *resp = '\0';;) { 836 p1 = strstr(p, kw); 837 if (p1 != NULL) { 838 /* Copy the prefix before keyword. */ 839 memcpy(resp, p, p1 - p); 840 resp += p1 - p; 841 /* Keyword replacement. */ 842 memcpy(resp, subst, subst_len); 843 resp += subst_len; 844 *resp = '\0'; 845 p = p1 + kw_len; 846 } else 847 break; 848 } 849 850 /* Copy to the end of string and finish. */ 851 strcat(resp, p); 852 if (may_free) 853 free(real); 854 return (res); 855 } 856 857 static char * 858 origin_subst(Obj_Entry *obj, char *real) 859 { 860 char *res1, *res2, *res3, *res4; 861 862 if (obj == NULL || !trust) 863 return (xstrdup(real)); 864 if (uts.sysname[0] == '\0') { 865 if (uname(&uts) != 0) { 866 _rtld_error("utsname failed: %d", errno); 867 return (NULL); 868 } 869 } 870 res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false); 871 res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true); 872 res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true); 873 res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true); 874 return (res4); 875 } 876 877 void 878 rtld_die(void) 879 { 880 const char *msg = dlerror(); 881 882 if (msg == NULL) 883 msg = "Fatal error"; 884 rtld_fdputstr(STDERR_FILENO, msg); 885 rtld_fdputchar(STDERR_FILENO, '\n'); 886 _exit(1); 887 } 888 889 /* 890 * Process a shared object's DYNAMIC section, and save the important 891 * information in its Obj_Entry structure. 892 */ 893 static void 894 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, 895 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) 896 { 897 const Elf_Dyn *dynp; 898 Needed_Entry **needed_tail = &obj->needed; 899 Needed_Entry **needed_filtees_tail = &obj->needed_filtees; 900 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; 901 const Elf_Hashelt *hashtab; 902 const Elf32_Word *hashval; 903 Elf32_Word bkt, nmaskwords; 904 int bloom_size32; 905 int plttype = DT_REL; 906 907 *dyn_rpath = NULL; 908 *dyn_soname = NULL; 909 *dyn_runpath = NULL; 910 911 obj->bind_now = false; 912 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 913 switch (dynp->d_tag) { 914 915 case DT_REL: 916 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 917 break; 918 919 case DT_RELSZ: 920 obj->relsize = dynp->d_un.d_val; 921 break; 922 923 case DT_RELENT: 924 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 925 break; 926 927 case DT_JMPREL: 928 obj->pltrel = (const Elf_Rel *) 929 (obj->relocbase + dynp->d_un.d_ptr); 930 break; 931 932 case DT_PLTRELSZ: 933 obj->pltrelsize = dynp->d_un.d_val; 934 break; 935 936 case DT_RELA: 937 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 938 break; 939 940 case DT_RELASZ: 941 obj->relasize = dynp->d_un.d_val; 942 break; 943 944 case DT_RELAENT: 945 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 946 break; 947 948 case DT_PLTREL: 949 plttype = dynp->d_un.d_val; 950 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 951 break; 952 953 case DT_SYMTAB: 954 obj->symtab = (const Elf_Sym *) 955 (obj->relocbase + dynp->d_un.d_ptr); 956 break; 957 958 case DT_SYMENT: 959 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 960 break; 961 962 case DT_STRTAB: 963 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 964 break; 965 966 case DT_STRSZ: 967 obj->strsize = dynp->d_un.d_val; 968 break; 969 970 case DT_VERNEED: 971 obj->verneed = (const Elf_Verneed *) (obj->relocbase + 972 dynp->d_un.d_val); 973 break; 974 975 case DT_VERNEEDNUM: 976 obj->verneednum = dynp->d_un.d_val; 977 break; 978 979 case DT_VERDEF: 980 obj->verdef = (const Elf_Verdef *) (obj->relocbase + 981 dynp->d_un.d_val); 982 break; 983 984 case DT_VERDEFNUM: 985 obj->verdefnum = dynp->d_un.d_val; 986 break; 987 988 case DT_VERSYM: 989 obj->versyms = (const Elf_Versym *)(obj->relocbase + 990 dynp->d_un.d_val); 991 break; 992 993 case DT_HASH: 994 { 995 hashtab = (const Elf_Hashelt *)(obj->relocbase + 996 dynp->d_un.d_ptr); 997 obj->nbuckets = hashtab[0]; 998 obj->nchains = hashtab[1]; 999 obj->buckets = hashtab + 2; 1000 obj->chains = obj->buckets + obj->nbuckets; 1001 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && 1002 obj->buckets != NULL; 1003 } 1004 break; 1005 1006 case DT_GNU_HASH: 1007 { 1008 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1009 dynp->d_un.d_ptr); 1010 obj->nbuckets_gnu = hashtab[0]; 1011 obj->symndx_gnu = hashtab[1]; 1012 nmaskwords = hashtab[2]; 1013 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; 1014 obj->maskwords_bm_gnu = nmaskwords - 1; 1015 obj->shift2_gnu = hashtab[3]; 1016 obj->bloom_gnu = (Elf_Addr *) (hashtab + 4); 1017 obj->buckets_gnu = hashtab + 4 + bloom_size32; 1018 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - 1019 obj->symndx_gnu; 1020 /* Number of bitmask words is required to be power of 2 */ 1021 obj->valid_hash_gnu = powerof2(nmaskwords) && 1022 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; 1023 } 1024 break; 1025 1026 case DT_NEEDED: 1027 if (!obj->rtld) { 1028 Needed_Entry *nep = NEW(Needed_Entry); 1029 nep->name = dynp->d_un.d_val; 1030 nep->obj = NULL; 1031 nep->next = NULL; 1032 1033 *needed_tail = nep; 1034 needed_tail = &nep->next; 1035 } 1036 break; 1037 1038 case DT_FILTER: 1039 if (!obj->rtld) { 1040 Needed_Entry *nep = NEW(Needed_Entry); 1041 nep->name = dynp->d_un.d_val; 1042 nep->obj = NULL; 1043 nep->next = NULL; 1044 1045 *needed_filtees_tail = nep; 1046 needed_filtees_tail = &nep->next; 1047 } 1048 break; 1049 1050 case DT_AUXILIARY: 1051 if (!obj->rtld) { 1052 Needed_Entry *nep = NEW(Needed_Entry); 1053 nep->name = dynp->d_un.d_val; 1054 nep->obj = NULL; 1055 nep->next = NULL; 1056 1057 *needed_aux_filtees_tail = nep; 1058 needed_aux_filtees_tail = &nep->next; 1059 } 1060 break; 1061 1062 case DT_PLTGOT: 1063 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 1064 break; 1065 1066 case DT_TEXTREL: 1067 obj->textrel = true; 1068 break; 1069 1070 case DT_SYMBOLIC: 1071 obj->symbolic = true; 1072 break; 1073 1074 case DT_RPATH: 1075 /* 1076 * We have to wait until later to process this, because we 1077 * might not have gotten the address of the string table yet. 1078 */ 1079 *dyn_rpath = dynp; 1080 break; 1081 1082 case DT_SONAME: 1083 *dyn_soname = dynp; 1084 break; 1085 1086 case DT_RUNPATH: 1087 *dyn_runpath = dynp; 1088 break; 1089 1090 case DT_INIT: 1091 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1092 break; 1093 1094 case DT_PREINIT_ARRAY: 1095 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1096 break; 1097 1098 case DT_PREINIT_ARRAYSZ: 1099 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1100 break; 1101 1102 case DT_INIT_ARRAY: 1103 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1104 break; 1105 1106 case DT_INIT_ARRAYSZ: 1107 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1108 break; 1109 1110 case DT_FINI: 1111 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1112 break; 1113 1114 case DT_FINI_ARRAY: 1115 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1116 break; 1117 1118 case DT_FINI_ARRAYSZ: 1119 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1120 break; 1121 1122 /* 1123 * Don't process DT_DEBUG on MIPS as the dynamic section 1124 * is mapped read-only. DT_MIPS_RLD_MAP is used instead. 1125 */ 1126 1127 #ifndef __mips__ 1128 case DT_DEBUG: 1129 /* XXX - not implemented yet */ 1130 if (!early) 1131 dbg("Filling in DT_DEBUG entry"); 1132 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 1133 break; 1134 #endif 1135 1136 case DT_FLAGS: 1137 if (dynp->d_un.d_val & DF_ORIGIN) 1138 obj->z_origin = true; 1139 if (dynp->d_un.d_val & DF_SYMBOLIC) 1140 obj->symbolic = true; 1141 if (dynp->d_un.d_val & DF_TEXTREL) 1142 obj->textrel = true; 1143 if (dynp->d_un.d_val & DF_BIND_NOW) 1144 obj->bind_now = true; 1145 /*if (dynp->d_un.d_val & DF_STATIC_TLS) 1146 ;*/ 1147 break; 1148 #ifdef __mips__ 1149 case DT_MIPS_LOCAL_GOTNO: 1150 obj->local_gotno = dynp->d_un.d_val; 1151 break; 1152 1153 case DT_MIPS_SYMTABNO: 1154 obj->symtabno = dynp->d_un.d_val; 1155 break; 1156 1157 case DT_MIPS_GOTSYM: 1158 obj->gotsym = dynp->d_un.d_val; 1159 break; 1160 1161 case DT_MIPS_RLD_MAP: 1162 *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug; 1163 break; 1164 #endif 1165 1166 #ifdef __powerpc64__ 1167 case DT_PPC64_GLINK: 1168 obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1169 break; 1170 #endif 1171 1172 case DT_FLAGS_1: 1173 if (dynp->d_un.d_val & DF_1_NOOPEN) 1174 obj->z_noopen = true; 1175 if (dynp->d_un.d_val & DF_1_ORIGIN) 1176 obj->z_origin = true; 1177 if (dynp->d_un.d_val & DF_1_GLOBAL) 1178 obj->z_global = true; 1179 if (dynp->d_un.d_val & DF_1_BIND_NOW) 1180 obj->bind_now = true; 1181 if (dynp->d_un.d_val & DF_1_NODELETE) 1182 obj->z_nodelete = true; 1183 if (dynp->d_un.d_val & DF_1_LOADFLTR) 1184 obj->z_loadfltr = true; 1185 if (dynp->d_un.d_val & DF_1_INTERPOSE) 1186 obj->z_interpose = true; 1187 if (dynp->d_un.d_val & DF_1_NODEFLIB) 1188 obj->z_nodeflib = true; 1189 break; 1190 1191 default: 1192 if (!early) { 1193 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 1194 (long)dynp->d_tag); 1195 } 1196 break; 1197 } 1198 } 1199 1200 obj->traced = false; 1201 1202 if (plttype == DT_RELA) { 1203 obj->pltrela = (const Elf_Rela *) obj->pltrel; 1204 obj->pltrel = NULL; 1205 obj->pltrelasize = obj->pltrelsize; 1206 obj->pltrelsize = 0; 1207 } 1208 1209 /* Determine size of dynsym table (equal to nchains of sysv hash) */ 1210 if (obj->valid_hash_sysv) 1211 obj->dynsymcount = obj->nchains; 1212 else if (obj->valid_hash_gnu) { 1213 obj->dynsymcount = 0; 1214 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { 1215 if (obj->buckets_gnu[bkt] == 0) 1216 continue; 1217 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; 1218 do 1219 obj->dynsymcount++; 1220 while ((*hashval++ & 1u) == 0); 1221 } 1222 obj->dynsymcount += obj->symndx_gnu; 1223 } 1224 } 1225 1226 static bool 1227 obj_resolve_origin(Obj_Entry *obj) 1228 { 1229 1230 if (obj->origin_path != NULL) 1231 return (true); 1232 obj->origin_path = xmalloc(PATH_MAX); 1233 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1); 1234 } 1235 1236 static void 1237 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, 1238 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) 1239 { 1240 1241 if (obj->z_origin && !obj_resolve_origin(obj)) 1242 rtld_die(); 1243 1244 if (dyn_runpath != NULL) { 1245 obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val; 1246 obj->runpath = origin_subst(obj, obj->runpath); 1247 } else if (dyn_rpath != NULL) { 1248 obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val; 1249 obj->rpath = origin_subst(obj, obj->rpath); 1250 } 1251 if (dyn_soname != NULL) 1252 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); 1253 } 1254 1255 static void 1256 digest_dynamic(Obj_Entry *obj, int early) 1257 { 1258 const Elf_Dyn *dyn_rpath; 1259 const Elf_Dyn *dyn_soname; 1260 const Elf_Dyn *dyn_runpath; 1261 1262 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); 1263 digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath); 1264 } 1265 1266 /* 1267 * Process a shared object's program header. This is used only for the 1268 * main program, when the kernel has already loaded the main program 1269 * into memory before calling the dynamic linker. It creates and 1270 * returns an Obj_Entry structure. 1271 */ 1272 static Obj_Entry * 1273 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 1274 { 1275 Obj_Entry *obj; 1276 const Elf_Phdr *phlimit = phdr + phnum; 1277 const Elf_Phdr *ph; 1278 Elf_Addr note_start, note_end; 1279 int nsegs = 0; 1280 1281 obj = obj_new(); 1282 for (ph = phdr; ph < phlimit; ph++) { 1283 if (ph->p_type != PT_PHDR) 1284 continue; 1285 1286 obj->phdr = phdr; 1287 obj->phsize = ph->p_memsz; 1288 obj->relocbase = (caddr_t)phdr - ph->p_vaddr; 1289 break; 1290 } 1291 1292 obj->stack_flags = PF_X | PF_R | PF_W; 1293 1294 for (ph = phdr; ph < phlimit; ph++) { 1295 switch (ph->p_type) { 1296 1297 case PT_INTERP: 1298 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); 1299 break; 1300 1301 case PT_LOAD: 1302 if (nsegs == 0) { /* First load segment */ 1303 obj->vaddrbase = trunc_page(ph->p_vaddr); 1304 obj->mapbase = obj->vaddrbase + obj->relocbase; 1305 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 1306 obj->vaddrbase; 1307 } else { /* Last load segment */ 1308 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 1309 obj->vaddrbase; 1310 } 1311 nsegs++; 1312 break; 1313 1314 case PT_DYNAMIC: 1315 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); 1316 break; 1317 1318 case PT_TLS: 1319 obj->tlsindex = 1; 1320 obj->tlssize = ph->p_memsz; 1321 obj->tlsalign = ph->p_align; 1322 obj->tlsinitsize = ph->p_filesz; 1323 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); 1324 break; 1325 1326 case PT_GNU_STACK: 1327 obj->stack_flags = ph->p_flags; 1328 break; 1329 1330 case PT_GNU_RELRO: 1331 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr); 1332 obj->relro_size = round_page(ph->p_memsz); 1333 break; 1334 1335 case PT_NOTE: 1336 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; 1337 note_end = note_start + ph->p_filesz; 1338 digest_notes(obj, note_start, note_end); 1339 break; 1340 } 1341 } 1342 if (nsegs < 1) { 1343 _rtld_error("%s: too few PT_LOAD segments", path); 1344 return NULL; 1345 } 1346 1347 obj->entry = entry; 1348 return obj; 1349 } 1350 1351 void 1352 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) 1353 { 1354 const Elf_Note *note; 1355 const char *note_name; 1356 uintptr_t p; 1357 1358 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; 1359 note = (const Elf_Note *)((const char *)(note + 1) + 1360 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1361 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { 1362 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || 1363 note->n_descsz != sizeof(int32_t)) 1364 continue; 1365 if (note->n_type != ABI_NOTETYPE && 1366 note->n_type != CRT_NOINIT_NOTETYPE) 1367 continue; 1368 note_name = (const char *)(note + 1); 1369 if (strncmp(NOTE_FREEBSD_VENDOR, note_name, 1370 sizeof(NOTE_FREEBSD_VENDOR)) != 0) 1371 continue; 1372 switch (note->n_type) { 1373 case ABI_NOTETYPE: 1374 /* FreeBSD osrel note */ 1375 p = (uintptr_t)(note + 1); 1376 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 1377 obj->osrel = *(const int32_t *)(p); 1378 dbg("note osrel %d", obj->osrel); 1379 break; 1380 case CRT_NOINIT_NOTETYPE: 1381 /* FreeBSD 'crt does not call init' note */ 1382 obj->crt_no_init = true; 1383 dbg("note crt_no_init"); 1384 break; 1385 } 1386 } 1387 } 1388 1389 static Obj_Entry * 1390 dlcheck(void *handle) 1391 { 1392 Obj_Entry *obj; 1393 1394 for (obj = obj_list; obj != NULL; obj = obj->next) 1395 if (obj == (Obj_Entry *) handle) 1396 break; 1397 1398 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 1399 _rtld_error("Invalid shared object handle %p", handle); 1400 return NULL; 1401 } 1402 return obj; 1403 } 1404 1405 /* 1406 * If the given object is already in the donelist, return true. Otherwise 1407 * add the object to the list and return false. 1408 */ 1409 static bool 1410 donelist_check(DoneList *dlp, const Obj_Entry *obj) 1411 { 1412 unsigned int i; 1413 1414 for (i = 0; i < dlp->num_used; i++) 1415 if (dlp->objs[i] == obj) 1416 return true; 1417 /* 1418 * Our donelist allocation should always be sufficient. But if 1419 * our threads locking isn't working properly, more shared objects 1420 * could have been loaded since we allocated the list. That should 1421 * never happen, but we'll handle it properly just in case it does. 1422 */ 1423 if (dlp->num_used < dlp->num_alloc) 1424 dlp->objs[dlp->num_used++] = obj; 1425 return false; 1426 } 1427 1428 /* 1429 * Hash function for symbol table lookup. Don't even think about changing 1430 * this. It is specified by the System V ABI. 1431 */ 1432 unsigned long 1433 elf_hash(const char *name) 1434 { 1435 const unsigned char *p = (const unsigned char *) name; 1436 unsigned long h = 0; 1437 unsigned long g; 1438 1439 while (*p != '\0') { 1440 h = (h << 4) + *p++; 1441 if ((g = h & 0xf0000000) != 0) 1442 h ^= g >> 24; 1443 h &= ~g; 1444 } 1445 return h; 1446 } 1447 1448 /* 1449 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits 1450 * unsigned in case it's implemented with a wider type. 1451 */ 1452 static uint32_t 1453 gnu_hash(const char *s) 1454 { 1455 uint32_t h; 1456 unsigned char c; 1457 1458 h = 5381; 1459 for (c = *s; c != '\0'; c = *++s) 1460 h = h * 33 + c; 1461 return (h & 0xffffffff); 1462 } 1463 1464 1465 /* 1466 * Find the library with the given name, and return its full pathname. 1467 * The returned string is dynamically allocated. Generates an error 1468 * message and returns NULL if the library cannot be found. 1469 * 1470 * If the second argument is non-NULL, then it refers to an already- 1471 * loaded shared object, whose library search path will be searched. 1472 * 1473 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its 1474 * descriptor (which is close-on-exec) will be passed out via the third 1475 * argument. 1476 * 1477 * The search order is: 1478 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) 1479 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) 1480 * LD_LIBRARY_PATH 1481 * DT_RUNPATH in the referencing file 1482 * ldconfig hints (if -z nodefaultlib, filter out default library directories 1483 * from list) 1484 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib 1485 * 1486 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. 1487 */ 1488 static char * 1489 find_library(const char *xname, const Obj_Entry *refobj, int *fdp) 1490 { 1491 char *pathname; 1492 char *name; 1493 bool nodeflib, objgiven; 1494 1495 objgiven = refobj != NULL; 1496 if (strchr(xname, '/') != NULL) { /* Hard coded pathname */ 1497 if (xname[0] != '/' && !trust) { 1498 _rtld_error("Absolute pathname required for shared object \"%s\"", 1499 xname); 1500 return NULL; 1501 } 1502 return (origin_subst(__DECONST(Obj_Entry *, refobj), 1503 __DECONST(char *, xname))); 1504 } 1505 1506 if (libmap_disable || !objgiven || 1507 (name = lm_find(refobj->path, xname)) == NULL) 1508 name = (char *)xname; 1509 1510 dbg(" Searching for \"%s\"", name); 1511 1512 /* 1513 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall 1514 * back to pre-conforming behaviour if user requested so with 1515 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z 1516 * nodeflib. 1517 */ 1518 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { 1519 if ((pathname = search_library_path(name, ld_library_path)) != NULL || 1520 (refobj != NULL && 1521 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 1522 (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL || 1523 (pathname = search_library_path(name, gethints(false))) != NULL || 1524 (pathname = search_library_path(name, ld_standard_library_path)) != NULL) 1525 return (pathname); 1526 } else { 1527 nodeflib = objgiven ? refobj->z_nodeflib : false; 1528 if ((objgiven && 1529 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 1530 (objgiven && refobj->runpath == NULL && refobj != obj_main && 1531 (pathname = search_library_path(name, obj_main->rpath)) != NULL) || 1532 (pathname = search_library_path(name, ld_library_path)) != NULL || 1533 (objgiven && 1534 (pathname = search_library_path(name, refobj->runpath)) != NULL) || 1535 (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL || 1536 (pathname = search_library_path(name, gethints(nodeflib))) != NULL || 1537 (objgiven && !nodeflib && 1538 (pathname = search_library_path(name, ld_standard_library_path)) != NULL)) 1539 return (pathname); 1540 } 1541 1542 if (objgiven && refobj->path != NULL) { 1543 _rtld_error("Shared object \"%s\" not found, required by \"%s\"", 1544 name, basename(refobj->path)); 1545 } else { 1546 _rtld_error("Shared object \"%s\" not found", name); 1547 } 1548 return NULL; 1549 } 1550 1551 /* 1552 * Given a symbol number in a referencing object, find the corresponding 1553 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1554 * no definition was found. Returns a pointer to the Obj_Entry of the 1555 * defining object via the reference parameter DEFOBJ_OUT. 1556 */ 1557 const Elf_Sym * 1558 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 1559 const Obj_Entry **defobj_out, int flags, SymCache *cache, 1560 RtldLockState *lockstate) 1561 { 1562 const Elf_Sym *ref; 1563 const Elf_Sym *def; 1564 const Obj_Entry *defobj; 1565 SymLook req; 1566 const char *name; 1567 int res; 1568 1569 /* 1570 * If we have already found this symbol, get the information from 1571 * the cache. 1572 */ 1573 if (symnum >= refobj->dynsymcount) 1574 return NULL; /* Bad object */ 1575 if (cache != NULL && cache[symnum].sym != NULL) { 1576 *defobj_out = cache[symnum].obj; 1577 return cache[symnum].sym; 1578 } 1579 1580 ref = refobj->symtab + symnum; 1581 name = refobj->strtab + ref->st_name; 1582 def = NULL; 1583 defobj = NULL; 1584 1585 /* 1586 * We don't have to do a full scale lookup if the symbol is local. 1587 * We know it will bind to the instance in this load module; to 1588 * which we already have a pointer (ie ref). By not doing a lookup, 1589 * we not only improve performance, but it also avoids unresolvable 1590 * symbols when local symbols are not in the hash table. This has 1591 * been seen with the ia64 toolchain. 1592 */ 1593 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 1594 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 1595 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 1596 symnum); 1597 } 1598 symlook_init(&req, name); 1599 req.flags = flags; 1600 req.ventry = fetch_ventry(refobj, symnum); 1601 req.lockstate = lockstate; 1602 res = symlook_default(&req, refobj); 1603 if (res == 0) { 1604 def = req.sym_out; 1605 defobj = req.defobj_out; 1606 } 1607 } else { 1608 def = ref; 1609 defobj = refobj; 1610 } 1611 1612 /* 1613 * If we found no definition and the reference is weak, treat the 1614 * symbol as having the value zero. 1615 */ 1616 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 1617 def = &sym_zero; 1618 defobj = obj_main; 1619 } 1620 1621 if (def != NULL) { 1622 *defobj_out = defobj; 1623 /* Record the information in the cache to avoid subsequent lookups. */ 1624 if (cache != NULL) { 1625 cache[symnum].sym = def; 1626 cache[symnum].obj = defobj; 1627 } 1628 } else { 1629 if (refobj != &obj_rtld) 1630 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); 1631 } 1632 return def; 1633 } 1634 1635 /* 1636 * Return the search path from the ldconfig hints file, reading it if 1637 * necessary. If nostdlib is true, then the default search paths are 1638 * not added to result. 1639 * 1640 * Returns NULL if there are problems with the hints file, 1641 * or if the search path there is empty. 1642 */ 1643 static const char * 1644 gethints(bool nostdlib) 1645 { 1646 static char *hints, *filtered_path; 1647 struct elfhints_hdr hdr; 1648 struct fill_search_info_args sargs, hargs; 1649 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; 1650 struct dl_serpath *SLPpath, *hintpath; 1651 char *p; 1652 unsigned int SLPndx, hintndx, fndx, fcount; 1653 int fd; 1654 size_t flen; 1655 bool skip; 1656 1657 /* First call, read the hints file */ 1658 if (hints == NULL) { 1659 /* Keep from trying again in case the hints file is bad. */ 1660 hints = ""; 1661 1662 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) 1663 return (NULL); 1664 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 1665 hdr.magic != ELFHINTS_MAGIC || 1666 hdr.version != 1) { 1667 close(fd); 1668 return (NULL); 1669 } 1670 p = xmalloc(hdr.dirlistlen + 1); 1671 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || 1672 read(fd, p, hdr.dirlistlen + 1) != 1673 (ssize_t)hdr.dirlistlen + 1) { 1674 free(p); 1675 close(fd); 1676 return (NULL); 1677 } 1678 hints = p; 1679 close(fd); 1680 } 1681 1682 /* 1683 * If caller agreed to receive list which includes the default 1684 * paths, we are done. Otherwise, if we still did not 1685 * calculated filtered result, do it now. 1686 */ 1687 if (!nostdlib) 1688 return (hints[0] != '\0' ? hints : NULL); 1689 if (filtered_path != NULL) 1690 goto filt_ret; 1691 1692 /* 1693 * Obtain the list of all configured search paths, and the 1694 * list of the default paths. 1695 * 1696 * First estimate the size of the results. 1697 */ 1698 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1699 smeta.dls_cnt = 0; 1700 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1701 hmeta.dls_cnt = 0; 1702 1703 sargs.request = RTLD_DI_SERINFOSIZE; 1704 sargs.serinfo = &smeta; 1705 hargs.request = RTLD_DI_SERINFOSIZE; 1706 hargs.serinfo = &hmeta; 1707 1708 path_enumerate(ld_standard_library_path, fill_search_info, &sargs); 1709 path_enumerate(p, fill_search_info, &hargs); 1710 1711 SLPinfo = xmalloc(smeta.dls_size); 1712 hintinfo = xmalloc(hmeta.dls_size); 1713 1714 /* 1715 * Next fetch both sets of paths. 1716 */ 1717 sargs.request = RTLD_DI_SERINFO; 1718 sargs.serinfo = SLPinfo; 1719 sargs.serpath = &SLPinfo->dls_serpath[0]; 1720 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; 1721 1722 hargs.request = RTLD_DI_SERINFO; 1723 hargs.serinfo = hintinfo; 1724 hargs.serpath = &hintinfo->dls_serpath[0]; 1725 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; 1726 1727 path_enumerate(ld_standard_library_path, fill_search_info, &sargs); 1728 path_enumerate(p, fill_search_info, &hargs); 1729 1730 /* 1731 * Now calculate the difference between two sets, by excluding 1732 * standard paths from the full set. 1733 */ 1734 fndx = 0; 1735 fcount = 0; 1736 filtered_path = xmalloc(hdr.dirlistlen + 1); 1737 hintpath = &hintinfo->dls_serpath[0]; 1738 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { 1739 skip = false; 1740 SLPpath = &SLPinfo->dls_serpath[0]; 1741 /* 1742 * Check each standard path against current. 1743 */ 1744 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { 1745 /* matched, skip the path */ 1746 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { 1747 skip = true; 1748 break; 1749 } 1750 } 1751 if (skip) 1752 continue; 1753 /* 1754 * Not matched against any standard path, add the path 1755 * to result. Separate consequtive paths with ':'. 1756 */ 1757 if (fcount > 0) { 1758 filtered_path[fndx] = ':'; 1759 fndx++; 1760 } 1761 fcount++; 1762 flen = strlen(hintpath->dls_name); 1763 strncpy((filtered_path + fndx), hintpath->dls_name, flen); 1764 fndx += flen; 1765 } 1766 filtered_path[fndx] = '\0'; 1767 1768 free(SLPinfo); 1769 free(hintinfo); 1770 1771 filt_ret: 1772 return (filtered_path[0] != '\0' ? filtered_path : NULL); 1773 } 1774 1775 static void 1776 init_dag(Obj_Entry *root) 1777 { 1778 const Needed_Entry *needed; 1779 const Objlist_Entry *elm; 1780 DoneList donelist; 1781 1782 if (root->dag_inited) 1783 return; 1784 donelist_init(&donelist); 1785 1786 /* Root object belongs to own DAG. */ 1787 objlist_push_tail(&root->dldags, root); 1788 objlist_push_tail(&root->dagmembers, root); 1789 donelist_check(&donelist, root); 1790 1791 /* 1792 * Add dependencies of root object to DAG in breadth order 1793 * by exploiting the fact that each new object get added 1794 * to the tail of the dagmembers list. 1795 */ 1796 STAILQ_FOREACH(elm, &root->dagmembers, link) { 1797 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { 1798 if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) 1799 continue; 1800 objlist_push_tail(&needed->obj->dldags, root); 1801 objlist_push_tail(&root->dagmembers, needed->obj); 1802 } 1803 } 1804 root->dag_inited = true; 1805 } 1806 1807 static void 1808 process_z(Obj_Entry *root) 1809 { 1810 const Objlist_Entry *elm; 1811 Obj_Entry *obj; 1812 1813 /* 1814 * Walk over object DAG and process every dependent object 1815 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need 1816 * to grow their own DAG. 1817 * 1818 * For DF_1_GLOBAL, DAG is required for symbol lookups in 1819 * symlook_global() to work. 1820 * 1821 * For DF_1_NODELETE, the DAG should have its reference upped. 1822 */ 1823 STAILQ_FOREACH(elm, &root->dagmembers, link) { 1824 obj = elm->obj; 1825 if (obj == NULL) 1826 continue; 1827 if (obj->z_nodelete && !obj->ref_nodel) { 1828 dbg("obj %s -z nodelete", obj->path); 1829 init_dag(obj); 1830 ref_dag(obj); 1831 obj->ref_nodel = true; 1832 } 1833 if (obj->z_global && objlist_find(&list_global, obj) == NULL) { 1834 dbg("obj %s -z global", obj->path); 1835 objlist_push_tail(&list_global, obj); 1836 init_dag(obj); 1837 } 1838 } 1839 } 1840 /* 1841 * Initialize the dynamic linker. The argument is the address at which 1842 * the dynamic linker has been mapped into memory. The primary task of 1843 * this function is to relocate the dynamic linker. 1844 */ 1845 static void 1846 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) 1847 { 1848 Obj_Entry objtmp; /* Temporary rtld object */ 1849 const Elf_Dyn *dyn_rpath; 1850 const Elf_Dyn *dyn_soname; 1851 const Elf_Dyn *dyn_runpath; 1852 1853 #ifdef RTLD_INIT_PAGESIZES_EARLY 1854 /* The page size is required by the dynamic memory allocator. */ 1855 init_pagesizes(aux_info); 1856 #endif 1857 1858 /* 1859 * Conjure up an Obj_Entry structure for the dynamic linker. 1860 * 1861 * The "path" member can't be initialized yet because string constants 1862 * cannot yet be accessed. Below we will set it correctly. 1863 */ 1864 memset(&objtmp, 0, sizeof(objtmp)); 1865 objtmp.path = NULL; 1866 objtmp.rtld = true; 1867 objtmp.mapbase = mapbase; 1868 #ifdef PIC 1869 objtmp.relocbase = mapbase; 1870 #endif 1871 if (RTLD_IS_DYNAMIC()) { 1872 objtmp.dynamic = rtld_dynamic(&objtmp); 1873 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); 1874 assert(objtmp.needed == NULL); 1875 #if !defined(__mips__) 1876 /* MIPS has a bogus DT_TEXTREL. */ 1877 assert(!objtmp.textrel); 1878 #endif 1879 1880 /* 1881 * Temporarily put the dynamic linker entry into the object list, so 1882 * that symbols can be found. 1883 */ 1884 1885 relocate_objects(&objtmp, true, &objtmp, 0, NULL); 1886 } 1887 1888 /* Initialize the object list. */ 1889 obj_tail = &obj_list; 1890 1891 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 1892 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 1893 1894 #ifndef RTLD_INIT_PAGESIZES_EARLY 1895 /* The page size is required by the dynamic memory allocator. */ 1896 init_pagesizes(aux_info); 1897 #endif 1898 1899 if (aux_info[AT_OSRELDATE] != NULL) 1900 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; 1901 1902 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); 1903 1904 /* Replace the path with a dynamically allocated copy. */ 1905 obj_rtld.path = xstrdup(ld_path_rtld); 1906 1907 r_debug.r_brk = r_debug_state; 1908 r_debug.r_state = RT_CONSISTENT; 1909 } 1910 1911 /* 1912 * Retrieve the array of supported page sizes. The kernel provides the page 1913 * sizes in increasing order. 1914 */ 1915 static void 1916 init_pagesizes(Elf_Auxinfo **aux_info) 1917 { 1918 static size_t psa[MAXPAGESIZES]; 1919 int mib[2]; 1920 size_t len, size; 1921 1922 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != 1923 NULL) { 1924 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; 1925 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; 1926 } else { 1927 len = 2; 1928 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) 1929 size = sizeof(psa); 1930 else { 1931 /* As a fallback, retrieve the base page size. */ 1932 size = sizeof(psa[0]); 1933 if (aux_info[AT_PAGESZ] != NULL) { 1934 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; 1935 goto psa_filled; 1936 } else { 1937 mib[0] = CTL_HW; 1938 mib[1] = HW_PAGESIZE; 1939 len = 2; 1940 } 1941 } 1942 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { 1943 _rtld_error("sysctl for hw.pagesize(s) failed"); 1944 rtld_die(); 1945 } 1946 psa_filled: 1947 pagesizes = psa; 1948 } 1949 npagesizes = size / sizeof(pagesizes[0]); 1950 /* Discard any invalid entries at the end of the array. */ 1951 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) 1952 npagesizes--; 1953 } 1954 1955 /* 1956 * Add the init functions from a needed object list (and its recursive 1957 * needed objects) to "list". This is not used directly; it is a helper 1958 * function for initlist_add_objects(). The write lock must be held 1959 * when this function is called. 1960 */ 1961 static void 1962 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 1963 { 1964 /* Recursively process the successor needed objects. */ 1965 if (needed->next != NULL) 1966 initlist_add_neededs(needed->next, list); 1967 1968 /* Process the current needed object. */ 1969 if (needed->obj != NULL) 1970 initlist_add_objects(needed->obj, &needed->obj->next, list); 1971 } 1972 1973 /* 1974 * Scan all of the DAGs rooted in the range of objects from "obj" to 1975 * "tail" and add their init functions to "list". This recurses over 1976 * the DAGs and ensure the proper init ordering such that each object's 1977 * needed libraries are initialized before the object itself. At the 1978 * same time, this function adds the objects to the global finalization 1979 * list "list_fini" in the opposite order. The write lock must be 1980 * held when this function is called. 1981 */ 1982 static void 1983 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list) 1984 { 1985 1986 if (obj->init_scanned || obj->init_done) 1987 return; 1988 obj->init_scanned = true; 1989 1990 /* Recursively process the successor objects. */ 1991 if (&obj->next != tail) 1992 initlist_add_objects(obj->next, tail, list); 1993 1994 /* Recursively process the needed objects. */ 1995 if (obj->needed != NULL) 1996 initlist_add_neededs(obj->needed, list); 1997 if (obj->needed_filtees != NULL) 1998 initlist_add_neededs(obj->needed_filtees, list); 1999 if (obj->needed_aux_filtees != NULL) 2000 initlist_add_neededs(obj->needed_aux_filtees, list); 2001 2002 /* Add the object to the init list. */ 2003 if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL || 2004 obj->init_array != (Elf_Addr)NULL) 2005 objlist_push_tail(list, obj); 2006 2007 /* Add the object to the global fini list in the reverse order. */ 2008 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) 2009 && !obj->on_fini_list) { 2010 objlist_push_head(&list_fini, obj); 2011 obj->on_fini_list = true; 2012 } 2013 } 2014 2015 #ifndef FPTR_TARGET 2016 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 2017 #endif 2018 2019 static void 2020 free_needed_filtees(Needed_Entry *n) 2021 { 2022 Needed_Entry *needed, *needed1; 2023 2024 for (needed = n; needed != NULL; needed = needed->next) { 2025 if (needed->obj != NULL) { 2026 dlclose(needed->obj); 2027 needed->obj = NULL; 2028 } 2029 } 2030 for (needed = n; needed != NULL; needed = needed1) { 2031 needed1 = needed->next; 2032 free(needed); 2033 } 2034 } 2035 2036 static void 2037 unload_filtees(Obj_Entry *obj) 2038 { 2039 2040 free_needed_filtees(obj->needed_filtees); 2041 obj->needed_filtees = NULL; 2042 free_needed_filtees(obj->needed_aux_filtees); 2043 obj->needed_aux_filtees = NULL; 2044 obj->filtees_loaded = false; 2045 } 2046 2047 static void 2048 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, 2049 RtldLockState *lockstate) 2050 { 2051 2052 for (; needed != NULL; needed = needed->next) { 2053 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, 2054 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | 2055 RTLD_LOCAL, lockstate); 2056 } 2057 } 2058 2059 static void 2060 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) 2061 { 2062 2063 lock_restart_for_upgrade(lockstate); 2064 if (!obj->filtees_loaded) { 2065 load_filtee1(obj, obj->needed_filtees, flags, lockstate); 2066 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); 2067 obj->filtees_loaded = true; 2068 } 2069 } 2070 2071 static int 2072 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) 2073 { 2074 Obj_Entry *obj1; 2075 2076 for (; needed != NULL; needed = needed->next) { 2077 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, 2078 flags & ~RTLD_LO_NOLOAD); 2079 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) 2080 return (-1); 2081 } 2082 return (0); 2083 } 2084 2085 /* 2086 * Given a shared object, traverse its list of needed objects, and load 2087 * each of them. Returns 0 on success. Generates an error message and 2088 * returns -1 on failure. 2089 */ 2090 static int 2091 load_needed_objects(Obj_Entry *first, int flags) 2092 { 2093 Obj_Entry *obj; 2094 2095 for (obj = first; obj != NULL; obj = obj->next) { 2096 if (process_needed(obj, obj->needed, flags) == -1) 2097 return (-1); 2098 } 2099 return (0); 2100 } 2101 2102 static int 2103 load_preload_objects(void) 2104 { 2105 char *p = ld_preload; 2106 Obj_Entry *obj; 2107 static const char delim[] = " \t:;"; 2108 2109 if (p == NULL) 2110 return 0; 2111 2112 p += strspn(p, delim); 2113 while (*p != '\0') { 2114 size_t len = strcspn(p, delim); 2115 char savech; 2116 2117 savech = p[len]; 2118 p[len] = '\0'; 2119 obj = load_object(p, -1, NULL, 0); 2120 if (obj == NULL) 2121 return -1; /* XXX - cleanup */ 2122 obj->z_interpose = true; 2123 p[len] = savech; 2124 p += len; 2125 p += strspn(p, delim); 2126 } 2127 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); 2128 return 0; 2129 } 2130 2131 static const char * 2132 printable_path(const char *path) 2133 { 2134 2135 return (path == NULL ? "<unknown>" : path); 2136 } 2137 2138 /* 2139 * Load a shared object into memory, if it is not already loaded. The 2140 * object may be specified by name or by user-supplied file descriptor 2141 * fd_u. In the later case, the fd_u descriptor is not closed, but its 2142 * duplicate is. 2143 * 2144 * Returns a pointer to the Obj_Entry for the object. Returns NULL 2145 * on failure. 2146 */ 2147 static Obj_Entry * 2148 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) 2149 { 2150 Obj_Entry *obj; 2151 int fd; 2152 struct stat sb; 2153 char *path; 2154 2155 fd = -1; 2156 if (name != NULL) { 2157 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 2158 if (object_match_name(obj, name)) 2159 return (obj); 2160 } 2161 2162 path = find_library(name, refobj, &fd); 2163 if (path == NULL) 2164 return (NULL); 2165 } else 2166 path = NULL; 2167 2168 if (fd >= 0) { 2169 /* 2170 * search_library_pathfds() opens a fresh file descriptor for the 2171 * library, so there is no need to dup(). 2172 */ 2173 } else if (fd_u == -1) { 2174 /* 2175 * If we didn't find a match by pathname, or the name is not 2176 * supplied, open the file and check again by device and inode. 2177 * This avoids false mismatches caused by multiple links or ".." 2178 * in pathnames. 2179 * 2180 * To avoid a race, we open the file and use fstat() rather than 2181 * using stat(). 2182 */ 2183 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) { 2184 _rtld_error("Cannot open \"%s\"", path); 2185 free(path); 2186 return (NULL); 2187 } 2188 } else { 2189 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); 2190 if (fd == -1) { 2191 _rtld_error("Cannot dup fd"); 2192 free(path); 2193 return (NULL); 2194 } 2195 } 2196 if (fstat(fd, &sb) == -1) { 2197 _rtld_error("Cannot fstat \"%s\"", printable_path(path)); 2198 close(fd); 2199 free(path); 2200 return NULL; 2201 } 2202 for (obj = obj_list->next; obj != NULL; obj = obj->next) 2203 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) 2204 break; 2205 if (obj != NULL && name != NULL) { 2206 object_add_name(obj, name); 2207 free(path); 2208 close(fd); 2209 return obj; 2210 } 2211 if (flags & RTLD_LO_NOLOAD) { 2212 free(path); 2213 close(fd); 2214 return (NULL); 2215 } 2216 2217 /* First use of this object, so we must map it in */ 2218 obj = do_load_object(fd, name, path, &sb, flags); 2219 if (obj == NULL) 2220 free(path); 2221 close(fd); 2222 2223 return obj; 2224 } 2225 2226 static Obj_Entry * 2227 do_load_object(int fd, const char *name, char *path, struct stat *sbp, 2228 int flags) 2229 { 2230 Obj_Entry *obj; 2231 struct statfs fs; 2232 2233 /* 2234 * but first, make sure that environment variables haven't been 2235 * used to circumvent the noexec flag on a filesystem. 2236 */ 2237 if (dangerous_ld_env) { 2238 if (fstatfs(fd, &fs) != 0) { 2239 _rtld_error("Cannot fstatfs \"%s\"", printable_path(path)); 2240 return NULL; 2241 } 2242 if (fs.f_flags & MNT_NOEXEC) { 2243 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname); 2244 return NULL; 2245 } 2246 } 2247 dbg("loading \"%s\"", printable_path(path)); 2248 obj = map_object(fd, printable_path(path), sbp); 2249 if (obj == NULL) 2250 return NULL; 2251 2252 /* 2253 * If DT_SONAME is present in the object, digest_dynamic2 already 2254 * added it to the object names. 2255 */ 2256 if (name != NULL) 2257 object_add_name(obj, name); 2258 obj->path = path; 2259 digest_dynamic(obj, 0); 2260 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, 2261 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); 2262 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == 2263 RTLD_LO_DLOPEN) { 2264 dbg("refusing to load non-loadable \"%s\"", obj->path); 2265 _rtld_error("Cannot dlopen non-loadable %s", obj->path); 2266 munmap(obj->mapbase, obj->mapsize); 2267 obj_free(obj); 2268 return (NULL); 2269 } 2270 2271 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; 2272 *obj_tail = obj; 2273 obj_tail = &obj->next; 2274 obj_count++; 2275 obj_loads++; 2276 linkmap_add(obj); /* for GDB & dlinfo() */ 2277 max_stack_flags |= obj->stack_flags; 2278 2279 dbg(" %p .. %p: %s", obj->mapbase, 2280 obj->mapbase + obj->mapsize - 1, obj->path); 2281 if (obj->textrel) 2282 dbg(" WARNING: %s has impure text", obj->path); 2283 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 2284 obj->path); 2285 2286 return obj; 2287 } 2288 2289 static Obj_Entry * 2290 obj_from_addr(const void *addr) 2291 { 2292 Obj_Entry *obj; 2293 2294 for (obj = obj_list; obj != NULL; obj = obj->next) { 2295 if (addr < (void *) obj->mapbase) 2296 continue; 2297 if (addr < (void *) (obj->mapbase + obj->mapsize)) 2298 return obj; 2299 } 2300 return NULL; 2301 } 2302 2303 static void 2304 preinit_main(void) 2305 { 2306 Elf_Addr *preinit_addr; 2307 int index; 2308 2309 preinit_addr = (Elf_Addr *)obj_main->preinit_array; 2310 if (preinit_addr == NULL) 2311 return; 2312 2313 for (index = 0; index < obj_main->preinit_array_num; index++) { 2314 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { 2315 dbg("calling preinit function for %s at %p", obj_main->path, 2316 (void *)preinit_addr[index]); 2317 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 2318 0, 0, obj_main->path); 2319 call_init_pointer(obj_main, preinit_addr[index]); 2320 } 2321 } 2322 } 2323 2324 /* 2325 * Call the finalization functions for each of the objects in "list" 2326 * belonging to the DAG of "root" and referenced once. If NULL "root" 2327 * is specified, every finalization function will be called regardless 2328 * of the reference count and the list elements won't be freed. All of 2329 * the objects are expected to have non-NULL fini functions. 2330 */ 2331 static void 2332 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) 2333 { 2334 Objlist_Entry *elm; 2335 char *saved_msg; 2336 Elf_Addr *fini_addr; 2337 int index; 2338 2339 assert(root == NULL || root->refcount == 1); 2340 2341 /* 2342 * Preserve the current error message since a fini function might 2343 * call into the dynamic linker and overwrite it. 2344 */ 2345 saved_msg = errmsg_save(); 2346 do { 2347 STAILQ_FOREACH(elm, list, link) { 2348 if (root != NULL && (elm->obj->refcount != 1 || 2349 objlist_find(&root->dagmembers, elm->obj) == NULL)) 2350 continue; 2351 /* Remove object from fini list to prevent recursive invocation. */ 2352 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2353 /* 2354 * XXX: If a dlopen() call references an object while the 2355 * fini function is in progress, we might end up trying to 2356 * unload the referenced object in dlclose() or the object 2357 * won't be unloaded although its fini function has been 2358 * called. 2359 */ 2360 lock_release(rtld_bind_lock, lockstate); 2361 2362 /* 2363 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. 2364 * When this happens, DT_FINI_ARRAY is processed first. 2365 */ 2366 fini_addr = (Elf_Addr *)elm->obj->fini_array; 2367 if (fini_addr != NULL && elm->obj->fini_array_num > 0) { 2368 for (index = elm->obj->fini_array_num - 1; index >= 0; 2369 index--) { 2370 if (fini_addr[index] != 0 && fini_addr[index] != 1) { 2371 dbg("calling fini function for %s at %p", 2372 elm->obj->path, (void *)fini_addr[index]); 2373 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, 2374 (void *)fini_addr[index], 0, 0, elm->obj->path); 2375 call_initfini_pointer(elm->obj, fini_addr[index]); 2376 } 2377 } 2378 } 2379 if (elm->obj->fini != (Elf_Addr)NULL) { 2380 dbg("calling fini function for %s at %p", elm->obj->path, 2381 (void *)elm->obj->fini); 2382 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 2383 0, 0, elm->obj->path); 2384 call_initfini_pointer(elm->obj, elm->obj->fini); 2385 } 2386 wlock_acquire(rtld_bind_lock, lockstate); 2387 /* No need to free anything if process is going down. */ 2388 if (root != NULL) 2389 free(elm); 2390 /* 2391 * We must restart the list traversal after every fini call 2392 * because a dlclose() call from the fini function or from 2393 * another thread might have modified the reference counts. 2394 */ 2395 break; 2396 } 2397 } while (elm != NULL); 2398 errmsg_restore(saved_msg); 2399 } 2400 2401 /* 2402 * Call the initialization functions for each of the objects in 2403 * "list". All of the objects are expected to have non-NULL init 2404 * functions. 2405 */ 2406 static void 2407 objlist_call_init(Objlist *list, RtldLockState *lockstate) 2408 { 2409 Objlist_Entry *elm; 2410 Obj_Entry *obj; 2411 char *saved_msg; 2412 Elf_Addr *init_addr; 2413 int index; 2414 2415 /* 2416 * Clean init_scanned flag so that objects can be rechecked and 2417 * possibly initialized earlier if any of vectors called below 2418 * cause the change by using dlopen. 2419 */ 2420 for (obj = obj_list; obj != NULL; obj = obj->next) 2421 obj->init_scanned = false; 2422 2423 /* 2424 * Preserve the current error message since an init function might 2425 * call into the dynamic linker and overwrite it. 2426 */ 2427 saved_msg = errmsg_save(); 2428 STAILQ_FOREACH(elm, list, link) { 2429 if (elm->obj->init_done) /* Initialized early. */ 2430 continue; 2431 /* 2432 * Race: other thread might try to use this object before current 2433 * one completes the initilization. Not much can be done here 2434 * without better locking. 2435 */ 2436 elm->obj->init_done = true; 2437 lock_release(rtld_bind_lock, lockstate); 2438 2439 /* 2440 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. 2441 * When this happens, DT_INIT is processed first. 2442 */ 2443 if (elm->obj->init != (Elf_Addr)NULL) { 2444 dbg("calling init function for %s at %p", elm->obj->path, 2445 (void *)elm->obj->init); 2446 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 2447 0, 0, elm->obj->path); 2448 call_initfini_pointer(elm->obj, elm->obj->init); 2449 } 2450 init_addr = (Elf_Addr *)elm->obj->init_array; 2451 if (init_addr != NULL) { 2452 for (index = 0; index < elm->obj->init_array_num; index++) { 2453 if (init_addr[index] != 0 && init_addr[index] != 1) { 2454 dbg("calling init function for %s at %p", elm->obj->path, 2455 (void *)init_addr[index]); 2456 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, 2457 (void *)init_addr[index], 0, 0, elm->obj->path); 2458 call_init_pointer(elm->obj, init_addr[index]); 2459 } 2460 } 2461 } 2462 wlock_acquire(rtld_bind_lock, lockstate); 2463 } 2464 errmsg_restore(saved_msg); 2465 } 2466 2467 static void 2468 objlist_clear(Objlist *list) 2469 { 2470 Objlist_Entry *elm; 2471 2472 while (!STAILQ_EMPTY(list)) { 2473 elm = STAILQ_FIRST(list); 2474 STAILQ_REMOVE_HEAD(list, link); 2475 free(elm); 2476 } 2477 } 2478 2479 static Objlist_Entry * 2480 objlist_find(Objlist *list, const Obj_Entry *obj) 2481 { 2482 Objlist_Entry *elm; 2483 2484 STAILQ_FOREACH(elm, list, link) 2485 if (elm->obj == obj) 2486 return elm; 2487 return NULL; 2488 } 2489 2490 static void 2491 objlist_init(Objlist *list) 2492 { 2493 STAILQ_INIT(list); 2494 } 2495 2496 static void 2497 objlist_push_head(Objlist *list, Obj_Entry *obj) 2498 { 2499 Objlist_Entry *elm; 2500 2501 elm = NEW(Objlist_Entry); 2502 elm->obj = obj; 2503 STAILQ_INSERT_HEAD(list, elm, link); 2504 } 2505 2506 static void 2507 objlist_push_tail(Objlist *list, Obj_Entry *obj) 2508 { 2509 Objlist_Entry *elm; 2510 2511 elm = NEW(Objlist_Entry); 2512 elm->obj = obj; 2513 STAILQ_INSERT_TAIL(list, elm, link); 2514 } 2515 2516 static void 2517 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) 2518 { 2519 Objlist_Entry *elm, *listelm; 2520 2521 STAILQ_FOREACH(listelm, list, link) { 2522 if (listelm->obj == listobj) 2523 break; 2524 } 2525 elm = NEW(Objlist_Entry); 2526 elm->obj = obj; 2527 if (listelm != NULL) 2528 STAILQ_INSERT_AFTER(list, listelm, elm, link); 2529 else 2530 STAILQ_INSERT_TAIL(list, elm, link); 2531 } 2532 2533 static void 2534 objlist_remove(Objlist *list, Obj_Entry *obj) 2535 { 2536 Objlist_Entry *elm; 2537 2538 if ((elm = objlist_find(list, obj)) != NULL) { 2539 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2540 free(elm); 2541 } 2542 } 2543 2544 /* 2545 * Relocate dag rooted in the specified object. 2546 * Returns 0 on success, or -1 on failure. 2547 */ 2548 2549 static int 2550 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, 2551 int flags, RtldLockState *lockstate) 2552 { 2553 Objlist_Entry *elm; 2554 int error; 2555 2556 error = 0; 2557 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2558 error = relocate_object(elm->obj, bind_now, rtldobj, flags, 2559 lockstate); 2560 if (error == -1) 2561 break; 2562 } 2563 return (error); 2564 } 2565 2566 /* 2567 * Relocate single object. 2568 * Returns 0 on success, or -1 on failure. 2569 */ 2570 static int 2571 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 2572 int flags, RtldLockState *lockstate) 2573 { 2574 2575 if (obj->relocated) 2576 return (0); 2577 obj->relocated = true; 2578 if (obj != rtldobj) 2579 dbg("relocating \"%s\"", obj->path); 2580 2581 if (obj->symtab == NULL || obj->strtab == NULL || 2582 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) { 2583 _rtld_error("%s: Shared object has no run-time symbol table", 2584 obj->path); 2585 return (-1); 2586 } 2587 2588 if (obj->textrel) { 2589 /* There are relocations to the write-protected text segment. */ 2590 if (mprotect(obj->mapbase, obj->textsize, 2591 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) { 2592 _rtld_error("%s: Cannot write-enable text segment: %s", 2593 obj->path, rtld_strerror(errno)); 2594 return (-1); 2595 } 2596 } 2597 2598 /* Process the non-PLT non-IFUNC relocations. */ 2599 if (reloc_non_plt(obj, rtldobj, flags, lockstate)) 2600 return (-1); 2601 2602 if (obj->textrel) { /* Re-protected the text segment. */ 2603 if (mprotect(obj->mapbase, obj->textsize, 2604 PROT_READ|PROT_EXEC) == -1) { 2605 _rtld_error("%s: Cannot write-protect text segment: %s", 2606 obj->path, rtld_strerror(errno)); 2607 return (-1); 2608 } 2609 } 2610 2611 /* Set the special PLT or GOT entries. */ 2612 init_pltgot(obj); 2613 2614 /* Process the PLT relocations. */ 2615 if (reloc_plt(obj) == -1) 2616 return (-1); 2617 /* Relocate the jump slots if we are doing immediate binding. */ 2618 if (obj->bind_now || bind_now) 2619 if (reloc_jmpslots(obj, flags, lockstate) == -1) 2620 return (-1); 2621 2622 /* 2623 * Process the non-PLT IFUNC relocations. The relocations are 2624 * processed in two phases, because IFUNC resolvers may 2625 * reference other symbols, which must be readily processed 2626 * before resolvers are called. 2627 */ 2628 if (obj->non_plt_gnu_ifunc && 2629 reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate)) 2630 return (-1); 2631 2632 if (obj->relro_size > 0) { 2633 if (mprotect(obj->relro_page, obj->relro_size, 2634 PROT_READ) == -1) { 2635 _rtld_error("%s: Cannot enforce relro protection: %s", 2636 obj->path, rtld_strerror(errno)); 2637 return (-1); 2638 } 2639 } 2640 2641 /* 2642 * Set up the magic number and version in the Obj_Entry. These 2643 * were checked in the crt1.o from the original ElfKit, so we 2644 * set them for backward compatibility. 2645 */ 2646 obj->magic = RTLD_MAGIC; 2647 obj->version = RTLD_VERSION; 2648 2649 return (0); 2650 } 2651 2652 /* 2653 * Relocate newly-loaded shared objects. The argument is a pointer to 2654 * the Obj_Entry for the first such object. All objects from the first 2655 * to the end of the list of objects are relocated. Returns 0 on success, 2656 * or -1 on failure. 2657 */ 2658 static int 2659 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, 2660 int flags, RtldLockState *lockstate) 2661 { 2662 Obj_Entry *obj; 2663 int error; 2664 2665 for (error = 0, obj = first; obj != NULL; obj = obj->next) { 2666 error = relocate_object(obj, bind_now, rtldobj, flags, 2667 lockstate); 2668 if (error == -1) 2669 break; 2670 } 2671 return (error); 2672 } 2673 2674 /* 2675 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots 2676 * referencing STT_GNU_IFUNC symbols is postponed till the other 2677 * relocations are done. The indirect functions specified as 2678 * ifunc are allowed to call other symbols, so we need to have 2679 * objects relocated before asking for resolution from indirects. 2680 * 2681 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, 2682 * instead of the usual lazy handling of PLT slots. It is 2683 * consistent with how GNU does it. 2684 */ 2685 static int 2686 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, 2687 RtldLockState *lockstate) 2688 { 2689 if (obj->irelative && reloc_iresolve(obj, lockstate) == -1) 2690 return (-1); 2691 if ((obj->bind_now || bind_now) && obj->gnu_ifunc && 2692 reloc_gnu_ifunc(obj, flags, lockstate) == -1) 2693 return (-1); 2694 return (0); 2695 } 2696 2697 static int 2698 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, 2699 RtldLockState *lockstate) 2700 { 2701 Obj_Entry *obj; 2702 2703 for (obj = first; obj != NULL; obj = obj->next) { 2704 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1) 2705 return (-1); 2706 } 2707 return (0); 2708 } 2709 2710 static int 2711 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, 2712 RtldLockState *lockstate) 2713 { 2714 Objlist_Entry *elm; 2715 2716 STAILQ_FOREACH(elm, list, link) { 2717 if (resolve_object_ifunc(elm->obj, bind_now, flags, 2718 lockstate) == -1) 2719 return (-1); 2720 } 2721 return (0); 2722 } 2723 2724 /* 2725 * Cleanup procedure. It will be called (by the atexit mechanism) just 2726 * before the process exits. 2727 */ 2728 static void 2729 rtld_exit(void) 2730 { 2731 RtldLockState lockstate; 2732 2733 wlock_acquire(rtld_bind_lock, &lockstate); 2734 dbg("rtld_exit()"); 2735 objlist_call_fini(&list_fini, NULL, &lockstate); 2736 /* No need to remove the items from the list, since we are exiting. */ 2737 if (!libmap_disable) 2738 lm_fini(); 2739 lock_release(rtld_bind_lock, &lockstate); 2740 } 2741 2742 /* 2743 * Iterate over a search path, translate each element, and invoke the 2744 * callback on the result. 2745 */ 2746 static void * 2747 path_enumerate(const char *path, path_enum_proc callback, void *arg) 2748 { 2749 const char *trans; 2750 if (path == NULL) 2751 return (NULL); 2752 2753 path += strspn(path, ":;"); 2754 while (*path != '\0') { 2755 size_t len; 2756 char *res; 2757 2758 len = strcspn(path, ":;"); 2759 trans = lm_findn(NULL, path, len); 2760 if (trans) 2761 res = callback(trans, strlen(trans), arg); 2762 else 2763 res = callback(path, len, arg); 2764 2765 if (res != NULL) 2766 return (res); 2767 2768 path += len; 2769 path += strspn(path, ":;"); 2770 } 2771 2772 return (NULL); 2773 } 2774 2775 struct try_library_args { 2776 const char *name; 2777 size_t namelen; 2778 char *buffer; 2779 size_t buflen; 2780 }; 2781 2782 static void * 2783 try_library_path(const char *dir, size_t dirlen, void *param) 2784 { 2785 struct try_library_args *arg; 2786 2787 arg = param; 2788 if (*dir == '/' || trust) { 2789 char *pathname; 2790 2791 if (dirlen + 1 + arg->namelen + 1 > arg->buflen) 2792 return (NULL); 2793 2794 pathname = arg->buffer; 2795 strncpy(pathname, dir, dirlen); 2796 pathname[dirlen] = '/'; 2797 strcpy(pathname + dirlen + 1, arg->name); 2798 2799 dbg(" Trying \"%s\"", pathname); 2800 if (access(pathname, F_OK) == 0) { /* We found it */ 2801 pathname = xmalloc(dirlen + 1 + arg->namelen + 1); 2802 strcpy(pathname, arg->buffer); 2803 return (pathname); 2804 } 2805 } 2806 return (NULL); 2807 } 2808 2809 static char * 2810 search_library_path(const char *name, const char *path) 2811 { 2812 char *p; 2813 struct try_library_args arg; 2814 2815 if (path == NULL) 2816 return NULL; 2817 2818 arg.name = name; 2819 arg.namelen = strlen(name); 2820 arg.buffer = xmalloc(PATH_MAX); 2821 arg.buflen = PATH_MAX; 2822 2823 p = path_enumerate(path, try_library_path, &arg); 2824 2825 free(arg.buffer); 2826 2827 return (p); 2828 } 2829 2830 2831 /* 2832 * Finds the library with the given name using the directory descriptors 2833 * listed in the LD_LIBRARY_PATH_FDS environment variable. 2834 * 2835 * Returns a freshly-opened close-on-exec file descriptor for the library, 2836 * or -1 if the library cannot be found. 2837 */ 2838 static char * 2839 search_library_pathfds(const char *name, const char *path, int *fdp) 2840 { 2841 char *envcopy, *fdstr, *found, *last_token; 2842 size_t len; 2843 int dirfd, fd; 2844 2845 dbg("%s('%s', '%s', fdp)", __func__, name, path); 2846 2847 /* Don't load from user-specified libdirs into setuid binaries. */ 2848 if (!trust) 2849 return (NULL); 2850 2851 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */ 2852 if (path == NULL) 2853 return (NULL); 2854 2855 /* LD_LIBRARY_PATH_FDS only works with relative paths. */ 2856 if (name[0] == '/') { 2857 dbg("Absolute path (%s) passed to %s", name, __func__); 2858 return (NULL); 2859 } 2860 2861 /* 2862 * Use strtok_r() to walk the FD:FD:FD list. This requires a local 2863 * copy of the path, as strtok_r rewrites separator tokens 2864 * with '\0'. 2865 */ 2866 found = NULL; 2867 envcopy = xstrdup(path); 2868 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL; 2869 fdstr = strtok_r(NULL, ":", &last_token)) { 2870 dirfd = parse_libdir(fdstr); 2871 if (dirfd < 0) 2872 break; 2873 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY); 2874 if (fd >= 0) { 2875 *fdp = fd; 2876 len = strlen(fdstr) + strlen(name) + 3; 2877 found = xmalloc(len); 2878 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) { 2879 _rtld_error("error generating '%d/%s'", 2880 dirfd, name); 2881 rtld_die(); 2882 } 2883 dbg("open('%s') => %d", found, fd); 2884 break; 2885 } 2886 } 2887 free(envcopy); 2888 2889 return (found); 2890 } 2891 2892 2893 int 2894 dlclose(void *handle) 2895 { 2896 Obj_Entry *root; 2897 RtldLockState lockstate; 2898 2899 wlock_acquire(rtld_bind_lock, &lockstate); 2900 root = dlcheck(handle); 2901 if (root == NULL) { 2902 lock_release(rtld_bind_lock, &lockstate); 2903 return -1; 2904 } 2905 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, 2906 root->path); 2907 2908 /* Unreference the object and its dependencies. */ 2909 root->dl_refcount--; 2910 2911 if (root->refcount == 1) { 2912 /* 2913 * The object will be no longer referenced, so we must unload it. 2914 * First, call the fini functions. 2915 */ 2916 objlist_call_fini(&list_fini, root, &lockstate); 2917 2918 unref_dag(root); 2919 2920 /* Finish cleaning up the newly-unreferenced objects. */ 2921 GDB_STATE(RT_DELETE,&root->linkmap); 2922 unload_object(root); 2923 GDB_STATE(RT_CONSISTENT,NULL); 2924 } else 2925 unref_dag(root); 2926 2927 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); 2928 lock_release(rtld_bind_lock, &lockstate); 2929 return 0; 2930 } 2931 2932 char * 2933 dlerror(void) 2934 { 2935 char *msg = error_message; 2936 error_message = NULL; 2937 return msg; 2938 } 2939 2940 /* 2941 * This function is deprecated and has no effect. 2942 */ 2943 void 2944 dllockinit(void *context, 2945 void *(*lock_create)(void *context), 2946 void (*rlock_acquire)(void *lock), 2947 void (*wlock_acquire)(void *lock), 2948 void (*lock_release)(void *lock), 2949 void (*lock_destroy)(void *lock), 2950 void (*context_destroy)(void *context)) 2951 { 2952 static void *cur_context; 2953 static void (*cur_context_destroy)(void *); 2954 2955 /* Just destroy the context from the previous call, if necessary. */ 2956 if (cur_context_destroy != NULL) 2957 cur_context_destroy(cur_context); 2958 cur_context = context; 2959 cur_context_destroy = context_destroy; 2960 } 2961 2962 void * 2963 dlopen(const char *name, int mode) 2964 { 2965 2966 return (rtld_dlopen(name, -1, mode)); 2967 } 2968 2969 void * 2970 fdlopen(int fd, int mode) 2971 { 2972 2973 return (rtld_dlopen(NULL, fd, mode)); 2974 } 2975 2976 static void * 2977 rtld_dlopen(const char *name, int fd, int mode) 2978 { 2979 RtldLockState lockstate; 2980 int lo_flags; 2981 2982 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); 2983 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 2984 if (ld_tracing != NULL) { 2985 rlock_acquire(rtld_bind_lock, &lockstate); 2986 if (sigsetjmp(lockstate.env, 0) != 0) 2987 lock_upgrade(rtld_bind_lock, &lockstate); 2988 environ = (char **)*get_program_var_addr("environ", &lockstate); 2989 lock_release(rtld_bind_lock, &lockstate); 2990 } 2991 lo_flags = RTLD_LO_DLOPEN; 2992 if (mode & RTLD_NODELETE) 2993 lo_flags |= RTLD_LO_NODELETE; 2994 if (mode & RTLD_NOLOAD) 2995 lo_flags |= RTLD_LO_NOLOAD; 2996 if (ld_tracing != NULL) 2997 lo_flags |= RTLD_LO_TRACE; 2998 2999 return (dlopen_object(name, fd, obj_main, lo_flags, 3000 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); 3001 } 3002 3003 static void 3004 dlopen_cleanup(Obj_Entry *obj) 3005 { 3006 3007 obj->dl_refcount--; 3008 unref_dag(obj); 3009 if (obj->refcount == 0) 3010 unload_object(obj); 3011 } 3012 3013 static Obj_Entry * 3014 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, 3015 int mode, RtldLockState *lockstate) 3016 { 3017 Obj_Entry **old_obj_tail; 3018 Obj_Entry *obj; 3019 Objlist initlist; 3020 RtldLockState mlockstate; 3021 int result; 3022 3023 objlist_init(&initlist); 3024 3025 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { 3026 wlock_acquire(rtld_bind_lock, &mlockstate); 3027 lockstate = &mlockstate; 3028 } 3029 GDB_STATE(RT_ADD,NULL); 3030 3031 old_obj_tail = obj_tail; 3032 obj = NULL; 3033 if (name == NULL && fd == -1) { 3034 obj = obj_main; 3035 obj->refcount++; 3036 } else { 3037 obj = load_object(name, fd, refobj, lo_flags); 3038 } 3039 3040 if (obj) { 3041 obj->dl_refcount++; 3042 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 3043 objlist_push_tail(&list_global, obj); 3044 if (*old_obj_tail != NULL) { /* We loaded something new. */ 3045 assert(*old_obj_tail == obj); 3046 result = load_needed_objects(obj, 3047 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY)); 3048 init_dag(obj); 3049 ref_dag(obj); 3050 if (result != -1) 3051 result = rtld_verify_versions(&obj->dagmembers); 3052 if (result != -1 && ld_tracing) 3053 goto trace; 3054 if (result == -1 || relocate_object_dag(obj, 3055 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, 3056 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3057 lockstate) == -1) { 3058 dlopen_cleanup(obj); 3059 obj = NULL; 3060 } else if (lo_flags & RTLD_LO_EARLY) { 3061 /* 3062 * Do not call the init functions for early loaded 3063 * filtees. The image is still not initialized enough 3064 * for them to work. 3065 * 3066 * Our object is found by the global object list and 3067 * will be ordered among all init calls done right 3068 * before transferring control to main. 3069 */ 3070 } else { 3071 /* Make list of init functions to call. */ 3072 initlist_add_objects(obj, &obj->next, &initlist); 3073 } 3074 /* 3075 * Process all no_delete or global objects here, given 3076 * them own DAGs to prevent their dependencies from being 3077 * unloaded. This has to be done after we have loaded all 3078 * of the dependencies, so that we do not miss any. 3079 */ 3080 if (obj != NULL) 3081 process_z(obj); 3082 } else { 3083 /* 3084 * Bump the reference counts for objects on this DAG. If 3085 * this is the first dlopen() call for the object that was 3086 * already loaded as a dependency, initialize the dag 3087 * starting at it. 3088 */ 3089 init_dag(obj); 3090 ref_dag(obj); 3091 3092 if ((lo_flags & RTLD_LO_TRACE) != 0) 3093 goto trace; 3094 } 3095 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || 3096 obj->z_nodelete) && !obj->ref_nodel) { 3097 dbg("obj %s nodelete", obj->path); 3098 ref_dag(obj); 3099 obj->z_nodelete = obj->ref_nodel = true; 3100 } 3101 } 3102 3103 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, 3104 name); 3105 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 3106 3107 if (!(lo_flags & RTLD_LO_EARLY)) { 3108 map_stacks_exec(lockstate); 3109 } 3110 3111 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, 3112 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3113 lockstate) == -1) { 3114 objlist_clear(&initlist); 3115 dlopen_cleanup(obj); 3116 if (lockstate == &mlockstate) 3117 lock_release(rtld_bind_lock, lockstate); 3118 return (NULL); 3119 } 3120 3121 if (!(lo_flags & RTLD_LO_EARLY)) { 3122 /* Call the init functions. */ 3123 objlist_call_init(&initlist, lockstate); 3124 } 3125 objlist_clear(&initlist); 3126 if (lockstate == &mlockstate) 3127 lock_release(rtld_bind_lock, lockstate); 3128 return obj; 3129 trace: 3130 trace_loaded_objects(obj); 3131 if (lockstate == &mlockstate) 3132 lock_release(rtld_bind_lock, lockstate); 3133 exit(0); 3134 } 3135 3136 static void * 3137 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, 3138 int flags) 3139 { 3140 DoneList donelist; 3141 const Obj_Entry *obj, *defobj; 3142 const Elf_Sym *def; 3143 SymLook req; 3144 RtldLockState lockstate; 3145 tls_index ti; 3146 void *sym; 3147 int res; 3148 3149 def = NULL; 3150 defobj = NULL; 3151 symlook_init(&req, name); 3152 req.ventry = ve; 3153 req.flags = flags | SYMLOOK_IN_PLT; 3154 req.lockstate = &lockstate; 3155 3156 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); 3157 rlock_acquire(rtld_bind_lock, &lockstate); 3158 if (sigsetjmp(lockstate.env, 0) != 0) 3159 lock_upgrade(rtld_bind_lock, &lockstate); 3160 if (handle == NULL || handle == RTLD_NEXT || 3161 handle == RTLD_DEFAULT || handle == RTLD_SELF) { 3162 3163 if ((obj = obj_from_addr(retaddr)) == NULL) { 3164 _rtld_error("Cannot determine caller's shared object"); 3165 lock_release(rtld_bind_lock, &lockstate); 3166 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3167 return NULL; 3168 } 3169 if (handle == NULL) { /* Just the caller's shared object. */ 3170 res = symlook_obj(&req, obj); 3171 if (res == 0) { 3172 def = req.sym_out; 3173 defobj = req.defobj_out; 3174 } 3175 } else if (handle == RTLD_NEXT || /* Objects after caller's */ 3176 handle == RTLD_SELF) { /* ... caller included */ 3177 if (handle == RTLD_NEXT) 3178 obj = obj->next; 3179 for (; obj != NULL; obj = obj->next) { 3180 res = symlook_obj(&req, obj); 3181 if (res == 0) { 3182 if (def == NULL || 3183 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) { 3184 def = req.sym_out; 3185 defobj = req.defobj_out; 3186 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3187 break; 3188 } 3189 } 3190 } 3191 /* 3192 * Search the dynamic linker itself, and possibly resolve the 3193 * symbol from there. This is how the application links to 3194 * dynamic linker services such as dlopen. 3195 */ 3196 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3197 res = symlook_obj(&req, &obj_rtld); 3198 if (res == 0) { 3199 def = req.sym_out; 3200 defobj = req.defobj_out; 3201 } 3202 } 3203 } else { 3204 assert(handle == RTLD_DEFAULT); 3205 res = symlook_default(&req, obj); 3206 if (res == 0) { 3207 defobj = req.defobj_out; 3208 def = req.sym_out; 3209 } 3210 } 3211 } else { 3212 if ((obj = dlcheck(handle)) == NULL) { 3213 lock_release(rtld_bind_lock, &lockstate); 3214 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3215 return NULL; 3216 } 3217 3218 donelist_init(&donelist); 3219 if (obj->mainprog) { 3220 /* Handle obtained by dlopen(NULL, ...) implies global scope. */ 3221 res = symlook_global(&req, &donelist); 3222 if (res == 0) { 3223 def = req.sym_out; 3224 defobj = req.defobj_out; 3225 } 3226 /* 3227 * Search the dynamic linker itself, and possibly resolve the 3228 * symbol from there. This is how the application links to 3229 * dynamic linker services such as dlopen. 3230 */ 3231 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3232 res = symlook_obj(&req, &obj_rtld); 3233 if (res == 0) { 3234 def = req.sym_out; 3235 defobj = req.defobj_out; 3236 } 3237 } 3238 } 3239 else { 3240 /* Search the whole DAG rooted at the given object. */ 3241 res = symlook_list(&req, &obj->dagmembers, &donelist); 3242 if (res == 0) { 3243 def = req.sym_out; 3244 defobj = req.defobj_out; 3245 } 3246 } 3247 } 3248 3249 if (def != NULL) { 3250 lock_release(rtld_bind_lock, &lockstate); 3251 3252 /* 3253 * The value required by the caller is derived from the value 3254 * of the symbol. this is simply the relocated value of the 3255 * symbol. 3256 */ 3257 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 3258 sym = make_function_pointer(def, defobj); 3259 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 3260 sym = rtld_resolve_ifunc(defobj, def); 3261 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { 3262 ti.ti_module = defobj->tlsindex; 3263 ti.ti_offset = def->st_value; 3264 sym = __tls_get_addr(&ti); 3265 } else 3266 sym = defobj->relocbase + def->st_value; 3267 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); 3268 return (sym); 3269 } 3270 3271 _rtld_error("Undefined symbol \"%s\"", name); 3272 lock_release(rtld_bind_lock, &lockstate); 3273 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3274 return NULL; 3275 } 3276 3277 void * 3278 dlsym(void *handle, const char *name) 3279 { 3280 return do_dlsym(handle, name, __builtin_return_address(0), NULL, 3281 SYMLOOK_DLSYM); 3282 } 3283 3284 dlfunc_t 3285 dlfunc(void *handle, const char *name) 3286 { 3287 union { 3288 void *d; 3289 dlfunc_t f; 3290 } rv; 3291 3292 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, 3293 SYMLOOK_DLSYM); 3294 return (rv.f); 3295 } 3296 3297 void * 3298 dlvsym(void *handle, const char *name, const char *version) 3299 { 3300 Ver_Entry ventry; 3301 3302 ventry.name = version; 3303 ventry.file = NULL; 3304 ventry.hash = elf_hash(version); 3305 ventry.flags= 0; 3306 return do_dlsym(handle, name, __builtin_return_address(0), &ventry, 3307 SYMLOOK_DLSYM); 3308 } 3309 3310 int 3311 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) 3312 { 3313 const Obj_Entry *obj; 3314 RtldLockState lockstate; 3315 3316 rlock_acquire(rtld_bind_lock, &lockstate); 3317 obj = obj_from_addr(addr); 3318 if (obj == NULL) { 3319 _rtld_error("No shared object contains address"); 3320 lock_release(rtld_bind_lock, &lockstate); 3321 return (0); 3322 } 3323 rtld_fill_dl_phdr_info(obj, phdr_info); 3324 lock_release(rtld_bind_lock, &lockstate); 3325 return (1); 3326 } 3327 3328 int 3329 dladdr(const void *addr, Dl_info *info) 3330 { 3331 const Obj_Entry *obj; 3332 const Elf_Sym *def; 3333 void *symbol_addr; 3334 unsigned long symoffset; 3335 RtldLockState lockstate; 3336 3337 rlock_acquire(rtld_bind_lock, &lockstate); 3338 obj = obj_from_addr(addr); 3339 if (obj == NULL) { 3340 _rtld_error("No shared object contains address"); 3341 lock_release(rtld_bind_lock, &lockstate); 3342 return 0; 3343 } 3344 info->dli_fname = obj->path; 3345 info->dli_fbase = obj->mapbase; 3346 info->dli_saddr = (void *)0; 3347 info->dli_sname = NULL; 3348 3349 /* 3350 * Walk the symbol list looking for the symbol whose address is 3351 * closest to the address sent in. 3352 */ 3353 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { 3354 def = obj->symtab + symoffset; 3355 3356 /* 3357 * For skip the symbol if st_shndx is either SHN_UNDEF or 3358 * SHN_COMMON. 3359 */ 3360 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 3361 continue; 3362 3363 /* 3364 * If the symbol is greater than the specified address, or if it 3365 * is further away from addr than the current nearest symbol, 3366 * then reject it. 3367 */ 3368 symbol_addr = obj->relocbase + def->st_value; 3369 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 3370 continue; 3371 3372 /* Update our idea of the nearest symbol. */ 3373 info->dli_sname = obj->strtab + def->st_name; 3374 info->dli_saddr = symbol_addr; 3375 3376 /* Exact match? */ 3377 if (info->dli_saddr == addr) 3378 break; 3379 } 3380 lock_release(rtld_bind_lock, &lockstate); 3381 return 1; 3382 } 3383 3384 int 3385 dlinfo(void *handle, int request, void *p) 3386 { 3387 const Obj_Entry *obj; 3388 RtldLockState lockstate; 3389 int error; 3390 3391 rlock_acquire(rtld_bind_lock, &lockstate); 3392 3393 if (handle == NULL || handle == RTLD_SELF) { 3394 void *retaddr; 3395 3396 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 3397 if ((obj = obj_from_addr(retaddr)) == NULL) 3398 _rtld_error("Cannot determine caller's shared object"); 3399 } else 3400 obj = dlcheck(handle); 3401 3402 if (obj == NULL) { 3403 lock_release(rtld_bind_lock, &lockstate); 3404 return (-1); 3405 } 3406 3407 error = 0; 3408 switch (request) { 3409 case RTLD_DI_LINKMAP: 3410 *((struct link_map const **)p) = &obj->linkmap; 3411 break; 3412 case RTLD_DI_ORIGIN: 3413 error = rtld_dirname(obj->path, p); 3414 break; 3415 3416 case RTLD_DI_SERINFOSIZE: 3417 case RTLD_DI_SERINFO: 3418 error = do_search_info(obj, request, (struct dl_serinfo *)p); 3419 break; 3420 3421 default: 3422 _rtld_error("Invalid request %d passed to dlinfo()", request); 3423 error = -1; 3424 } 3425 3426 lock_release(rtld_bind_lock, &lockstate); 3427 3428 return (error); 3429 } 3430 3431 static void 3432 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) 3433 { 3434 3435 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; 3436 phdr_info->dlpi_name = obj->path; 3437 phdr_info->dlpi_phdr = obj->phdr; 3438 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); 3439 phdr_info->dlpi_tls_modid = obj->tlsindex; 3440 phdr_info->dlpi_tls_data = obj->tlsinit; 3441 phdr_info->dlpi_adds = obj_loads; 3442 phdr_info->dlpi_subs = obj_loads - obj_count; 3443 } 3444 3445 int 3446 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) 3447 { 3448 struct dl_phdr_info phdr_info; 3449 const Obj_Entry *obj; 3450 RtldLockState bind_lockstate, phdr_lockstate; 3451 int error; 3452 3453 wlock_acquire(rtld_phdr_lock, &phdr_lockstate); 3454 rlock_acquire(rtld_bind_lock, &bind_lockstate); 3455 3456 error = 0; 3457 3458 for (obj = obj_list; obj != NULL; obj = obj->next) { 3459 rtld_fill_dl_phdr_info(obj, &phdr_info); 3460 if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0) 3461 break; 3462 3463 } 3464 if (error == 0) { 3465 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); 3466 error = callback(&phdr_info, sizeof(phdr_info), param); 3467 } 3468 3469 lock_release(rtld_bind_lock, &bind_lockstate); 3470 lock_release(rtld_phdr_lock, &phdr_lockstate); 3471 3472 return (error); 3473 } 3474 3475 static void * 3476 fill_search_info(const char *dir, size_t dirlen, void *param) 3477 { 3478 struct fill_search_info_args *arg; 3479 3480 arg = param; 3481 3482 if (arg->request == RTLD_DI_SERINFOSIZE) { 3483 arg->serinfo->dls_cnt ++; 3484 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; 3485 } else { 3486 struct dl_serpath *s_entry; 3487 3488 s_entry = arg->serpath; 3489 s_entry->dls_name = arg->strspace; 3490 s_entry->dls_flags = arg->flags; 3491 3492 strncpy(arg->strspace, dir, dirlen); 3493 arg->strspace[dirlen] = '\0'; 3494 3495 arg->strspace += dirlen + 1; 3496 arg->serpath++; 3497 } 3498 3499 return (NULL); 3500 } 3501 3502 static int 3503 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) 3504 { 3505 struct dl_serinfo _info; 3506 struct fill_search_info_args args; 3507 3508 args.request = RTLD_DI_SERINFOSIZE; 3509 args.serinfo = &_info; 3510 3511 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 3512 _info.dls_cnt = 0; 3513 3514 path_enumerate(obj->rpath, fill_search_info, &args); 3515 path_enumerate(ld_library_path, fill_search_info, &args); 3516 path_enumerate(obj->runpath, fill_search_info, &args); 3517 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args); 3518 if (!obj->z_nodeflib) 3519 path_enumerate(ld_standard_library_path, fill_search_info, &args); 3520 3521 3522 if (request == RTLD_DI_SERINFOSIZE) { 3523 info->dls_size = _info.dls_size; 3524 info->dls_cnt = _info.dls_cnt; 3525 return (0); 3526 } 3527 3528 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { 3529 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); 3530 return (-1); 3531 } 3532 3533 args.request = RTLD_DI_SERINFO; 3534 args.serinfo = info; 3535 args.serpath = &info->dls_serpath[0]; 3536 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; 3537 3538 args.flags = LA_SER_RUNPATH; 3539 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL) 3540 return (-1); 3541 3542 args.flags = LA_SER_LIBPATH; 3543 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL) 3544 return (-1); 3545 3546 args.flags = LA_SER_RUNPATH; 3547 if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL) 3548 return (-1); 3549 3550 args.flags = LA_SER_CONFIG; 3551 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args) 3552 != NULL) 3553 return (-1); 3554 3555 args.flags = LA_SER_DEFAULT; 3556 if (!obj->z_nodeflib && 3557 path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL) 3558 return (-1); 3559 return (0); 3560 } 3561 3562 static int 3563 rtld_dirname(const char *path, char *bname) 3564 { 3565 const char *endp; 3566 3567 /* Empty or NULL string gets treated as "." */ 3568 if (path == NULL || *path == '\0') { 3569 bname[0] = '.'; 3570 bname[1] = '\0'; 3571 return (0); 3572 } 3573 3574 /* Strip trailing slashes */ 3575 endp = path + strlen(path) - 1; 3576 while (endp > path && *endp == '/') 3577 endp--; 3578 3579 /* Find the start of the dir */ 3580 while (endp > path && *endp != '/') 3581 endp--; 3582 3583 /* Either the dir is "/" or there are no slashes */ 3584 if (endp == path) { 3585 bname[0] = *endp == '/' ? '/' : '.'; 3586 bname[1] = '\0'; 3587 return (0); 3588 } else { 3589 do { 3590 endp--; 3591 } while (endp > path && *endp == '/'); 3592 } 3593 3594 if (endp - path + 2 > PATH_MAX) 3595 { 3596 _rtld_error("Filename is too long: %s", path); 3597 return(-1); 3598 } 3599 3600 strncpy(bname, path, endp - path + 1); 3601 bname[endp - path + 1] = '\0'; 3602 return (0); 3603 } 3604 3605 static int 3606 rtld_dirname_abs(const char *path, char *base) 3607 { 3608 char *last; 3609 3610 if (realpath(path, base) == NULL) 3611 return (-1); 3612 dbg("%s -> %s", path, base); 3613 last = strrchr(base, '/'); 3614 if (last == NULL) 3615 return (-1); 3616 if (last != base) 3617 *last = '\0'; 3618 return (0); 3619 } 3620 3621 static void 3622 linkmap_add(Obj_Entry *obj) 3623 { 3624 struct link_map *l = &obj->linkmap; 3625 struct link_map *prev; 3626 3627 obj->linkmap.l_name = obj->path; 3628 obj->linkmap.l_addr = obj->mapbase; 3629 obj->linkmap.l_ld = obj->dynamic; 3630 #ifdef __mips__ 3631 /* GDB needs load offset on MIPS to use the symbols */ 3632 obj->linkmap.l_offs = obj->relocbase; 3633 #endif 3634 3635 if (r_debug.r_map == NULL) { 3636 r_debug.r_map = l; 3637 return; 3638 } 3639 3640 /* 3641 * Scan to the end of the list, but not past the entry for the 3642 * dynamic linker, which we want to keep at the very end. 3643 */ 3644 for (prev = r_debug.r_map; 3645 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 3646 prev = prev->l_next) 3647 ; 3648 3649 /* Link in the new entry. */ 3650 l->l_prev = prev; 3651 l->l_next = prev->l_next; 3652 if (l->l_next != NULL) 3653 l->l_next->l_prev = l; 3654 prev->l_next = l; 3655 } 3656 3657 static void 3658 linkmap_delete(Obj_Entry *obj) 3659 { 3660 struct link_map *l = &obj->linkmap; 3661 3662 if (l->l_prev == NULL) { 3663 if ((r_debug.r_map = l->l_next) != NULL) 3664 l->l_next->l_prev = NULL; 3665 return; 3666 } 3667 3668 if ((l->l_prev->l_next = l->l_next) != NULL) 3669 l->l_next->l_prev = l->l_prev; 3670 } 3671 3672 /* 3673 * Function for the debugger to set a breakpoint on to gain control. 3674 * 3675 * The two parameters allow the debugger to easily find and determine 3676 * what the runtime loader is doing and to whom it is doing it. 3677 * 3678 * When the loadhook trap is hit (r_debug_state, set at program 3679 * initialization), the arguments can be found on the stack: 3680 * 3681 * +8 struct link_map *m 3682 * +4 struct r_debug *rd 3683 * +0 RetAddr 3684 */ 3685 void 3686 r_debug_state(struct r_debug* rd, struct link_map *m) 3687 { 3688 /* 3689 * The following is a hack to force the compiler to emit calls to 3690 * this function, even when optimizing. If the function is empty, 3691 * the compiler is not obliged to emit any code for calls to it, 3692 * even when marked __noinline. However, gdb depends on those 3693 * calls being made. 3694 */ 3695 __compiler_membar(); 3696 } 3697 3698 /* 3699 * A function called after init routines have completed. This can be used to 3700 * break before a program's entry routine is called, and can be used when 3701 * main is not available in the symbol table. 3702 */ 3703 void 3704 _r_debug_postinit(struct link_map *m) 3705 { 3706 3707 /* See r_debug_state(). */ 3708 __compiler_membar(); 3709 } 3710 3711 /* 3712 * Get address of the pointer variable in the main program. 3713 * Prefer non-weak symbol over the weak one. 3714 */ 3715 static const void ** 3716 get_program_var_addr(const char *name, RtldLockState *lockstate) 3717 { 3718 SymLook req; 3719 DoneList donelist; 3720 3721 symlook_init(&req, name); 3722 req.lockstate = lockstate; 3723 donelist_init(&donelist); 3724 if (symlook_global(&req, &donelist) != 0) 3725 return (NULL); 3726 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) 3727 return ((const void **)make_function_pointer(req.sym_out, 3728 req.defobj_out)); 3729 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) 3730 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); 3731 else 3732 return ((const void **)(req.defobj_out->relocbase + 3733 req.sym_out->st_value)); 3734 } 3735 3736 /* 3737 * Set a pointer variable in the main program to the given value. This 3738 * is used to set key variables such as "environ" before any of the 3739 * init functions are called. 3740 */ 3741 static void 3742 set_program_var(const char *name, const void *value) 3743 { 3744 const void **addr; 3745 3746 if ((addr = get_program_var_addr(name, NULL)) != NULL) { 3747 dbg("\"%s\": *%p <-- %p", name, addr, value); 3748 *addr = value; 3749 } 3750 } 3751 3752 /* 3753 * Search the global objects, including dependencies and main object, 3754 * for the given symbol. 3755 */ 3756 static int 3757 symlook_global(SymLook *req, DoneList *donelist) 3758 { 3759 SymLook req1; 3760 const Objlist_Entry *elm; 3761 int res; 3762 3763 symlook_init_from_req(&req1, req); 3764 3765 /* Search all objects loaded at program start up. */ 3766 if (req->defobj_out == NULL || 3767 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 3768 res = symlook_list(&req1, &list_main, donelist); 3769 if (res == 0 && (req->defobj_out == NULL || 3770 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 3771 req->sym_out = req1.sym_out; 3772 req->defobj_out = req1.defobj_out; 3773 assert(req->defobj_out != NULL); 3774 } 3775 } 3776 3777 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 3778 STAILQ_FOREACH(elm, &list_global, link) { 3779 if (req->defobj_out != NULL && 3780 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 3781 break; 3782 res = symlook_list(&req1, &elm->obj->dagmembers, donelist); 3783 if (res == 0 && (req->defobj_out == NULL || 3784 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 3785 req->sym_out = req1.sym_out; 3786 req->defobj_out = req1.defobj_out; 3787 assert(req->defobj_out != NULL); 3788 } 3789 } 3790 3791 return (req->sym_out != NULL ? 0 : ESRCH); 3792 } 3793 3794 /* 3795 * Given a symbol name in a referencing object, find the corresponding 3796 * definition of the symbol. Returns a pointer to the symbol, or NULL if 3797 * no definition was found. Returns a pointer to the Obj_Entry of the 3798 * defining object via the reference parameter DEFOBJ_OUT. 3799 */ 3800 static int 3801 symlook_default(SymLook *req, const Obj_Entry *refobj) 3802 { 3803 DoneList donelist; 3804 const Objlist_Entry *elm; 3805 SymLook req1; 3806 int res; 3807 3808 donelist_init(&donelist); 3809 symlook_init_from_req(&req1, req); 3810 3811 /* Look first in the referencing object if linked symbolically. */ 3812 if (refobj->symbolic && !donelist_check(&donelist, refobj)) { 3813 res = symlook_obj(&req1, refobj); 3814 if (res == 0) { 3815 req->sym_out = req1.sym_out; 3816 req->defobj_out = req1.defobj_out; 3817 assert(req->defobj_out != NULL); 3818 } 3819 } 3820 3821 symlook_global(req, &donelist); 3822 3823 /* Search all dlopened DAGs containing the referencing object. */ 3824 STAILQ_FOREACH(elm, &refobj->dldags, link) { 3825 if (req->sym_out != NULL && 3826 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 3827 break; 3828 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); 3829 if (res == 0 && (req->sym_out == NULL || 3830 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 3831 req->sym_out = req1.sym_out; 3832 req->defobj_out = req1.defobj_out; 3833 assert(req->defobj_out != NULL); 3834 } 3835 } 3836 3837 /* 3838 * Search the dynamic linker itself, and possibly resolve the 3839 * symbol from there. This is how the application links to 3840 * dynamic linker services such as dlopen. 3841 */ 3842 if (req->sym_out == NULL || 3843 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 3844 res = symlook_obj(&req1, &obj_rtld); 3845 if (res == 0) { 3846 req->sym_out = req1.sym_out; 3847 req->defobj_out = req1.defobj_out; 3848 assert(req->defobj_out != NULL); 3849 } 3850 } 3851 3852 return (req->sym_out != NULL ? 0 : ESRCH); 3853 } 3854 3855 static int 3856 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) 3857 { 3858 const Elf_Sym *def; 3859 const Obj_Entry *defobj; 3860 const Objlist_Entry *elm; 3861 SymLook req1; 3862 int res; 3863 3864 def = NULL; 3865 defobj = NULL; 3866 STAILQ_FOREACH(elm, objlist, link) { 3867 if (donelist_check(dlp, elm->obj)) 3868 continue; 3869 symlook_init_from_req(&req1, req); 3870 if ((res = symlook_obj(&req1, elm->obj)) == 0) { 3871 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 3872 def = req1.sym_out; 3873 defobj = req1.defobj_out; 3874 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3875 break; 3876 } 3877 } 3878 } 3879 if (def != NULL) { 3880 req->sym_out = def; 3881 req->defobj_out = defobj; 3882 return (0); 3883 } 3884 return (ESRCH); 3885 } 3886 3887 /* 3888 * Search the chain of DAGS cointed to by the given Needed_Entry 3889 * for a symbol of the given name. Each DAG is scanned completely 3890 * before advancing to the next one. Returns a pointer to the symbol, 3891 * or NULL if no definition was found. 3892 */ 3893 static int 3894 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) 3895 { 3896 const Elf_Sym *def; 3897 const Needed_Entry *n; 3898 const Obj_Entry *defobj; 3899 SymLook req1; 3900 int res; 3901 3902 def = NULL; 3903 defobj = NULL; 3904 symlook_init_from_req(&req1, req); 3905 for (n = needed; n != NULL; n = n->next) { 3906 if (n->obj == NULL || 3907 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) 3908 continue; 3909 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 3910 def = req1.sym_out; 3911 defobj = req1.defobj_out; 3912 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3913 break; 3914 } 3915 } 3916 if (def != NULL) { 3917 req->sym_out = def; 3918 req->defobj_out = defobj; 3919 return (0); 3920 } 3921 return (ESRCH); 3922 } 3923 3924 /* 3925 * Search the symbol table of a single shared object for a symbol of 3926 * the given name and version, if requested. Returns a pointer to the 3927 * symbol, or NULL if no definition was found. If the object is 3928 * filter, return filtered symbol from filtee. 3929 * 3930 * The symbol's hash value is passed in for efficiency reasons; that 3931 * eliminates many recomputations of the hash value. 3932 */ 3933 int 3934 symlook_obj(SymLook *req, const Obj_Entry *obj) 3935 { 3936 DoneList donelist; 3937 SymLook req1; 3938 int flags, res, mres; 3939 3940 /* 3941 * If there is at least one valid hash at this point, we prefer to 3942 * use the faster GNU version if available. 3943 */ 3944 if (obj->valid_hash_gnu) 3945 mres = symlook_obj1_gnu(req, obj); 3946 else if (obj->valid_hash_sysv) 3947 mres = symlook_obj1_sysv(req, obj); 3948 else 3949 return (EINVAL); 3950 3951 if (mres == 0) { 3952 if (obj->needed_filtees != NULL) { 3953 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 3954 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 3955 donelist_init(&donelist); 3956 symlook_init_from_req(&req1, req); 3957 res = symlook_needed(&req1, obj->needed_filtees, &donelist); 3958 if (res == 0) { 3959 req->sym_out = req1.sym_out; 3960 req->defobj_out = req1.defobj_out; 3961 } 3962 return (res); 3963 } 3964 if (obj->needed_aux_filtees != NULL) { 3965 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 3966 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 3967 donelist_init(&donelist); 3968 symlook_init_from_req(&req1, req); 3969 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist); 3970 if (res == 0) { 3971 req->sym_out = req1.sym_out; 3972 req->defobj_out = req1.defobj_out; 3973 return (res); 3974 } 3975 } 3976 } 3977 return (mres); 3978 } 3979 3980 /* Symbol match routine common to both hash functions */ 3981 static bool 3982 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, 3983 const unsigned long symnum) 3984 { 3985 Elf_Versym verndx; 3986 const Elf_Sym *symp; 3987 const char *strp; 3988 3989 symp = obj->symtab + symnum; 3990 strp = obj->strtab + symp->st_name; 3991 3992 switch (ELF_ST_TYPE(symp->st_info)) { 3993 case STT_FUNC: 3994 case STT_NOTYPE: 3995 case STT_OBJECT: 3996 case STT_COMMON: 3997 case STT_GNU_IFUNC: 3998 if (symp->st_value == 0) 3999 return (false); 4000 /* fallthrough */ 4001 case STT_TLS: 4002 if (symp->st_shndx != SHN_UNDEF) 4003 break; 4004 #ifndef __mips__ 4005 else if (((req->flags & SYMLOOK_IN_PLT) == 0) && 4006 (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) 4007 break; 4008 /* fallthrough */ 4009 #endif 4010 default: 4011 return (false); 4012 } 4013 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) 4014 return (false); 4015 4016 if (req->ventry == NULL) { 4017 if (obj->versyms != NULL) { 4018 verndx = VER_NDX(obj->versyms[symnum]); 4019 if (verndx > obj->vernum) { 4020 _rtld_error( 4021 "%s: symbol %s references wrong version %d", 4022 obj->path, obj->strtab + symnum, verndx); 4023 return (false); 4024 } 4025 /* 4026 * If we are not called from dlsym (i.e. this 4027 * is a normal relocation from unversioned 4028 * binary), accept the symbol immediately if 4029 * it happens to have first version after this 4030 * shared object became versioned. Otherwise, 4031 * if symbol is versioned and not hidden, 4032 * remember it. If it is the only symbol with 4033 * this name exported by the shared object, it 4034 * will be returned as a match by the calling 4035 * function. If symbol is global (verndx < 2) 4036 * accept it unconditionally. 4037 */ 4038 if ((req->flags & SYMLOOK_DLSYM) == 0 && 4039 verndx == VER_NDX_GIVEN) { 4040 result->sym_out = symp; 4041 return (true); 4042 } 4043 else if (verndx >= VER_NDX_GIVEN) { 4044 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) 4045 == 0) { 4046 if (result->vsymp == NULL) 4047 result->vsymp = symp; 4048 result->vcount++; 4049 } 4050 return (false); 4051 } 4052 } 4053 result->sym_out = symp; 4054 return (true); 4055 } 4056 if (obj->versyms == NULL) { 4057 if (object_match_name(obj, req->ventry->name)) { 4058 _rtld_error("%s: object %s should provide version %s " 4059 "for symbol %s", obj_rtld.path, obj->path, 4060 req->ventry->name, obj->strtab + symnum); 4061 return (false); 4062 } 4063 } else { 4064 verndx = VER_NDX(obj->versyms[symnum]); 4065 if (verndx > obj->vernum) { 4066 _rtld_error("%s: symbol %s references wrong version %d", 4067 obj->path, obj->strtab + symnum, verndx); 4068 return (false); 4069 } 4070 if (obj->vertab[verndx].hash != req->ventry->hash || 4071 strcmp(obj->vertab[verndx].name, req->ventry->name)) { 4072 /* 4073 * Version does not match. Look if this is a 4074 * global symbol and if it is not hidden. If 4075 * global symbol (verndx < 2) is available, 4076 * use it. Do not return symbol if we are 4077 * called by dlvsym, because dlvsym looks for 4078 * a specific version and default one is not 4079 * what dlvsym wants. 4080 */ 4081 if ((req->flags & SYMLOOK_DLSYM) || 4082 (verndx >= VER_NDX_GIVEN) || 4083 (obj->versyms[symnum] & VER_NDX_HIDDEN)) 4084 return (false); 4085 } 4086 } 4087 result->sym_out = symp; 4088 return (true); 4089 } 4090 4091 /* 4092 * Search for symbol using SysV hash function. 4093 * obj->buckets is known not to be NULL at this point; the test for this was 4094 * performed with the obj->valid_hash_sysv assignment. 4095 */ 4096 static int 4097 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) 4098 { 4099 unsigned long symnum; 4100 Sym_Match_Result matchres; 4101 4102 matchres.sym_out = NULL; 4103 matchres.vsymp = NULL; 4104 matchres.vcount = 0; 4105 4106 for (symnum = obj->buckets[req->hash % obj->nbuckets]; 4107 symnum != STN_UNDEF; symnum = obj->chains[symnum]) { 4108 if (symnum >= obj->nchains) 4109 return (ESRCH); /* Bad object */ 4110 4111 if (matched_symbol(req, obj, &matchres, symnum)) { 4112 req->sym_out = matchres.sym_out; 4113 req->defobj_out = obj; 4114 return (0); 4115 } 4116 } 4117 if (matchres.vcount == 1) { 4118 req->sym_out = matchres.vsymp; 4119 req->defobj_out = obj; 4120 return (0); 4121 } 4122 return (ESRCH); 4123 } 4124 4125 /* Search for symbol using GNU hash function */ 4126 static int 4127 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) 4128 { 4129 Elf_Addr bloom_word; 4130 const Elf32_Word *hashval; 4131 Elf32_Word bucket; 4132 Sym_Match_Result matchres; 4133 unsigned int h1, h2; 4134 unsigned long symnum; 4135 4136 matchres.sym_out = NULL; 4137 matchres.vsymp = NULL; 4138 matchres.vcount = 0; 4139 4140 /* Pick right bitmask word from Bloom filter array */ 4141 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & 4142 obj->maskwords_bm_gnu]; 4143 4144 /* Calculate modulus word size of gnu hash and its derivative */ 4145 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); 4146 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); 4147 4148 /* Filter out the "definitely not in set" queries */ 4149 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) 4150 return (ESRCH); 4151 4152 /* Locate hash chain and corresponding value element*/ 4153 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; 4154 if (bucket == 0) 4155 return (ESRCH); 4156 hashval = &obj->chain_zero_gnu[bucket]; 4157 do { 4158 if (((*hashval ^ req->hash_gnu) >> 1) == 0) { 4159 symnum = hashval - obj->chain_zero_gnu; 4160 if (matched_symbol(req, obj, &matchres, symnum)) { 4161 req->sym_out = matchres.sym_out; 4162 req->defobj_out = obj; 4163 return (0); 4164 } 4165 } 4166 } while ((*hashval++ & 1) == 0); 4167 if (matchres.vcount == 1) { 4168 req->sym_out = matchres.vsymp; 4169 req->defobj_out = obj; 4170 return (0); 4171 } 4172 return (ESRCH); 4173 } 4174 4175 static void 4176 trace_loaded_objects(Obj_Entry *obj) 4177 { 4178 char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 4179 int c; 4180 4181 if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) 4182 main_local = ""; 4183 4184 if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL) 4185 fmt1 = "\t%o => %p (%x)\n"; 4186 4187 if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL) 4188 fmt2 = "\t%o (%x)\n"; 4189 4190 list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL"); 4191 4192 for (; obj; obj = obj->next) { 4193 Needed_Entry *needed; 4194 char *name, *path; 4195 bool is_lib; 4196 4197 if (list_containers && obj->needed != NULL) 4198 rtld_printf("%s:\n", obj->path); 4199 for (needed = obj->needed; needed; needed = needed->next) { 4200 if (needed->obj != NULL) { 4201 if (needed->obj->traced && !list_containers) 4202 continue; 4203 needed->obj->traced = true; 4204 path = needed->obj->path; 4205 } else 4206 path = "not found"; 4207 4208 name = (char *)obj->strtab + needed->name; 4209 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 4210 4211 fmt = is_lib ? fmt1 : fmt2; 4212 while ((c = *fmt++) != '\0') { 4213 switch (c) { 4214 default: 4215 rtld_putchar(c); 4216 continue; 4217 case '\\': 4218 switch (c = *fmt) { 4219 case '\0': 4220 continue; 4221 case 'n': 4222 rtld_putchar('\n'); 4223 break; 4224 case 't': 4225 rtld_putchar('\t'); 4226 break; 4227 } 4228 break; 4229 case '%': 4230 switch (c = *fmt) { 4231 case '\0': 4232 continue; 4233 case '%': 4234 default: 4235 rtld_putchar(c); 4236 break; 4237 case 'A': 4238 rtld_putstr(main_local); 4239 break; 4240 case 'a': 4241 rtld_putstr(obj_main->path); 4242 break; 4243 case 'o': 4244 rtld_putstr(name); 4245 break; 4246 #if 0 4247 case 'm': 4248 rtld_printf("%d", sodp->sod_major); 4249 break; 4250 case 'n': 4251 rtld_printf("%d", sodp->sod_minor); 4252 break; 4253 #endif 4254 case 'p': 4255 rtld_putstr(path); 4256 break; 4257 case 'x': 4258 rtld_printf("%p", needed->obj ? needed->obj->mapbase : 4259 0); 4260 break; 4261 } 4262 break; 4263 } 4264 ++fmt; 4265 } 4266 } 4267 } 4268 } 4269 4270 /* 4271 * Unload a dlopened object and its dependencies from memory and from 4272 * our data structures. It is assumed that the DAG rooted in the 4273 * object has already been unreferenced, and that the object has a 4274 * reference count of 0. 4275 */ 4276 static void 4277 unload_object(Obj_Entry *root) 4278 { 4279 Obj_Entry *obj; 4280 Obj_Entry **linkp; 4281 4282 assert(root->refcount == 0); 4283 4284 /* 4285 * Pass over the DAG removing unreferenced objects from 4286 * appropriate lists. 4287 */ 4288 unlink_object(root); 4289 4290 /* Unmap all objects that are no longer referenced. */ 4291 linkp = &obj_list->next; 4292 while ((obj = *linkp) != NULL) { 4293 if (obj->refcount == 0) { 4294 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 4295 obj->path); 4296 dbg("unloading \"%s\"", obj->path); 4297 unload_filtees(root); 4298 munmap(obj->mapbase, obj->mapsize); 4299 linkmap_delete(obj); 4300 *linkp = obj->next; 4301 obj_count--; 4302 obj_free(obj); 4303 } else 4304 linkp = &obj->next; 4305 } 4306 obj_tail = linkp; 4307 } 4308 4309 static void 4310 unlink_object(Obj_Entry *root) 4311 { 4312 Objlist_Entry *elm; 4313 4314 if (root->refcount == 0) { 4315 /* Remove the object from the RTLD_GLOBAL list. */ 4316 objlist_remove(&list_global, root); 4317 4318 /* Remove the object from all objects' DAG lists. */ 4319 STAILQ_FOREACH(elm, &root->dagmembers, link) { 4320 objlist_remove(&elm->obj->dldags, root); 4321 if (elm->obj != root) 4322 unlink_object(elm->obj); 4323 } 4324 } 4325 } 4326 4327 static void 4328 ref_dag(Obj_Entry *root) 4329 { 4330 Objlist_Entry *elm; 4331 4332 assert(root->dag_inited); 4333 STAILQ_FOREACH(elm, &root->dagmembers, link) 4334 elm->obj->refcount++; 4335 } 4336 4337 static void 4338 unref_dag(Obj_Entry *root) 4339 { 4340 Objlist_Entry *elm; 4341 4342 assert(root->dag_inited); 4343 STAILQ_FOREACH(elm, &root->dagmembers, link) 4344 elm->obj->refcount--; 4345 } 4346 4347 /* 4348 * Common code for MD __tls_get_addr(). 4349 */ 4350 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline; 4351 static void * 4352 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset) 4353 { 4354 Elf_Addr *newdtv, *dtv; 4355 RtldLockState lockstate; 4356 int to_copy; 4357 4358 dtv = *dtvp; 4359 /* Check dtv generation in case new modules have arrived */ 4360 if (dtv[0] != tls_dtv_generation) { 4361 wlock_acquire(rtld_bind_lock, &lockstate); 4362 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4363 to_copy = dtv[1]; 4364 if (to_copy > tls_max_index) 4365 to_copy = tls_max_index; 4366 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); 4367 newdtv[0] = tls_dtv_generation; 4368 newdtv[1] = tls_max_index; 4369 free(dtv); 4370 lock_release(rtld_bind_lock, &lockstate); 4371 dtv = *dtvp = newdtv; 4372 } 4373 4374 /* Dynamically allocate module TLS if necessary */ 4375 if (dtv[index + 1] == 0) { 4376 /* Signal safe, wlock will block out signals. */ 4377 wlock_acquire(rtld_bind_lock, &lockstate); 4378 if (!dtv[index + 1]) 4379 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); 4380 lock_release(rtld_bind_lock, &lockstate); 4381 } 4382 return ((void *)(dtv[index + 1] + offset)); 4383 } 4384 4385 void * 4386 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset) 4387 { 4388 Elf_Addr *dtv; 4389 4390 dtv = *dtvp; 4391 /* Check dtv generation in case new modules have arrived */ 4392 if (__predict_true(dtv[0] == tls_dtv_generation && 4393 dtv[index + 1] != 0)) 4394 return ((void *)(dtv[index + 1] + offset)); 4395 return (tls_get_addr_slow(dtvp, index, offset)); 4396 } 4397 4398 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \ 4399 defined(__powerpc__) 4400 4401 /* 4402 * Allocate Static TLS using the Variant I method. 4403 */ 4404 void * 4405 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) 4406 { 4407 Obj_Entry *obj; 4408 char *tcb; 4409 Elf_Addr **tls; 4410 Elf_Addr *dtv; 4411 Elf_Addr addr; 4412 int i; 4413 4414 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) 4415 return (oldtcb); 4416 4417 assert(tcbsize >= TLS_TCB_SIZE); 4418 tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize); 4419 tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE); 4420 4421 if (oldtcb != NULL) { 4422 memcpy(tls, oldtcb, tls_static_space); 4423 free(oldtcb); 4424 4425 /* Adjust the DTV. */ 4426 dtv = tls[0]; 4427 for (i = 0; i < dtv[1]; i++) { 4428 if (dtv[i+2] >= (Elf_Addr)oldtcb && 4429 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { 4430 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls; 4431 } 4432 } 4433 } else { 4434 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4435 tls[0] = dtv; 4436 dtv[0] = tls_dtv_generation; 4437 dtv[1] = tls_max_index; 4438 4439 for (obj = objs; obj; obj = obj->next) { 4440 if (obj->tlsoffset > 0) { 4441 addr = (Elf_Addr)tls + obj->tlsoffset; 4442 if (obj->tlsinitsize > 0) 4443 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4444 if (obj->tlssize > obj->tlsinitsize) 4445 memset((void*) (addr + obj->tlsinitsize), 0, 4446 obj->tlssize - obj->tlsinitsize); 4447 dtv[obj->tlsindex + 1] = addr; 4448 } 4449 } 4450 } 4451 4452 return (tcb); 4453 } 4454 4455 void 4456 free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 4457 { 4458 Elf_Addr *dtv; 4459 Elf_Addr tlsstart, tlsend; 4460 int dtvsize, i; 4461 4462 assert(tcbsize >= TLS_TCB_SIZE); 4463 4464 tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE; 4465 tlsend = tlsstart + tls_static_space; 4466 4467 dtv = *(Elf_Addr **)tlsstart; 4468 dtvsize = dtv[1]; 4469 for (i = 0; i < dtvsize; i++) { 4470 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { 4471 free((void*)dtv[i+2]); 4472 } 4473 } 4474 free(dtv); 4475 free(tcb); 4476 } 4477 4478 #endif 4479 4480 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) 4481 4482 /* 4483 * Allocate Static TLS using the Variant II method. 4484 */ 4485 void * 4486 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) 4487 { 4488 Obj_Entry *obj; 4489 size_t size, ralign; 4490 char *tls; 4491 Elf_Addr *dtv, *olddtv; 4492 Elf_Addr segbase, oldsegbase, addr; 4493 int i; 4494 4495 ralign = tcbalign; 4496 if (tls_static_max_align > ralign) 4497 ralign = tls_static_max_align; 4498 size = round(tls_static_space, ralign) + round(tcbsize, ralign); 4499 4500 assert(tcbsize >= 2*sizeof(Elf_Addr)); 4501 tls = malloc_aligned(size, ralign); 4502 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4503 4504 segbase = (Elf_Addr)(tls + round(tls_static_space, ralign)); 4505 ((Elf_Addr*)segbase)[0] = segbase; 4506 ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv; 4507 4508 dtv[0] = tls_dtv_generation; 4509 dtv[1] = tls_max_index; 4510 4511 if (oldtls) { 4512 /* 4513 * Copy the static TLS block over whole. 4514 */ 4515 oldsegbase = (Elf_Addr) oldtls; 4516 memcpy((void *)(segbase - tls_static_space), 4517 (const void *)(oldsegbase - tls_static_space), 4518 tls_static_space); 4519 4520 /* 4521 * If any dynamic TLS blocks have been created tls_get_addr(), 4522 * move them over. 4523 */ 4524 olddtv = ((Elf_Addr**)oldsegbase)[1]; 4525 for (i = 0; i < olddtv[1]; i++) { 4526 if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) { 4527 dtv[i+2] = olddtv[i+2]; 4528 olddtv[i+2] = 0; 4529 } 4530 } 4531 4532 /* 4533 * We assume that this block was the one we created with 4534 * allocate_initial_tls(). 4535 */ 4536 free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr)); 4537 } else { 4538 for (obj = objs; obj; obj = obj->next) { 4539 if (obj->tlsoffset) { 4540 addr = segbase - obj->tlsoffset; 4541 memset((void*) (addr + obj->tlsinitsize), 4542 0, obj->tlssize - obj->tlsinitsize); 4543 if (obj->tlsinit) 4544 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4545 dtv[obj->tlsindex + 1] = addr; 4546 } 4547 } 4548 } 4549 4550 return (void*) segbase; 4551 } 4552 4553 void 4554 free_tls(void *tls, size_t tcbsize, size_t tcbalign) 4555 { 4556 Elf_Addr* dtv; 4557 size_t size, ralign; 4558 int dtvsize, i; 4559 Elf_Addr tlsstart, tlsend; 4560 4561 /* 4562 * Figure out the size of the initial TLS block so that we can 4563 * find stuff which ___tls_get_addr() allocated dynamically. 4564 */ 4565 ralign = tcbalign; 4566 if (tls_static_max_align > ralign) 4567 ralign = tls_static_max_align; 4568 size = round(tls_static_space, ralign); 4569 4570 dtv = ((Elf_Addr**)tls)[1]; 4571 dtvsize = dtv[1]; 4572 tlsend = (Elf_Addr) tls; 4573 tlsstart = tlsend - size; 4574 for (i = 0; i < dtvsize; i++) { 4575 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) { 4576 free_aligned((void *)dtv[i + 2]); 4577 } 4578 } 4579 4580 free_aligned((void *)tlsstart); 4581 free((void*) dtv); 4582 } 4583 4584 #endif 4585 4586 /* 4587 * Allocate TLS block for module with given index. 4588 */ 4589 void * 4590 allocate_module_tls(int index) 4591 { 4592 Obj_Entry* obj; 4593 char* p; 4594 4595 for (obj = obj_list; obj; obj = obj->next) { 4596 if (obj->tlsindex == index) 4597 break; 4598 } 4599 if (!obj) { 4600 _rtld_error("Can't find module with TLS index %d", index); 4601 rtld_die(); 4602 } 4603 4604 p = malloc_aligned(obj->tlssize, obj->tlsalign); 4605 memcpy(p, obj->tlsinit, obj->tlsinitsize); 4606 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); 4607 4608 return p; 4609 } 4610 4611 bool 4612 allocate_tls_offset(Obj_Entry *obj) 4613 { 4614 size_t off; 4615 4616 if (obj->tls_done) 4617 return true; 4618 4619 if (obj->tlssize == 0) { 4620 obj->tls_done = true; 4621 return true; 4622 } 4623 4624 if (tls_last_offset == 0) 4625 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign); 4626 else 4627 off = calculate_tls_offset(tls_last_offset, tls_last_size, 4628 obj->tlssize, obj->tlsalign); 4629 4630 /* 4631 * If we have already fixed the size of the static TLS block, we 4632 * must stay within that size. When allocating the static TLS, we 4633 * leave a small amount of space spare to be used for dynamically 4634 * loading modules which use static TLS. 4635 */ 4636 if (tls_static_space != 0) { 4637 if (calculate_tls_end(off, obj->tlssize) > tls_static_space) 4638 return false; 4639 } else if (obj->tlsalign > tls_static_max_align) { 4640 tls_static_max_align = obj->tlsalign; 4641 } 4642 4643 tls_last_offset = obj->tlsoffset = off; 4644 tls_last_size = obj->tlssize; 4645 obj->tls_done = true; 4646 4647 return true; 4648 } 4649 4650 void 4651 free_tls_offset(Obj_Entry *obj) 4652 { 4653 4654 /* 4655 * If we were the last thing to allocate out of the static TLS 4656 * block, we give our space back to the 'allocator'. This is a 4657 * simplistic workaround to allow libGL.so.1 to be loaded and 4658 * unloaded multiple times. 4659 */ 4660 if (calculate_tls_end(obj->tlsoffset, obj->tlssize) 4661 == calculate_tls_end(tls_last_offset, tls_last_size)) { 4662 tls_last_offset -= obj->tlssize; 4663 tls_last_size = 0; 4664 } 4665 } 4666 4667 void * 4668 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) 4669 { 4670 void *ret; 4671 RtldLockState lockstate; 4672 4673 wlock_acquire(rtld_bind_lock, &lockstate); 4674 ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign); 4675 lock_release(rtld_bind_lock, &lockstate); 4676 return (ret); 4677 } 4678 4679 void 4680 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 4681 { 4682 RtldLockState lockstate; 4683 4684 wlock_acquire(rtld_bind_lock, &lockstate); 4685 free_tls(tcb, tcbsize, tcbalign); 4686 lock_release(rtld_bind_lock, &lockstate); 4687 } 4688 4689 static void 4690 object_add_name(Obj_Entry *obj, const char *name) 4691 { 4692 Name_Entry *entry; 4693 size_t len; 4694 4695 len = strlen(name); 4696 entry = malloc(sizeof(Name_Entry) + len); 4697 4698 if (entry != NULL) { 4699 strcpy(entry->name, name); 4700 STAILQ_INSERT_TAIL(&obj->names, entry, link); 4701 } 4702 } 4703 4704 static int 4705 object_match_name(const Obj_Entry *obj, const char *name) 4706 { 4707 Name_Entry *entry; 4708 4709 STAILQ_FOREACH(entry, &obj->names, link) { 4710 if (strcmp(name, entry->name) == 0) 4711 return (1); 4712 } 4713 return (0); 4714 } 4715 4716 static Obj_Entry * 4717 locate_dependency(const Obj_Entry *obj, const char *name) 4718 { 4719 const Objlist_Entry *entry; 4720 const Needed_Entry *needed; 4721 4722 STAILQ_FOREACH(entry, &list_main, link) { 4723 if (object_match_name(entry->obj, name)) 4724 return entry->obj; 4725 } 4726 4727 for (needed = obj->needed; needed != NULL; needed = needed->next) { 4728 if (strcmp(obj->strtab + needed->name, name) == 0 || 4729 (needed->obj != NULL && object_match_name(needed->obj, name))) { 4730 /* 4731 * If there is DT_NEEDED for the name we are looking for, 4732 * we are all set. Note that object might not be found if 4733 * dependency was not loaded yet, so the function can 4734 * return NULL here. This is expected and handled 4735 * properly by the caller. 4736 */ 4737 return (needed->obj); 4738 } 4739 } 4740 _rtld_error("%s: Unexpected inconsistency: dependency %s not found", 4741 obj->path, name); 4742 rtld_die(); 4743 } 4744 4745 static int 4746 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, 4747 const Elf_Vernaux *vna) 4748 { 4749 const Elf_Verdef *vd; 4750 const char *vername; 4751 4752 vername = refobj->strtab + vna->vna_name; 4753 vd = depobj->verdef; 4754 if (vd == NULL) { 4755 _rtld_error("%s: version %s required by %s not defined", 4756 depobj->path, vername, refobj->path); 4757 return (-1); 4758 } 4759 for (;;) { 4760 if (vd->vd_version != VER_DEF_CURRENT) { 4761 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 4762 depobj->path, vd->vd_version); 4763 return (-1); 4764 } 4765 if (vna->vna_hash == vd->vd_hash) { 4766 const Elf_Verdaux *aux = (const Elf_Verdaux *) 4767 ((char *)vd + vd->vd_aux); 4768 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) 4769 return (0); 4770 } 4771 if (vd->vd_next == 0) 4772 break; 4773 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 4774 } 4775 if (vna->vna_flags & VER_FLG_WEAK) 4776 return (0); 4777 _rtld_error("%s: version %s required by %s not found", 4778 depobj->path, vername, refobj->path); 4779 return (-1); 4780 } 4781 4782 static int 4783 rtld_verify_object_versions(Obj_Entry *obj) 4784 { 4785 const Elf_Verneed *vn; 4786 const Elf_Verdef *vd; 4787 const Elf_Verdaux *vda; 4788 const Elf_Vernaux *vna; 4789 const Obj_Entry *depobj; 4790 int maxvernum, vernum; 4791 4792 if (obj->ver_checked) 4793 return (0); 4794 obj->ver_checked = true; 4795 4796 maxvernum = 0; 4797 /* 4798 * Walk over defined and required version records and figure out 4799 * max index used by any of them. Do very basic sanity checking 4800 * while there. 4801 */ 4802 vn = obj->verneed; 4803 while (vn != NULL) { 4804 if (vn->vn_version != VER_NEED_CURRENT) { 4805 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", 4806 obj->path, vn->vn_version); 4807 return (-1); 4808 } 4809 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); 4810 for (;;) { 4811 vernum = VER_NEED_IDX(vna->vna_other); 4812 if (vernum > maxvernum) 4813 maxvernum = vernum; 4814 if (vna->vna_next == 0) 4815 break; 4816 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); 4817 } 4818 if (vn->vn_next == 0) 4819 break; 4820 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); 4821 } 4822 4823 vd = obj->verdef; 4824 while (vd != NULL) { 4825 if (vd->vd_version != VER_DEF_CURRENT) { 4826 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 4827 obj->path, vd->vd_version); 4828 return (-1); 4829 } 4830 vernum = VER_DEF_IDX(vd->vd_ndx); 4831 if (vernum > maxvernum) 4832 maxvernum = vernum; 4833 if (vd->vd_next == 0) 4834 break; 4835 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 4836 } 4837 4838 if (maxvernum == 0) 4839 return (0); 4840 4841 /* 4842 * Store version information in array indexable by version index. 4843 * Verify that object version requirements are satisfied along the 4844 * way. 4845 */ 4846 obj->vernum = maxvernum + 1; 4847 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); 4848 4849 vd = obj->verdef; 4850 while (vd != NULL) { 4851 if ((vd->vd_flags & VER_FLG_BASE) == 0) { 4852 vernum = VER_DEF_IDX(vd->vd_ndx); 4853 assert(vernum <= maxvernum); 4854 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux); 4855 obj->vertab[vernum].hash = vd->vd_hash; 4856 obj->vertab[vernum].name = obj->strtab + vda->vda_name; 4857 obj->vertab[vernum].file = NULL; 4858 obj->vertab[vernum].flags = 0; 4859 } 4860 if (vd->vd_next == 0) 4861 break; 4862 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 4863 } 4864 4865 vn = obj->verneed; 4866 while (vn != NULL) { 4867 depobj = locate_dependency(obj, obj->strtab + vn->vn_file); 4868 if (depobj == NULL) 4869 return (-1); 4870 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); 4871 for (;;) { 4872 if (check_object_provided_version(obj, depobj, vna)) 4873 return (-1); 4874 vernum = VER_NEED_IDX(vna->vna_other); 4875 assert(vernum <= maxvernum); 4876 obj->vertab[vernum].hash = vna->vna_hash; 4877 obj->vertab[vernum].name = obj->strtab + vna->vna_name; 4878 obj->vertab[vernum].file = obj->strtab + vn->vn_file; 4879 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? 4880 VER_INFO_HIDDEN : 0; 4881 if (vna->vna_next == 0) 4882 break; 4883 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); 4884 } 4885 if (vn->vn_next == 0) 4886 break; 4887 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); 4888 } 4889 return 0; 4890 } 4891 4892 static int 4893 rtld_verify_versions(const Objlist *objlist) 4894 { 4895 Objlist_Entry *entry; 4896 int rc; 4897 4898 rc = 0; 4899 STAILQ_FOREACH(entry, objlist, link) { 4900 /* 4901 * Skip dummy objects or objects that have their version requirements 4902 * already checked. 4903 */ 4904 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) 4905 continue; 4906 if (rtld_verify_object_versions(entry->obj) == -1) { 4907 rc = -1; 4908 if (ld_tracing == NULL) 4909 break; 4910 } 4911 } 4912 if (rc == 0 || ld_tracing != NULL) 4913 rc = rtld_verify_object_versions(&obj_rtld); 4914 return rc; 4915 } 4916 4917 const Ver_Entry * 4918 fetch_ventry(const Obj_Entry *obj, unsigned long symnum) 4919 { 4920 Elf_Versym vernum; 4921 4922 if (obj->vertab) { 4923 vernum = VER_NDX(obj->versyms[symnum]); 4924 if (vernum >= obj->vernum) { 4925 _rtld_error("%s: symbol %s has wrong verneed value %d", 4926 obj->path, obj->strtab + symnum, vernum); 4927 } else if (obj->vertab[vernum].hash != 0) { 4928 return &obj->vertab[vernum]; 4929 } 4930 } 4931 return NULL; 4932 } 4933 4934 int 4935 _rtld_get_stack_prot(void) 4936 { 4937 4938 return (stack_prot); 4939 } 4940 4941 int 4942 _rtld_is_dlopened(void *arg) 4943 { 4944 Obj_Entry *obj; 4945 RtldLockState lockstate; 4946 int res; 4947 4948 rlock_acquire(rtld_bind_lock, &lockstate); 4949 obj = dlcheck(arg); 4950 if (obj == NULL) 4951 obj = obj_from_addr(arg); 4952 if (obj == NULL) { 4953 _rtld_error("No shared object contains address"); 4954 lock_release(rtld_bind_lock, &lockstate); 4955 return (-1); 4956 } 4957 res = obj->dlopened ? 1 : 0; 4958 lock_release(rtld_bind_lock, &lockstate); 4959 return (res); 4960 } 4961 4962 static void 4963 map_stacks_exec(RtldLockState *lockstate) 4964 { 4965 void (*thr_map_stacks_exec)(void); 4966 4967 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) 4968 return; 4969 thr_map_stacks_exec = (void (*)(void))(uintptr_t) 4970 get_program_var_addr("__pthread_map_stacks_exec", lockstate); 4971 if (thr_map_stacks_exec != NULL) { 4972 stack_prot |= PROT_EXEC; 4973 thr_map_stacks_exec(); 4974 } 4975 } 4976 4977 void 4978 symlook_init(SymLook *dst, const char *name) 4979 { 4980 4981 bzero(dst, sizeof(*dst)); 4982 dst->name = name; 4983 dst->hash = elf_hash(name); 4984 dst->hash_gnu = gnu_hash(name); 4985 } 4986 4987 static void 4988 symlook_init_from_req(SymLook *dst, const SymLook *src) 4989 { 4990 4991 dst->name = src->name; 4992 dst->hash = src->hash; 4993 dst->hash_gnu = src->hash_gnu; 4994 dst->ventry = src->ventry; 4995 dst->flags = src->flags; 4996 dst->defobj_out = NULL; 4997 dst->sym_out = NULL; 4998 dst->lockstate = src->lockstate; 4999 } 5000 5001 5002 /* 5003 * Parse a file descriptor number without pulling in more of libc (e.g. atoi). 5004 */ 5005 static int 5006 parse_libdir(const char *str) 5007 { 5008 static const int RADIX = 10; /* XXXJA: possibly support hex? */ 5009 const char *orig; 5010 int fd; 5011 char c; 5012 5013 orig = str; 5014 fd = 0; 5015 for (c = *str; c != '\0'; c = *++str) { 5016 if (c < '0' || c > '9') 5017 return (-1); 5018 5019 fd *= RADIX; 5020 fd += c - '0'; 5021 } 5022 5023 /* Make sure we actually parsed something. */ 5024 if (str == orig) { 5025 _rtld_error("failed to parse directory FD from '%s'", str); 5026 return (-1); 5027 } 5028 return (fd); 5029 } 5030 5031 /* 5032 * Overrides for libc_pic-provided functions. 5033 */ 5034 5035 int 5036 __getosreldate(void) 5037 { 5038 size_t len; 5039 int oid[2]; 5040 int error, osrel; 5041 5042 if (osreldate != 0) 5043 return (osreldate); 5044 5045 oid[0] = CTL_KERN; 5046 oid[1] = KERN_OSRELDATE; 5047 osrel = 0; 5048 len = sizeof(osrel); 5049 error = sysctl(oid, 2, &osrel, &len, NULL, 0); 5050 if (error == 0 && osrel > 0 && len == sizeof(osrel)) 5051 osreldate = osrel; 5052 return (osreldate); 5053 } 5054 5055 void 5056 exit(int status) 5057 { 5058 5059 _exit(status); 5060 } 5061 5062 void (*__cleanup)(void); 5063 int __isthreaded = 0; 5064 int _thread_autoinit_dummy_decl = 1; 5065 5066 /* 5067 * No unresolved symbols for rtld. 5068 */ 5069 void 5070 __pthread_cxa_finalize(struct dl_phdr_info *a) 5071 { 5072 } 5073 5074 void 5075 __stack_chk_fail(void) 5076 { 5077 5078 _rtld_error("stack overflow detected; terminated"); 5079 rtld_die(); 5080 } 5081 __weak_reference(__stack_chk_fail, __stack_chk_fail_local); 5082 5083 void 5084 __chk_fail(void) 5085 { 5086 5087 _rtld_error("buffer overflow detected; terminated"); 5088 rtld_die(); 5089 } 5090 5091 const char * 5092 rtld_strerror(int errnum) 5093 { 5094 5095 if (errnum < 0 || errnum >= sys_nerr) 5096 return ("Unknown error"); 5097 return (sys_errlist[errnum]); 5098 } 5099