xref: /freebsd/libexec/rtld-elf/rtld.c (revision a0dd79dbdf917a8fbe2762d668f05a7c9f682b22)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 
65 #ifndef COMPAT_32BIT
66 #define PATH_RTLD	"/libexec/ld-elf.so.1"
67 #else
68 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
69 #endif
70 
71 /* Types. */
72 typedef void (*func_ptr_type)();
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 /*
76  * Function declarations.
77  */
78 static const char *basename(const char *);
79 static void die(void) __dead2;
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
87     int lo_flags, int mode);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *);
95 static const char *gethints(void);
96 static void init_dag(Obj_Entry *);
97 static void init_rtld(caddr_t, Elf_Auxinfo **);
98 static void initlist_add_neededs(Needed_Entry *, Objlist *);
99 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
103 static void unload_filtees(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *, int);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
107 static void map_stacks_exec(RtldLockState *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110 static void objlist_call_init(Objlist *, RtldLockState *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void *path_enumerate(const char *, path_enum_proc, void *);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
119 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
120     RtldLockState *lockstate);
121 static int rtld_dirname(const char *, char *);
122 static int rtld_dirname_abs(const char *, char *);
123 static void *rtld_dlopen(const char *name, int fd, int mode);
124 static void rtld_exit(void);
125 static char *search_library_path(const char *, const char *);
126 static const void **get_program_var_addr(const char *, RtldLockState *);
127 static void set_program_var(const char *, const void *);
128 static int symlook_default(SymLook *, const Obj_Entry *refobj);
129 static int symlook_global(SymLook *, DoneList *);
130 static void symlook_init_from_req(SymLook *, const SymLook *);
131 static int symlook_list(SymLook *, const Objlist *, DoneList *);
132 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
133 static int symlook_obj1(SymLook *, const Obj_Entry *);
134 static void trace_loaded_objects(Obj_Entry *);
135 static void unlink_object(Obj_Entry *);
136 static void unload_object(Obj_Entry *);
137 static void unref_dag(Obj_Entry *);
138 static void ref_dag(Obj_Entry *);
139 static int origin_subst_one(char **, const char *, const char *,
140   const char *, char *);
141 static char *origin_subst(const char *, const char *);
142 static int  rtld_verify_versions(const Objlist *);
143 static int  rtld_verify_object_versions(Obj_Entry *);
144 static void object_add_name(Obj_Entry *, const char *);
145 static int  object_match_name(const Obj_Entry *, const char *);
146 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148     struct dl_phdr_info *phdr_info);
149 
150 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
151 
152 /*
153  * Data declarations.
154  */
155 static char *error_message;	/* Message for dlerror(), or NULL */
156 struct r_debug r_debug;		/* for GDB; */
157 static bool libmap_disable;	/* Disable libmap */
158 static bool ld_loadfltr;	/* Immediate filters processing */
159 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
160 static bool trust;		/* False for setuid and setgid programs */
161 static bool dangerous_ld_env;	/* True if environment variables have been
162 				   used to affect the libraries loaded */
163 static char *ld_bind_now;	/* Environment variable for immediate binding */
164 static char *ld_debug;		/* Environment variable for debugging */
165 static char *ld_library_path;	/* Environment variable for search path */
166 static char *ld_preload;	/* Environment variable for libraries to
167 				   load first */
168 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
169 static char *ld_tracing;	/* Called from ldd to print libs */
170 static char *ld_utrace;		/* Use utrace() to log events. */
171 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
172 static Obj_Entry **obj_tail;	/* Link field of last object in list */
173 static Obj_Entry *obj_main;	/* The main program shared object */
174 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
175 static unsigned int obj_count;	/* Number of objects in obj_list */
176 static unsigned int obj_loads;	/* Number of objects in obj_list */
177 
178 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
179   STAILQ_HEAD_INITIALIZER(list_global);
180 static Objlist list_main =	/* Objects loaded at program startup */
181   STAILQ_HEAD_INITIALIZER(list_main);
182 static Objlist list_fini =	/* Objects needing fini() calls */
183   STAILQ_HEAD_INITIALIZER(list_fini);
184 
185 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
186 
187 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
188 
189 extern Elf_Dyn _DYNAMIC;
190 #pragma weak _DYNAMIC
191 #ifndef RTLD_IS_DYNAMIC
192 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
193 #endif
194 
195 int osreldate, pagesize;
196 
197 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
198 static int max_stack_flags;
199 
200 /*
201  * Global declarations normally provided by crt1.  The dynamic linker is
202  * not built with crt1, so we have to provide them ourselves.
203  */
204 char *__progname;
205 char **environ;
206 
207 /*
208  * Globals to control TLS allocation.
209  */
210 size_t tls_last_offset;		/* Static TLS offset of last module */
211 size_t tls_last_size;		/* Static TLS size of last module */
212 size_t tls_static_space;	/* Static TLS space allocated */
213 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
214 int tls_max_index = 1;		/* Largest module index allocated */
215 
216 /*
217  * Fill in a DoneList with an allocation large enough to hold all of
218  * the currently-loaded objects.  Keep this as a macro since it calls
219  * alloca and we want that to occur within the scope of the caller.
220  */
221 #define donelist_init(dlp)					\
222     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
223     assert((dlp)->objs != NULL),				\
224     (dlp)->num_alloc = obj_count,				\
225     (dlp)->num_used = 0)
226 
227 #define	UTRACE_DLOPEN_START		1
228 #define	UTRACE_DLOPEN_STOP		2
229 #define	UTRACE_DLCLOSE_START		3
230 #define	UTRACE_DLCLOSE_STOP		4
231 #define	UTRACE_LOAD_OBJECT		5
232 #define	UTRACE_UNLOAD_OBJECT		6
233 #define	UTRACE_ADD_RUNDEP		7
234 #define	UTRACE_PRELOAD_FINISHED		8
235 #define	UTRACE_INIT_CALL		9
236 #define	UTRACE_FINI_CALL		10
237 
238 struct utrace_rtld {
239 	char sig[4];			/* 'RTLD' */
240 	int event;
241 	void *handle;
242 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
243 	size_t mapsize;
244 	int refcnt;			/* Used for 'mode' */
245 	char name[MAXPATHLEN];
246 };
247 
248 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
249 	if (ld_utrace != NULL)					\
250 		ld_utrace_log(e, h, mb, ms, r, n);		\
251 } while (0)
252 
253 static void
254 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
255     int refcnt, const char *name)
256 {
257 	struct utrace_rtld ut;
258 
259 	ut.sig[0] = 'R';
260 	ut.sig[1] = 'T';
261 	ut.sig[2] = 'L';
262 	ut.sig[3] = 'D';
263 	ut.event = event;
264 	ut.handle = handle;
265 	ut.mapbase = mapbase;
266 	ut.mapsize = mapsize;
267 	ut.refcnt = refcnt;
268 	bzero(ut.name, sizeof(ut.name));
269 	if (name)
270 		strlcpy(ut.name, name, sizeof(ut.name));
271 	utrace(&ut, sizeof(ut));
272 }
273 
274 /*
275  * Main entry point for dynamic linking.  The first argument is the
276  * stack pointer.  The stack is expected to be laid out as described
277  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
278  * Specifically, the stack pointer points to a word containing
279  * ARGC.  Following that in the stack is a null-terminated sequence
280  * of pointers to argument strings.  Then comes a null-terminated
281  * sequence of pointers to environment strings.  Finally, there is a
282  * sequence of "auxiliary vector" entries.
283  *
284  * The second argument points to a place to store the dynamic linker's
285  * exit procedure pointer and the third to a place to store the main
286  * program's object.
287  *
288  * The return value is the main program's entry point.
289  */
290 func_ptr_type
291 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
292 {
293     Elf_Auxinfo *aux_info[AT_COUNT];
294     int i;
295     int argc;
296     char **argv;
297     char **env;
298     Elf_Auxinfo *aux;
299     Elf_Auxinfo *auxp;
300     const char *argv0;
301     Objlist_Entry *entry;
302     Obj_Entry *obj;
303     Obj_Entry **preload_tail;
304     Objlist initlist;
305     RtldLockState lockstate;
306 
307     /*
308      * On entry, the dynamic linker itself has not been relocated yet.
309      * Be very careful not to reference any global data until after
310      * init_rtld has returned.  It is OK to reference file-scope statics
311      * and string constants, and to call static and global functions.
312      */
313 
314     /* Find the auxiliary vector on the stack. */
315     argc = *sp++;
316     argv = (char **) sp;
317     sp += argc + 1;	/* Skip over arguments and NULL terminator */
318     env = (char **) sp;
319     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
320 	;
321     aux = (Elf_Auxinfo *) sp;
322 
323     /* Digest the auxiliary vector. */
324     for (i = 0;  i < AT_COUNT;  i++)
325 	aux_info[i] = NULL;
326     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
327 	if (auxp->a_type < AT_COUNT)
328 	    aux_info[auxp->a_type] = auxp;
329     }
330 
331     /* Initialize and relocate ourselves. */
332     assert(aux_info[AT_BASE] != NULL);
333     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
334 
335     __progname = obj_rtld.path;
336     argv0 = argv[0] != NULL ? argv[0] : "(null)";
337     environ = env;
338 
339     trust = !issetugid();
340 
341     ld_bind_now = getenv(LD_ "BIND_NOW");
342     /*
343      * If the process is tainted, then we un-set the dangerous environment
344      * variables.  The process will be marked as tainted until setuid(2)
345      * is called.  If any child process calls setuid(2) we do not want any
346      * future processes to honor the potentially un-safe variables.
347      */
348     if (!trust) {
349         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
350 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
351 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
352 	    unsetenv(LD_ "LOADFLTR")) {
353 		_rtld_error("environment corrupt; aborting");
354 		die();
355 	}
356     }
357     ld_debug = getenv(LD_ "DEBUG");
358     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
359     libmap_override = getenv(LD_ "LIBMAP");
360     ld_library_path = getenv(LD_ "LIBRARY_PATH");
361     ld_preload = getenv(LD_ "PRELOAD");
362     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
363     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
364     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
365 	(ld_library_path != NULL) || (ld_preload != NULL) ||
366 	(ld_elf_hints_path != NULL) || ld_loadfltr;
367     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
368     ld_utrace = getenv(LD_ "UTRACE");
369 
370     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
371 	ld_elf_hints_path = _PATH_ELF_HINTS;
372 
373     if (ld_debug != NULL && *ld_debug != '\0')
374 	debug = 1;
375     dbg("%s is initialized, base address = %p", __progname,
376 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
377     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
378     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
379 
380     dbg("initializing thread locks");
381     lockdflt_init();
382 
383     /*
384      * Load the main program, or process its program header if it is
385      * already loaded.
386      */
387     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
388 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
389 	dbg("loading main program");
390 	obj_main = map_object(fd, argv0, NULL);
391 	close(fd);
392 	if (obj_main == NULL)
393 	    die();
394 	max_stack_flags = obj->stack_flags;
395     } else {				/* Main program already loaded. */
396 	const Elf_Phdr *phdr;
397 	int phnum;
398 	caddr_t entry;
399 
400 	dbg("processing main program's program header");
401 	assert(aux_info[AT_PHDR] != NULL);
402 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
403 	assert(aux_info[AT_PHNUM] != NULL);
404 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
405 	assert(aux_info[AT_PHENT] != NULL);
406 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
407 	assert(aux_info[AT_ENTRY] != NULL);
408 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
409 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
410 	    die();
411     }
412 
413     if (aux_info[AT_EXECPATH] != 0) {
414 	    char *kexecpath;
415 	    char buf[MAXPATHLEN];
416 
417 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
418 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
419 	    if (kexecpath[0] == '/')
420 		    obj_main->path = kexecpath;
421 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
422 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
423 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
424 		    obj_main->path = xstrdup(argv0);
425 	    else
426 		    obj_main->path = xstrdup(buf);
427     } else {
428 	    dbg("No AT_EXECPATH");
429 	    obj_main->path = xstrdup(argv0);
430     }
431     dbg("obj_main path %s", obj_main->path);
432     obj_main->mainprog = true;
433 
434     if (aux_info[AT_STACKPROT] != NULL &&
435       aux_info[AT_STACKPROT]->a_un.a_val != 0)
436 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
437 
438     /*
439      * Get the actual dynamic linker pathname from the executable if
440      * possible.  (It should always be possible.)  That ensures that
441      * gdb will find the right dynamic linker even if a non-standard
442      * one is being used.
443      */
444     if (obj_main->interp != NULL &&
445       strcmp(obj_main->interp, obj_rtld.path) != 0) {
446 	free(obj_rtld.path);
447 	obj_rtld.path = xstrdup(obj_main->interp);
448         __progname = obj_rtld.path;
449     }
450 
451     digest_dynamic(obj_main, 0);
452 
453     linkmap_add(obj_main);
454     linkmap_add(&obj_rtld);
455 
456     /* Link the main program into the list of objects. */
457     *obj_tail = obj_main;
458     obj_tail = &obj_main->next;
459     obj_count++;
460     obj_loads++;
461     /* Make sure we don't call the main program's init and fini functions. */
462     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
463 
464     /* Initialize a fake symbol for resolving undefined weak references. */
465     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
466     sym_zero.st_shndx = SHN_UNDEF;
467     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
468 
469     if (!libmap_disable)
470         libmap_disable = (bool)lm_init(libmap_override);
471 
472     dbg("loading LD_PRELOAD libraries");
473     if (load_preload_objects() == -1)
474 	die();
475     preload_tail = obj_tail;
476 
477     dbg("loading needed objects");
478     if (load_needed_objects(obj_main, 0) == -1)
479 	die();
480 
481     /* Make a list of all objects loaded at startup. */
482     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
483 	objlist_push_tail(&list_main, obj);
484     	obj->refcount++;
485     }
486 
487     dbg("checking for required versions");
488     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
489 	die();
490 
491     if (ld_tracing) {		/* We're done */
492 	trace_loaded_objects(obj_main);
493 	exit(0);
494     }
495 
496     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
497        dump_relocations(obj_main);
498        exit (0);
499     }
500 
501     /*
502      * Processing tls relocations requires having the tls offsets
503      * initialized.  Prepare offsets before starting initial
504      * relocation processing.
505      */
506     dbg("initializing initial thread local storage offsets");
507     STAILQ_FOREACH(entry, &list_main, link) {
508 	/*
509 	 * Allocate all the initial objects out of the static TLS
510 	 * block even if they didn't ask for it.
511 	 */
512 	allocate_tls_offset(entry->obj);
513     }
514 
515     if (relocate_objects(obj_main,
516       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
517 	die();
518 
519     dbg("doing copy relocations");
520     if (do_copy_relocations(obj_main) == -1)
521 	die();
522 
523     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
524        dump_relocations(obj_main);
525        exit (0);
526     }
527 
528     /*
529      * Setup TLS for main thread.  This must be done after the
530      * relocations are processed, since tls initialization section
531      * might be the subject for relocations.
532      */
533     dbg("initializing initial thread local storage");
534     allocate_initial_tls(obj_list);
535 
536     dbg("initializing key program variables");
537     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
538     set_program_var("environ", env);
539     set_program_var("__elf_aux_vector", aux);
540 
541     /* Make a list of init functions to call. */
542     objlist_init(&initlist);
543     initlist_add_objects(obj_list, preload_tail, &initlist);
544 
545     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
546 
547     map_stacks_exec(NULL);
548 
549     dbg("resolving ifuncs");
550     if (resolve_objects_ifunc(obj_main,
551       ld_bind_now != NULL && *ld_bind_now != '\0', NULL) == -1)
552 	die();
553 
554     wlock_acquire(rtld_bind_lock, &lockstate);
555     objlist_call_init(&initlist, &lockstate);
556     objlist_clear(&initlist);
557     dbg("loading filtees");
558     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
559 	if (ld_loadfltr || obj->z_loadfltr)
560 	    load_filtees(obj, 0, &lockstate);
561     }
562     lock_release(rtld_bind_lock, &lockstate);
563 
564     dbg("transferring control to program entry point = %p", obj_main->entry);
565 
566     /* Return the exit procedure and the program entry point. */
567     *exit_proc = rtld_exit;
568     *objp = obj_main;
569     return (func_ptr_type) obj_main->entry;
570 }
571 
572 void *
573 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
574 {
575 	void *ptr;
576 	Elf_Addr target;
577 
578 	ptr = (void *)make_function_pointer(def, obj);
579 	target = ((Elf_Addr (*)(void))ptr)();
580 	return ((void *)target);
581 }
582 
583 Elf_Addr
584 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
585 {
586     const Elf_Rel *rel;
587     const Elf_Sym *def;
588     const Obj_Entry *defobj;
589     Elf_Addr *where;
590     Elf_Addr target;
591     RtldLockState lockstate;
592 
593     rlock_acquire(rtld_bind_lock, &lockstate);
594     if (sigsetjmp(lockstate.env, 0) != 0)
595 	    lock_upgrade(rtld_bind_lock, &lockstate);
596     if (obj->pltrel)
597 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
598     else
599 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
600 
601     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
602     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
603 	&lockstate);
604     if (def == NULL)
605 	die();
606     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
607 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
608     else
609 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
610 
611     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
612       defobj->strtab + def->st_name, basename(obj->path),
613       (void *)target, basename(defobj->path));
614 
615     /*
616      * Write the new contents for the jmpslot. Note that depending on
617      * architecture, the value which we need to return back to the
618      * lazy binding trampoline may or may not be the target
619      * address. The value returned from reloc_jmpslot() is the value
620      * that the trampoline needs.
621      */
622     target = reloc_jmpslot(where, target, defobj, obj, rel);
623     lock_release(rtld_bind_lock, &lockstate);
624     return target;
625 }
626 
627 /*
628  * Error reporting function.  Use it like printf.  If formats the message
629  * into a buffer, and sets things up so that the next call to dlerror()
630  * will return the message.
631  */
632 void
633 _rtld_error(const char *fmt, ...)
634 {
635     static char buf[512];
636     va_list ap;
637 
638     va_start(ap, fmt);
639     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
640     error_message = buf;
641     va_end(ap);
642 }
643 
644 /*
645  * Return a dynamically-allocated copy of the current error message, if any.
646  */
647 static char *
648 errmsg_save(void)
649 {
650     return error_message == NULL ? NULL : xstrdup(error_message);
651 }
652 
653 /*
654  * Restore the current error message from a copy which was previously saved
655  * by errmsg_save().  The copy is freed.
656  */
657 static void
658 errmsg_restore(char *saved_msg)
659 {
660     if (saved_msg == NULL)
661 	error_message = NULL;
662     else {
663 	_rtld_error("%s", saved_msg);
664 	free(saved_msg);
665     }
666 }
667 
668 static const char *
669 basename(const char *name)
670 {
671     const char *p = strrchr(name, '/');
672     return p != NULL ? p + 1 : name;
673 }
674 
675 static struct utsname uts;
676 
677 static int
678 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
679     char *may_free)
680 {
681     const char *p, *p1;
682     char *res1;
683     int subst_len;
684     int kw_len;
685 
686     res1 = *res = NULL;
687     p = real;
688     subst_len = kw_len = 0;
689     for (;;) {
690 	 p1 = strstr(p, kw);
691 	 if (p1 != NULL) {
692 	     if (subst_len == 0) {
693 		 subst_len = strlen(subst);
694 		 kw_len = strlen(kw);
695 	     }
696 	     if (*res == NULL) {
697 		 *res = xmalloc(PATH_MAX);
698 		 res1 = *res;
699 	     }
700 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
701 		 _rtld_error("Substitution of %s in %s cannot be performed",
702 		     kw, real);
703 		 if (may_free != NULL)
704 		     free(may_free);
705 		 free(res);
706 		 return (false);
707 	     }
708 	     memcpy(res1, p, p1 - p);
709 	     res1 += p1 - p;
710 	     memcpy(res1, subst, subst_len);
711 	     res1 += subst_len;
712 	     p = p1 + kw_len;
713 	 } else {
714 	    if (*res == NULL) {
715 		if (may_free != NULL)
716 		    *res = may_free;
717 		else
718 		    *res = xstrdup(real);
719 		return (true);
720 	    }
721 	    *res1 = '\0';
722 	    if (may_free != NULL)
723 		free(may_free);
724 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
725 		free(res);
726 		return (false);
727 	    }
728 	    return (true);
729 	 }
730     }
731 }
732 
733 static char *
734 origin_subst(const char *real, const char *origin_path)
735 {
736     char *res1, *res2, *res3, *res4;
737 
738     if (uts.sysname[0] == '\0') {
739 	if (uname(&uts) != 0) {
740 	    _rtld_error("utsname failed: %d", errno);
741 	    return (NULL);
742 	}
743     }
744     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
745 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
746 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
747 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
748 	    return (NULL);
749     return (res4);
750 }
751 
752 static void
753 die(void)
754 {
755     const char *msg = dlerror();
756 
757     if (msg == NULL)
758 	msg = "Fatal error";
759     rtld_fdputstr(STDERR_FILENO, msg);
760     rtld_fdputchar(STDERR_FILENO, '\n');
761     _exit(1);
762 }
763 
764 /*
765  * Process a shared object's DYNAMIC section, and save the important
766  * information in its Obj_Entry structure.
767  */
768 static void
769 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
770     const Elf_Dyn **dyn_soname)
771 {
772     const Elf_Dyn *dynp;
773     Needed_Entry **needed_tail = &obj->needed;
774     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
775     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
776     int plttype = DT_REL;
777 
778     *dyn_rpath = NULL;
779     *dyn_soname = NULL;
780 
781     obj->bind_now = false;
782     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
783 	switch (dynp->d_tag) {
784 
785 	case DT_REL:
786 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
787 	    break;
788 
789 	case DT_RELSZ:
790 	    obj->relsize = dynp->d_un.d_val;
791 	    break;
792 
793 	case DT_RELENT:
794 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
795 	    break;
796 
797 	case DT_JMPREL:
798 	    obj->pltrel = (const Elf_Rel *)
799 	      (obj->relocbase + dynp->d_un.d_ptr);
800 	    break;
801 
802 	case DT_PLTRELSZ:
803 	    obj->pltrelsize = dynp->d_un.d_val;
804 	    break;
805 
806 	case DT_RELA:
807 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
808 	    break;
809 
810 	case DT_RELASZ:
811 	    obj->relasize = dynp->d_un.d_val;
812 	    break;
813 
814 	case DT_RELAENT:
815 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
816 	    break;
817 
818 	case DT_PLTREL:
819 	    plttype = dynp->d_un.d_val;
820 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
821 	    break;
822 
823 	case DT_SYMTAB:
824 	    obj->symtab = (const Elf_Sym *)
825 	      (obj->relocbase + dynp->d_un.d_ptr);
826 	    break;
827 
828 	case DT_SYMENT:
829 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
830 	    break;
831 
832 	case DT_STRTAB:
833 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
834 	    break;
835 
836 	case DT_STRSZ:
837 	    obj->strsize = dynp->d_un.d_val;
838 	    break;
839 
840 	case DT_VERNEED:
841 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
842 		dynp->d_un.d_val);
843 	    break;
844 
845 	case DT_VERNEEDNUM:
846 	    obj->verneednum = dynp->d_un.d_val;
847 	    break;
848 
849 	case DT_VERDEF:
850 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
851 		dynp->d_un.d_val);
852 	    break;
853 
854 	case DT_VERDEFNUM:
855 	    obj->verdefnum = dynp->d_un.d_val;
856 	    break;
857 
858 	case DT_VERSYM:
859 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
860 		dynp->d_un.d_val);
861 	    break;
862 
863 	case DT_HASH:
864 	    {
865 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
866 		  (obj->relocbase + dynp->d_un.d_ptr);
867 		obj->nbuckets = hashtab[0];
868 		obj->nchains = hashtab[1];
869 		obj->buckets = hashtab + 2;
870 		obj->chains = obj->buckets + obj->nbuckets;
871 	    }
872 	    break;
873 
874 	case DT_NEEDED:
875 	    if (!obj->rtld) {
876 		Needed_Entry *nep = NEW(Needed_Entry);
877 		nep->name = dynp->d_un.d_val;
878 		nep->obj = NULL;
879 		nep->next = NULL;
880 
881 		*needed_tail = nep;
882 		needed_tail = &nep->next;
883 	    }
884 	    break;
885 
886 	case DT_FILTER:
887 	    if (!obj->rtld) {
888 		Needed_Entry *nep = NEW(Needed_Entry);
889 		nep->name = dynp->d_un.d_val;
890 		nep->obj = NULL;
891 		nep->next = NULL;
892 
893 		*needed_filtees_tail = nep;
894 		needed_filtees_tail = &nep->next;
895 	    }
896 	    break;
897 
898 	case DT_AUXILIARY:
899 	    if (!obj->rtld) {
900 		Needed_Entry *nep = NEW(Needed_Entry);
901 		nep->name = dynp->d_un.d_val;
902 		nep->obj = NULL;
903 		nep->next = NULL;
904 
905 		*needed_aux_filtees_tail = nep;
906 		needed_aux_filtees_tail = &nep->next;
907 	    }
908 	    break;
909 
910 	case DT_PLTGOT:
911 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
912 	    break;
913 
914 	case DT_TEXTREL:
915 	    obj->textrel = true;
916 	    break;
917 
918 	case DT_SYMBOLIC:
919 	    obj->symbolic = true;
920 	    break;
921 
922 	case DT_RPATH:
923 	case DT_RUNPATH:	/* XXX: process separately */
924 	    /*
925 	     * We have to wait until later to process this, because we
926 	     * might not have gotten the address of the string table yet.
927 	     */
928 	    *dyn_rpath = dynp;
929 	    break;
930 
931 	case DT_SONAME:
932 	    *dyn_soname = dynp;
933 	    break;
934 
935 	case DT_INIT:
936 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
937 	    break;
938 
939 	case DT_FINI:
940 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
941 	    break;
942 
943 	/*
944 	 * Don't process DT_DEBUG on MIPS as the dynamic section
945 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
946 	 */
947 
948 #ifndef __mips__
949 	case DT_DEBUG:
950 	    /* XXX - not implemented yet */
951 	    if (!early)
952 		dbg("Filling in DT_DEBUG entry");
953 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
954 	    break;
955 #endif
956 
957 	case DT_FLAGS:
958 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
959 		    obj->z_origin = true;
960 		if (dynp->d_un.d_val & DF_SYMBOLIC)
961 		    obj->symbolic = true;
962 		if (dynp->d_un.d_val & DF_TEXTREL)
963 		    obj->textrel = true;
964 		if (dynp->d_un.d_val & DF_BIND_NOW)
965 		    obj->bind_now = true;
966 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
967 		    ;*/
968 	    break;
969 #ifdef __mips__
970 	case DT_MIPS_LOCAL_GOTNO:
971 		obj->local_gotno = dynp->d_un.d_val;
972 	    break;
973 
974 	case DT_MIPS_SYMTABNO:
975 		obj->symtabno = dynp->d_un.d_val;
976 		break;
977 
978 	case DT_MIPS_GOTSYM:
979 		obj->gotsym = dynp->d_un.d_val;
980 		break;
981 
982 	case DT_MIPS_RLD_MAP:
983 #ifdef notyet
984 		if (!early)
985 			dbg("Filling in DT_DEBUG entry");
986 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
987 #endif
988 		break;
989 #endif
990 
991 	case DT_FLAGS_1:
992 		if (dynp->d_un.d_val & DF_1_NOOPEN)
993 		    obj->z_noopen = true;
994 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
995 		    obj->z_origin = true;
996 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
997 		    XXX ;*/
998 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
999 		    obj->bind_now = true;
1000 		if (dynp->d_un.d_val & DF_1_NODELETE)
1001 		    obj->z_nodelete = true;
1002 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1003 		    obj->z_loadfltr = true;
1004 	    break;
1005 
1006 	default:
1007 	    if (!early) {
1008 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1009 		    (long)dynp->d_tag);
1010 	    }
1011 	    break;
1012 	}
1013     }
1014 
1015     obj->traced = false;
1016 
1017     if (plttype == DT_RELA) {
1018 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1019 	obj->pltrel = NULL;
1020 	obj->pltrelasize = obj->pltrelsize;
1021 	obj->pltrelsize = 0;
1022     }
1023 }
1024 
1025 static void
1026 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1027     const Elf_Dyn *dyn_soname)
1028 {
1029 
1030     if (obj->z_origin && obj->origin_path == NULL) {
1031 	obj->origin_path = xmalloc(PATH_MAX);
1032 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1033 	    die();
1034     }
1035 
1036     if (dyn_rpath != NULL) {
1037 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1038 	if (obj->z_origin)
1039 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1040     }
1041 
1042     if (dyn_soname != NULL)
1043 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1044 }
1045 
1046 static void
1047 digest_dynamic(Obj_Entry *obj, int early)
1048 {
1049 	const Elf_Dyn *dyn_rpath;
1050 	const Elf_Dyn *dyn_soname;
1051 
1052 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1053 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1054 }
1055 
1056 /*
1057  * Process a shared object's program header.  This is used only for the
1058  * main program, when the kernel has already loaded the main program
1059  * into memory before calling the dynamic linker.  It creates and
1060  * returns an Obj_Entry structure.
1061  */
1062 static Obj_Entry *
1063 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1064 {
1065     Obj_Entry *obj;
1066     const Elf_Phdr *phlimit = phdr + phnum;
1067     const Elf_Phdr *ph;
1068     int nsegs = 0;
1069 
1070     obj = obj_new();
1071     for (ph = phdr;  ph < phlimit;  ph++) {
1072 	if (ph->p_type != PT_PHDR)
1073 	    continue;
1074 
1075 	obj->phdr = phdr;
1076 	obj->phsize = ph->p_memsz;
1077 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1078 	break;
1079     }
1080 
1081     obj->stack_flags = PF_X | PF_R | PF_W;
1082 
1083     for (ph = phdr;  ph < phlimit;  ph++) {
1084 	switch (ph->p_type) {
1085 
1086 	case PT_INTERP:
1087 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1088 	    break;
1089 
1090 	case PT_LOAD:
1091 	    if (nsegs == 0) {	/* First load segment */
1092 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1093 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1094 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1095 		  obj->vaddrbase;
1096 	    } else {		/* Last load segment */
1097 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1098 		  obj->vaddrbase;
1099 	    }
1100 	    nsegs++;
1101 	    break;
1102 
1103 	case PT_DYNAMIC:
1104 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1105 	    break;
1106 
1107 	case PT_TLS:
1108 	    obj->tlsindex = 1;
1109 	    obj->tlssize = ph->p_memsz;
1110 	    obj->tlsalign = ph->p_align;
1111 	    obj->tlsinitsize = ph->p_filesz;
1112 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1113 	    break;
1114 
1115 	case PT_GNU_STACK:
1116 	    obj->stack_flags = ph->p_flags;
1117 	    break;
1118 
1119 	case PT_GNU_RELRO:
1120 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1121 	    obj->relro_size = round_page(ph->p_memsz);
1122 	    break;
1123 	}
1124     }
1125     if (nsegs < 1) {
1126 	_rtld_error("%s: too few PT_LOAD segments", path);
1127 	return NULL;
1128     }
1129 
1130     obj->entry = entry;
1131     return obj;
1132 }
1133 
1134 static Obj_Entry *
1135 dlcheck(void *handle)
1136 {
1137     Obj_Entry *obj;
1138 
1139     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1140 	if (obj == (Obj_Entry *) handle)
1141 	    break;
1142 
1143     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1144 	_rtld_error("Invalid shared object handle %p", handle);
1145 	return NULL;
1146     }
1147     return obj;
1148 }
1149 
1150 /*
1151  * If the given object is already in the donelist, return true.  Otherwise
1152  * add the object to the list and return false.
1153  */
1154 static bool
1155 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1156 {
1157     unsigned int i;
1158 
1159     for (i = 0;  i < dlp->num_used;  i++)
1160 	if (dlp->objs[i] == obj)
1161 	    return true;
1162     /*
1163      * Our donelist allocation should always be sufficient.  But if
1164      * our threads locking isn't working properly, more shared objects
1165      * could have been loaded since we allocated the list.  That should
1166      * never happen, but we'll handle it properly just in case it does.
1167      */
1168     if (dlp->num_used < dlp->num_alloc)
1169 	dlp->objs[dlp->num_used++] = obj;
1170     return false;
1171 }
1172 
1173 /*
1174  * Hash function for symbol table lookup.  Don't even think about changing
1175  * this.  It is specified by the System V ABI.
1176  */
1177 unsigned long
1178 elf_hash(const char *name)
1179 {
1180     const unsigned char *p = (const unsigned char *) name;
1181     unsigned long h = 0;
1182     unsigned long g;
1183 
1184     while (*p != '\0') {
1185 	h = (h << 4) + *p++;
1186 	if ((g = h & 0xf0000000) != 0)
1187 	    h ^= g >> 24;
1188 	h &= ~g;
1189     }
1190     return h;
1191 }
1192 
1193 /*
1194  * Find the library with the given name, and return its full pathname.
1195  * The returned string is dynamically allocated.  Generates an error
1196  * message and returns NULL if the library cannot be found.
1197  *
1198  * If the second argument is non-NULL, then it refers to an already-
1199  * loaded shared object, whose library search path will be searched.
1200  *
1201  * The search order is:
1202  *   LD_LIBRARY_PATH
1203  *   rpath in the referencing file
1204  *   ldconfig hints
1205  *   /lib:/usr/lib
1206  */
1207 static char *
1208 find_library(const char *xname, const Obj_Entry *refobj)
1209 {
1210     char *pathname;
1211     char *name;
1212 
1213     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1214 	if (xname[0] != '/' && !trust) {
1215 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1216 	      xname);
1217 	    return NULL;
1218 	}
1219 	if (refobj != NULL && refobj->z_origin)
1220 	    return origin_subst(xname, refobj->origin_path);
1221 	else
1222 	    return xstrdup(xname);
1223     }
1224 
1225     if (libmap_disable || (refobj == NULL) ||
1226 	(name = lm_find(refobj->path, xname)) == NULL)
1227 	name = (char *)xname;
1228 
1229     dbg(" Searching for \"%s\"", name);
1230 
1231     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1232       (refobj != NULL &&
1233       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1234       (pathname = search_library_path(name, gethints())) != NULL ||
1235       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1236 	return pathname;
1237 
1238     if(refobj != NULL && refobj->path != NULL) {
1239 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1240 	  name, basename(refobj->path));
1241     } else {
1242 	_rtld_error("Shared object \"%s\" not found", name);
1243     }
1244     return NULL;
1245 }
1246 
1247 /*
1248  * Given a symbol number in a referencing object, find the corresponding
1249  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1250  * no definition was found.  Returns a pointer to the Obj_Entry of the
1251  * defining object via the reference parameter DEFOBJ_OUT.
1252  */
1253 const Elf_Sym *
1254 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1255     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1256     RtldLockState *lockstate)
1257 {
1258     const Elf_Sym *ref;
1259     const Elf_Sym *def;
1260     const Obj_Entry *defobj;
1261     SymLook req;
1262     const char *name;
1263     int res;
1264 
1265     /*
1266      * If we have already found this symbol, get the information from
1267      * the cache.
1268      */
1269     if (symnum >= refobj->nchains)
1270 	return NULL;	/* Bad object */
1271     if (cache != NULL && cache[symnum].sym != NULL) {
1272 	*defobj_out = cache[symnum].obj;
1273 	return cache[symnum].sym;
1274     }
1275 
1276     ref = refobj->symtab + symnum;
1277     name = refobj->strtab + ref->st_name;
1278     def = NULL;
1279     defobj = NULL;
1280 
1281     /*
1282      * We don't have to do a full scale lookup if the symbol is local.
1283      * We know it will bind to the instance in this load module; to
1284      * which we already have a pointer (ie ref). By not doing a lookup,
1285      * we not only improve performance, but it also avoids unresolvable
1286      * symbols when local symbols are not in the hash table. This has
1287      * been seen with the ia64 toolchain.
1288      */
1289     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1290 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1291 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1292 		symnum);
1293 	}
1294 	symlook_init(&req, name);
1295 	req.flags = flags;
1296 	req.ventry = fetch_ventry(refobj, symnum);
1297 	req.lockstate = lockstate;
1298 	res = symlook_default(&req, refobj);
1299 	if (res == 0) {
1300 	    def = req.sym_out;
1301 	    defobj = req.defobj_out;
1302 	}
1303     } else {
1304 	def = ref;
1305 	defobj = refobj;
1306     }
1307 
1308     /*
1309      * If we found no definition and the reference is weak, treat the
1310      * symbol as having the value zero.
1311      */
1312     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1313 	def = &sym_zero;
1314 	defobj = obj_main;
1315     }
1316 
1317     if (def != NULL) {
1318 	*defobj_out = defobj;
1319 	/* Record the information in the cache to avoid subsequent lookups. */
1320 	if (cache != NULL) {
1321 	    cache[symnum].sym = def;
1322 	    cache[symnum].obj = defobj;
1323 	}
1324     } else {
1325 	if (refobj != &obj_rtld)
1326 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1327     }
1328     return def;
1329 }
1330 
1331 /*
1332  * Return the search path from the ldconfig hints file, reading it if
1333  * necessary.  Returns NULL if there are problems with the hints file,
1334  * or if the search path there is empty.
1335  */
1336 static const char *
1337 gethints(void)
1338 {
1339     static char *hints;
1340 
1341     if (hints == NULL) {
1342 	int fd;
1343 	struct elfhints_hdr hdr;
1344 	char *p;
1345 
1346 	/* Keep from trying again in case the hints file is bad. */
1347 	hints = "";
1348 
1349 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1350 	    return NULL;
1351 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1352 	  hdr.magic != ELFHINTS_MAGIC ||
1353 	  hdr.version != 1) {
1354 	    close(fd);
1355 	    return NULL;
1356 	}
1357 	p = xmalloc(hdr.dirlistlen + 1);
1358 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1359 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1360 	    free(p);
1361 	    close(fd);
1362 	    return NULL;
1363 	}
1364 	hints = p;
1365 	close(fd);
1366     }
1367     return hints[0] != '\0' ? hints : NULL;
1368 }
1369 
1370 static void
1371 init_dag(Obj_Entry *root)
1372 {
1373     const Needed_Entry *needed;
1374     const Objlist_Entry *elm;
1375     DoneList donelist;
1376 
1377     if (root->dag_inited)
1378 	return;
1379     donelist_init(&donelist);
1380 
1381     /* Root object belongs to own DAG. */
1382     objlist_push_tail(&root->dldags, root);
1383     objlist_push_tail(&root->dagmembers, root);
1384     donelist_check(&donelist, root);
1385 
1386     /*
1387      * Add dependencies of root object to DAG in breadth order
1388      * by exploiting the fact that each new object get added
1389      * to the tail of the dagmembers list.
1390      */
1391     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1392 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1393 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1394 		continue;
1395 	    objlist_push_tail(&needed->obj->dldags, root);
1396 	    objlist_push_tail(&root->dagmembers, needed->obj);
1397 	}
1398     }
1399     root->dag_inited = true;
1400 }
1401 
1402 /*
1403  * Initialize the dynamic linker.  The argument is the address at which
1404  * the dynamic linker has been mapped into memory.  The primary task of
1405  * this function is to relocate the dynamic linker.
1406  */
1407 static void
1408 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1409 {
1410     Obj_Entry objtmp;	/* Temporary rtld object */
1411     const Elf_Dyn *dyn_rpath;
1412     const Elf_Dyn *dyn_soname;
1413 
1414     /*
1415      * Conjure up an Obj_Entry structure for the dynamic linker.
1416      *
1417      * The "path" member can't be initialized yet because string constants
1418      * cannot yet be accessed. Below we will set it correctly.
1419      */
1420     memset(&objtmp, 0, sizeof(objtmp));
1421     objtmp.path = NULL;
1422     objtmp.rtld = true;
1423     objtmp.mapbase = mapbase;
1424 #ifdef PIC
1425     objtmp.relocbase = mapbase;
1426 #endif
1427     if (RTLD_IS_DYNAMIC()) {
1428 	objtmp.dynamic = rtld_dynamic(&objtmp);
1429 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1430 	assert(objtmp.needed == NULL);
1431 #if !defined(__mips__)
1432 	/* MIPS has a bogus DT_TEXTREL. */
1433 	assert(!objtmp.textrel);
1434 #endif
1435 
1436 	/*
1437 	 * Temporarily put the dynamic linker entry into the object list, so
1438 	 * that symbols can be found.
1439 	 */
1440 
1441 	relocate_objects(&objtmp, true, &objtmp, NULL);
1442     }
1443 
1444     /* Initialize the object list. */
1445     obj_tail = &obj_list;
1446 
1447     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1448     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1449 
1450     if (aux_info[AT_PAGESZ] != NULL)
1451 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1452     if (aux_info[AT_OSRELDATE] != NULL)
1453 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1454 
1455     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1456 
1457     /* Replace the path with a dynamically allocated copy. */
1458     obj_rtld.path = xstrdup(PATH_RTLD);
1459 
1460     r_debug.r_brk = r_debug_state;
1461     r_debug.r_state = RT_CONSISTENT;
1462 }
1463 
1464 /*
1465  * Add the init functions from a needed object list (and its recursive
1466  * needed objects) to "list".  This is not used directly; it is a helper
1467  * function for initlist_add_objects().  The write lock must be held
1468  * when this function is called.
1469  */
1470 static void
1471 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1472 {
1473     /* Recursively process the successor needed objects. */
1474     if (needed->next != NULL)
1475 	initlist_add_neededs(needed->next, list);
1476 
1477     /* Process the current needed object. */
1478     if (needed->obj != NULL)
1479 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1480 }
1481 
1482 /*
1483  * Scan all of the DAGs rooted in the range of objects from "obj" to
1484  * "tail" and add their init functions to "list".  This recurses over
1485  * the DAGs and ensure the proper init ordering such that each object's
1486  * needed libraries are initialized before the object itself.  At the
1487  * same time, this function adds the objects to the global finalization
1488  * list "list_fini" in the opposite order.  The write lock must be
1489  * held when this function is called.
1490  */
1491 static void
1492 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1493 {
1494     if (obj->init_scanned || obj->init_done)
1495 	return;
1496     obj->init_scanned = true;
1497 
1498     /* Recursively process the successor objects. */
1499     if (&obj->next != tail)
1500 	initlist_add_objects(obj->next, tail, list);
1501 
1502     /* Recursively process the needed objects. */
1503     if (obj->needed != NULL)
1504 	initlist_add_neededs(obj->needed, list);
1505 
1506     /* Add the object to the init list. */
1507     if (obj->init != (Elf_Addr)NULL)
1508 	objlist_push_tail(list, obj);
1509 
1510     /* Add the object to the global fini list in the reverse order. */
1511     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1512 	objlist_push_head(&list_fini, obj);
1513 	obj->on_fini_list = true;
1514     }
1515 }
1516 
1517 #ifndef FPTR_TARGET
1518 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1519 #endif
1520 
1521 static void
1522 free_needed_filtees(Needed_Entry *n)
1523 {
1524     Needed_Entry *needed, *needed1;
1525 
1526     for (needed = n; needed != NULL; needed = needed->next) {
1527 	if (needed->obj != NULL) {
1528 	    dlclose(needed->obj);
1529 	    needed->obj = NULL;
1530 	}
1531     }
1532     for (needed = n; needed != NULL; needed = needed1) {
1533 	needed1 = needed->next;
1534 	free(needed);
1535     }
1536 }
1537 
1538 static void
1539 unload_filtees(Obj_Entry *obj)
1540 {
1541 
1542     free_needed_filtees(obj->needed_filtees);
1543     obj->needed_filtees = NULL;
1544     free_needed_filtees(obj->needed_aux_filtees);
1545     obj->needed_aux_filtees = NULL;
1546     obj->filtees_loaded = false;
1547 }
1548 
1549 static void
1550 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1551 {
1552 
1553     for (; needed != NULL; needed = needed->next) {
1554 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1555 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1556 	  RTLD_LOCAL);
1557     }
1558 }
1559 
1560 static void
1561 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1562 {
1563 
1564     lock_restart_for_upgrade(lockstate);
1565     if (!obj->filtees_loaded) {
1566 	load_filtee1(obj, obj->needed_filtees, flags);
1567 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1568 	obj->filtees_loaded = true;
1569     }
1570 }
1571 
1572 static int
1573 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1574 {
1575     Obj_Entry *obj1;
1576 
1577     for (; needed != NULL; needed = needed->next) {
1578 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1579 	  flags & ~RTLD_LO_NOLOAD);
1580 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1581 	    return (-1);
1582 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1583 	    dbg("obj %s nodelete", obj1->path);
1584 	    init_dag(obj1);
1585 	    ref_dag(obj1);
1586 	    obj1->ref_nodel = true;
1587 	}
1588     }
1589     return (0);
1590 }
1591 
1592 /*
1593  * Given a shared object, traverse its list of needed objects, and load
1594  * each of them.  Returns 0 on success.  Generates an error message and
1595  * returns -1 on failure.
1596  */
1597 static int
1598 load_needed_objects(Obj_Entry *first, int flags)
1599 {
1600     Obj_Entry *obj;
1601 
1602     for (obj = first;  obj != NULL;  obj = obj->next) {
1603 	if (process_needed(obj, obj->needed, flags) == -1)
1604 	    return (-1);
1605     }
1606     return (0);
1607 }
1608 
1609 static int
1610 load_preload_objects(void)
1611 {
1612     char *p = ld_preload;
1613     static const char delim[] = " \t:;";
1614 
1615     if (p == NULL)
1616 	return 0;
1617 
1618     p += strspn(p, delim);
1619     while (*p != '\0') {
1620 	size_t len = strcspn(p, delim);
1621 	char savech;
1622 
1623 	savech = p[len];
1624 	p[len] = '\0';
1625 	if (load_object(p, -1, NULL, 0) == NULL)
1626 	    return -1;	/* XXX - cleanup */
1627 	p[len] = savech;
1628 	p += len;
1629 	p += strspn(p, delim);
1630     }
1631     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1632     return 0;
1633 }
1634 
1635 static const char *
1636 printable_path(const char *path)
1637 {
1638 
1639 	return (path == NULL ? "<unknown>" : path);
1640 }
1641 
1642 /*
1643  * Load a shared object into memory, if it is not already loaded.  The
1644  * object may be specified by name or by user-supplied file descriptor
1645  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1646  * duplicate is.
1647  *
1648  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1649  * on failure.
1650  */
1651 static Obj_Entry *
1652 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1653 {
1654     Obj_Entry *obj;
1655     int fd;
1656     struct stat sb;
1657     char *path;
1658 
1659     if (name != NULL) {
1660 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1661 	    if (object_match_name(obj, name))
1662 		return (obj);
1663 	}
1664 
1665 	path = find_library(name, refobj);
1666 	if (path == NULL)
1667 	    return (NULL);
1668     } else
1669 	path = NULL;
1670 
1671     /*
1672      * If we didn't find a match by pathname, or the name is not
1673      * supplied, open the file and check again by device and inode.
1674      * This avoids false mismatches caused by multiple links or ".."
1675      * in pathnames.
1676      *
1677      * To avoid a race, we open the file and use fstat() rather than
1678      * using stat().
1679      */
1680     fd = -1;
1681     if (fd_u == -1) {
1682 	if ((fd = open(path, O_RDONLY)) == -1) {
1683 	    _rtld_error("Cannot open \"%s\"", path);
1684 	    free(path);
1685 	    return (NULL);
1686 	}
1687     } else {
1688 	fd = dup(fd_u);
1689 	if (fd == -1) {
1690 	    _rtld_error("Cannot dup fd");
1691 	    free(path);
1692 	    return (NULL);
1693 	}
1694     }
1695     if (fstat(fd, &sb) == -1) {
1696 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1697 	close(fd);
1698 	free(path);
1699 	return NULL;
1700     }
1701     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1702 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1703 	    break;
1704     if (obj != NULL && name != NULL) {
1705 	object_add_name(obj, name);
1706 	free(path);
1707 	close(fd);
1708 	return obj;
1709     }
1710     if (flags & RTLD_LO_NOLOAD) {
1711 	free(path);
1712 	close(fd);
1713 	return (NULL);
1714     }
1715 
1716     /* First use of this object, so we must map it in */
1717     obj = do_load_object(fd, name, path, &sb, flags);
1718     if (obj == NULL)
1719 	free(path);
1720     close(fd);
1721 
1722     return obj;
1723 }
1724 
1725 static Obj_Entry *
1726 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1727   int flags)
1728 {
1729     Obj_Entry *obj;
1730     struct statfs fs;
1731 
1732     /*
1733      * but first, make sure that environment variables haven't been
1734      * used to circumvent the noexec flag on a filesystem.
1735      */
1736     if (dangerous_ld_env) {
1737 	if (fstatfs(fd, &fs) != 0) {
1738 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1739 	    return NULL;
1740 	}
1741 	if (fs.f_flags & MNT_NOEXEC) {
1742 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1743 	    return NULL;
1744 	}
1745     }
1746     dbg("loading \"%s\"", printable_path(path));
1747     obj = map_object(fd, printable_path(path), sbp);
1748     if (obj == NULL)
1749         return NULL;
1750 
1751     /*
1752      * If DT_SONAME is present in the object, digest_dynamic2 already
1753      * added it to the object names.
1754      */
1755     if (name != NULL)
1756 	object_add_name(obj, name);
1757     obj->path = path;
1758     digest_dynamic(obj, 0);
1759     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1760       RTLD_LO_DLOPEN) {
1761 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1762 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1763 	munmap(obj->mapbase, obj->mapsize);
1764 	obj_free(obj);
1765 	return (NULL);
1766     }
1767 
1768     *obj_tail = obj;
1769     obj_tail = &obj->next;
1770     obj_count++;
1771     obj_loads++;
1772     linkmap_add(obj);	/* for GDB & dlinfo() */
1773     max_stack_flags |= obj->stack_flags;
1774 
1775     dbg("  %p .. %p: %s", obj->mapbase,
1776          obj->mapbase + obj->mapsize - 1, obj->path);
1777     if (obj->textrel)
1778 	dbg("  WARNING: %s has impure text", obj->path);
1779     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1780 	obj->path);
1781 
1782     return obj;
1783 }
1784 
1785 static Obj_Entry *
1786 obj_from_addr(const void *addr)
1787 {
1788     Obj_Entry *obj;
1789 
1790     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1791 	if (addr < (void *) obj->mapbase)
1792 	    continue;
1793 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1794 	    return obj;
1795     }
1796     return NULL;
1797 }
1798 
1799 /*
1800  * Call the finalization functions for each of the objects in "list"
1801  * belonging to the DAG of "root" and referenced once. If NULL "root"
1802  * is specified, every finalization function will be called regardless
1803  * of the reference count and the list elements won't be freed. All of
1804  * the objects are expected to have non-NULL fini functions.
1805  */
1806 static void
1807 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1808 {
1809     Objlist_Entry *elm;
1810     char *saved_msg;
1811 
1812     assert(root == NULL || root->refcount == 1);
1813 
1814     /*
1815      * Preserve the current error message since a fini function might
1816      * call into the dynamic linker and overwrite it.
1817      */
1818     saved_msg = errmsg_save();
1819     do {
1820 	STAILQ_FOREACH(elm, list, link) {
1821 	    if (root != NULL && (elm->obj->refcount != 1 ||
1822 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1823 		continue;
1824 	    dbg("calling fini function for %s at %p", elm->obj->path,
1825 	        (void *)elm->obj->fini);
1826 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1827 		elm->obj->path);
1828 	    /* Remove object from fini list to prevent recursive invocation. */
1829 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1830 	    /*
1831 	     * XXX: If a dlopen() call references an object while the
1832 	     * fini function is in progress, we might end up trying to
1833 	     * unload the referenced object in dlclose() or the object
1834 	     * won't be unloaded although its fini function has been
1835 	     * called.
1836 	     */
1837 	    lock_release(rtld_bind_lock, lockstate);
1838 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1839 	    wlock_acquire(rtld_bind_lock, lockstate);
1840 	    /* No need to free anything if process is going down. */
1841 	    if (root != NULL)
1842 	    	free(elm);
1843 	    /*
1844 	     * We must restart the list traversal after every fini call
1845 	     * because a dlclose() call from the fini function or from
1846 	     * another thread might have modified the reference counts.
1847 	     */
1848 	    break;
1849 	}
1850     } while (elm != NULL);
1851     errmsg_restore(saved_msg);
1852 }
1853 
1854 /*
1855  * Call the initialization functions for each of the objects in
1856  * "list".  All of the objects are expected to have non-NULL init
1857  * functions.
1858  */
1859 static void
1860 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1861 {
1862     Objlist_Entry *elm;
1863     Obj_Entry *obj;
1864     char *saved_msg;
1865 
1866     /*
1867      * Clean init_scanned flag so that objects can be rechecked and
1868      * possibly initialized earlier if any of vectors called below
1869      * cause the change by using dlopen.
1870      */
1871     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1872 	obj->init_scanned = false;
1873 
1874     /*
1875      * Preserve the current error message since an init function might
1876      * call into the dynamic linker and overwrite it.
1877      */
1878     saved_msg = errmsg_save();
1879     STAILQ_FOREACH(elm, list, link) {
1880 	if (elm->obj->init_done) /* Initialized early. */
1881 	    continue;
1882 	dbg("calling init function for %s at %p", elm->obj->path,
1883 	    (void *)elm->obj->init);
1884 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1885 	    elm->obj->path);
1886 	/*
1887 	 * Race: other thread might try to use this object before current
1888 	 * one completes the initilization. Not much can be done here
1889 	 * without better locking.
1890 	 */
1891 	elm->obj->init_done = true;
1892 	lock_release(rtld_bind_lock, lockstate);
1893 	call_initfini_pointer(elm->obj, elm->obj->init);
1894 	wlock_acquire(rtld_bind_lock, lockstate);
1895     }
1896     errmsg_restore(saved_msg);
1897 }
1898 
1899 static void
1900 objlist_clear(Objlist *list)
1901 {
1902     Objlist_Entry *elm;
1903 
1904     while (!STAILQ_EMPTY(list)) {
1905 	elm = STAILQ_FIRST(list);
1906 	STAILQ_REMOVE_HEAD(list, link);
1907 	free(elm);
1908     }
1909 }
1910 
1911 static Objlist_Entry *
1912 objlist_find(Objlist *list, const Obj_Entry *obj)
1913 {
1914     Objlist_Entry *elm;
1915 
1916     STAILQ_FOREACH(elm, list, link)
1917 	if (elm->obj == obj)
1918 	    return elm;
1919     return NULL;
1920 }
1921 
1922 static void
1923 objlist_init(Objlist *list)
1924 {
1925     STAILQ_INIT(list);
1926 }
1927 
1928 static void
1929 objlist_push_head(Objlist *list, Obj_Entry *obj)
1930 {
1931     Objlist_Entry *elm;
1932 
1933     elm = NEW(Objlist_Entry);
1934     elm->obj = obj;
1935     STAILQ_INSERT_HEAD(list, elm, link);
1936 }
1937 
1938 static void
1939 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1940 {
1941     Objlist_Entry *elm;
1942 
1943     elm = NEW(Objlist_Entry);
1944     elm->obj = obj;
1945     STAILQ_INSERT_TAIL(list, elm, link);
1946 }
1947 
1948 static void
1949 objlist_remove(Objlist *list, Obj_Entry *obj)
1950 {
1951     Objlist_Entry *elm;
1952 
1953     if ((elm = objlist_find(list, obj)) != NULL) {
1954 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1955 	free(elm);
1956     }
1957 }
1958 
1959 /*
1960  * Relocate newly-loaded shared objects.  The argument is a pointer to
1961  * the Obj_Entry for the first such object.  All objects from the first
1962  * to the end of the list of objects are relocated.  Returns 0 on success,
1963  * or -1 on failure.
1964  */
1965 static int
1966 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
1967     RtldLockState *lockstate)
1968 {
1969     Obj_Entry *obj;
1970 
1971     for (obj = first;  obj != NULL;  obj = obj->next) {
1972 	if (obj != rtldobj)
1973 	    dbg("relocating \"%s\"", obj->path);
1974 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1975 	    obj->symtab == NULL || obj->strtab == NULL) {
1976 	    _rtld_error("%s: Shared object has no run-time symbol table",
1977 	      obj->path);
1978 	    return -1;
1979 	}
1980 
1981 	if (obj->textrel) {
1982 	    /* There are relocations to the write-protected text segment. */
1983 	    if (mprotect(obj->mapbase, obj->textsize,
1984 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1985 		_rtld_error("%s: Cannot write-enable text segment: %s",
1986 		  obj->path, strerror(errno));
1987 		return -1;
1988 	    }
1989 	}
1990 
1991 	/* Process the non-PLT relocations. */
1992 	if (reloc_non_plt(obj, rtldobj, lockstate))
1993 		return -1;
1994 
1995 	if (obj->textrel) {	/* Re-protected the text segment. */
1996 	    if (mprotect(obj->mapbase, obj->textsize,
1997 	      PROT_READ|PROT_EXEC) == -1) {
1998 		_rtld_error("%s: Cannot write-protect text segment: %s",
1999 		  obj->path, strerror(errno));
2000 		return -1;
2001 	    }
2002 	}
2003 
2004 
2005 	/* Set the special PLT or GOT entries. */
2006 	init_pltgot(obj);
2007 
2008 	/* Process the PLT relocations. */
2009 	if (reloc_plt(obj) == -1)
2010 	    return -1;
2011 	/* Relocate the jump slots if we are doing immediate binding. */
2012 	if (obj->bind_now || bind_now)
2013 	    if (reloc_jmpslots(obj, lockstate) == -1)
2014 		return -1;
2015 
2016 	if (obj->relro_size > 0) {
2017 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2018 		_rtld_error("%s: Cannot enforce relro protection: %s",
2019 		  obj->path, strerror(errno));
2020 		return -1;
2021 	    }
2022 	}
2023 
2024 	/*
2025 	 * Set up the magic number and version in the Obj_Entry.  These
2026 	 * were checked in the crt1.o from the original ElfKit, so we
2027 	 * set them for backward compatibility.
2028 	 */
2029 	obj->magic = RTLD_MAGIC;
2030 	obj->version = RTLD_VERSION;
2031     }
2032 
2033     return (0);
2034 }
2035 
2036 /*
2037  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2038  * referencing STT_GNU_IFUNC symbols is postponed till the other
2039  * relocations are done.  The indirect functions specified as
2040  * ifunc are allowed to call other symbols, so we need to have
2041  * objects relocated before asking for resolution from indirects.
2042  *
2043  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2044  * instead of the usual lazy handling of PLT slots.  It is
2045  * consistent with how GNU does it.
2046  */
2047 static int
2048 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, RtldLockState *lockstate)
2049 {
2050 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2051 		return (-1);
2052 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2053 	    reloc_gnu_ifunc(obj, lockstate) == -1)
2054 		return (-1);
2055 	return (0);
2056 }
2057 
2058 static int
2059 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, RtldLockState *lockstate)
2060 {
2061 	Obj_Entry *obj;
2062 
2063 	for (obj = first;  obj != NULL;  obj = obj->next) {
2064 		if (resolve_object_ifunc(obj, bind_now, lockstate) == -1)
2065 			return (-1);
2066 	}
2067 	return (0);
2068 }
2069 
2070 static int
2071 initlist_objects_ifunc(Objlist *list, bool bind_now, RtldLockState *lockstate)
2072 {
2073 	Objlist_Entry *elm;
2074 
2075 	STAILQ_FOREACH(elm, list, link) {
2076 		if (resolve_object_ifunc(elm->obj, bind_now, lockstate) == -1)
2077 			return (-1);
2078 	}
2079 	return (0);
2080 }
2081 
2082 /*
2083  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2084  * before the process exits.
2085  */
2086 static void
2087 rtld_exit(void)
2088 {
2089     RtldLockState lockstate;
2090 
2091     wlock_acquire(rtld_bind_lock, &lockstate);
2092     dbg("rtld_exit()");
2093     objlist_call_fini(&list_fini, NULL, &lockstate);
2094     /* No need to remove the items from the list, since we are exiting. */
2095     if (!libmap_disable)
2096         lm_fini();
2097     lock_release(rtld_bind_lock, &lockstate);
2098 }
2099 
2100 static void *
2101 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2102 {
2103 #ifdef COMPAT_32BIT
2104     const char *trans;
2105 #endif
2106     if (path == NULL)
2107 	return (NULL);
2108 
2109     path += strspn(path, ":;");
2110     while (*path != '\0') {
2111 	size_t len;
2112 	char  *res;
2113 
2114 	len = strcspn(path, ":;");
2115 #ifdef COMPAT_32BIT
2116 	trans = lm_findn(NULL, path, len);
2117 	if (trans)
2118 	    res = callback(trans, strlen(trans), arg);
2119 	else
2120 #endif
2121 	res = callback(path, len, arg);
2122 
2123 	if (res != NULL)
2124 	    return (res);
2125 
2126 	path += len;
2127 	path += strspn(path, ":;");
2128     }
2129 
2130     return (NULL);
2131 }
2132 
2133 struct try_library_args {
2134     const char	*name;
2135     size_t	 namelen;
2136     char	*buffer;
2137     size_t	 buflen;
2138 };
2139 
2140 static void *
2141 try_library_path(const char *dir, size_t dirlen, void *param)
2142 {
2143     struct try_library_args *arg;
2144 
2145     arg = param;
2146     if (*dir == '/' || trust) {
2147 	char *pathname;
2148 
2149 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2150 		return (NULL);
2151 
2152 	pathname = arg->buffer;
2153 	strncpy(pathname, dir, dirlen);
2154 	pathname[dirlen] = '/';
2155 	strcpy(pathname + dirlen + 1, arg->name);
2156 
2157 	dbg("  Trying \"%s\"", pathname);
2158 	if (access(pathname, F_OK) == 0) {		/* We found it */
2159 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2160 	    strcpy(pathname, arg->buffer);
2161 	    return (pathname);
2162 	}
2163     }
2164     return (NULL);
2165 }
2166 
2167 static char *
2168 search_library_path(const char *name, const char *path)
2169 {
2170     char *p;
2171     struct try_library_args arg;
2172 
2173     if (path == NULL)
2174 	return NULL;
2175 
2176     arg.name = name;
2177     arg.namelen = strlen(name);
2178     arg.buffer = xmalloc(PATH_MAX);
2179     arg.buflen = PATH_MAX;
2180 
2181     p = path_enumerate(path, try_library_path, &arg);
2182 
2183     free(arg.buffer);
2184 
2185     return (p);
2186 }
2187 
2188 int
2189 dlclose(void *handle)
2190 {
2191     Obj_Entry *root;
2192     RtldLockState lockstate;
2193 
2194     wlock_acquire(rtld_bind_lock, &lockstate);
2195     root = dlcheck(handle);
2196     if (root == NULL) {
2197 	lock_release(rtld_bind_lock, &lockstate);
2198 	return -1;
2199     }
2200     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2201 	root->path);
2202 
2203     /* Unreference the object and its dependencies. */
2204     root->dl_refcount--;
2205 
2206     if (root->refcount == 1) {
2207 	/*
2208 	 * The object will be no longer referenced, so we must unload it.
2209 	 * First, call the fini functions.
2210 	 */
2211 	objlist_call_fini(&list_fini, root, &lockstate);
2212 
2213 	unref_dag(root);
2214 
2215 	/* Finish cleaning up the newly-unreferenced objects. */
2216 	GDB_STATE(RT_DELETE,&root->linkmap);
2217 	unload_object(root);
2218 	GDB_STATE(RT_CONSISTENT,NULL);
2219     } else
2220 	unref_dag(root);
2221 
2222     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2223     lock_release(rtld_bind_lock, &lockstate);
2224     return 0;
2225 }
2226 
2227 char *
2228 dlerror(void)
2229 {
2230     char *msg = error_message;
2231     error_message = NULL;
2232     return msg;
2233 }
2234 
2235 /*
2236  * This function is deprecated and has no effect.
2237  */
2238 void
2239 dllockinit(void *context,
2240 	   void *(*lock_create)(void *context),
2241            void (*rlock_acquire)(void *lock),
2242            void (*wlock_acquire)(void *lock),
2243            void (*lock_release)(void *lock),
2244            void (*lock_destroy)(void *lock),
2245 	   void (*context_destroy)(void *context))
2246 {
2247     static void *cur_context;
2248     static void (*cur_context_destroy)(void *);
2249 
2250     /* Just destroy the context from the previous call, if necessary. */
2251     if (cur_context_destroy != NULL)
2252 	cur_context_destroy(cur_context);
2253     cur_context = context;
2254     cur_context_destroy = context_destroy;
2255 }
2256 
2257 void *
2258 dlopen(const char *name, int mode)
2259 {
2260 
2261 	return (rtld_dlopen(name, -1, mode));
2262 }
2263 
2264 void *
2265 fdlopen(int fd, int mode)
2266 {
2267 
2268 	return (rtld_dlopen(NULL, fd, mode));
2269 }
2270 
2271 static void *
2272 rtld_dlopen(const char *name, int fd, int mode)
2273 {
2274     RtldLockState lockstate;
2275     int lo_flags;
2276 
2277     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2278     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2279     if (ld_tracing != NULL) {
2280 	rlock_acquire(rtld_bind_lock, &lockstate);
2281 	if (sigsetjmp(lockstate.env, 0) != 0)
2282 	    lock_upgrade(rtld_bind_lock, &lockstate);
2283 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2284 	lock_release(rtld_bind_lock, &lockstate);
2285     }
2286     lo_flags = RTLD_LO_DLOPEN;
2287     if (mode & RTLD_NODELETE)
2288 	    lo_flags |= RTLD_LO_NODELETE;
2289     if (mode & RTLD_NOLOAD)
2290 	    lo_flags |= RTLD_LO_NOLOAD;
2291     if (ld_tracing != NULL)
2292 	    lo_flags |= RTLD_LO_TRACE;
2293 
2294     return (dlopen_object(name, fd, obj_main, lo_flags,
2295       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2296 }
2297 
2298 static void
2299 dlopen_cleanup(Obj_Entry *obj)
2300 {
2301 
2302 	obj->dl_refcount--;
2303 	unref_dag(obj);
2304 	if (obj->refcount == 0)
2305 		unload_object(obj);
2306 }
2307 
2308 static Obj_Entry *
2309 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2310     int mode)
2311 {
2312     Obj_Entry **old_obj_tail;
2313     Obj_Entry *obj;
2314     Objlist initlist;
2315     RtldLockState lockstate;
2316     int result;
2317 
2318     objlist_init(&initlist);
2319 
2320     wlock_acquire(rtld_bind_lock, &lockstate);
2321     GDB_STATE(RT_ADD,NULL);
2322 
2323     old_obj_tail = obj_tail;
2324     obj = NULL;
2325     if (name == NULL && fd == -1) {
2326 	obj = obj_main;
2327 	obj->refcount++;
2328     } else {
2329 	obj = load_object(name, fd, refobj, lo_flags);
2330     }
2331 
2332     if (obj) {
2333 	obj->dl_refcount++;
2334 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2335 	    objlist_push_tail(&list_global, obj);
2336 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2337 	    assert(*old_obj_tail == obj);
2338 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2339 	    init_dag(obj);
2340 	    ref_dag(obj);
2341 	    if (result != -1)
2342 		result = rtld_verify_versions(&obj->dagmembers);
2343 	    if (result != -1 && ld_tracing)
2344 		goto trace;
2345 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2346 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2347 		dlopen_cleanup(obj);
2348 		obj = NULL;
2349 	    } else {
2350 		/* Make list of init functions to call. */
2351 		initlist_add_objects(obj, &obj->next, &initlist);
2352 	    }
2353 	} else {
2354 
2355 	    /*
2356 	     * Bump the reference counts for objects on this DAG.  If
2357 	     * this is the first dlopen() call for the object that was
2358 	     * already loaded as a dependency, initialize the dag
2359 	     * starting at it.
2360 	     */
2361 	    init_dag(obj);
2362 	    ref_dag(obj);
2363 
2364 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2365 		goto trace;
2366 	}
2367 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2368 	  obj->z_nodelete) && !obj->ref_nodel) {
2369 	    dbg("obj %s nodelete", obj->path);
2370 	    ref_dag(obj);
2371 	    obj->z_nodelete = obj->ref_nodel = true;
2372 	}
2373     }
2374 
2375     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2376 	name);
2377     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2378 
2379     map_stacks_exec(&lockstate);
2380 
2381     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2382       &lockstate) == -1) {
2383 	objlist_clear(&initlist);
2384 	dlopen_cleanup(obj);
2385 	lock_release(rtld_bind_lock, &lockstate);
2386 	return (NULL);
2387     }
2388 
2389     /* Call the init functions. */
2390     objlist_call_init(&initlist, &lockstate);
2391     objlist_clear(&initlist);
2392     lock_release(rtld_bind_lock, &lockstate);
2393     return obj;
2394 trace:
2395     trace_loaded_objects(obj);
2396     lock_release(rtld_bind_lock, &lockstate);
2397     exit(0);
2398 }
2399 
2400 static void *
2401 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2402     int flags)
2403 {
2404     DoneList donelist;
2405     const Obj_Entry *obj, *defobj;
2406     const Elf_Sym *def;
2407     SymLook req;
2408     RtldLockState lockstate;
2409     int res;
2410 
2411     def = NULL;
2412     defobj = NULL;
2413     symlook_init(&req, name);
2414     req.ventry = ve;
2415     req.flags = flags | SYMLOOK_IN_PLT;
2416     req.lockstate = &lockstate;
2417 
2418     rlock_acquire(rtld_bind_lock, &lockstate);
2419     if (sigsetjmp(lockstate.env, 0) != 0)
2420 	    lock_upgrade(rtld_bind_lock, &lockstate);
2421     if (handle == NULL || handle == RTLD_NEXT ||
2422 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2423 
2424 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2425 	    _rtld_error("Cannot determine caller's shared object");
2426 	    lock_release(rtld_bind_lock, &lockstate);
2427 	    return NULL;
2428 	}
2429 	if (handle == NULL) {	/* Just the caller's shared object. */
2430 	    res = symlook_obj(&req, obj);
2431 	    if (res == 0) {
2432 		def = req.sym_out;
2433 		defobj = req.defobj_out;
2434 	    }
2435 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2436 		   handle == RTLD_SELF) { /* ... caller included */
2437 	    if (handle == RTLD_NEXT)
2438 		obj = obj->next;
2439 	    for (; obj != NULL; obj = obj->next) {
2440 		res = symlook_obj(&req, obj);
2441 		if (res == 0) {
2442 		    if (def == NULL ||
2443 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2444 			def = req.sym_out;
2445 			defobj = req.defobj_out;
2446 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2447 			    break;
2448 		    }
2449 		}
2450 	    }
2451 	    /*
2452 	     * Search the dynamic linker itself, and possibly resolve the
2453 	     * symbol from there.  This is how the application links to
2454 	     * dynamic linker services such as dlopen.
2455 	     */
2456 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2457 		res = symlook_obj(&req, &obj_rtld);
2458 		if (res == 0) {
2459 		    def = req.sym_out;
2460 		    defobj = req.defobj_out;
2461 		}
2462 	    }
2463 	} else {
2464 	    assert(handle == RTLD_DEFAULT);
2465 	    res = symlook_default(&req, obj);
2466 	    if (res == 0) {
2467 		defobj = req.defobj_out;
2468 		def = req.sym_out;
2469 	    }
2470 	}
2471     } else {
2472 	if ((obj = dlcheck(handle)) == NULL) {
2473 	    lock_release(rtld_bind_lock, &lockstate);
2474 	    return NULL;
2475 	}
2476 
2477 	donelist_init(&donelist);
2478 	if (obj->mainprog) {
2479             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2480 	    res = symlook_global(&req, &donelist);
2481 	    if (res == 0) {
2482 		def = req.sym_out;
2483 		defobj = req.defobj_out;
2484 	    }
2485 	    /*
2486 	     * Search the dynamic linker itself, and possibly resolve the
2487 	     * symbol from there.  This is how the application links to
2488 	     * dynamic linker services such as dlopen.
2489 	     */
2490 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2491 		res = symlook_obj(&req, &obj_rtld);
2492 		if (res == 0) {
2493 		    def = req.sym_out;
2494 		    defobj = req.defobj_out;
2495 		}
2496 	    }
2497 	}
2498 	else {
2499 	    /* Search the whole DAG rooted at the given object. */
2500 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2501 	    if (res == 0) {
2502 		def = req.sym_out;
2503 		defobj = req.defobj_out;
2504 	    }
2505 	}
2506     }
2507 
2508     if (def != NULL) {
2509 	lock_release(rtld_bind_lock, &lockstate);
2510 
2511 	/*
2512 	 * The value required by the caller is derived from the value
2513 	 * of the symbol. For the ia64 architecture, we need to
2514 	 * construct a function descriptor which the caller can use to
2515 	 * call the function with the right 'gp' value. For other
2516 	 * architectures and for non-functions, the value is simply
2517 	 * the relocated value of the symbol.
2518 	 */
2519 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2520 	    return (make_function_pointer(def, defobj));
2521 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2522 	    return (rtld_resolve_ifunc(defobj, def));
2523 	else
2524 	    return (defobj->relocbase + def->st_value);
2525     }
2526 
2527     _rtld_error("Undefined symbol \"%s\"", name);
2528     lock_release(rtld_bind_lock, &lockstate);
2529     return NULL;
2530 }
2531 
2532 void *
2533 dlsym(void *handle, const char *name)
2534 {
2535 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2536 	    SYMLOOK_DLSYM);
2537 }
2538 
2539 dlfunc_t
2540 dlfunc(void *handle, const char *name)
2541 {
2542 	union {
2543 		void *d;
2544 		dlfunc_t f;
2545 	} rv;
2546 
2547 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2548 	    SYMLOOK_DLSYM);
2549 	return (rv.f);
2550 }
2551 
2552 void *
2553 dlvsym(void *handle, const char *name, const char *version)
2554 {
2555 	Ver_Entry ventry;
2556 
2557 	ventry.name = version;
2558 	ventry.file = NULL;
2559 	ventry.hash = elf_hash(version);
2560 	ventry.flags= 0;
2561 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2562 	    SYMLOOK_DLSYM);
2563 }
2564 
2565 int
2566 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2567 {
2568     const Obj_Entry *obj;
2569     RtldLockState lockstate;
2570 
2571     rlock_acquire(rtld_bind_lock, &lockstate);
2572     obj = obj_from_addr(addr);
2573     if (obj == NULL) {
2574         _rtld_error("No shared object contains address");
2575 	lock_release(rtld_bind_lock, &lockstate);
2576         return (0);
2577     }
2578     rtld_fill_dl_phdr_info(obj, phdr_info);
2579     lock_release(rtld_bind_lock, &lockstate);
2580     return (1);
2581 }
2582 
2583 int
2584 dladdr(const void *addr, Dl_info *info)
2585 {
2586     const Obj_Entry *obj;
2587     const Elf_Sym *def;
2588     void *symbol_addr;
2589     unsigned long symoffset;
2590     RtldLockState lockstate;
2591 
2592     rlock_acquire(rtld_bind_lock, &lockstate);
2593     obj = obj_from_addr(addr);
2594     if (obj == NULL) {
2595         _rtld_error("No shared object contains address");
2596 	lock_release(rtld_bind_lock, &lockstate);
2597         return 0;
2598     }
2599     info->dli_fname = obj->path;
2600     info->dli_fbase = obj->mapbase;
2601     info->dli_saddr = (void *)0;
2602     info->dli_sname = NULL;
2603 
2604     /*
2605      * Walk the symbol list looking for the symbol whose address is
2606      * closest to the address sent in.
2607      */
2608     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2609         def = obj->symtab + symoffset;
2610 
2611         /*
2612          * For skip the symbol if st_shndx is either SHN_UNDEF or
2613          * SHN_COMMON.
2614          */
2615         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2616             continue;
2617 
2618         /*
2619          * If the symbol is greater than the specified address, or if it
2620          * is further away from addr than the current nearest symbol,
2621          * then reject it.
2622          */
2623         symbol_addr = obj->relocbase + def->st_value;
2624         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2625             continue;
2626 
2627         /* Update our idea of the nearest symbol. */
2628         info->dli_sname = obj->strtab + def->st_name;
2629         info->dli_saddr = symbol_addr;
2630 
2631         /* Exact match? */
2632         if (info->dli_saddr == addr)
2633             break;
2634     }
2635     lock_release(rtld_bind_lock, &lockstate);
2636     return 1;
2637 }
2638 
2639 int
2640 dlinfo(void *handle, int request, void *p)
2641 {
2642     const Obj_Entry *obj;
2643     RtldLockState lockstate;
2644     int error;
2645 
2646     rlock_acquire(rtld_bind_lock, &lockstate);
2647 
2648     if (handle == NULL || handle == RTLD_SELF) {
2649 	void *retaddr;
2650 
2651 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2652 	if ((obj = obj_from_addr(retaddr)) == NULL)
2653 	    _rtld_error("Cannot determine caller's shared object");
2654     } else
2655 	obj = dlcheck(handle);
2656 
2657     if (obj == NULL) {
2658 	lock_release(rtld_bind_lock, &lockstate);
2659 	return (-1);
2660     }
2661 
2662     error = 0;
2663     switch (request) {
2664     case RTLD_DI_LINKMAP:
2665 	*((struct link_map const **)p) = &obj->linkmap;
2666 	break;
2667     case RTLD_DI_ORIGIN:
2668 	error = rtld_dirname(obj->path, p);
2669 	break;
2670 
2671     case RTLD_DI_SERINFOSIZE:
2672     case RTLD_DI_SERINFO:
2673 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2674 	break;
2675 
2676     default:
2677 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2678 	error = -1;
2679     }
2680 
2681     lock_release(rtld_bind_lock, &lockstate);
2682 
2683     return (error);
2684 }
2685 
2686 static void
2687 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2688 {
2689 
2690 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2691 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2692 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2693 	phdr_info->dlpi_phdr = obj->phdr;
2694 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2695 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2696 	phdr_info->dlpi_tls_data = obj->tlsinit;
2697 	phdr_info->dlpi_adds = obj_loads;
2698 	phdr_info->dlpi_subs = obj_loads - obj_count;
2699 }
2700 
2701 int
2702 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2703 {
2704     struct dl_phdr_info phdr_info;
2705     const Obj_Entry *obj;
2706     RtldLockState bind_lockstate, phdr_lockstate;
2707     int error;
2708 
2709     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2710     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2711 
2712     error = 0;
2713 
2714     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2715 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2716 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2717 		break;
2718 
2719     }
2720     lock_release(rtld_bind_lock, &bind_lockstate);
2721     lock_release(rtld_phdr_lock, &phdr_lockstate);
2722 
2723     return (error);
2724 }
2725 
2726 struct fill_search_info_args {
2727     int		 request;
2728     unsigned int flags;
2729     Dl_serinfo  *serinfo;
2730     Dl_serpath  *serpath;
2731     char	*strspace;
2732 };
2733 
2734 static void *
2735 fill_search_info(const char *dir, size_t dirlen, void *param)
2736 {
2737     struct fill_search_info_args *arg;
2738 
2739     arg = param;
2740 
2741     if (arg->request == RTLD_DI_SERINFOSIZE) {
2742 	arg->serinfo->dls_cnt ++;
2743 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2744     } else {
2745 	struct dl_serpath *s_entry;
2746 
2747 	s_entry = arg->serpath;
2748 	s_entry->dls_name  = arg->strspace;
2749 	s_entry->dls_flags = arg->flags;
2750 
2751 	strncpy(arg->strspace, dir, dirlen);
2752 	arg->strspace[dirlen] = '\0';
2753 
2754 	arg->strspace += dirlen + 1;
2755 	arg->serpath++;
2756     }
2757 
2758     return (NULL);
2759 }
2760 
2761 static int
2762 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2763 {
2764     struct dl_serinfo _info;
2765     struct fill_search_info_args args;
2766 
2767     args.request = RTLD_DI_SERINFOSIZE;
2768     args.serinfo = &_info;
2769 
2770     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2771     _info.dls_cnt  = 0;
2772 
2773     path_enumerate(ld_library_path, fill_search_info, &args);
2774     path_enumerate(obj->rpath, fill_search_info, &args);
2775     path_enumerate(gethints(), fill_search_info, &args);
2776     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2777 
2778 
2779     if (request == RTLD_DI_SERINFOSIZE) {
2780 	info->dls_size = _info.dls_size;
2781 	info->dls_cnt = _info.dls_cnt;
2782 	return (0);
2783     }
2784 
2785     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2786 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2787 	return (-1);
2788     }
2789 
2790     args.request  = RTLD_DI_SERINFO;
2791     args.serinfo  = info;
2792     args.serpath  = &info->dls_serpath[0];
2793     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2794 
2795     args.flags = LA_SER_LIBPATH;
2796     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2797 	return (-1);
2798 
2799     args.flags = LA_SER_RUNPATH;
2800     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2801 	return (-1);
2802 
2803     args.flags = LA_SER_CONFIG;
2804     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2805 	return (-1);
2806 
2807     args.flags = LA_SER_DEFAULT;
2808     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2809 	return (-1);
2810     return (0);
2811 }
2812 
2813 static int
2814 rtld_dirname(const char *path, char *bname)
2815 {
2816     const char *endp;
2817 
2818     /* Empty or NULL string gets treated as "." */
2819     if (path == NULL || *path == '\0') {
2820 	bname[0] = '.';
2821 	bname[1] = '\0';
2822 	return (0);
2823     }
2824 
2825     /* Strip trailing slashes */
2826     endp = path + strlen(path) - 1;
2827     while (endp > path && *endp == '/')
2828 	endp--;
2829 
2830     /* Find the start of the dir */
2831     while (endp > path && *endp != '/')
2832 	endp--;
2833 
2834     /* Either the dir is "/" or there are no slashes */
2835     if (endp == path) {
2836 	bname[0] = *endp == '/' ? '/' : '.';
2837 	bname[1] = '\0';
2838 	return (0);
2839     } else {
2840 	do {
2841 	    endp--;
2842 	} while (endp > path && *endp == '/');
2843     }
2844 
2845     if (endp - path + 2 > PATH_MAX)
2846     {
2847 	_rtld_error("Filename is too long: %s", path);
2848 	return(-1);
2849     }
2850 
2851     strncpy(bname, path, endp - path + 1);
2852     bname[endp - path + 1] = '\0';
2853     return (0);
2854 }
2855 
2856 static int
2857 rtld_dirname_abs(const char *path, char *base)
2858 {
2859 	char base_rel[PATH_MAX];
2860 
2861 	if (rtld_dirname(path, base) == -1)
2862 		return (-1);
2863 	if (base[0] == '/')
2864 		return (0);
2865 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2866 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2867 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2868 		return (-1);
2869 	strcpy(base, base_rel);
2870 	return (0);
2871 }
2872 
2873 static void
2874 linkmap_add(Obj_Entry *obj)
2875 {
2876     struct link_map *l = &obj->linkmap;
2877     struct link_map *prev;
2878 
2879     obj->linkmap.l_name = obj->path;
2880     obj->linkmap.l_addr = obj->mapbase;
2881     obj->linkmap.l_ld = obj->dynamic;
2882 #ifdef __mips__
2883     /* GDB needs load offset on MIPS to use the symbols */
2884     obj->linkmap.l_offs = obj->relocbase;
2885 #endif
2886 
2887     if (r_debug.r_map == NULL) {
2888 	r_debug.r_map = l;
2889 	return;
2890     }
2891 
2892     /*
2893      * Scan to the end of the list, but not past the entry for the
2894      * dynamic linker, which we want to keep at the very end.
2895      */
2896     for (prev = r_debug.r_map;
2897       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2898       prev = prev->l_next)
2899 	;
2900 
2901     /* Link in the new entry. */
2902     l->l_prev = prev;
2903     l->l_next = prev->l_next;
2904     if (l->l_next != NULL)
2905 	l->l_next->l_prev = l;
2906     prev->l_next = l;
2907 }
2908 
2909 static void
2910 linkmap_delete(Obj_Entry *obj)
2911 {
2912     struct link_map *l = &obj->linkmap;
2913 
2914     if (l->l_prev == NULL) {
2915 	if ((r_debug.r_map = l->l_next) != NULL)
2916 	    l->l_next->l_prev = NULL;
2917 	return;
2918     }
2919 
2920     if ((l->l_prev->l_next = l->l_next) != NULL)
2921 	l->l_next->l_prev = l->l_prev;
2922 }
2923 
2924 /*
2925  * Function for the debugger to set a breakpoint on to gain control.
2926  *
2927  * The two parameters allow the debugger to easily find and determine
2928  * what the runtime loader is doing and to whom it is doing it.
2929  *
2930  * When the loadhook trap is hit (r_debug_state, set at program
2931  * initialization), the arguments can be found on the stack:
2932  *
2933  *  +8   struct link_map *m
2934  *  +4   struct r_debug  *rd
2935  *  +0   RetAddr
2936  */
2937 void
2938 r_debug_state(struct r_debug* rd, struct link_map *m)
2939 {
2940     /*
2941      * The following is a hack to force the compiler to emit calls to
2942      * this function, even when optimizing.  If the function is empty,
2943      * the compiler is not obliged to emit any code for calls to it,
2944      * even when marked __noinline.  However, gdb depends on those
2945      * calls being made.
2946      */
2947     __asm __volatile("" : : : "memory");
2948 }
2949 
2950 /*
2951  * Get address of the pointer variable in the main program.
2952  * Prefer non-weak symbol over the weak one.
2953  */
2954 static const void **
2955 get_program_var_addr(const char *name, RtldLockState *lockstate)
2956 {
2957     SymLook req;
2958     DoneList donelist;
2959 
2960     symlook_init(&req, name);
2961     req.lockstate = lockstate;
2962     donelist_init(&donelist);
2963     if (symlook_global(&req, &donelist) != 0)
2964 	return (NULL);
2965     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
2966 	return ((const void **)make_function_pointer(req.sym_out,
2967 	  req.defobj_out));
2968     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
2969 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
2970     else
2971 	return ((const void **)(req.defobj_out->relocbase +
2972 	  req.sym_out->st_value));
2973 }
2974 
2975 /*
2976  * Set a pointer variable in the main program to the given value.  This
2977  * is used to set key variables such as "environ" before any of the
2978  * init functions are called.
2979  */
2980 static void
2981 set_program_var(const char *name, const void *value)
2982 {
2983     const void **addr;
2984 
2985     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
2986 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2987 	*addr = value;
2988     }
2989 }
2990 
2991 /*
2992  * Search the global objects, including dependencies and main object,
2993  * for the given symbol.
2994  */
2995 static int
2996 symlook_global(SymLook *req, DoneList *donelist)
2997 {
2998     SymLook req1;
2999     const Objlist_Entry *elm;
3000     int res;
3001 
3002     symlook_init_from_req(&req1, req);
3003 
3004     /* Search all objects loaded at program start up. */
3005     if (req->defobj_out == NULL ||
3006       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3007 	res = symlook_list(&req1, &list_main, donelist);
3008 	if (res == 0 && (req->defobj_out == NULL ||
3009 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3010 	    req->sym_out = req1.sym_out;
3011 	    req->defobj_out = req1.defobj_out;
3012 	    assert(req->defobj_out != NULL);
3013 	}
3014     }
3015 
3016     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3017     STAILQ_FOREACH(elm, &list_global, link) {
3018 	if (req->defobj_out != NULL &&
3019 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3020 	    break;
3021 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3022 	if (res == 0 && (req->defobj_out == NULL ||
3023 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3024 	    req->sym_out = req1.sym_out;
3025 	    req->defobj_out = req1.defobj_out;
3026 	    assert(req->defobj_out != NULL);
3027 	}
3028     }
3029 
3030     return (req->sym_out != NULL ? 0 : ESRCH);
3031 }
3032 
3033 /*
3034  * Given a symbol name in a referencing object, find the corresponding
3035  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3036  * no definition was found.  Returns a pointer to the Obj_Entry of the
3037  * defining object via the reference parameter DEFOBJ_OUT.
3038  */
3039 static int
3040 symlook_default(SymLook *req, const Obj_Entry *refobj)
3041 {
3042     DoneList donelist;
3043     const Objlist_Entry *elm;
3044     SymLook req1;
3045     int res;
3046 
3047     donelist_init(&donelist);
3048     symlook_init_from_req(&req1, req);
3049 
3050     /* Look first in the referencing object if linked symbolically. */
3051     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3052 	res = symlook_obj(&req1, refobj);
3053 	if (res == 0) {
3054 	    req->sym_out = req1.sym_out;
3055 	    req->defobj_out = req1.defobj_out;
3056 	    assert(req->defobj_out != NULL);
3057 	}
3058     }
3059 
3060     symlook_global(req, &donelist);
3061 
3062     /* Search all dlopened DAGs containing the referencing object. */
3063     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3064 	if (req->sym_out != NULL &&
3065 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3066 	    break;
3067 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3068 	if (res == 0 && (req->sym_out == NULL ||
3069 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3070 	    req->sym_out = req1.sym_out;
3071 	    req->defobj_out = req1.defobj_out;
3072 	    assert(req->defobj_out != NULL);
3073 	}
3074     }
3075 
3076     /*
3077      * Search the dynamic linker itself, and possibly resolve the
3078      * symbol from there.  This is how the application links to
3079      * dynamic linker services such as dlopen.
3080      */
3081     if (req->sym_out == NULL ||
3082       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3083 	res = symlook_obj(&req1, &obj_rtld);
3084 	if (res == 0) {
3085 	    req->sym_out = req1.sym_out;
3086 	    req->defobj_out = req1.defobj_out;
3087 	    assert(req->defobj_out != NULL);
3088 	}
3089     }
3090 
3091     return (req->sym_out != NULL ? 0 : ESRCH);
3092 }
3093 
3094 static int
3095 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3096 {
3097     const Elf_Sym *def;
3098     const Obj_Entry *defobj;
3099     const Objlist_Entry *elm;
3100     SymLook req1;
3101     int res;
3102 
3103     def = NULL;
3104     defobj = NULL;
3105     STAILQ_FOREACH(elm, objlist, link) {
3106 	if (donelist_check(dlp, elm->obj))
3107 	    continue;
3108 	symlook_init_from_req(&req1, req);
3109 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3110 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3111 		def = req1.sym_out;
3112 		defobj = req1.defobj_out;
3113 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3114 		    break;
3115 	    }
3116 	}
3117     }
3118     if (def != NULL) {
3119 	req->sym_out = def;
3120 	req->defobj_out = defobj;
3121 	return (0);
3122     }
3123     return (ESRCH);
3124 }
3125 
3126 /*
3127  * Search the chain of DAGS cointed to by the given Needed_Entry
3128  * for a symbol of the given name.  Each DAG is scanned completely
3129  * before advancing to the next one.  Returns a pointer to the symbol,
3130  * or NULL if no definition was found.
3131  */
3132 static int
3133 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3134 {
3135     const Elf_Sym *def;
3136     const Needed_Entry *n;
3137     const Obj_Entry *defobj;
3138     SymLook req1;
3139     int res;
3140 
3141     def = NULL;
3142     defobj = NULL;
3143     symlook_init_from_req(&req1, req);
3144     for (n = needed; n != NULL; n = n->next) {
3145 	if (n->obj == NULL ||
3146 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3147 	    continue;
3148 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3149 	    def = req1.sym_out;
3150 	    defobj = req1.defobj_out;
3151 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3152 		break;
3153 	}
3154     }
3155     if (def != NULL) {
3156 	req->sym_out = def;
3157 	req->defobj_out = defobj;
3158 	return (0);
3159     }
3160     return (ESRCH);
3161 }
3162 
3163 /*
3164  * Search the symbol table of a single shared object for a symbol of
3165  * the given name and version, if requested.  Returns a pointer to the
3166  * symbol, or NULL if no definition was found.  If the object is
3167  * filter, return filtered symbol from filtee.
3168  *
3169  * The symbol's hash value is passed in for efficiency reasons; that
3170  * eliminates many recomputations of the hash value.
3171  */
3172 int
3173 symlook_obj(SymLook *req, const Obj_Entry *obj)
3174 {
3175     DoneList donelist;
3176     SymLook req1;
3177     int res, mres;
3178 
3179     mres = symlook_obj1(req, obj);
3180     if (mres == 0) {
3181 	if (obj->needed_filtees != NULL) {
3182 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3183 	    donelist_init(&donelist);
3184 	    symlook_init_from_req(&req1, req);
3185 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3186 	    if (res == 0) {
3187 		req->sym_out = req1.sym_out;
3188 		req->defobj_out = req1.defobj_out;
3189 	    }
3190 	    return (res);
3191 	}
3192 	if (obj->needed_aux_filtees != NULL) {
3193 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3194 	    donelist_init(&donelist);
3195 	    symlook_init_from_req(&req1, req);
3196 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3197 	    if (res == 0) {
3198 		req->sym_out = req1.sym_out;
3199 		req->defobj_out = req1.defobj_out;
3200 		return (res);
3201 	    }
3202 	}
3203     }
3204     return (mres);
3205 }
3206 
3207 static int
3208 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3209 {
3210     unsigned long symnum;
3211     const Elf_Sym *vsymp;
3212     Elf_Versym verndx;
3213     int vcount;
3214 
3215     if (obj->buckets == NULL)
3216 	return (ESRCH);
3217 
3218     vsymp = NULL;
3219     vcount = 0;
3220     symnum = obj->buckets[req->hash % obj->nbuckets];
3221 
3222     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3223 	const Elf_Sym *symp;
3224 	const char *strp;
3225 
3226 	if (symnum >= obj->nchains)
3227 	    return (ESRCH);	/* Bad object */
3228 
3229 	symp = obj->symtab + symnum;
3230 	strp = obj->strtab + symp->st_name;
3231 
3232 	switch (ELF_ST_TYPE(symp->st_info)) {
3233 	case STT_FUNC:
3234 	case STT_NOTYPE:
3235 	case STT_OBJECT:
3236 	case STT_GNU_IFUNC:
3237 	    if (symp->st_value == 0)
3238 		continue;
3239 		/* fallthrough */
3240 	case STT_TLS:
3241 	    if (symp->st_shndx != SHN_UNDEF)
3242 		break;
3243 #ifndef __mips__
3244 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3245 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3246 		break;
3247 		/* fallthrough */
3248 #endif
3249 	default:
3250 	    continue;
3251 	}
3252 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3253 	    continue;
3254 
3255 	if (req->ventry == NULL) {
3256 	    if (obj->versyms != NULL) {
3257 		verndx = VER_NDX(obj->versyms[symnum]);
3258 		if (verndx > obj->vernum) {
3259 		    _rtld_error("%s: symbol %s references wrong version %d",
3260 			obj->path, obj->strtab + symnum, verndx);
3261 		    continue;
3262 		}
3263 		/*
3264 		 * If we are not called from dlsym (i.e. this is a normal
3265 		 * relocation from unversioned binary), accept the symbol
3266 		 * immediately if it happens to have first version after
3267 		 * this shared object became versioned. Otherwise, if
3268 		 * symbol is versioned and not hidden, remember it. If it
3269 		 * is the only symbol with this name exported by the
3270 		 * shared object, it will be returned as a match at the
3271 		 * end of the function. If symbol is global (verndx < 2)
3272 		 * accept it unconditionally.
3273 		 */
3274 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3275 		  verndx == VER_NDX_GIVEN) {
3276 		    req->sym_out = symp;
3277 		    req->defobj_out = obj;
3278 		    return (0);
3279 		}
3280 		else if (verndx >= VER_NDX_GIVEN) {
3281 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3282 			if (vsymp == NULL)
3283 			    vsymp = symp;
3284 			vcount ++;
3285 		    }
3286 		    continue;
3287 		}
3288 	    }
3289 	    req->sym_out = symp;
3290 	    req->defobj_out = obj;
3291 	    return (0);
3292 	} else {
3293 	    if (obj->versyms == NULL) {
3294 		if (object_match_name(obj, req->ventry->name)) {
3295 		    _rtld_error("%s: object %s should provide version %s for "
3296 			"symbol %s", obj_rtld.path, obj->path,
3297 			req->ventry->name, obj->strtab + symnum);
3298 		    continue;
3299 		}
3300 	    } else {
3301 		verndx = VER_NDX(obj->versyms[symnum]);
3302 		if (verndx > obj->vernum) {
3303 		    _rtld_error("%s: symbol %s references wrong version %d",
3304 			obj->path, obj->strtab + symnum, verndx);
3305 		    continue;
3306 		}
3307 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3308 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3309 		    /*
3310 		     * Version does not match. Look if this is a global symbol
3311 		     * and if it is not hidden. If global symbol (verndx < 2)
3312 		     * is available, use it. Do not return symbol if we are
3313 		     * called by dlvsym, because dlvsym looks for a specific
3314 		     * version and default one is not what dlvsym wants.
3315 		     */
3316 		    if ((req->flags & SYMLOOK_DLSYM) ||
3317 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3318 			(verndx >= VER_NDX_GIVEN))
3319 			continue;
3320 		}
3321 	    }
3322 	    req->sym_out = symp;
3323 	    req->defobj_out = obj;
3324 	    return (0);
3325 	}
3326     }
3327     if (vcount == 1) {
3328 	req->sym_out = vsymp;
3329 	req->defobj_out = obj;
3330 	return (0);
3331     }
3332     return (ESRCH);
3333 }
3334 
3335 static void
3336 trace_loaded_objects(Obj_Entry *obj)
3337 {
3338     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3339     int		c;
3340 
3341     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3342 	main_local = "";
3343 
3344     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3345 	fmt1 = "\t%o => %p (%x)\n";
3346 
3347     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3348 	fmt2 = "\t%o (%x)\n";
3349 
3350     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3351 
3352     for (; obj; obj = obj->next) {
3353 	Needed_Entry		*needed;
3354 	char			*name, *path;
3355 	bool			is_lib;
3356 
3357 	if (list_containers && obj->needed != NULL)
3358 	    rtld_printf("%s:\n", obj->path);
3359 	for (needed = obj->needed; needed; needed = needed->next) {
3360 	    if (needed->obj != NULL) {
3361 		if (needed->obj->traced && !list_containers)
3362 		    continue;
3363 		needed->obj->traced = true;
3364 		path = needed->obj->path;
3365 	    } else
3366 		path = "not found";
3367 
3368 	    name = (char *)obj->strtab + needed->name;
3369 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3370 
3371 	    fmt = is_lib ? fmt1 : fmt2;
3372 	    while ((c = *fmt++) != '\0') {
3373 		switch (c) {
3374 		default:
3375 		    rtld_putchar(c);
3376 		    continue;
3377 		case '\\':
3378 		    switch (c = *fmt) {
3379 		    case '\0':
3380 			continue;
3381 		    case 'n':
3382 			rtld_putchar('\n');
3383 			break;
3384 		    case 't':
3385 			rtld_putchar('\t');
3386 			break;
3387 		    }
3388 		    break;
3389 		case '%':
3390 		    switch (c = *fmt) {
3391 		    case '\0':
3392 			continue;
3393 		    case '%':
3394 		    default:
3395 			rtld_putchar(c);
3396 			break;
3397 		    case 'A':
3398 			rtld_putstr(main_local);
3399 			break;
3400 		    case 'a':
3401 			rtld_putstr(obj_main->path);
3402 			break;
3403 		    case 'o':
3404 			rtld_putstr(name);
3405 			break;
3406 #if 0
3407 		    case 'm':
3408 			rtld_printf("%d", sodp->sod_major);
3409 			break;
3410 		    case 'n':
3411 			rtld_printf("%d", sodp->sod_minor);
3412 			break;
3413 #endif
3414 		    case 'p':
3415 			rtld_putstr(path);
3416 			break;
3417 		    case 'x':
3418 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3419 			  0);
3420 			break;
3421 		    }
3422 		    break;
3423 		}
3424 		++fmt;
3425 	    }
3426 	}
3427     }
3428 }
3429 
3430 /*
3431  * Unload a dlopened object and its dependencies from memory and from
3432  * our data structures.  It is assumed that the DAG rooted in the
3433  * object has already been unreferenced, and that the object has a
3434  * reference count of 0.
3435  */
3436 static void
3437 unload_object(Obj_Entry *root)
3438 {
3439     Obj_Entry *obj;
3440     Obj_Entry **linkp;
3441 
3442     assert(root->refcount == 0);
3443 
3444     /*
3445      * Pass over the DAG removing unreferenced objects from
3446      * appropriate lists.
3447      */
3448     unlink_object(root);
3449 
3450     /* Unmap all objects that are no longer referenced. */
3451     linkp = &obj_list->next;
3452     while ((obj = *linkp) != NULL) {
3453 	if (obj->refcount == 0) {
3454 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3455 		obj->path);
3456 	    dbg("unloading \"%s\"", obj->path);
3457 	    unload_filtees(root);
3458 	    munmap(obj->mapbase, obj->mapsize);
3459 	    linkmap_delete(obj);
3460 	    *linkp = obj->next;
3461 	    obj_count--;
3462 	    obj_free(obj);
3463 	} else
3464 	    linkp = &obj->next;
3465     }
3466     obj_tail = linkp;
3467 }
3468 
3469 static void
3470 unlink_object(Obj_Entry *root)
3471 {
3472     Objlist_Entry *elm;
3473 
3474     if (root->refcount == 0) {
3475 	/* Remove the object from the RTLD_GLOBAL list. */
3476 	objlist_remove(&list_global, root);
3477 
3478     	/* Remove the object from all objects' DAG lists. */
3479     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3480 	    objlist_remove(&elm->obj->dldags, root);
3481 	    if (elm->obj != root)
3482 		unlink_object(elm->obj);
3483 	}
3484     }
3485 }
3486 
3487 static void
3488 ref_dag(Obj_Entry *root)
3489 {
3490     Objlist_Entry *elm;
3491 
3492     assert(root->dag_inited);
3493     STAILQ_FOREACH(elm, &root->dagmembers, link)
3494 	elm->obj->refcount++;
3495 }
3496 
3497 static void
3498 unref_dag(Obj_Entry *root)
3499 {
3500     Objlist_Entry *elm;
3501 
3502     assert(root->dag_inited);
3503     STAILQ_FOREACH(elm, &root->dagmembers, link)
3504 	elm->obj->refcount--;
3505 }
3506 
3507 /*
3508  * Common code for MD __tls_get_addr().
3509  */
3510 void *
3511 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3512 {
3513     Elf_Addr* dtv = *dtvp;
3514     RtldLockState lockstate;
3515 
3516     /* Check dtv generation in case new modules have arrived */
3517     if (dtv[0] != tls_dtv_generation) {
3518 	Elf_Addr* newdtv;
3519 	int to_copy;
3520 
3521 	wlock_acquire(rtld_bind_lock, &lockstate);
3522 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3523 	to_copy = dtv[1];
3524 	if (to_copy > tls_max_index)
3525 	    to_copy = tls_max_index;
3526 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3527 	newdtv[0] = tls_dtv_generation;
3528 	newdtv[1] = tls_max_index;
3529 	free(dtv);
3530 	lock_release(rtld_bind_lock, &lockstate);
3531 	dtv = *dtvp = newdtv;
3532     }
3533 
3534     /* Dynamically allocate module TLS if necessary */
3535     if (!dtv[index + 1]) {
3536 	/* Signal safe, wlock will block out signals. */
3537 	    wlock_acquire(rtld_bind_lock, &lockstate);
3538 	if (!dtv[index + 1])
3539 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3540 	lock_release(rtld_bind_lock, &lockstate);
3541     }
3542     return (void*) (dtv[index + 1] + offset);
3543 }
3544 
3545 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3546 
3547 /*
3548  * Allocate Static TLS using the Variant I method.
3549  */
3550 void *
3551 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3552 {
3553     Obj_Entry *obj;
3554     char *tcb;
3555     Elf_Addr **tls;
3556     Elf_Addr *dtv;
3557     Elf_Addr addr;
3558     int i;
3559 
3560     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3561 	return (oldtcb);
3562 
3563     assert(tcbsize >= TLS_TCB_SIZE);
3564     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3565     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3566 
3567     if (oldtcb != NULL) {
3568 	memcpy(tls, oldtcb, tls_static_space);
3569 	free(oldtcb);
3570 
3571 	/* Adjust the DTV. */
3572 	dtv = tls[0];
3573 	for (i = 0; i < dtv[1]; i++) {
3574 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3575 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3576 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3577 	    }
3578 	}
3579     } else {
3580 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3581 	tls[0] = dtv;
3582 	dtv[0] = tls_dtv_generation;
3583 	dtv[1] = tls_max_index;
3584 
3585 	for (obj = objs; obj; obj = obj->next) {
3586 	    if (obj->tlsoffset > 0) {
3587 		addr = (Elf_Addr)tls + obj->tlsoffset;
3588 		if (obj->tlsinitsize > 0)
3589 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3590 		if (obj->tlssize > obj->tlsinitsize)
3591 		    memset((void*) (addr + obj->tlsinitsize), 0,
3592 			   obj->tlssize - obj->tlsinitsize);
3593 		dtv[obj->tlsindex + 1] = addr;
3594 	    }
3595 	}
3596     }
3597 
3598     return (tcb);
3599 }
3600 
3601 void
3602 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3603 {
3604     Elf_Addr *dtv;
3605     Elf_Addr tlsstart, tlsend;
3606     int dtvsize, i;
3607 
3608     assert(tcbsize >= TLS_TCB_SIZE);
3609 
3610     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3611     tlsend = tlsstart + tls_static_space;
3612 
3613     dtv = *(Elf_Addr **)tlsstart;
3614     dtvsize = dtv[1];
3615     for (i = 0; i < dtvsize; i++) {
3616 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3617 	    free((void*)dtv[i+2]);
3618 	}
3619     }
3620     free(dtv);
3621     free(tcb);
3622 }
3623 
3624 #endif
3625 
3626 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
3627 
3628 /*
3629  * Allocate Static TLS using the Variant II method.
3630  */
3631 void *
3632 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3633 {
3634     Obj_Entry *obj;
3635     size_t size;
3636     char *tls;
3637     Elf_Addr *dtv, *olddtv;
3638     Elf_Addr segbase, oldsegbase, addr;
3639     int i;
3640 
3641     size = round(tls_static_space, tcbalign);
3642 
3643     assert(tcbsize >= 2*sizeof(Elf_Addr));
3644     tls = calloc(1, size + tcbsize);
3645     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3646 
3647     segbase = (Elf_Addr)(tls + size);
3648     ((Elf_Addr*)segbase)[0] = segbase;
3649     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3650 
3651     dtv[0] = tls_dtv_generation;
3652     dtv[1] = tls_max_index;
3653 
3654     if (oldtls) {
3655 	/*
3656 	 * Copy the static TLS block over whole.
3657 	 */
3658 	oldsegbase = (Elf_Addr) oldtls;
3659 	memcpy((void *)(segbase - tls_static_space),
3660 	       (const void *)(oldsegbase - tls_static_space),
3661 	       tls_static_space);
3662 
3663 	/*
3664 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3665 	 * move them over.
3666 	 */
3667 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3668 	for (i = 0; i < olddtv[1]; i++) {
3669 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3670 		dtv[i+2] = olddtv[i+2];
3671 		olddtv[i+2] = 0;
3672 	    }
3673 	}
3674 
3675 	/*
3676 	 * We assume that this block was the one we created with
3677 	 * allocate_initial_tls().
3678 	 */
3679 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3680     } else {
3681 	for (obj = objs; obj; obj = obj->next) {
3682 	    if (obj->tlsoffset) {
3683 		addr = segbase - obj->tlsoffset;
3684 		memset((void*) (addr + obj->tlsinitsize),
3685 		       0, obj->tlssize - obj->tlsinitsize);
3686 		if (obj->tlsinit)
3687 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3688 		dtv[obj->tlsindex + 1] = addr;
3689 	    }
3690 	}
3691     }
3692 
3693     return (void*) segbase;
3694 }
3695 
3696 void
3697 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3698 {
3699     size_t size;
3700     Elf_Addr* dtv;
3701     int dtvsize, i;
3702     Elf_Addr tlsstart, tlsend;
3703 
3704     /*
3705      * Figure out the size of the initial TLS block so that we can
3706      * find stuff which ___tls_get_addr() allocated dynamically.
3707      */
3708     size = round(tls_static_space, tcbalign);
3709 
3710     dtv = ((Elf_Addr**)tls)[1];
3711     dtvsize = dtv[1];
3712     tlsend = (Elf_Addr) tls;
3713     tlsstart = tlsend - size;
3714     for (i = 0; i < dtvsize; i++) {
3715 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3716 	    free((void*) dtv[i+2]);
3717 	}
3718     }
3719 
3720     free((void*) tlsstart);
3721     free((void*) dtv);
3722 }
3723 
3724 #endif
3725 
3726 /*
3727  * Allocate TLS block for module with given index.
3728  */
3729 void *
3730 allocate_module_tls(int index)
3731 {
3732     Obj_Entry* obj;
3733     char* p;
3734 
3735     for (obj = obj_list; obj; obj = obj->next) {
3736 	if (obj->tlsindex == index)
3737 	    break;
3738     }
3739     if (!obj) {
3740 	_rtld_error("Can't find module with TLS index %d", index);
3741 	die();
3742     }
3743 
3744     p = malloc(obj->tlssize);
3745     if (p == NULL) {
3746 	_rtld_error("Cannot allocate TLS block for index %d", index);
3747 	die();
3748     }
3749     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3750     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3751 
3752     return p;
3753 }
3754 
3755 bool
3756 allocate_tls_offset(Obj_Entry *obj)
3757 {
3758     size_t off;
3759 
3760     if (obj->tls_done)
3761 	return true;
3762 
3763     if (obj->tlssize == 0) {
3764 	obj->tls_done = true;
3765 	return true;
3766     }
3767 
3768     if (obj->tlsindex == 1)
3769 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3770     else
3771 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3772 				   obj->tlssize, obj->tlsalign);
3773 
3774     /*
3775      * If we have already fixed the size of the static TLS block, we
3776      * must stay within that size. When allocating the static TLS, we
3777      * leave a small amount of space spare to be used for dynamically
3778      * loading modules which use static TLS.
3779      */
3780     if (tls_static_space) {
3781 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3782 	    return false;
3783     }
3784 
3785     tls_last_offset = obj->tlsoffset = off;
3786     tls_last_size = obj->tlssize;
3787     obj->tls_done = true;
3788 
3789     return true;
3790 }
3791 
3792 void
3793 free_tls_offset(Obj_Entry *obj)
3794 {
3795 
3796     /*
3797      * If we were the last thing to allocate out of the static TLS
3798      * block, we give our space back to the 'allocator'. This is a
3799      * simplistic workaround to allow libGL.so.1 to be loaded and
3800      * unloaded multiple times.
3801      */
3802     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3803 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3804 	tls_last_offset -= obj->tlssize;
3805 	tls_last_size = 0;
3806     }
3807 }
3808 
3809 void *
3810 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3811 {
3812     void *ret;
3813     RtldLockState lockstate;
3814 
3815     wlock_acquire(rtld_bind_lock, &lockstate);
3816     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3817     lock_release(rtld_bind_lock, &lockstate);
3818     return (ret);
3819 }
3820 
3821 void
3822 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3823 {
3824     RtldLockState lockstate;
3825 
3826     wlock_acquire(rtld_bind_lock, &lockstate);
3827     free_tls(tcb, tcbsize, tcbalign);
3828     lock_release(rtld_bind_lock, &lockstate);
3829 }
3830 
3831 static void
3832 object_add_name(Obj_Entry *obj, const char *name)
3833 {
3834     Name_Entry *entry;
3835     size_t len;
3836 
3837     len = strlen(name);
3838     entry = malloc(sizeof(Name_Entry) + len);
3839 
3840     if (entry != NULL) {
3841 	strcpy(entry->name, name);
3842 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3843     }
3844 }
3845 
3846 static int
3847 object_match_name(const Obj_Entry *obj, const char *name)
3848 {
3849     Name_Entry *entry;
3850 
3851     STAILQ_FOREACH(entry, &obj->names, link) {
3852 	if (strcmp(name, entry->name) == 0)
3853 	    return (1);
3854     }
3855     return (0);
3856 }
3857 
3858 static Obj_Entry *
3859 locate_dependency(const Obj_Entry *obj, const char *name)
3860 {
3861     const Objlist_Entry *entry;
3862     const Needed_Entry *needed;
3863 
3864     STAILQ_FOREACH(entry, &list_main, link) {
3865 	if (object_match_name(entry->obj, name))
3866 	    return entry->obj;
3867     }
3868 
3869     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3870 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3871 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3872 	    /*
3873 	     * If there is DT_NEEDED for the name we are looking for,
3874 	     * we are all set.  Note that object might not be found if
3875 	     * dependency was not loaded yet, so the function can
3876 	     * return NULL here.  This is expected and handled
3877 	     * properly by the caller.
3878 	     */
3879 	    return (needed->obj);
3880 	}
3881     }
3882     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3883 	obj->path, name);
3884     die();
3885 }
3886 
3887 static int
3888 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3889     const Elf_Vernaux *vna)
3890 {
3891     const Elf_Verdef *vd;
3892     const char *vername;
3893 
3894     vername = refobj->strtab + vna->vna_name;
3895     vd = depobj->verdef;
3896     if (vd == NULL) {
3897 	_rtld_error("%s: version %s required by %s not defined",
3898 	    depobj->path, vername, refobj->path);
3899 	return (-1);
3900     }
3901     for (;;) {
3902 	if (vd->vd_version != VER_DEF_CURRENT) {
3903 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3904 		depobj->path, vd->vd_version);
3905 	    return (-1);
3906 	}
3907 	if (vna->vna_hash == vd->vd_hash) {
3908 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3909 		((char *)vd + vd->vd_aux);
3910 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3911 		return (0);
3912 	}
3913 	if (vd->vd_next == 0)
3914 	    break;
3915 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3916     }
3917     if (vna->vna_flags & VER_FLG_WEAK)
3918 	return (0);
3919     _rtld_error("%s: version %s required by %s not found",
3920 	depobj->path, vername, refobj->path);
3921     return (-1);
3922 }
3923 
3924 static int
3925 rtld_verify_object_versions(Obj_Entry *obj)
3926 {
3927     const Elf_Verneed *vn;
3928     const Elf_Verdef  *vd;
3929     const Elf_Verdaux *vda;
3930     const Elf_Vernaux *vna;
3931     const Obj_Entry *depobj;
3932     int maxvernum, vernum;
3933 
3934     maxvernum = 0;
3935     /*
3936      * Walk over defined and required version records and figure out
3937      * max index used by any of them. Do very basic sanity checking
3938      * while there.
3939      */
3940     vn = obj->verneed;
3941     while (vn != NULL) {
3942 	if (vn->vn_version != VER_NEED_CURRENT) {
3943 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3944 		obj->path, vn->vn_version);
3945 	    return (-1);
3946 	}
3947 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3948 	for (;;) {
3949 	    vernum = VER_NEED_IDX(vna->vna_other);
3950 	    if (vernum > maxvernum)
3951 		maxvernum = vernum;
3952 	    if (vna->vna_next == 0)
3953 		 break;
3954 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3955 	}
3956 	if (vn->vn_next == 0)
3957 	    break;
3958 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3959     }
3960 
3961     vd = obj->verdef;
3962     while (vd != NULL) {
3963 	if (vd->vd_version != VER_DEF_CURRENT) {
3964 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3965 		obj->path, vd->vd_version);
3966 	    return (-1);
3967 	}
3968 	vernum = VER_DEF_IDX(vd->vd_ndx);
3969 	if (vernum > maxvernum)
3970 		maxvernum = vernum;
3971 	if (vd->vd_next == 0)
3972 	    break;
3973 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3974     }
3975 
3976     if (maxvernum == 0)
3977 	return (0);
3978 
3979     /*
3980      * Store version information in array indexable by version index.
3981      * Verify that object version requirements are satisfied along the
3982      * way.
3983      */
3984     obj->vernum = maxvernum + 1;
3985     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3986 
3987     vd = obj->verdef;
3988     while (vd != NULL) {
3989 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3990 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3991 	    assert(vernum <= maxvernum);
3992 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3993 	    obj->vertab[vernum].hash = vd->vd_hash;
3994 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3995 	    obj->vertab[vernum].file = NULL;
3996 	    obj->vertab[vernum].flags = 0;
3997 	}
3998 	if (vd->vd_next == 0)
3999 	    break;
4000 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4001     }
4002 
4003     vn = obj->verneed;
4004     while (vn != NULL) {
4005 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4006 	if (depobj == NULL)
4007 	    return (-1);
4008 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4009 	for (;;) {
4010 	    if (check_object_provided_version(obj, depobj, vna))
4011 		return (-1);
4012 	    vernum = VER_NEED_IDX(vna->vna_other);
4013 	    assert(vernum <= maxvernum);
4014 	    obj->vertab[vernum].hash = vna->vna_hash;
4015 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4016 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4017 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4018 		VER_INFO_HIDDEN : 0;
4019 	    if (vna->vna_next == 0)
4020 		 break;
4021 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4022 	}
4023 	if (vn->vn_next == 0)
4024 	    break;
4025 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4026     }
4027     return 0;
4028 }
4029 
4030 static int
4031 rtld_verify_versions(const Objlist *objlist)
4032 {
4033     Objlist_Entry *entry;
4034     int rc;
4035 
4036     rc = 0;
4037     STAILQ_FOREACH(entry, objlist, link) {
4038 	/*
4039 	 * Skip dummy objects or objects that have their version requirements
4040 	 * already checked.
4041 	 */
4042 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4043 	    continue;
4044 	if (rtld_verify_object_versions(entry->obj) == -1) {
4045 	    rc = -1;
4046 	    if (ld_tracing == NULL)
4047 		break;
4048 	}
4049     }
4050     if (rc == 0 || ld_tracing != NULL)
4051     	rc = rtld_verify_object_versions(&obj_rtld);
4052     return rc;
4053 }
4054 
4055 const Ver_Entry *
4056 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4057 {
4058     Elf_Versym vernum;
4059 
4060     if (obj->vertab) {
4061 	vernum = VER_NDX(obj->versyms[symnum]);
4062 	if (vernum >= obj->vernum) {
4063 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4064 		obj->path, obj->strtab + symnum, vernum);
4065 	} else if (obj->vertab[vernum].hash != 0) {
4066 	    return &obj->vertab[vernum];
4067 	}
4068     }
4069     return NULL;
4070 }
4071 
4072 int
4073 _rtld_get_stack_prot(void)
4074 {
4075 
4076 	return (stack_prot);
4077 }
4078 
4079 static void
4080 map_stacks_exec(RtldLockState *lockstate)
4081 {
4082 	void (*thr_map_stacks_exec)(void);
4083 
4084 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4085 		return;
4086 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4087 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4088 	if (thr_map_stacks_exec != NULL) {
4089 		stack_prot |= PROT_EXEC;
4090 		thr_map_stacks_exec();
4091 	}
4092 }
4093 
4094 void
4095 symlook_init(SymLook *dst, const char *name)
4096 {
4097 
4098 	bzero(dst, sizeof(*dst));
4099 	dst->name = name;
4100 	dst->hash = elf_hash(name);
4101 }
4102 
4103 static void
4104 symlook_init_from_req(SymLook *dst, const SymLook *src)
4105 {
4106 
4107 	dst->name = src->name;
4108 	dst->hash = src->hash;
4109 	dst->ventry = src->ventry;
4110 	dst->flags = src->flags;
4111 	dst->defobj_out = NULL;
4112 	dst->sym_out = NULL;
4113 	dst->lockstate = src->lockstate;
4114 }
4115 
4116 /*
4117  * Overrides for libc_pic-provided functions.
4118  */
4119 
4120 int
4121 __getosreldate(void)
4122 {
4123 	size_t len;
4124 	int oid[2];
4125 	int error, osrel;
4126 
4127 	if (osreldate != 0)
4128 		return (osreldate);
4129 
4130 	oid[0] = CTL_KERN;
4131 	oid[1] = KERN_OSRELDATE;
4132 	osrel = 0;
4133 	len = sizeof(osrel);
4134 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4135 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4136 		osreldate = osrel;
4137 	return (osreldate);
4138 }
4139 
4140 /*
4141  * No unresolved symbols for rtld.
4142  */
4143 void
4144 __pthread_cxa_finalize(struct dl_phdr_info *a)
4145 {
4146 }
4147