xref: /freebsd/libexec/rtld-elf/rtld.c (revision a34e99eee64262265541c3cc11075a5a29612ead)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static void digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
140 static int parse_integer(const char *);
141 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
142 static void print_usage(const char *argv0);
143 static void release_object(Obj_Entry *);
144 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
145     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
146 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
147     int flags, RtldLockState *lockstate);
148 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
149     RtldLockState *);
150 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
151 static int rtld_dirname(const char *, char *);
152 static int rtld_dirname_abs(const char *, char *);
153 static void *rtld_dlopen(const char *name, int fd, int mode);
154 static void rtld_exit(void);
155 static void rtld_nop_exit(void);
156 static char *search_library_path(const char *, const char *, const char *,
157     int *);
158 static char *search_library_pathfds(const char *, const char *, int *);
159 static const void **get_program_var_addr(const char *, RtldLockState *);
160 static void set_program_var(const char *, const void *);
161 static int symlook_default(SymLook *, const Obj_Entry *refobj);
162 static int symlook_global(SymLook *, DoneList *);
163 static void symlook_init_from_req(SymLook *, const SymLook *);
164 static int symlook_list(SymLook *, const Objlist *, DoneList *);
165 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
166 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
167 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
168 static void trace_loaded_objects(Obj_Entry *);
169 static void unlink_object(Obj_Entry *);
170 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
171 static void unref_dag(Obj_Entry *);
172 static void ref_dag(Obj_Entry *);
173 static char *origin_subst_one(Obj_Entry *, char *, const char *,
174     const char *, bool);
175 static char *origin_subst(Obj_Entry *, const char *);
176 static bool obj_resolve_origin(Obj_Entry *obj);
177 static void preinit_main(void);
178 static int  rtld_verify_versions(const Objlist *);
179 static int  rtld_verify_object_versions(Obj_Entry *);
180 static void object_add_name(Obj_Entry *, const char *);
181 static int  object_match_name(const Obj_Entry *, const char *);
182 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
183 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
184     struct dl_phdr_info *phdr_info);
185 static uint32_t gnu_hash(const char *);
186 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
187     const unsigned long);
188 
189 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
190 void _r_debug_postinit(struct link_map *) __noinline __exported;
191 
192 int __sys_openat(int, const char *, int, ...);
193 
194 /*
195  * Data declarations.
196  */
197 static char *error_message;	/* Message for dlerror(), or NULL */
198 struct r_debug r_debug __exported;	/* for GDB; */
199 static bool libmap_disable;	/* Disable libmap */
200 static bool ld_loadfltr;	/* Immediate filters processing */
201 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
202 static bool trust;		/* False for setuid and setgid programs */
203 static bool dangerous_ld_env;	/* True if environment variables have been
204 				   used to affect the libraries loaded */
205 bool ld_bind_not;		/* Disable PLT update */
206 static char *ld_bind_now;	/* Environment variable for immediate binding */
207 static char *ld_debug;		/* Environment variable for debugging */
208 static char *ld_library_path;	/* Environment variable for search path */
209 static char *ld_library_dirs;	/* Environment variable for library descriptors */
210 static char *ld_preload;	/* Environment variable for libraries to
211 				   load first */
212 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
213 static const char *ld_tracing;	/* Called from ldd to print libs */
214 static char *ld_utrace;		/* Use utrace() to log events. */
215 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
216 static Obj_Entry *obj_main;	/* The main program shared object */
217 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
218 static unsigned int obj_count;	/* Number of objects in obj_list */
219 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
220 
221 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
222   STAILQ_HEAD_INITIALIZER(list_global);
223 static Objlist list_main =	/* Objects loaded at program startup */
224   STAILQ_HEAD_INITIALIZER(list_main);
225 static Objlist list_fini =	/* Objects needing fini() calls */
226   STAILQ_HEAD_INITIALIZER(list_fini);
227 
228 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
229 
230 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
231 
232 extern Elf_Dyn _DYNAMIC;
233 #pragma weak _DYNAMIC
234 
235 int dlclose(void *) __exported;
236 char *dlerror(void) __exported;
237 void *dlopen(const char *, int) __exported;
238 void *fdlopen(int, int) __exported;
239 void *dlsym(void *, const char *) __exported;
240 dlfunc_t dlfunc(void *, const char *) __exported;
241 void *dlvsym(void *, const char *, const char *) __exported;
242 int dladdr(const void *, Dl_info *) __exported;
243 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
244     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
245 int dlinfo(void *, int , void *) __exported;
246 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
247 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
248 int _rtld_get_stack_prot(void) __exported;
249 int _rtld_is_dlopened(void *) __exported;
250 void _rtld_error(const char *, ...) __exported;
251 
252 /* Only here to fix -Wmissing-prototypes warnings */
253 int __getosreldate(void);
254 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
255 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
256 
257 
258 int npagesizes;
259 static int osreldate;
260 size_t *pagesizes;
261 
262 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
263 static int max_stack_flags;
264 
265 /*
266  * Global declarations normally provided by crt1.  The dynamic linker is
267  * not built with crt1, so we have to provide them ourselves.
268  */
269 char *__progname;
270 char **environ;
271 
272 /*
273  * Used to pass argc, argv to init functions.
274  */
275 int main_argc;
276 char **main_argv;
277 
278 /*
279  * Globals to control TLS allocation.
280  */
281 size_t tls_last_offset;		/* Static TLS offset of last module */
282 size_t tls_last_size;		/* Static TLS size of last module */
283 size_t tls_static_space;	/* Static TLS space allocated */
284 static size_t tls_static_max_align;
285 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
286 int tls_max_index = 1;		/* Largest module index allocated */
287 
288 static bool ld_library_path_rpath = false;
289 
290 /*
291  * Globals for path names, and such
292  */
293 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
294 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
295 const char *ld_path_rtld = _PATH_RTLD;
296 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
297 const char *ld_env_prefix = LD_;
298 
299 static void (*rtld_exit_ptr)(void);
300 
301 /*
302  * Fill in a DoneList with an allocation large enough to hold all of
303  * the currently-loaded objects.  Keep this as a macro since it calls
304  * alloca and we want that to occur within the scope of the caller.
305  */
306 #define donelist_init(dlp)					\
307     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
308     assert((dlp)->objs != NULL),				\
309     (dlp)->num_alloc = obj_count,				\
310     (dlp)->num_used = 0)
311 
312 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
313 	if (ld_utrace != NULL)					\
314 		ld_utrace_log(e, h, mb, ms, r, n);		\
315 } while (0)
316 
317 static void
318 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
319     int refcnt, const char *name)
320 {
321 	struct utrace_rtld ut;
322 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
323 
324 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
325 	ut.event = event;
326 	ut.handle = handle;
327 	ut.mapbase = mapbase;
328 	ut.mapsize = mapsize;
329 	ut.refcnt = refcnt;
330 	bzero(ut.name, sizeof(ut.name));
331 	if (name)
332 		strlcpy(ut.name, name, sizeof(ut.name));
333 	utrace(&ut, sizeof(ut));
334 }
335 
336 #ifdef RTLD_VARIANT_ENV_NAMES
337 /*
338  * construct the env variable based on the type of binary that's
339  * running.
340  */
341 static inline const char *
342 _LD(const char *var)
343 {
344 	static char buffer[128];
345 
346 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
347 	strlcat(buffer, var, sizeof(buffer));
348 	return (buffer);
349 }
350 #else
351 #define _LD(x)	LD_ x
352 #endif
353 
354 /*
355  * Main entry point for dynamic linking.  The first argument is the
356  * stack pointer.  The stack is expected to be laid out as described
357  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
358  * Specifically, the stack pointer points to a word containing
359  * ARGC.  Following that in the stack is a null-terminated sequence
360  * of pointers to argument strings.  Then comes a null-terminated
361  * sequence of pointers to environment strings.  Finally, there is a
362  * sequence of "auxiliary vector" entries.
363  *
364  * The second argument points to a place to store the dynamic linker's
365  * exit procedure pointer and the third to a place to store the main
366  * program's object.
367  *
368  * The return value is the main program's entry point.
369  */
370 func_ptr_type
371 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
372 {
373     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
374     Objlist_Entry *entry;
375     Obj_Entry *last_interposer, *obj, *preload_tail;
376     const Elf_Phdr *phdr;
377     Objlist initlist;
378     RtldLockState lockstate;
379     struct stat st;
380     Elf_Addr *argcp;
381     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
382     const char *argv0, *binpath;
383     caddr_t imgentry;
384     char buf[MAXPATHLEN];
385     int argc, fd, i, phnum, rtld_argc;
386 #ifdef __powerpc__
387     int old_auxv_format = 1;
388 #endif
389     bool dir_enable, explicit_fd, search_in_path;
390 
391     /*
392      * On entry, the dynamic linker itself has not been relocated yet.
393      * Be very careful not to reference any global data until after
394      * init_rtld has returned.  It is OK to reference file-scope statics
395      * and string constants, and to call static and global functions.
396      */
397 
398     /* Find the auxiliary vector on the stack. */
399     argcp = sp;
400     argc = *sp++;
401     argv = (char **) sp;
402     sp += argc + 1;	/* Skip over arguments and NULL terminator */
403     env = (char **) sp;
404     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
405 	;
406     aux = (Elf_Auxinfo *) sp;
407 
408     /* Digest the auxiliary vector. */
409     for (i = 0;  i < AT_COUNT;  i++)
410 	aux_info[i] = NULL;
411     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
412 	if (auxp->a_type < AT_COUNT)
413 	    aux_info[auxp->a_type] = auxp;
414 #ifdef __powerpc__
415 	if (auxp->a_type == 23) /* AT_STACKPROT */
416 	    old_auxv_format = 0;
417 #endif
418     }
419 
420 #ifdef __powerpc__
421     if (old_auxv_format) {
422 	/* Remap from old-style auxv numbers. */
423 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
424 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
425 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
426 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
427 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
428 	aux_info[13] = NULL;		/* AT_GID */
429 
430 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
431 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
432 	aux_info[16] = aux_info[14];	/* AT_CANARY */
433 	aux_info[14] = NULL;		/* AT_EGID */
434     }
435 #endif
436 
437     /* Initialize and relocate ourselves. */
438     assert(aux_info[AT_BASE] != NULL);
439     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
440 
441     __progname = obj_rtld.path;
442     argv0 = argv[0] != NULL ? argv[0] : "(null)";
443     environ = env;
444     main_argc = argc;
445     main_argv = argv;
446 
447     trust = !issetugid();
448 
449     md_abi_variant_hook(aux_info);
450 
451     fd = -1;
452     if (aux_info[AT_EXECFD] != NULL) {
453 	fd = aux_info[AT_EXECFD]->a_un.a_val;
454     } else {
455 	assert(aux_info[AT_PHDR] != NULL);
456 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
457 	if (phdr == obj_rtld.phdr) {
458 	    if (!trust) {
459 		_rtld_error("Tainted process refusing to run binary %s",
460 		    argv0);
461 		rtld_die();
462 	    }
463 	    dbg("opening main program in direct exec mode");
464 	    if (argc >= 2) {
465 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
466 		argv0 = argv[rtld_argc];
467 		explicit_fd = (fd != -1);
468 		binpath = NULL;
469 		if (!explicit_fd)
470 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
471 		if (fstat(fd, &st) == -1) {
472 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
473 		      explicit_fd ? "user-provided descriptor" : argv0,
474 		      rtld_strerror(errno));
475 		    rtld_die();
476 		}
477 
478 		/*
479 		 * Rough emulation of the permission checks done by
480 		 * execve(2), only Unix DACs are checked, ACLs are
481 		 * ignored.  Preserve the semantic of disabling owner
482 		 * to execute if owner x bit is cleared, even if
483 		 * others x bit is enabled.
484 		 * mmap(2) does not allow to mmap with PROT_EXEC if
485 		 * binary' file comes from noexec mount.  We cannot
486 		 * set a text reference on the binary.
487 		 */
488 		dir_enable = false;
489 		if (st.st_uid == geteuid()) {
490 		    if ((st.st_mode & S_IXUSR) != 0)
491 			dir_enable = true;
492 		} else if (st.st_gid == getegid()) {
493 		    if ((st.st_mode & S_IXGRP) != 0)
494 			dir_enable = true;
495 		} else if ((st.st_mode & S_IXOTH) != 0) {
496 		    dir_enable = true;
497 		}
498 		if (!dir_enable) {
499 		    _rtld_error("No execute permission for binary %s",
500 		        argv0);
501 		    rtld_die();
502 		}
503 
504 		/*
505 		 * For direct exec mode, argv[0] is the interpreter
506 		 * name, we must remove it and shift arguments left
507 		 * before invoking binary main.  Since stack layout
508 		 * places environment pointers and aux vectors right
509 		 * after the terminating NULL, we must shift
510 		 * environment and aux as well.
511 		 */
512 		main_argc = argc - rtld_argc;
513 		for (i = 0; i <= main_argc; i++)
514 		    argv[i] = argv[i + rtld_argc];
515 		*argcp -= rtld_argc;
516 		environ = env = envp = argv + main_argc + 1;
517 		do {
518 		    *envp = *(envp + rtld_argc);
519 		    envp++;
520 		} while (*envp != NULL);
521 		aux = auxp = (Elf_Auxinfo *)envp;
522 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
523 		/* XXXKIB insert place for AT_EXECPATH if not present */
524 		for (;; auxp++, auxpf++) {
525 		    *auxp = *auxpf;
526 		    if (auxp->a_type == AT_NULL)
527 			    break;
528 		}
529 		/* Since the auxiliary vector has moved, redigest it. */
530 		for (i = 0;  i < AT_COUNT;  i++)
531 		    aux_info[i] = NULL;
532 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
533 		    if (auxp->a_type < AT_COUNT)
534 			aux_info[auxp->a_type] = auxp;
535 		}
536 
537 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
538 		if (binpath == NULL) {
539 		    aux_info[AT_EXECPATH] = NULL;
540 		} else {
541 		    if (aux_info[AT_EXECPATH] == NULL) {
542 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
543 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
544 		    }
545 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
546 		      binpath);
547 		}
548 	    } else {
549 		_rtld_error("No binary");
550 		rtld_die();
551 	    }
552 	}
553     }
554 
555     ld_bind_now = getenv(_LD("BIND_NOW"));
556 
557     /*
558      * If the process is tainted, then we un-set the dangerous environment
559      * variables.  The process will be marked as tainted until setuid(2)
560      * is called.  If any child process calls setuid(2) we do not want any
561      * future processes to honor the potentially un-safe variables.
562      */
563     if (!trust) {
564 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
565 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
566 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
567 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
568 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
569 		_rtld_error("environment corrupt; aborting");
570 		rtld_die();
571 	}
572     }
573     ld_debug = getenv(_LD("DEBUG"));
574     if (ld_bind_now == NULL)
575 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
576     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
577     libmap_override = getenv(_LD("LIBMAP"));
578     ld_library_path = getenv(_LD("LIBRARY_PATH"));
579     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
580     ld_preload = getenv(_LD("PRELOAD"));
581     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
582     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
583     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
584     if (library_path_rpath != NULL) {
585 	    if (library_path_rpath[0] == 'y' ||
586 		library_path_rpath[0] == 'Y' ||
587 		library_path_rpath[0] == '1')
588 		    ld_library_path_rpath = true;
589 	    else
590 		    ld_library_path_rpath = false;
591     }
592     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
593 	(ld_library_path != NULL) || (ld_preload != NULL) ||
594 	(ld_elf_hints_path != NULL) || ld_loadfltr;
595     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
596     ld_utrace = getenv(_LD("UTRACE"));
597 
598     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
599 	ld_elf_hints_path = ld_elf_hints_default;
600 
601     if (ld_debug != NULL && *ld_debug != '\0')
602 	debug = 1;
603     dbg("%s is initialized, base address = %p", __progname,
604 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
605     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
606     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
607 
608     dbg("initializing thread locks");
609     lockdflt_init();
610 
611     /*
612      * Load the main program, or process its program header if it is
613      * already loaded.
614      */
615     if (fd != -1) {	/* Load the main program. */
616 	dbg("loading main program");
617 	obj_main = map_object(fd, argv0, NULL);
618 	close(fd);
619 	if (obj_main == NULL)
620 	    rtld_die();
621 	max_stack_flags = obj_main->stack_flags;
622     } else {				/* Main program already loaded. */
623 	dbg("processing main program's program header");
624 	assert(aux_info[AT_PHDR] != NULL);
625 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
626 	assert(aux_info[AT_PHNUM] != NULL);
627 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
628 	assert(aux_info[AT_PHENT] != NULL);
629 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
630 	assert(aux_info[AT_ENTRY] != NULL);
631 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
632 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
633 	    rtld_die();
634     }
635 
636     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
637 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
638 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
639 	    if (kexecpath[0] == '/')
640 		    obj_main->path = kexecpath;
641 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
642 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
643 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
644 		    obj_main->path = xstrdup(argv0);
645 	    else
646 		    obj_main->path = xstrdup(buf);
647     } else {
648 	    dbg("No AT_EXECPATH or direct exec");
649 	    obj_main->path = xstrdup(argv0);
650     }
651     dbg("obj_main path %s", obj_main->path);
652     obj_main->mainprog = true;
653 
654     if (aux_info[AT_STACKPROT] != NULL &&
655       aux_info[AT_STACKPROT]->a_un.a_val != 0)
656 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
657 
658 #ifndef COMPAT_32BIT
659     /*
660      * Get the actual dynamic linker pathname from the executable if
661      * possible.  (It should always be possible.)  That ensures that
662      * gdb will find the right dynamic linker even if a non-standard
663      * one is being used.
664      */
665     if (obj_main->interp != NULL &&
666       strcmp(obj_main->interp, obj_rtld.path) != 0) {
667 	free(obj_rtld.path);
668 	obj_rtld.path = xstrdup(obj_main->interp);
669         __progname = obj_rtld.path;
670     }
671 #endif
672 
673     digest_dynamic(obj_main, 0);
674     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
675 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
676 	obj_main->dynsymcount);
677 
678     linkmap_add(obj_main);
679     linkmap_add(&obj_rtld);
680 
681     /* Link the main program into the list of objects. */
682     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
683     obj_count++;
684     obj_loads++;
685 
686     /* Initialize a fake symbol for resolving undefined weak references. */
687     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
688     sym_zero.st_shndx = SHN_UNDEF;
689     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
690 
691     if (!libmap_disable)
692         libmap_disable = (bool)lm_init(libmap_override);
693 
694     dbg("loading LD_PRELOAD libraries");
695     if (load_preload_objects() == -1)
696 	rtld_die();
697     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
698 
699     dbg("loading needed objects");
700     if (load_needed_objects(obj_main, 0) == -1)
701 	rtld_die();
702 
703     /* Make a list of all objects loaded at startup. */
704     last_interposer = obj_main;
705     TAILQ_FOREACH(obj, &obj_list, next) {
706 	if (obj->marker)
707 	    continue;
708 	if (obj->z_interpose && obj != obj_main) {
709 	    objlist_put_after(&list_main, last_interposer, obj);
710 	    last_interposer = obj;
711 	} else {
712 	    objlist_push_tail(&list_main, obj);
713 	}
714     	obj->refcount++;
715     }
716 
717     dbg("checking for required versions");
718     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
719 	rtld_die();
720 
721     if (ld_tracing) {		/* We're done */
722 	trace_loaded_objects(obj_main);
723 	exit(0);
724     }
725 
726     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
727        dump_relocations(obj_main);
728        exit (0);
729     }
730 
731     /*
732      * Processing tls relocations requires having the tls offsets
733      * initialized.  Prepare offsets before starting initial
734      * relocation processing.
735      */
736     dbg("initializing initial thread local storage offsets");
737     STAILQ_FOREACH(entry, &list_main, link) {
738 	/*
739 	 * Allocate all the initial objects out of the static TLS
740 	 * block even if they didn't ask for it.
741 	 */
742 	allocate_tls_offset(entry->obj);
743     }
744 
745     if (relocate_objects(obj_main,
746       ld_bind_now != NULL && *ld_bind_now != '\0',
747       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
748 	rtld_die();
749 
750     dbg("doing copy relocations");
751     if (do_copy_relocations(obj_main) == -1)
752 	rtld_die();
753 
754     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
755        dump_relocations(obj_main);
756        exit (0);
757     }
758 
759     ifunc_init(aux);
760 
761     /*
762      * Setup TLS for main thread.  This must be done after the
763      * relocations are processed, since tls initialization section
764      * might be the subject for relocations.
765      */
766     dbg("initializing initial thread local storage");
767     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
768 
769     dbg("initializing key program variables");
770     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
771     set_program_var("environ", env);
772     set_program_var("__elf_aux_vector", aux);
773 
774     /* Make a list of init functions to call. */
775     objlist_init(&initlist);
776     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
777       preload_tail, &initlist);
778 
779     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
780 
781     map_stacks_exec(NULL);
782 
783     if (!obj_main->crt_no_init) {
784 	/*
785 	 * Make sure we don't call the main program's init and fini
786 	 * functions for binaries linked with old crt1 which calls
787 	 * _init itself.
788 	 */
789 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
790 	obj_main->preinit_array = obj_main->init_array =
791 	    obj_main->fini_array = (Elf_Addr)NULL;
792     }
793 
794     /*
795      * Execute MD initializers required before we call the objects'
796      * init functions.
797      */
798     pre_init();
799 
800     wlock_acquire(rtld_bind_lock, &lockstate);
801 
802     dbg("resolving ifuncs");
803     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
804       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
805 	rtld_die();
806 
807     rtld_exit_ptr = rtld_exit;
808     if (obj_main->crt_no_init)
809 	preinit_main();
810     objlist_call_init(&initlist, &lockstate);
811     _r_debug_postinit(&obj_main->linkmap);
812     objlist_clear(&initlist);
813     dbg("loading filtees");
814     TAILQ_FOREACH(obj, &obj_list, next) {
815 	if (obj->marker)
816 	    continue;
817 	if (ld_loadfltr || obj->z_loadfltr)
818 	    load_filtees(obj, 0, &lockstate);
819     }
820 
821     dbg("enforcing main obj relro");
822     if (obj_enforce_relro(obj_main) == -1)
823 	rtld_die();
824 
825     lock_release(rtld_bind_lock, &lockstate);
826 
827     dbg("transferring control to program entry point = %p", obj_main->entry);
828 
829     /* Return the exit procedure and the program entry point. */
830     *exit_proc = rtld_exit_ptr;
831     *objp = obj_main;
832     return (func_ptr_type) obj_main->entry;
833 }
834 
835 void *
836 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
837 {
838 	void *ptr;
839 	Elf_Addr target;
840 
841 	ptr = (void *)make_function_pointer(def, obj);
842 	target = call_ifunc_resolver(ptr);
843 	return ((void *)target);
844 }
845 
846 /*
847  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
848  * Changes to this function should be applied there as well.
849  */
850 Elf_Addr
851 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
852 {
853     const Elf_Rel *rel;
854     const Elf_Sym *def;
855     const Obj_Entry *defobj;
856     Elf_Addr *where;
857     Elf_Addr target;
858     RtldLockState lockstate;
859 
860     rlock_acquire(rtld_bind_lock, &lockstate);
861     if (sigsetjmp(lockstate.env, 0) != 0)
862 	    lock_upgrade(rtld_bind_lock, &lockstate);
863     if (obj->pltrel)
864 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
865     else
866 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
867 
868     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
869     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
870 	NULL, &lockstate);
871     if (def == NULL)
872 	rtld_die();
873     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
874 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
875     else
876 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
877 
878     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
879       defobj->strtab + def->st_name, basename(obj->path),
880       (void *)target, basename(defobj->path));
881 
882     /*
883      * Write the new contents for the jmpslot. Note that depending on
884      * architecture, the value which we need to return back to the
885      * lazy binding trampoline may or may not be the target
886      * address. The value returned from reloc_jmpslot() is the value
887      * that the trampoline needs.
888      */
889     target = reloc_jmpslot(where, target, defobj, obj, rel);
890     lock_release(rtld_bind_lock, &lockstate);
891     return target;
892 }
893 
894 /*
895  * Error reporting function.  Use it like printf.  If formats the message
896  * into a buffer, and sets things up so that the next call to dlerror()
897  * will return the message.
898  */
899 void
900 _rtld_error(const char *fmt, ...)
901 {
902     static char buf[512];
903     va_list ap;
904 
905     va_start(ap, fmt);
906     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
907     error_message = buf;
908     va_end(ap);
909     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
910 }
911 
912 /*
913  * Return a dynamically-allocated copy of the current error message, if any.
914  */
915 static char *
916 errmsg_save(void)
917 {
918     return error_message == NULL ? NULL : xstrdup(error_message);
919 }
920 
921 /*
922  * Restore the current error message from a copy which was previously saved
923  * by errmsg_save().  The copy is freed.
924  */
925 static void
926 errmsg_restore(char *saved_msg)
927 {
928     if (saved_msg == NULL)
929 	error_message = NULL;
930     else {
931 	_rtld_error("%s", saved_msg);
932 	free(saved_msg);
933     }
934 }
935 
936 static const char *
937 basename(const char *name)
938 {
939     const char *p = strrchr(name, '/');
940     return p != NULL ? p + 1 : name;
941 }
942 
943 static struct utsname uts;
944 
945 static char *
946 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
947     const char *subst, bool may_free)
948 {
949 	char *p, *p1, *res, *resp;
950 	int subst_len, kw_len, subst_count, old_len, new_len;
951 
952 	kw_len = strlen(kw);
953 
954 	/*
955 	 * First, count the number of the keyword occurrences, to
956 	 * preallocate the final string.
957 	 */
958 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
959 		p1 = strstr(p, kw);
960 		if (p1 == NULL)
961 			break;
962 	}
963 
964 	/*
965 	 * If the keyword is not found, just return.
966 	 *
967 	 * Return non-substituted string if resolution failed.  We
968 	 * cannot do anything more reasonable, the failure mode of the
969 	 * caller is unresolved library anyway.
970 	 */
971 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
972 		return (may_free ? real : xstrdup(real));
973 	if (obj != NULL)
974 		subst = obj->origin_path;
975 
976 	/*
977 	 * There is indeed something to substitute.  Calculate the
978 	 * length of the resulting string, and allocate it.
979 	 */
980 	subst_len = strlen(subst);
981 	old_len = strlen(real);
982 	new_len = old_len + (subst_len - kw_len) * subst_count;
983 	res = xmalloc(new_len + 1);
984 
985 	/*
986 	 * Now, execute the substitution loop.
987 	 */
988 	for (p = real, resp = res, *resp = '\0';;) {
989 		p1 = strstr(p, kw);
990 		if (p1 != NULL) {
991 			/* Copy the prefix before keyword. */
992 			memcpy(resp, p, p1 - p);
993 			resp += p1 - p;
994 			/* Keyword replacement. */
995 			memcpy(resp, subst, subst_len);
996 			resp += subst_len;
997 			*resp = '\0';
998 			p = p1 + kw_len;
999 		} else
1000 			break;
1001 	}
1002 
1003 	/* Copy to the end of string and finish. */
1004 	strcat(resp, p);
1005 	if (may_free)
1006 		free(real);
1007 	return (res);
1008 }
1009 
1010 static char *
1011 origin_subst(Obj_Entry *obj, const char *real)
1012 {
1013 	char *res1, *res2, *res3, *res4;
1014 
1015 	if (obj == NULL || !trust)
1016 		return (xstrdup(real));
1017 	if (uts.sysname[0] == '\0') {
1018 		if (uname(&uts) != 0) {
1019 			_rtld_error("utsname failed: %d", errno);
1020 			return (NULL);
1021 		}
1022 	}
1023 	/* __DECONST is safe here since without may_free real is unchanged */
1024 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1025 	    false);
1026 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1027 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1028 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1029 	return (res4);
1030 }
1031 
1032 void
1033 rtld_die(void)
1034 {
1035     const char *msg = dlerror();
1036 
1037     if (msg == NULL)
1038 	msg = "Fatal error";
1039     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1040     rtld_fdputstr(STDERR_FILENO, msg);
1041     rtld_fdputchar(STDERR_FILENO, '\n');
1042     _exit(1);
1043 }
1044 
1045 /*
1046  * Process a shared object's DYNAMIC section, and save the important
1047  * information in its Obj_Entry structure.
1048  */
1049 static void
1050 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1051     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1052 {
1053     const Elf_Dyn *dynp;
1054     Needed_Entry **needed_tail = &obj->needed;
1055     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1056     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1057     const Elf_Hashelt *hashtab;
1058     const Elf32_Word *hashval;
1059     Elf32_Word bkt, nmaskwords;
1060     int bloom_size32;
1061     int plttype = DT_REL;
1062 
1063     *dyn_rpath = NULL;
1064     *dyn_soname = NULL;
1065     *dyn_runpath = NULL;
1066 
1067     obj->bind_now = false;
1068     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1069 	switch (dynp->d_tag) {
1070 
1071 	case DT_REL:
1072 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1073 	    break;
1074 
1075 	case DT_RELSZ:
1076 	    obj->relsize = dynp->d_un.d_val;
1077 	    break;
1078 
1079 	case DT_RELENT:
1080 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1081 	    break;
1082 
1083 	case DT_JMPREL:
1084 	    obj->pltrel = (const Elf_Rel *)
1085 	      (obj->relocbase + dynp->d_un.d_ptr);
1086 	    break;
1087 
1088 	case DT_PLTRELSZ:
1089 	    obj->pltrelsize = dynp->d_un.d_val;
1090 	    break;
1091 
1092 	case DT_RELA:
1093 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1094 	    break;
1095 
1096 	case DT_RELASZ:
1097 	    obj->relasize = dynp->d_un.d_val;
1098 	    break;
1099 
1100 	case DT_RELAENT:
1101 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1102 	    break;
1103 
1104 	case DT_PLTREL:
1105 	    plttype = dynp->d_un.d_val;
1106 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1107 	    break;
1108 
1109 	case DT_SYMTAB:
1110 	    obj->symtab = (const Elf_Sym *)
1111 	      (obj->relocbase + dynp->d_un.d_ptr);
1112 	    break;
1113 
1114 	case DT_SYMENT:
1115 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1116 	    break;
1117 
1118 	case DT_STRTAB:
1119 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1120 	    break;
1121 
1122 	case DT_STRSZ:
1123 	    obj->strsize = dynp->d_un.d_val;
1124 	    break;
1125 
1126 	case DT_VERNEED:
1127 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1128 		dynp->d_un.d_val);
1129 	    break;
1130 
1131 	case DT_VERNEEDNUM:
1132 	    obj->verneednum = dynp->d_un.d_val;
1133 	    break;
1134 
1135 	case DT_VERDEF:
1136 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1137 		dynp->d_un.d_val);
1138 	    break;
1139 
1140 	case DT_VERDEFNUM:
1141 	    obj->verdefnum = dynp->d_un.d_val;
1142 	    break;
1143 
1144 	case DT_VERSYM:
1145 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1146 		dynp->d_un.d_val);
1147 	    break;
1148 
1149 	case DT_HASH:
1150 	    {
1151 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1152 		    dynp->d_un.d_ptr);
1153 		obj->nbuckets = hashtab[0];
1154 		obj->nchains = hashtab[1];
1155 		obj->buckets = hashtab + 2;
1156 		obj->chains = obj->buckets + obj->nbuckets;
1157 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1158 		  obj->buckets != NULL;
1159 	    }
1160 	    break;
1161 
1162 	case DT_GNU_HASH:
1163 	    {
1164 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1165 		    dynp->d_un.d_ptr);
1166 		obj->nbuckets_gnu = hashtab[0];
1167 		obj->symndx_gnu = hashtab[1];
1168 		nmaskwords = hashtab[2];
1169 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1170 		obj->maskwords_bm_gnu = nmaskwords - 1;
1171 		obj->shift2_gnu = hashtab[3];
1172 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1173 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1174 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1175 		  obj->symndx_gnu;
1176 		/* Number of bitmask words is required to be power of 2 */
1177 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1178 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1179 	    }
1180 	    break;
1181 
1182 	case DT_NEEDED:
1183 	    if (!obj->rtld) {
1184 		Needed_Entry *nep = NEW(Needed_Entry);
1185 		nep->name = dynp->d_un.d_val;
1186 		nep->obj = NULL;
1187 		nep->next = NULL;
1188 
1189 		*needed_tail = nep;
1190 		needed_tail = &nep->next;
1191 	    }
1192 	    break;
1193 
1194 	case DT_FILTER:
1195 	    if (!obj->rtld) {
1196 		Needed_Entry *nep = NEW(Needed_Entry);
1197 		nep->name = dynp->d_un.d_val;
1198 		nep->obj = NULL;
1199 		nep->next = NULL;
1200 
1201 		*needed_filtees_tail = nep;
1202 		needed_filtees_tail = &nep->next;
1203 	    }
1204 	    break;
1205 
1206 	case DT_AUXILIARY:
1207 	    if (!obj->rtld) {
1208 		Needed_Entry *nep = NEW(Needed_Entry);
1209 		nep->name = dynp->d_un.d_val;
1210 		nep->obj = NULL;
1211 		nep->next = NULL;
1212 
1213 		*needed_aux_filtees_tail = nep;
1214 		needed_aux_filtees_tail = &nep->next;
1215 	    }
1216 	    break;
1217 
1218 	case DT_PLTGOT:
1219 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1220 	    break;
1221 
1222 	case DT_TEXTREL:
1223 	    obj->textrel = true;
1224 	    break;
1225 
1226 	case DT_SYMBOLIC:
1227 	    obj->symbolic = true;
1228 	    break;
1229 
1230 	case DT_RPATH:
1231 	    /*
1232 	     * We have to wait until later to process this, because we
1233 	     * might not have gotten the address of the string table yet.
1234 	     */
1235 	    *dyn_rpath = dynp;
1236 	    break;
1237 
1238 	case DT_SONAME:
1239 	    *dyn_soname = dynp;
1240 	    break;
1241 
1242 	case DT_RUNPATH:
1243 	    *dyn_runpath = dynp;
1244 	    break;
1245 
1246 	case DT_INIT:
1247 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1248 	    break;
1249 
1250 	case DT_PREINIT_ARRAY:
1251 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1252 	    break;
1253 
1254 	case DT_PREINIT_ARRAYSZ:
1255 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1256 	    break;
1257 
1258 	case DT_INIT_ARRAY:
1259 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1260 	    break;
1261 
1262 	case DT_INIT_ARRAYSZ:
1263 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1264 	    break;
1265 
1266 	case DT_FINI:
1267 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1268 	    break;
1269 
1270 	case DT_FINI_ARRAY:
1271 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1272 	    break;
1273 
1274 	case DT_FINI_ARRAYSZ:
1275 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1276 	    break;
1277 
1278 	/*
1279 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1280 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1281 	 */
1282 
1283 #ifndef __mips__
1284 	case DT_DEBUG:
1285 	    if (!early)
1286 		dbg("Filling in DT_DEBUG entry");
1287 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1288 	    break;
1289 #endif
1290 
1291 	case DT_FLAGS:
1292 		if (dynp->d_un.d_val & DF_ORIGIN)
1293 		    obj->z_origin = true;
1294 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1295 		    obj->symbolic = true;
1296 		if (dynp->d_un.d_val & DF_TEXTREL)
1297 		    obj->textrel = true;
1298 		if (dynp->d_un.d_val & DF_BIND_NOW)
1299 		    obj->bind_now = true;
1300 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1301 		    obj->static_tls = true;
1302 	    break;
1303 #ifdef __mips__
1304 	case DT_MIPS_LOCAL_GOTNO:
1305 		obj->local_gotno = dynp->d_un.d_val;
1306 		break;
1307 
1308 	case DT_MIPS_SYMTABNO:
1309 		obj->symtabno = dynp->d_un.d_val;
1310 		break;
1311 
1312 	case DT_MIPS_GOTSYM:
1313 		obj->gotsym = dynp->d_un.d_val;
1314 		break;
1315 
1316 	case DT_MIPS_RLD_MAP:
1317 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1318 		break;
1319 
1320 	case DT_MIPS_RLD_MAP_REL:
1321 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1322 		// section relative to the address of the tag itself.
1323 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1324 		    (Elf_Addr) &r_debug;
1325 		break;
1326 
1327 	case DT_MIPS_PLTGOT:
1328 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1329 		    dynp->d_un.d_ptr);
1330 		break;
1331 
1332 #endif
1333 
1334 #ifdef __powerpc__
1335 #ifdef __powerpc64__
1336 	case DT_PPC64_GLINK:
1337 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1338 		break;
1339 #else
1340 	case DT_PPC_GOT:
1341 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1342 		break;
1343 #endif
1344 #endif
1345 
1346 	case DT_FLAGS_1:
1347 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1348 		    obj->z_noopen = true;
1349 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1350 		    obj->z_origin = true;
1351 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1352 		    obj->z_global = true;
1353 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1354 		    obj->bind_now = true;
1355 		if (dynp->d_un.d_val & DF_1_NODELETE)
1356 		    obj->z_nodelete = true;
1357 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1358 		    obj->z_loadfltr = true;
1359 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1360 		    obj->z_interpose = true;
1361 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1362 		    obj->z_nodeflib = true;
1363 	    break;
1364 
1365 	default:
1366 	    if (!early) {
1367 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1368 		    (long)dynp->d_tag);
1369 	    }
1370 	    break;
1371 	}
1372     }
1373 
1374     obj->traced = false;
1375 
1376     if (plttype == DT_RELA) {
1377 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1378 	obj->pltrel = NULL;
1379 	obj->pltrelasize = obj->pltrelsize;
1380 	obj->pltrelsize = 0;
1381     }
1382 
1383     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1384     if (obj->valid_hash_sysv)
1385 	obj->dynsymcount = obj->nchains;
1386     else if (obj->valid_hash_gnu) {
1387 	obj->dynsymcount = 0;
1388 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1389 	    if (obj->buckets_gnu[bkt] == 0)
1390 		continue;
1391 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1392 	    do
1393 		obj->dynsymcount++;
1394 	    while ((*hashval++ & 1u) == 0);
1395 	}
1396 	obj->dynsymcount += obj->symndx_gnu;
1397     }
1398 }
1399 
1400 static bool
1401 obj_resolve_origin(Obj_Entry *obj)
1402 {
1403 
1404 	if (obj->origin_path != NULL)
1405 		return (true);
1406 	obj->origin_path = xmalloc(PATH_MAX);
1407 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1408 }
1409 
1410 static void
1411 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1412     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1413 {
1414 
1415 	if (obj->z_origin && !obj_resolve_origin(obj))
1416 		rtld_die();
1417 
1418 	if (dyn_runpath != NULL) {
1419 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1420 		obj->runpath = origin_subst(obj, obj->runpath);
1421 	} else if (dyn_rpath != NULL) {
1422 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1423 		obj->rpath = origin_subst(obj, obj->rpath);
1424 	}
1425 	if (dyn_soname != NULL)
1426 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1427 }
1428 
1429 static void
1430 digest_dynamic(Obj_Entry *obj, int early)
1431 {
1432 	const Elf_Dyn *dyn_rpath;
1433 	const Elf_Dyn *dyn_soname;
1434 	const Elf_Dyn *dyn_runpath;
1435 
1436 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1437 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1438 }
1439 
1440 /*
1441  * Process a shared object's program header.  This is used only for the
1442  * main program, when the kernel has already loaded the main program
1443  * into memory before calling the dynamic linker.  It creates and
1444  * returns an Obj_Entry structure.
1445  */
1446 static Obj_Entry *
1447 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1448 {
1449     Obj_Entry *obj;
1450     const Elf_Phdr *phlimit = phdr + phnum;
1451     const Elf_Phdr *ph;
1452     Elf_Addr note_start, note_end;
1453     int nsegs = 0;
1454 
1455     obj = obj_new();
1456     for (ph = phdr;  ph < phlimit;  ph++) {
1457 	if (ph->p_type != PT_PHDR)
1458 	    continue;
1459 
1460 	obj->phdr = phdr;
1461 	obj->phsize = ph->p_memsz;
1462 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1463 	break;
1464     }
1465 
1466     obj->stack_flags = PF_X | PF_R | PF_W;
1467 
1468     for (ph = phdr;  ph < phlimit;  ph++) {
1469 	switch (ph->p_type) {
1470 
1471 	case PT_INTERP:
1472 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1473 	    break;
1474 
1475 	case PT_LOAD:
1476 	    if (nsegs == 0) {	/* First load segment */
1477 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1478 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1479 	    } else {		/* Last load segment */
1480 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1481 		  obj->vaddrbase;
1482 	    }
1483 	    nsegs++;
1484 	    break;
1485 
1486 	case PT_DYNAMIC:
1487 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1488 	    break;
1489 
1490 	case PT_TLS:
1491 	    obj->tlsindex = 1;
1492 	    obj->tlssize = ph->p_memsz;
1493 	    obj->tlsalign = ph->p_align;
1494 	    obj->tlsinitsize = ph->p_filesz;
1495 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1496 	    break;
1497 
1498 	case PT_GNU_STACK:
1499 	    obj->stack_flags = ph->p_flags;
1500 	    break;
1501 
1502 	case PT_GNU_RELRO:
1503 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1504 	    obj->relro_size = round_page(ph->p_memsz);
1505 	    break;
1506 
1507 	case PT_NOTE:
1508 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1509 	    note_end = note_start + ph->p_filesz;
1510 	    digest_notes(obj, note_start, note_end);
1511 	    break;
1512 	}
1513     }
1514     if (nsegs < 1) {
1515 	_rtld_error("%s: too few PT_LOAD segments", path);
1516 	return NULL;
1517     }
1518 
1519     obj->entry = entry;
1520     return obj;
1521 }
1522 
1523 void
1524 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1525 {
1526 	const Elf_Note *note;
1527 	const char *note_name;
1528 	uintptr_t p;
1529 
1530 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1531 	    note = (const Elf_Note *)((const char *)(note + 1) +
1532 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1533 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1534 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1535 		    note->n_descsz != sizeof(int32_t))
1536 			continue;
1537 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1538 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1539 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1540 			continue;
1541 		note_name = (const char *)(note + 1);
1542 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1543 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1544 			continue;
1545 		switch (note->n_type) {
1546 		case NT_FREEBSD_ABI_TAG:
1547 			/* FreeBSD osrel note */
1548 			p = (uintptr_t)(note + 1);
1549 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1550 			obj->osrel = *(const int32_t *)(p);
1551 			dbg("note osrel %d", obj->osrel);
1552 			break;
1553 		case NT_FREEBSD_FEATURE_CTL:
1554 			/* FreeBSD ABI feature control note */
1555 			p = (uintptr_t)(note + 1);
1556 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1557 			obj->fctl0 = *(const uint32_t *)(p);
1558 			dbg("note fctl0 %#x", obj->fctl0);
1559 			break;
1560 		case NT_FREEBSD_NOINIT_TAG:
1561 			/* FreeBSD 'crt does not call init' note */
1562 			obj->crt_no_init = true;
1563 			dbg("note crt_no_init");
1564 			break;
1565 		}
1566 	}
1567 }
1568 
1569 static Obj_Entry *
1570 dlcheck(void *handle)
1571 {
1572     Obj_Entry *obj;
1573 
1574     TAILQ_FOREACH(obj, &obj_list, next) {
1575 	if (obj == (Obj_Entry *) handle)
1576 	    break;
1577     }
1578 
1579     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1580 	_rtld_error("Invalid shared object handle %p", handle);
1581 	return NULL;
1582     }
1583     return obj;
1584 }
1585 
1586 /*
1587  * If the given object is already in the donelist, return true.  Otherwise
1588  * add the object to the list and return false.
1589  */
1590 static bool
1591 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1592 {
1593     unsigned int i;
1594 
1595     for (i = 0;  i < dlp->num_used;  i++)
1596 	if (dlp->objs[i] == obj)
1597 	    return true;
1598     /*
1599      * Our donelist allocation should always be sufficient.  But if
1600      * our threads locking isn't working properly, more shared objects
1601      * could have been loaded since we allocated the list.  That should
1602      * never happen, but we'll handle it properly just in case it does.
1603      */
1604     if (dlp->num_used < dlp->num_alloc)
1605 	dlp->objs[dlp->num_used++] = obj;
1606     return false;
1607 }
1608 
1609 /*
1610  * Hash function for symbol table lookup.  Don't even think about changing
1611  * this.  It is specified by the System V ABI.
1612  */
1613 unsigned long
1614 elf_hash(const char *name)
1615 {
1616     const unsigned char *p = (const unsigned char *) name;
1617     unsigned long h = 0;
1618     unsigned long g;
1619 
1620     while (*p != '\0') {
1621 	h = (h << 4) + *p++;
1622 	if ((g = h & 0xf0000000) != 0)
1623 	    h ^= g >> 24;
1624 	h &= ~g;
1625     }
1626     return h;
1627 }
1628 
1629 /*
1630  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1631  * unsigned in case it's implemented with a wider type.
1632  */
1633 static uint32_t
1634 gnu_hash(const char *s)
1635 {
1636 	uint32_t h;
1637 	unsigned char c;
1638 
1639 	h = 5381;
1640 	for (c = *s; c != '\0'; c = *++s)
1641 		h = h * 33 + c;
1642 	return (h & 0xffffffff);
1643 }
1644 
1645 
1646 /*
1647  * Find the library with the given name, and return its full pathname.
1648  * The returned string is dynamically allocated.  Generates an error
1649  * message and returns NULL if the library cannot be found.
1650  *
1651  * If the second argument is non-NULL, then it refers to an already-
1652  * loaded shared object, whose library search path will be searched.
1653  *
1654  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1655  * descriptor (which is close-on-exec) will be passed out via the third
1656  * argument.
1657  *
1658  * The search order is:
1659  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1660  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1661  *   LD_LIBRARY_PATH
1662  *   DT_RUNPATH in the referencing file
1663  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1664  *	 from list)
1665  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1666  *
1667  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1668  */
1669 static char *
1670 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1671 {
1672 	char *pathname, *refobj_path;
1673 	const char *name;
1674 	bool nodeflib, objgiven;
1675 
1676 	objgiven = refobj != NULL;
1677 
1678 	if (libmap_disable || !objgiven ||
1679 	    (name = lm_find(refobj->path, xname)) == NULL)
1680 		name = xname;
1681 
1682 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1683 		if (name[0] != '/' && !trust) {
1684 			_rtld_error("Absolute pathname required "
1685 			    "for shared object \"%s\"", name);
1686 			return (NULL);
1687 		}
1688 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1689 		    __DECONST(char *, name)));
1690 	}
1691 
1692 	dbg(" Searching for \"%s\"", name);
1693 	refobj_path = objgiven ? refobj->path : NULL;
1694 
1695 	/*
1696 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1697 	 * back to pre-conforming behaviour if user requested so with
1698 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1699 	 * nodeflib.
1700 	 */
1701 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1702 		pathname = search_library_path(name, ld_library_path,
1703 		    refobj_path, fdp);
1704 		if (pathname != NULL)
1705 			return (pathname);
1706 		if (refobj != NULL) {
1707 			pathname = search_library_path(name, refobj->rpath,
1708 			    refobj_path, fdp);
1709 			if (pathname != NULL)
1710 				return (pathname);
1711 		}
1712 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1713 		if (pathname != NULL)
1714 			return (pathname);
1715 		pathname = search_library_path(name, gethints(false),
1716 		    refobj_path, fdp);
1717 		if (pathname != NULL)
1718 			return (pathname);
1719 		pathname = search_library_path(name, ld_standard_library_path,
1720 		    refobj_path, fdp);
1721 		if (pathname != NULL)
1722 			return (pathname);
1723 	} else {
1724 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1725 		if (objgiven) {
1726 			pathname = search_library_path(name, refobj->rpath,
1727 			    refobj->path, fdp);
1728 			if (pathname != NULL)
1729 				return (pathname);
1730 		}
1731 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1732 			pathname = search_library_path(name, obj_main->rpath,
1733 			    refobj_path, fdp);
1734 			if (pathname != NULL)
1735 				return (pathname);
1736 		}
1737 		pathname = search_library_path(name, ld_library_path,
1738 		    refobj_path, fdp);
1739 		if (pathname != NULL)
1740 			return (pathname);
1741 		if (objgiven) {
1742 			pathname = search_library_path(name, refobj->runpath,
1743 			    refobj_path, fdp);
1744 			if (pathname != NULL)
1745 				return (pathname);
1746 		}
1747 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1748 		if (pathname != NULL)
1749 			return (pathname);
1750 		pathname = search_library_path(name, gethints(nodeflib),
1751 		    refobj_path, fdp);
1752 		if (pathname != NULL)
1753 			return (pathname);
1754 		if (objgiven && !nodeflib) {
1755 			pathname = search_library_path(name,
1756 			    ld_standard_library_path, refobj_path, fdp);
1757 			if (pathname != NULL)
1758 				return (pathname);
1759 		}
1760 	}
1761 
1762 	if (objgiven && refobj->path != NULL) {
1763 		_rtld_error("Shared object \"%s\" not found, "
1764 		    "required by \"%s\"", name, basename(refobj->path));
1765 	} else {
1766 		_rtld_error("Shared object \"%s\" not found", name);
1767 	}
1768 	return (NULL);
1769 }
1770 
1771 /*
1772  * Given a symbol number in a referencing object, find the corresponding
1773  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1774  * no definition was found.  Returns a pointer to the Obj_Entry of the
1775  * defining object via the reference parameter DEFOBJ_OUT.
1776  */
1777 const Elf_Sym *
1778 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1779     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1780     RtldLockState *lockstate)
1781 {
1782     const Elf_Sym *ref;
1783     const Elf_Sym *def;
1784     const Obj_Entry *defobj;
1785     const Ver_Entry *ve;
1786     SymLook req;
1787     const char *name;
1788     int res;
1789 
1790     /*
1791      * If we have already found this symbol, get the information from
1792      * the cache.
1793      */
1794     if (symnum >= refobj->dynsymcount)
1795 	return NULL;	/* Bad object */
1796     if (cache != NULL && cache[symnum].sym != NULL) {
1797 	*defobj_out = cache[symnum].obj;
1798 	return cache[symnum].sym;
1799     }
1800 
1801     ref = refobj->symtab + symnum;
1802     name = refobj->strtab + ref->st_name;
1803     def = NULL;
1804     defobj = NULL;
1805     ve = NULL;
1806 
1807     /*
1808      * We don't have to do a full scale lookup if the symbol is local.
1809      * We know it will bind to the instance in this load module; to
1810      * which we already have a pointer (ie ref). By not doing a lookup,
1811      * we not only improve performance, but it also avoids unresolvable
1812      * symbols when local symbols are not in the hash table. This has
1813      * been seen with the ia64 toolchain.
1814      */
1815     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1816 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1817 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1818 		symnum);
1819 	}
1820 	symlook_init(&req, name);
1821 	req.flags = flags;
1822 	ve = req.ventry = fetch_ventry(refobj, symnum);
1823 	req.lockstate = lockstate;
1824 	res = symlook_default(&req, refobj);
1825 	if (res == 0) {
1826 	    def = req.sym_out;
1827 	    defobj = req.defobj_out;
1828 	}
1829     } else {
1830 	def = ref;
1831 	defobj = refobj;
1832     }
1833 
1834     /*
1835      * If we found no definition and the reference is weak, treat the
1836      * symbol as having the value zero.
1837      */
1838     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1839 	def = &sym_zero;
1840 	defobj = obj_main;
1841     }
1842 
1843     if (def != NULL) {
1844 	*defobj_out = defobj;
1845 	/* Record the information in the cache to avoid subsequent lookups. */
1846 	if (cache != NULL) {
1847 	    cache[symnum].sym = def;
1848 	    cache[symnum].obj = defobj;
1849 	}
1850     } else {
1851 	if (refobj != &obj_rtld)
1852 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1853 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1854     }
1855     return def;
1856 }
1857 
1858 /*
1859  * Return the search path from the ldconfig hints file, reading it if
1860  * necessary.  If nostdlib is true, then the default search paths are
1861  * not added to result.
1862  *
1863  * Returns NULL if there are problems with the hints file,
1864  * or if the search path there is empty.
1865  */
1866 static const char *
1867 gethints(bool nostdlib)
1868 {
1869 	static char *filtered_path;
1870 	static const char *hints;
1871 	static struct elfhints_hdr hdr;
1872 	struct fill_search_info_args sargs, hargs;
1873 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1874 	struct dl_serpath *SLPpath, *hintpath;
1875 	char *p;
1876 	struct stat hint_stat;
1877 	unsigned int SLPndx, hintndx, fndx, fcount;
1878 	int fd;
1879 	size_t flen;
1880 	uint32_t dl;
1881 	bool skip;
1882 
1883 	/* First call, read the hints file */
1884 	if (hints == NULL) {
1885 		/* Keep from trying again in case the hints file is bad. */
1886 		hints = "";
1887 
1888 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1889 			return (NULL);
1890 
1891 		/*
1892 		 * Check of hdr.dirlistlen value against type limit
1893 		 * intends to pacify static analyzers.  Further
1894 		 * paranoia leads to checks that dirlist is fully
1895 		 * contained in the file range.
1896 		 */
1897 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1898 		    hdr.magic != ELFHINTS_MAGIC ||
1899 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1900 		    fstat(fd, &hint_stat) == -1) {
1901 cleanup1:
1902 			close(fd);
1903 			hdr.dirlistlen = 0;
1904 			return (NULL);
1905 		}
1906 		dl = hdr.strtab;
1907 		if (dl + hdr.dirlist < dl)
1908 			goto cleanup1;
1909 		dl += hdr.dirlist;
1910 		if (dl + hdr.dirlistlen < dl)
1911 			goto cleanup1;
1912 		dl += hdr.dirlistlen;
1913 		if (dl > hint_stat.st_size)
1914 			goto cleanup1;
1915 		p = xmalloc(hdr.dirlistlen + 1);
1916 		if (pread(fd, p, hdr.dirlistlen + 1,
1917 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1918 		    p[hdr.dirlistlen] != '\0') {
1919 			free(p);
1920 			goto cleanup1;
1921 		}
1922 		hints = p;
1923 		close(fd);
1924 	}
1925 
1926 	/*
1927 	 * If caller agreed to receive list which includes the default
1928 	 * paths, we are done. Otherwise, if we still did not
1929 	 * calculated filtered result, do it now.
1930 	 */
1931 	if (!nostdlib)
1932 		return (hints[0] != '\0' ? hints : NULL);
1933 	if (filtered_path != NULL)
1934 		goto filt_ret;
1935 
1936 	/*
1937 	 * Obtain the list of all configured search paths, and the
1938 	 * list of the default paths.
1939 	 *
1940 	 * First estimate the size of the results.
1941 	 */
1942 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1943 	smeta.dls_cnt = 0;
1944 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1945 	hmeta.dls_cnt = 0;
1946 
1947 	sargs.request = RTLD_DI_SERINFOSIZE;
1948 	sargs.serinfo = &smeta;
1949 	hargs.request = RTLD_DI_SERINFOSIZE;
1950 	hargs.serinfo = &hmeta;
1951 
1952 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1953 	    &sargs);
1954 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1955 
1956 	SLPinfo = xmalloc(smeta.dls_size);
1957 	hintinfo = xmalloc(hmeta.dls_size);
1958 
1959 	/*
1960 	 * Next fetch both sets of paths.
1961 	 */
1962 	sargs.request = RTLD_DI_SERINFO;
1963 	sargs.serinfo = SLPinfo;
1964 	sargs.serpath = &SLPinfo->dls_serpath[0];
1965 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1966 
1967 	hargs.request = RTLD_DI_SERINFO;
1968 	hargs.serinfo = hintinfo;
1969 	hargs.serpath = &hintinfo->dls_serpath[0];
1970 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1971 
1972 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
1973 	    &sargs);
1974 	path_enumerate(hints, fill_search_info, NULL, &hargs);
1975 
1976 	/*
1977 	 * Now calculate the difference between two sets, by excluding
1978 	 * standard paths from the full set.
1979 	 */
1980 	fndx = 0;
1981 	fcount = 0;
1982 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1983 	hintpath = &hintinfo->dls_serpath[0];
1984 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1985 		skip = false;
1986 		SLPpath = &SLPinfo->dls_serpath[0];
1987 		/*
1988 		 * Check each standard path against current.
1989 		 */
1990 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1991 			/* matched, skip the path */
1992 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1993 				skip = true;
1994 				break;
1995 			}
1996 		}
1997 		if (skip)
1998 			continue;
1999 		/*
2000 		 * Not matched against any standard path, add the path
2001 		 * to result. Separate consequtive paths with ':'.
2002 		 */
2003 		if (fcount > 0) {
2004 			filtered_path[fndx] = ':';
2005 			fndx++;
2006 		}
2007 		fcount++;
2008 		flen = strlen(hintpath->dls_name);
2009 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2010 		fndx += flen;
2011 	}
2012 	filtered_path[fndx] = '\0';
2013 
2014 	free(SLPinfo);
2015 	free(hintinfo);
2016 
2017 filt_ret:
2018 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2019 }
2020 
2021 static void
2022 init_dag(Obj_Entry *root)
2023 {
2024     const Needed_Entry *needed;
2025     const Objlist_Entry *elm;
2026     DoneList donelist;
2027 
2028     if (root->dag_inited)
2029 	return;
2030     donelist_init(&donelist);
2031 
2032     /* Root object belongs to own DAG. */
2033     objlist_push_tail(&root->dldags, root);
2034     objlist_push_tail(&root->dagmembers, root);
2035     donelist_check(&donelist, root);
2036 
2037     /*
2038      * Add dependencies of root object to DAG in breadth order
2039      * by exploiting the fact that each new object get added
2040      * to the tail of the dagmembers list.
2041      */
2042     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2043 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2044 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2045 		continue;
2046 	    objlist_push_tail(&needed->obj->dldags, root);
2047 	    objlist_push_tail(&root->dagmembers, needed->obj);
2048 	}
2049     }
2050     root->dag_inited = true;
2051 }
2052 
2053 static void
2054 init_marker(Obj_Entry *marker)
2055 {
2056 
2057 	bzero(marker, sizeof(*marker));
2058 	marker->marker = true;
2059 }
2060 
2061 Obj_Entry *
2062 globallist_curr(const Obj_Entry *obj)
2063 {
2064 
2065 	for (;;) {
2066 		if (obj == NULL)
2067 			return (NULL);
2068 		if (!obj->marker)
2069 			return (__DECONST(Obj_Entry *, obj));
2070 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2071 	}
2072 }
2073 
2074 Obj_Entry *
2075 globallist_next(const Obj_Entry *obj)
2076 {
2077 
2078 	for (;;) {
2079 		obj = TAILQ_NEXT(obj, next);
2080 		if (obj == NULL)
2081 			return (NULL);
2082 		if (!obj->marker)
2083 			return (__DECONST(Obj_Entry *, obj));
2084 	}
2085 }
2086 
2087 /* Prevent the object from being unmapped while the bind lock is dropped. */
2088 static void
2089 hold_object(Obj_Entry *obj)
2090 {
2091 
2092 	obj->holdcount++;
2093 }
2094 
2095 static void
2096 unhold_object(Obj_Entry *obj)
2097 {
2098 
2099 	assert(obj->holdcount > 0);
2100 	if (--obj->holdcount == 0 && obj->unholdfree)
2101 		release_object(obj);
2102 }
2103 
2104 static void
2105 process_z(Obj_Entry *root)
2106 {
2107 	const Objlist_Entry *elm;
2108 	Obj_Entry *obj;
2109 
2110 	/*
2111 	 * Walk over object DAG and process every dependent object
2112 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2113 	 * to grow their own DAG.
2114 	 *
2115 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2116 	 * symlook_global() to work.
2117 	 *
2118 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2119 	 */
2120 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2121 		obj = elm->obj;
2122 		if (obj == NULL)
2123 			continue;
2124 		if (obj->z_nodelete && !obj->ref_nodel) {
2125 			dbg("obj %s -z nodelete", obj->path);
2126 			init_dag(obj);
2127 			ref_dag(obj);
2128 			obj->ref_nodel = true;
2129 		}
2130 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2131 			dbg("obj %s -z global", obj->path);
2132 			objlist_push_tail(&list_global, obj);
2133 			init_dag(obj);
2134 		}
2135 	}
2136 }
2137 /*
2138  * Initialize the dynamic linker.  The argument is the address at which
2139  * the dynamic linker has been mapped into memory.  The primary task of
2140  * this function is to relocate the dynamic linker.
2141  */
2142 static void
2143 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2144 {
2145     Obj_Entry objtmp;	/* Temporary rtld object */
2146     const Elf_Ehdr *ehdr;
2147     const Elf_Dyn *dyn_rpath;
2148     const Elf_Dyn *dyn_soname;
2149     const Elf_Dyn *dyn_runpath;
2150 
2151 #ifdef RTLD_INIT_PAGESIZES_EARLY
2152     /* The page size is required by the dynamic memory allocator. */
2153     init_pagesizes(aux_info);
2154 #endif
2155 
2156     /*
2157      * Conjure up an Obj_Entry structure for the dynamic linker.
2158      *
2159      * The "path" member can't be initialized yet because string constants
2160      * cannot yet be accessed. Below we will set it correctly.
2161      */
2162     memset(&objtmp, 0, sizeof(objtmp));
2163     objtmp.path = NULL;
2164     objtmp.rtld = true;
2165     objtmp.mapbase = mapbase;
2166 #ifdef PIC
2167     objtmp.relocbase = mapbase;
2168 #endif
2169 
2170     objtmp.dynamic = rtld_dynamic(&objtmp);
2171     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2172     assert(objtmp.needed == NULL);
2173 #if !defined(__mips__)
2174     /* MIPS has a bogus DT_TEXTREL. */
2175     assert(!objtmp.textrel);
2176 #endif
2177     /*
2178      * Temporarily put the dynamic linker entry into the object list, so
2179      * that symbols can be found.
2180      */
2181     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2182 
2183     ehdr = (Elf_Ehdr *)mapbase;
2184     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2185     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2186 
2187     /* Initialize the object list. */
2188     TAILQ_INIT(&obj_list);
2189 
2190     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2191     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2192 
2193 #ifndef RTLD_INIT_PAGESIZES_EARLY
2194     /* The page size is required by the dynamic memory allocator. */
2195     init_pagesizes(aux_info);
2196 #endif
2197 
2198     if (aux_info[AT_OSRELDATE] != NULL)
2199 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2200 
2201     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2202 
2203     /* Replace the path with a dynamically allocated copy. */
2204     obj_rtld.path = xstrdup(ld_path_rtld);
2205 
2206     r_debug.r_brk = r_debug_state;
2207     r_debug.r_state = RT_CONSISTENT;
2208 }
2209 
2210 /*
2211  * Retrieve the array of supported page sizes.  The kernel provides the page
2212  * sizes in increasing order.
2213  */
2214 static void
2215 init_pagesizes(Elf_Auxinfo **aux_info)
2216 {
2217 	static size_t psa[MAXPAGESIZES];
2218 	int mib[2];
2219 	size_t len, size;
2220 
2221 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2222 	    NULL) {
2223 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2224 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2225 	} else {
2226 		len = 2;
2227 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2228 			size = sizeof(psa);
2229 		else {
2230 			/* As a fallback, retrieve the base page size. */
2231 			size = sizeof(psa[0]);
2232 			if (aux_info[AT_PAGESZ] != NULL) {
2233 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2234 				goto psa_filled;
2235 			} else {
2236 				mib[0] = CTL_HW;
2237 				mib[1] = HW_PAGESIZE;
2238 				len = 2;
2239 			}
2240 		}
2241 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2242 			_rtld_error("sysctl for hw.pagesize(s) failed");
2243 			rtld_die();
2244 		}
2245 psa_filled:
2246 		pagesizes = psa;
2247 	}
2248 	npagesizes = size / sizeof(pagesizes[0]);
2249 	/* Discard any invalid entries at the end of the array. */
2250 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2251 		npagesizes--;
2252 }
2253 
2254 /*
2255  * Add the init functions from a needed object list (and its recursive
2256  * needed objects) to "list".  This is not used directly; it is a helper
2257  * function for initlist_add_objects().  The write lock must be held
2258  * when this function is called.
2259  */
2260 static void
2261 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2262 {
2263     /* Recursively process the successor needed objects. */
2264     if (needed->next != NULL)
2265 	initlist_add_neededs(needed->next, list);
2266 
2267     /* Process the current needed object. */
2268     if (needed->obj != NULL)
2269 	initlist_add_objects(needed->obj, needed->obj, list);
2270 }
2271 
2272 /*
2273  * Scan all of the DAGs rooted in the range of objects from "obj" to
2274  * "tail" and add their init functions to "list".  This recurses over
2275  * the DAGs and ensure the proper init ordering such that each object's
2276  * needed libraries are initialized before the object itself.  At the
2277  * same time, this function adds the objects to the global finalization
2278  * list "list_fini" in the opposite order.  The write lock must be
2279  * held when this function is called.
2280  */
2281 static void
2282 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2283 {
2284     Obj_Entry *nobj;
2285 
2286     if (obj->init_scanned || obj->init_done)
2287 	return;
2288     obj->init_scanned = true;
2289 
2290     /* Recursively process the successor objects. */
2291     nobj = globallist_next(obj);
2292     if (nobj != NULL && obj != tail)
2293 	initlist_add_objects(nobj, tail, list);
2294 
2295     /* Recursively process the needed objects. */
2296     if (obj->needed != NULL)
2297 	initlist_add_neededs(obj->needed, list);
2298     if (obj->needed_filtees != NULL)
2299 	initlist_add_neededs(obj->needed_filtees, list);
2300     if (obj->needed_aux_filtees != NULL)
2301 	initlist_add_neededs(obj->needed_aux_filtees, list);
2302 
2303     /* Add the object to the init list. */
2304     objlist_push_tail(list, obj);
2305 
2306     /* Add the object to the global fini list in the reverse order. */
2307     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2308       && !obj->on_fini_list) {
2309 	objlist_push_head(&list_fini, obj);
2310 	obj->on_fini_list = true;
2311     }
2312 }
2313 
2314 #ifndef FPTR_TARGET
2315 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2316 #endif
2317 
2318 static void
2319 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2320 {
2321     Needed_Entry *needed, *needed1;
2322 
2323     for (needed = n; needed != NULL; needed = needed->next) {
2324 	if (needed->obj != NULL) {
2325 	    dlclose_locked(needed->obj, lockstate);
2326 	    needed->obj = NULL;
2327 	}
2328     }
2329     for (needed = n; needed != NULL; needed = needed1) {
2330 	needed1 = needed->next;
2331 	free(needed);
2332     }
2333 }
2334 
2335 static void
2336 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2337 {
2338 
2339 	free_needed_filtees(obj->needed_filtees, lockstate);
2340 	obj->needed_filtees = NULL;
2341 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2342 	obj->needed_aux_filtees = NULL;
2343 	obj->filtees_loaded = false;
2344 }
2345 
2346 static void
2347 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2348     RtldLockState *lockstate)
2349 {
2350 
2351     for (; needed != NULL; needed = needed->next) {
2352 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2353 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2354 	  RTLD_LOCAL, lockstate);
2355     }
2356 }
2357 
2358 static void
2359 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2360 {
2361 
2362     lock_restart_for_upgrade(lockstate);
2363     if (!obj->filtees_loaded) {
2364 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2365 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2366 	obj->filtees_loaded = true;
2367     }
2368 }
2369 
2370 static int
2371 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2372 {
2373     Obj_Entry *obj1;
2374 
2375     for (; needed != NULL; needed = needed->next) {
2376 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2377 	  flags & ~RTLD_LO_NOLOAD);
2378 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2379 	    return (-1);
2380     }
2381     return (0);
2382 }
2383 
2384 /*
2385  * Given a shared object, traverse its list of needed objects, and load
2386  * each of them.  Returns 0 on success.  Generates an error message and
2387  * returns -1 on failure.
2388  */
2389 static int
2390 load_needed_objects(Obj_Entry *first, int flags)
2391 {
2392     Obj_Entry *obj;
2393 
2394     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2395 	if (obj->marker)
2396 	    continue;
2397 	if (process_needed(obj, obj->needed, flags) == -1)
2398 	    return (-1);
2399     }
2400     return (0);
2401 }
2402 
2403 static int
2404 load_preload_objects(void)
2405 {
2406     char *p = ld_preload;
2407     Obj_Entry *obj;
2408     static const char delim[] = " \t:;";
2409 
2410     if (p == NULL)
2411 	return 0;
2412 
2413     p += strspn(p, delim);
2414     while (*p != '\0') {
2415 	size_t len = strcspn(p, delim);
2416 	char savech;
2417 
2418 	savech = p[len];
2419 	p[len] = '\0';
2420 	obj = load_object(p, -1, NULL, 0);
2421 	if (obj == NULL)
2422 	    return -1;	/* XXX - cleanup */
2423 	obj->z_interpose = true;
2424 	p[len] = savech;
2425 	p += len;
2426 	p += strspn(p, delim);
2427     }
2428     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2429     return 0;
2430 }
2431 
2432 static const char *
2433 printable_path(const char *path)
2434 {
2435 
2436 	return (path == NULL ? "<unknown>" : path);
2437 }
2438 
2439 /*
2440  * Load a shared object into memory, if it is not already loaded.  The
2441  * object may be specified by name or by user-supplied file descriptor
2442  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2443  * duplicate is.
2444  *
2445  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2446  * on failure.
2447  */
2448 static Obj_Entry *
2449 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2450 {
2451     Obj_Entry *obj;
2452     int fd;
2453     struct stat sb;
2454     char *path;
2455 
2456     fd = -1;
2457     if (name != NULL) {
2458 	TAILQ_FOREACH(obj, &obj_list, next) {
2459 	    if (obj->marker || obj->doomed)
2460 		continue;
2461 	    if (object_match_name(obj, name))
2462 		return (obj);
2463 	}
2464 
2465 	path = find_library(name, refobj, &fd);
2466 	if (path == NULL)
2467 	    return (NULL);
2468     } else
2469 	path = NULL;
2470 
2471     if (fd >= 0) {
2472 	/*
2473 	 * search_library_pathfds() opens a fresh file descriptor for the
2474 	 * library, so there is no need to dup().
2475 	 */
2476     } else if (fd_u == -1) {
2477 	/*
2478 	 * If we didn't find a match by pathname, or the name is not
2479 	 * supplied, open the file and check again by device and inode.
2480 	 * This avoids false mismatches caused by multiple links or ".."
2481 	 * in pathnames.
2482 	 *
2483 	 * To avoid a race, we open the file and use fstat() rather than
2484 	 * using stat().
2485 	 */
2486 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2487 	    _rtld_error("Cannot open \"%s\"", path);
2488 	    free(path);
2489 	    return (NULL);
2490 	}
2491     } else {
2492 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2493 	if (fd == -1) {
2494 	    _rtld_error("Cannot dup fd");
2495 	    free(path);
2496 	    return (NULL);
2497 	}
2498     }
2499     if (fstat(fd, &sb) == -1) {
2500 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2501 	close(fd);
2502 	free(path);
2503 	return NULL;
2504     }
2505     TAILQ_FOREACH(obj, &obj_list, next) {
2506 	if (obj->marker || obj->doomed)
2507 	    continue;
2508 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2509 	    break;
2510     }
2511     if (obj != NULL && name != NULL) {
2512 	object_add_name(obj, name);
2513 	free(path);
2514 	close(fd);
2515 	return obj;
2516     }
2517     if (flags & RTLD_LO_NOLOAD) {
2518 	free(path);
2519 	close(fd);
2520 	return (NULL);
2521     }
2522 
2523     /* First use of this object, so we must map it in */
2524     obj = do_load_object(fd, name, path, &sb, flags);
2525     if (obj == NULL)
2526 	free(path);
2527     close(fd);
2528 
2529     return obj;
2530 }
2531 
2532 static Obj_Entry *
2533 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2534   int flags)
2535 {
2536     Obj_Entry *obj;
2537     struct statfs fs;
2538 
2539     /*
2540      * but first, make sure that environment variables haven't been
2541      * used to circumvent the noexec flag on a filesystem.
2542      */
2543     if (dangerous_ld_env) {
2544 	if (fstatfs(fd, &fs) != 0) {
2545 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2546 	    return NULL;
2547 	}
2548 	if (fs.f_flags & MNT_NOEXEC) {
2549 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2550 	    return NULL;
2551 	}
2552     }
2553     dbg("loading \"%s\"", printable_path(path));
2554     obj = map_object(fd, printable_path(path), sbp);
2555     if (obj == NULL)
2556         return NULL;
2557 
2558     /*
2559      * If DT_SONAME is present in the object, digest_dynamic2 already
2560      * added it to the object names.
2561      */
2562     if (name != NULL)
2563 	object_add_name(obj, name);
2564     obj->path = path;
2565     digest_dynamic(obj, 0);
2566     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2567 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2568     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2569       RTLD_LO_DLOPEN) {
2570 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2571 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2572 	munmap(obj->mapbase, obj->mapsize);
2573 	obj_free(obj);
2574 	return (NULL);
2575     }
2576 
2577     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2578     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2579     obj_count++;
2580     obj_loads++;
2581     linkmap_add(obj);	/* for GDB & dlinfo() */
2582     max_stack_flags |= obj->stack_flags;
2583 
2584     dbg("  %p .. %p: %s", obj->mapbase,
2585          obj->mapbase + obj->mapsize - 1, obj->path);
2586     if (obj->textrel)
2587 	dbg("  WARNING: %s has impure text", obj->path);
2588     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2589 	obj->path);
2590 
2591     return obj;
2592 }
2593 
2594 static Obj_Entry *
2595 obj_from_addr(const void *addr)
2596 {
2597     Obj_Entry *obj;
2598 
2599     TAILQ_FOREACH(obj, &obj_list, next) {
2600 	if (obj->marker)
2601 	    continue;
2602 	if (addr < (void *) obj->mapbase)
2603 	    continue;
2604 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2605 	    return obj;
2606     }
2607     return NULL;
2608 }
2609 
2610 static void
2611 preinit_main(void)
2612 {
2613     Elf_Addr *preinit_addr;
2614     int index;
2615 
2616     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2617     if (preinit_addr == NULL)
2618 	return;
2619 
2620     for (index = 0; index < obj_main->preinit_array_num; index++) {
2621 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2622 	    dbg("calling preinit function for %s at %p", obj_main->path,
2623 	      (void *)preinit_addr[index]);
2624 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2625 	      0, 0, obj_main->path);
2626 	    call_init_pointer(obj_main, preinit_addr[index]);
2627 	}
2628     }
2629 }
2630 
2631 /*
2632  * Call the finalization functions for each of the objects in "list"
2633  * belonging to the DAG of "root" and referenced once. If NULL "root"
2634  * is specified, every finalization function will be called regardless
2635  * of the reference count and the list elements won't be freed. All of
2636  * the objects are expected to have non-NULL fini functions.
2637  */
2638 static void
2639 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2640 {
2641     Objlist_Entry *elm;
2642     char *saved_msg;
2643     Elf_Addr *fini_addr;
2644     int index;
2645 
2646     assert(root == NULL || root->refcount == 1);
2647 
2648     if (root != NULL)
2649 	root->doomed = true;
2650 
2651     /*
2652      * Preserve the current error message since a fini function might
2653      * call into the dynamic linker and overwrite it.
2654      */
2655     saved_msg = errmsg_save();
2656     do {
2657 	STAILQ_FOREACH(elm, list, link) {
2658 	    if (root != NULL && (elm->obj->refcount != 1 ||
2659 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2660 		continue;
2661 	    /* Remove object from fini list to prevent recursive invocation. */
2662 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2663 	    /* Ensure that new references cannot be acquired. */
2664 	    elm->obj->doomed = true;
2665 
2666 	    hold_object(elm->obj);
2667 	    lock_release(rtld_bind_lock, lockstate);
2668 	    /*
2669 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2670 	     * When this happens, DT_FINI_ARRAY is processed first.
2671 	     */
2672 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2673 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2674 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2675 		  index--) {
2676 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2677 			dbg("calling fini function for %s at %p",
2678 			    elm->obj->path, (void *)fini_addr[index]);
2679 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2680 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2681 			call_initfini_pointer(elm->obj, fini_addr[index]);
2682 		    }
2683 		}
2684 	    }
2685 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2686 		dbg("calling fini function for %s at %p", elm->obj->path,
2687 		    (void *)elm->obj->fini);
2688 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2689 		    0, 0, elm->obj->path);
2690 		call_initfini_pointer(elm->obj, elm->obj->fini);
2691 	    }
2692 	    wlock_acquire(rtld_bind_lock, lockstate);
2693 	    unhold_object(elm->obj);
2694 	    /* No need to free anything if process is going down. */
2695 	    if (root != NULL)
2696 	    	free(elm);
2697 	    /*
2698 	     * We must restart the list traversal after every fini call
2699 	     * because a dlclose() call from the fini function or from
2700 	     * another thread might have modified the reference counts.
2701 	     */
2702 	    break;
2703 	}
2704     } while (elm != NULL);
2705     errmsg_restore(saved_msg);
2706 }
2707 
2708 /*
2709  * Call the initialization functions for each of the objects in
2710  * "list".  All of the objects are expected to have non-NULL init
2711  * functions.
2712  */
2713 static void
2714 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2715 {
2716     Objlist_Entry *elm;
2717     Obj_Entry *obj;
2718     char *saved_msg;
2719     Elf_Addr *init_addr;
2720     void (*reg)(void (*)(void));
2721     int index;
2722 
2723     /*
2724      * Clean init_scanned flag so that objects can be rechecked and
2725      * possibly initialized earlier if any of vectors called below
2726      * cause the change by using dlopen.
2727      */
2728     TAILQ_FOREACH(obj, &obj_list, next) {
2729 	if (obj->marker)
2730 	    continue;
2731 	obj->init_scanned = false;
2732     }
2733 
2734     /*
2735      * Preserve the current error message since an init function might
2736      * call into the dynamic linker and overwrite it.
2737      */
2738     saved_msg = errmsg_save();
2739     STAILQ_FOREACH(elm, list, link) {
2740 	if (elm->obj->init_done) /* Initialized early. */
2741 	    continue;
2742 	/*
2743 	 * Race: other thread might try to use this object before current
2744 	 * one completes the initialization. Not much can be done here
2745 	 * without better locking.
2746 	 */
2747 	elm->obj->init_done = true;
2748 	hold_object(elm->obj);
2749 	reg = NULL;
2750 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2751 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2752 		    "__libc_atexit", lockstate);
2753 	}
2754 	lock_release(rtld_bind_lock, lockstate);
2755 	if (reg != NULL) {
2756 		reg(rtld_exit);
2757 		rtld_exit_ptr = rtld_nop_exit;
2758 	}
2759 
2760         /*
2761          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2762          * When this happens, DT_INIT is processed first.
2763          */
2764 	if (elm->obj->init != (Elf_Addr)NULL) {
2765 	    dbg("calling init function for %s at %p", elm->obj->path,
2766 	        (void *)elm->obj->init);
2767 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2768 	        0, 0, elm->obj->path);
2769 	    call_initfini_pointer(elm->obj, elm->obj->init);
2770 	}
2771 	init_addr = (Elf_Addr *)elm->obj->init_array;
2772 	if (init_addr != NULL) {
2773 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2774 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2775 		    dbg("calling init function for %s at %p", elm->obj->path,
2776 			(void *)init_addr[index]);
2777 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2778 			(void *)init_addr[index], 0, 0, elm->obj->path);
2779 		    call_init_pointer(elm->obj, init_addr[index]);
2780 		}
2781 	    }
2782 	}
2783 	wlock_acquire(rtld_bind_lock, lockstate);
2784 	unhold_object(elm->obj);
2785     }
2786     errmsg_restore(saved_msg);
2787 }
2788 
2789 static void
2790 objlist_clear(Objlist *list)
2791 {
2792     Objlist_Entry *elm;
2793 
2794     while (!STAILQ_EMPTY(list)) {
2795 	elm = STAILQ_FIRST(list);
2796 	STAILQ_REMOVE_HEAD(list, link);
2797 	free(elm);
2798     }
2799 }
2800 
2801 static Objlist_Entry *
2802 objlist_find(Objlist *list, const Obj_Entry *obj)
2803 {
2804     Objlist_Entry *elm;
2805 
2806     STAILQ_FOREACH(elm, list, link)
2807 	if (elm->obj == obj)
2808 	    return elm;
2809     return NULL;
2810 }
2811 
2812 static void
2813 objlist_init(Objlist *list)
2814 {
2815     STAILQ_INIT(list);
2816 }
2817 
2818 static void
2819 objlist_push_head(Objlist *list, Obj_Entry *obj)
2820 {
2821     Objlist_Entry *elm;
2822 
2823     elm = NEW(Objlist_Entry);
2824     elm->obj = obj;
2825     STAILQ_INSERT_HEAD(list, elm, link);
2826 }
2827 
2828 static void
2829 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2830 {
2831     Objlist_Entry *elm;
2832 
2833     elm = NEW(Objlist_Entry);
2834     elm->obj = obj;
2835     STAILQ_INSERT_TAIL(list, elm, link);
2836 }
2837 
2838 static void
2839 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2840 {
2841 	Objlist_Entry *elm, *listelm;
2842 
2843 	STAILQ_FOREACH(listelm, list, link) {
2844 		if (listelm->obj == listobj)
2845 			break;
2846 	}
2847 	elm = NEW(Objlist_Entry);
2848 	elm->obj = obj;
2849 	if (listelm != NULL)
2850 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2851 	else
2852 		STAILQ_INSERT_TAIL(list, elm, link);
2853 }
2854 
2855 static void
2856 objlist_remove(Objlist *list, Obj_Entry *obj)
2857 {
2858     Objlist_Entry *elm;
2859 
2860     if ((elm = objlist_find(list, obj)) != NULL) {
2861 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2862 	free(elm);
2863     }
2864 }
2865 
2866 /*
2867  * Relocate dag rooted in the specified object.
2868  * Returns 0 on success, or -1 on failure.
2869  */
2870 
2871 static int
2872 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2873     int flags, RtldLockState *lockstate)
2874 {
2875 	Objlist_Entry *elm;
2876 	int error;
2877 
2878 	error = 0;
2879 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2880 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2881 		    lockstate);
2882 		if (error == -1)
2883 			break;
2884 	}
2885 	return (error);
2886 }
2887 
2888 /*
2889  * Prepare for, or clean after, relocating an object marked with
2890  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2891  * segments are remapped read-write.  After relocations are done, the
2892  * segment's permissions are returned back to the modes specified in
2893  * the phdrs.  If any relocation happened, or always for wired
2894  * program, COW is triggered.
2895  */
2896 static int
2897 reloc_textrel_prot(Obj_Entry *obj, bool before)
2898 {
2899 	const Elf_Phdr *ph;
2900 	void *base;
2901 	size_t l, sz;
2902 	int prot;
2903 
2904 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2905 	    l--, ph++) {
2906 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2907 			continue;
2908 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2909 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2910 		    trunc_page(ph->p_vaddr);
2911 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2912 		if (mprotect(base, sz, prot) == -1) {
2913 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2914 			    obj->path, before ? "en" : "dis",
2915 			    rtld_strerror(errno));
2916 			return (-1);
2917 		}
2918 	}
2919 	return (0);
2920 }
2921 
2922 /*
2923  * Relocate single object.
2924  * Returns 0 on success, or -1 on failure.
2925  */
2926 static int
2927 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2928     int flags, RtldLockState *lockstate)
2929 {
2930 
2931 	if (obj->relocated)
2932 		return (0);
2933 	obj->relocated = true;
2934 	if (obj != rtldobj)
2935 		dbg("relocating \"%s\"", obj->path);
2936 
2937 	if (obj->symtab == NULL || obj->strtab == NULL ||
2938 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2939 		_rtld_error("%s: Shared object has no run-time symbol table",
2940 			    obj->path);
2941 		return (-1);
2942 	}
2943 
2944 	/* There are relocations to the write-protected text segment. */
2945 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2946 		return (-1);
2947 
2948 	/* Process the non-PLT non-IFUNC relocations. */
2949 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2950 		return (-1);
2951 
2952 	/* Re-protected the text segment. */
2953 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2954 		return (-1);
2955 
2956 	/* Set the special PLT or GOT entries. */
2957 	init_pltgot(obj);
2958 
2959 	/* Process the PLT relocations. */
2960 	if (reloc_plt(obj, flags, lockstate) == -1)
2961 		return (-1);
2962 	/* Relocate the jump slots if we are doing immediate binding. */
2963 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
2964 	    lockstate) == -1)
2965 		return (-1);
2966 
2967 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2968 		return (-1);
2969 
2970 	/*
2971 	 * Set up the magic number and version in the Obj_Entry.  These
2972 	 * were checked in the crt1.o from the original ElfKit, so we
2973 	 * set them for backward compatibility.
2974 	 */
2975 	obj->magic = RTLD_MAGIC;
2976 	obj->version = RTLD_VERSION;
2977 
2978 	return (0);
2979 }
2980 
2981 /*
2982  * Relocate newly-loaded shared objects.  The argument is a pointer to
2983  * the Obj_Entry for the first such object.  All objects from the first
2984  * to the end of the list of objects are relocated.  Returns 0 on success,
2985  * or -1 on failure.
2986  */
2987 static int
2988 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2989     int flags, RtldLockState *lockstate)
2990 {
2991 	Obj_Entry *obj;
2992 	int error;
2993 
2994 	for (error = 0, obj = first;  obj != NULL;
2995 	    obj = TAILQ_NEXT(obj, next)) {
2996 		if (obj->marker)
2997 			continue;
2998 		error = relocate_object(obj, bind_now, rtldobj, flags,
2999 		    lockstate);
3000 		if (error == -1)
3001 			break;
3002 	}
3003 	return (error);
3004 }
3005 
3006 /*
3007  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3008  * referencing STT_GNU_IFUNC symbols is postponed till the other
3009  * relocations are done.  The indirect functions specified as
3010  * ifunc are allowed to call other symbols, so we need to have
3011  * objects relocated before asking for resolution from indirects.
3012  *
3013  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3014  * instead of the usual lazy handling of PLT slots.  It is
3015  * consistent with how GNU does it.
3016  */
3017 static int
3018 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3019     RtldLockState *lockstate)
3020 {
3021 
3022 	if (obj->ifuncs_resolved)
3023 		return (0);
3024 	obj->ifuncs_resolved = true;
3025 	if (!obj->irelative && !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3026 		return (0);
3027 	if (obj_disable_relro(obj) == -1 ||
3028 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3029 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3030 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3031 	    obj_enforce_relro(obj) == -1)
3032 		return (-1);
3033 	return (0);
3034 }
3035 
3036 static int
3037 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3038     RtldLockState *lockstate)
3039 {
3040 	Objlist_Entry *elm;
3041 	Obj_Entry *obj;
3042 
3043 	STAILQ_FOREACH(elm, list, link) {
3044 		obj = elm->obj;
3045 		if (obj->marker)
3046 			continue;
3047 		if (resolve_object_ifunc(obj, bind_now, flags,
3048 		    lockstate) == -1)
3049 			return (-1);
3050 	}
3051 	return (0);
3052 }
3053 
3054 /*
3055  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3056  * before the process exits.
3057  */
3058 static void
3059 rtld_exit(void)
3060 {
3061     RtldLockState lockstate;
3062 
3063     wlock_acquire(rtld_bind_lock, &lockstate);
3064     dbg("rtld_exit()");
3065     objlist_call_fini(&list_fini, NULL, &lockstate);
3066     /* No need to remove the items from the list, since we are exiting. */
3067     if (!libmap_disable)
3068         lm_fini();
3069     lock_release(rtld_bind_lock, &lockstate);
3070 }
3071 
3072 static void
3073 rtld_nop_exit(void)
3074 {
3075 }
3076 
3077 /*
3078  * Iterate over a search path, translate each element, and invoke the
3079  * callback on the result.
3080  */
3081 static void *
3082 path_enumerate(const char *path, path_enum_proc callback,
3083     const char *refobj_path, void *arg)
3084 {
3085     const char *trans;
3086     if (path == NULL)
3087 	return (NULL);
3088 
3089     path += strspn(path, ":;");
3090     while (*path != '\0') {
3091 	size_t len;
3092 	char  *res;
3093 
3094 	len = strcspn(path, ":;");
3095 	trans = lm_findn(refobj_path, path, len);
3096 	if (trans)
3097 	    res = callback(trans, strlen(trans), arg);
3098 	else
3099 	    res = callback(path, len, arg);
3100 
3101 	if (res != NULL)
3102 	    return (res);
3103 
3104 	path += len;
3105 	path += strspn(path, ":;");
3106     }
3107 
3108     return (NULL);
3109 }
3110 
3111 struct try_library_args {
3112     const char	*name;
3113     size_t	 namelen;
3114     char	*buffer;
3115     size_t	 buflen;
3116     int		 fd;
3117 };
3118 
3119 static void *
3120 try_library_path(const char *dir, size_t dirlen, void *param)
3121 {
3122     struct try_library_args *arg;
3123     int fd;
3124 
3125     arg = param;
3126     if (*dir == '/' || trust) {
3127 	char *pathname;
3128 
3129 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3130 		return (NULL);
3131 
3132 	pathname = arg->buffer;
3133 	strncpy(pathname, dir, dirlen);
3134 	pathname[dirlen] = '/';
3135 	strcpy(pathname + dirlen + 1, arg->name);
3136 
3137 	dbg("  Trying \"%s\"", pathname);
3138 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3139 	if (fd >= 0) {
3140 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3141 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3142 	    strcpy(pathname, arg->buffer);
3143 	    arg->fd = fd;
3144 	    return (pathname);
3145 	} else {
3146 	    dbg("  Failed to open \"%s\": %s",
3147 		pathname, rtld_strerror(errno));
3148 	}
3149     }
3150     return (NULL);
3151 }
3152 
3153 static char *
3154 search_library_path(const char *name, const char *path,
3155     const char *refobj_path, int *fdp)
3156 {
3157     char *p;
3158     struct try_library_args arg;
3159 
3160     if (path == NULL)
3161 	return NULL;
3162 
3163     arg.name = name;
3164     arg.namelen = strlen(name);
3165     arg.buffer = xmalloc(PATH_MAX);
3166     arg.buflen = PATH_MAX;
3167     arg.fd = -1;
3168 
3169     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3170     *fdp = arg.fd;
3171 
3172     free(arg.buffer);
3173 
3174     return (p);
3175 }
3176 
3177 
3178 /*
3179  * Finds the library with the given name using the directory descriptors
3180  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3181  *
3182  * Returns a freshly-opened close-on-exec file descriptor for the library,
3183  * or -1 if the library cannot be found.
3184  */
3185 static char *
3186 search_library_pathfds(const char *name, const char *path, int *fdp)
3187 {
3188 	char *envcopy, *fdstr, *found, *last_token;
3189 	size_t len;
3190 	int dirfd, fd;
3191 
3192 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3193 
3194 	/* Don't load from user-specified libdirs into setuid binaries. */
3195 	if (!trust)
3196 		return (NULL);
3197 
3198 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3199 	if (path == NULL)
3200 		return (NULL);
3201 
3202 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3203 	if (name[0] == '/') {
3204 		dbg("Absolute path (%s) passed to %s", name, __func__);
3205 		return (NULL);
3206 	}
3207 
3208 	/*
3209 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3210 	 * copy of the path, as strtok_r rewrites separator tokens
3211 	 * with '\0'.
3212 	 */
3213 	found = NULL;
3214 	envcopy = xstrdup(path);
3215 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3216 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3217 		dirfd = parse_integer(fdstr);
3218 		if (dirfd < 0) {
3219 			_rtld_error("failed to parse directory FD: '%s'",
3220 				fdstr);
3221 			break;
3222 		}
3223 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3224 		if (fd >= 0) {
3225 			*fdp = fd;
3226 			len = strlen(fdstr) + strlen(name) + 3;
3227 			found = xmalloc(len);
3228 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3229 				_rtld_error("error generating '%d/%s'",
3230 				    dirfd, name);
3231 				rtld_die();
3232 			}
3233 			dbg("open('%s') => %d", found, fd);
3234 			break;
3235 		}
3236 	}
3237 	free(envcopy);
3238 
3239 	return (found);
3240 }
3241 
3242 
3243 int
3244 dlclose(void *handle)
3245 {
3246 	RtldLockState lockstate;
3247 	int error;
3248 
3249 	wlock_acquire(rtld_bind_lock, &lockstate);
3250 	error = dlclose_locked(handle, &lockstate);
3251 	lock_release(rtld_bind_lock, &lockstate);
3252 	return (error);
3253 }
3254 
3255 static int
3256 dlclose_locked(void *handle, RtldLockState *lockstate)
3257 {
3258     Obj_Entry *root;
3259 
3260     root = dlcheck(handle);
3261     if (root == NULL)
3262 	return -1;
3263     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3264 	root->path);
3265 
3266     /* Unreference the object and its dependencies. */
3267     root->dl_refcount--;
3268 
3269     if (root->refcount == 1) {
3270 	/*
3271 	 * The object will be no longer referenced, so we must unload it.
3272 	 * First, call the fini functions.
3273 	 */
3274 	objlist_call_fini(&list_fini, root, lockstate);
3275 
3276 	unref_dag(root);
3277 
3278 	/* Finish cleaning up the newly-unreferenced objects. */
3279 	GDB_STATE(RT_DELETE,&root->linkmap);
3280 	unload_object(root, lockstate);
3281 	GDB_STATE(RT_CONSISTENT,NULL);
3282     } else
3283 	unref_dag(root);
3284 
3285     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3286     return 0;
3287 }
3288 
3289 char *
3290 dlerror(void)
3291 {
3292     char *msg = error_message;
3293     error_message = NULL;
3294     return msg;
3295 }
3296 
3297 /*
3298  * This function is deprecated and has no effect.
3299  */
3300 void
3301 dllockinit(void *context,
3302     void *(*_lock_create)(void *context) __unused,
3303     void (*_rlock_acquire)(void *lock) __unused,
3304     void (*_wlock_acquire)(void *lock)  __unused,
3305     void (*_lock_release)(void *lock) __unused,
3306     void (*_lock_destroy)(void *lock) __unused,
3307     void (*context_destroy)(void *context))
3308 {
3309     static void *cur_context;
3310     static void (*cur_context_destroy)(void *);
3311 
3312     /* Just destroy the context from the previous call, if necessary. */
3313     if (cur_context_destroy != NULL)
3314 	cur_context_destroy(cur_context);
3315     cur_context = context;
3316     cur_context_destroy = context_destroy;
3317 }
3318 
3319 void *
3320 dlopen(const char *name, int mode)
3321 {
3322 
3323 	return (rtld_dlopen(name, -1, mode));
3324 }
3325 
3326 void *
3327 fdlopen(int fd, int mode)
3328 {
3329 
3330 	return (rtld_dlopen(NULL, fd, mode));
3331 }
3332 
3333 static void *
3334 rtld_dlopen(const char *name, int fd, int mode)
3335 {
3336     RtldLockState lockstate;
3337     int lo_flags;
3338 
3339     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3340     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3341     if (ld_tracing != NULL) {
3342 	rlock_acquire(rtld_bind_lock, &lockstate);
3343 	if (sigsetjmp(lockstate.env, 0) != 0)
3344 	    lock_upgrade(rtld_bind_lock, &lockstate);
3345 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3346 	lock_release(rtld_bind_lock, &lockstate);
3347     }
3348     lo_flags = RTLD_LO_DLOPEN;
3349     if (mode & RTLD_NODELETE)
3350 	    lo_flags |= RTLD_LO_NODELETE;
3351     if (mode & RTLD_NOLOAD)
3352 	    lo_flags |= RTLD_LO_NOLOAD;
3353     if (ld_tracing != NULL)
3354 	    lo_flags |= RTLD_LO_TRACE;
3355 
3356     return (dlopen_object(name, fd, obj_main, lo_flags,
3357       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3358 }
3359 
3360 static void
3361 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3362 {
3363 
3364 	obj->dl_refcount--;
3365 	unref_dag(obj);
3366 	if (obj->refcount == 0)
3367 		unload_object(obj, lockstate);
3368 }
3369 
3370 static Obj_Entry *
3371 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3372     int mode, RtldLockState *lockstate)
3373 {
3374     Obj_Entry *old_obj_tail;
3375     Obj_Entry *obj;
3376     Objlist initlist;
3377     RtldLockState mlockstate;
3378     int result;
3379 
3380     objlist_init(&initlist);
3381 
3382     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3383 	wlock_acquire(rtld_bind_lock, &mlockstate);
3384 	lockstate = &mlockstate;
3385     }
3386     GDB_STATE(RT_ADD,NULL);
3387 
3388     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3389     obj = NULL;
3390     if (name == NULL && fd == -1) {
3391 	obj = obj_main;
3392 	obj->refcount++;
3393     } else {
3394 	obj = load_object(name, fd, refobj, lo_flags);
3395     }
3396 
3397     if (obj) {
3398 	obj->dl_refcount++;
3399 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3400 	    objlist_push_tail(&list_global, obj);
3401 	if (globallist_next(old_obj_tail) != NULL) {
3402 	    /* We loaded something new. */
3403 	    assert(globallist_next(old_obj_tail) == obj);
3404 	    result = 0;
3405 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3406 	      !allocate_tls_offset(obj)) {
3407 		_rtld_error("%s: No space available "
3408 		  "for static Thread Local Storage", obj->path);
3409 		result = -1;
3410 	    }
3411 	    if (result != -1)
3412 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3413 		    RTLD_LO_EARLY));
3414 	    init_dag(obj);
3415 	    ref_dag(obj);
3416 	    if (result != -1)
3417 		result = rtld_verify_versions(&obj->dagmembers);
3418 	    if (result != -1 && ld_tracing)
3419 		goto trace;
3420 	    if (result == -1 || relocate_object_dag(obj,
3421 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3422 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3423 	      lockstate) == -1) {
3424 		dlopen_cleanup(obj, lockstate);
3425 		obj = NULL;
3426 	    } else if (lo_flags & RTLD_LO_EARLY) {
3427 		/*
3428 		 * Do not call the init functions for early loaded
3429 		 * filtees.  The image is still not initialized enough
3430 		 * for them to work.
3431 		 *
3432 		 * Our object is found by the global object list and
3433 		 * will be ordered among all init calls done right
3434 		 * before transferring control to main.
3435 		 */
3436 	    } else {
3437 		/* Make list of init functions to call. */
3438 		initlist_add_objects(obj, obj, &initlist);
3439 	    }
3440 	    /*
3441 	     * Process all no_delete or global objects here, given
3442 	     * them own DAGs to prevent their dependencies from being
3443 	     * unloaded.  This has to be done after we have loaded all
3444 	     * of the dependencies, so that we do not miss any.
3445 	     */
3446 	    if (obj != NULL)
3447 		process_z(obj);
3448 	} else {
3449 	    /*
3450 	     * Bump the reference counts for objects on this DAG.  If
3451 	     * this is the first dlopen() call for the object that was
3452 	     * already loaded as a dependency, initialize the dag
3453 	     * starting at it.
3454 	     */
3455 	    init_dag(obj);
3456 	    ref_dag(obj);
3457 
3458 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3459 		goto trace;
3460 	}
3461 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3462 	  obj->z_nodelete) && !obj->ref_nodel) {
3463 	    dbg("obj %s nodelete", obj->path);
3464 	    ref_dag(obj);
3465 	    obj->z_nodelete = obj->ref_nodel = true;
3466 	}
3467     }
3468 
3469     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3470 	name);
3471     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3472 
3473     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3474 	map_stacks_exec(lockstate);
3475 	if (obj != NULL)
3476 	    distribute_static_tls(&initlist, lockstate);
3477     }
3478 
3479     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3480       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3481       lockstate) == -1) {
3482 	objlist_clear(&initlist);
3483 	dlopen_cleanup(obj, lockstate);
3484 	if (lockstate == &mlockstate)
3485 	    lock_release(rtld_bind_lock, lockstate);
3486 	return (NULL);
3487     }
3488 
3489     if (!(lo_flags & RTLD_LO_EARLY)) {
3490 	/* Call the init functions. */
3491 	objlist_call_init(&initlist, lockstate);
3492     }
3493     objlist_clear(&initlist);
3494     if (lockstate == &mlockstate)
3495 	lock_release(rtld_bind_lock, lockstate);
3496     return obj;
3497 trace:
3498     trace_loaded_objects(obj);
3499     if (lockstate == &mlockstate)
3500 	lock_release(rtld_bind_lock, lockstate);
3501     exit(0);
3502 }
3503 
3504 static void *
3505 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3506     int flags)
3507 {
3508     DoneList donelist;
3509     const Obj_Entry *obj, *defobj;
3510     const Elf_Sym *def;
3511     SymLook req;
3512     RtldLockState lockstate;
3513     tls_index ti;
3514     void *sym;
3515     int res;
3516 
3517     def = NULL;
3518     defobj = NULL;
3519     symlook_init(&req, name);
3520     req.ventry = ve;
3521     req.flags = flags | SYMLOOK_IN_PLT;
3522     req.lockstate = &lockstate;
3523 
3524     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3525     rlock_acquire(rtld_bind_lock, &lockstate);
3526     if (sigsetjmp(lockstate.env, 0) != 0)
3527 	    lock_upgrade(rtld_bind_lock, &lockstate);
3528     if (handle == NULL || handle == RTLD_NEXT ||
3529 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3530 
3531 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3532 	    _rtld_error("Cannot determine caller's shared object");
3533 	    lock_release(rtld_bind_lock, &lockstate);
3534 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3535 	    return NULL;
3536 	}
3537 	if (handle == NULL) {	/* Just the caller's shared object. */
3538 	    res = symlook_obj(&req, obj);
3539 	    if (res == 0) {
3540 		def = req.sym_out;
3541 		defobj = req.defobj_out;
3542 	    }
3543 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3544 		   handle == RTLD_SELF) { /* ... caller included */
3545 	    if (handle == RTLD_NEXT)
3546 		obj = globallist_next(obj);
3547 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3548 		if (obj->marker)
3549 		    continue;
3550 		res = symlook_obj(&req, obj);
3551 		if (res == 0) {
3552 		    if (def == NULL ||
3553 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3554 			def = req.sym_out;
3555 			defobj = req.defobj_out;
3556 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3557 			    break;
3558 		    }
3559 		}
3560 	    }
3561 	    /*
3562 	     * Search the dynamic linker itself, and possibly resolve the
3563 	     * symbol from there.  This is how the application links to
3564 	     * dynamic linker services such as dlopen.
3565 	     */
3566 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3567 		res = symlook_obj(&req, &obj_rtld);
3568 		if (res == 0) {
3569 		    def = req.sym_out;
3570 		    defobj = req.defobj_out;
3571 		}
3572 	    }
3573 	} else {
3574 	    assert(handle == RTLD_DEFAULT);
3575 	    res = symlook_default(&req, obj);
3576 	    if (res == 0) {
3577 		defobj = req.defobj_out;
3578 		def = req.sym_out;
3579 	    }
3580 	}
3581     } else {
3582 	if ((obj = dlcheck(handle)) == NULL) {
3583 	    lock_release(rtld_bind_lock, &lockstate);
3584 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3585 	    return NULL;
3586 	}
3587 
3588 	donelist_init(&donelist);
3589 	if (obj->mainprog) {
3590             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3591 	    res = symlook_global(&req, &donelist);
3592 	    if (res == 0) {
3593 		def = req.sym_out;
3594 		defobj = req.defobj_out;
3595 	    }
3596 	    /*
3597 	     * Search the dynamic linker itself, and possibly resolve the
3598 	     * symbol from there.  This is how the application links to
3599 	     * dynamic linker services such as dlopen.
3600 	     */
3601 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3602 		res = symlook_obj(&req, &obj_rtld);
3603 		if (res == 0) {
3604 		    def = req.sym_out;
3605 		    defobj = req.defobj_out;
3606 		}
3607 	    }
3608 	}
3609 	else {
3610 	    /* Search the whole DAG rooted at the given object. */
3611 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3612 	    if (res == 0) {
3613 		def = req.sym_out;
3614 		defobj = req.defobj_out;
3615 	    }
3616 	}
3617     }
3618 
3619     if (def != NULL) {
3620 	lock_release(rtld_bind_lock, &lockstate);
3621 
3622 	/*
3623 	 * The value required by the caller is derived from the value
3624 	 * of the symbol. this is simply the relocated value of the
3625 	 * symbol.
3626 	 */
3627 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3628 	    sym = make_function_pointer(def, defobj);
3629 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3630 	    sym = rtld_resolve_ifunc(defobj, def);
3631 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3632 	    ti.ti_module = defobj->tlsindex;
3633 	    ti.ti_offset = def->st_value;
3634 	    sym = __tls_get_addr(&ti);
3635 	} else
3636 	    sym = defobj->relocbase + def->st_value;
3637 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3638 	return (sym);
3639     }
3640 
3641     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3642       ve != NULL ? ve->name : "");
3643     lock_release(rtld_bind_lock, &lockstate);
3644     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3645     return NULL;
3646 }
3647 
3648 void *
3649 dlsym(void *handle, const char *name)
3650 {
3651 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3652 	    SYMLOOK_DLSYM);
3653 }
3654 
3655 dlfunc_t
3656 dlfunc(void *handle, const char *name)
3657 {
3658 	union {
3659 		void *d;
3660 		dlfunc_t f;
3661 	} rv;
3662 
3663 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3664 	    SYMLOOK_DLSYM);
3665 	return (rv.f);
3666 }
3667 
3668 void *
3669 dlvsym(void *handle, const char *name, const char *version)
3670 {
3671 	Ver_Entry ventry;
3672 
3673 	ventry.name = version;
3674 	ventry.file = NULL;
3675 	ventry.hash = elf_hash(version);
3676 	ventry.flags= 0;
3677 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3678 	    SYMLOOK_DLSYM);
3679 }
3680 
3681 int
3682 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3683 {
3684     const Obj_Entry *obj;
3685     RtldLockState lockstate;
3686 
3687     rlock_acquire(rtld_bind_lock, &lockstate);
3688     obj = obj_from_addr(addr);
3689     if (obj == NULL) {
3690         _rtld_error("No shared object contains address");
3691 	lock_release(rtld_bind_lock, &lockstate);
3692         return (0);
3693     }
3694     rtld_fill_dl_phdr_info(obj, phdr_info);
3695     lock_release(rtld_bind_lock, &lockstate);
3696     return (1);
3697 }
3698 
3699 int
3700 dladdr(const void *addr, Dl_info *info)
3701 {
3702     const Obj_Entry *obj;
3703     const Elf_Sym *def;
3704     void *symbol_addr;
3705     unsigned long symoffset;
3706     RtldLockState lockstate;
3707 
3708     rlock_acquire(rtld_bind_lock, &lockstate);
3709     obj = obj_from_addr(addr);
3710     if (obj == NULL) {
3711         _rtld_error("No shared object contains address");
3712 	lock_release(rtld_bind_lock, &lockstate);
3713         return 0;
3714     }
3715     info->dli_fname = obj->path;
3716     info->dli_fbase = obj->mapbase;
3717     info->dli_saddr = (void *)0;
3718     info->dli_sname = NULL;
3719 
3720     /*
3721      * Walk the symbol list looking for the symbol whose address is
3722      * closest to the address sent in.
3723      */
3724     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3725         def = obj->symtab + symoffset;
3726 
3727         /*
3728          * For skip the symbol if st_shndx is either SHN_UNDEF or
3729          * SHN_COMMON.
3730          */
3731         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3732             continue;
3733 
3734         /*
3735          * If the symbol is greater than the specified address, or if it
3736          * is further away from addr than the current nearest symbol,
3737          * then reject it.
3738          */
3739         symbol_addr = obj->relocbase + def->st_value;
3740         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3741             continue;
3742 
3743         /* Update our idea of the nearest symbol. */
3744         info->dli_sname = obj->strtab + def->st_name;
3745         info->dli_saddr = symbol_addr;
3746 
3747         /* Exact match? */
3748         if (info->dli_saddr == addr)
3749             break;
3750     }
3751     lock_release(rtld_bind_lock, &lockstate);
3752     return 1;
3753 }
3754 
3755 int
3756 dlinfo(void *handle, int request, void *p)
3757 {
3758     const Obj_Entry *obj;
3759     RtldLockState lockstate;
3760     int error;
3761 
3762     rlock_acquire(rtld_bind_lock, &lockstate);
3763 
3764     if (handle == NULL || handle == RTLD_SELF) {
3765 	void *retaddr;
3766 
3767 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3768 	if ((obj = obj_from_addr(retaddr)) == NULL)
3769 	    _rtld_error("Cannot determine caller's shared object");
3770     } else
3771 	obj = dlcheck(handle);
3772 
3773     if (obj == NULL) {
3774 	lock_release(rtld_bind_lock, &lockstate);
3775 	return (-1);
3776     }
3777 
3778     error = 0;
3779     switch (request) {
3780     case RTLD_DI_LINKMAP:
3781 	*((struct link_map const **)p) = &obj->linkmap;
3782 	break;
3783     case RTLD_DI_ORIGIN:
3784 	error = rtld_dirname(obj->path, p);
3785 	break;
3786 
3787     case RTLD_DI_SERINFOSIZE:
3788     case RTLD_DI_SERINFO:
3789 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3790 	break;
3791 
3792     default:
3793 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3794 	error = -1;
3795     }
3796 
3797     lock_release(rtld_bind_lock, &lockstate);
3798 
3799     return (error);
3800 }
3801 
3802 static void
3803 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3804 {
3805 
3806 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3807 	phdr_info->dlpi_name = obj->path;
3808 	phdr_info->dlpi_phdr = obj->phdr;
3809 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3810 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3811 	phdr_info->dlpi_tls_data = obj->tlsinit;
3812 	phdr_info->dlpi_adds = obj_loads;
3813 	phdr_info->dlpi_subs = obj_loads - obj_count;
3814 }
3815 
3816 int
3817 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3818 {
3819 	struct dl_phdr_info phdr_info;
3820 	Obj_Entry *obj, marker;
3821 	RtldLockState bind_lockstate, phdr_lockstate;
3822 	int error;
3823 
3824 	init_marker(&marker);
3825 	error = 0;
3826 
3827 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3828 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3829 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3830 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3831 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3832 		hold_object(obj);
3833 		lock_release(rtld_bind_lock, &bind_lockstate);
3834 
3835 		error = callback(&phdr_info, sizeof phdr_info, param);
3836 
3837 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3838 		unhold_object(obj);
3839 		obj = globallist_next(&marker);
3840 		TAILQ_REMOVE(&obj_list, &marker, next);
3841 		if (error != 0) {
3842 			lock_release(rtld_bind_lock, &bind_lockstate);
3843 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3844 			return (error);
3845 		}
3846 	}
3847 
3848 	if (error == 0) {
3849 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3850 		lock_release(rtld_bind_lock, &bind_lockstate);
3851 		error = callback(&phdr_info, sizeof(phdr_info), param);
3852 	}
3853 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3854 	return (error);
3855 }
3856 
3857 static void *
3858 fill_search_info(const char *dir, size_t dirlen, void *param)
3859 {
3860     struct fill_search_info_args *arg;
3861 
3862     arg = param;
3863 
3864     if (arg->request == RTLD_DI_SERINFOSIZE) {
3865 	arg->serinfo->dls_cnt ++;
3866 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3867     } else {
3868 	struct dl_serpath *s_entry;
3869 
3870 	s_entry = arg->serpath;
3871 	s_entry->dls_name  = arg->strspace;
3872 	s_entry->dls_flags = arg->flags;
3873 
3874 	strncpy(arg->strspace, dir, dirlen);
3875 	arg->strspace[dirlen] = '\0';
3876 
3877 	arg->strspace += dirlen + 1;
3878 	arg->serpath++;
3879     }
3880 
3881     return (NULL);
3882 }
3883 
3884 static int
3885 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3886 {
3887     struct dl_serinfo _info;
3888     struct fill_search_info_args args;
3889 
3890     args.request = RTLD_DI_SERINFOSIZE;
3891     args.serinfo = &_info;
3892 
3893     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3894     _info.dls_cnt  = 0;
3895 
3896     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3897     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3898     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3899     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3900     if (!obj->z_nodeflib)
3901       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3902 
3903 
3904     if (request == RTLD_DI_SERINFOSIZE) {
3905 	info->dls_size = _info.dls_size;
3906 	info->dls_cnt = _info.dls_cnt;
3907 	return (0);
3908     }
3909 
3910     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3911 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3912 	return (-1);
3913     }
3914 
3915     args.request  = RTLD_DI_SERINFO;
3916     args.serinfo  = info;
3917     args.serpath  = &info->dls_serpath[0];
3918     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3919 
3920     args.flags = LA_SER_RUNPATH;
3921     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3922 	return (-1);
3923 
3924     args.flags = LA_SER_LIBPATH;
3925     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3926 	return (-1);
3927 
3928     args.flags = LA_SER_RUNPATH;
3929     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3930 	return (-1);
3931 
3932     args.flags = LA_SER_CONFIG;
3933     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3934       != NULL)
3935 	return (-1);
3936 
3937     args.flags = LA_SER_DEFAULT;
3938     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
3939       fill_search_info, NULL, &args) != NULL)
3940 	return (-1);
3941     return (0);
3942 }
3943 
3944 static int
3945 rtld_dirname(const char *path, char *bname)
3946 {
3947     const char *endp;
3948 
3949     /* Empty or NULL string gets treated as "." */
3950     if (path == NULL || *path == '\0') {
3951 	bname[0] = '.';
3952 	bname[1] = '\0';
3953 	return (0);
3954     }
3955 
3956     /* Strip trailing slashes */
3957     endp = path + strlen(path) - 1;
3958     while (endp > path && *endp == '/')
3959 	endp--;
3960 
3961     /* Find the start of the dir */
3962     while (endp > path && *endp != '/')
3963 	endp--;
3964 
3965     /* Either the dir is "/" or there are no slashes */
3966     if (endp == path) {
3967 	bname[0] = *endp == '/' ? '/' : '.';
3968 	bname[1] = '\0';
3969 	return (0);
3970     } else {
3971 	do {
3972 	    endp--;
3973 	} while (endp > path && *endp == '/');
3974     }
3975 
3976     if (endp - path + 2 > PATH_MAX)
3977     {
3978 	_rtld_error("Filename is too long: %s", path);
3979 	return(-1);
3980     }
3981 
3982     strncpy(bname, path, endp - path + 1);
3983     bname[endp - path + 1] = '\0';
3984     return (0);
3985 }
3986 
3987 static int
3988 rtld_dirname_abs(const char *path, char *base)
3989 {
3990 	char *last;
3991 
3992 	if (realpath(path, base) == NULL)
3993 		return (-1);
3994 	dbg("%s -> %s", path, base);
3995 	last = strrchr(base, '/');
3996 	if (last == NULL)
3997 		return (-1);
3998 	if (last != base)
3999 		*last = '\0';
4000 	return (0);
4001 }
4002 
4003 static void
4004 linkmap_add(Obj_Entry *obj)
4005 {
4006     struct link_map *l = &obj->linkmap;
4007     struct link_map *prev;
4008 
4009     obj->linkmap.l_name = obj->path;
4010     obj->linkmap.l_addr = obj->mapbase;
4011     obj->linkmap.l_ld = obj->dynamic;
4012 #ifdef __mips__
4013     /* GDB needs load offset on MIPS to use the symbols */
4014     obj->linkmap.l_offs = obj->relocbase;
4015 #endif
4016 
4017     if (r_debug.r_map == NULL) {
4018 	r_debug.r_map = l;
4019 	return;
4020     }
4021 
4022     /*
4023      * Scan to the end of the list, but not past the entry for the
4024      * dynamic linker, which we want to keep at the very end.
4025      */
4026     for (prev = r_debug.r_map;
4027       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4028       prev = prev->l_next)
4029 	;
4030 
4031     /* Link in the new entry. */
4032     l->l_prev = prev;
4033     l->l_next = prev->l_next;
4034     if (l->l_next != NULL)
4035 	l->l_next->l_prev = l;
4036     prev->l_next = l;
4037 }
4038 
4039 static void
4040 linkmap_delete(Obj_Entry *obj)
4041 {
4042     struct link_map *l = &obj->linkmap;
4043 
4044     if (l->l_prev == NULL) {
4045 	if ((r_debug.r_map = l->l_next) != NULL)
4046 	    l->l_next->l_prev = NULL;
4047 	return;
4048     }
4049 
4050     if ((l->l_prev->l_next = l->l_next) != NULL)
4051 	l->l_next->l_prev = l->l_prev;
4052 }
4053 
4054 /*
4055  * Function for the debugger to set a breakpoint on to gain control.
4056  *
4057  * The two parameters allow the debugger to easily find and determine
4058  * what the runtime loader is doing and to whom it is doing it.
4059  *
4060  * When the loadhook trap is hit (r_debug_state, set at program
4061  * initialization), the arguments can be found on the stack:
4062  *
4063  *  +8   struct link_map *m
4064  *  +4   struct r_debug  *rd
4065  *  +0   RetAddr
4066  */
4067 void
4068 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4069 {
4070     /*
4071      * The following is a hack to force the compiler to emit calls to
4072      * this function, even when optimizing.  If the function is empty,
4073      * the compiler is not obliged to emit any code for calls to it,
4074      * even when marked __noinline.  However, gdb depends on those
4075      * calls being made.
4076      */
4077     __compiler_membar();
4078 }
4079 
4080 /*
4081  * A function called after init routines have completed. This can be used to
4082  * break before a program's entry routine is called, and can be used when
4083  * main is not available in the symbol table.
4084  */
4085 void
4086 _r_debug_postinit(struct link_map *m __unused)
4087 {
4088 
4089 	/* See r_debug_state(). */
4090 	__compiler_membar();
4091 }
4092 
4093 static void
4094 release_object(Obj_Entry *obj)
4095 {
4096 
4097 	if (obj->holdcount > 0) {
4098 		obj->unholdfree = true;
4099 		return;
4100 	}
4101 	munmap(obj->mapbase, obj->mapsize);
4102 	linkmap_delete(obj);
4103 	obj_free(obj);
4104 }
4105 
4106 /*
4107  * Get address of the pointer variable in the main program.
4108  * Prefer non-weak symbol over the weak one.
4109  */
4110 static const void **
4111 get_program_var_addr(const char *name, RtldLockState *lockstate)
4112 {
4113     SymLook req;
4114     DoneList donelist;
4115 
4116     symlook_init(&req, name);
4117     req.lockstate = lockstate;
4118     donelist_init(&donelist);
4119     if (symlook_global(&req, &donelist) != 0)
4120 	return (NULL);
4121     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4122 	return ((const void **)make_function_pointer(req.sym_out,
4123 	  req.defobj_out));
4124     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4125 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4126     else
4127 	return ((const void **)(req.defobj_out->relocbase +
4128 	  req.sym_out->st_value));
4129 }
4130 
4131 /*
4132  * Set a pointer variable in the main program to the given value.  This
4133  * is used to set key variables such as "environ" before any of the
4134  * init functions are called.
4135  */
4136 static void
4137 set_program_var(const char *name, const void *value)
4138 {
4139     const void **addr;
4140 
4141     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4142 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4143 	*addr = value;
4144     }
4145 }
4146 
4147 /*
4148  * Search the global objects, including dependencies and main object,
4149  * for the given symbol.
4150  */
4151 static int
4152 symlook_global(SymLook *req, DoneList *donelist)
4153 {
4154     SymLook req1;
4155     const Objlist_Entry *elm;
4156     int res;
4157 
4158     symlook_init_from_req(&req1, req);
4159 
4160     /* Search all objects loaded at program start up. */
4161     if (req->defobj_out == NULL ||
4162       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4163 	res = symlook_list(&req1, &list_main, donelist);
4164 	if (res == 0 && (req->defobj_out == NULL ||
4165 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4166 	    req->sym_out = req1.sym_out;
4167 	    req->defobj_out = req1.defobj_out;
4168 	    assert(req->defobj_out != NULL);
4169 	}
4170     }
4171 
4172     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4173     STAILQ_FOREACH(elm, &list_global, link) {
4174 	if (req->defobj_out != NULL &&
4175 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4176 	    break;
4177 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4178 	if (res == 0 && (req->defobj_out == NULL ||
4179 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4180 	    req->sym_out = req1.sym_out;
4181 	    req->defobj_out = req1.defobj_out;
4182 	    assert(req->defobj_out != NULL);
4183 	}
4184     }
4185 
4186     return (req->sym_out != NULL ? 0 : ESRCH);
4187 }
4188 
4189 /*
4190  * Given a symbol name in a referencing object, find the corresponding
4191  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4192  * no definition was found.  Returns a pointer to the Obj_Entry of the
4193  * defining object via the reference parameter DEFOBJ_OUT.
4194  */
4195 static int
4196 symlook_default(SymLook *req, const Obj_Entry *refobj)
4197 {
4198     DoneList donelist;
4199     const Objlist_Entry *elm;
4200     SymLook req1;
4201     int res;
4202 
4203     donelist_init(&donelist);
4204     symlook_init_from_req(&req1, req);
4205 
4206     /*
4207      * Look first in the referencing object if linked symbolically,
4208      * and similarly handle protected symbols.
4209      */
4210     res = symlook_obj(&req1, refobj);
4211     if (res == 0 && (refobj->symbolic ||
4212       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4213 	req->sym_out = req1.sym_out;
4214 	req->defobj_out = req1.defobj_out;
4215 	assert(req->defobj_out != NULL);
4216     }
4217     if (refobj->symbolic || req->defobj_out != NULL)
4218 	donelist_check(&donelist, refobj);
4219 
4220     symlook_global(req, &donelist);
4221 
4222     /* Search all dlopened DAGs containing the referencing object. */
4223     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4224 	if (req->sym_out != NULL &&
4225 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4226 	    break;
4227 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4228 	if (res == 0 && (req->sym_out == NULL ||
4229 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4230 	    req->sym_out = req1.sym_out;
4231 	    req->defobj_out = req1.defobj_out;
4232 	    assert(req->defobj_out != NULL);
4233 	}
4234     }
4235 
4236     /*
4237      * Search the dynamic linker itself, and possibly resolve the
4238      * symbol from there.  This is how the application links to
4239      * dynamic linker services such as dlopen.
4240      */
4241     if (req->sym_out == NULL ||
4242       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4243 	res = symlook_obj(&req1, &obj_rtld);
4244 	if (res == 0) {
4245 	    req->sym_out = req1.sym_out;
4246 	    req->defobj_out = req1.defobj_out;
4247 	    assert(req->defobj_out != NULL);
4248 	}
4249     }
4250 
4251     return (req->sym_out != NULL ? 0 : ESRCH);
4252 }
4253 
4254 static int
4255 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4256 {
4257     const Elf_Sym *def;
4258     const Obj_Entry *defobj;
4259     const Objlist_Entry *elm;
4260     SymLook req1;
4261     int res;
4262 
4263     def = NULL;
4264     defobj = NULL;
4265     STAILQ_FOREACH(elm, objlist, link) {
4266 	if (donelist_check(dlp, elm->obj))
4267 	    continue;
4268 	symlook_init_from_req(&req1, req);
4269 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4270 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4271 		def = req1.sym_out;
4272 		defobj = req1.defobj_out;
4273 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4274 		    break;
4275 	    }
4276 	}
4277     }
4278     if (def != NULL) {
4279 	req->sym_out = def;
4280 	req->defobj_out = defobj;
4281 	return (0);
4282     }
4283     return (ESRCH);
4284 }
4285 
4286 /*
4287  * Search the chain of DAGS cointed to by the given Needed_Entry
4288  * for a symbol of the given name.  Each DAG is scanned completely
4289  * before advancing to the next one.  Returns a pointer to the symbol,
4290  * or NULL if no definition was found.
4291  */
4292 static int
4293 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4294 {
4295     const Elf_Sym *def;
4296     const Needed_Entry *n;
4297     const Obj_Entry *defobj;
4298     SymLook req1;
4299     int res;
4300 
4301     def = NULL;
4302     defobj = NULL;
4303     symlook_init_from_req(&req1, req);
4304     for (n = needed; n != NULL; n = n->next) {
4305 	if (n->obj == NULL ||
4306 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4307 	    continue;
4308 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4309 	    def = req1.sym_out;
4310 	    defobj = req1.defobj_out;
4311 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4312 		break;
4313 	}
4314     }
4315     if (def != NULL) {
4316 	req->sym_out = def;
4317 	req->defobj_out = defobj;
4318 	return (0);
4319     }
4320     return (ESRCH);
4321 }
4322 
4323 /*
4324  * Search the symbol table of a single shared object for a symbol of
4325  * the given name and version, if requested.  Returns a pointer to the
4326  * symbol, or NULL if no definition was found.  If the object is
4327  * filter, return filtered symbol from filtee.
4328  *
4329  * The symbol's hash value is passed in for efficiency reasons; that
4330  * eliminates many recomputations of the hash value.
4331  */
4332 int
4333 symlook_obj(SymLook *req, const Obj_Entry *obj)
4334 {
4335     DoneList donelist;
4336     SymLook req1;
4337     int flags, res, mres;
4338 
4339     /*
4340      * If there is at least one valid hash at this point, we prefer to
4341      * use the faster GNU version if available.
4342      */
4343     if (obj->valid_hash_gnu)
4344 	mres = symlook_obj1_gnu(req, obj);
4345     else if (obj->valid_hash_sysv)
4346 	mres = symlook_obj1_sysv(req, obj);
4347     else
4348 	return (EINVAL);
4349 
4350     if (mres == 0) {
4351 	if (obj->needed_filtees != NULL) {
4352 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4353 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4354 	    donelist_init(&donelist);
4355 	    symlook_init_from_req(&req1, req);
4356 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4357 	    if (res == 0) {
4358 		req->sym_out = req1.sym_out;
4359 		req->defobj_out = req1.defobj_out;
4360 	    }
4361 	    return (res);
4362 	}
4363 	if (obj->needed_aux_filtees != NULL) {
4364 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4365 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4366 	    donelist_init(&donelist);
4367 	    symlook_init_from_req(&req1, req);
4368 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4369 	    if (res == 0) {
4370 		req->sym_out = req1.sym_out;
4371 		req->defobj_out = req1.defobj_out;
4372 		return (res);
4373 	    }
4374 	}
4375     }
4376     return (mres);
4377 }
4378 
4379 /* Symbol match routine common to both hash functions */
4380 static bool
4381 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4382     const unsigned long symnum)
4383 {
4384 	Elf_Versym verndx;
4385 	const Elf_Sym *symp;
4386 	const char *strp;
4387 
4388 	symp = obj->symtab + symnum;
4389 	strp = obj->strtab + symp->st_name;
4390 
4391 	switch (ELF_ST_TYPE(symp->st_info)) {
4392 	case STT_FUNC:
4393 	case STT_NOTYPE:
4394 	case STT_OBJECT:
4395 	case STT_COMMON:
4396 	case STT_GNU_IFUNC:
4397 		if (symp->st_value == 0)
4398 			return (false);
4399 		/* fallthrough */
4400 	case STT_TLS:
4401 		if (symp->st_shndx != SHN_UNDEF)
4402 			break;
4403 #ifndef __mips__
4404 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4405 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4406 			break;
4407 #endif
4408 		/* fallthrough */
4409 	default:
4410 		return (false);
4411 	}
4412 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4413 		return (false);
4414 
4415 	if (req->ventry == NULL) {
4416 		if (obj->versyms != NULL) {
4417 			verndx = VER_NDX(obj->versyms[symnum]);
4418 			if (verndx > obj->vernum) {
4419 				_rtld_error(
4420 				    "%s: symbol %s references wrong version %d",
4421 				    obj->path, obj->strtab + symnum, verndx);
4422 				return (false);
4423 			}
4424 			/*
4425 			 * If we are not called from dlsym (i.e. this
4426 			 * is a normal relocation from unversioned
4427 			 * binary), accept the symbol immediately if
4428 			 * it happens to have first version after this
4429 			 * shared object became versioned.  Otherwise,
4430 			 * if symbol is versioned and not hidden,
4431 			 * remember it. If it is the only symbol with
4432 			 * this name exported by the shared object, it
4433 			 * will be returned as a match by the calling
4434 			 * function. If symbol is global (verndx < 2)
4435 			 * accept it unconditionally.
4436 			 */
4437 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4438 			    verndx == VER_NDX_GIVEN) {
4439 				result->sym_out = symp;
4440 				return (true);
4441 			}
4442 			else if (verndx >= VER_NDX_GIVEN) {
4443 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4444 				    == 0) {
4445 					if (result->vsymp == NULL)
4446 						result->vsymp = symp;
4447 					result->vcount++;
4448 				}
4449 				return (false);
4450 			}
4451 		}
4452 		result->sym_out = symp;
4453 		return (true);
4454 	}
4455 	if (obj->versyms == NULL) {
4456 		if (object_match_name(obj, req->ventry->name)) {
4457 			_rtld_error("%s: object %s should provide version %s "
4458 			    "for symbol %s", obj_rtld.path, obj->path,
4459 			    req->ventry->name, obj->strtab + symnum);
4460 			return (false);
4461 		}
4462 	} else {
4463 		verndx = VER_NDX(obj->versyms[symnum]);
4464 		if (verndx > obj->vernum) {
4465 			_rtld_error("%s: symbol %s references wrong version %d",
4466 			    obj->path, obj->strtab + symnum, verndx);
4467 			return (false);
4468 		}
4469 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4470 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4471 			/*
4472 			 * Version does not match. Look if this is a
4473 			 * global symbol and if it is not hidden. If
4474 			 * global symbol (verndx < 2) is available,
4475 			 * use it. Do not return symbol if we are
4476 			 * called by dlvsym, because dlvsym looks for
4477 			 * a specific version and default one is not
4478 			 * what dlvsym wants.
4479 			 */
4480 			if ((req->flags & SYMLOOK_DLSYM) ||
4481 			    (verndx >= VER_NDX_GIVEN) ||
4482 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4483 				return (false);
4484 		}
4485 	}
4486 	result->sym_out = symp;
4487 	return (true);
4488 }
4489 
4490 /*
4491  * Search for symbol using SysV hash function.
4492  * obj->buckets is known not to be NULL at this point; the test for this was
4493  * performed with the obj->valid_hash_sysv assignment.
4494  */
4495 static int
4496 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4497 {
4498 	unsigned long symnum;
4499 	Sym_Match_Result matchres;
4500 
4501 	matchres.sym_out = NULL;
4502 	matchres.vsymp = NULL;
4503 	matchres.vcount = 0;
4504 
4505 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4506 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4507 		if (symnum >= obj->nchains)
4508 			return (ESRCH);	/* Bad object */
4509 
4510 		if (matched_symbol(req, obj, &matchres, symnum)) {
4511 			req->sym_out = matchres.sym_out;
4512 			req->defobj_out = obj;
4513 			return (0);
4514 		}
4515 	}
4516 	if (matchres.vcount == 1) {
4517 		req->sym_out = matchres.vsymp;
4518 		req->defobj_out = obj;
4519 		return (0);
4520 	}
4521 	return (ESRCH);
4522 }
4523 
4524 /* Search for symbol using GNU hash function */
4525 static int
4526 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4527 {
4528 	Elf_Addr bloom_word;
4529 	const Elf32_Word *hashval;
4530 	Elf32_Word bucket;
4531 	Sym_Match_Result matchres;
4532 	unsigned int h1, h2;
4533 	unsigned long symnum;
4534 
4535 	matchres.sym_out = NULL;
4536 	matchres.vsymp = NULL;
4537 	matchres.vcount = 0;
4538 
4539 	/* Pick right bitmask word from Bloom filter array */
4540 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4541 	    obj->maskwords_bm_gnu];
4542 
4543 	/* Calculate modulus word size of gnu hash and its derivative */
4544 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4545 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4546 
4547 	/* Filter out the "definitely not in set" queries */
4548 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4549 		return (ESRCH);
4550 
4551 	/* Locate hash chain and corresponding value element*/
4552 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4553 	if (bucket == 0)
4554 		return (ESRCH);
4555 	hashval = &obj->chain_zero_gnu[bucket];
4556 	do {
4557 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4558 			symnum = hashval - obj->chain_zero_gnu;
4559 			if (matched_symbol(req, obj, &matchres, symnum)) {
4560 				req->sym_out = matchres.sym_out;
4561 				req->defobj_out = obj;
4562 				return (0);
4563 			}
4564 		}
4565 	} while ((*hashval++ & 1) == 0);
4566 	if (matchres.vcount == 1) {
4567 		req->sym_out = matchres.vsymp;
4568 		req->defobj_out = obj;
4569 		return (0);
4570 	}
4571 	return (ESRCH);
4572 }
4573 
4574 static void
4575 trace_loaded_objects(Obj_Entry *obj)
4576 {
4577     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4578     int c;
4579 
4580     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4581 	main_local = "";
4582 
4583     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4584 	fmt1 = "\t%o => %p (%x)\n";
4585 
4586     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4587 	fmt2 = "\t%o (%x)\n";
4588 
4589     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4590 
4591     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4592 	Needed_Entry *needed;
4593 	const char *name, *path;
4594 	bool is_lib;
4595 
4596 	if (obj->marker)
4597 	    continue;
4598 	if (list_containers && obj->needed != NULL)
4599 	    rtld_printf("%s:\n", obj->path);
4600 	for (needed = obj->needed; needed; needed = needed->next) {
4601 	    if (needed->obj != NULL) {
4602 		if (needed->obj->traced && !list_containers)
4603 		    continue;
4604 		needed->obj->traced = true;
4605 		path = needed->obj->path;
4606 	    } else
4607 		path = "not found";
4608 
4609 	    name = obj->strtab + needed->name;
4610 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4611 
4612 	    fmt = is_lib ? fmt1 : fmt2;
4613 	    while ((c = *fmt++) != '\0') {
4614 		switch (c) {
4615 		default:
4616 		    rtld_putchar(c);
4617 		    continue;
4618 		case '\\':
4619 		    switch (c = *fmt) {
4620 		    case '\0':
4621 			continue;
4622 		    case 'n':
4623 			rtld_putchar('\n');
4624 			break;
4625 		    case 't':
4626 			rtld_putchar('\t');
4627 			break;
4628 		    }
4629 		    break;
4630 		case '%':
4631 		    switch (c = *fmt) {
4632 		    case '\0':
4633 			continue;
4634 		    case '%':
4635 		    default:
4636 			rtld_putchar(c);
4637 			break;
4638 		    case 'A':
4639 			rtld_putstr(main_local);
4640 			break;
4641 		    case 'a':
4642 			rtld_putstr(obj_main->path);
4643 			break;
4644 		    case 'o':
4645 			rtld_putstr(name);
4646 			break;
4647 #if 0
4648 		    case 'm':
4649 			rtld_printf("%d", sodp->sod_major);
4650 			break;
4651 		    case 'n':
4652 			rtld_printf("%d", sodp->sod_minor);
4653 			break;
4654 #endif
4655 		    case 'p':
4656 			rtld_putstr(path);
4657 			break;
4658 		    case 'x':
4659 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4660 			  0);
4661 			break;
4662 		    }
4663 		    break;
4664 		}
4665 		++fmt;
4666 	    }
4667 	}
4668     }
4669 }
4670 
4671 /*
4672  * Unload a dlopened object and its dependencies from memory and from
4673  * our data structures.  It is assumed that the DAG rooted in the
4674  * object has already been unreferenced, and that the object has a
4675  * reference count of 0.
4676  */
4677 static void
4678 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4679 {
4680 	Obj_Entry marker, *obj, *next;
4681 
4682 	assert(root->refcount == 0);
4683 
4684 	/*
4685 	 * Pass over the DAG removing unreferenced objects from
4686 	 * appropriate lists.
4687 	 */
4688 	unlink_object(root);
4689 
4690 	/* Unmap all objects that are no longer referenced. */
4691 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4692 		next = TAILQ_NEXT(obj, next);
4693 		if (obj->marker || obj->refcount != 0)
4694 			continue;
4695 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4696 		    obj->mapsize, 0, obj->path);
4697 		dbg("unloading \"%s\"", obj->path);
4698 		/*
4699 		 * Unlink the object now to prevent new references from
4700 		 * being acquired while the bind lock is dropped in
4701 		 * recursive dlclose() invocations.
4702 		 */
4703 		TAILQ_REMOVE(&obj_list, obj, next);
4704 		obj_count--;
4705 
4706 		if (obj->filtees_loaded) {
4707 			if (next != NULL) {
4708 				init_marker(&marker);
4709 				TAILQ_INSERT_BEFORE(next, &marker, next);
4710 				unload_filtees(obj, lockstate);
4711 				next = TAILQ_NEXT(&marker, next);
4712 				TAILQ_REMOVE(&obj_list, &marker, next);
4713 			} else
4714 				unload_filtees(obj, lockstate);
4715 		}
4716 		release_object(obj);
4717 	}
4718 }
4719 
4720 static void
4721 unlink_object(Obj_Entry *root)
4722 {
4723     Objlist_Entry *elm;
4724 
4725     if (root->refcount == 0) {
4726 	/* Remove the object from the RTLD_GLOBAL list. */
4727 	objlist_remove(&list_global, root);
4728 
4729     	/* Remove the object from all objects' DAG lists. */
4730     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4731 	    objlist_remove(&elm->obj->dldags, root);
4732 	    if (elm->obj != root)
4733 		unlink_object(elm->obj);
4734 	}
4735     }
4736 }
4737 
4738 static void
4739 ref_dag(Obj_Entry *root)
4740 {
4741     Objlist_Entry *elm;
4742 
4743     assert(root->dag_inited);
4744     STAILQ_FOREACH(elm, &root->dagmembers, link)
4745 	elm->obj->refcount++;
4746 }
4747 
4748 static void
4749 unref_dag(Obj_Entry *root)
4750 {
4751     Objlist_Entry *elm;
4752 
4753     assert(root->dag_inited);
4754     STAILQ_FOREACH(elm, &root->dagmembers, link)
4755 	elm->obj->refcount--;
4756 }
4757 
4758 /*
4759  * Common code for MD __tls_get_addr().
4760  */
4761 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4762 static void *
4763 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4764 {
4765     Elf_Addr *newdtv, *dtv;
4766     RtldLockState lockstate;
4767     int to_copy;
4768 
4769     dtv = *dtvp;
4770     /* Check dtv generation in case new modules have arrived */
4771     if (dtv[0] != tls_dtv_generation) {
4772 	wlock_acquire(rtld_bind_lock, &lockstate);
4773 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4774 	to_copy = dtv[1];
4775 	if (to_copy > tls_max_index)
4776 	    to_copy = tls_max_index;
4777 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4778 	newdtv[0] = tls_dtv_generation;
4779 	newdtv[1] = tls_max_index;
4780 	free(dtv);
4781 	lock_release(rtld_bind_lock, &lockstate);
4782 	dtv = *dtvp = newdtv;
4783     }
4784 
4785     /* Dynamically allocate module TLS if necessary */
4786     if (dtv[index + 1] == 0) {
4787 	/* Signal safe, wlock will block out signals. */
4788 	wlock_acquire(rtld_bind_lock, &lockstate);
4789 	if (!dtv[index + 1])
4790 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4791 	lock_release(rtld_bind_lock, &lockstate);
4792     }
4793     return ((void *)(dtv[index + 1] + offset));
4794 }
4795 
4796 void *
4797 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4798 {
4799 	Elf_Addr *dtv;
4800 
4801 	dtv = *dtvp;
4802 	/* Check dtv generation in case new modules have arrived */
4803 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4804 	    dtv[index + 1] != 0))
4805 		return ((void *)(dtv[index + 1] + offset));
4806 	return (tls_get_addr_slow(dtvp, index, offset));
4807 }
4808 
4809 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4810     defined(__powerpc__) || defined(__riscv)
4811 
4812 /*
4813  * Return pointer to allocated TLS block
4814  */
4815 static void *
4816 get_tls_block_ptr(void *tcb, size_t tcbsize)
4817 {
4818     size_t extra_size, post_size, pre_size, tls_block_size;
4819     size_t tls_init_align;
4820 
4821     tls_init_align = MAX(obj_main->tlsalign, 1);
4822 
4823     /* Compute fragments sizes. */
4824     extra_size = tcbsize - TLS_TCB_SIZE;
4825     post_size = calculate_tls_post_size(tls_init_align);
4826     tls_block_size = tcbsize + post_size;
4827     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4828 
4829     return ((char *)tcb - pre_size - extra_size);
4830 }
4831 
4832 /*
4833  * Allocate Static TLS using the Variant I method.
4834  *
4835  * For details on the layout, see lib/libc/gen/tls.c.
4836  *
4837  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4838  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4839  *     offsets, whereas libc's tls_static_space is just the executable's static
4840  *     TLS segment.
4841  */
4842 void *
4843 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4844 {
4845     Obj_Entry *obj;
4846     char *tls_block;
4847     Elf_Addr *dtv, **tcb;
4848     Elf_Addr addr;
4849     Elf_Addr i;
4850     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4851     size_t tls_init_align;
4852 
4853     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4854 	return (oldtcb);
4855 
4856     assert(tcbsize >= TLS_TCB_SIZE);
4857     maxalign = MAX(tcbalign, tls_static_max_align);
4858     tls_init_align = MAX(obj_main->tlsalign, 1);
4859 
4860     /* Compute fragmets sizes. */
4861     extra_size = tcbsize - TLS_TCB_SIZE;
4862     post_size = calculate_tls_post_size(tls_init_align);
4863     tls_block_size = tcbsize + post_size;
4864     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4865     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4866 
4867     /* Allocate whole TLS block */
4868     tls_block = malloc_aligned(tls_block_size, maxalign);
4869     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4870 
4871     if (oldtcb != NULL) {
4872 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4873 	    tls_static_space);
4874 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4875 
4876 	/* Adjust the DTV. */
4877 	dtv = tcb[0];
4878 	for (i = 0; i < dtv[1]; i++) {
4879 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4880 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4881 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4882 	    }
4883 	}
4884     } else {
4885 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4886 	tcb[0] = dtv;
4887 	dtv[0] = tls_dtv_generation;
4888 	dtv[1] = tls_max_index;
4889 
4890 	for (obj = globallist_curr(objs); obj != NULL;
4891 	  obj = globallist_next(obj)) {
4892 	    if (obj->tlsoffset > 0) {
4893 		addr = (Elf_Addr)tcb + obj->tlsoffset;
4894 		if (obj->tlsinitsize > 0)
4895 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4896 		if (obj->tlssize > obj->tlsinitsize)
4897 		    memset((void*)(addr + obj->tlsinitsize), 0,
4898 			   obj->tlssize - obj->tlsinitsize);
4899 		dtv[obj->tlsindex + 1] = addr;
4900 	    }
4901 	}
4902     }
4903 
4904     return (tcb);
4905 }
4906 
4907 void
4908 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4909 {
4910     Elf_Addr *dtv;
4911     Elf_Addr tlsstart, tlsend;
4912     size_t post_size;
4913     size_t dtvsize, i, tls_init_align;
4914 
4915     assert(tcbsize >= TLS_TCB_SIZE);
4916     tls_init_align = MAX(obj_main->tlsalign, 1);
4917 
4918     /* Compute fragments sizes. */
4919     post_size = calculate_tls_post_size(tls_init_align);
4920 
4921     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4922     tlsend = (Elf_Addr)tcb + tls_static_space;
4923 
4924     dtv = *(Elf_Addr **)tcb;
4925     dtvsize = dtv[1];
4926     for (i = 0; i < dtvsize; i++) {
4927 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4928 	    free((void*)dtv[i+2]);
4929 	}
4930     }
4931     free(dtv);
4932     free_aligned(get_tls_block_ptr(tcb, tcbsize));
4933 }
4934 
4935 #endif
4936 
4937 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4938 
4939 /*
4940  * Allocate Static TLS using the Variant II method.
4941  */
4942 void *
4943 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4944 {
4945     Obj_Entry *obj;
4946     size_t size, ralign;
4947     char *tls;
4948     Elf_Addr *dtv, *olddtv;
4949     Elf_Addr segbase, oldsegbase, addr;
4950     size_t i;
4951 
4952     ralign = tcbalign;
4953     if (tls_static_max_align > ralign)
4954 	    ralign = tls_static_max_align;
4955     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4956 
4957     assert(tcbsize >= 2*sizeof(Elf_Addr));
4958     tls = malloc_aligned(size, ralign);
4959     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4960 
4961     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4962     ((Elf_Addr*)segbase)[0] = segbase;
4963     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4964 
4965     dtv[0] = tls_dtv_generation;
4966     dtv[1] = tls_max_index;
4967 
4968     if (oldtls) {
4969 	/*
4970 	 * Copy the static TLS block over whole.
4971 	 */
4972 	oldsegbase = (Elf_Addr) oldtls;
4973 	memcpy((void *)(segbase - tls_static_space),
4974 	       (const void *)(oldsegbase - tls_static_space),
4975 	       tls_static_space);
4976 
4977 	/*
4978 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4979 	 * move them over.
4980 	 */
4981 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4982 	for (i = 0; i < olddtv[1]; i++) {
4983 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4984 		dtv[i+2] = olddtv[i+2];
4985 		olddtv[i+2] = 0;
4986 	    }
4987 	}
4988 
4989 	/*
4990 	 * We assume that this block was the one we created with
4991 	 * allocate_initial_tls().
4992 	 */
4993 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4994     } else {
4995 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4996 		if (obj->marker || obj->tlsoffset == 0)
4997 			continue;
4998 		addr = segbase - obj->tlsoffset;
4999 		memset((void*)(addr + obj->tlsinitsize),
5000 		       0, obj->tlssize - obj->tlsinitsize);
5001 		if (obj->tlsinit) {
5002 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5003 		    obj->static_tls_copied = true;
5004 		}
5005 		dtv[obj->tlsindex + 1] = addr;
5006 	}
5007     }
5008 
5009     return (void*) segbase;
5010 }
5011 
5012 void
5013 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5014 {
5015     Elf_Addr* dtv;
5016     size_t size, ralign;
5017     int dtvsize, i;
5018     Elf_Addr tlsstart, tlsend;
5019 
5020     /*
5021      * Figure out the size of the initial TLS block so that we can
5022      * find stuff which ___tls_get_addr() allocated dynamically.
5023      */
5024     ralign = tcbalign;
5025     if (tls_static_max_align > ralign)
5026 	    ralign = tls_static_max_align;
5027     size = round(tls_static_space, ralign);
5028 
5029     dtv = ((Elf_Addr**)tls)[1];
5030     dtvsize = dtv[1];
5031     tlsend = (Elf_Addr) tls;
5032     tlsstart = tlsend - size;
5033     for (i = 0; i < dtvsize; i++) {
5034 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5035 		free_aligned((void *)dtv[i + 2]);
5036 	}
5037     }
5038 
5039     free_aligned((void *)tlsstart);
5040     free((void*) dtv);
5041 }
5042 
5043 #endif
5044 
5045 /*
5046  * Allocate TLS block for module with given index.
5047  */
5048 void *
5049 allocate_module_tls(int index)
5050 {
5051     Obj_Entry* obj;
5052     char* p;
5053 
5054     TAILQ_FOREACH(obj, &obj_list, next) {
5055 	if (obj->marker)
5056 	    continue;
5057 	if (obj->tlsindex == index)
5058 	    break;
5059     }
5060     if (!obj) {
5061 	_rtld_error("Can't find module with TLS index %d", index);
5062 	rtld_die();
5063     }
5064 
5065     p = malloc_aligned(obj->tlssize, obj->tlsalign);
5066     memcpy(p, obj->tlsinit, obj->tlsinitsize);
5067     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5068 
5069     return p;
5070 }
5071 
5072 bool
5073 allocate_tls_offset(Obj_Entry *obj)
5074 {
5075     size_t off;
5076 
5077     if (obj->tls_done)
5078 	return true;
5079 
5080     if (obj->tlssize == 0) {
5081 	obj->tls_done = true;
5082 	return true;
5083     }
5084 
5085     if (tls_last_offset == 0)
5086 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
5087     else
5088 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5089 				   obj->tlssize, obj->tlsalign);
5090 
5091     /*
5092      * If we have already fixed the size of the static TLS block, we
5093      * must stay within that size. When allocating the static TLS, we
5094      * leave a small amount of space spare to be used for dynamically
5095      * loading modules which use static TLS.
5096      */
5097     if (tls_static_space != 0) {
5098 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5099 	    return false;
5100     } else if (obj->tlsalign > tls_static_max_align) {
5101 	    tls_static_max_align = obj->tlsalign;
5102     }
5103 
5104     tls_last_offset = obj->tlsoffset = off;
5105     tls_last_size = obj->tlssize;
5106     obj->tls_done = true;
5107 
5108     return true;
5109 }
5110 
5111 void
5112 free_tls_offset(Obj_Entry *obj)
5113 {
5114 
5115     /*
5116      * If we were the last thing to allocate out of the static TLS
5117      * block, we give our space back to the 'allocator'. This is a
5118      * simplistic workaround to allow libGL.so.1 to be loaded and
5119      * unloaded multiple times.
5120      */
5121     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5122 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5123 	tls_last_offset -= obj->tlssize;
5124 	tls_last_size = 0;
5125     }
5126 }
5127 
5128 void *
5129 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5130 {
5131     void *ret;
5132     RtldLockState lockstate;
5133 
5134     wlock_acquire(rtld_bind_lock, &lockstate);
5135     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5136       tcbsize, tcbalign);
5137     lock_release(rtld_bind_lock, &lockstate);
5138     return (ret);
5139 }
5140 
5141 void
5142 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5143 {
5144     RtldLockState lockstate;
5145 
5146     wlock_acquire(rtld_bind_lock, &lockstate);
5147     free_tls(tcb, tcbsize, tcbalign);
5148     lock_release(rtld_bind_lock, &lockstate);
5149 }
5150 
5151 static void
5152 object_add_name(Obj_Entry *obj, const char *name)
5153 {
5154     Name_Entry *entry;
5155     size_t len;
5156 
5157     len = strlen(name);
5158     entry = malloc(sizeof(Name_Entry) + len);
5159 
5160     if (entry != NULL) {
5161 	strcpy(entry->name, name);
5162 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5163     }
5164 }
5165 
5166 static int
5167 object_match_name(const Obj_Entry *obj, const char *name)
5168 {
5169     Name_Entry *entry;
5170 
5171     STAILQ_FOREACH(entry, &obj->names, link) {
5172 	if (strcmp(name, entry->name) == 0)
5173 	    return (1);
5174     }
5175     return (0);
5176 }
5177 
5178 static Obj_Entry *
5179 locate_dependency(const Obj_Entry *obj, const char *name)
5180 {
5181     const Objlist_Entry *entry;
5182     const Needed_Entry *needed;
5183 
5184     STAILQ_FOREACH(entry, &list_main, link) {
5185 	if (object_match_name(entry->obj, name))
5186 	    return entry->obj;
5187     }
5188 
5189     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5190 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5191 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5192 	    /*
5193 	     * If there is DT_NEEDED for the name we are looking for,
5194 	     * we are all set.  Note that object might not be found if
5195 	     * dependency was not loaded yet, so the function can
5196 	     * return NULL here.  This is expected and handled
5197 	     * properly by the caller.
5198 	     */
5199 	    return (needed->obj);
5200 	}
5201     }
5202     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5203 	obj->path, name);
5204     rtld_die();
5205 }
5206 
5207 static int
5208 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5209     const Elf_Vernaux *vna)
5210 {
5211     const Elf_Verdef *vd;
5212     const char *vername;
5213 
5214     vername = refobj->strtab + vna->vna_name;
5215     vd = depobj->verdef;
5216     if (vd == NULL) {
5217 	_rtld_error("%s: version %s required by %s not defined",
5218 	    depobj->path, vername, refobj->path);
5219 	return (-1);
5220     }
5221     for (;;) {
5222 	if (vd->vd_version != VER_DEF_CURRENT) {
5223 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5224 		depobj->path, vd->vd_version);
5225 	    return (-1);
5226 	}
5227 	if (vna->vna_hash == vd->vd_hash) {
5228 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5229 		((const char *)vd + vd->vd_aux);
5230 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5231 		return (0);
5232 	}
5233 	if (vd->vd_next == 0)
5234 	    break;
5235 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5236     }
5237     if (vna->vna_flags & VER_FLG_WEAK)
5238 	return (0);
5239     _rtld_error("%s: version %s required by %s not found",
5240 	depobj->path, vername, refobj->path);
5241     return (-1);
5242 }
5243 
5244 static int
5245 rtld_verify_object_versions(Obj_Entry *obj)
5246 {
5247     const Elf_Verneed *vn;
5248     const Elf_Verdef  *vd;
5249     const Elf_Verdaux *vda;
5250     const Elf_Vernaux *vna;
5251     const Obj_Entry *depobj;
5252     int maxvernum, vernum;
5253 
5254     if (obj->ver_checked)
5255 	return (0);
5256     obj->ver_checked = true;
5257 
5258     maxvernum = 0;
5259     /*
5260      * Walk over defined and required version records and figure out
5261      * max index used by any of them. Do very basic sanity checking
5262      * while there.
5263      */
5264     vn = obj->verneed;
5265     while (vn != NULL) {
5266 	if (vn->vn_version != VER_NEED_CURRENT) {
5267 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5268 		obj->path, vn->vn_version);
5269 	    return (-1);
5270 	}
5271 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5272 	for (;;) {
5273 	    vernum = VER_NEED_IDX(vna->vna_other);
5274 	    if (vernum > maxvernum)
5275 		maxvernum = vernum;
5276 	    if (vna->vna_next == 0)
5277 		 break;
5278 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5279 	}
5280 	if (vn->vn_next == 0)
5281 	    break;
5282 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5283     }
5284 
5285     vd = obj->verdef;
5286     while (vd != NULL) {
5287 	if (vd->vd_version != VER_DEF_CURRENT) {
5288 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5289 		obj->path, vd->vd_version);
5290 	    return (-1);
5291 	}
5292 	vernum = VER_DEF_IDX(vd->vd_ndx);
5293 	if (vernum > maxvernum)
5294 		maxvernum = vernum;
5295 	if (vd->vd_next == 0)
5296 	    break;
5297 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5298     }
5299 
5300     if (maxvernum == 0)
5301 	return (0);
5302 
5303     /*
5304      * Store version information in array indexable by version index.
5305      * Verify that object version requirements are satisfied along the
5306      * way.
5307      */
5308     obj->vernum = maxvernum + 1;
5309     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5310 
5311     vd = obj->verdef;
5312     while (vd != NULL) {
5313 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5314 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5315 	    assert(vernum <= maxvernum);
5316 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5317 	    obj->vertab[vernum].hash = vd->vd_hash;
5318 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5319 	    obj->vertab[vernum].file = NULL;
5320 	    obj->vertab[vernum].flags = 0;
5321 	}
5322 	if (vd->vd_next == 0)
5323 	    break;
5324 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5325     }
5326 
5327     vn = obj->verneed;
5328     while (vn != NULL) {
5329 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5330 	if (depobj == NULL)
5331 	    return (-1);
5332 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5333 	for (;;) {
5334 	    if (check_object_provided_version(obj, depobj, vna))
5335 		return (-1);
5336 	    vernum = VER_NEED_IDX(vna->vna_other);
5337 	    assert(vernum <= maxvernum);
5338 	    obj->vertab[vernum].hash = vna->vna_hash;
5339 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5340 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5341 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5342 		VER_INFO_HIDDEN : 0;
5343 	    if (vna->vna_next == 0)
5344 		 break;
5345 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5346 	}
5347 	if (vn->vn_next == 0)
5348 	    break;
5349 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5350     }
5351     return 0;
5352 }
5353 
5354 static int
5355 rtld_verify_versions(const Objlist *objlist)
5356 {
5357     Objlist_Entry *entry;
5358     int rc;
5359 
5360     rc = 0;
5361     STAILQ_FOREACH(entry, objlist, link) {
5362 	/*
5363 	 * Skip dummy objects or objects that have their version requirements
5364 	 * already checked.
5365 	 */
5366 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5367 	    continue;
5368 	if (rtld_verify_object_versions(entry->obj) == -1) {
5369 	    rc = -1;
5370 	    if (ld_tracing == NULL)
5371 		break;
5372 	}
5373     }
5374     if (rc == 0 || ld_tracing != NULL)
5375     	rc = rtld_verify_object_versions(&obj_rtld);
5376     return rc;
5377 }
5378 
5379 const Ver_Entry *
5380 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5381 {
5382     Elf_Versym vernum;
5383 
5384     if (obj->vertab) {
5385 	vernum = VER_NDX(obj->versyms[symnum]);
5386 	if (vernum >= obj->vernum) {
5387 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5388 		obj->path, obj->strtab + symnum, vernum);
5389 	} else if (obj->vertab[vernum].hash != 0) {
5390 	    return &obj->vertab[vernum];
5391 	}
5392     }
5393     return NULL;
5394 }
5395 
5396 int
5397 _rtld_get_stack_prot(void)
5398 {
5399 
5400 	return (stack_prot);
5401 }
5402 
5403 int
5404 _rtld_is_dlopened(void *arg)
5405 {
5406 	Obj_Entry *obj;
5407 	RtldLockState lockstate;
5408 	int res;
5409 
5410 	rlock_acquire(rtld_bind_lock, &lockstate);
5411 	obj = dlcheck(arg);
5412 	if (obj == NULL)
5413 		obj = obj_from_addr(arg);
5414 	if (obj == NULL) {
5415 		_rtld_error("No shared object contains address");
5416 		lock_release(rtld_bind_lock, &lockstate);
5417 		return (-1);
5418 	}
5419 	res = obj->dlopened ? 1 : 0;
5420 	lock_release(rtld_bind_lock, &lockstate);
5421 	return (res);
5422 }
5423 
5424 static int
5425 obj_remap_relro(Obj_Entry *obj, int prot)
5426 {
5427 
5428 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5429 	    prot) == -1) {
5430 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5431 		    obj->path, prot, rtld_strerror(errno));
5432 		return (-1);
5433 	}
5434 	return (0);
5435 }
5436 
5437 static int
5438 obj_disable_relro(Obj_Entry *obj)
5439 {
5440 
5441 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5442 }
5443 
5444 static int
5445 obj_enforce_relro(Obj_Entry *obj)
5446 {
5447 
5448 	return (obj_remap_relro(obj, PROT_READ));
5449 }
5450 
5451 static void
5452 map_stacks_exec(RtldLockState *lockstate)
5453 {
5454 	void (*thr_map_stacks_exec)(void);
5455 
5456 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5457 		return;
5458 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5459 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5460 	if (thr_map_stacks_exec != NULL) {
5461 		stack_prot |= PROT_EXEC;
5462 		thr_map_stacks_exec();
5463 	}
5464 }
5465 
5466 static void
5467 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5468 {
5469 	Objlist_Entry *elm;
5470 	Obj_Entry *obj;
5471 	void (*distrib)(size_t, void *, size_t, size_t);
5472 
5473 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5474 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5475 	if (distrib == NULL)
5476 		return;
5477 	STAILQ_FOREACH(elm, list, link) {
5478 		obj = elm->obj;
5479 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5480 			continue;
5481 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5482 		    obj->tlssize);
5483 		obj->static_tls_copied = true;
5484 	}
5485 }
5486 
5487 void
5488 symlook_init(SymLook *dst, const char *name)
5489 {
5490 
5491 	bzero(dst, sizeof(*dst));
5492 	dst->name = name;
5493 	dst->hash = elf_hash(name);
5494 	dst->hash_gnu = gnu_hash(name);
5495 }
5496 
5497 static void
5498 symlook_init_from_req(SymLook *dst, const SymLook *src)
5499 {
5500 
5501 	dst->name = src->name;
5502 	dst->hash = src->hash;
5503 	dst->hash_gnu = src->hash_gnu;
5504 	dst->ventry = src->ventry;
5505 	dst->flags = src->flags;
5506 	dst->defobj_out = NULL;
5507 	dst->sym_out = NULL;
5508 	dst->lockstate = src->lockstate;
5509 }
5510 
5511 static int
5512 open_binary_fd(const char *argv0, bool search_in_path,
5513     const char **binpath_res)
5514 {
5515 	char *pathenv, *pe, *binpath;
5516 	int fd;
5517 
5518 	if (search_in_path && strchr(argv0, '/') == NULL) {
5519 		binpath = xmalloc(PATH_MAX);
5520 		pathenv = getenv("PATH");
5521 		if (pathenv == NULL) {
5522 			_rtld_error("-p and no PATH environment variable");
5523 			rtld_die();
5524 		}
5525 		pathenv = strdup(pathenv);
5526 		if (pathenv == NULL) {
5527 			_rtld_error("Cannot allocate memory");
5528 			rtld_die();
5529 		}
5530 		fd = -1;
5531 		errno = ENOENT;
5532 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5533 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5534 			    sizeof(binpath))
5535 				continue;
5536 			if (binpath[0] != '\0' &&
5537 			    strlcat(binpath, "/", sizeof(binpath)) >=
5538 			    sizeof(binpath))
5539 				continue;
5540 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5541 			    sizeof(binpath))
5542 				continue;
5543 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5544 			if (fd != -1 || errno != ENOENT) {
5545 				*binpath_res = binpath;
5546 				break;
5547 			}
5548 		}
5549 		free(pathenv);
5550 	} else {
5551 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5552 		*binpath_res = argv0;
5553 	}
5554 	/* XXXKIB Use getcwd() to resolve relative binpath to absolute. */
5555 
5556 	if (fd == -1) {
5557 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5558 		rtld_die();
5559 	}
5560 	return (fd);
5561 }
5562 
5563 /*
5564  * Parse a set of command-line arguments.
5565  */
5566 static int
5567 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5568 {
5569 	const char *arg;
5570 	int fd, i, j, arglen;
5571 	char opt;
5572 
5573 	dbg("Parsing command-line arguments");
5574 	*use_pathp = false;
5575 	*fdp = -1;
5576 
5577 	for (i = 1; i < argc; i++ ) {
5578 		arg = argv[i];
5579 		dbg("argv[%d]: '%s'", i, arg);
5580 
5581 		/*
5582 		 * rtld arguments end with an explicit "--" or with the first
5583 		 * non-prefixed argument.
5584 		 */
5585 		if (strcmp(arg, "--") == 0) {
5586 			i++;
5587 			break;
5588 		}
5589 		if (arg[0] != '-')
5590 			break;
5591 
5592 		/*
5593 		 * All other arguments are single-character options that can
5594 		 * be combined, so we need to search through `arg` for them.
5595 		 */
5596 		arglen = strlen(arg);
5597 		for (j = 1; j < arglen; j++) {
5598 			opt = arg[j];
5599 			if (opt == 'h') {
5600 				print_usage(argv[0]);
5601 				_exit(0);
5602 			} else if (opt == 'f') {
5603 			/*
5604 			 * -f XX can be used to specify a descriptor for the
5605 			 * binary named at the command line (i.e., the later
5606 			 * argument will specify the process name but the
5607 			 * descriptor is what will actually be executed)
5608 			 */
5609 			if (j != arglen - 1) {
5610 				/* -f must be the last option in, e.g., -abcf */
5611 				_rtld_error("Invalid options: %s", arg);
5612 				rtld_die();
5613 			}
5614 			i++;
5615 			fd = parse_integer(argv[i]);
5616 			if (fd == -1) {
5617 				_rtld_error("Invalid file descriptor: '%s'",
5618 				    argv[i]);
5619 				rtld_die();
5620 			}
5621 			*fdp = fd;
5622 			break;
5623 			} else if (opt == 'p') {
5624 				*use_pathp = true;
5625 			} else {
5626 				_rtld_error("Invalid argument: '%s'", arg);
5627 				print_usage(argv[0]);
5628 				rtld_die();
5629 			}
5630 		}
5631 	}
5632 
5633 	return (i);
5634 }
5635 
5636 /*
5637  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5638  */
5639 static int
5640 parse_integer(const char *str)
5641 {
5642 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5643 	const char *orig;
5644 	int n;
5645 	char c;
5646 
5647 	orig = str;
5648 	n = 0;
5649 	for (c = *str; c != '\0'; c = *++str) {
5650 		if (c < '0' || c > '9')
5651 			return (-1);
5652 
5653 		n *= RADIX;
5654 		n += c - '0';
5655 	}
5656 
5657 	/* Make sure we actually parsed something. */
5658 	if (str == orig)
5659 		return (-1);
5660 	return (n);
5661 }
5662 
5663 static void
5664 print_usage(const char *argv0)
5665 {
5666 
5667 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5668 		"\n"
5669 		"Options:\n"
5670 		"  -h        Display this help message\n"
5671 		"  -p        Search in PATH for named binary\n"
5672 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5673 		"  --        End of RTLD options\n"
5674 		"  <binary>  Name of process to execute\n"
5675 		"  <args>    Arguments to the executed process\n", argv0);
5676 }
5677 
5678 /*
5679  * Overrides for libc_pic-provided functions.
5680  */
5681 
5682 int
5683 __getosreldate(void)
5684 {
5685 	size_t len;
5686 	int oid[2];
5687 	int error, osrel;
5688 
5689 	if (osreldate != 0)
5690 		return (osreldate);
5691 
5692 	oid[0] = CTL_KERN;
5693 	oid[1] = KERN_OSRELDATE;
5694 	osrel = 0;
5695 	len = sizeof(osrel);
5696 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5697 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5698 		osreldate = osrel;
5699 	return (osreldate);
5700 }
5701 const char *
5702 rtld_strerror(int errnum)
5703 {
5704 
5705 	if (errnum < 0 || errnum >= sys_nerr)
5706 		return ("Unknown error");
5707 	return (sys_errlist[errnum]);
5708 }
5709 
5710 /*
5711  * No ifunc relocations.
5712  */
5713 void *
5714 memset(void *dest, int c, size_t len)
5715 {
5716 	size_t i;
5717 
5718 	for (i = 0; i < len; i++)
5719 		((char *)dest)[i] = c;
5720 	return (dest);
5721 }
5722 
5723 void
5724 bzero(void *dest, size_t len)
5725 {
5726 	size_t i;
5727 
5728 	for (i = 0; i < len; i++)
5729 		((char *)dest)[i] = 0;
5730 }
5731 
5732 /* malloc */
5733 void *
5734 malloc(size_t nbytes)
5735 {
5736 
5737 	return (__crt_malloc(nbytes));
5738 }
5739 
5740 void *
5741 calloc(size_t num, size_t size)
5742 {
5743 
5744 	return (__crt_calloc(num, size));
5745 }
5746 
5747 void
5748 free(void *cp)
5749 {
5750 
5751 	__crt_free(cp);
5752 }
5753 
5754 void *
5755 realloc(void *cp, size_t nbytes)
5756 {
5757 
5758 	return (__crt_realloc(cp, nbytes));
5759 }
5760