xref: /freebsd/libexec/rtld-elf/rtld.c (revision 9fd69f37d28cfd7438cac3eeb45fe9dd46b4d7dd)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mount.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/uio.h>
44 #include <sys/utsname.h>
45 #include <sys/ktrace.h>
46 
47 #include <dlfcn.h>
48 #include <err.h>
49 #include <errno.h>
50 #include <fcntl.h>
51 #include <stdarg.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #include <unistd.h>
56 
57 #include "debug.h"
58 #include "rtld.h"
59 #include "libmap.h"
60 #include "rtld_tls.h"
61 
62 #ifndef COMPAT_32BIT
63 #define PATH_RTLD	"/libexec/ld-elf.so.1"
64 #else
65 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
66 #endif
67 
68 /* Types. */
69 typedef void (*func_ptr_type)();
70 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
71 
72 /*
73  * This structure provides a reentrant way to keep a list of objects and
74  * check which ones have already been processed in some way.
75  */
76 typedef struct Struct_DoneList {
77     const Obj_Entry **objs;		/* Array of object pointers */
78     unsigned int num_alloc;		/* Allocated size of the array */
79     unsigned int num_used;		/* Number of array slots used */
80 } DoneList;
81 
82 /*
83  * Function declarations.
84  */
85 static const char *basename(const char *);
86 static void die(void) __dead2;
87 static void digest_dynamic(Obj_Entry *, int);
88 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
89 static Obj_Entry *dlcheck(void *);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *);
97 static const char *gethints(void);
98 static void init_dag(Obj_Entry *);
99 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
100 static void init_rtld(caddr_t);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static bool is_exported(const Elf_Sym *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static int load_needed_objects(Obj_Entry *, int);
107 static int load_preload_objects(void);
108 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
109 static Obj_Entry *obj_from_addr(const void *);
110 static void objlist_call_fini(Objlist *, bool, int *);
111 static void objlist_call_init(Objlist *, int *);
112 static void objlist_clear(Objlist *);
113 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114 static void objlist_init(Objlist *);
115 static void objlist_push_head(Objlist *, Obj_Entry *);
116 static void objlist_push_tail(Objlist *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static int rtld_dirname_abs(const char *, char *);
122 static void rtld_exit(void);
123 static char *search_library_path(const char *, const char *);
124 static const void **get_program_var_addr(const char *);
125 static void set_program_var(const char *, const void *);
126 static const Elf_Sym *symlook_default(const char *, unsigned long,
127   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
128 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
129   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
130 static const Elf_Sym *symlook_needed(const char *, unsigned long,
131   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
132   int, DoneList *);
133 static void trace_loaded_objects(Obj_Entry *);
134 static void unlink_object(Obj_Entry *);
135 static void unload_object(Obj_Entry *);
136 static void unref_dag(Obj_Entry *);
137 static void ref_dag(Obj_Entry *);
138 static int origin_subst_one(char **, const char *, const char *,
139   const char *, char *);
140 static char *origin_subst(const char *, const char *);
141 static int  rtld_verify_versions(const Objlist *);
142 static int  rtld_verify_object_versions(Obj_Entry *);
143 static void object_add_name(Obj_Entry *, const char *);
144 static int  object_match_name(const Obj_Entry *, const char *);
145 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
146 
147 void r_debug_state(struct r_debug *, struct link_map *);
148 
149 /*
150  * Data declarations.
151  */
152 static char *error_message;	/* Message for dlerror(), or NULL */
153 struct r_debug r_debug;		/* for GDB; */
154 static bool libmap_disable;	/* Disable libmap */
155 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
156 static bool trust;		/* False for setuid and setgid programs */
157 static bool dangerous_ld_env;	/* True if environment variables have been
158 				   used to affect the libraries loaded */
159 static char *ld_bind_now;	/* Environment variable for immediate binding */
160 static char *ld_debug;		/* Environment variable for debugging */
161 static char *ld_library_path;	/* Environment variable for search path */
162 static char *ld_preload;	/* Environment variable for libraries to
163 				   load first */
164 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
165 static char *ld_tracing;	/* Called from ldd to print libs */
166 static char *ld_utrace;		/* Use utrace() to log events. */
167 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
168 static Obj_Entry **obj_tail;	/* Link field of last object in list */
169 static Obj_Entry *obj_main;	/* The main program shared object */
170 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
171 static unsigned int obj_count;	/* Number of objects in obj_list */
172 static unsigned int obj_loads;	/* Number of objects in obj_list */
173 
174 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
175   STAILQ_HEAD_INITIALIZER(list_global);
176 static Objlist list_main =	/* Objects loaded at program startup */
177   STAILQ_HEAD_INITIALIZER(list_main);
178 static Objlist list_fini =	/* Objects needing fini() calls */
179   STAILQ_HEAD_INITIALIZER(list_fini);
180 
181 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
182 
183 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
184 
185 extern Elf_Dyn _DYNAMIC;
186 #pragma weak _DYNAMIC
187 #ifndef RTLD_IS_DYNAMIC
188 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
189 #endif
190 
191 /*
192  * These are the functions the dynamic linker exports to application
193  * programs.  They are the only symbols the dynamic linker is willing
194  * to export from itself.
195  */
196 static func_ptr_type exports[] = {
197     (func_ptr_type) &_rtld_error,
198     (func_ptr_type) &dlclose,
199     (func_ptr_type) &dlerror,
200     (func_ptr_type) &dlopen,
201     (func_ptr_type) &dlsym,
202     (func_ptr_type) &dlfunc,
203     (func_ptr_type) &dlvsym,
204     (func_ptr_type) &dladdr,
205     (func_ptr_type) &dllockinit,
206     (func_ptr_type) &dlinfo,
207     (func_ptr_type) &_rtld_thread_init,
208 #ifdef __i386__
209     (func_ptr_type) &___tls_get_addr,
210 #endif
211     (func_ptr_type) &__tls_get_addr,
212     (func_ptr_type) &_rtld_allocate_tls,
213     (func_ptr_type) &_rtld_free_tls,
214     (func_ptr_type) &dl_iterate_phdr,
215     (func_ptr_type) &_rtld_atfork_pre,
216     (func_ptr_type) &_rtld_atfork_post,
217     NULL
218 };
219 
220 /*
221  * Global declarations normally provided by crt1.  The dynamic linker is
222  * not built with crt1, so we have to provide them ourselves.
223  */
224 char *__progname;
225 char **environ;
226 
227 /*
228  * Globals to control TLS allocation.
229  */
230 size_t tls_last_offset;		/* Static TLS offset of last module */
231 size_t tls_last_size;		/* Static TLS size of last module */
232 size_t tls_static_space;	/* Static TLS space allocated */
233 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
234 int tls_max_index = 1;		/* Largest module index allocated */
235 
236 /*
237  * Fill in a DoneList with an allocation large enough to hold all of
238  * the currently-loaded objects.  Keep this as a macro since it calls
239  * alloca and we want that to occur within the scope of the caller.
240  */
241 #define donelist_init(dlp)					\
242     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
243     assert((dlp)->objs != NULL),				\
244     (dlp)->num_alloc = obj_count,				\
245     (dlp)->num_used = 0)
246 
247 #define	UTRACE_DLOPEN_START		1
248 #define	UTRACE_DLOPEN_STOP		2
249 #define	UTRACE_DLCLOSE_START		3
250 #define	UTRACE_DLCLOSE_STOP		4
251 #define	UTRACE_LOAD_OBJECT		5
252 #define	UTRACE_UNLOAD_OBJECT		6
253 #define	UTRACE_ADD_RUNDEP		7
254 #define	UTRACE_PRELOAD_FINISHED		8
255 #define	UTRACE_INIT_CALL		9
256 #define	UTRACE_FINI_CALL		10
257 
258 struct utrace_rtld {
259 	char sig[4];			/* 'RTLD' */
260 	int event;
261 	void *handle;
262 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
263 	size_t mapsize;
264 	int refcnt;			/* Used for 'mode' */
265 	char name[MAXPATHLEN];
266 };
267 
268 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
269 	if (ld_utrace != NULL)					\
270 		ld_utrace_log(e, h, mb, ms, r, n);		\
271 } while (0)
272 
273 static void
274 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
275     int refcnt, const char *name)
276 {
277 	struct utrace_rtld ut;
278 
279 	ut.sig[0] = 'R';
280 	ut.sig[1] = 'T';
281 	ut.sig[2] = 'L';
282 	ut.sig[3] = 'D';
283 	ut.event = event;
284 	ut.handle = handle;
285 	ut.mapbase = mapbase;
286 	ut.mapsize = mapsize;
287 	ut.refcnt = refcnt;
288 	bzero(ut.name, sizeof(ut.name));
289 	if (name)
290 		strlcpy(ut.name, name, sizeof(ut.name));
291 	utrace(&ut, sizeof(ut));
292 }
293 
294 /*
295  * Main entry point for dynamic linking.  The first argument is the
296  * stack pointer.  The stack is expected to be laid out as described
297  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
298  * Specifically, the stack pointer points to a word containing
299  * ARGC.  Following that in the stack is a null-terminated sequence
300  * of pointers to argument strings.  Then comes a null-terminated
301  * sequence of pointers to environment strings.  Finally, there is a
302  * sequence of "auxiliary vector" entries.
303  *
304  * The second argument points to a place to store the dynamic linker's
305  * exit procedure pointer and the third to a place to store the main
306  * program's object.
307  *
308  * The return value is the main program's entry point.
309  */
310 func_ptr_type
311 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
312 {
313     Elf_Auxinfo *aux_info[AT_COUNT];
314     int i;
315     int argc;
316     char **argv;
317     char **env;
318     Elf_Auxinfo *aux;
319     Elf_Auxinfo *auxp;
320     const char *argv0;
321     Objlist_Entry *entry;
322     Obj_Entry *obj;
323     Obj_Entry **preload_tail;
324     Objlist initlist;
325     int lockstate;
326 
327     /*
328      * On entry, the dynamic linker itself has not been relocated yet.
329      * Be very careful not to reference any global data until after
330      * init_rtld has returned.  It is OK to reference file-scope statics
331      * and string constants, and to call static and global functions.
332      */
333 
334     /* Find the auxiliary vector on the stack. */
335     argc = *sp++;
336     argv = (char **) sp;
337     sp += argc + 1;	/* Skip over arguments and NULL terminator */
338     env = (char **) sp;
339     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
340 	;
341     aux = (Elf_Auxinfo *) sp;
342 
343     /* Digest the auxiliary vector. */
344     for (i = 0;  i < AT_COUNT;  i++)
345 	aux_info[i] = NULL;
346     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
347 	if (auxp->a_type < AT_COUNT)
348 	    aux_info[auxp->a_type] = auxp;
349     }
350 
351     /* Initialize and relocate ourselves. */
352     assert(aux_info[AT_BASE] != NULL);
353     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
354 
355     __progname = obj_rtld.path;
356     argv0 = argv[0] != NULL ? argv[0] : "(null)";
357     environ = env;
358 
359     trust = !issetugid();
360 
361     ld_bind_now = getenv(LD_ "BIND_NOW");
362     /*
363      * If the process is tainted, then we un-set the dangerous environment
364      * variables.  The process will be marked as tainted until setuid(2)
365      * is called.  If any child process calls setuid(2) we do not want any
366      * future processes to honor the potentially un-safe variables.
367      */
368     if (!trust) {
369         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
370 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
371 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH")) {
372 		_rtld_error("environment corrupt; aborting");
373 		die();
374 	}
375     }
376     ld_debug = getenv(LD_ "DEBUG");
377     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
378     libmap_override = getenv(LD_ "LIBMAP");
379     ld_library_path = getenv(LD_ "LIBRARY_PATH");
380     ld_preload = getenv(LD_ "PRELOAD");
381     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
382     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
383 	(ld_library_path != NULL) || (ld_preload != NULL) ||
384 	(ld_elf_hints_path != NULL);
385     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
386     ld_utrace = getenv(LD_ "UTRACE");
387 
388     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
389 	ld_elf_hints_path = _PATH_ELF_HINTS;
390 
391     if (ld_debug != NULL && *ld_debug != '\0')
392 	debug = 1;
393     dbg("%s is initialized, base address = %p", __progname,
394 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
395     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
396     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
397 
398     /*
399      * Load the main program, or process its program header if it is
400      * already loaded.
401      */
402     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
403 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
404 	dbg("loading main program");
405 	obj_main = map_object(fd, argv0, NULL);
406 	close(fd);
407 	if (obj_main == NULL)
408 	    die();
409     } else {				/* Main program already loaded. */
410 	const Elf_Phdr *phdr;
411 	int phnum;
412 	caddr_t entry;
413 
414 	dbg("processing main program's program header");
415 	assert(aux_info[AT_PHDR] != NULL);
416 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
417 	assert(aux_info[AT_PHNUM] != NULL);
418 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
419 	assert(aux_info[AT_PHENT] != NULL);
420 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
421 	assert(aux_info[AT_ENTRY] != NULL);
422 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
423 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
424 	    die();
425     }
426 
427     if (aux_info[AT_EXECPATH] != 0) {
428 	    char *kexecpath;
429 	    char buf[MAXPATHLEN];
430 
431 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
432 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
433 	    if (kexecpath[0] == '/')
434 		    obj_main->path = kexecpath;
435 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
436 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
437 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
438 		    obj_main->path = xstrdup(argv0);
439 	    else
440 		    obj_main->path = xstrdup(buf);
441     } else {
442 	    dbg("No AT_EXECPATH");
443 	    obj_main->path = xstrdup(argv0);
444     }
445     dbg("obj_main path %s", obj_main->path);
446     obj_main->mainprog = true;
447 
448     /*
449      * Get the actual dynamic linker pathname from the executable if
450      * possible.  (It should always be possible.)  That ensures that
451      * gdb will find the right dynamic linker even if a non-standard
452      * one is being used.
453      */
454     if (obj_main->interp != NULL &&
455       strcmp(obj_main->interp, obj_rtld.path) != 0) {
456 	free(obj_rtld.path);
457 	obj_rtld.path = xstrdup(obj_main->interp);
458         __progname = obj_rtld.path;
459     }
460 
461     digest_dynamic(obj_main, 0);
462 
463     linkmap_add(obj_main);
464     linkmap_add(&obj_rtld);
465 
466     /* Link the main program into the list of objects. */
467     *obj_tail = obj_main;
468     obj_tail = &obj_main->next;
469     obj_count++;
470     obj_loads++;
471     /* Make sure we don't call the main program's init and fini functions. */
472     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
473 
474     /* Initialize a fake symbol for resolving undefined weak references. */
475     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
476     sym_zero.st_shndx = SHN_UNDEF;
477     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
478 
479     if (!libmap_disable)
480         libmap_disable = (bool)lm_init(libmap_override);
481 
482     dbg("loading LD_PRELOAD libraries");
483     if (load_preload_objects() == -1)
484 	die();
485     preload_tail = obj_tail;
486 
487     dbg("loading needed objects");
488     if (load_needed_objects(obj_main, 0) == -1)
489 	die();
490 
491     /* Make a list of all objects loaded at startup. */
492     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
493 	objlist_push_tail(&list_main, obj);
494     	obj->refcount++;
495     }
496 
497     dbg("checking for required versions");
498     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
499 	die();
500 
501     if (ld_tracing) {		/* We're done */
502 	trace_loaded_objects(obj_main);
503 	exit(0);
504     }
505 
506     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
507        dump_relocations(obj_main);
508        exit (0);
509     }
510 
511     /* setup TLS for main thread */
512     dbg("initializing initial thread local storage");
513     STAILQ_FOREACH(entry, &list_main, link) {
514 	/*
515 	 * Allocate all the initial objects out of the static TLS
516 	 * block even if they didn't ask for it.
517 	 */
518 	allocate_tls_offset(entry->obj);
519     }
520     allocate_initial_tls(obj_list);
521 
522     if (relocate_objects(obj_main,
523 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
524 	die();
525 
526     dbg("doing copy relocations");
527     if (do_copy_relocations(obj_main) == -1)
528 	die();
529 
530     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
531        dump_relocations(obj_main);
532        exit (0);
533     }
534 
535     dbg("initializing key program variables");
536     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
537     set_program_var("environ", env);
538 
539     dbg("initializing thread locks");
540     lockdflt_init();
541 
542     /* Make a list of init functions to call. */
543     objlist_init(&initlist);
544     initlist_add_objects(obj_list, preload_tail, &initlist);
545 
546     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
547 
548     lockstate = wlock_acquire(rtld_bind_lock);
549     objlist_call_init(&initlist, &lockstate);
550     objlist_clear(&initlist);
551     wlock_release(rtld_bind_lock, lockstate);
552 
553     dbg("transferring control to program entry point = %p", obj_main->entry);
554 
555     /* Return the exit procedure and the program entry point. */
556     *exit_proc = rtld_exit;
557     *objp = obj_main;
558     return (func_ptr_type) obj_main->entry;
559 }
560 
561 Elf_Addr
562 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
563 {
564     const Elf_Rel *rel;
565     const Elf_Sym *def;
566     const Obj_Entry *defobj;
567     Elf_Addr *where;
568     Elf_Addr target;
569     int lockstate;
570 
571     lockstate = rlock_acquire(rtld_bind_lock);
572     if (obj->pltrel)
573 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
574     else
575 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
576 
577     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
578     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
579     if (def == NULL)
580 	die();
581 
582     target = (Elf_Addr)(defobj->relocbase + def->st_value);
583 
584     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
585       defobj->strtab + def->st_name, basename(obj->path),
586       (void *)target, basename(defobj->path));
587 
588     /*
589      * Write the new contents for the jmpslot. Note that depending on
590      * architecture, the value which we need to return back to the
591      * lazy binding trampoline may or may not be the target
592      * address. The value returned from reloc_jmpslot() is the value
593      * that the trampoline needs.
594      */
595     target = reloc_jmpslot(where, target, defobj, obj, rel);
596     rlock_release(rtld_bind_lock, lockstate);
597     return target;
598 }
599 
600 /*
601  * Error reporting function.  Use it like printf.  If formats the message
602  * into a buffer, and sets things up so that the next call to dlerror()
603  * will return the message.
604  */
605 void
606 _rtld_error(const char *fmt, ...)
607 {
608     static char buf[512];
609     va_list ap;
610 
611     va_start(ap, fmt);
612     vsnprintf(buf, sizeof buf, fmt, ap);
613     error_message = buf;
614     va_end(ap);
615 }
616 
617 /*
618  * Return a dynamically-allocated copy of the current error message, if any.
619  */
620 static char *
621 errmsg_save(void)
622 {
623     return error_message == NULL ? NULL : xstrdup(error_message);
624 }
625 
626 /*
627  * Restore the current error message from a copy which was previously saved
628  * by errmsg_save().  The copy is freed.
629  */
630 static void
631 errmsg_restore(char *saved_msg)
632 {
633     if (saved_msg == NULL)
634 	error_message = NULL;
635     else {
636 	_rtld_error("%s", saved_msg);
637 	free(saved_msg);
638     }
639 }
640 
641 static const char *
642 basename(const char *name)
643 {
644     const char *p = strrchr(name, '/');
645     return p != NULL ? p + 1 : name;
646 }
647 
648 static struct utsname uts;
649 
650 static int
651 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
652     char *may_free)
653 {
654     const char *p, *p1;
655     char *res1;
656     int subst_len;
657     int kw_len;
658 
659     res1 = *res = NULL;
660     p = real;
661     subst_len = kw_len = 0;
662     for (;;) {
663 	 p1 = strstr(p, kw);
664 	 if (p1 != NULL) {
665 	     if (subst_len == 0) {
666 		 subst_len = strlen(subst);
667 		 kw_len = strlen(kw);
668 	     }
669 	     if (*res == NULL) {
670 		 *res = xmalloc(PATH_MAX);
671 		 res1 = *res;
672 	     }
673 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
674 		 _rtld_error("Substitution of %s in %s cannot be performed",
675 		     kw, real);
676 		 if (may_free != NULL)
677 		     free(may_free);
678 		 free(res);
679 		 return (false);
680 	     }
681 	     memcpy(res1, p, p1 - p);
682 	     res1 += p1 - p;
683 	     memcpy(res1, subst, subst_len);
684 	     res1 += subst_len;
685 	     p = p1 + kw_len;
686 	 } else {
687 	    if (*res == NULL) {
688 		if (may_free != NULL)
689 		    *res = may_free;
690 		else
691 		    *res = xstrdup(real);
692 		return (true);
693 	    }
694 	    *res1 = '\0';
695 	    if (may_free != NULL)
696 		free(may_free);
697 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
698 		free(res);
699 		return (false);
700 	    }
701 	    return (true);
702 	 }
703     }
704 }
705 
706 static char *
707 origin_subst(const char *real, const char *origin_path)
708 {
709     char *res1, *res2, *res3, *res4;
710 
711     if (uts.sysname[0] == '\0') {
712 	if (uname(&uts) != 0) {
713 	    _rtld_error("utsname failed: %d", errno);
714 	    return (NULL);
715 	}
716     }
717     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
718 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
719 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
720 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
721 	    return (NULL);
722     return (res4);
723 }
724 
725 static void
726 die(void)
727 {
728     const char *msg = dlerror();
729 
730     if (msg == NULL)
731 	msg = "Fatal error";
732     errx(1, "%s", msg);
733 }
734 
735 /*
736  * Process a shared object's DYNAMIC section, and save the important
737  * information in its Obj_Entry structure.
738  */
739 static void
740 digest_dynamic(Obj_Entry *obj, int early)
741 {
742     const Elf_Dyn *dynp;
743     Needed_Entry **needed_tail = &obj->needed;
744     const Elf_Dyn *dyn_rpath = NULL;
745     const Elf_Dyn *dyn_soname = NULL;
746     int plttype = DT_REL;
747 
748     obj->bind_now = false;
749     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
750 	switch (dynp->d_tag) {
751 
752 	case DT_REL:
753 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
754 	    break;
755 
756 	case DT_RELSZ:
757 	    obj->relsize = dynp->d_un.d_val;
758 	    break;
759 
760 	case DT_RELENT:
761 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
762 	    break;
763 
764 	case DT_JMPREL:
765 	    obj->pltrel = (const Elf_Rel *)
766 	      (obj->relocbase + dynp->d_un.d_ptr);
767 	    break;
768 
769 	case DT_PLTRELSZ:
770 	    obj->pltrelsize = dynp->d_un.d_val;
771 	    break;
772 
773 	case DT_RELA:
774 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
775 	    break;
776 
777 	case DT_RELASZ:
778 	    obj->relasize = dynp->d_un.d_val;
779 	    break;
780 
781 	case DT_RELAENT:
782 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
783 	    break;
784 
785 	case DT_PLTREL:
786 	    plttype = dynp->d_un.d_val;
787 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
788 	    break;
789 
790 	case DT_SYMTAB:
791 	    obj->symtab = (const Elf_Sym *)
792 	      (obj->relocbase + dynp->d_un.d_ptr);
793 	    break;
794 
795 	case DT_SYMENT:
796 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
797 	    break;
798 
799 	case DT_STRTAB:
800 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
801 	    break;
802 
803 	case DT_STRSZ:
804 	    obj->strsize = dynp->d_un.d_val;
805 	    break;
806 
807 	case DT_VERNEED:
808 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
809 		dynp->d_un.d_val);
810 	    break;
811 
812 	case DT_VERNEEDNUM:
813 	    obj->verneednum = dynp->d_un.d_val;
814 	    break;
815 
816 	case DT_VERDEF:
817 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
818 		dynp->d_un.d_val);
819 	    break;
820 
821 	case DT_VERDEFNUM:
822 	    obj->verdefnum = dynp->d_un.d_val;
823 	    break;
824 
825 	case DT_VERSYM:
826 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
827 		dynp->d_un.d_val);
828 	    break;
829 
830 	case DT_HASH:
831 	    {
832 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
833 		  (obj->relocbase + dynp->d_un.d_ptr);
834 		obj->nbuckets = hashtab[0];
835 		obj->nchains = hashtab[1];
836 		obj->buckets = hashtab + 2;
837 		obj->chains = obj->buckets + obj->nbuckets;
838 	    }
839 	    break;
840 
841 	case DT_NEEDED:
842 	    if (!obj->rtld) {
843 		Needed_Entry *nep = NEW(Needed_Entry);
844 		nep->name = dynp->d_un.d_val;
845 		nep->obj = NULL;
846 		nep->next = NULL;
847 
848 		*needed_tail = nep;
849 		needed_tail = &nep->next;
850 	    }
851 	    break;
852 
853 	case DT_PLTGOT:
854 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
855 	    break;
856 
857 	case DT_TEXTREL:
858 	    obj->textrel = true;
859 	    break;
860 
861 	case DT_SYMBOLIC:
862 	    obj->symbolic = true;
863 	    break;
864 
865 	case DT_RPATH:
866 	case DT_RUNPATH:	/* XXX: process separately */
867 	    /*
868 	     * We have to wait until later to process this, because we
869 	     * might not have gotten the address of the string table yet.
870 	     */
871 	    dyn_rpath = dynp;
872 	    break;
873 
874 	case DT_SONAME:
875 	    dyn_soname = dynp;
876 	    break;
877 
878 	case DT_INIT:
879 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
880 	    break;
881 
882 	case DT_FINI:
883 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
884 	    break;
885 
886 	/*
887 	 * Don't process DT_DEBUG on MIPS as the dynamic section
888 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
889 	 */
890 
891 #ifndef __mips__
892 	case DT_DEBUG:
893 	    /* XXX - not implemented yet */
894 	    if (!early)
895 		dbg("Filling in DT_DEBUG entry");
896 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
897 	    break;
898 #endif
899 
900 	case DT_FLAGS:
901 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
902 		    obj->z_origin = true;
903 		if (dynp->d_un.d_val & DF_SYMBOLIC)
904 		    obj->symbolic = true;
905 		if (dynp->d_un.d_val & DF_TEXTREL)
906 		    obj->textrel = true;
907 		if (dynp->d_un.d_val & DF_BIND_NOW)
908 		    obj->bind_now = true;
909 		if (dynp->d_un.d_val & DF_STATIC_TLS)
910 		    ;
911 	    break;
912 #ifdef __mips__
913 	case DT_MIPS_LOCAL_GOTNO:
914 		obj->local_gotno = dynp->d_un.d_val;
915 	    break;
916 
917 	case DT_MIPS_SYMTABNO:
918 		obj->symtabno = dynp->d_un.d_val;
919 		break;
920 
921 	case DT_MIPS_GOTSYM:
922 		obj->gotsym = dynp->d_un.d_val;
923 		break;
924 
925 	case DT_MIPS_RLD_MAP:
926 #ifdef notyet
927 		if (!early)
928 			dbg("Filling in DT_DEBUG entry");
929 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
930 #endif
931 		break;
932 #endif
933 
934 	case DT_FLAGS_1:
935 		if (dynp->d_un.d_val & DF_1_NOOPEN)
936 		    obj->z_noopen = true;
937 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
938 		    obj->z_origin = true;
939 		if (dynp->d_un.d_val & DF_1_GLOBAL)
940 			/* XXX */;
941 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
942 		    obj->bind_now = true;
943 		if (dynp->d_un.d_val & DF_1_NODELETE)
944 		    obj->z_nodelete = true;
945 	    break;
946 
947 	default:
948 	    if (!early) {
949 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
950 		    (long)dynp->d_tag);
951 	    }
952 	    break;
953 	}
954     }
955 
956     obj->traced = false;
957 
958     if (plttype == DT_RELA) {
959 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
960 	obj->pltrel = NULL;
961 	obj->pltrelasize = obj->pltrelsize;
962 	obj->pltrelsize = 0;
963     }
964 
965     if (obj->z_origin && obj->origin_path == NULL) {
966 	obj->origin_path = xmalloc(PATH_MAX);
967 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
968 	    die();
969     }
970 
971     if (dyn_rpath != NULL) {
972 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
973 	if (obj->z_origin)
974 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
975     }
976 
977     if (dyn_soname != NULL)
978 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
979 }
980 
981 /*
982  * Process a shared object's program header.  This is used only for the
983  * main program, when the kernel has already loaded the main program
984  * into memory before calling the dynamic linker.  It creates and
985  * returns an Obj_Entry structure.
986  */
987 static Obj_Entry *
988 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
989 {
990     Obj_Entry *obj;
991     const Elf_Phdr *phlimit = phdr + phnum;
992     const Elf_Phdr *ph;
993     int nsegs = 0;
994 
995     obj = obj_new();
996     for (ph = phdr;  ph < phlimit;  ph++) {
997 	if (ph->p_type != PT_PHDR)
998 	    continue;
999 
1000 	obj->phdr = phdr;
1001 	obj->phsize = ph->p_memsz;
1002 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1003 	break;
1004     }
1005 
1006     for (ph = phdr;  ph < phlimit;  ph++) {
1007 	switch (ph->p_type) {
1008 
1009 	case PT_INTERP:
1010 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1011 	    break;
1012 
1013 	case PT_LOAD:
1014 	    if (nsegs == 0) {	/* First load segment */
1015 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1016 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1017 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1018 		  obj->vaddrbase;
1019 	    } else {		/* Last load segment */
1020 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1021 		  obj->vaddrbase;
1022 	    }
1023 	    nsegs++;
1024 	    break;
1025 
1026 	case PT_DYNAMIC:
1027 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1028 	    break;
1029 
1030 	case PT_TLS:
1031 	    obj->tlsindex = 1;
1032 	    obj->tlssize = ph->p_memsz;
1033 	    obj->tlsalign = ph->p_align;
1034 	    obj->tlsinitsize = ph->p_filesz;
1035 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1036 	    break;
1037 	}
1038     }
1039     if (nsegs < 1) {
1040 	_rtld_error("%s: too few PT_LOAD segments", path);
1041 	return NULL;
1042     }
1043 
1044     obj->entry = entry;
1045     return obj;
1046 }
1047 
1048 static Obj_Entry *
1049 dlcheck(void *handle)
1050 {
1051     Obj_Entry *obj;
1052 
1053     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1054 	if (obj == (Obj_Entry *) handle)
1055 	    break;
1056 
1057     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1058 	_rtld_error("Invalid shared object handle %p", handle);
1059 	return NULL;
1060     }
1061     return obj;
1062 }
1063 
1064 /*
1065  * If the given object is already in the donelist, return true.  Otherwise
1066  * add the object to the list and return false.
1067  */
1068 static bool
1069 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1070 {
1071     unsigned int i;
1072 
1073     for (i = 0;  i < dlp->num_used;  i++)
1074 	if (dlp->objs[i] == obj)
1075 	    return true;
1076     /*
1077      * Our donelist allocation should always be sufficient.  But if
1078      * our threads locking isn't working properly, more shared objects
1079      * could have been loaded since we allocated the list.  That should
1080      * never happen, but we'll handle it properly just in case it does.
1081      */
1082     if (dlp->num_used < dlp->num_alloc)
1083 	dlp->objs[dlp->num_used++] = obj;
1084     return false;
1085 }
1086 
1087 /*
1088  * Hash function for symbol table lookup.  Don't even think about changing
1089  * this.  It is specified by the System V ABI.
1090  */
1091 unsigned long
1092 elf_hash(const char *name)
1093 {
1094     const unsigned char *p = (const unsigned char *) name;
1095     unsigned long h = 0;
1096     unsigned long g;
1097 
1098     while (*p != '\0') {
1099 	h = (h << 4) + *p++;
1100 	if ((g = h & 0xf0000000) != 0)
1101 	    h ^= g >> 24;
1102 	h &= ~g;
1103     }
1104     return h;
1105 }
1106 
1107 /*
1108  * Find the library with the given name, and return its full pathname.
1109  * The returned string is dynamically allocated.  Generates an error
1110  * message and returns NULL if the library cannot be found.
1111  *
1112  * If the second argument is non-NULL, then it refers to an already-
1113  * loaded shared object, whose library search path will be searched.
1114  *
1115  * The search order is:
1116  *   LD_LIBRARY_PATH
1117  *   rpath in the referencing file
1118  *   ldconfig hints
1119  *   /lib:/usr/lib
1120  */
1121 static char *
1122 find_library(const char *xname, const Obj_Entry *refobj)
1123 {
1124     char *pathname;
1125     char *name;
1126 
1127     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1128 	if (xname[0] != '/' && !trust) {
1129 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1130 	      xname);
1131 	    return NULL;
1132 	}
1133 	if (refobj != NULL && refobj->z_origin)
1134 	    return origin_subst(xname, refobj->origin_path);
1135 	else
1136 	    return xstrdup(xname);
1137     }
1138 
1139     if (libmap_disable || (refobj == NULL) ||
1140 	(name = lm_find(refobj->path, xname)) == NULL)
1141 	name = (char *)xname;
1142 
1143     dbg(" Searching for \"%s\"", name);
1144 
1145     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1146       (refobj != NULL &&
1147       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1148       (pathname = search_library_path(name, gethints())) != NULL ||
1149       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1150 	return pathname;
1151 
1152     if(refobj != NULL && refobj->path != NULL) {
1153 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1154 	  name, basename(refobj->path));
1155     } else {
1156 	_rtld_error("Shared object \"%s\" not found", name);
1157     }
1158     return NULL;
1159 }
1160 
1161 /*
1162  * Given a symbol number in a referencing object, find the corresponding
1163  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1164  * no definition was found.  Returns a pointer to the Obj_Entry of the
1165  * defining object via the reference parameter DEFOBJ_OUT.
1166  */
1167 const Elf_Sym *
1168 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1169     const Obj_Entry **defobj_out, int flags, SymCache *cache)
1170 {
1171     const Elf_Sym *ref;
1172     const Elf_Sym *def;
1173     const Obj_Entry *defobj;
1174     const Ver_Entry *ventry;
1175     const char *name;
1176     unsigned long hash;
1177 
1178     /*
1179      * If we have already found this symbol, get the information from
1180      * the cache.
1181      */
1182     if (symnum >= refobj->nchains)
1183 	return NULL;	/* Bad object */
1184     if (cache != NULL && cache[symnum].sym != NULL) {
1185 	*defobj_out = cache[symnum].obj;
1186 	return cache[symnum].sym;
1187     }
1188 
1189     ref = refobj->symtab + symnum;
1190     name = refobj->strtab + ref->st_name;
1191     defobj = NULL;
1192 
1193     /*
1194      * We don't have to do a full scale lookup if the symbol is local.
1195      * We know it will bind to the instance in this load module; to
1196      * which we already have a pointer (ie ref). By not doing a lookup,
1197      * we not only improve performance, but it also avoids unresolvable
1198      * symbols when local symbols are not in the hash table. This has
1199      * been seen with the ia64 toolchain.
1200      */
1201     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1202 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1203 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1204 		symnum);
1205 	}
1206 	ventry = fetch_ventry(refobj, symnum);
1207 	hash = elf_hash(name);
1208 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1209     } else {
1210 	def = ref;
1211 	defobj = refobj;
1212     }
1213 
1214     /*
1215      * If we found no definition and the reference is weak, treat the
1216      * symbol as having the value zero.
1217      */
1218     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1219 	def = &sym_zero;
1220 	defobj = obj_main;
1221     }
1222 
1223     if (def != NULL) {
1224 	*defobj_out = defobj;
1225 	/* Record the information in the cache to avoid subsequent lookups. */
1226 	if (cache != NULL) {
1227 	    cache[symnum].sym = def;
1228 	    cache[symnum].obj = defobj;
1229 	}
1230     } else {
1231 	if (refobj != &obj_rtld)
1232 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1233     }
1234     return def;
1235 }
1236 
1237 /*
1238  * Return the search path from the ldconfig hints file, reading it if
1239  * necessary.  Returns NULL if there are problems with the hints file,
1240  * or if the search path there is empty.
1241  */
1242 static const char *
1243 gethints(void)
1244 {
1245     static char *hints;
1246 
1247     if (hints == NULL) {
1248 	int fd;
1249 	struct elfhints_hdr hdr;
1250 	char *p;
1251 
1252 	/* Keep from trying again in case the hints file is bad. */
1253 	hints = "";
1254 
1255 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1256 	    return NULL;
1257 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1258 	  hdr.magic != ELFHINTS_MAGIC ||
1259 	  hdr.version != 1) {
1260 	    close(fd);
1261 	    return NULL;
1262 	}
1263 	p = xmalloc(hdr.dirlistlen + 1);
1264 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1265 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1266 	    free(p);
1267 	    close(fd);
1268 	    return NULL;
1269 	}
1270 	hints = p;
1271 	close(fd);
1272     }
1273     return hints[0] != '\0' ? hints : NULL;
1274 }
1275 
1276 static void
1277 init_dag(Obj_Entry *root)
1278 {
1279     DoneList donelist;
1280 
1281     donelist_init(&donelist);
1282     init_dag1(root, root, &donelist);
1283 }
1284 
1285 static void
1286 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1287 {
1288     const Needed_Entry *needed;
1289 
1290     if (donelist_check(dlp, obj))
1291 	return;
1292 
1293     obj->refcount++;
1294     objlist_push_tail(&obj->dldags, root);
1295     objlist_push_tail(&root->dagmembers, obj);
1296     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1297 	if (needed->obj != NULL)
1298 	    init_dag1(root, needed->obj, dlp);
1299 }
1300 
1301 /*
1302  * Initialize the dynamic linker.  The argument is the address at which
1303  * the dynamic linker has been mapped into memory.  The primary task of
1304  * this function is to relocate the dynamic linker.
1305  */
1306 static void
1307 init_rtld(caddr_t mapbase)
1308 {
1309     Obj_Entry objtmp;	/* Temporary rtld object */
1310 
1311     /*
1312      * Conjure up an Obj_Entry structure for the dynamic linker.
1313      *
1314      * The "path" member can't be initialized yet because string constants
1315      * cannot yet be accessed. Below we will set it correctly.
1316      */
1317     memset(&objtmp, 0, sizeof(objtmp));
1318     objtmp.path = NULL;
1319     objtmp.rtld = true;
1320     objtmp.mapbase = mapbase;
1321 #ifdef PIC
1322     objtmp.relocbase = mapbase;
1323 #endif
1324     if (RTLD_IS_DYNAMIC()) {
1325 	objtmp.dynamic = rtld_dynamic(&objtmp);
1326 	digest_dynamic(&objtmp, 1);
1327 	assert(objtmp.needed == NULL);
1328 #if !defined(__mips__)
1329 	/* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1330 	assert(!objtmp.textrel);
1331 #endif
1332 
1333 	/*
1334 	 * Temporarily put the dynamic linker entry into the object list, so
1335 	 * that symbols can be found.
1336 	 */
1337 
1338 	relocate_objects(&objtmp, true, &objtmp);
1339     }
1340 
1341     /* Initialize the object list. */
1342     obj_tail = &obj_list;
1343 
1344     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1345     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1346 
1347     /* Replace the path with a dynamically allocated copy. */
1348     obj_rtld.path = xstrdup(PATH_RTLD);
1349 
1350     r_debug.r_brk = r_debug_state;
1351     r_debug.r_state = RT_CONSISTENT;
1352 }
1353 
1354 /*
1355  * Add the init functions from a needed object list (and its recursive
1356  * needed objects) to "list".  This is not used directly; it is a helper
1357  * function for initlist_add_objects().  The write lock must be held
1358  * when this function is called.
1359  */
1360 static void
1361 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1362 {
1363     /* Recursively process the successor needed objects. */
1364     if (needed->next != NULL)
1365 	initlist_add_neededs(needed->next, list);
1366 
1367     /* Process the current needed object. */
1368     if (needed->obj != NULL)
1369 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1370 }
1371 
1372 /*
1373  * Scan all of the DAGs rooted in the range of objects from "obj" to
1374  * "tail" and add their init functions to "list".  This recurses over
1375  * the DAGs and ensure the proper init ordering such that each object's
1376  * needed libraries are initialized before the object itself.  At the
1377  * same time, this function adds the objects to the global finalization
1378  * list "list_fini" in the opposite order.  The write lock must be
1379  * held when this function is called.
1380  */
1381 static void
1382 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1383 {
1384     if (obj->init_scanned || obj->init_done)
1385 	return;
1386     obj->init_scanned = true;
1387 
1388     /* Recursively process the successor objects. */
1389     if (&obj->next != tail)
1390 	initlist_add_objects(obj->next, tail, list);
1391 
1392     /* Recursively process the needed objects. */
1393     if (obj->needed != NULL)
1394 	initlist_add_neededs(obj->needed, list);
1395 
1396     /* Add the object to the init list. */
1397     if (obj->init != (Elf_Addr)NULL)
1398 	objlist_push_tail(list, obj);
1399 
1400     /* Add the object to the global fini list in the reverse order. */
1401     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1402 	objlist_push_head(&list_fini, obj);
1403 	obj->on_fini_list = true;
1404     }
1405 }
1406 
1407 #ifndef FPTR_TARGET
1408 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1409 #endif
1410 
1411 static bool
1412 is_exported(const Elf_Sym *def)
1413 {
1414     Elf_Addr value;
1415     const func_ptr_type *p;
1416 
1417     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1418     for (p = exports;  *p != NULL;  p++)
1419 	if (FPTR_TARGET(*p) == value)
1420 	    return true;
1421     return false;
1422 }
1423 
1424 /*
1425  * Given a shared object, traverse its list of needed objects, and load
1426  * each of them.  Returns 0 on success.  Generates an error message and
1427  * returns -1 on failure.
1428  */
1429 static int
1430 load_needed_objects(Obj_Entry *first, int flags)
1431 {
1432     Obj_Entry *obj, *obj1;
1433 
1434     for (obj = first;  obj != NULL;  obj = obj->next) {
1435 	Needed_Entry *needed;
1436 
1437 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1438 	    obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1439 		flags & ~RTLD_LO_NOLOAD);
1440 	    if (obj1 == NULL && !ld_tracing)
1441 		return -1;
1442 	    if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1443 		dbg("obj %s nodelete", obj1->path);
1444 		init_dag(obj1);
1445 		ref_dag(obj1);
1446 		obj1->ref_nodel = true;
1447 	    }
1448 	}
1449     }
1450 
1451     return 0;
1452 }
1453 
1454 static int
1455 load_preload_objects(void)
1456 {
1457     char *p = ld_preload;
1458     static const char delim[] = " \t:;";
1459 
1460     if (p == NULL)
1461 	return 0;
1462 
1463     p += strspn(p, delim);
1464     while (*p != '\0') {
1465 	size_t len = strcspn(p, delim);
1466 	char savech;
1467 
1468 	savech = p[len];
1469 	p[len] = '\0';
1470 	if (load_object(p, NULL, 0) == NULL)
1471 	    return -1;	/* XXX - cleanup */
1472 	p[len] = savech;
1473 	p += len;
1474 	p += strspn(p, delim);
1475     }
1476     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1477     return 0;
1478 }
1479 
1480 /*
1481  * Load a shared object into memory, if it is not already loaded.
1482  *
1483  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1484  * on failure.
1485  */
1486 static Obj_Entry *
1487 load_object(const char *name, const Obj_Entry *refobj, int flags)
1488 {
1489     Obj_Entry *obj;
1490     int fd = -1;
1491     struct stat sb;
1492     char *path;
1493 
1494     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1495 	if (object_match_name(obj, name))
1496 	    return obj;
1497 
1498     path = find_library(name, refobj);
1499     if (path == NULL)
1500 	return NULL;
1501 
1502     /*
1503      * If we didn't find a match by pathname, open the file and check
1504      * again by device and inode.  This avoids false mismatches caused
1505      * by multiple links or ".." in pathnames.
1506      *
1507      * To avoid a race, we open the file and use fstat() rather than
1508      * using stat().
1509      */
1510     if ((fd = open(path, O_RDONLY)) == -1) {
1511 	_rtld_error("Cannot open \"%s\"", path);
1512 	free(path);
1513 	return NULL;
1514     }
1515     if (fstat(fd, &sb) == -1) {
1516 	_rtld_error("Cannot fstat \"%s\"", path);
1517 	close(fd);
1518 	free(path);
1519 	return NULL;
1520     }
1521     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1522 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1523 	    close(fd);
1524 	    break;
1525 	}
1526     }
1527     if (obj != NULL) {
1528 	object_add_name(obj, name);
1529 	free(path);
1530 	close(fd);
1531 	return obj;
1532     }
1533     if (flags & RTLD_LO_NOLOAD)
1534 	return (NULL);
1535 
1536     /* First use of this object, so we must map it in */
1537     obj = do_load_object(fd, name, path, &sb, flags);
1538     if (obj == NULL)
1539 	free(path);
1540     close(fd);
1541 
1542     return obj;
1543 }
1544 
1545 static Obj_Entry *
1546 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1547   int flags)
1548 {
1549     Obj_Entry *obj;
1550     struct statfs fs;
1551 
1552     /*
1553      * but first, make sure that environment variables haven't been
1554      * used to circumvent the noexec flag on a filesystem.
1555      */
1556     if (dangerous_ld_env) {
1557 	if (fstatfs(fd, &fs) != 0) {
1558 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1559 		return NULL;
1560 	}
1561 	if (fs.f_flags & MNT_NOEXEC) {
1562 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1563 	    return NULL;
1564 	}
1565     }
1566     dbg("loading \"%s\"", path);
1567     obj = map_object(fd, path, sbp);
1568     if (obj == NULL)
1569         return NULL;
1570 
1571     object_add_name(obj, name);
1572     obj->path = path;
1573     digest_dynamic(obj, 0);
1574     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1575       RTLD_LO_DLOPEN) {
1576 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1577 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1578 	munmap(obj->mapbase, obj->mapsize);
1579 	obj_free(obj);
1580 	return (NULL);
1581     }
1582 
1583     *obj_tail = obj;
1584     obj_tail = &obj->next;
1585     obj_count++;
1586     obj_loads++;
1587     linkmap_add(obj);	/* for GDB & dlinfo() */
1588 
1589     dbg("  %p .. %p: %s", obj->mapbase,
1590          obj->mapbase + obj->mapsize - 1, obj->path);
1591     if (obj->textrel)
1592 	dbg("  WARNING: %s has impure text", obj->path);
1593     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1594 	obj->path);
1595 
1596     return obj;
1597 }
1598 
1599 static Obj_Entry *
1600 obj_from_addr(const void *addr)
1601 {
1602     Obj_Entry *obj;
1603 
1604     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1605 	if (addr < (void *) obj->mapbase)
1606 	    continue;
1607 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1608 	    return obj;
1609     }
1610     return NULL;
1611 }
1612 
1613 /*
1614  * Call the finalization functions for each of the objects in "list"
1615  * which are unreferenced.  All of the objects are expected to have
1616  * non-NULL fini functions.
1617  */
1618 static void
1619 objlist_call_fini(Objlist *list, bool force, int *lockstate)
1620 {
1621     Objlist_Entry *elm, *elm_tmp;
1622     char *saved_msg;
1623 
1624     /*
1625      * Preserve the current error message since a fini function might
1626      * call into the dynamic linker and overwrite it.
1627      */
1628     saved_msg = errmsg_save();
1629     STAILQ_FOREACH_SAFE(elm, list, link, elm_tmp) {
1630 	if (elm->obj->refcount == 0 || force) {
1631 	    dbg("calling fini function for %s at %p", elm->obj->path,
1632 	        (void *)elm->obj->fini);
1633 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1634 		elm->obj->path);
1635 	    /* Remove object from fini list to prevent recursive invocation. */
1636 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1637 	    wlock_release(rtld_bind_lock, *lockstate);
1638 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1639 	    *lockstate = wlock_acquire(rtld_bind_lock);
1640 	    /* No need to free anything if process is going down. */
1641 	    if (!force)
1642 	    	free(elm);
1643 	}
1644     }
1645     errmsg_restore(saved_msg);
1646 }
1647 
1648 /*
1649  * Call the initialization functions for each of the objects in
1650  * "list".  All of the objects are expected to have non-NULL init
1651  * functions.
1652  */
1653 static void
1654 objlist_call_init(Objlist *list, int *lockstate)
1655 {
1656     Objlist_Entry *elm;
1657     Obj_Entry *obj;
1658     char *saved_msg;
1659 
1660     /*
1661      * Clean init_scanned flag so that objects can be rechecked and
1662      * possibly initialized earlier if any of vectors called below
1663      * cause the change by using dlopen.
1664      */
1665     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1666 	obj->init_scanned = false;
1667 
1668     /*
1669      * Preserve the current error message since an init function might
1670      * call into the dynamic linker and overwrite it.
1671      */
1672     saved_msg = errmsg_save();
1673     STAILQ_FOREACH(elm, list, link) {
1674 	if (elm->obj->init_done) /* Initialized early. */
1675 	    continue;
1676 	dbg("calling init function for %s at %p", elm->obj->path,
1677 	    (void *)elm->obj->init);
1678 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1679 	    elm->obj->path);
1680 	/*
1681 	 * Race: other thread might try to use this object before current
1682 	 * one completes the initilization. Not much can be done here
1683 	 * without better locking.
1684 	 */
1685 	elm->obj->init_done = true;
1686     	wlock_release(rtld_bind_lock, *lockstate);
1687 	call_initfini_pointer(elm->obj, elm->obj->init);
1688 	*lockstate = wlock_acquire(rtld_bind_lock);
1689     }
1690     errmsg_restore(saved_msg);
1691 }
1692 
1693 static void
1694 objlist_clear(Objlist *list)
1695 {
1696     Objlist_Entry *elm;
1697 
1698     while (!STAILQ_EMPTY(list)) {
1699 	elm = STAILQ_FIRST(list);
1700 	STAILQ_REMOVE_HEAD(list, link);
1701 	free(elm);
1702     }
1703 }
1704 
1705 static Objlist_Entry *
1706 objlist_find(Objlist *list, const Obj_Entry *obj)
1707 {
1708     Objlist_Entry *elm;
1709 
1710     STAILQ_FOREACH(elm, list, link)
1711 	if (elm->obj == obj)
1712 	    return elm;
1713     return NULL;
1714 }
1715 
1716 static void
1717 objlist_init(Objlist *list)
1718 {
1719     STAILQ_INIT(list);
1720 }
1721 
1722 static void
1723 objlist_push_head(Objlist *list, Obj_Entry *obj)
1724 {
1725     Objlist_Entry *elm;
1726 
1727     elm = NEW(Objlist_Entry);
1728     elm->obj = obj;
1729     STAILQ_INSERT_HEAD(list, elm, link);
1730 }
1731 
1732 static void
1733 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1734 {
1735     Objlist_Entry *elm;
1736 
1737     elm = NEW(Objlist_Entry);
1738     elm->obj = obj;
1739     STAILQ_INSERT_TAIL(list, elm, link);
1740 }
1741 
1742 static void
1743 objlist_remove(Objlist *list, Obj_Entry *obj)
1744 {
1745     Objlist_Entry *elm;
1746 
1747     if ((elm = objlist_find(list, obj)) != NULL) {
1748 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1749 	free(elm);
1750     }
1751 }
1752 
1753 /*
1754  * Relocate newly-loaded shared objects.  The argument is a pointer to
1755  * the Obj_Entry for the first such object.  All objects from the first
1756  * to the end of the list of objects are relocated.  Returns 0 on success,
1757  * or -1 on failure.
1758  */
1759 static int
1760 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1761 {
1762     Obj_Entry *obj;
1763 
1764     for (obj = first;  obj != NULL;  obj = obj->next) {
1765 	if (obj != rtldobj)
1766 	    dbg("relocating \"%s\"", obj->path);
1767 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1768 	    obj->symtab == NULL || obj->strtab == NULL) {
1769 	    _rtld_error("%s: Shared object has no run-time symbol table",
1770 	      obj->path);
1771 	    return -1;
1772 	}
1773 
1774 	if (obj->textrel) {
1775 	    /* There are relocations to the write-protected text segment. */
1776 	    if (mprotect(obj->mapbase, obj->textsize,
1777 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1778 		_rtld_error("%s: Cannot write-enable text segment: %s",
1779 		  obj->path, strerror(errno));
1780 		return -1;
1781 	    }
1782 	}
1783 
1784 	/* Process the non-PLT relocations. */
1785 	if (reloc_non_plt(obj, rtldobj))
1786 		return -1;
1787 
1788 	if (obj->textrel) {	/* Re-protected the text segment. */
1789 	    if (mprotect(obj->mapbase, obj->textsize,
1790 	      PROT_READ|PROT_EXEC) == -1) {
1791 		_rtld_error("%s: Cannot write-protect text segment: %s",
1792 		  obj->path, strerror(errno));
1793 		return -1;
1794 	    }
1795 	}
1796 
1797 	/* Process the PLT relocations. */
1798 	if (reloc_plt(obj) == -1)
1799 	    return -1;
1800 	/* Relocate the jump slots if we are doing immediate binding. */
1801 	if (obj->bind_now || bind_now)
1802 	    if (reloc_jmpslots(obj) == -1)
1803 		return -1;
1804 
1805 
1806 	/*
1807 	 * Set up the magic number and version in the Obj_Entry.  These
1808 	 * were checked in the crt1.o from the original ElfKit, so we
1809 	 * set them for backward compatibility.
1810 	 */
1811 	obj->magic = RTLD_MAGIC;
1812 	obj->version = RTLD_VERSION;
1813 
1814 	/* Set the special PLT or GOT entries. */
1815 	init_pltgot(obj);
1816     }
1817 
1818     return 0;
1819 }
1820 
1821 /*
1822  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1823  * before the process exits.
1824  */
1825 static void
1826 rtld_exit(void)
1827 {
1828     int	lockstate;
1829 
1830     lockstate = wlock_acquire(rtld_bind_lock);
1831     dbg("rtld_exit()");
1832     objlist_call_fini(&list_fini, true, &lockstate);
1833     /* No need to remove the items from the list, since we are exiting. */
1834     if (!libmap_disable)
1835         lm_fini();
1836     wlock_release(rtld_bind_lock, lockstate);
1837 }
1838 
1839 static void *
1840 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1841 {
1842 #ifdef COMPAT_32BIT
1843     const char *trans;
1844 #endif
1845     if (path == NULL)
1846 	return (NULL);
1847 
1848     path += strspn(path, ":;");
1849     while (*path != '\0') {
1850 	size_t len;
1851 	char  *res;
1852 
1853 	len = strcspn(path, ":;");
1854 #ifdef COMPAT_32BIT
1855 	trans = lm_findn(NULL, path, len);
1856 	if (trans)
1857 	    res = callback(trans, strlen(trans), arg);
1858 	else
1859 #endif
1860 	res = callback(path, len, arg);
1861 
1862 	if (res != NULL)
1863 	    return (res);
1864 
1865 	path += len;
1866 	path += strspn(path, ":;");
1867     }
1868 
1869     return (NULL);
1870 }
1871 
1872 struct try_library_args {
1873     const char	*name;
1874     size_t	 namelen;
1875     char	*buffer;
1876     size_t	 buflen;
1877 };
1878 
1879 static void *
1880 try_library_path(const char *dir, size_t dirlen, void *param)
1881 {
1882     struct try_library_args *arg;
1883 
1884     arg = param;
1885     if (*dir == '/' || trust) {
1886 	char *pathname;
1887 
1888 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1889 		return (NULL);
1890 
1891 	pathname = arg->buffer;
1892 	strncpy(pathname, dir, dirlen);
1893 	pathname[dirlen] = '/';
1894 	strcpy(pathname + dirlen + 1, arg->name);
1895 
1896 	dbg("  Trying \"%s\"", pathname);
1897 	if (access(pathname, F_OK) == 0) {		/* We found it */
1898 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1899 	    strcpy(pathname, arg->buffer);
1900 	    return (pathname);
1901 	}
1902     }
1903     return (NULL);
1904 }
1905 
1906 static char *
1907 search_library_path(const char *name, const char *path)
1908 {
1909     char *p;
1910     struct try_library_args arg;
1911 
1912     if (path == NULL)
1913 	return NULL;
1914 
1915     arg.name = name;
1916     arg.namelen = strlen(name);
1917     arg.buffer = xmalloc(PATH_MAX);
1918     arg.buflen = PATH_MAX;
1919 
1920     p = path_enumerate(path, try_library_path, &arg);
1921 
1922     free(arg.buffer);
1923 
1924     return (p);
1925 }
1926 
1927 int
1928 dlclose(void *handle)
1929 {
1930     Obj_Entry *root;
1931     int lockstate;
1932 
1933     lockstate = wlock_acquire(rtld_bind_lock);
1934     root = dlcheck(handle);
1935     if (root == NULL) {
1936 	wlock_release(rtld_bind_lock, lockstate);
1937 	return -1;
1938     }
1939     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1940 	root->path);
1941 
1942     /* Unreference the object and its dependencies. */
1943     root->dl_refcount--;
1944 
1945     unref_dag(root);
1946 
1947     if (root->refcount == 0) {
1948 	/*
1949 	 * The object is no longer referenced, so we must unload it.
1950 	 * First, call the fini functions.
1951 	 */
1952 	objlist_call_fini(&list_fini, false, &lockstate);
1953 
1954 	/* Finish cleaning up the newly-unreferenced objects. */
1955 	GDB_STATE(RT_DELETE,&root->linkmap);
1956 	unload_object(root);
1957 	GDB_STATE(RT_CONSISTENT,NULL);
1958     }
1959     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1960     wlock_release(rtld_bind_lock, lockstate);
1961     return 0;
1962 }
1963 
1964 const char *
1965 dlerror(void)
1966 {
1967     char *msg = error_message;
1968     error_message = NULL;
1969     return msg;
1970 }
1971 
1972 /*
1973  * This function is deprecated and has no effect.
1974  */
1975 void
1976 dllockinit(void *context,
1977 	   void *(*lock_create)(void *context),
1978            void (*rlock_acquire)(void *lock),
1979            void (*wlock_acquire)(void *lock),
1980            void (*lock_release)(void *lock),
1981            void (*lock_destroy)(void *lock),
1982 	   void (*context_destroy)(void *context))
1983 {
1984     static void *cur_context;
1985     static void (*cur_context_destroy)(void *);
1986 
1987     /* Just destroy the context from the previous call, if necessary. */
1988     if (cur_context_destroy != NULL)
1989 	cur_context_destroy(cur_context);
1990     cur_context = context;
1991     cur_context_destroy = context_destroy;
1992 }
1993 
1994 void *
1995 dlopen(const char *name, int mode)
1996 {
1997     Obj_Entry **old_obj_tail;
1998     Obj_Entry *obj;
1999     Objlist initlist;
2000     int result, lockstate, nodelete, lo_flags;
2001 
2002     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2003     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2004     if (ld_tracing != NULL)
2005 	environ = (char **)*get_program_var_addr("environ");
2006     nodelete = mode & RTLD_NODELETE;
2007     lo_flags = RTLD_LO_DLOPEN;
2008     if (mode & RTLD_NOLOAD)
2009 	    lo_flags |= RTLD_LO_NOLOAD;
2010     if (ld_tracing != NULL)
2011 	    lo_flags |= RTLD_LO_TRACE;
2012 
2013     objlist_init(&initlist);
2014 
2015     lockstate = wlock_acquire(rtld_bind_lock);
2016     GDB_STATE(RT_ADD,NULL);
2017 
2018     old_obj_tail = obj_tail;
2019     obj = NULL;
2020     if (name == NULL) {
2021 	obj = obj_main;
2022 	obj->refcount++;
2023     } else {
2024 	obj = load_object(name, obj_main, lo_flags);
2025     }
2026 
2027     if (obj) {
2028 	obj->dl_refcount++;
2029 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2030 	    objlist_push_tail(&list_global, obj);
2031 	mode &= RTLD_MODEMASK;
2032 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2033 	    assert(*old_obj_tail == obj);
2034 	    result = load_needed_objects(obj, RTLD_LO_DLOPEN);
2035 	    init_dag(obj);
2036 	    if (result != -1)
2037 		result = rtld_verify_versions(&obj->dagmembers);
2038 	    if (result != -1 && ld_tracing)
2039 		goto trace;
2040 	    if (result == -1 ||
2041 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2042 		obj->dl_refcount--;
2043 		unref_dag(obj);
2044 		if (obj->refcount == 0)
2045 		    unload_object(obj);
2046 		obj = NULL;
2047 	    } else {
2048 		/* Make list of init functions to call. */
2049 		initlist_add_objects(obj, &obj->next, &initlist);
2050 	    }
2051 	} else {
2052 
2053 	    /* Bump the reference counts for objects on this DAG. */
2054 	    ref_dag(obj);
2055 
2056 	    if (ld_tracing)
2057 		goto trace;
2058 	}
2059 	if (obj != NULL && (nodelete || obj->z_nodelete) && !obj->ref_nodel) {
2060 	    dbg("obj %s nodelete", obj->path);
2061 	    ref_dag(obj);
2062 	    obj->z_nodelete = obj->ref_nodel = true;
2063 	}
2064     }
2065 
2066     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2067 	name);
2068     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2069 
2070     /* Call the init functions. */
2071     objlist_call_init(&initlist, &lockstate);
2072     objlist_clear(&initlist);
2073     wlock_release(rtld_bind_lock, lockstate);
2074     return obj;
2075 trace:
2076     trace_loaded_objects(obj);
2077     wlock_release(rtld_bind_lock, lockstate);
2078     exit(0);
2079 }
2080 
2081 static void *
2082 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2083     int flags)
2084 {
2085     DoneList donelist;
2086     const Obj_Entry *obj, *defobj;
2087     const Elf_Sym *def, *symp;
2088     unsigned long hash;
2089     int lockstate;
2090 
2091     hash = elf_hash(name);
2092     def = NULL;
2093     defobj = NULL;
2094     flags |= SYMLOOK_IN_PLT;
2095 
2096     lockstate = rlock_acquire(rtld_bind_lock);
2097     if (handle == NULL || handle == RTLD_NEXT ||
2098 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2099 
2100 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2101 	    _rtld_error("Cannot determine caller's shared object");
2102 	    rlock_release(rtld_bind_lock, lockstate);
2103 	    return NULL;
2104 	}
2105 	if (handle == NULL) {	/* Just the caller's shared object. */
2106 	    def = symlook_obj(name, hash, obj, ve, flags);
2107 	    defobj = obj;
2108 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2109 		   handle == RTLD_SELF) { /* ... caller included */
2110 	    if (handle == RTLD_NEXT)
2111 		obj = obj->next;
2112 	    for (; obj != NULL; obj = obj->next) {
2113 	    	if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2114 		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2115 			def = symp;
2116 			defobj = obj;
2117 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2118 			    break;
2119 		    }
2120 		}
2121 	    }
2122 	    /*
2123 	     * Search the dynamic linker itself, and possibly resolve the
2124 	     * symbol from there.  This is how the application links to
2125 	     * dynamic linker services such as dlopen.  Only the values listed
2126 	     * in the "exports" array can be resolved from the dynamic linker.
2127 	     */
2128 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2129 		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2130 		if (symp != NULL && is_exported(symp)) {
2131 		    def = symp;
2132 		    defobj = &obj_rtld;
2133 		}
2134 	    }
2135 	} else {
2136 	    assert(handle == RTLD_DEFAULT);
2137 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2138 	}
2139     } else {
2140 	if ((obj = dlcheck(handle)) == NULL) {
2141 	    rlock_release(rtld_bind_lock, lockstate);
2142 	    return NULL;
2143 	}
2144 
2145 	donelist_init(&donelist);
2146 	if (obj->mainprog) {
2147 	    /* Search main program and all libraries loaded by it. */
2148 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2149 			       &donelist);
2150 
2151 	    /*
2152 	     * We do not distinguish between 'main' object and global scope.
2153 	     * If symbol is not defined by objects loaded at startup, continue
2154 	     * search among dynamically loaded objects with RTLD_GLOBAL
2155 	     * scope.
2156 	     */
2157 	    if (def == NULL)
2158 		def = symlook_list(name, hash, &list_global, &defobj, ve,
2159 		    		    flags, &donelist);
2160 	} else {
2161 	    Needed_Entry fake;
2162 
2163 	    /* Search the whole DAG rooted at the given object. */
2164 	    fake.next = NULL;
2165 	    fake.obj = (Obj_Entry *)obj;
2166 	    fake.name = 0;
2167 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2168 				 &donelist);
2169 	}
2170     }
2171 
2172     if (def != NULL) {
2173 	rlock_release(rtld_bind_lock, lockstate);
2174 
2175 	/*
2176 	 * The value required by the caller is derived from the value
2177 	 * of the symbol. For the ia64 architecture, we need to
2178 	 * construct a function descriptor which the caller can use to
2179 	 * call the function with the right 'gp' value. For other
2180 	 * architectures and for non-functions, the value is simply
2181 	 * the relocated value of the symbol.
2182 	 */
2183 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2184 	    return make_function_pointer(def, defobj);
2185 	else
2186 	    return defobj->relocbase + def->st_value;
2187     }
2188 
2189     _rtld_error("Undefined symbol \"%s\"", name);
2190     rlock_release(rtld_bind_lock, lockstate);
2191     return NULL;
2192 }
2193 
2194 void *
2195 dlsym(void *handle, const char *name)
2196 {
2197 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2198 	    SYMLOOK_DLSYM);
2199 }
2200 
2201 dlfunc_t
2202 dlfunc(void *handle, const char *name)
2203 {
2204 	union {
2205 		void *d;
2206 		dlfunc_t f;
2207 	} rv;
2208 
2209 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2210 	    SYMLOOK_DLSYM);
2211 	return (rv.f);
2212 }
2213 
2214 void *
2215 dlvsym(void *handle, const char *name, const char *version)
2216 {
2217 	Ver_Entry ventry;
2218 
2219 	ventry.name = version;
2220 	ventry.file = NULL;
2221 	ventry.hash = elf_hash(version);
2222 	ventry.flags= 0;
2223 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2224 	    SYMLOOK_DLSYM);
2225 }
2226 
2227 int
2228 dladdr(const void *addr, Dl_info *info)
2229 {
2230     const Obj_Entry *obj;
2231     const Elf_Sym *def;
2232     void *symbol_addr;
2233     unsigned long symoffset;
2234     int lockstate;
2235 
2236     lockstate = rlock_acquire(rtld_bind_lock);
2237     obj = obj_from_addr(addr);
2238     if (obj == NULL) {
2239         _rtld_error("No shared object contains address");
2240 	rlock_release(rtld_bind_lock, lockstate);
2241         return 0;
2242     }
2243     info->dli_fname = obj->path;
2244     info->dli_fbase = obj->mapbase;
2245     info->dli_saddr = (void *)0;
2246     info->dli_sname = NULL;
2247 
2248     /*
2249      * Walk the symbol list looking for the symbol whose address is
2250      * closest to the address sent in.
2251      */
2252     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2253         def = obj->symtab + symoffset;
2254 
2255         /*
2256          * For skip the symbol if st_shndx is either SHN_UNDEF or
2257          * SHN_COMMON.
2258          */
2259         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2260             continue;
2261 
2262         /*
2263          * If the symbol is greater than the specified address, or if it
2264          * is further away from addr than the current nearest symbol,
2265          * then reject it.
2266          */
2267         symbol_addr = obj->relocbase + def->st_value;
2268         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2269             continue;
2270 
2271         /* Update our idea of the nearest symbol. */
2272         info->dli_sname = obj->strtab + def->st_name;
2273         info->dli_saddr = symbol_addr;
2274 
2275         /* Exact match? */
2276         if (info->dli_saddr == addr)
2277             break;
2278     }
2279     rlock_release(rtld_bind_lock, lockstate);
2280     return 1;
2281 }
2282 
2283 int
2284 dlinfo(void *handle, int request, void *p)
2285 {
2286     const Obj_Entry *obj;
2287     int error, lockstate;
2288 
2289     lockstate = rlock_acquire(rtld_bind_lock);
2290 
2291     if (handle == NULL || handle == RTLD_SELF) {
2292 	void *retaddr;
2293 
2294 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2295 	if ((obj = obj_from_addr(retaddr)) == NULL)
2296 	    _rtld_error("Cannot determine caller's shared object");
2297     } else
2298 	obj = dlcheck(handle);
2299 
2300     if (obj == NULL) {
2301 	rlock_release(rtld_bind_lock, lockstate);
2302 	return (-1);
2303     }
2304 
2305     error = 0;
2306     switch (request) {
2307     case RTLD_DI_LINKMAP:
2308 	*((struct link_map const **)p) = &obj->linkmap;
2309 	break;
2310     case RTLD_DI_ORIGIN:
2311 	error = rtld_dirname(obj->path, p);
2312 	break;
2313 
2314     case RTLD_DI_SERINFOSIZE:
2315     case RTLD_DI_SERINFO:
2316 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2317 	break;
2318 
2319     default:
2320 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2321 	error = -1;
2322     }
2323 
2324     rlock_release(rtld_bind_lock, lockstate);
2325 
2326     return (error);
2327 }
2328 
2329 int
2330 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2331 {
2332     struct dl_phdr_info phdr_info;
2333     const Obj_Entry *obj;
2334     int error, bind_lockstate, phdr_lockstate;
2335 
2336     phdr_lockstate = wlock_acquire(rtld_phdr_lock);
2337     bind_lockstate = rlock_acquire(rtld_bind_lock);
2338 
2339     error = 0;
2340 
2341     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2342 	phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
2343 	phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
2344 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2345 	phdr_info.dlpi_phdr = obj->phdr;
2346 	phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2347 	phdr_info.dlpi_tls_modid = obj->tlsindex;
2348 	phdr_info.dlpi_tls_data = obj->tlsinit;
2349 	phdr_info.dlpi_adds = obj_loads;
2350 	phdr_info.dlpi_subs = obj_loads - obj_count;
2351 
2352 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2353 		break;
2354 
2355     }
2356     rlock_release(rtld_bind_lock, bind_lockstate);
2357     wlock_release(rtld_phdr_lock, phdr_lockstate);
2358 
2359     return (error);
2360 }
2361 
2362 struct fill_search_info_args {
2363     int		 request;
2364     unsigned int flags;
2365     Dl_serinfo  *serinfo;
2366     Dl_serpath  *serpath;
2367     char	*strspace;
2368 };
2369 
2370 static void *
2371 fill_search_info(const char *dir, size_t dirlen, void *param)
2372 {
2373     struct fill_search_info_args *arg;
2374 
2375     arg = param;
2376 
2377     if (arg->request == RTLD_DI_SERINFOSIZE) {
2378 	arg->serinfo->dls_cnt ++;
2379 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2380     } else {
2381 	struct dl_serpath *s_entry;
2382 
2383 	s_entry = arg->serpath;
2384 	s_entry->dls_name  = arg->strspace;
2385 	s_entry->dls_flags = arg->flags;
2386 
2387 	strncpy(arg->strspace, dir, dirlen);
2388 	arg->strspace[dirlen] = '\0';
2389 
2390 	arg->strspace += dirlen + 1;
2391 	arg->serpath++;
2392     }
2393 
2394     return (NULL);
2395 }
2396 
2397 static int
2398 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2399 {
2400     struct dl_serinfo _info;
2401     struct fill_search_info_args args;
2402 
2403     args.request = RTLD_DI_SERINFOSIZE;
2404     args.serinfo = &_info;
2405 
2406     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2407     _info.dls_cnt  = 0;
2408 
2409     path_enumerate(ld_library_path, fill_search_info, &args);
2410     path_enumerate(obj->rpath, fill_search_info, &args);
2411     path_enumerate(gethints(), fill_search_info, &args);
2412     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2413 
2414 
2415     if (request == RTLD_DI_SERINFOSIZE) {
2416 	info->dls_size = _info.dls_size;
2417 	info->dls_cnt = _info.dls_cnt;
2418 	return (0);
2419     }
2420 
2421     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2422 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2423 	return (-1);
2424     }
2425 
2426     args.request  = RTLD_DI_SERINFO;
2427     args.serinfo  = info;
2428     args.serpath  = &info->dls_serpath[0];
2429     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2430 
2431     args.flags = LA_SER_LIBPATH;
2432     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2433 	return (-1);
2434 
2435     args.flags = LA_SER_RUNPATH;
2436     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2437 	return (-1);
2438 
2439     args.flags = LA_SER_CONFIG;
2440     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2441 	return (-1);
2442 
2443     args.flags = LA_SER_DEFAULT;
2444     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2445 	return (-1);
2446     return (0);
2447 }
2448 
2449 static int
2450 rtld_dirname(const char *path, char *bname)
2451 {
2452     const char *endp;
2453 
2454     /* Empty or NULL string gets treated as "." */
2455     if (path == NULL || *path == '\0') {
2456 	bname[0] = '.';
2457 	bname[1] = '\0';
2458 	return (0);
2459     }
2460 
2461     /* Strip trailing slashes */
2462     endp = path + strlen(path) - 1;
2463     while (endp > path && *endp == '/')
2464 	endp--;
2465 
2466     /* Find the start of the dir */
2467     while (endp > path && *endp != '/')
2468 	endp--;
2469 
2470     /* Either the dir is "/" or there are no slashes */
2471     if (endp == path) {
2472 	bname[0] = *endp == '/' ? '/' : '.';
2473 	bname[1] = '\0';
2474 	return (0);
2475     } else {
2476 	do {
2477 	    endp--;
2478 	} while (endp > path && *endp == '/');
2479     }
2480 
2481     if (endp - path + 2 > PATH_MAX)
2482     {
2483 	_rtld_error("Filename is too long: %s", path);
2484 	return(-1);
2485     }
2486 
2487     strncpy(bname, path, endp - path + 1);
2488     bname[endp - path + 1] = '\0';
2489     return (0);
2490 }
2491 
2492 static int
2493 rtld_dirname_abs(const char *path, char *base)
2494 {
2495 	char base_rel[PATH_MAX];
2496 
2497 	if (rtld_dirname(path, base) == -1)
2498 		return (-1);
2499 	if (base[0] == '/')
2500 		return (0);
2501 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2502 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2503 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2504 		return (-1);
2505 	strcpy(base, base_rel);
2506 	return (0);
2507 }
2508 
2509 static void
2510 linkmap_add(Obj_Entry *obj)
2511 {
2512     struct link_map *l = &obj->linkmap;
2513     struct link_map *prev;
2514 
2515     obj->linkmap.l_name = obj->path;
2516     obj->linkmap.l_addr = obj->mapbase;
2517     obj->linkmap.l_ld = obj->dynamic;
2518 #ifdef __mips__
2519     /* GDB needs load offset on MIPS to use the symbols */
2520     obj->linkmap.l_offs = obj->relocbase;
2521 #endif
2522 
2523     if (r_debug.r_map == NULL) {
2524 	r_debug.r_map = l;
2525 	return;
2526     }
2527 
2528     /*
2529      * Scan to the end of the list, but not past the entry for the
2530      * dynamic linker, which we want to keep at the very end.
2531      */
2532     for (prev = r_debug.r_map;
2533       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2534       prev = prev->l_next)
2535 	;
2536 
2537     /* Link in the new entry. */
2538     l->l_prev = prev;
2539     l->l_next = prev->l_next;
2540     if (l->l_next != NULL)
2541 	l->l_next->l_prev = l;
2542     prev->l_next = l;
2543 }
2544 
2545 static void
2546 linkmap_delete(Obj_Entry *obj)
2547 {
2548     struct link_map *l = &obj->linkmap;
2549 
2550     if (l->l_prev == NULL) {
2551 	if ((r_debug.r_map = l->l_next) != NULL)
2552 	    l->l_next->l_prev = NULL;
2553 	return;
2554     }
2555 
2556     if ((l->l_prev->l_next = l->l_next) != NULL)
2557 	l->l_next->l_prev = l->l_prev;
2558 }
2559 
2560 /*
2561  * Function for the debugger to set a breakpoint on to gain control.
2562  *
2563  * The two parameters allow the debugger to easily find and determine
2564  * what the runtime loader is doing and to whom it is doing it.
2565  *
2566  * When the loadhook trap is hit (r_debug_state, set at program
2567  * initialization), the arguments can be found on the stack:
2568  *
2569  *  +8   struct link_map *m
2570  *  +4   struct r_debug  *rd
2571  *  +0   RetAddr
2572  */
2573 void
2574 r_debug_state(struct r_debug* rd, struct link_map *m)
2575 {
2576 }
2577 
2578 /*
2579  * Get address of the pointer variable in the main program.
2580  */
2581 static const void **
2582 get_program_var_addr(const char *name)
2583 {
2584     const Obj_Entry *obj;
2585     unsigned long hash;
2586 
2587     hash = elf_hash(name);
2588     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2589 	const Elf_Sym *def;
2590 
2591 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2592 	    const void **addr;
2593 
2594 	    addr = (const void **)(obj->relocbase + def->st_value);
2595 	    return addr;
2596 	}
2597     }
2598     return NULL;
2599 }
2600 
2601 /*
2602  * Set a pointer variable in the main program to the given value.  This
2603  * is used to set key variables such as "environ" before any of the
2604  * init functions are called.
2605  */
2606 static void
2607 set_program_var(const char *name, const void *value)
2608 {
2609     const void **addr;
2610 
2611     if ((addr = get_program_var_addr(name)) != NULL) {
2612 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2613 	*addr = value;
2614     }
2615 }
2616 
2617 /*
2618  * Given a symbol name in a referencing object, find the corresponding
2619  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2620  * no definition was found.  Returns a pointer to the Obj_Entry of the
2621  * defining object via the reference parameter DEFOBJ_OUT.
2622  */
2623 static const Elf_Sym *
2624 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2625     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2626 {
2627     DoneList donelist;
2628     const Elf_Sym *def;
2629     const Elf_Sym *symp;
2630     const Obj_Entry *obj;
2631     const Obj_Entry *defobj;
2632     const Objlist_Entry *elm;
2633     def = NULL;
2634     defobj = NULL;
2635     donelist_init(&donelist);
2636 
2637     /* Look first in the referencing object if linked symbolically. */
2638     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2639 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2640 	if (symp != NULL) {
2641 	    def = symp;
2642 	    defobj = refobj;
2643 	}
2644     }
2645 
2646     /* Search all objects loaded at program start up. */
2647     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2648 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2649 	    &donelist);
2650 	if (symp != NULL &&
2651 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2652 	    def = symp;
2653 	    defobj = obj;
2654 	}
2655     }
2656 
2657     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2658     STAILQ_FOREACH(elm, &list_global, link) {
2659        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2660            break;
2661        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2662 	   flags, &donelist);
2663 	if (symp != NULL &&
2664 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2665 	    def = symp;
2666 	    defobj = obj;
2667 	}
2668     }
2669 
2670     /* Search all dlopened DAGs containing the referencing object. */
2671     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2672 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2673 	    break;
2674 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2675 	    flags, &donelist);
2676 	if (symp != NULL &&
2677 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2678 	    def = symp;
2679 	    defobj = obj;
2680 	}
2681     }
2682 
2683     /*
2684      * Search the dynamic linker itself, and possibly resolve the
2685      * symbol from there.  This is how the application links to
2686      * dynamic linker services such as dlopen.  Only the values listed
2687      * in the "exports" array can be resolved from the dynamic linker.
2688      */
2689     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2690 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2691 	if (symp != NULL && is_exported(symp)) {
2692 	    def = symp;
2693 	    defobj = &obj_rtld;
2694 	}
2695     }
2696 
2697     if (def != NULL)
2698 	*defobj_out = defobj;
2699     return def;
2700 }
2701 
2702 static const Elf_Sym *
2703 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2704   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2705   DoneList *dlp)
2706 {
2707     const Elf_Sym *symp;
2708     const Elf_Sym *def;
2709     const Obj_Entry *defobj;
2710     const Objlist_Entry *elm;
2711 
2712     def = NULL;
2713     defobj = NULL;
2714     STAILQ_FOREACH(elm, objlist, link) {
2715 	if (donelist_check(dlp, elm->obj))
2716 	    continue;
2717 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2718 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2719 		def = symp;
2720 		defobj = elm->obj;
2721 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2722 		    break;
2723 	    }
2724 	}
2725     }
2726     if (def != NULL)
2727 	*defobj_out = defobj;
2728     return def;
2729 }
2730 
2731 /*
2732  * Search the symbol table of a shared object and all objects needed
2733  * by it for a symbol of the given name.  Search order is
2734  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2735  * definition was found.
2736  */
2737 static const Elf_Sym *
2738 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2739   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2740   DoneList *dlp)
2741 {
2742     const Elf_Sym *def, *def_w;
2743     const Needed_Entry *n;
2744     const Obj_Entry *obj, *defobj, *defobj1;
2745 
2746     def = def_w = NULL;
2747     defobj = NULL;
2748     for (n = needed; n != NULL; n = n->next) {
2749 	if ((obj = n->obj) == NULL ||
2750 	    donelist_check(dlp, obj) ||
2751 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2752 	    continue;
2753 	defobj = obj;
2754 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2755 	    *defobj_out = defobj;
2756 	    return (def);
2757 	}
2758     }
2759     /*
2760      * There we come when either symbol definition is not found in
2761      * directly needed objects, or found symbol is weak.
2762      */
2763     for (n = needed; n != NULL; n = n->next) {
2764 	if ((obj = n->obj) == NULL)
2765 	    continue;
2766 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2767 			       ventry, flags, dlp);
2768 	if (def_w == NULL)
2769 	    continue;
2770 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2771 	    def = def_w;
2772 	    defobj = defobj1;
2773 	}
2774 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2775 	    break;
2776     }
2777     if (def != NULL)
2778 	*defobj_out = defobj;
2779     return (def);
2780 }
2781 
2782 /*
2783  * Search the symbol table of a single shared object for a symbol of
2784  * the given name and version, if requested.  Returns a pointer to the
2785  * symbol, or NULL if no definition was found.
2786  *
2787  * The symbol's hash value is passed in for efficiency reasons; that
2788  * eliminates many recomputations of the hash value.
2789  */
2790 const Elf_Sym *
2791 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2792     const Ver_Entry *ventry, int flags)
2793 {
2794     unsigned long symnum;
2795     const Elf_Sym *vsymp;
2796     Elf_Versym verndx;
2797     int vcount;
2798 
2799     if (obj->buckets == NULL)
2800 	return NULL;
2801 
2802     vsymp = NULL;
2803     vcount = 0;
2804     symnum = obj->buckets[hash % obj->nbuckets];
2805 
2806     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2807 	const Elf_Sym *symp;
2808 	const char *strp;
2809 
2810 	if (symnum >= obj->nchains)
2811 		return NULL;	/* Bad object */
2812 
2813 	symp = obj->symtab + symnum;
2814 	strp = obj->strtab + symp->st_name;
2815 
2816 	switch (ELF_ST_TYPE(symp->st_info)) {
2817 	case STT_FUNC:
2818 	case STT_NOTYPE:
2819 	case STT_OBJECT:
2820 	    if (symp->st_value == 0)
2821 		continue;
2822 		/* fallthrough */
2823 	case STT_TLS:
2824 	    if (symp->st_shndx != SHN_UNDEF)
2825 		break;
2826 #ifndef __mips__
2827 	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2828 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2829 		break;
2830 		/* fallthrough */
2831 #endif
2832 	default:
2833 	    continue;
2834 	}
2835 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2836 	    continue;
2837 
2838 	if (ventry == NULL) {
2839 	    if (obj->versyms != NULL) {
2840 		verndx = VER_NDX(obj->versyms[symnum]);
2841 		if (verndx > obj->vernum) {
2842 		    _rtld_error("%s: symbol %s references wrong version %d",
2843 			obj->path, obj->strtab + symnum, verndx);
2844 		    continue;
2845 		}
2846 		/*
2847 		 * If we are not called from dlsym (i.e. this is a normal
2848 		 * relocation from unversioned binary, accept the symbol
2849 		 * immediately if it happens to have first version after
2850 		 * this shared object became versioned. Otherwise, if
2851 		 * symbol is versioned and not hidden, remember it. If it
2852 		 * is the only symbol with this name exported by the
2853 		 * shared object, it will be returned as a match at the
2854 		 * end of the function. If symbol is global (verndx < 2)
2855 		 * accept it unconditionally.
2856 		 */
2857 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2858 		    return symp;
2859 	        else if (verndx >= VER_NDX_GIVEN) {
2860 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2861 			if (vsymp == NULL)
2862 			    vsymp = symp;
2863 			vcount ++;
2864 		    }
2865 		    continue;
2866 		}
2867 	    }
2868 	    return symp;
2869 	} else {
2870 	    if (obj->versyms == NULL) {
2871 		if (object_match_name(obj, ventry->name)) {
2872 		    _rtld_error("%s: object %s should provide version %s for "
2873 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2874 			obj->strtab + symnum);
2875 		    continue;
2876 		}
2877 	    } else {
2878 		verndx = VER_NDX(obj->versyms[symnum]);
2879 		if (verndx > obj->vernum) {
2880 		    _rtld_error("%s: symbol %s references wrong version %d",
2881 			obj->path, obj->strtab + symnum, verndx);
2882 		    continue;
2883 		}
2884 		if (obj->vertab[verndx].hash != ventry->hash ||
2885 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2886 		    /*
2887 		     * Version does not match. Look if this is a global symbol
2888 		     * and if it is not hidden. If global symbol (verndx < 2)
2889 		     * is available, use it. Do not return symbol if we are
2890 		     * called by dlvsym, because dlvsym looks for a specific
2891 		     * version and default one is not what dlvsym wants.
2892 		     */
2893 		    if ((flags & SYMLOOK_DLSYM) ||
2894 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2895 			(verndx >= VER_NDX_GIVEN))
2896 			continue;
2897 		}
2898 	    }
2899 	    return symp;
2900 	}
2901     }
2902     return (vcount == 1) ? vsymp : NULL;
2903 }
2904 
2905 static void
2906 trace_loaded_objects(Obj_Entry *obj)
2907 {
2908     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2909     int		c;
2910 
2911     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2912 	main_local = "";
2913 
2914     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2915 	fmt1 = "\t%o => %p (%x)\n";
2916 
2917     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2918 	fmt2 = "\t%o (%x)\n";
2919 
2920     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2921 
2922     for (; obj; obj = obj->next) {
2923 	Needed_Entry		*needed;
2924 	char			*name, *path;
2925 	bool			is_lib;
2926 
2927 	if (list_containers && obj->needed != NULL)
2928 	    printf("%s:\n", obj->path);
2929 	for (needed = obj->needed; needed; needed = needed->next) {
2930 	    if (needed->obj != NULL) {
2931 		if (needed->obj->traced && !list_containers)
2932 		    continue;
2933 		needed->obj->traced = true;
2934 		path = needed->obj->path;
2935 	    } else
2936 		path = "not found";
2937 
2938 	    name = (char *)obj->strtab + needed->name;
2939 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2940 
2941 	    fmt = is_lib ? fmt1 : fmt2;
2942 	    while ((c = *fmt++) != '\0') {
2943 		switch (c) {
2944 		default:
2945 		    putchar(c);
2946 		    continue;
2947 		case '\\':
2948 		    switch (c = *fmt) {
2949 		    case '\0':
2950 			continue;
2951 		    case 'n':
2952 			putchar('\n');
2953 			break;
2954 		    case 't':
2955 			putchar('\t');
2956 			break;
2957 		    }
2958 		    break;
2959 		case '%':
2960 		    switch (c = *fmt) {
2961 		    case '\0':
2962 			continue;
2963 		    case '%':
2964 		    default:
2965 			putchar(c);
2966 			break;
2967 		    case 'A':
2968 			printf("%s", main_local);
2969 			break;
2970 		    case 'a':
2971 			printf("%s", obj_main->path);
2972 			break;
2973 		    case 'o':
2974 			printf("%s", name);
2975 			break;
2976 #if 0
2977 		    case 'm':
2978 			printf("%d", sodp->sod_major);
2979 			break;
2980 		    case 'n':
2981 			printf("%d", sodp->sod_minor);
2982 			break;
2983 #endif
2984 		    case 'p':
2985 			printf("%s", path);
2986 			break;
2987 		    case 'x':
2988 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2989 			break;
2990 		    }
2991 		    break;
2992 		}
2993 		++fmt;
2994 	    }
2995 	}
2996     }
2997 }
2998 
2999 /*
3000  * Unload a dlopened object and its dependencies from memory and from
3001  * our data structures.  It is assumed that the DAG rooted in the
3002  * object has already been unreferenced, and that the object has a
3003  * reference count of 0.
3004  */
3005 static void
3006 unload_object(Obj_Entry *root)
3007 {
3008     Obj_Entry *obj;
3009     Obj_Entry **linkp;
3010 
3011     assert(root->refcount == 0);
3012 
3013     /*
3014      * Pass over the DAG removing unreferenced objects from
3015      * appropriate lists.
3016      */
3017     unlink_object(root);
3018 
3019     /* Unmap all objects that are no longer referenced. */
3020     linkp = &obj_list->next;
3021     while ((obj = *linkp) != NULL) {
3022 	if (obj->refcount == 0) {
3023 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3024 		obj->path);
3025 	    dbg("unloading \"%s\"", obj->path);
3026 	    munmap(obj->mapbase, obj->mapsize);
3027 	    linkmap_delete(obj);
3028 	    *linkp = obj->next;
3029 	    obj_count--;
3030 	    obj_free(obj);
3031 	} else
3032 	    linkp = &obj->next;
3033     }
3034     obj_tail = linkp;
3035 }
3036 
3037 static void
3038 unlink_object(Obj_Entry *root)
3039 {
3040     Objlist_Entry *elm;
3041 
3042     if (root->refcount == 0) {
3043 	/* Remove the object from the RTLD_GLOBAL list. */
3044 	objlist_remove(&list_global, root);
3045 
3046     	/* Remove the object from all objects' DAG lists. */
3047     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3048 	    objlist_remove(&elm->obj->dldags, root);
3049 	    if (elm->obj != root)
3050 		unlink_object(elm->obj);
3051 	}
3052     }
3053 }
3054 
3055 static void
3056 ref_dag(Obj_Entry *root)
3057 {
3058     Objlist_Entry *elm;
3059 
3060     STAILQ_FOREACH(elm, &root->dagmembers, link)
3061 	elm->obj->refcount++;
3062 }
3063 
3064 static void
3065 unref_dag(Obj_Entry *root)
3066 {
3067     Objlist_Entry *elm;
3068 
3069     STAILQ_FOREACH(elm, &root->dagmembers, link)
3070 	elm->obj->refcount--;
3071 }
3072 
3073 /*
3074  * Common code for MD __tls_get_addr().
3075  */
3076 void *
3077 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3078 {
3079     Elf_Addr* dtv = *dtvp;
3080     int lockstate;
3081 
3082     /* Check dtv generation in case new modules have arrived */
3083     if (dtv[0] != tls_dtv_generation) {
3084 	Elf_Addr* newdtv;
3085 	int to_copy;
3086 
3087 	lockstate = wlock_acquire(rtld_bind_lock);
3088 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3089 	to_copy = dtv[1];
3090 	if (to_copy > tls_max_index)
3091 	    to_copy = tls_max_index;
3092 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3093 	newdtv[0] = tls_dtv_generation;
3094 	newdtv[1] = tls_max_index;
3095 	free(dtv);
3096 	wlock_release(rtld_bind_lock, lockstate);
3097 	*dtvp = newdtv;
3098     }
3099 
3100     /* Dynamically allocate module TLS if necessary */
3101     if (!dtv[index + 1]) {
3102 	/* Signal safe, wlock will block out signals. */
3103 	lockstate = wlock_acquire(rtld_bind_lock);
3104 	if (!dtv[index + 1])
3105 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3106 	wlock_release(rtld_bind_lock, lockstate);
3107     }
3108     return (void*) (dtv[index + 1] + offset);
3109 }
3110 
3111 /* XXX not sure what variants to use for arm. */
3112 
3113 #if defined(__ia64__) || defined(__powerpc__)
3114 
3115 /*
3116  * Allocate Static TLS using the Variant I method.
3117  */
3118 void *
3119 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3120 {
3121     Obj_Entry *obj;
3122     char *tcb;
3123     Elf_Addr **tls;
3124     Elf_Addr *dtv;
3125     Elf_Addr addr;
3126     int i;
3127 
3128     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3129 	return (oldtcb);
3130 
3131     assert(tcbsize >= TLS_TCB_SIZE);
3132     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3133     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3134 
3135     if (oldtcb != NULL) {
3136 	memcpy(tls, oldtcb, tls_static_space);
3137 	free(oldtcb);
3138 
3139 	/* Adjust the DTV. */
3140 	dtv = tls[0];
3141 	for (i = 0; i < dtv[1]; i++) {
3142 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3143 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3144 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3145 	    }
3146 	}
3147     } else {
3148 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3149 	tls[0] = dtv;
3150 	dtv[0] = tls_dtv_generation;
3151 	dtv[1] = tls_max_index;
3152 
3153 	for (obj = objs; obj; obj = obj->next) {
3154 	    if (obj->tlsoffset > 0) {
3155 		addr = (Elf_Addr)tls + obj->tlsoffset;
3156 		if (obj->tlsinitsize > 0)
3157 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3158 		if (obj->tlssize > obj->tlsinitsize)
3159 		    memset((void*) (addr + obj->tlsinitsize), 0,
3160 			   obj->tlssize - obj->tlsinitsize);
3161 		dtv[obj->tlsindex + 1] = addr;
3162 	    }
3163 	}
3164     }
3165 
3166     return (tcb);
3167 }
3168 
3169 void
3170 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3171 {
3172     Elf_Addr *dtv;
3173     Elf_Addr tlsstart, tlsend;
3174     int dtvsize, i;
3175 
3176     assert(tcbsize >= TLS_TCB_SIZE);
3177 
3178     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3179     tlsend = tlsstart + tls_static_space;
3180 
3181     dtv = *(Elf_Addr **)tlsstart;
3182     dtvsize = dtv[1];
3183     for (i = 0; i < dtvsize; i++) {
3184 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3185 	    free((void*)dtv[i+2]);
3186 	}
3187     }
3188     free(dtv);
3189     free(tcb);
3190 }
3191 
3192 #endif
3193 
3194 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3195     defined(__arm__) || defined(__mips__)
3196 
3197 /*
3198  * Allocate Static TLS using the Variant II method.
3199  */
3200 void *
3201 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3202 {
3203     Obj_Entry *obj;
3204     size_t size;
3205     char *tls;
3206     Elf_Addr *dtv, *olddtv;
3207     Elf_Addr segbase, oldsegbase, addr;
3208     int i;
3209 
3210     size = round(tls_static_space, tcbalign);
3211 
3212     assert(tcbsize >= 2*sizeof(Elf_Addr));
3213     tls = calloc(1, size + tcbsize);
3214     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3215 
3216     segbase = (Elf_Addr)(tls + size);
3217     ((Elf_Addr*)segbase)[0] = segbase;
3218     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3219 
3220     dtv[0] = tls_dtv_generation;
3221     dtv[1] = tls_max_index;
3222 
3223     if (oldtls) {
3224 	/*
3225 	 * Copy the static TLS block over whole.
3226 	 */
3227 	oldsegbase = (Elf_Addr) oldtls;
3228 	memcpy((void *)(segbase - tls_static_space),
3229 	       (const void *)(oldsegbase - tls_static_space),
3230 	       tls_static_space);
3231 
3232 	/*
3233 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3234 	 * move them over.
3235 	 */
3236 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3237 	for (i = 0; i < olddtv[1]; i++) {
3238 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3239 		dtv[i+2] = olddtv[i+2];
3240 		olddtv[i+2] = 0;
3241 	    }
3242 	}
3243 
3244 	/*
3245 	 * We assume that this block was the one we created with
3246 	 * allocate_initial_tls().
3247 	 */
3248 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3249     } else {
3250 	for (obj = objs; obj; obj = obj->next) {
3251 	    if (obj->tlsoffset) {
3252 		addr = segbase - obj->tlsoffset;
3253 		memset((void*) (addr + obj->tlsinitsize),
3254 		       0, obj->tlssize - obj->tlsinitsize);
3255 		if (obj->tlsinit)
3256 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3257 		dtv[obj->tlsindex + 1] = addr;
3258 	    }
3259 	}
3260     }
3261 
3262     return (void*) segbase;
3263 }
3264 
3265 void
3266 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3267 {
3268     size_t size;
3269     Elf_Addr* dtv;
3270     int dtvsize, i;
3271     Elf_Addr tlsstart, tlsend;
3272 
3273     /*
3274      * Figure out the size of the initial TLS block so that we can
3275      * find stuff which ___tls_get_addr() allocated dynamically.
3276      */
3277     size = round(tls_static_space, tcbalign);
3278 
3279     dtv = ((Elf_Addr**)tls)[1];
3280     dtvsize = dtv[1];
3281     tlsend = (Elf_Addr) tls;
3282     tlsstart = tlsend - size;
3283     for (i = 0; i < dtvsize; i++) {
3284 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3285 	    free((void*) dtv[i+2]);
3286 	}
3287     }
3288 
3289     free((void*) tlsstart);
3290     free((void*) dtv);
3291 }
3292 
3293 #endif
3294 
3295 /*
3296  * Allocate TLS block for module with given index.
3297  */
3298 void *
3299 allocate_module_tls(int index)
3300 {
3301     Obj_Entry* obj;
3302     char* p;
3303 
3304     for (obj = obj_list; obj; obj = obj->next) {
3305 	if (obj->tlsindex == index)
3306 	    break;
3307     }
3308     if (!obj) {
3309 	_rtld_error("Can't find module with TLS index %d", index);
3310 	die();
3311     }
3312 
3313     p = malloc(obj->tlssize);
3314     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3315     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3316 
3317     return p;
3318 }
3319 
3320 bool
3321 allocate_tls_offset(Obj_Entry *obj)
3322 {
3323     size_t off;
3324 
3325     if (obj->tls_done)
3326 	return true;
3327 
3328     if (obj->tlssize == 0) {
3329 	obj->tls_done = true;
3330 	return true;
3331     }
3332 
3333     if (obj->tlsindex == 1)
3334 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3335     else
3336 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3337 				   obj->tlssize, obj->tlsalign);
3338 
3339     /*
3340      * If we have already fixed the size of the static TLS block, we
3341      * must stay within that size. When allocating the static TLS, we
3342      * leave a small amount of space spare to be used for dynamically
3343      * loading modules which use static TLS.
3344      */
3345     if (tls_static_space) {
3346 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3347 	    return false;
3348     }
3349 
3350     tls_last_offset = obj->tlsoffset = off;
3351     tls_last_size = obj->tlssize;
3352     obj->tls_done = true;
3353 
3354     return true;
3355 }
3356 
3357 void
3358 free_tls_offset(Obj_Entry *obj)
3359 {
3360 
3361     /*
3362      * If we were the last thing to allocate out of the static TLS
3363      * block, we give our space back to the 'allocator'. This is a
3364      * simplistic workaround to allow libGL.so.1 to be loaded and
3365      * unloaded multiple times.
3366      */
3367     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3368 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3369 	tls_last_offset -= obj->tlssize;
3370 	tls_last_size = 0;
3371     }
3372 }
3373 
3374 void *
3375 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3376 {
3377     void *ret;
3378     int lockstate;
3379 
3380     lockstate = wlock_acquire(rtld_bind_lock);
3381     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3382     wlock_release(rtld_bind_lock, lockstate);
3383     return (ret);
3384 }
3385 
3386 void
3387 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3388 {
3389     int lockstate;
3390 
3391     lockstate = wlock_acquire(rtld_bind_lock);
3392     free_tls(tcb, tcbsize, tcbalign);
3393     wlock_release(rtld_bind_lock, lockstate);
3394 }
3395 
3396 static void
3397 object_add_name(Obj_Entry *obj, const char *name)
3398 {
3399     Name_Entry *entry;
3400     size_t len;
3401 
3402     len = strlen(name);
3403     entry = malloc(sizeof(Name_Entry) + len);
3404 
3405     if (entry != NULL) {
3406 	strcpy(entry->name, name);
3407 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3408     }
3409 }
3410 
3411 static int
3412 object_match_name(const Obj_Entry *obj, const char *name)
3413 {
3414     Name_Entry *entry;
3415 
3416     STAILQ_FOREACH(entry, &obj->names, link) {
3417 	if (strcmp(name, entry->name) == 0)
3418 	    return (1);
3419     }
3420     return (0);
3421 }
3422 
3423 static Obj_Entry *
3424 locate_dependency(const Obj_Entry *obj, const char *name)
3425 {
3426     const Objlist_Entry *entry;
3427     const Needed_Entry *needed;
3428 
3429     STAILQ_FOREACH(entry, &list_main, link) {
3430 	if (object_match_name(entry->obj, name))
3431 	    return entry->obj;
3432     }
3433 
3434     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3435 	if (needed->obj == NULL)
3436 	    continue;
3437 	if (object_match_name(needed->obj, name))
3438 	    return needed->obj;
3439     }
3440     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3441 	obj->path, name);
3442     die();
3443 }
3444 
3445 static int
3446 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3447     const Elf_Vernaux *vna)
3448 {
3449     const Elf_Verdef *vd;
3450     const char *vername;
3451 
3452     vername = refobj->strtab + vna->vna_name;
3453     vd = depobj->verdef;
3454     if (vd == NULL) {
3455 	_rtld_error("%s: version %s required by %s not defined",
3456 	    depobj->path, vername, refobj->path);
3457 	return (-1);
3458     }
3459     for (;;) {
3460 	if (vd->vd_version != VER_DEF_CURRENT) {
3461 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3462 		depobj->path, vd->vd_version);
3463 	    return (-1);
3464 	}
3465 	if (vna->vna_hash == vd->vd_hash) {
3466 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3467 		((char *)vd + vd->vd_aux);
3468 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3469 		return (0);
3470 	}
3471 	if (vd->vd_next == 0)
3472 	    break;
3473 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3474     }
3475     if (vna->vna_flags & VER_FLG_WEAK)
3476 	return (0);
3477     _rtld_error("%s: version %s required by %s not found",
3478 	depobj->path, vername, refobj->path);
3479     return (-1);
3480 }
3481 
3482 static int
3483 rtld_verify_object_versions(Obj_Entry *obj)
3484 {
3485     const Elf_Verneed *vn;
3486     const Elf_Verdef  *vd;
3487     const Elf_Verdaux *vda;
3488     const Elf_Vernaux *vna;
3489     const Obj_Entry *depobj;
3490     int maxvernum, vernum;
3491 
3492     maxvernum = 0;
3493     /*
3494      * Walk over defined and required version records and figure out
3495      * max index used by any of them. Do very basic sanity checking
3496      * while there.
3497      */
3498     vn = obj->verneed;
3499     while (vn != NULL) {
3500 	if (vn->vn_version != VER_NEED_CURRENT) {
3501 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3502 		obj->path, vn->vn_version);
3503 	    return (-1);
3504 	}
3505 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3506 	for (;;) {
3507 	    vernum = VER_NEED_IDX(vna->vna_other);
3508 	    if (vernum > maxvernum)
3509 		maxvernum = vernum;
3510 	    if (vna->vna_next == 0)
3511 		 break;
3512 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3513 	}
3514 	if (vn->vn_next == 0)
3515 	    break;
3516 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3517     }
3518 
3519     vd = obj->verdef;
3520     while (vd != NULL) {
3521 	if (vd->vd_version != VER_DEF_CURRENT) {
3522 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3523 		obj->path, vd->vd_version);
3524 	    return (-1);
3525 	}
3526 	vernum = VER_DEF_IDX(vd->vd_ndx);
3527 	if (vernum > maxvernum)
3528 		maxvernum = vernum;
3529 	if (vd->vd_next == 0)
3530 	    break;
3531 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3532     }
3533 
3534     if (maxvernum == 0)
3535 	return (0);
3536 
3537     /*
3538      * Store version information in array indexable by version index.
3539      * Verify that object version requirements are satisfied along the
3540      * way.
3541      */
3542     obj->vernum = maxvernum + 1;
3543     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3544 
3545     vd = obj->verdef;
3546     while (vd != NULL) {
3547 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3548 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3549 	    assert(vernum <= maxvernum);
3550 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3551 	    obj->vertab[vernum].hash = vd->vd_hash;
3552 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3553 	    obj->vertab[vernum].file = NULL;
3554 	    obj->vertab[vernum].flags = 0;
3555 	}
3556 	if (vd->vd_next == 0)
3557 	    break;
3558 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3559     }
3560 
3561     vn = obj->verneed;
3562     while (vn != NULL) {
3563 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3564 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3565 	for (;;) {
3566 	    if (check_object_provided_version(obj, depobj, vna))
3567 		return (-1);
3568 	    vernum = VER_NEED_IDX(vna->vna_other);
3569 	    assert(vernum <= maxvernum);
3570 	    obj->vertab[vernum].hash = vna->vna_hash;
3571 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3572 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3573 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3574 		VER_INFO_HIDDEN : 0;
3575 	    if (vna->vna_next == 0)
3576 		 break;
3577 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3578 	}
3579 	if (vn->vn_next == 0)
3580 	    break;
3581 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3582     }
3583     return 0;
3584 }
3585 
3586 static int
3587 rtld_verify_versions(const Objlist *objlist)
3588 {
3589     Objlist_Entry *entry;
3590     int rc;
3591 
3592     rc = 0;
3593     STAILQ_FOREACH(entry, objlist, link) {
3594 	/*
3595 	 * Skip dummy objects or objects that have their version requirements
3596 	 * already checked.
3597 	 */
3598 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3599 	    continue;
3600 	if (rtld_verify_object_versions(entry->obj) == -1) {
3601 	    rc = -1;
3602 	    if (ld_tracing == NULL)
3603 		break;
3604 	}
3605     }
3606     if (rc == 0 || ld_tracing != NULL)
3607     	rc = rtld_verify_object_versions(&obj_rtld);
3608     return rc;
3609 }
3610 
3611 const Ver_Entry *
3612 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3613 {
3614     Elf_Versym vernum;
3615 
3616     if (obj->vertab) {
3617 	vernum = VER_NDX(obj->versyms[symnum]);
3618 	if (vernum >= obj->vernum) {
3619 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3620 		obj->path, obj->strtab + symnum, vernum);
3621 	} else if (obj->vertab[vernum].hash != 0) {
3622 	    return &obj->vertab[vernum];
3623 	}
3624     }
3625     return NULL;
3626 }
3627