xref: /freebsd/libexec/rtld-elf/rtld.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 
65 #ifndef COMPAT_32BIT
66 #define PATH_RTLD	"/libexec/ld-elf.so.1"
67 #else
68 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
69 #endif
70 
71 /* Types. */
72 typedef void (*func_ptr_type)();
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 /*
76  * Function declarations.
77  */
78 static const char *basename(const char *);
79 static void die(void) __dead2;
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
87     int lo_flags, int mode);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *);
95 static const char *gethints(void);
96 static void init_dag(Obj_Entry *);
97 static void init_rtld(caddr_t, Elf_Auxinfo **);
98 static void initlist_add_neededs(Needed_Entry *, Objlist *);
99 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
103 static void unload_filtees(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *, int);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
107 static void map_stacks_exec(RtldLockState *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110 static void objlist_call_init(Objlist *, RtldLockState *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void *path_enumerate(const char *, path_enum_proc, void *);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
119 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
120     RtldLockState *lockstate);
121 static int rtld_dirname(const char *, char *);
122 static int rtld_dirname_abs(const char *, char *);
123 static void *rtld_dlopen(const char *name, int fd, int mode);
124 static void rtld_exit(void);
125 static char *search_library_path(const char *, const char *);
126 static const void **get_program_var_addr(const char *, RtldLockState *);
127 static void set_program_var(const char *, const void *);
128 static int symlook_default(SymLook *, const Obj_Entry *refobj);
129 static int symlook_global(SymLook *, DoneList *);
130 static void symlook_init_from_req(SymLook *, const SymLook *);
131 static int symlook_list(SymLook *, const Objlist *, DoneList *);
132 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
133 static int symlook_obj1(SymLook *, const Obj_Entry *);
134 static void trace_loaded_objects(Obj_Entry *);
135 static void unlink_object(Obj_Entry *);
136 static void unload_object(Obj_Entry *);
137 static void unref_dag(Obj_Entry *);
138 static void ref_dag(Obj_Entry *);
139 static int origin_subst_one(char **, const char *, const char *,
140   const char *, char *);
141 static char *origin_subst(const char *, const char *);
142 static int  rtld_verify_versions(const Objlist *);
143 static int  rtld_verify_object_versions(Obj_Entry *);
144 static void object_add_name(Obj_Entry *, const char *);
145 static int  object_match_name(const Obj_Entry *, const char *);
146 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148     struct dl_phdr_info *phdr_info);
149 
150 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
151 
152 /*
153  * Data declarations.
154  */
155 static char *error_message;	/* Message for dlerror(), or NULL */
156 struct r_debug r_debug;		/* for GDB; */
157 static bool libmap_disable;	/* Disable libmap */
158 static bool ld_loadfltr;	/* Immediate filters processing */
159 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
160 static bool trust;		/* False for setuid and setgid programs */
161 static bool dangerous_ld_env;	/* True if environment variables have been
162 				   used to affect the libraries loaded */
163 static char *ld_bind_now;	/* Environment variable for immediate binding */
164 static char *ld_debug;		/* Environment variable for debugging */
165 static char *ld_library_path;	/* Environment variable for search path */
166 static char *ld_preload;	/* Environment variable for libraries to
167 				   load first */
168 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
169 static char *ld_tracing;	/* Called from ldd to print libs */
170 static char *ld_utrace;		/* Use utrace() to log events. */
171 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
172 static Obj_Entry **obj_tail;	/* Link field of last object in list */
173 static Obj_Entry *obj_main;	/* The main program shared object */
174 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
175 static unsigned int obj_count;	/* Number of objects in obj_list */
176 static unsigned int obj_loads;	/* Number of objects in obj_list */
177 
178 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
179   STAILQ_HEAD_INITIALIZER(list_global);
180 static Objlist list_main =	/* Objects loaded at program startup */
181   STAILQ_HEAD_INITIALIZER(list_main);
182 static Objlist list_fini =	/* Objects needing fini() calls */
183   STAILQ_HEAD_INITIALIZER(list_fini);
184 
185 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
186 
187 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
188 
189 extern Elf_Dyn _DYNAMIC;
190 #pragma weak _DYNAMIC
191 #ifndef RTLD_IS_DYNAMIC
192 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
193 #endif
194 
195 int osreldate, pagesize;
196 
197 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
198 static int max_stack_flags;
199 
200 /*
201  * Global declarations normally provided by crt1.  The dynamic linker is
202  * not built with crt1, so we have to provide them ourselves.
203  */
204 char *__progname;
205 char **environ;
206 
207 /*
208  * Globals to control TLS allocation.
209  */
210 size_t tls_last_offset;		/* Static TLS offset of last module */
211 size_t tls_last_size;		/* Static TLS size of last module */
212 size_t tls_static_space;	/* Static TLS space allocated */
213 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
214 int tls_max_index = 1;		/* Largest module index allocated */
215 
216 /*
217  * Fill in a DoneList with an allocation large enough to hold all of
218  * the currently-loaded objects.  Keep this as a macro since it calls
219  * alloca and we want that to occur within the scope of the caller.
220  */
221 #define donelist_init(dlp)					\
222     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
223     assert((dlp)->objs != NULL),				\
224     (dlp)->num_alloc = obj_count,				\
225     (dlp)->num_used = 0)
226 
227 #define	UTRACE_DLOPEN_START		1
228 #define	UTRACE_DLOPEN_STOP		2
229 #define	UTRACE_DLCLOSE_START		3
230 #define	UTRACE_DLCLOSE_STOP		4
231 #define	UTRACE_LOAD_OBJECT		5
232 #define	UTRACE_UNLOAD_OBJECT		6
233 #define	UTRACE_ADD_RUNDEP		7
234 #define	UTRACE_PRELOAD_FINISHED		8
235 #define	UTRACE_INIT_CALL		9
236 #define	UTRACE_FINI_CALL		10
237 
238 struct utrace_rtld {
239 	char sig[4];			/* 'RTLD' */
240 	int event;
241 	void *handle;
242 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
243 	size_t mapsize;
244 	int refcnt;			/* Used for 'mode' */
245 	char name[MAXPATHLEN];
246 };
247 
248 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
249 	if (ld_utrace != NULL)					\
250 		ld_utrace_log(e, h, mb, ms, r, n);		\
251 } while (0)
252 
253 static void
254 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
255     int refcnt, const char *name)
256 {
257 	struct utrace_rtld ut;
258 
259 	ut.sig[0] = 'R';
260 	ut.sig[1] = 'T';
261 	ut.sig[2] = 'L';
262 	ut.sig[3] = 'D';
263 	ut.event = event;
264 	ut.handle = handle;
265 	ut.mapbase = mapbase;
266 	ut.mapsize = mapsize;
267 	ut.refcnt = refcnt;
268 	bzero(ut.name, sizeof(ut.name));
269 	if (name)
270 		strlcpy(ut.name, name, sizeof(ut.name));
271 	utrace(&ut, sizeof(ut));
272 }
273 
274 /*
275  * Main entry point for dynamic linking.  The first argument is the
276  * stack pointer.  The stack is expected to be laid out as described
277  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
278  * Specifically, the stack pointer points to a word containing
279  * ARGC.  Following that in the stack is a null-terminated sequence
280  * of pointers to argument strings.  Then comes a null-terminated
281  * sequence of pointers to environment strings.  Finally, there is a
282  * sequence of "auxiliary vector" entries.
283  *
284  * The second argument points to a place to store the dynamic linker's
285  * exit procedure pointer and the third to a place to store the main
286  * program's object.
287  *
288  * The return value is the main program's entry point.
289  */
290 func_ptr_type
291 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
292 {
293     Elf_Auxinfo *aux_info[AT_COUNT];
294     int i;
295     int argc;
296     char **argv;
297     char **env;
298     Elf_Auxinfo *aux;
299     Elf_Auxinfo *auxp;
300     const char *argv0;
301     Objlist_Entry *entry;
302     Obj_Entry *obj;
303     Obj_Entry **preload_tail;
304     Objlist initlist;
305     RtldLockState lockstate;
306 
307     /*
308      * On entry, the dynamic linker itself has not been relocated yet.
309      * Be very careful not to reference any global data until after
310      * init_rtld has returned.  It is OK to reference file-scope statics
311      * and string constants, and to call static and global functions.
312      */
313 
314     /* Find the auxiliary vector on the stack. */
315     argc = *sp++;
316     argv = (char **) sp;
317     sp += argc + 1;	/* Skip over arguments and NULL terminator */
318     env = (char **) sp;
319     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
320 	;
321     aux = (Elf_Auxinfo *) sp;
322 
323     /* Digest the auxiliary vector. */
324     for (i = 0;  i < AT_COUNT;  i++)
325 	aux_info[i] = NULL;
326     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
327 	if (auxp->a_type < AT_COUNT)
328 	    aux_info[auxp->a_type] = auxp;
329     }
330 
331     /* Initialize and relocate ourselves. */
332     assert(aux_info[AT_BASE] != NULL);
333     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
334 
335     __progname = obj_rtld.path;
336     argv0 = argv[0] != NULL ? argv[0] : "(null)";
337     environ = env;
338 
339     trust = !issetugid();
340 
341     ld_bind_now = getenv(LD_ "BIND_NOW");
342     /*
343      * If the process is tainted, then we un-set the dangerous environment
344      * variables.  The process will be marked as tainted until setuid(2)
345      * is called.  If any child process calls setuid(2) we do not want any
346      * future processes to honor the potentially un-safe variables.
347      */
348     if (!trust) {
349         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
350 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
351 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
352 	    unsetenv(LD_ "LOADFLTR")) {
353 		_rtld_error("environment corrupt; aborting");
354 		die();
355 	}
356     }
357     ld_debug = getenv(LD_ "DEBUG");
358     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
359     libmap_override = getenv(LD_ "LIBMAP");
360     ld_library_path = getenv(LD_ "LIBRARY_PATH");
361     ld_preload = getenv(LD_ "PRELOAD");
362     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
363     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
364     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
365 	(ld_library_path != NULL) || (ld_preload != NULL) ||
366 	(ld_elf_hints_path != NULL) || ld_loadfltr;
367     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
368     ld_utrace = getenv(LD_ "UTRACE");
369 
370     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
371 	ld_elf_hints_path = _PATH_ELF_HINTS;
372 
373     if (ld_debug != NULL && *ld_debug != '\0')
374 	debug = 1;
375     dbg("%s is initialized, base address = %p", __progname,
376 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
377     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
378     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
379 
380     dbg("initializing thread locks");
381     lockdflt_init();
382 
383     /*
384      * Load the main program, or process its program header if it is
385      * already loaded.
386      */
387     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
388 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
389 	dbg("loading main program");
390 	obj_main = map_object(fd, argv0, NULL);
391 	close(fd);
392 	if (obj_main == NULL)
393 	    die();
394 	max_stack_flags = obj->stack_flags;
395     } else {				/* Main program already loaded. */
396 	const Elf_Phdr *phdr;
397 	int phnum;
398 	caddr_t entry;
399 
400 	dbg("processing main program's program header");
401 	assert(aux_info[AT_PHDR] != NULL);
402 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
403 	assert(aux_info[AT_PHNUM] != NULL);
404 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
405 	assert(aux_info[AT_PHENT] != NULL);
406 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
407 	assert(aux_info[AT_ENTRY] != NULL);
408 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
409 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
410 	    die();
411     }
412 
413     if (aux_info[AT_EXECPATH] != 0) {
414 	    char *kexecpath;
415 	    char buf[MAXPATHLEN];
416 
417 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
418 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
419 	    if (kexecpath[0] == '/')
420 		    obj_main->path = kexecpath;
421 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
422 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
423 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
424 		    obj_main->path = xstrdup(argv0);
425 	    else
426 		    obj_main->path = xstrdup(buf);
427     } else {
428 	    dbg("No AT_EXECPATH");
429 	    obj_main->path = xstrdup(argv0);
430     }
431     dbg("obj_main path %s", obj_main->path);
432     obj_main->mainprog = true;
433 
434     if (aux_info[AT_STACKPROT] != NULL &&
435       aux_info[AT_STACKPROT]->a_un.a_val != 0)
436 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
437 
438     /*
439      * Get the actual dynamic linker pathname from the executable if
440      * possible.  (It should always be possible.)  That ensures that
441      * gdb will find the right dynamic linker even if a non-standard
442      * one is being used.
443      */
444     if (obj_main->interp != NULL &&
445       strcmp(obj_main->interp, obj_rtld.path) != 0) {
446 	free(obj_rtld.path);
447 	obj_rtld.path = xstrdup(obj_main->interp);
448         __progname = obj_rtld.path;
449     }
450 
451     digest_dynamic(obj_main, 0);
452 
453     linkmap_add(obj_main);
454     linkmap_add(&obj_rtld);
455 
456     /* Link the main program into the list of objects. */
457     *obj_tail = obj_main;
458     obj_tail = &obj_main->next;
459     obj_count++;
460     obj_loads++;
461     /* Make sure we don't call the main program's init and fini functions. */
462     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
463 
464     /* Initialize a fake symbol for resolving undefined weak references. */
465     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
466     sym_zero.st_shndx = SHN_UNDEF;
467     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
468 
469     if (!libmap_disable)
470         libmap_disable = (bool)lm_init(libmap_override);
471 
472     dbg("loading LD_PRELOAD libraries");
473     if (load_preload_objects() == -1)
474 	die();
475     preload_tail = obj_tail;
476 
477     dbg("loading needed objects");
478     if (load_needed_objects(obj_main, 0) == -1)
479 	die();
480 
481     /* Make a list of all objects loaded at startup. */
482     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
483 	objlist_push_tail(&list_main, obj);
484     	obj->refcount++;
485     }
486 
487     dbg("checking for required versions");
488     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
489 	die();
490 
491     if (ld_tracing) {		/* We're done */
492 	trace_loaded_objects(obj_main);
493 	exit(0);
494     }
495 
496     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
497        dump_relocations(obj_main);
498        exit (0);
499     }
500 
501     /*
502      * Processing tls relocations requires having the tls offsets
503      * initialized.  Prepare offsets before starting initial
504      * relocation processing.
505      */
506     dbg("initializing initial thread local storage offsets");
507     STAILQ_FOREACH(entry, &list_main, link) {
508 	/*
509 	 * Allocate all the initial objects out of the static TLS
510 	 * block even if they didn't ask for it.
511 	 */
512 	allocate_tls_offset(entry->obj);
513     }
514 
515     if (relocate_objects(obj_main,
516       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
517 	die();
518 
519     dbg("doing copy relocations");
520     if (do_copy_relocations(obj_main) == -1)
521 	die();
522 
523     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
524        dump_relocations(obj_main);
525        exit (0);
526     }
527 
528     /*
529      * Setup TLS for main thread.  This must be done after the
530      * relocations are processed, since tls initialization section
531      * might be the subject for relocations.
532      */
533     dbg("initializing initial thread local storage");
534     allocate_initial_tls(obj_list);
535 
536     dbg("initializing key program variables");
537     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
538     set_program_var("environ", env);
539     set_program_var("__elf_aux_vector", aux);
540 
541     /* Make a list of init functions to call. */
542     objlist_init(&initlist);
543     initlist_add_objects(obj_list, preload_tail, &initlist);
544 
545     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
546 
547     map_stacks_exec(NULL);
548 
549     dbg("resolving ifuncs");
550     if (resolve_objects_ifunc(obj_main,
551       ld_bind_now != NULL && *ld_bind_now != '\0', NULL) == -1)
552 	die();
553 
554     wlock_acquire(rtld_bind_lock, &lockstate);
555     objlist_call_init(&initlist, &lockstate);
556     objlist_clear(&initlist);
557     dbg("loading filtees");
558     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
559 	if (ld_loadfltr || obj->z_loadfltr)
560 	    load_filtees(obj, 0, &lockstate);
561     }
562     lock_release(rtld_bind_lock, &lockstate);
563 
564     dbg("transferring control to program entry point = %p", obj_main->entry);
565 
566     /* Return the exit procedure and the program entry point. */
567     *exit_proc = rtld_exit;
568     *objp = obj_main;
569     return (func_ptr_type) obj_main->entry;
570 }
571 
572 void *
573 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
574 {
575 	void *ptr;
576 	Elf_Addr target;
577 
578 	ptr = (void *)make_function_pointer(def, obj);
579 	target = ((Elf_Addr (*)(void))ptr)();
580 	return ((void *)target);
581 }
582 
583 Elf_Addr
584 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
585 {
586     const Elf_Rel *rel;
587     const Elf_Sym *def;
588     const Obj_Entry *defobj;
589     Elf_Addr *where;
590     Elf_Addr target;
591     RtldLockState lockstate;
592 
593     rlock_acquire(rtld_bind_lock, &lockstate);
594     if (sigsetjmp(lockstate.env, 0) != 0)
595 	    lock_upgrade(rtld_bind_lock, &lockstate);
596     if (obj->pltrel)
597 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
598     else
599 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
600 
601     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
602     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
603 	&lockstate);
604     if (def == NULL)
605 	die();
606     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
607 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
608     else
609 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
610 
611     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
612       defobj->strtab + def->st_name, basename(obj->path),
613       (void *)target, basename(defobj->path));
614 
615     /*
616      * Write the new contents for the jmpslot. Note that depending on
617      * architecture, the value which we need to return back to the
618      * lazy binding trampoline may or may not be the target
619      * address. The value returned from reloc_jmpslot() is the value
620      * that the trampoline needs.
621      */
622     target = reloc_jmpslot(where, target, defobj, obj, rel);
623     lock_release(rtld_bind_lock, &lockstate);
624     return target;
625 }
626 
627 /*
628  * Error reporting function.  Use it like printf.  If formats the message
629  * into a buffer, and sets things up so that the next call to dlerror()
630  * will return the message.
631  */
632 void
633 _rtld_error(const char *fmt, ...)
634 {
635     static char buf[512];
636     va_list ap;
637 
638     va_start(ap, fmt);
639     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
640     error_message = buf;
641     va_end(ap);
642 }
643 
644 /*
645  * Return a dynamically-allocated copy of the current error message, if any.
646  */
647 static char *
648 errmsg_save(void)
649 {
650     return error_message == NULL ? NULL : xstrdup(error_message);
651 }
652 
653 /*
654  * Restore the current error message from a copy which was previously saved
655  * by errmsg_save().  The copy is freed.
656  */
657 static void
658 errmsg_restore(char *saved_msg)
659 {
660     if (saved_msg == NULL)
661 	error_message = NULL;
662     else {
663 	_rtld_error("%s", saved_msg);
664 	free(saved_msg);
665     }
666 }
667 
668 static const char *
669 basename(const char *name)
670 {
671     const char *p = strrchr(name, '/');
672     return p != NULL ? p + 1 : name;
673 }
674 
675 static struct utsname uts;
676 
677 static int
678 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
679     char *may_free)
680 {
681     const char *p, *p1;
682     char *res1;
683     int subst_len;
684     int kw_len;
685 
686     res1 = *res = NULL;
687     p = real;
688     subst_len = kw_len = 0;
689     for (;;) {
690 	 p1 = strstr(p, kw);
691 	 if (p1 != NULL) {
692 	     if (subst_len == 0) {
693 		 subst_len = strlen(subst);
694 		 kw_len = strlen(kw);
695 	     }
696 	     if (*res == NULL) {
697 		 *res = xmalloc(PATH_MAX);
698 		 res1 = *res;
699 	     }
700 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
701 		 _rtld_error("Substitution of %s in %s cannot be performed",
702 		     kw, real);
703 		 if (may_free != NULL)
704 		     free(may_free);
705 		 free(res);
706 		 return (false);
707 	     }
708 	     memcpy(res1, p, p1 - p);
709 	     res1 += p1 - p;
710 	     memcpy(res1, subst, subst_len);
711 	     res1 += subst_len;
712 	     p = p1 + kw_len;
713 	 } else {
714 	    if (*res == NULL) {
715 		if (may_free != NULL)
716 		    *res = may_free;
717 		else
718 		    *res = xstrdup(real);
719 		return (true);
720 	    }
721 	    *res1 = '\0';
722 	    if (may_free != NULL)
723 		free(may_free);
724 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
725 		free(res);
726 		return (false);
727 	    }
728 	    return (true);
729 	 }
730     }
731 }
732 
733 static char *
734 origin_subst(const char *real, const char *origin_path)
735 {
736     char *res1, *res2, *res3, *res4;
737 
738     if (uts.sysname[0] == '\0') {
739 	if (uname(&uts) != 0) {
740 	    _rtld_error("utsname failed: %d", errno);
741 	    return (NULL);
742 	}
743     }
744     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
745 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
746 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
747 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
748 	    return (NULL);
749     return (res4);
750 }
751 
752 static void
753 die(void)
754 {
755     const char *msg = dlerror();
756 
757     if (msg == NULL)
758 	msg = "Fatal error";
759     rtld_fdputstr(STDERR_FILENO, msg);
760     _exit(1);
761 }
762 
763 /*
764  * Process a shared object's DYNAMIC section, and save the important
765  * information in its Obj_Entry structure.
766  */
767 static void
768 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
769     const Elf_Dyn **dyn_soname)
770 {
771     const Elf_Dyn *dynp;
772     Needed_Entry **needed_tail = &obj->needed;
773     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
774     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
775     int plttype = DT_REL;
776 
777     *dyn_rpath = NULL;
778     *dyn_soname = NULL;
779 
780     obj->bind_now = false;
781     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
782 	switch (dynp->d_tag) {
783 
784 	case DT_REL:
785 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
786 	    break;
787 
788 	case DT_RELSZ:
789 	    obj->relsize = dynp->d_un.d_val;
790 	    break;
791 
792 	case DT_RELENT:
793 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
794 	    break;
795 
796 	case DT_JMPREL:
797 	    obj->pltrel = (const Elf_Rel *)
798 	      (obj->relocbase + dynp->d_un.d_ptr);
799 	    break;
800 
801 	case DT_PLTRELSZ:
802 	    obj->pltrelsize = dynp->d_un.d_val;
803 	    break;
804 
805 	case DT_RELA:
806 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
807 	    break;
808 
809 	case DT_RELASZ:
810 	    obj->relasize = dynp->d_un.d_val;
811 	    break;
812 
813 	case DT_RELAENT:
814 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
815 	    break;
816 
817 	case DT_PLTREL:
818 	    plttype = dynp->d_un.d_val;
819 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
820 	    break;
821 
822 	case DT_SYMTAB:
823 	    obj->symtab = (const Elf_Sym *)
824 	      (obj->relocbase + dynp->d_un.d_ptr);
825 	    break;
826 
827 	case DT_SYMENT:
828 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
829 	    break;
830 
831 	case DT_STRTAB:
832 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
833 	    break;
834 
835 	case DT_STRSZ:
836 	    obj->strsize = dynp->d_un.d_val;
837 	    break;
838 
839 	case DT_VERNEED:
840 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
841 		dynp->d_un.d_val);
842 	    break;
843 
844 	case DT_VERNEEDNUM:
845 	    obj->verneednum = dynp->d_un.d_val;
846 	    break;
847 
848 	case DT_VERDEF:
849 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
850 		dynp->d_un.d_val);
851 	    break;
852 
853 	case DT_VERDEFNUM:
854 	    obj->verdefnum = dynp->d_un.d_val;
855 	    break;
856 
857 	case DT_VERSYM:
858 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
859 		dynp->d_un.d_val);
860 	    break;
861 
862 	case DT_HASH:
863 	    {
864 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
865 		  (obj->relocbase + dynp->d_un.d_ptr);
866 		obj->nbuckets = hashtab[0];
867 		obj->nchains = hashtab[1];
868 		obj->buckets = hashtab + 2;
869 		obj->chains = obj->buckets + obj->nbuckets;
870 	    }
871 	    break;
872 
873 	case DT_NEEDED:
874 	    if (!obj->rtld) {
875 		Needed_Entry *nep = NEW(Needed_Entry);
876 		nep->name = dynp->d_un.d_val;
877 		nep->obj = NULL;
878 		nep->next = NULL;
879 
880 		*needed_tail = nep;
881 		needed_tail = &nep->next;
882 	    }
883 	    break;
884 
885 	case DT_FILTER:
886 	    if (!obj->rtld) {
887 		Needed_Entry *nep = NEW(Needed_Entry);
888 		nep->name = dynp->d_un.d_val;
889 		nep->obj = NULL;
890 		nep->next = NULL;
891 
892 		*needed_filtees_tail = nep;
893 		needed_filtees_tail = &nep->next;
894 	    }
895 	    break;
896 
897 	case DT_AUXILIARY:
898 	    if (!obj->rtld) {
899 		Needed_Entry *nep = NEW(Needed_Entry);
900 		nep->name = dynp->d_un.d_val;
901 		nep->obj = NULL;
902 		nep->next = NULL;
903 
904 		*needed_aux_filtees_tail = nep;
905 		needed_aux_filtees_tail = &nep->next;
906 	    }
907 	    break;
908 
909 	case DT_PLTGOT:
910 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
911 	    break;
912 
913 	case DT_TEXTREL:
914 	    obj->textrel = true;
915 	    break;
916 
917 	case DT_SYMBOLIC:
918 	    obj->symbolic = true;
919 	    break;
920 
921 	case DT_RPATH:
922 	case DT_RUNPATH:	/* XXX: process separately */
923 	    /*
924 	     * We have to wait until later to process this, because we
925 	     * might not have gotten the address of the string table yet.
926 	     */
927 	    *dyn_rpath = dynp;
928 	    break;
929 
930 	case DT_SONAME:
931 	    *dyn_soname = dynp;
932 	    break;
933 
934 	case DT_INIT:
935 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
936 	    break;
937 
938 	case DT_FINI:
939 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
940 	    break;
941 
942 	/*
943 	 * Don't process DT_DEBUG on MIPS as the dynamic section
944 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
945 	 */
946 
947 #ifndef __mips__
948 	case DT_DEBUG:
949 	    /* XXX - not implemented yet */
950 	    if (!early)
951 		dbg("Filling in DT_DEBUG entry");
952 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
953 	    break;
954 #endif
955 
956 	case DT_FLAGS:
957 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
958 		    obj->z_origin = true;
959 		if (dynp->d_un.d_val & DF_SYMBOLIC)
960 		    obj->symbolic = true;
961 		if (dynp->d_un.d_val & DF_TEXTREL)
962 		    obj->textrel = true;
963 		if (dynp->d_un.d_val & DF_BIND_NOW)
964 		    obj->bind_now = true;
965 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
966 		    ;*/
967 	    break;
968 #ifdef __mips__
969 	case DT_MIPS_LOCAL_GOTNO:
970 		obj->local_gotno = dynp->d_un.d_val;
971 	    break;
972 
973 	case DT_MIPS_SYMTABNO:
974 		obj->symtabno = dynp->d_un.d_val;
975 		break;
976 
977 	case DT_MIPS_GOTSYM:
978 		obj->gotsym = dynp->d_un.d_val;
979 		break;
980 
981 	case DT_MIPS_RLD_MAP:
982 #ifdef notyet
983 		if (!early)
984 			dbg("Filling in DT_DEBUG entry");
985 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
986 #endif
987 		break;
988 #endif
989 
990 	case DT_FLAGS_1:
991 		if (dynp->d_un.d_val & DF_1_NOOPEN)
992 		    obj->z_noopen = true;
993 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
994 		    obj->z_origin = true;
995 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
996 		    XXX ;*/
997 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
998 		    obj->bind_now = true;
999 		if (dynp->d_un.d_val & DF_1_NODELETE)
1000 		    obj->z_nodelete = true;
1001 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1002 		    obj->z_loadfltr = true;
1003 	    break;
1004 
1005 	default:
1006 	    if (!early) {
1007 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1008 		    (long)dynp->d_tag);
1009 	    }
1010 	    break;
1011 	}
1012     }
1013 
1014     obj->traced = false;
1015 
1016     if (plttype == DT_RELA) {
1017 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1018 	obj->pltrel = NULL;
1019 	obj->pltrelasize = obj->pltrelsize;
1020 	obj->pltrelsize = 0;
1021     }
1022 }
1023 
1024 static void
1025 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1026     const Elf_Dyn *dyn_soname)
1027 {
1028 
1029     if (obj->z_origin && obj->origin_path == NULL) {
1030 	obj->origin_path = xmalloc(PATH_MAX);
1031 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1032 	    die();
1033     }
1034 
1035     if (dyn_rpath != NULL) {
1036 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1037 	if (obj->z_origin)
1038 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1039     }
1040 
1041     if (dyn_soname != NULL)
1042 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1043 }
1044 
1045 static void
1046 digest_dynamic(Obj_Entry *obj, int early)
1047 {
1048 	const Elf_Dyn *dyn_rpath;
1049 	const Elf_Dyn *dyn_soname;
1050 
1051 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1052 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1053 }
1054 
1055 /*
1056  * Process a shared object's program header.  This is used only for the
1057  * main program, when the kernel has already loaded the main program
1058  * into memory before calling the dynamic linker.  It creates and
1059  * returns an Obj_Entry structure.
1060  */
1061 static Obj_Entry *
1062 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1063 {
1064     Obj_Entry *obj;
1065     const Elf_Phdr *phlimit = phdr + phnum;
1066     const Elf_Phdr *ph;
1067     int nsegs = 0;
1068 
1069     obj = obj_new();
1070     for (ph = phdr;  ph < phlimit;  ph++) {
1071 	if (ph->p_type != PT_PHDR)
1072 	    continue;
1073 
1074 	obj->phdr = phdr;
1075 	obj->phsize = ph->p_memsz;
1076 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1077 	break;
1078     }
1079 
1080     obj->stack_flags = PF_X | PF_R | PF_W;
1081 
1082     for (ph = phdr;  ph < phlimit;  ph++) {
1083 	switch (ph->p_type) {
1084 
1085 	case PT_INTERP:
1086 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1087 	    break;
1088 
1089 	case PT_LOAD:
1090 	    if (nsegs == 0) {	/* First load segment */
1091 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1092 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1093 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1094 		  obj->vaddrbase;
1095 	    } else {		/* Last load segment */
1096 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1097 		  obj->vaddrbase;
1098 	    }
1099 	    nsegs++;
1100 	    break;
1101 
1102 	case PT_DYNAMIC:
1103 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1104 	    break;
1105 
1106 	case PT_TLS:
1107 	    obj->tlsindex = 1;
1108 	    obj->tlssize = ph->p_memsz;
1109 	    obj->tlsalign = ph->p_align;
1110 	    obj->tlsinitsize = ph->p_filesz;
1111 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1112 	    break;
1113 
1114 	case PT_GNU_STACK:
1115 	    obj->stack_flags = ph->p_flags;
1116 	    break;
1117 	}
1118     }
1119     if (nsegs < 1) {
1120 	_rtld_error("%s: too few PT_LOAD segments", path);
1121 	return NULL;
1122     }
1123 
1124     obj->entry = entry;
1125     return obj;
1126 }
1127 
1128 static Obj_Entry *
1129 dlcheck(void *handle)
1130 {
1131     Obj_Entry *obj;
1132 
1133     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1134 	if (obj == (Obj_Entry *) handle)
1135 	    break;
1136 
1137     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1138 	_rtld_error("Invalid shared object handle %p", handle);
1139 	return NULL;
1140     }
1141     return obj;
1142 }
1143 
1144 /*
1145  * If the given object is already in the donelist, return true.  Otherwise
1146  * add the object to the list and return false.
1147  */
1148 static bool
1149 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1150 {
1151     unsigned int i;
1152 
1153     for (i = 0;  i < dlp->num_used;  i++)
1154 	if (dlp->objs[i] == obj)
1155 	    return true;
1156     /*
1157      * Our donelist allocation should always be sufficient.  But if
1158      * our threads locking isn't working properly, more shared objects
1159      * could have been loaded since we allocated the list.  That should
1160      * never happen, but we'll handle it properly just in case it does.
1161      */
1162     if (dlp->num_used < dlp->num_alloc)
1163 	dlp->objs[dlp->num_used++] = obj;
1164     return false;
1165 }
1166 
1167 /*
1168  * Hash function for symbol table lookup.  Don't even think about changing
1169  * this.  It is specified by the System V ABI.
1170  */
1171 unsigned long
1172 elf_hash(const char *name)
1173 {
1174     const unsigned char *p = (const unsigned char *) name;
1175     unsigned long h = 0;
1176     unsigned long g;
1177 
1178     while (*p != '\0') {
1179 	h = (h << 4) + *p++;
1180 	if ((g = h & 0xf0000000) != 0)
1181 	    h ^= g >> 24;
1182 	h &= ~g;
1183     }
1184     return h;
1185 }
1186 
1187 /*
1188  * Find the library with the given name, and return its full pathname.
1189  * The returned string is dynamically allocated.  Generates an error
1190  * message and returns NULL if the library cannot be found.
1191  *
1192  * If the second argument is non-NULL, then it refers to an already-
1193  * loaded shared object, whose library search path will be searched.
1194  *
1195  * The search order is:
1196  *   LD_LIBRARY_PATH
1197  *   rpath in the referencing file
1198  *   ldconfig hints
1199  *   /lib:/usr/lib
1200  */
1201 static char *
1202 find_library(const char *xname, const Obj_Entry *refobj)
1203 {
1204     char *pathname;
1205     char *name;
1206 
1207     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1208 	if (xname[0] != '/' && !trust) {
1209 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1210 	      xname);
1211 	    return NULL;
1212 	}
1213 	if (refobj != NULL && refobj->z_origin)
1214 	    return origin_subst(xname, refobj->origin_path);
1215 	else
1216 	    return xstrdup(xname);
1217     }
1218 
1219     if (libmap_disable || (refobj == NULL) ||
1220 	(name = lm_find(refobj->path, xname)) == NULL)
1221 	name = (char *)xname;
1222 
1223     dbg(" Searching for \"%s\"", name);
1224 
1225     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1226       (refobj != NULL &&
1227       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1228       (pathname = search_library_path(name, gethints())) != NULL ||
1229       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1230 	return pathname;
1231 
1232     if(refobj != NULL && refobj->path != NULL) {
1233 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1234 	  name, basename(refobj->path));
1235     } else {
1236 	_rtld_error("Shared object \"%s\" not found", name);
1237     }
1238     return NULL;
1239 }
1240 
1241 /*
1242  * Given a symbol number in a referencing object, find the corresponding
1243  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1244  * no definition was found.  Returns a pointer to the Obj_Entry of the
1245  * defining object via the reference parameter DEFOBJ_OUT.
1246  */
1247 const Elf_Sym *
1248 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1249     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1250     RtldLockState *lockstate)
1251 {
1252     const Elf_Sym *ref;
1253     const Elf_Sym *def;
1254     const Obj_Entry *defobj;
1255     SymLook req;
1256     const char *name;
1257     int res;
1258 
1259     /*
1260      * If we have already found this symbol, get the information from
1261      * the cache.
1262      */
1263     if (symnum >= refobj->nchains)
1264 	return NULL;	/* Bad object */
1265     if (cache != NULL && cache[symnum].sym != NULL) {
1266 	*defobj_out = cache[symnum].obj;
1267 	return cache[symnum].sym;
1268     }
1269 
1270     ref = refobj->symtab + symnum;
1271     name = refobj->strtab + ref->st_name;
1272     def = NULL;
1273     defobj = NULL;
1274 
1275     /*
1276      * We don't have to do a full scale lookup if the symbol is local.
1277      * We know it will bind to the instance in this load module; to
1278      * which we already have a pointer (ie ref). By not doing a lookup,
1279      * we not only improve performance, but it also avoids unresolvable
1280      * symbols when local symbols are not in the hash table. This has
1281      * been seen with the ia64 toolchain.
1282      */
1283     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1284 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1285 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1286 		symnum);
1287 	}
1288 	symlook_init(&req, name);
1289 	req.flags = flags;
1290 	req.ventry = fetch_ventry(refobj, symnum);
1291 	req.lockstate = lockstate;
1292 	res = symlook_default(&req, refobj);
1293 	if (res == 0) {
1294 	    def = req.sym_out;
1295 	    defobj = req.defobj_out;
1296 	}
1297     } else {
1298 	def = ref;
1299 	defobj = refobj;
1300     }
1301 
1302     /*
1303      * If we found no definition and the reference is weak, treat the
1304      * symbol as having the value zero.
1305      */
1306     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1307 	def = &sym_zero;
1308 	defobj = obj_main;
1309     }
1310 
1311     if (def != NULL) {
1312 	*defobj_out = defobj;
1313 	/* Record the information in the cache to avoid subsequent lookups. */
1314 	if (cache != NULL) {
1315 	    cache[symnum].sym = def;
1316 	    cache[symnum].obj = defobj;
1317 	}
1318     } else {
1319 	if (refobj != &obj_rtld)
1320 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1321     }
1322     return def;
1323 }
1324 
1325 /*
1326  * Return the search path from the ldconfig hints file, reading it if
1327  * necessary.  Returns NULL if there are problems with the hints file,
1328  * or if the search path there is empty.
1329  */
1330 static const char *
1331 gethints(void)
1332 {
1333     static char *hints;
1334 
1335     if (hints == NULL) {
1336 	int fd;
1337 	struct elfhints_hdr hdr;
1338 	char *p;
1339 
1340 	/* Keep from trying again in case the hints file is bad. */
1341 	hints = "";
1342 
1343 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1344 	    return NULL;
1345 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1346 	  hdr.magic != ELFHINTS_MAGIC ||
1347 	  hdr.version != 1) {
1348 	    close(fd);
1349 	    return NULL;
1350 	}
1351 	p = xmalloc(hdr.dirlistlen + 1);
1352 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1353 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1354 	    free(p);
1355 	    close(fd);
1356 	    return NULL;
1357 	}
1358 	hints = p;
1359 	close(fd);
1360     }
1361     return hints[0] != '\0' ? hints : NULL;
1362 }
1363 
1364 static void
1365 init_dag(Obj_Entry *root)
1366 {
1367     const Needed_Entry *needed;
1368     const Objlist_Entry *elm;
1369     DoneList donelist;
1370 
1371     if (root->dag_inited)
1372 	return;
1373     donelist_init(&donelist);
1374 
1375     /* Root object belongs to own DAG. */
1376     objlist_push_tail(&root->dldags, root);
1377     objlist_push_tail(&root->dagmembers, root);
1378     donelist_check(&donelist, root);
1379 
1380     /*
1381      * Add dependencies of root object to DAG in breadth order
1382      * by exploiting the fact that each new object get added
1383      * to the tail of the dagmembers list.
1384      */
1385     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1386 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1387 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1388 		continue;
1389 	    objlist_push_tail(&needed->obj->dldags, root);
1390 	    objlist_push_tail(&root->dagmembers, needed->obj);
1391 	}
1392     }
1393     root->dag_inited = true;
1394 }
1395 
1396 /*
1397  * Initialize the dynamic linker.  The argument is the address at which
1398  * the dynamic linker has been mapped into memory.  The primary task of
1399  * this function is to relocate the dynamic linker.
1400  */
1401 static void
1402 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1403 {
1404     Obj_Entry objtmp;	/* Temporary rtld object */
1405     const Elf_Dyn *dyn_rpath;
1406     const Elf_Dyn *dyn_soname;
1407 
1408     /*
1409      * Conjure up an Obj_Entry structure for the dynamic linker.
1410      *
1411      * The "path" member can't be initialized yet because string constants
1412      * cannot yet be accessed. Below we will set it correctly.
1413      */
1414     memset(&objtmp, 0, sizeof(objtmp));
1415     objtmp.path = NULL;
1416     objtmp.rtld = true;
1417     objtmp.mapbase = mapbase;
1418 #ifdef PIC
1419     objtmp.relocbase = mapbase;
1420 #endif
1421     if (RTLD_IS_DYNAMIC()) {
1422 	objtmp.dynamic = rtld_dynamic(&objtmp);
1423 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1424 	assert(objtmp.needed == NULL);
1425 #if !defined(__mips__)
1426 	/* MIPS has a bogus DT_TEXTREL. */
1427 	assert(!objtmp.textrel);
1428 #endif
1429 
1430 	/*
1431 	 * Temporarily put the dynamic linker entry into the object list, so
1432 	 * that symbols can be found.
1433 	 */
1434 
1435 	relocate_objects(&objtmp, true, &objtmp, NULL);
1436     }
1437 
1438     /* Initialize the object list. */
1439     obj_tail = &obj_list;
1440 
1441     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1442     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1443 
1444     if (aux_info[AT_PAGESZ] != NULL)
1445 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1446     if (aux_info[AT_OSRELDATE] != NULL)
1447 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1448 
1449     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1450 
1451     /* Replace the path with a dynamically allocated copy. */
1452     obj_rtld.path = xstrdup(PATH_RTLD);
1453 
1454     r_debug.r_brk = r_debug_state;
1455     r_debug.r_state = RT_CONSISTENT;
1456 }
1457 
1458 /*
1459  * Add the init functions from a needed object list (and its recursive
1460  * needed objects) to "list".  This is not used directly; it is a helper
1461  * function for initlist_add_objects().  The write lock must be held
1462  * when this function is called.
1463  */
1464 static void
1465 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1466 {
1467     /* Recursively process the successor needed objects. */
1468     if (needed->next != NULL)
1469 	initlist_add_neededs(needed->next, list);
1470 
1471     /* Process the current needed object. */
1472     if (needed->obj != NULL)
1473 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1474 }
1475 
1476 /*
1477  * Scan all of the DAGs rooted in the range of objects from "obj" to
1478  * "tail" and add their init functions to "list".  This recurses over
1479  * the DAGs and ensure the proper init ordering such that each object's
1480  * needed libraries are initialized before the object itself.  At the
1481  * same time, this function adds the objects to the global finalization
1482  * list "list_fini" in the opposite order.  The write lock must be
1483  * held when this function is called.
1484  */
1485 static void
1486 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1487 {
1488     if (obj->init_scanned || obj->init_done)
1489 	return;
1490     obj->init_scanned = true;
1491 
1492     /* Recursively process the successor objects. */
1493     if (&obj->next != tail)
1494 	initlist_add_objects(obj->next, tail, list);
1495 
1496     /* Recursively process the needed objects. */
1497     if (obj->needed != NULL)
1498 	initlist_add_neededs(obj->needed, list);
1499 
1500     /* Add the object to the init list. */
1501     if (obj->init != (Elf_Addr)NULL)
1502 	objlist_push_tail(list, obj);
1503 
1504     /* Add the object to the global fini list in the reverse order. */
1505     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1506 	objlist_push_head(&list_fini, obj);
1507 	obj->on_fini_list = true;
1508     }
1509 }
1510 
1511 #ifndef FPTR_TARGET
1512 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1513 #endif
1514 
1515 static void
1516 free_needed_filtees(Needed_Entry *n)
1517 {
1518     Needed_Entry *needed, *needed1;
1519 
1520     for (needed = n; needed != NULL; needed = needed->next) {
1521 	if (needed->obj != NULL) {
1522 	    dlclose(needed->obj);
1523 	    needed->obj = NULL;
1524 	}
1525     }
1526     for (needed = n; needed != NULL; needed = needed1) {
1527 	needed1 = needed->next;
1528 	free(needed);
1529     }
1530 }
1531 
1532 static void
1533 unload_filtees(Obj_Entry *obj)
1534 {
1535 
1536     free_needed_filtees(obj->needed_filtees);
1537     obj->needed_filtees = NULL;
1538     free_needed_filtees(obj->needed_aux_filtees);
1539     obj->needed_aux_filtees = NULL;
1540     obj->filtees_loaded = false;
1541 }
1542 
1543 static void
1544 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1545 {
1546 
1547     for (; needed != NULL; needed = needed->next) {
1548 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1549 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1550 	  RTLD_LOCAL);
1551     }
1552 }
1553 
1554 static void
1555 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1556 {
1557 
1558     lock_restart_for_upgrade(lockstate);
1559     if (!obj->filtees_loaded) {
1560 	load_filtee1(obj, obj->needed_filtees, flags);
1561 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1562 	obj->filtees_loaded = true;
1563     }
1564 }
1565 
1566 static int
1567 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1568 {
1569     Obj_Entry *obj1;
1570 
1571     for (; needed != NULL; needed = needed->next) {
1572 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1573 	  flags & ~RTLD_LO_NOLOAD);
1574 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1575 	    return (-1);
1576 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1577 	    dbg("obj %s nodelete", obj1->path);
1578 	    init_dag(obj1);
1579 	    ref_dag(obj1);
1580 	    obj1->ref_nodel = true;
1581 	}
1582     }
1583     return (0);
1584 }
1585 
1586 /*
1587  * Given a shared object, traverse its list of needed objects, and load
1588  * each of them.  Returns 0 on success.  Generates an error message and
1589  * returns -1 on failure.
1590  */
1591 static int
1592 load_needed_objects(Obj_Entry *first, int flags)
1593 {
1594     Obj_Entry *obj;
1595 
1596     for (obj = first;  obj != NULL;  obj = obj->next) {
1597 	if (process_needed(obj, obj->needed, flags) == -1)
1598 	    return (-1);
1599     }
1600     return (0);
1601 }
1602 
1603 static int
1604 load_preload_objects(void)
1605 {
1606     char *p = ld_preload;
1607     static const char delim[] = " \t:;";
1608 
1609     if (p == NULL)
1610 	return 0;
1611 
1612     p += strspn(p, delim);
1613     while (*p != '\0') {
1614 	size_t len = strcspn(p, delim);
1615 	char savech;
1616 
1617 	savech = p[len];
1618 	p[len] = '\0';
1619 	if (load_object(p, -1, NULL, 0) == NULL)
1620 	    return -1;	/* XXX - cleanup */
1621 	p[len] = savech;
1622 	p += len;
1623 	p += strspn(p, delim);
1624     }
1625     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1626     return 0;
1627 }
1628 
1629 static const char *
1630 printable_path(const char *path)
1631 {
1632 
1633 	return (path == NULL ? "<unknown>" : path);
1634 }
1635 
1636 /*
1637  * Load a shared object into memory, if it is not already loaded.  The
1638  * object may be specified by name or by user-supplied file descriptor
1639  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1640  * duplicate is.
1641  *
1642  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1643  * on failure.
1644  */
1645 static Obj_Entry *
1646 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1647 {
1648     Obj_Entry *obj;
1649     int fd;
1650     struct stat sb;
1651     char *path;
1652 
1653     if (name != NULL) {
1654 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1655 	    if (object_match_name(obj, name))
1656 		return (obj);
1657 	}
1658 
1659 	path = find_library(name, refobj);
1660 	if (path == NULL)
1661 	    return (NULL);
1662     } else
1663 	path = NULL;
1664 
1665     /*
1666      * If we didn't find a match by pathname, or the name is not
1667      * supplied, open the file and check again by device and inode.
1668      * This avoids false mismatches caused by multiple links or ".."
1669      * in pathnames.
1670      *
1671      * To avoid a race, we open the file and use fstat() rather than
1672      * using stat().
1673      */
1674     fd = -1;
1675     if (fd_u == -1) {
1676 	if ((fd = open(path, O_RDONLY)) == -1) {
1677 	    _rtld_error("Cannot open \"%s\"", path);
1678 	    free(path);
1679 	    return (NULL);
1680 	}
1681     } else {
1682 	fd = dup(fd_u);
1683 	if (fd == -1) {
1684 	    _rtld_error("Cannot dup fd");
1685 	    free(path);
1686 	    return (NULL);
1687 	}
1688     }
1689     if (fstat(fd, &sb) == -1) {
1690 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1691 	close(fd);
1692 	free(path);
1693 	return NULL;
1694     }
1695     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1696 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1697 	    break;
1698     if (obj != NULL && name != NULL) {
1699 	object_add_name(obj, name);
1700 	free(path);
1701 	close(fd);
1702 	return obj;
1703     }
1704     if (flags & RTLD_LO_NOLOAD) {
1705 	free(path);
1706 	close(fd);
1707 	return (NULL);
1708     }
1709 
1710     /* First use of this object, so we must map it in */
1711     obj = do_load_object(fd, name, path, &sb, flags);
1712     if (obj == NULL)
1713 	free(path);
1714     close(fd);
1715 
1716     return obj;
1717 }
1718 
1719 static Obj_Entry *
1720 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1721   int flags)
1722 {
1723     Obj_Entry *obj;
1724     struct statfs fs;
1725 
1726     /*
1727      * but first, make sure that environment variables haven't been
1728      * used to circumvent the noexec flag on a filesystem.
1729      */
1730     if (dangerous_ld_env) {
1731 	if (fstatfs(fd, &fs) != 0) {
1732 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1733 	    return NULL;
1734 	}
1735 	if (fs.f_flags & MNT_NOEXEC) {
1736 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1737 	    return NULL;
1738 	}
1739     }
1740     dbg("loading \"%s\"", printable_path(path));
1741     obj = map_object(fd, printable_path(path), sbp);
1742     if (obj == NULL)
1743         return NULL;
1744 
1745     /*
1746      * If DT_SONAME is present in the object, digest_dynamic2 already
1747      * added it to the object names.
1748      */
1749     if (name != NULL)
1750 	object_add_name(obj, name);
1751     obj->path = path;
1752     digest_dynamic(obj, 0);
1753     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1754       RTLD_LO_DLOPEN) {
1755 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1756 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1757 	munmap(obj->mapbase, obj->mapsize);
1758 	obj_free(obj);
1759 	return (NULL);
1760     }
1761 
1762     *obj_tail = obj;
1763     obj_tail = &obj->next;
1764     obj_count++;
1765     obj_loads++;
1766     linkmap_add(obj);	/* for GDB & dlinfo() */
1767     max_stack_flags |= obj->stack_flags;
1768 
1769     dbg("  %p .. %p: %s", obj->mapbase,
1770          obj->mapbase + obj->mapsize - 1, obj->path);
1771     if (obj->textrel)
1772 	dbg("  WARNING: %s has impure text", obj->path);
1773     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1774 	obj->path);
1775 
1776     return obj;
1777 }
1778 
1779 static Obj_Entry *
1780 obj_from_addr(const void *addr)
1781 {
1782     Obj_Entry *obj;
1783 
1784     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1785 	if (addr < (void *) obj->mapbase)
1786 	    continue;
1787 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1788 	    return obj;
1789     }
1790     return NULL;
1791 }
1792 
1793 /*
1794  * Call the finalization functions for each of the objects in "list"
1795  * belonging to the DAG of "root" and referenced once. If NULL "root"
1796  * is specified, every finalization function will be called regardless
1797  * of the reference count and the list elements won't be freed. All of
1798  * the objects are expected to have non-NULL fini functions.
1799  */
1800 static void
1801 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1802 {
1803     Objlist_Entry *elm;
1804     char *saved_msg;
1805 
1806     assert(root == NULL || root->refcount == 1);
1807 
1808     /*
1809      * Preserve the current error message since a fini function might
1810      * call into the dynamic linker and overwrite it.
1811      */
1812     saved_msg = errmsg_save();
1813     do {
1814 	STAILQ_FOREACH(elm, list, link) {
1815 	    if (root != NULL && (elm->obj->refcount != 1 ||
1816 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1817 		continue;
1818 	    dbg("calling fini function for %s at %p", elm->obj->path,
1819 	        (void *)elm->obj->fini);
1820 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1821 		elm->obj->path);
1822 	    /* Remove object from fini list to prevent recursive invocation. */
1823 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1824 	    /*
1825 	     * XXX: If a dlopen() call references an object while the
1826 	     * fini function is in progress, we might end up trying to
1827 	     * unload the referenced object in dlclose() or the object
1828 	     * won't be unloaded although its fini function has been
1829 	     * called.
1830 	     */
1831 	    lock_release(rtld_bind_lock, lockstate);
1832 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1833 	    wlock_acquire(rtld_bind_lock, lockstate);
1834 	    /* No need to free anything if process is going down. */
1835 	    if (root != NULL)
1836 	    	free(elm);
1837 	    /*
1838 	     * We must restart the list traversal after every fini call
1839 	     * because a dlclose() call from the fini function or from
1840 	     * another thread might have modified the reference counts.
1841 	     */
1842 	    break;
1843 	}
1844     } while (elm != NULL);
1845     errmsg_restore(saved_msg);
1846 }
1847 
1848 /*
1849  * Call the initialization functions for each of the objects in
1850  * "list".  All of the objects are expected to have non-NULL init
1851  * functions.
1852  */
1853 static void
1854 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1855 {
1856     Objlist_Entry *elm;
1857     Obj_Entry *obj;
1858     char *saved_msg;
1859 
1860     /*
1861      * Clean init_scanned flag so that objects can be rechecked and
1862      * possibly initialized earlier if any of vectors called below
1863      * cause the change by using dlopen.
1864      */
1865     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1866 	obj->init_scanned = false;
1867 
1868     /*
1869      * Preserve the current error message since an init function might
1870      * call into the dynamic linker and overwrite it.
1871      */
1872     saved_msg = errmsg_save();
1873     STAILQ_FOREACH(elm, list, link) {
1874 	if (elm->obj->init_done) /* Initialized early. */
1875 	    continue;
1876 	dbg("calling init function for %s at %p", elm->obj->path,
1877 	    (void *)elm->obj->init);
1878 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1879 	    elm->obj->path);
1880 	/*
1881 	 * Race: other thread might try to use this object before current
1882 	 * one completes the initilization. Not much can be done here
1883 	 * without better locking.
1884 	 */
1885 	elm->obj->init_done = true;
1886 	lock_release(rtld_bind_lock, lockstate);
1887 	call_initfini_pointer(elm->obj, elm->obj->init);
1888 	wlock_acquire(rtld_bind_lock, lockstate);
1889     }
1890     errmsg_restore(saved_msg);
1891 }
1892 
1893 static void
1894 objlist_clear(Objlist *list)
1895 {
1896     Objlist_Entry *elm;
1897 
1898     while (!STAILQ_EMPTY(list)) {
1899 	elm = STAILQ_FIRST(list);
1900 	STAILQ_REMOVE_HEAD(list, link);
1901 	free(elm);
1902     }
1903 }
1904 
1905 static Objlist_Entry *
1906 objlist_find(Objlist *list, const Obj_Entry *obj)
1907 {
1908     Objlist_Entry *elm;
1909 
1910     STAILQ_FOREACH(elm, list, link)
1911 	if (elm->obj == obj)
1912 	    return elm;
1913     return NULL;
1914 }
1915 
1916 static void
1917 objlist_init(Objlist *list)
1918 {
1919     STAILQ_INIT(list);
1920 }
1921 
1922 static void
1923 objlist_push_head(Objlist *list, Obj_Entry *obj)
1924 {
1925     Objlist_Entry *elm;
1926 
1927     elm = NEW(Objlist_Entry);
1928     elm->obj = obj;
1929     STAILQ_INSERT_HEAD(list, elm, link);
1930 }
1931 
1932 static void
1933 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1934 {
1935     Objlist_Entry *elm;
1936 
1937     elm = NEW(Objlist_Entry);
1938     elm->obj = obj;
1939     STAILQ_INSERT_TAIL(list, elm, link);
1940 }
1941 
1942 static void
1943 objlist_remove(Objlist *list, Obj_Entry *obj)
1944 {
1945     Objlist_Entry *elm;
1946 
1947     if ((elm = objlist_find(list, obj)) != NULL) {
1948 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1949 	free(elm);
1950     }
1951 }
1952 
1953 /*
1954  * Relocate newly-loaded shared objects.  The argument is a pointer to
1955  * the Obj_Entry for the first such object.  All objects from the first
1956  * to the end of the list of objects are relocated.  Returns 0 on success,
1957  * or -1 on failure.
1958  */
1959 static int
1960 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
1961     RtldLockState *lockstate)
1962 {
1963     Obj_Entry *obj;
1964 
1965     for (obj = first;  obj != NULL;  obj = obj->next) {
1966 	if (obj != rtldobj)
1967 	    dbg("relocating \"%s\"", obj->path);
1968 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1969 	    obj->symtab == NULL || obj->strtab == NULL) {
1970 	    _rtld_error("%s: Shared object has no run-time symbol table",
1971 	      obj->path);
1972 	    return -1;
1973 	}
1974 
1975 	if (obj->textrel) {
1976 	    /* There are relocations to the write-protected text segment. */
1977 	    if (mprotect(obj->mapbase, obj->textsize,
1978 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1979 		_rtld_error("%s: Cannot write-enable text segment: %s",
1980 		  obj->path, strerror(errno));
1981 		return -1;
1982 	    }
1983 	}
1984 
1985 	/* Process the non-PLT relocations. */
1986 	if (reloc_non_plt(obj, rtldobj, lockstate))
1987 		return -1;
1988 
1989 	if (obj->textrel) {	/* Re-protected the text segment. */
1990 	    if (mprotect(obj->mapbase, obj->textsize,
1991 	      PROT_READ|PROT_EXEC) == -1) {
1992 		_rtld_error("%s: Cannot write-protect text segment: %s",
1993 		  obj->path, strerror(errno));
1994 		return -1;
1995 	    }
1996 	}
1997 
1998 
1999 	/* Set the special PLT or GOT entries. */
2000 	init_pltgot(obj);
2001 
2002 	/* Process the PLT relocations. */
2003 	if (reloc_plt(obj) == -1)
2004 	    return -1;
2005 	/* Relocate the jump slots if we are doing immediate binding. */
2006 	if (obj->bind_now || bind_now)
2007 	    if (reloc_jmpslots(obj, lockstate) == -1)
2008 		return -1;
2009 
2010 	/*
2011 	 * Set up the magic number and version in the Obj_Entry.  These
2012 	 * were checked in the crt1.o from the original ElfKit, so we
2013 	 * set them for backward compatibility.
2014 	 */
2015 	obj->magic = RTLD_MAGIC;
2016 	obj->version = RTLD_VERSION;
2017     }
2018 
2019     return (0);
2020 }
2021 
2022 /*
2023  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2024  * referencing STT_GNU_IFUNC symbols is postponed till the other
2025  * relocations are done.  The indirect functions specified as
2026  * ifunc are allowed to call other symbols, so we need to have
2027  * objects relocated before asking for resolution from indirects.
2028  *
2029  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2030  * instead of the usual lazy handling of PLT slots.  It is
2031  * consistent with how GNU does it.
2032  */
2033 static int
2034 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, RtldLockState *lockstate)
2035 {
2036 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2037 		return (-1);
2038 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2039 	    reloc_gnu_ifunc(obj, lockstate) == -1)
2040 		return (-1);
2041 	return (0);
2042 }
2043 
2044 static int
2045 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, RtldLockState *lockstate)
2046 {
2047 	Obj_Entry *obj;
2048 
2049 	for (obj = first;  obj != NULL;  obj = obj->next) {
2050 		if (resolve_object_ifunc(obj, bind_now, lockstate) == -1)
2051 			return (-1);
2052 	}
2053 	return (0);
2054 }
2055 
2056 static int
2057 initlist_objects_ifunc(Objlist *list, bool bind_now, RtldLockState *lockstate)
2058 {
2059 	Objlist_Entry *elm;
2060 
2061 	STAILQ_FOREACH(elm, list, link) {
2062 		if (resolve_object_ifunc(elm->obj, bind_now, lockstate) == -1)
2063 			return (-1);
2064 	}
2065 	return (0);
2066 }
2067 
2068 /*
2069  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2070  * before the process exits.
2071  */
2072 static void
2073 rtld_exit(void)
2074 {
2075     RtldLockState lockstate;
2076 
2077     wlock_acquire(rtld_bind_lock, &lockstate);
2078     dbg("rtld_exit()");
2079     objlist_call_fini(&list_fini, NULL, &lockstate);
2080     /* No need to remove the items from the list, since we are exiting. */
2081     if (!libmap_disable)
2082         lm_fini();
2083     lock_release(rtld_bind_lock, &lockstate);
2084 }
2085 
2086 static void *
2087 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2088 {
2089 #ifdef COMPAT_32BIT
2090     const char *trans;
2091 #endif
2092     if (path == NULL)
2093 	return (NULL);
2094 
2095     path += strspn(path, ":;");
2096     while (*path != '\0') {
2097 	size_t len;
2098 	char  *res;
2099 
2100 	len = strcspn(path, ":;");
2101 #ifdef COMPAT_32BIT
2102 	trans = lm_findn(NULL, path, len);
2103 	if (trans)
2104 	    res = callback(trans, strlen(trans), arg);
2105 	else
2106 #endif
2107 	res = callback(path, len, arg);
2108 
2109 	if (res != NULL)
2110 	    return (res);
2111 
2112 	path += len;
2113 	path += strspn(path, ":;");
2114     }
2115 
2116     return (NULL);
2117 }
2118 
2119 struct try_library_args {
2120     const char	*name;
2121     size_t	 namelen;
2122     char	*buffer;
2123     size_t	 buflen;
2124 };
2125 
2126 static void *
2127 try_library_path(const char *dir, size_t dirlen, void *param)
2128 {
2129     struct try_library_args *arg;
2130 
2131     arg = param;
2132     if (*dir == '/' || trust) {
2133 	char *pathname;
2134 
2135 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2136 		return (NULL);
2137 
2138 	pathname = arg->buffer;
2139 	strncpy(pathname, dir, dirlen);
2140 	pathname[dirlen] = '/';
2141 	strcpy(pathname + dirlen + 1, arg->name);
2142 
2143 	dbg("  Trying \"%s\"", pathname);
2144 	if (access(pathname, F_OK) == 0) {		/* We found it */
2145 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2146 	    strcpy(pathname, arg->buffer);
2147 	    return (pathname);
2148 	}
2149     }
2150     return (NULL);
2151 }
2152 
2153 static char *
2154 search_library_path(const char *name, const char *path)
2155 {
2156     char *p;
2157     struct try_library_args arg;
2158 
2159     if (path == NULL)
2160 	return NULL;
2161 
2162     arg.name = name;
2163     arg.namelen = strlen(name);
2164     arg.buffer = xmalloc(PATH_MAX);
2165     arg.buflen = PATH_MAX;
2166 
2167     p = path_enumerate(path, try_library_path, &arg);
2168 
2169     free(arg.buffer);
2170 
2171     return (p);
2172 }
2173 
2174 int
2175 dlclose(void *handle)
2176 {
2177     Obj_Entry *root;
2178     RtldLockState lockstate;
2179 
2180     wlock_acquire(rtld_bind_lock, &lockstate);
2181     root = dlcheck(handle);
2182     if (root == NULL) {
2183 	lock_release(rtld_bind_lock, &lockstate);
2184 	return -1;
2185     }
2186     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2187 	root->path);
2188 
2189     /* Unreference the object and its dependencies. */
2190     root->dl_refcount--;
2191 
2192     if (root->refcount == 1) {
2193 	/*
2194 	 * The object will be no longer referenced, so we must unload it.
2195 	 * First, call the fini functions.
2196 	 */
2197 	objlist_call_fini(&list_fini, root, &lockstate);
2198 
2199 	unref_dag(root);
2200 
2201 	/* Finish cleaning up the newly-unreferenced objects. */
2202 	GDB_STATE(RT_DELETE,&root->linkmap);
2203 	unload_object(root);
2204 	GDB_STATE(RT_CONSISTENT,NULL);
2205     } else
2206 	unref_dag(root);
2207 
2208     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2209     lock_release(rtld_bind_lock, &lockstate);
2210     return 0;
2211 }
2212 
2213 char *
2214 dlerror(void)
2215 {
2216     char *msg = error_message;
2217     error_message = NULL;
2218     return msg;
2219 }
2220 
2221 /*
2222  * This function is deprecated and has no effect.
2223  */
2224 void
2225 dllockinit(void *context,
2226 	   void *(*lock_create)(void *context),
2227            void (*rlock_acquire)(void *lock),
2228            void (*wlock_acquire)(void *lock),
2229            void (*lock_release)(void *lock),
2230            void (*lock_destroy)(void *lock),
2231 	   void (*context_destroy)(void *context))
2232 {
2233     static void *cur_context;
2234     static void (*cur_context_destroy)(void *);
2235 
2236     /* Just destroy the context from the previous call, if necessary. */
2237     if (cur_context_destroy != NULL)
2238 	cur_context_destroy(cur_context);
2239     cur_context = context;
2240     cur_context_destroy = context_destroy;
2241 }
2242 
2243 void *
2244 dlopen(const char *name, int mode)
2245 {
2246 
2247 	return (rtld_dlopen(name, -1, mode));
2248 }
2249 
2250 void *
2251 fdlopen(int fd, int mode)
2252 {
2253 
2254 	return (rtld_dlopen(NULL, fd, mode));
2255 }
2256 
2257 static void *
2258 rtld_dlopen(const char *name, int fd, int mode)
2259 {
2260     RtldLockState lockstate;
2261     int lo_flags;
2262 
2263     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2264     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2265     if (ld_tracing != NULL) {
2266 	rlock_acquire(rtld_bind_lock, &lockstate);
2267 	if (sigsetjmp(lockstate.env, 0) != 0)
2268 	    lock_upgrade(rtld_bind_lock, &lockstate);
2269 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2270 	lock_release(rtld_bind_lock, &lockstate);
2271     }
2272     lo_flags = RTLD_LO_DLOPEN;
2273     if (mode & RTLD_NODELETE)
2274 	    lo_flags |= RTLD_LO_NODELETE;
2275     if (mode & RTLD_NOLOAD)
2276 	    lo_flags |= RTLD_LO_NOLOAD;
2277     if (ld_tracing != NULL)
2278 	    lo_flags |= RTLD_LO_TRACE;
2279 
2280     return (dlopen_object(name, fd, obj_main, lo_flags,
2281       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2282 }
2283 
2284 static void
2285 dlopen_cleanup(Obj_Entry *obj)
2286 {
2287 
2288 	obj->dl_refcount--;
2289 	unref_dag(obj);
2290 	if (obj->refcount == 0)
2291 		unload_object(obj);
2292 }
2293 
2294 static Obj_Entry *
2295 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2296     int mode)
2297 {
2298     Obj_Entry **old_obj_tail;
2299     Obj_Entry *obj;
2300     Objlist initlist;
2301     RtldLockState lockstate;
2302     int result;
2303 
2304     objlist_init(&initlist);
2305 
2306     wlock_acquire(rtld_bind_lock, &lockstate);
2307     GDB_STATE(RT_ADD,NULL);
2308 
2309     old_obj_tail = obj_tail;
2310     obj = NULL;
2311     if (name == NULL && fd == -1) {
2312 	obj = obj_main;
2313 	obj->refcount++;
2314     } else {
2315 	obj = load_object(name, fd, refobj, lo_flags);
2316     }
2317 
2318     if (obj) {
2319 	obj->dl_refcount++;
2320 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2321 	    objlist_push_tail(&list_global, obj);
2322 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2323 	    assert(*old_obj_tail == obj);
2324 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2325 	    init_dag(obj);
2326 	    ref_dag(obj);
2327 	    if (result != -1)
2328 		result = rtld_verify_versions(&obj->dagmembers);
2329 	    if (result != -1 && ld_tracing)
2330 		goto trace;
2331 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2332 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2333 		dlopen_cleanup(obj);
2334 		obj = NULL;
2335 	    } else {
2336 		/* Make list of init functions to call. */
2337 		initlist_add_objects(obj, &obj->next, &initlist);
2338 	    }
2339 	} else {
2340 
2341 	    /*
2342 	     * Bump the reference counts for objects on this DAG.  If
2343 	     * this is the first dlopen() call for the object that was
2344 	     * already loaded as a dependency, initialize the dag
2345 	     * starting at it.
2346 	     */
2347 	    init_dag(obj);
2348 	    ref_dag(obj);
2349 
2350 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2351 		goto trace;
2352 	}
2353 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2354 	  obj->z_nodelete) && !obj->ref_nodel) {
2355 	    dbg("obj %s nodelete", obj->path);
2356 	    ref_dag(obj);
2357 	    obj->z_nodelete = obj->ref_nodel = true;
2358 	}
2359     }
2360 
2361     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2362 	name);
2363     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2364 
2365     map_stacks_exec(&lockstate);
2366 
2367     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2368       &lockstate) == -1) {
2369 	objlist_clear(&initlist);
2370 	dlopen_cleanup(obj);
2371 	lock_release(rtld_bind_lock, &lockstate);
2372 	return (NULL);
2373     }
2374 
2375     /* Call the init functions. */
2376     objlist_call_init(&initlist, &lockstate);
2377     objlist_clear(&initlist);
2378     lock_release(rtld_bind_lock, &lockstate);
2379     return obj;
2380 trace:
2381     trace_loaded_objects(obj);
2382     lock_release(rtld_bind_lock, &lockstate);
2383     exit(0);
2384 }
2385 
2386 static void *
2387 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2388     int flags)
2389 {
2390     DoneList donelist;
2391     const Obj_Entry *obj, *defobj;
2392     const Elf_Sym *def;
2393     SymLook req;
2394     RtldLockState lockstate;
2395     int res;
2396 
2397     def = NULL;
2398     defobj = NULL;
2399     symlook_init(&req, name);
2400     req.ventry = ve;
2401     req.flags = flags | SYMLOOK_IN_PLT;
2402     req.lockstate = &lockstate;
2403 
2404     rlock_acquire(rtld_bind_lock, &lockstate);
2405     if (sigsetjmp(lockstate.env, 0) != 0)
2406 	    lock_upgrade(rtld_bind_lock, &lockstate);
2407     if (handle == NULL || handle == RTLD_NEXT ||
2408 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2409 
2410 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2411 	    _rtld_error("Cannot determine caller's shared object");
2412 	    lock_release(rtld_bind_lock, &lockstate);
2413 	    return NULL;
2414 	}
2415 	if (handle == NULL) {	/* Just the caller's shared object. */
2416 	    res = symlook_obj(&req, obj);
2417 	    if (res == 0) {
2418 		def = req.sym_out;
2419 		defobj = req.defobj_out;
2420 	    }
2421 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2422 		   handle == RTLD_SELF) { /* ... caller included */
2423 	    if (handle == RTLD_NEXT)
2424 		obj = obj->next;
2425 	    for (; obj != NULL; obj = obj->next) {
2426 		res = symlook_obj(&req, obj);
2427 		if (res == 0) {
2428 		    if (def == NULL ||
2429 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2430 			def = req.sym_out;
2431 			defobj = req.defobj_out;
2432 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2433 			    break;
2434 		    }
2435 		}
2436 	    }
2437 	    /*
2438 	     * Search the dynamic linker itself, and possibly resolve the
2439 	     * symbol from there.  This is how the application links to
2440 	     * dynamic linker services such as dlopen.
2441 	     */
2442 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2443 		res = symlook_obj(&req, &obj_rtld);
2444 		if (res == 0) {
2445 		    def = req.sym_out;
2446 		    defobj = req.defobj_out;
2447 		}
2448 	    }
2449 	} else {
2450 	    assert(handle == RTLD_DEFAULT);
2451 	    res = symlook_default(&req, obj);
2452 	    if (res == 0) {
2453 		defobj = req.defobj_out;
2454 		def = req.sym_out;
2455 	    }
2456 	}
2457     } else {
2458 	if ((obj = dlcheck(handle)) == NULL) {
2459 	    lock_release(rtld_bind_lock, &lockstate);
2460 	    return NULL;
2461 	}
2462 
2463 	donelist_init(&donelist);
2464 	if (obj->mainprog) {
2465             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2466 	    res = symlook_global(&req, &donelist);
2467 	    if (res == 0) {
2468 		def = req.sym_out;
2469 		defobj = req.defobj_out;
2470 	    }
2471 	    /*
2472 	     * Search the dynamic linker itself, and possibly resolve the
2473 	     * symbol from there.  This is how the application links to
2474 	     * dynamic linker services such as dlopen.
2475 	     */
2476 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2477 		res = symlook_obj(&req, &obj_rtld);
2478 		if (res == 0) {
2479 		    def = req.sym_out;
2480 		    defobj = req.defobj_out;
2481 		}
2482 	    }
2483 	}
2484 	else {
2485 	    /* Search the whole DAG rooted at the given object. */
2486 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2487 	    if (res == 0) {
2488 		def = req.sym_out;
2489 		defobj = req.defobj_out;
2490 	    }
2491 	}
2492     }
2493 
2494     if (def != NULL) {
2495 	lock_release(rtld_bind_lock, &lockstate);
2496 
2497 	/*
2498 	 * The value required by the caller is derived from the value
2499 	 * of the symbol. For the ia64 architecture, we need to
2500 	 * construct a function descriptor which the caller can use to
2501 	 * call the function with the right 'gp' value. For other
2502 	 * architectures and for non-functions, the value is simply
2503 	 * the relocated value of the symbol.
2504 	 */
2505 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2506 	    return (make_function_pointer(def, defobj));
2507 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2508 	    return (rtld_resolve_ifunc(defobj, def));
2509 	else
2510 	    return (defobj->relocbase + def->st_value);
2511     }
2512 
2513     _rtld_error("Undefined symbol \"%s\"", name);
2514     lock_release(rtld_bind_lock, &lockstate);
2515     return NULL;
2516 }
2517 
2518 void *
2519 dlsym(void *handle, const char *name)
2520 {
2521 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2522 	    SYMLOOK_DLSYM);
2523 }
2524 
2525 dlfunc_t
2526 dlfunc(void *handle, const char *name)
2527 {
2528 	union {
2529 		void *d;
2530 		dlfunc_t f;
2531 	} rv;
2532 
2533 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2534 	    SYMLOOK_DLSYM);
2535 	return (rv.f);
2536 }
2537 
2538 void *
2539 dlvsym(void *handle, const char *name, const char *version)
2540 {
2541 	Ver_Entry ventry;
2542 
2543 	ventry.name = version;
2544 	ventry.file = NULL;
2545 	ventry.hash = elf_hash(version);
2546 	ventry.flags= 0;
2547 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2548 	    SYMLOOK_DLSYM);
2549 }
2550 
2551 int
2552 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2553 {
2554     const Obj_Entry *obj;
2555     RtldLockState lockstate;
2556 
2557     rlock_acquire(rtld_bind_lock, &lockstate);
2558     obj = obj_from_addr(addr);
2559     if (obj == NULL) {
2560         _rtld_error("No shared object contains address");
2561 	lock_release(rtld_bind_lock, &lockstate);
2562         return (0);
2563     }
2564     rtld_fill_dl_phdr_info(obj, phdr_info);
2565     lock_release(rtld_bind_lock, &lockstate);
2566     return (1);
2567 }
2568 
2569 int
2570 dladdr(const void *addr, Dl_info *info)
2571 {
2572     const Obj_Entry *obj;
2573     const Elf_Sym *def;
2574     void *symbol_addr;
2575     unsigned long symoffset;
2576     RtldLockState lockstate;
2577 
2578     rlock_acquire(rtld_bind_lock, &lockstate);
2579     obj = obj_from_addr(addr);
2580     if (obj == NULL) {
2581         _rtld_error("No shared object contains address");
2582 	lock_release(rtld_bind_lock, &lockstate);
2583         return 0;
2584     }
2585     info->dli_fname = obj->path;
2586     info->dli_fbase = obj->mapbase;
2587     info->dli_saddr = (void *)0;
2588     info->dli_sname = NULL;
2589 
2590     /*
2591      * Walk the symbol list looking for the symbol whose address is
2592      * closest to the address sent in.
2593      */
2594     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2595         def = obj->symtab + symoffset;
2596 
2597         /*
2598          * For skip the symbol if st_shndx is either SHN_UNDEF or
2599          * SHN_COMMON.
2600          */
2601         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2602             continue;
2603 
2604         /*
2605          * If the symbol is greater than the specified address, or if it
2606          * is further away from addr than the current nearest symbol,
2607          * then reject it.
2608          */
2609         symbol_addr = obj->relocbase + def->st_value;
2610         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2611             continue;
2612 
2613         /* Update our idea of the nearest symbol. */
2614         info->dli_sname = obj->strtab + def->st_name;
2615         info->dli_saddr = symbol_addr;
2616 
2617         /* Exact match? */
2618         if (info->dli_saddr == addr)
2619             break;
2620     }
2621     lock_release(rtld_bind_lock, &lockstate);
2622     return 1;
2623 }
2624 
2625 int
2626 dlinfo(void *handle, int request, void *p)
2627 {
2628     const Obj_Entry *obj;
2629     RtldLockState lockstate;
2630     int error;
2631 
2632     rlock_acquire(rtld_bind_lock, &lockstate);
2633 
2634     if (handle == NULL || handle == RTLD_SELF) {
2635 	void *retaddr;
2636 
2637 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2638 	if ((obj = obj_from_addr(retaddr)) == NULL)
2639 	    _rtld_error("Cannot determine caller's shared object");
2640     } else
2641 	obj = dlcheck(handle);
2642 
2643     if (obj == NULL) {
2644 	lock_release(rtld_bind_lock, &lockstate);
2645 	return (-1);
2646     }
2647 
2648     error = 0;
2649     switch (request) {
2650     case RTLD_DI_LINKMAP:
2651 	*((struct link_map const **)p) = &obj->linkmap;
2652 	break;
2653     case RTLD_DI_ORIGIN:
2654 	error = rtld_dirname(obj->path, p);
2655 	break;
2656 
2657     case RTLD_DI_SERINFOSIZE:
2658     case RTLD_DI_SERINFO:
2659 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2660 	break;
2661 
2662     default:
2663 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2664 	error = -1;
2665     }
2666 
2667     lock_release(rtld_bind_lock, &lockstate);
2668 
2669     return (error);
2670 }
2671 
2672 static void
2673 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2674 {
2675 
2676 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2677 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2678 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2679 	phdr_info->dlpi_phdr = obj->phdr;
2680 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2681 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2682 	phdr_info->dlpi_tls_data = obj->tlsinit;
2683 	phdr_info->dlpi_adds = obj_loads;
2684 	phdr_info->dlpi_subs = obj_loads - obj_count;
2685 }
2686 
2687 int
2688 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2689 {
2690     struct dl_phdr_info phdr_info;
2691     const Obj_Entry *obj;
2692     RtldLockState bind_lockstate, phdr_lockstate;
2693     int error;
2694 
2695     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2696     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2697 
2698     error = 0;
2699 
2700     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2701 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2702 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2703 		break;
2704 
2705     }
2706     lock_release(rtld_bind_lock, &bind_lockstate);
2707     lock_release(rtld_phdr_lock, &phdr_lockstate);
2708 
2709     return (error);
2710 }
2711 
2712 struct fill_search_info_args {
2713     int		 request;
2714     unsigned int flags;
2715     Dl_serinfo  *serinfo;
2716     Dl_serpath  *serpath;
2717     char	*strspace;
2718 };
2719 
2720 static void *
2721 fill_search_info(const char *dir, size_t dirlen, void *param)
2722 {
2723     struct fill_search_info_args *arg;
2724 
2725     arg = param;
2726 
2727     if (arg->request == RTLD_DI_SERINFOSIZE) {
2728 	arg->serinfo->dls_cnt ++;
2729 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2730     } else {
2731 	struct dl_serpath *s_entry;
2732 
2733 	s_entry = arg->serpath;
2734 	s_entry->dls_name  = arg->strspace;
2735 	s_entry->dls_flags = arg->flags;
2736 
2737 	strncpy(arg->strspace, dir, dirlen);
2738 	arg->strspace[dirlen] = '\0';
2739 
2740 	arg->strspace += dirlen + 1;
2741 	arg->serpath++;
2742     }
2743 
2744     return (NULL);
2745 }
2746 
2747 static int
2748 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2749 {
2750     struct dl_serinfo _info;
2751     struct fill_search_info_args args;
2752 
2753     args.request = RTLD_DI_SERINFOSIZE;
2754     args.serinfo = &_info;
2755 
2756     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2757     _info.dls_cnt  = 0;
2758 
2759     path_enumerate(ld_library_path, fill_search_info, &args);
2760     path_enumerate(obj->rpath, fill_search_info, &args);
2761     path_enumerate(gethints(), fill_search_info, &args);
2762     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2763 
2764 
2765     if (request == RTLD_DI_SERINFOSIZE) {
2766 	info->dls_size = _info.dls_size;
2767 	info->dls_cnt = _info.dls_cnt;
2768 	return (0);
2769     }
2770 
2771     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2772 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2773 	return (-1);
2774     }
2775 
2776     args.request  = RTLD_DI_SERINFO;
2777     args.serinfo  = info;
2778     args.serpath  = &info->dls_serpath[0];
2779     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2780 
2781     args.flags = LA_SER_LIBPATH;
2782     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2783 	return (-1);
2784 
2785     args.flags = LA_SER_RUNPATH;
2786     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2787 	return (-1);
2788 
2789     args.flags = LA_SER_CONFIG;
2790     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2791 	return (-1);
2792 
2793     args.flags = LA_SER_DEFAULT;
2794     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2795 	return (-1);
2796     return (0);
2797 }
2798 
2799 static int
2800 rtld_dirname(const char *path, char *bname)
2801 {
2802     const char *endp;
2803 
2804     /* Empty or NULL string gets treated as "." */
2805     if (path == NULL || *path == '\0') {
2806 	bname[0] = '.';
2807 	bname[1] = '\0';
2808 	return (0);
2809     }
2810 
2811     /* Strip trailing slashes */
2812     endp = path + strlen(path) - 1;
2813     while (endp > path && *endp == '/')
2814 	endp--;
2815 
2816     /* Find the start of the dir */
2817     while (endp > path && *endp != '/')
2818 	endp--;
2819 
2820     /* Either the dir is "/" or there are no slashes */
2821     if (endp == path) {
2822 	bname[0] = *endp == '/' ? '/' : '.';
2823 	bname[1] = '\0';
2824 	return (0);
2825     } else {
2826 	do {
2827 	    endp--;
2828 	} while (endp > path && *endp == '/');
2829     }
2830 
2831     if (endp - path + 2 > PATH_MAX)
2832     {
2833 	_rtld_error("Filename is too long: %s", path);
2834 	return(-1);
2835     }
2836 
2837     strncpy(bname, path, endp - path + 1);
2838     bname[endp - path + 1] = '\0';
2839     return (0);
2840 }
2841 
2842 static int
2843 rtld_dirname_abs(const char *path, char *base)
2844 {
2845 	char base_rel[PATH_MAX];
2846 
2847 	if (rtld_dirname(path, base) == -1)
2848 		return (-1);
2849 	if (base[0] == '/')
2850 		return (0);
2851 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2852 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2853 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2854 		return (-1);
2855 	strcpy(base, base_rel);
2856 	return (0);
2857 }
2858 
2859 static void
2860 linkmap_add(Obj_Entry *obj)
2861 {
2862     struct link_map *l = &obj->linkmap;
2863     struct link_map *prev;
2864 
2865     obj->linkmap.l_name = obj->path;
2866     obj->linkmap.l_addr = obj->mapbase;
2867     obj->linkmap.l_ld = obj->dynamic;
2868 #ifdef __mips__
2869     /* GDB needs load offset on MIPS to use the symbols */
2870     obj->linkmap.l_offs = obj->relocbase;
2871 #endif
2872 
2873     if (r_debug.r_map == NULL) {
2874 	r_debug.r_map = l;
2875 	return;
2876     }
2877 
2878     /*
2879      * Scan to the end of the list, but not past the entry for the
2880      * dynamic linker, which we want to keep at the very end.
2881      */
2882     for (prev = r_debug.r_map;
2883       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2884       prev = prev->l_next)
2885 	;
2886 
2887     /* Link in the new entry. */
2888     l->l_prev = prev;
2889     l->l_next = prev->l_next;
2890     if (l->l_next != NULL)
2891 	l->l_next->l_prev = l;
2892     prev->l_next = l;
2893 }
2894 
2895 static void
2896 linkmap_delete(Obj_Entry *obj)
2897 {
2898     struct link_map *l = &obj->linkmap;
2899 
2900     if (l->l_prev == NULL) {
2901 	if ((r_debug.r_map = l->l_next) != NULL)
2902 	    l->l_next->l_prev = NULL;
2903 	return;
2904     }
2905 
2906     if ((l->l_prev->l_next = l->l_next) != NULL)
2907 	l->l_next->l_prev = l->l_prev;
2908 }
2909 
2910 /*
2911  * Function for the debugger to set a breakpoint on to gain control.
2912  *
2913  * The two parameters allow the debugger to easily find and determine
2914  * what the runtime loader is doing and to whom it is doing it.
2915  *
2916  * When the loadhook trap is hit (r_debug_state, set at program
2917  * initialization), the arguments can be found on the stack:
2918  *
2919  *  +8   struct link_map *m
2920  *  +4   struct r_debug  *rd
2921  *  +0   RetAddr
2922  */
2923 void
2924 r_debug_state(struct r_debug* rd, struct link_map *m)
2925 {
2926     /*
2927      * The following is a hack to force the compiler to emit calls to
2928      * this function, even when optimizing.  If the function is empty,
2929      * the compiler is not obliged to emit any code for calls to it,
2930      * even when marked __noinline.  However, gdb depends on those
2931      * calls being made.
2932      */
2933     __asm __volatile("" : : : "memory");
2934 }
2935 
2936 /*
2937  * Get address of the pointer variable in the main program.
2938  * Prefer non-weak symbol over the weak one.
2939  */
2940 static const void **
2941 get_program_var_addr(const char *name, RtldLockState *lockstate)
2942 {
2943     SymLook req;
2944     DoneList donelist;
2945 
2946     symlook_init(&req, name);
2947     req.lockstate = lockstate;
2948     donelist_init(&donelist);
2949     if (symlook_global(&req, &donelist) != 0)
2950 	return (NULL);
2951     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
2952 	return ((const void **)make_function_pointer(req.sym_out,
2953 	  req.defobj_out));
2954     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
2955 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
2956     else
2957 	return ((const void **)(req.defobj_out->relocbase +
2958 	  req.sym_out->st_value));
2959 }
2960 
2961 /*
2962  * Set a pointer variable in the main program to the given value.  This
2963  * is used to set key variables such as "environ" before any of the
2964  * init functions are called.
2965  */
2966 static void
2967 set_program_var(const char *name, const void *value)
2968 {
2969     const void **addr;
2970 
2971     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
2972 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2973 	*addr = value;
2974     }
2975 }
2976 
2977 /*
2978  * Search the global objects, including dependencies and main object,
2979  * for the given symbol.
2980  */
2981 static int
2982 symlook_global(SymLook *req, DoneList *donelist)
2983 {
2984     SymLook req1;
2985     const Objlist_Entry *elm;
2986     int res;
2987 
2988     symlook_init_from_req(&req1, req);
2989 
2990     /* Search all objects loaded at program start up. */
2991     if (req->defobj_out == NULL ||
2992       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2993 	res = symlook_list(&req1, &list_main, donelist);
2994 	if (res == 0 && (req->defobj_out == NULL ||
2995 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2996 	    req->sym_out = req1.sym_out;
2997 	    req->defobj_out = req1.defobj_out;
2998 	    assert(req->defobj_out != NULL);
2999 	}
3000     }
3001 
3002     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3003     STAILQ_FOREACH(elm, &list_global, link) {
3004 	if (req->defobj_out != NULL &&
3005 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3006 	    break;
3007 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3008 	if (res == 0 && (req->defobj_out == NULL ||
3009 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3010 	    req->sym_out = req1.sym_out;
3011 	    req->defobj_out = req1.defobj_out;
3012 	    assert(req->defobj_out != NULL);
3013 	}
3014     }
3015 
3016     return (req->sym_out != NULL ? 0 : ESRCH);
3017 }
3018 
3019 /*
3020  * Given a symbol name in a referencing object, find the corresponding
3021  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3022  * no definition was found.  Returns a pointer to the Obj_Entry of the
3023  * defining object via the reference parameter DEFOBJ_OUT.
3024  */
3025 static int
3026 symlook_default(SymLook *req, const Obj_Entry *refobj)
3027 {
3028     DoneList donelist;
3029     const Objlist_Entry *elm;
3030     SymLook req1;
3031     int res;
3032 
3033     donelist_init(&donelist);
3034     symlook_init_from_req(&req1, req);
3035 
3036     /* Look first in the referencing object if linked symbolically. */
3037     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3038 	res = symlook_obj(&req1, refobj);
3039 	if (res == 0) {
3040 	    req->sym_out = req1.sym_out;
3041 	    req->defobj_out = req1.defobj_out;
3042 	    assert(req->defobj_out != NULL);
3043 	}
3044     }
3045 
3046     symlook_global(req, &donelist);
3047 
3048     /* Search all dlopened DAGs containing the referencing object. */
3049     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3050 	if (req->sym_out != NULL &&
3051 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3052 	    break;
3053 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3054 	if (res == 0 && (req->sym_out == NULL ||
3055 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3056 	    req->sym_out = req1.sym_out;
3057 	    req->defobj_out = req1.defobj_out;
3058 	    assert(req->defobj_out != NULL);
3059 	}
3060     }
3061 
3062     /*
3063      * Search the dynamic linker itself, and possibly resolve the
3064      * symbol from there.  This is how the application links to
3065      * dynamic linker services such as dlopen.
3066      */
3067     if (req->sym_out == NULL ||
3068       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3069 	res = symlook_obj(&req1, &obj_rtld);
3070 	if (res == 0) {
3071 	    req->sym_out = req1.sym_out;
3072 	    req->defobj_out = req1.defobj_out;
3073 	    assert(req->defobj_out != NULL);
3074 	}
3075     }
3076 
3077     return (req->sym_out != NULL ? 0 : ESRCH);
3078 }
3079 
3080 static int
3081 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3082 {
3083     const Elf_Sym *def;
3084     const Obj_Entry *defobj;
3085     const Objlist_Entry *elm;
3086     SymLook req1;
3087     int res;
3088 
3089     def = NULL;
3090     defobj = NULL;
3091     STAILQ_FOREACH(elm, objlist, link) {
3092 	if (donelist_check(dlp, elm->obj))
3093 	    continue;
3094 	symlook_init_from_req(&req1, req);
3095 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3096 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3097 		def = req1.sym_out;
3098 		defobj = req1.defobj_out;
3099 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3100 		    break;
3101 	    }
3102 	}
3103     }
3104     if (def != NULL) {
3105 	req->sym_out = def;
3106 	req->defobj_out = defobj;
3107 	return (0);
3108     }
3109     return (ESRCH);
3110 }
3111 
3112 /*
3113  * Search the chain of DAGS cointed to by the given Needed_Entry
3114  * for a symbol of the given name.  Each DAG is scanned completely
3115  * before advancing to the next one.  Returns a pointer to the symbol,
3116  * or NULL if no definition was found.
3117  */
3118 static int
3119 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3120 {
3121     const Elf_Sym *def;
3122     const Needed_Entry *n;
3123     const Obj_Entry *defobj;
3124     SymLook req1;
3125     int res;
3126 
3127     def = NULL;
3128     defobj = NULL;
3129     symlook_init_from_req(&req1, req);
3130     for (n = needed; n != NULL; n = n->next) {
3131 	if (n->obj == NULL ||
3132 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3133 	    continue;
3134 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3135 	    def = req1.sym_out;
3136 	    defobj = req1.defobj_out;
3137 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3138 		break;
3139 	}
3140     }
3141     if (def != NULL) {
3142 	req->sym_out = def;
3143 	req->defobj_out = defobj;
3144 	return (0);
3145     }
3146     return (ESRCH);
3147 }
3148 
3149 /*
3150  * Search the symbol table of a single shared object for a symbol of
3151  * the given name and version, if requested.  Returns a pointer to the
3152  * symbol, or NULL if no definition was found.  If the object is
3153  * filter, return filtered symbol from filtee.
3154  *
3155  * The symbol's hash value is passed in for efficiency reasons; that
3156  * eliminates many recomputations of the hash value.
3157  */
3158 int
3159 symlook_obj(SymLook *req, const Obj_Entry *obj)
3160 {
3161     DoneList donelist;
3162     SymLook req1;
3163     int res, mres;
3164 
3165     mres = symlook_obj1(req, obj);
3166     if (mres == 0) {
3167 	if (obj->needed_filtees != NULL) {
3168 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3169 	    donelist_init(&donelist);
3170 	    symlook_init_from_req(&req1, req);
3171 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3172 	    if (res == 0) {
3173 		req->sym_out = req1.sym_out;
3174 		req->defobj_out = req1.defobj_out;
3175 	    }
3176 	    return (res);
3177 	}
3178 	if (obj->needed_aux_filtees != NULL) {
3179 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3180 	    donelist_init(&donelist);
3181 	    symlook_init_from_req(&req1, req);
3182 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3183 	    if (res == 0) {
3184 		req->sym_out = req1.sym_out;
3185 		req->defobj_out = req1.defobj_out;
3186 		return (res);
3187 	    }
3188 	}
3189     }
3190     return (mres);
3191 }
3192 
3193 static int
3194 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3195 {
3196     unsigned long symnum;
3197     const Elf_Sym *vsymp;
3198     Elf_Versym verndx;
3199     int vcount;
3200 
3201     if (obj->buckets == NULL)
3202 	return (ESRCH);
3203 
3204     vsymp = NULL;
3205     vcount = 0;
3206     symnum = obj->buckets[req->hash % obj->nbuckets];
3207 
3208     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3209 	const Elf_Sym *symp;
3210 	const char *strp;
3211 
3212 	if (symnum >= obj->nchains)
3213 	    return (ESRCH);	/* Bad object */
3214 
3215 	symp = obj->symtab + symnum;
3216 	strp = obj->strtab + symp->st_name;
3217 
3218 	switch (ELF_ST_TYPE(symp->st_info)) {
3219 	case STT_FUNC:
3220 	case STT_NOTYPE:
3221 	case STT_OBJECT:
3222 	case STT_GNU_IFUNC:
3223 	    if (symp->st_value == 0)
3224 		continue;
3225 		/* fallthrough */
3226 	case STT_TLS:
3227 	    if (symp->st_shndx != SHN_UNDEF)
3228 		break;
3229 #ifndef __mips__
3230 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3231 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3232 		break;
3233 		/* fallthrough */
3234 #endif
3235 	default:
3236 	    continue;
3237 	}
3238 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3239 	    continue;
3240 
3241 	if (req->ventry == NULL) {
3242 	    if (obj->versyms != NULL) {
3243 		verndx = VER_NDX(obj->versyms[symnum]);
3244 		if (verndx > obj->vernum) {
3245 		    _rtld_error("%s: symbol %s references wrong version %d",
3246 			obj->path, obj->strtab + symnum, verndx);
3247 		    continue;
3248 		}
3249 		/*
3250 		 * If we are not called from dlsym (i.e. this is a normal
3251 		 * relocation from unversioned binary), accept the symbol
3252 		 * immediately if it happens to have first version after
3253 		 * this shared object became versioned. Otherwise, if
3254 		 * symbol is versioned and not hidden, remember it. If it
3255 		 * is the only symbol with this name exported by the
3256 		 * shared object, it will be returned as a match at the
3257 		 * end of the function. If symbol is global (verndx < 2)
3258 		 * accept it unconditionally.
3259 		 */
3260 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3261 		  verndx == VER_NDX_GIVEN) {
3262 		    req->sym_out = symp;
3263 		    req->defobj_out = obj;
3264 		    return (0);
3265 		}
3266 		else if (verndx >= VER_NDX_GIVEN) {
3267 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3268 			if (vsymp == NULL)
3269 			    vsymp = symp;
3270 			vcount ++;
3271 		    }
3272 		    continue;
3273 		}
3274 	    }
3275 	    req->sym_out = symp;
3276 	    req->defobj_out = obj;
3277 	    return (0);
3278 	} else {
3279 	    if (obj->versyms == NULL) {
3280 		if (object_match_name(obj, req->ventry->name)) {
3281 		    _rtld_error("%s: object %s should provide version %s for "
3282 			"symbol %s", obj_rtld.path, obj->path,
3283 			req->ventry->name, obj->strtab + symnum);
3284 		    continue;
3285 		}
3286 	    } else {
3287 		verndx = VER_NDX(obj->versyms[symnum]);
3288 		if (verndx > obj->vernum) {
3289 		    _rtld_error("%s: symbol %s references wrong version %d",
3290 			obj->path, obj->strtab + symnum, verndx);
3291 		    continue;
3292 		}
3293 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3294 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3295 		    /*
3296 		     * Version does not match. Look if this is a global symbol
3297 		     * and if it is not hidden. If global symbol (verndx < 2)
3298 		     * is available, use it. Do not return symbol if we are
3299 		     * called by dlvsym, because dlvsym looks for a specific
3300 		     * version and default one is not what dlvsym wants.
3301 		     */
3302 		    if ((req->flags & SYMLOOK_DLSYM) ||
3303 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3304 			(verndx >= VER_NDX_GIVEN))
3305 			continue;
3306 		}
3307 	    }
3308 	    req->sym_out = symp;
3309 	    req->defobj_out = obj;
3310 	    return (0);
3311 	}
3312     }
3313     if (vcount == 1) {
3314 	req->sym_out = vsymp;
3315 	req->defobj_out = obj;
3316 	return (0);
3317     }
3318     return (ESRCH);
3319 }
3320 
3321 static void
3322 trace_loaded_objects(Obj_Entry *obj)
3323 {
3324     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3325     int		c;
3326 
3327     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3328 	main_local = "";
3329 
3330     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3331 	fmt1 = "\t%o => %p (%x)\n";
3332 
3333     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3334 	fmt2 = "\t%o (%x)\n";
3335 
3336     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3337 
3338     for (; obj; obj = obj->next) {
3339 	Needed_Entry		*needed;
3340 	char			*name, *path;
3341 	bool			is_lib;
3342 
3343 	if (list_containers && obj->needed != NULL)
3344 	    rtld_printf("%s:\n", obj->path);
3345 	for (needed = obj->needed; needed; needed = needed->next) {
3346 	    if (needed->obj != NULL) {
3347 		if (needed->obj->traced && !list_containers)
3348 		    continue;
3349 		needed->obj->traced = true;
3350 		path = needed->obj->path;
3351 	    } else
3352 		path = "not found";
3353 
3354 	    name = (char *)obj->strtab + needed->name;
3355 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3356 
3357 	    fmt = is_lib ? fmt1 : fmt2;
3358 	    while ((c = *fmt++) != '\0') {
3359 		switch (c) {
3360 		default:
3361 		    rtld_putchar(c);
3362 		    continue;
3363 		case '\\':
3364 		    switch (c = *fmt) {
3365 		    case '\0':
3366 			continue;
3367 		    case 'n':
3368 			rtld_putchar('\n');
3369 			break;
3370 		    case 't':
3371 			rtld_putchar('\t');
3372 			break;
3373 		    }
3374 		    break;
3375 		case '%':
3376 		    switch (c = *fmt) {
3377 		    case '\0':
3378 			continue;
3379 		    case '%':
3380 		    default:
3381 			rtld_putchar(c);
3382 			break;
3383 		    case 'A':
3384 			rtld_putstr(main_local);
3385 			break;
3386 		    case 'a':
3387 			rtld_putstr(obj_main->path);
3388 			break;
3389 		    case 'o':
3390 			rtld_putstr(name);
3391 			break;
3392 #if 0
3393 		    case 'm':
3394 			rtld_printf("%d", sodp->sod_major);
3395 			break;
3396 		    case 'n':
3397 			rtld_printf("%d", sodp->sod_minor);
3398 			break;
3399 #endif
3400 		    case 'p':
3401 			rtld_putstr(path);
3402 			break;
3403 		    case 'x':
3404 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3405 			  0);
3406 			break;
3407 		    }
3408 		    break;
3409 		}
3410 		++fmt;
3411 	    }
3412 	}
3413     }
3414 }
3415 
3416 /*
3417  * Unload a dlopened object and its dependencies from memory and from
3418  * our data structures.  It is assumed that the DAG rooted in the
3419  * object has already been unreferenced, and that the object has a
3420  * reference count of 0.
3421  */
3422 static void
3423 unload_object(Obj_Entry *root)
3424 {
3425     Obj_Entry *obj;
3426     Obj_Entry **linkp;
3427 
3428     assert(root->refcount == 0);
3429 
3430     /*
3431      * Pass over the DAG removing unreferenced objects from
3432      * appropriate lists.
3433      */
3434     unlink_object(root);
3435 
3436     /* Unmap all objects that are no longer referenced. */
3437     linkp = &obj_list->next;
3438     while ((obj = *linkp) != NULL) {
3439 	if (obj->refcount == 0) {
3440 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3441 		obj->path);
3442 	    dbg("unloading \"%s\"", obj->path);
3443 	    unload_filtees(root);
3444 	    munmap(obj->mapbase, obj->mapsize);
3445 	    linkmap_delete(obj);
3446 	    *linkp = obj->next;
3447 	    obj_count--;
3448 	    obj_free(obj);
3449 	} else
3450 	    linkp = &obj->next;
3451     }
3452     obj_tail = linkp;
3453 }
3454 
3455 static void
3456 unlink_object(Obj_Entry *root)
3457 {
3458     Objlist_Entry *elm;
3459 
3460     if (root->refcount == 0) {
3461 	/* Remove the object from the RTLD_GLOBAL list. */
3462 	objlist_remove(&list_global, root);
3463 
3464     	/* Remove the object from all objects' DAG lists. */
3465     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3466 	    objlist_remove(&elm->obj->dldags, root);
3467 	    if (elm->obj != root)
3468 		unlink_object(elm->obj);
3469 	}
3470     }
3471 }
3472 
3473 static void
3474 ref_dag(Obj_Entry *root)
3475 {
3476     Objlist_Entry *elm;
3477 
3478     assert(root->dag_inited);
3479     STAILQ_FOREACH(elm, &root->dagmembers, link)
3480 	elm->obj->refcount++;
3481 }
3482 
3483 static void
3484 unref_dag(Obj_Entry *root)
3485 {
3486     Objlist_Entry *elm;
3487 
3488     assert(root->dag_inited);
3489     STAILQ_FOREACH(elm, &root->dagmembers, link)
3490 	elm->obj->refcount--;
3491 }
3492 
3493 /*
3494  * Common code for MD __tls_get_addr().
3495  */
3496 void *
3497 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3498 {
3499     Elf_Addr* dtv = *dtvp;
3500     RtldLockState lockstate;
3501 
3502     /* Check dtv generation in case new modules have arrived */
3503     if (dtv[0] != tls_dtv_generation) {
3504 	Elf_Addr* newdtv;
3505 	int to_copy;
3506 
3507 	wlock_acquire(rtld_bind_lock, &lockstate);
3508 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3509 	to_copy = dtv[1];
3510 	if (to_copy > tls_max_index)
3511 	    to_copy = tls_max_index;
3512 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3513 	newdtv[0] = tls_dtv_generation;
3514 	newdtv[1] = tls_max_index;
3515 	free(dtv);
3516 	lock_release(rtld_bind_lock, &lockstate);
3517 	dtv = *dtvp = newdtv;
3518     }
3519 
3520     /* Dynamically allocate module TLS if necessary */
3521     if (!dtv[index + 1]) {
3522 	/* Signal safe, wlock will block out signals. */
3523 	    wlock_acquire(rtld_bind_lock, &lockstate);
3524 	if (!dtv[index + 1])
3525 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3526 	lock_release(rtld_bind_lock, &lockstate);
3527     }
3528     return (void*) (dtv[index + 1] + offset);
3529 }
3530 
3531 /* XXX not sure what variants to use for arm. */
3532 
3533 #if defined(__ia64__) || defined(__powerpc__)
3534 
3535 /*
3536  * Allocate Static TLS using the Variant I method.
3537  */
3538 void *
3539 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3540 {
3541     Obj_Entry *obj;
3542     char *tcb;
3543     Elf_Addr **tls;
3544     Elf_Addr *dtv;
3545     Elf_Addr addr;
3546     int i;
3547 
3548     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3549 	return (oldtcb);
3550 
3551     assert(tcbsize >= TLS_TCB_SIZE);
3552     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3553     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3554 
3555     if (oldtcb != NULL) {
3556 	memcpy(tls, oldtcb, tls_static_space);
3557 	free(oldtcb);
3558 
3559 	/* Adjust the DTV. */
3560 	dtv = tls[0];
3561 	for (i = 0; i < dtv[1]; i++) {
3562 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3563 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3564 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3565 	    }
3566 	}
3567     } else {
3568 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3569 	tls[0] = dtv;
3570 	dtv[0] = tls_dtv_generation;
3571 	dtv[1] = tls_max_index;
3572 
3573 	for (obj = objs; obj; obj = obj->next) {
3574 	    if (obj->tlsoffset > 0) {
3575 		addr = (Elf_Addr)tls + obj->tlsoffset;
3576 		if (obj->tlsinitsize > 0)
3577 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3578 		if (obj->tlssize > obj->tlsinitsize)
3579 		    memset((void*) (addr + obj->tlsinitsize), 0,
3580 			   obj->tlssize - obj->tlsinitsize);
3581 		dtv[obj->tlsindex + 1] = addr;
3582 	    }
3583 	}
3584     }
3585 
3586     return (tcb);
3587 }
3588 
3589 void
3590 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3591 {
3592     Elf_Addr *dtv;
3593     Elf_Addr tlsstart, tlsend;
3594     int dtvsize, i;
3595 
3596     assert(tcbsize >= TLS_TCB_SIZE);
3597 
3598     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3599     tlsend = tlsstart + tls_static_space;
3600 
3601     dtv = *(Elf_Addr **)tlsstart;
3602     dtvsize = dtv[1];
3603     for (i = 0; i < dtvsize; i++) {
3604 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3605 	    free((void*)dtv[i+2]);
3606 	}
3607     }
3608     free(dtv);
3609     free(tcb);
3610 }
3611 
3612 #endif
3613 
3614 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3615     defined(__arm__) || defined(__mips__)
3616 
3617 /*
3618  * Allocate Static TLS using the Variant II method.
3619  */
3620 void *
3621 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3622 {
3623     Obj_Entry *obj;
3624     size_t size;
3625     char *tls;
3626     Elf_Addr *dtv, *olddtv;
3627     Elf_Addr segbase, oldsegbase, addr;
3628     int i;
3629 
3630     size = round(tls_static_space, tcbalign);
3631 
3632     assert(tcbsize >= 2*sizeof(Elf_Addr));
3633     tls = calloc(1, size + tcbsize);
3634     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3635 
3636     segbase = (Elf_Addr)(tls + size);
3637     ((Elf_Addr*)segbase)[0] = segbase;
3638     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3639 
3640     dtv[0] = tls_dtv_generation;
3641     dtv[1] = tls_max_index;
3642 
3643     if (oldtls) {
3644 	/*
3645 	 * Copy the static TLS block over whole.
3646 	 */
3647 	oldsegbase = (Elf_Addr) oldtls;
3648 	memcpy((void *)(segbase - tls_static_space),
3649 	       (const void *)(oldsegbase - tls_static_space),
3650 	       tls_static_space);
3651 
3652 	/*
3653 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3654 	 * move them over.
3655 	 */
3656 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3657 	for (i = 0; i < olddtv[1]; i++) {
3658 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3659 		dtv[i+2] = olddtv[i+2];
3660 		olddtv[i+2] = 0;
3661 	    }
3662 	}
3663 
3664 	/*
3665 	 * We assume that this block was the one we created with
3666 	 * allocate_initial_tls().
3667 	 */
3668 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3669     } else {
3670 	for (obj = objs; obj; obj = obj->next) {
3671 	    if (obj->tlsoffset) {
3672 		addr = segbase - obj->tlsoffset;
3673 		memset((void*) (addr + obj->tlsinitsize),
3674 		       0, obj->tlssize - obj->tlsinitsize);
3675 		if (obj->tlsinit)
3676 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3677 		dtv[obj->tlsindex + 1] = addr;
3678 	    }
3679 	}
3680     }
3681 
3682     return (void*) segbase;
3683 }
3684 
3685 void
3686 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3687 {
3688     size_t size;
3689     Elf_Addr* dtv;
3690     int dtvsize, i;
3691     Elf_Addr tlsstart, tlsend;
3692 
3693     /*
3694      * Figure out the size of the initial TLS block so that we can
3695      * find stuff which ___tls_get_addr() allocated dynamically.
3696      */
3697     size = round(tls_static_space, tcbalign);
3698 
3699     dtv = ((Elf_Addr**)tls)[1];
3700     dtvsize = dtv[1];
3701     tlsend = (Elf_Addr) tls;
3702     tlsstart = tlsend - size;
3703     for (i = 0; i < dtvsize; i++) {
3704 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3705 	    free((void*) dtv[i+2]);
3706 	}
3707     }
3708 
3709     free((void*) tlsstart);
3710     free((void*) dtv);
3711 }
3712 
3713 #endif
3714 
3715 /*
3716  * Allocate TLS block for module with given index.
3717  */
3718 void *
3719 allocate_module_tls(int index)
3720 {
3721     Obj_Entry* obj;
3722     char* p;
3723 
3724     for (obj = obj_list; obj; obj = obj->next) {
3725 	if (obj->tlsindex == index)
3726 	    break;
3727     }
3728     if (!obj) {
3729 	_rtld_error("Can't find module with TLS index %d", index);
3730 	die();
3731     }
3732 
3733     p = malloc(obj->tlssize);
3734     if (p == NULL) {
3735 	_rtld_error("Cannot allocate TLS block for index %d", index);
3736 	die();
3737     }
3738     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3739     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3740 
3741     return p;
3742 }
3743 
3744 bool
3745 allocate_tls_offset(Obj_Entry *obj)
3746 {
3747     size_t off;
3748 
3749     if (obj->tls_done)
3750 	return true;
3751 
3752     if (obj->tlssize == 0) {
3753 	obj->tls_done = true;
3754 	return true;
3755     }
3756 
3757     if (obj->tlsindex == 1)
3758 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3759     else
3760 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3761 				   obj->tlssize, obj->tlsalign);
3762 
3763     /*
3764      * If we have already fixed the size of the static TLS block, we
3765      * must stay within that size. When allocating the static TLS, we
3766      * leave a small amount of space spare to be used for dynamically
3767      * loading modules which use static TLS.
3768      */
3769     if (tls_static_space) {
3770 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3771 	    return false;
3772     }
3773 
3774     tls_last_offset = obj->tlsoffset = off;
3775     tls_last_size = obj->tlssize;
3776     obj->tls_done = true;
3777 
3778     return true;
3779 }
3780 
3781 void
3782 free_tls_offset(Obj_Entry *obj)
3783 {
3784 
3785     /*
3786      * If we were the last thing to allocate out of the static TLS
3787      * block, we give our space back to the 'allocator'. This is a
3788      * simplistic workaround to allow libGL.so.1 to be loaded and
3789      * unloaded multiple times.
3790      */
3791     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3792 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3793 	tls_last_offset -= obj->tlssize;
3794 	tls_last_size = 0;
3795     }
3796 }
3797 
3798 void *
3799 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3800 {
3801     void *ret;
3802     RtldLockState lockstate;
3803 
3804     wlock_acquire(rtld_bind_lock, &lockstate);
3805     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3806     lock_release(rtld_bind_lock, &lockstate);
3807     return (ret);
3808 }
3809 
3810 void
3811 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3812 {
3813     RtldLockState lockstate;
3814 
3815     wlock_acquire(rtld_bind_lock, &lockstate);
3816     free_tls(tcb, tcbsize, tcbalign);
3817     lock_release(rtld_bind_lock, &lockstate);
3818 }
3819 
3820 static void
3821 object_add_name(Obj_Entry *obj, const char *name)
3822 {
3823     Name_Entry *entry;
3824     size_t len;
3825 
3826     len = strlen(name);
3827     entry = malloc(sizeof(Name_Entry) + len);
3828 
3829     if (entry != NULL) {
3830 	strcpy(entry->name, name);
3831 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3832     }
3833 }
3834 
3835 static int
3836 object_match_name(const Obj_Entry *obj, const char *name)
3837 {
3838     Name_Entry *entry;
3839 
3840     STAILQ_FOREACH(entry, &obj->names, link) {
3841 	if (strcmp(name, entry->name) == 0)
3842 	    return (1);
3843     }
3844     return (0);
3845 }
3846 
3847 static Obj_Entry *
3848 locate_dependency(const Obj_Entry *obj, const char *name)
3849 {
3850     const Objlist_Entry *entry;
3851     const Needed_Entry *needed;
3852 
3853     STAILQ_FOREACH(entry, &list_main, link) {
3854 	if (object_match_name(entry->obj, name))
3855 	    return entry->obj;
3856     }
3857 
3858     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3859 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3860 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3861 	    /*
3862 	     * If there is DT_NEEDED for the name we are looking for,
3863 	     * we are all set.  Note that object might not be found if
3864 	     * dependency was not loaded yet, so the function can
3865 	     * return NULL here.  This is expected and handled
3866 	     * properly by the caller.
3867 	     */
3868 	    return (needed->obj);
3869 	}
3870     }
3871     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3872 	obj->path, name);
3873     die();
3874 }
3875 
3876 static int
3877 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3878     const Elf_Vernaux *vna)
3879 {
3880     const Elf_Verdef *vd;
3881     const char *vername;
3882 
3883     vername = refobj->strtab + vna->vna_name;
3884     vd = depobj->verdef;
3885     if (vd == NULL) {
3886 	_rtld_error("%s: version %s required by %s not defined",
3887 	    depobj->path, vername, refobj->path);
3888 	return (-1);
3889     }
3890     for (;;) {
3891 	if (vd->vd_version != VER_DEF_CURRENT) {
3892 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3893 		depobj->path, vd->vd_version);
3894 	    return (-1);
3895 	}
3896 	if (vna->vna_hash == vd->vd_hash) {
3897 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3898 		((char *)vd + vd->vd_aux);
3899 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3900 		return (0);
3901 	}
3902 	if (vd->vd_next == 0)
3903 	    break;
3904 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3905     }
3906     if (vna->vna_flags & VER_FLG_WEAK)
3907 	return (0);
3908     _rtld_error("%s: version %s required by %s not found",
3909 	depobj->path, vername, refobj->path);
3910     return (-1);
3911 }
3912 
3913 static int
3914 rtld_verify_object_versions(Obj_Entry *obj)
3915 {
3916     const Elf_Verneed *vn;
3917     const Elf_Verdef  *vd;
3918     const Elf_Verdaux *vda;
3919     const Elf_Vernaux *vna;
3920     const Obj_Entry *depobj;
3921     int maxvernum, vernum;
3922 
3923     maxvernum = 0;
3924     /*
3925      * Walk over defined and required version records and figure out
3926      * max index used by any of them. Do very basic sanity checking
3927      * while there.
3928      */
3929     vn = obj->verneed;
3930     while (vn != NULL) {
3931 	if (vn->vn_version != VER_NEED_CURRENT) {
3932 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3933 		obj->path, vn->vn_version);
3934 	    return (-1);
3935 	}
3936 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3937 	for (;;) {
3938 	    vernum = VER_NEED_IDX(vna->vna_other);
3939 	    if (vernum > maxvernum)
3940 		maxvernum = vernum;
3941 	    if (vna->vna_next == 0)
3942 		 break;
3943 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3944 	}
3945 	if (vn->vn_next == 0)
3946 	    break;
3947 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3948     }
3949 
3950     vd = obj->verdef;
3951     while (vd != NULL) {
3952 	if (vd->vd_version != VER_DEF_CURRENT) {
3953 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3954 		obj->path, vd->vd_version);
3955 	    return (-1);
3956 	}
3957 	vernum = VER_DEF_IDX(vd->vd_ndx);
3958 	if (vernum > maxvernum)
3959 		maxvernum = vernum;
3960 	if (vd->vd_next == 0)
3961 	    break;
3962 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3963     }
3964 
3965     if (maxvernum == 0)
3966 	return (0);
3967 
3968     /*
3969      * Store version information in array indexable by version index.
3970      * Verify that object version requirements are satisfied along the
3971      * way.
3972      */
3973     obj->vernum = maxvernum + 1;
3974     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3975 
3976     vd = obj->verdef;
3977     while (vd != NULL) {
3978 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3979 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3980 	    assert(vernum <= maxvernum);
3981 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3982 	    obj->vertab[vernum].hash = vd->vd_hash;
3983 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3984 	    obj->vertab[vernum].file = NULL;
3985 	    obj->vertab[vernum].flags = 0;
3986 	}
3987 	if (vd->vd_next == 0)
3988 	    break;
3989 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3990     }
3991 
3992     vn = obj->verneed;
3993     while (vn != NULL) {
3994 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3995 	if (depobj == NULL)
3996 	    return (-1);
3997 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3998 	for (;;) {
3999 	    if (check_object_provided_version(obj, depobj, vna))
4000 		return (-1);
4001 	    vernum = VER_NEED_IDX(vna->vna_other);
4002 	    assert(vernum <= maxvernum);
4003 	    obj->vertab[vernum].hash = vna->vna_hash;
4004 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4005 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4006 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4007 		VER_INFO_HIDDEN : 0;
4008 	    if (vna->vna_next == 0)
4009 		 break;
4010 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4011 	}
4012 	if (vn->vn_next == 0)
4013 	    break;
4014 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4015     }
4016     return 0;
4017 }
4018 
4019 static int
4020 rtld_verify_versions(const Objlist *objlist)
4021 {
4022     Objlist_Entry *entry;
4023     int rc;
4024 
4025     rc = 0;
4026     STAILQ_FOREACH(entry, objlist, link) {
4027 	/*
4028 	 * Skip dummy objects or objects that have their version requirements
4029 	 * already checked.
4030 	 */
4031 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4032 	    continue;
4033 	if (rtld_verify_object_versions(entry->obj) == -1) {
4034 	    rc = -1;
4035 	    if (ld_tracing == NULL)
4036 		break;
4037 	}
4038     }
4039     if (rc == 0 || ld_tracing != NULL)
4040     	rc = rtld_verify_object_versions(&obj_rtld);
4041     return rc;
4042 }
4043 
4044 const Ver_Entry *
4045 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4046 {
4047     Elf_Versym vernum;
4048 
4049     if (obj->vertab) {
4050 	vernum = VER_NDX(obj->versyms[symnum]);
4051 	if (vernum >= obj->vernum) {
4052 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4053 		obj->path, obj->strtab + symnum, vernum);
4054 	} else if (obj->vertab[vernum].hash != 0) {
4055 	    return &obj->vertab[vernum];
4056 	}
4057     }
4058     return NULL;
4059 }
4060 
4061 int
4062 _rtld_get_stack_prot(void)
4063 {
4064 
4065 	return (stack_prot);
4066 }
4067 
4068 static void
4069 map_stacks_exec(RtldLockState *lockstate)
4070 {
4071 	void (*thr_map_stacks_exec)(void);
4072 
4073 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4074 		return;
4075 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4076 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4077 	if (thr_map_stacks_exec != NULL) {
4078 		stack_prot |= PROT_EXEC;
4079 		thr_map_stacks_exec();
4080 	}
4081 }
4082 
4083 void
4084 symlook_init(SymLook *dst, const char *name)
4085 {
4086 
4087 	bzero(dst, sizeof(*dst));
4088 	dst->name = name;
4089 	dst->hash = elf_hash(name);
4090 }
4091 
4092 static void
4093 symlook_init_from_req(SymLook *dst, const SymLook *src)
4094 {
4095 
4096 	dst->name = src->name;
4097 	dst->hash = src->hash;
4098 	dst->ventry = src->ventry;
4099 	dst->flags = src->flags;
4100 	dst->defobj_out = NULL;
4101 	dst->sym_out = NULL;
4102 	dst->lockstate = src->lockstate;
4103 }
4104 
4105 /*
4106  * Overrides for libc_pic-provided functions.
4107  */
4108 
4109 int
4110 __getosreldate(void)
4111 {
4112 	size_t len;
4113 	int oid[2];
4114 	int error, osrel;
4115 
4116 	if (osreldate != 0)
4117 		return (osreldate);
4118 
4119 	oid[0] = CTL_KERN;
4120 	oid[1] = KERN_OSRELDATE;
4121 	osrel = 0;
4122 	len = sizeof(osrel);
4123 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4124 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4125 		osreldate = osrel;
4126 	return (osreldate);
4127 }
4128 
4129 /*
4130  * No unresolved symbols for rtld.
4131  */
4132 void
4133 __pthread_cxa_finalize(struct dl_phdr_info *a)
4134 {
4135 }
4136