xref: /freebsd/libexec/rtld-elf/rtld.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * Copyright 2014-2017 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Dynamic linker for ELF.
35  *
36  * John Polstra <jdp@polstra.com>.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/mount.h>
44 #include <sys/mman.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 #include <sys/ktrace.h>
50 
51 #include <dlfcn.h>
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 
61 #include "debug.h"
62 #include "rtld.h"
63 #include "libmap.h"
64 #include "paths.h"
65 #include "rtld_tls.h"
66 #include "rtld_printf.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 
70 /* Types. */
71 typedef void (*func_ptr_type)();
72 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
73 
74 /*
75  * Function declarations.
76  */
77 static const char *basename(const char *);
78 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
79     const Elf_Dyn **, const Elf_Dyn **);
80 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
81     const Elf_Dyn *);
82 static void digest_dynamic(Obj_Entry *, int);
83 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
84 static Obj_Entry *dlcheck(void *);
85 static int dlclose_locked(void *, RtldLockState *);
86 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
87     int lo_flags, int mode, RtldLockState *lockstate);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *, int *);
95 static const char *gethints(bool);
96 static void hold_object(Obj_Entry *);
97 static void unhold_object(Obj_Entry *);
98 static void init_dag(Obj_Entry *);
99 static void init_marker(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *, RtldLockState *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static int obj_enforce_relro(Obj_Entry *);
113 static Obj_Entry *obj_from_addr(const void *);
114 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
115 static void objlist_call_init(Objlist *, RtldLockState *);
116 static void objlist_clear(Objlist *);
117 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
118 static void objlist_init(Objlist *);
119 static void objlist_push_head(Objlist *, Obj_Entry *);
120 static void objlist_push_tail(Objlist *, Obj_Entry *);
121 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
122 static void objlist_remove(Objlist *, Obj_Entry *);
123 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
124 static int parse_integer(const char *);
125 static void *path_enumerate(const char *, path_enum_proc, void *);
126 static void print_usage(const char *argv0);
127 static void release_object(Obj_Entry *);
128 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
129     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
130 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
131     int flags, RtldLockState *lockstate);
132 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
133     RtldLockState *);
134 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
135     int flags, RtldLockState *lockstate);
136 static int rtld_dirname(const char *, char *);
137 static int rtld_dirname_abs(const char *, char *);
138 static void *rtld_dlopen(const char *name, int fd, int mode);
139 static void rtld_exit(void);
140 static char *search_library_path(const char *, const char *);
141 static char *search_library_pathfds(const char *, const char *, int *);
142 static const void **get_program_var_addr(const char *, RtldLockState *);
143 static void set_program_var(const char *, const void *);
144 static int symlook_default(SymLook *, const Obj_Entry *refobj);
145 static int symlook_global(SymLook *, DoneList *);
146 static void symlook_init_from_req(SymLook *, const SymLook *);
147 static int symlook_list(SymLook *, const Objlist *, DoneList *);
148 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
149 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
150 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
151 static void trace_loaded_objects(Obj_Entry *);
152 static void unlink_object(Obj_Entry *);
153 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
154 static void unref_dag(Obj_Entry *);
155 static void ref_dag(Obj_Entry *);
156 static char *origin_subst_one(Obj_Entry *, char *, const char *,
157     const char *, bool);
158 static char *origin_subst(Obj_Entry *, char *);
159 static bool obj_resolve_origin(Obj_Entry *obj);
160 static void preinit_main(void);
161 static int  rtld_verify_versions(const Objlist *);
162 static int  rtld_verify_object_versions(Obj_Entry *);
163 static void object_add_name(Obj_Entry *, const char *);
164 static int  object_match_name(const Obj_Entry *, const char *);
165 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
166 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
167     struct dl_phdr_info *phdr_info);
168 static uint32_t gnu_hash(const char *);
169 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
170     const unsigned long);
171 
172 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
173 void _r_debug_postinit(struct link_map *) __noinline __exported;
174 
175 int __sys_openat(int, const char *, int, ...);
176 
177 /*
178  * Data declarations.
179  */
180 static char *error_message;	/* Message for dlerror(), or NULL */
181 struct r_debug r_debug __exported;	/* for GDB; */
182 static bool libmap_disable;	/* Disable libmap */
183 static bool ld_loadfltr;	/* Immediate filters processing */
184 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
185 static bool trust;		/* False for setuid and setgid programs */
186 static bool dangerous_ld_env;	/* True if environment variables have been
187 				   used to affect the libraries loaded */
188 bool ld_bind_not;		/* Disable PLT update */
189 static char *ld_bind_now;	/* Environment variable for immediate binding */
190 static char *ld_debug;		/* Environment variable for debugging */
191 static char *ld_library_path;	/* Environment variable for search path */
192 static char *ld_library_dirs;	/* Environment variable for library descriptors */
193 static char *ld_preload;	/* Environment variable for libraries to
194 				   load first */
195 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
196 static char *ld_tracing;	/* Called from ldd to print libs */
197 static char *ld_utrace;		/* Use utrace() to log events. */
198 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
199 static Obj_Entry *obj_main;	/* The main program shared object */
200 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
201 static unsigned int obj_count;	/* Number of objects in obj_list */
202 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
203 
204 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
205   STAILQ_HEAD_INITIALIZER(list_global);
206 static Objlist list_main =	/* Objects loaded at program startup */
207   STAILQ_HEAD_INITIALIZER(list_main);
208 static Objlist list_fini =	/* Objects needing fini() calls */
209   STAILQ_HEAD_INITIALIZER(list_fini);
210 
211 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
212 
213 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
214 
215 extern Elf_Dyn _DYNAMIC;
216 #pragma weak _DYNAMIC
217 
218 int dlclose(void *) __exported;
219 char *dlerror(void) __exported;
220 void *dlopen(const char *, int) __exported;
221 void *fdlopen(int, int) __exported;
222 void *dlsym(void *, const char *) __exported;
223 dlfunc_t dlfunc(void *, const char *) __exported;
224 void *dlvsym(void *, const char *, const char *) __exported;
225 int dladdr(const void *, Dl_info *) __exported;
226 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
227     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
228 int dlinfo(void *, int , void *) __exported;
229 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
230 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
231 int _rtld_get_stack_prot(void) __exported;
232 int _rtld_is_dlopened(void *) __exported;
233 void _rtld_error(const char *, ...) __exported;
234 
235 int npagesizes, osreldate;
236 size_t *pagesizes;
237 
238 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
239 
240 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
241 static int max_stack_flags;
242 
243 /*
244  * Global declarations normally provided by crt1.  The dynamic linker is
245  * not built with crt1, so we have to provide them ourselves.
246  */
247 char *__progname;
248 char **environ;
249 
250 /*
251  * Used to pass argc, argv to init functions.
252  */
253 int main_argc;
254 char **main_argv;
255 
256 /*
257  * Globals to control TLS allocation.
258  */
259 size_t tls_last_offset;		/* Static TLS offset of last module */
260 size_t tls_last_size;		/* Static TLS size of last module */
261 size_t tls_static_space;	/* Static TLS space allocated */
262 size_t tls_static_max_align;
263 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
264 int tls_max_index = 1;		/* Largest module index allocated */
265 
266 bool ld_library_path_rpath = false;
267 
268 /*
269  * Globals for path names, and such
270  */
271 char *ld_elf_hints_default = _PATH_ELF_HINTS;
272 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
273 char *ld_path_rtld = _PATH_RTLD;
274 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
275 char *ld_env_prefix = LD_;
276 
277 /*
278  * Fill in a DoneList with an allocation large enough to hold all of
279  * the currently-loaded objects.  Keep this as a macro since it calls
280  * alloca and we want that to occur within the scope of the caller.
281  */
282 #define donelist_init(dlp)					\
283     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
284     assert((dlp)->objs != NULL),				\
285     (dlp)->num_alloc = obj_count,				\
286     (dlp)->num_used = 0)
287 
288 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
289 	if (ld_utrace != NULL)					\
290 		ld_utrace_log(e, h, mb, ms, r, n);		\
291 } while (0)
292 
293 static void
294 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
295     int refcnt, const char *name)
296 {
297 	struct utrace_rtld ut;
298 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
299 
300 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
301 	ut.event = event;
302 	ut.handle = handle;
303 	ut.mapbase = mapbase;
304 	ut.mapsize = mapsize;
305 	ut.refcnt = refcnt;
306 	bzero(ut.name, sizeof(ut.name));
307 	if (name)
308 		strlcpy(ut.name, name, sizeof(ut.name));
309 	utrace(&ut, sizeof(ut));
310 }
311 
312 #ifdef RTLD_VARIANT_ENV_NAMES
313 /*
314  * construct the env variable based on the type of binary that's
315  * running.
316  */
317 static inline const char *
318 _LD(const char *var)
319 {
320 	static char buffer[128];
321 
322 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
323 	strlcat(buffer, var, sizeof(buffer));
324 	return (buffer);
325 }
326 #else
327 #define _LD(x)	LD_ x
328 #endif
329 
330 /*
331  * Main entry point for dynamic linking.  The first argument is the
332  * stack pointer.  The stack is expected to be laid out as described
333  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
334  * Specifically, the stack pointer points to a word containing
335  * ARGC.  Following that in the stack is a null-terminated sequence
336  * of pointers to argument strings.  Then comes a null-terminated
337  * sequence of pointers to environment strings.  Finally, there is a
338  * sequence of "auxiliary vector" entries.
339  *
340  * The second argument points to a place to store the dynamic linker's
341  * exit procedure pointer and the third to a place to store the main
342  * program's object.
343  *
344  * The return value is the main program's entry point.
345  */
346 func_ptr_type
347 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
348 {
349     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
350     Objlist_Entry *entry;
351     Obj_Entry *last_interposer, *obj, *preload_tail;
352     const Elf_Phdr *phdr;
353     Objlist initlist;
354     RtldLockState lockstate;
355     struct stat st;
356     Elf_Addr *argcp;
357     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
358     caddr_t imgentry;
359     char buf[MAXPATHLEN];
360     int argc, fd, i, mib[2], phnum, rtld_argc;
361     size_t len;
362     bool dir_enable, explicit_fd, search_in_path;
363 
364     /*
365      * On entry, the dynamic linker itself has not been relocated yet.
366      * Be very careful not to reference any global data until after
367      * init_rtld has returned.  It is OK to reference file-scope statics
368      * and string constants, and to call static and global functions.
369      */
370 
371     /* Find the auxiliary vector on the stack. */
372     argcp = sp;
373     argc = *sp++;
374     argv = (char **) sp;
375     sp += argc + 1;	/* Skip over arguments and NULL terminator */
376     env = (char **) sp;
377     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
378 	;
379     aux = (Elf_Auxinfo *) sp;
380 
381     /* Digest the auxiliary vector. */
382     for (i = 0;  i < AT_COUNT;  i++)
383 	aux_info[i] = NULL;
384     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
385 	if (auxp->a_type < AT_COUNT)
386 	    aux_info[auxp->a_type] = auxp;
387     }
388 
389     /* Initialize and relocate ourselves. */
390     assert(aux_info[AT_BASE] != NULL);
391     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
392 
393     __progname = obj_rtld.path;
394     argv0 = argv[0] != NULL ? argv[0] : "(null)";
395     environ = env;
396     main_argc = argc;
397     main_argv = argv;
398 
399     if (aux_info[AT_CANARY] != NULL &&
400 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
401 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
402 	    if (i > sizeof(__stack_chk_guard))
403 		    i = sizeof(__stack_chk_guard);
404 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
405     } else {
406 	mib[0] = CTL_KERN;
407 	mib[1] = KERN_ARND;
408 
409 	len = sizeof(__stack_chk_guard);
410 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
411 	    len != sizeof(__stack_chk_guard)) {
412 		/* If sysctl was unsuccessful, use the "terminator canary". */
413 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
414 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
415 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
416 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
417 	}
418     }
419 
420     trust = !issetugid();
421 
422     md_abi_variant_hook(aux_info);
423 
424     fd = -1;
425     if (aux_info[AT_EXECFD] != NULL) {
426 	fd = aux_info[AT_EXECFD]->a_un.a_val;
427     } else {
428 	assert(aux_info[AT_PHDR] != NULL);
429 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
430 	if (phdr == obj_rtld.phdr) {
431 	    if (!trust) {
432 		rtld_printf("Tainted process refusing to run binary %s\n",
433 		  argv0);
434 		rtld_die();
435 	    }
436 	    dbg("opening main program in direct exec mode");
437 	    if (argc >= 2) {
438 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
439 		argv0 = argv[rtld_argc];
440 		explicit_fd = (fd != -1);
441 		if (!explicit_fd)
442 		    fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
443 		if (fd == -1) {
444 		    rtld_printf("Opening %s: %s\n", argv0,
445 		      rtld_strerror(errno));
446 		    rtld_die();
447 		}
448 		if (fstat(fd, &st) == -1) {
449 		    _rtld_error("failed to fstat FD %d (%s): %s", fd,
450 		      explicit_fd ? "user-provided descriptor" : argv0,
451 		      rtld_strerror(errno));
452 		    rtld_die();
453 		}
454 
455 		/*
456 		 * Rough emulation of the permission checks done by
457 		 * execve(2), only Unix DACs are checked, ACLs are
458 		 * ignored.  Preserve the semantic of disabling owner
459 		 * to execute if owner x bit is cleared, even if
460 		 * others x bit is enabled.
461 		 * mmap(2) does not allow to mmap with PROT_EXEC if
462 		 * binary' file comes from noexec mount.  We cannot
463 		 * set VV_TEXT on the binary.
464 		 */
465 		dir_enable = false;
466 		if (st.st_uid == geteuid()) {
467 		    if ((st.st_mode & S_IXUSR) != 0)
468 			dir_enable = true;
469 		} else if (st.st_gid == getegid()) {
470 		    if ((st.st_mode & S_IXGRP) != 0)
471 			dir_enable = true;
472 		} else if ((st.st_mode & S_IXOTH) != 0) {
473 		    dir_enable = true;
474 		}
475 		if (!dir_enable) {
476 		    rtld_printf("No execute permission for binary %s\n",
477 		      argv0);
478 		    rtld_die();
479 		}
480 
481 		/*
482 		 * For direct exec mode, argv[0] is the interpreter
483 		 * name, we must remove it and shift arguments left
484 		 * before invoking binary main.  Since stack layout
485 		 * places environment pointers and aux vectors right
486 		 * after the terminating NULL, we must shift
487 		 * environment and aux as well.
488 		 */
489 		main_argc = argc - rtld_argc;
490 		for (i = 0; i <= main_argc; i++)
491 		    argv[i] = argv[i + rtld_argc];
492 		*argcp -= rtld_argc;
493 		environ = env = envp = argv + main_argc + 1;
494 		do {
495 		    *envp = *(envp + rtld_argc);
496 		    envp++;
497 		} while (*envp != NULL);
498 		aux = auxp = (Elf_Auxinfo *)envp;
499 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
500 		for (;; auxp++, auxpf++) {
501 		    *auxp = *auxpf;
502 		    if (auxp->a_type == AT_NULL)
503 			    break;
504 		}
505 	    } else {
506 		rtld_printf("no binary\n");
507 		rtld_die();
508 	    }
509 	}
510     }
511 
512     ld_bind_now = getenv(_LD("BIND_NOW"));
513 
514     /*
515      * If the process is tainted, then we un-set the dangerous environment
516      * variables.  The process will be marked as tainted until setuid(2)
517      * is called.  If any child process calls setuid(2) we do not want any
518      * future processes to honor the potentially un-safe variables.
519      */
520     if (!trust) {
521 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
522 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
523 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
524 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
525 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
526 		_rtld_error("environment corrupt; aborting");
527 		rtld_die();
528 	}
529     }
530     ld_debug = getenv(_LD("DEBUG"));
531     if (ld_bind_now == NULL)
532 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
533     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
534     libmap_override = getenv(_LD("LIBMAP"));
535     ld_library_path = getenv(_LD("LIBRARY_PATH"));
536     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
537     ld_preload = getenv(_LD("PRELOAD"));
538     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
539     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
540     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
541     if (library_path_rpath != NULL) {
542 	    if (library_path_rpath[0] == 'y' ||
543 		library_path_rpath[0] == 'Y' ||
544 		library_path_rpath[0] == '1')
545 		    ld_library_path_rpath = true;
546 	    else
547 		    ld_library_path_rpath = false;
548     }
549     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
550 	(ld_library_path != NULL) || (ld_preload != NULL) ||
551 	(ld_elf_hints_path != NULL) || ld_loadfltr;
552     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
553     ld_utrace = getenv(_LD("UTRACE"));
554 
555     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
556 	ld_elf_hints_path = ld_elf_hints_default;
557 
558     if (ld_debug != NULL && *ld_debug != '\0')
559 	debug = 1;
560     dbg("%s is initialized, base address = %p", __progname,
561 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
562     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
563     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
564 
565     dbg("initializing thread locks");
566     lockdflt_init();
567 
568     /*
569      * Load the main program, or process its program header if it is
570      * already loaded.
571      */
572     if (fd != -1) {	/* Load the main program. */
573 	dbg("loading main program");
574 	obj_main = map_object(fd, argv0, NULL);
575 	close(fd);
576 	if (obj_main == NULL)
577 	    rtld_die();
578 	max_stack_flags = obj->stack_flags;
579     } else {				/* Main program already loaded. */
580 	dbg("processing main program's program header");
581 	assert(aux_info[AT_PHDR] != NULL);
582 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
583 	assert(aux_info[AT_PHNUM] != NULL);
584 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
585 	assert(aux_info[AT_PHENT] != NULL);
586 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
587 	assert(aux_info[AT_ENTRY] != NULL);
588 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
589 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
590 	    rtld_die();
591     }
592 
593     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
594 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
595 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
596 	    if (kexecpath[0] == '/')
597 		    obj_main->path = kexecpath;
598 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
599 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
600 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
601 		    obj_main->path = xstrdup(argv0);
602 	    else
603 		    obj_main->path = xstrdup(buf);
604     } else {
605 	    dbg("No AT_EXECPATH or direct exec");
606 	    obj_main->path = xstrdup(argv0);
607     }
608     dbg("obj_main path %s", obj_main->path);
609     obj_main->mainprog = true;
610 
611     if (aux_info[AT_STACKPROT] != NULL &&
612       aux_info[AT_STACKPROT]->a_un.a_val != 0)
613 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
614 
615 #ifndef COMPAT_32BIT
616     /*
617      * Get the actual dynamic linker pathname from the executable if
618      * possible.  (It should always be possible.)  That ensures that
619      * gdb will find the right dynamic linker even if a non-standard
620      * one is being used.
621      */
622     if (obj_main->interp != NULL &&
623       strcmp(obj_main->interp, obj_rtld.path) != 0) {
624 	free(obj_rtld.path);
625 	obj_rtld.path = xstrdup(obj_main->interp);
626         __progname = obj_rtld.path;
627     }
628 #endif
629 
630     digest_dynamic(obj_main, 0);
631     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
632 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
633 	obj_main->dynsymcount);
634 
635     linkmap_add(obj_main);
636     linkmap_add(&obj_rtld);
637 
638     /* Link the main program into the list of objects. */
639     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
640     obj_count++;
641     obj_loads++;
642 
643     /* Initialize a fake symbol for resolving undefined weak references. */
644     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
645     sym_zero.st_shndx = SHN_UNDEF;
646     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
647 
648     if (!libmap_disable)
649         libmap_disable = (bool)lm_init(libmap_override);
650 
651     dbg("loading LD_PRELOAD libraries");
652     if (load_preload_objects() == -1)
653 	rtld_die();
654     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
655 
656     dbg("loading needed objects");
657     if (load_needed_objects(obj_main, 0) == -1)
658 	rtld_die();
659 
660     /* Make a list of all objects loaded at startup. */
661     last_interposer = obj_main;
662     TAILQ_FOREACH(obj, &obj_list, next) {
663 	if (obj->marker)
664 	    continue;
665 	if (obj->z_interpose && obj != obj_main) {
666 	    objlist_put_after(&list_main, last_interposer, obj);
667 	    last_interposer = obj;
668 	} else {
669 	    objlist_push_tail(&list_main, obj);
670 	}
671     	obj->refcount++;
672     }
673 
674     dbg("checking for required versions");
675     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
676 	rtld_die();
677 
678     if (ld_tracing) {		/* We're done */
679 	trace_loaded_objects(obj_main);
680 	exit(0);
681     }
682 
683     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
684        dump_relocations(obj_main);
685        exit (0);
686     }
687 
688     /*
689      * Processing tls relocations requires having the tls offsets
690      * initialized.  Prepare offsets before starting initial
691      * relocation processing.
692      */
693     dbg("initializing initial thread local storage offsets");
694     STAILQ_FOREACH(entry, &list_main, link) {
695 	/*
696 	 * Allocate all the initial objects out of the static TLS
697 	 * block even if they didn't ask for it.
698 	 */
699 	allocate_tls_offset(entry->obj);
700     }
701 
702     if (relocate_objects(obj_main,
703       ld_bind_now != NULL && *ld_bind_now != '\0',
704       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
705 	rtld_die();
706 
707     dbg("doing copy relocations");
708     if (do_copy_relocations(obj_main) == -1)
709 	rtld_die();
710 
711     dbg("enforcing main obj relro");
712     if (obj_enforce_relro(obj_main) == -1)
713 	rtld_die();
714 
715     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
716        dump_relocations(obj_main);
717        exit (0);
718     }
719 
720     /*
721      * Setup TLS for main thread.  This must be done after the
722      * relocations are processed, since tls initialization section
723      * might be the subject for relocations.
724      */
725     dbg("initializing initial thread local storage");
726     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
727 
728     dbg("initializing key program variables");
729     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
730     set_program_var("environ", env);
731     set_program_var("__elf_aux_vector", aux);
732 
733     /* Make a list of init functions to call. */
734     objlist_init(&initlist);
735     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
736       preload_tail, &initlist);
737 
738     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
739 
740     map_stacks_exec(NULL);
741     ifunc_init(aux);
742 
743     dbg("resolving ifuncs");
744     if (resolve_objects_ifunc(obj_main,
745       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
746       NULL) == -1)
747 	rtld_die();
748 
749     if (!obj_main->crt_no_init) {
750 	/*
751 	 * Make sure we don't call the main program's init and fini
752 	 * functions for binaries linked with old crt1 which calls
753 	 * _init itself.
754 	 */
755 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
756 	obj_main->preinit_array = obj_main->init_array =
757 	    obj_main->fini_array = (Elf_Addr)NULL;
758     }
759 
760     wlock_acquire(rtld_bind_lock, &lockstate);
761     if (obj_main->crt_no_init)
762 	preinit_main();
763     objlist_call_init(&initlist, &lockstate);
764     _r_debug_postinit(&obj_main->linkmap);
765     objlist_clear(&initlist);
766     dbg("loading filtees");
767     TAILQ_FOREACH(obj, &obj_list, next) {
768 	if (obj->marker)
769 	    continue;
770 	if (ld_loadfltr || obj->z_loadfltr)
771 	    load_filtees(obj, 0, &lockstate);
772     }
773     lock_release(rtld_bind_lock, &lockstate);
774 
775     dbg("transferring control to program entry point = %p", obj_main->entry);
776 
777     /* Return the exit procedure and the program entry point. */
778     *exit_proc = rtld_exit;
779     *objp = obj_main;
780     return (func_ptr_type) obj_main->entry;
781 }
782 
783 void *
784 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
785 {
786 	void *ptr;
787 	Elf_Addr target;
788 
789 	ptr = (void *)make_function_pointer(def, obj);
790 	target = call_ifunc_resolver(ptr);
791 	return ((void *)target);
792 }
793 
794 /*
795  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
796  * Changes to this function should be applied there as well.
797  */
798 Elf_Addr
799 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
800 {
801     const Elf_Rel *rel;
802     const Elf_Sym *def;
803     const Obj_Entry *defobj;
804     Elf_Addr *where;
805     Elf_Addr target;
806     RtldLockState lockstate;
807 
808     rlock_acquire(rtld_bind_lock, &lockstate);
809     if (sigsetjmp(lockstate.env, 0) != 0)
810 	    lock_upgrade(rtld_bind_lock, &lockstate);
811     if (obj->pltrel)
812 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
813     else
814 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
815 
816     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
817     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
818 	NULL, &lockstate);
819     if (def == NULL)
820 	rtld_die();
821     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
822 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
823     else
824 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
825 
826     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
827       defobj->strtab + def->st_name, basename(obj->path),
828       (void *)target, basename(defobj->path));
829 
830     /*
831      * Write the new contents for the jmpslot. Note that depending on
832      * architecture, the value which we need to return back to the
833      * lazy binding trampoline may or may not be the target
834      * address. The value returned from reloc_jmpslot() is the value
835      * that the trampoline needs.
836      */
837     target = reloc_jmpslot(where, target, defobj, obj, rel);
838     lock_release(rtld_bind_lock, &lockstate);
839     return target;
840 }
841 
842 /*
843  * Error reporting function.  Use it like printf.  If formats the message
844  * into a buffer, and sets things up so that the next call to dlerror()
845  * will return the message.
846  */
847 void
848 _rtld_error(const char *fmt, ...)
849 {
850     static char buf[512];
851     va_list ap;
852 
853     va_start(ap, fmt);
854     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
855     error_message = buf;
856     va_end(ap);
857     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
858 }
859 
860 /*
861  * Return a dynamically-allocated copy of the current error message, if any.
862  */
863 static char *
864 errmsg_save(void)
865 {
866     return error_message == NULL ? NULL : xstrdup(error_message);
867 }
868 
869 /*
870  * Restore the current error message from a copy which was previously saved
871  * by errmsg_save().  The copy is freed.
872  */
873 static void
874 errmsg_restore(char *saved_msg)
875 {
876     if (saved_msg == NULL)
877 	error_message = NULL;
878     else {
879 	_rtld_error("%s", saved_msg);
880 	free(saved_msg);
881     }
882 }
883 
884 static const char *
885 basename(const char *name)
886 {
887     const char *p = strrchr(name, '/');
888     return p != NULL ? p + 1 : name;
889 }
890 
891 static struct utsname uts;
892 
893 static char *
894 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
895     const char *subst, bool may_free)
896 {
897 	char *p, *p1, *res, *resp;
898 	int subst_len, kw_len, subst_count, old_len, new_len;
899 
900 	kw_len = strlen(kw);
901 
902 	/*
903 	 * First, count the number of the keyword occurrences, to
904 	 * preallocate the final string.
905 	 */
906 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
907 		p1 = strstr(p, kw);
908 		if (p1 == NULL)
909 			break;
910 	}
911 
912 	/*
913 	 * If the keyword is not found, just return.
914 	 *
915 	 * Return non-substituted string if resolution failed.  We
916 	 * cannot do anything more reasonable, the failure mode of the
917 	 * caller is unresolved library anyway.
918 	 */
919 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
920 		return (may_free ? real : xstrdup(real));
921 	if (obj != NULL)
922 		subst = obj->origin_path;
923 
924 	/*
925 	 * There is indeed something to substitute.  Calculate the
926 	 * length of the resulting string, and allocate it.
927 	 */
928 	subst_len = strlen(subst);
929 	old_len = strlen(real);
930 	new_len = old_len + (subst_len - kw_len) * subst_count;
931 	res = xmalloc(new_len + 1);
932 
933 	/*
934 	 * Now, execute the substitution loop.
935 	 */
936 	for (p = real, resp = res, *resp = '\0';;) {
937 		p1 = strstr(p, kw);
938 		if (p1 != NULL) {
939 			/* Copy the prefix before keyword. */
940 			memcpy(resp, p, p1 - p);
941 			resp += p1 - p;
942 			/* Keyword replacement. */
943 			memcpy(resp, subst, subst_len);
944 			resp += subst_len;
945 			*resp = '\0';
946 			p = p1 + kw_len;
947 		} else
948 			break;
949 	}
950 
951 	/* Copy to the end of string and finish. */
952 	strcat(resp, p);
953 	if (may_free)
954 		free(real);
955 	return (res);
956 }
957 
958 static char *
959 origin_subst(Obj_Entry *obj, char *real)
960 {
961 	char *res1, *res2, *res3, *res4;
962 
963 	if (obj == NULL || !trust)
964 		return (xstrdup(real));
965 	if (uts.sysname[0] == '\0') {
966 		if (uname(&uts) != 0) {
967 			_rtld_error("utsname failed: %d", errno);
968 			return (NULL);
969 		}
970 	}
971 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
972 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
973 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
974 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
975 	return (res4);
976 }
977 
978 void
979 rtld_die(void)
980 {
981     const char *msg = dlerror();
982 
983     if (msg == NULL)
984 	msg = "Fatal error";
985     rtld_fdputstr(STDERR_FILENO, msg);
986     rtld_fdputchar(STDERR_FILENO, '\n');
987     _exit(1);
988 }
989 
990 /*
991  * Process a shared object's DYNAMIC section, and save the important
992  * information in its Obj_Entry structure.
993  */
994 static void
995 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
996     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
997 {
998     const Elf_Dyn *dynp;
999     Needed_Entry **needed_tail = &obj->needed;
1000     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1001     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1002     const Elf_Hashelt *hashtab;
1003     const Elf32_Word *hashval;
1004     Elf32_Word bkt, nmaskwords;
1005     int bloom_size32;
1006     int plttype = DT_REL;
1007 
1008     *dyn_rpath = NULL;
1009     *dyn_soname = NULL;
1010     *dyn_runpath = NULL;
1011 
1012     obj->bind_now = false;
1013     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1014 	switch (dynp->d_tag) {
1015 
1016 	case DT_REL:
1017 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1018 	    break;
1019 
1020 	case DT_RELSZ:
1021 	    obj->relsize = dynp->d_un.d_val;
1022 	    break;
1023 
1024 	case DT_RELENT:
1025 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1026 	    break;
1027 
1028 	case DT_JMPREL:
1029 	    obj->pltrel = (const Elf_Rel *)
1030 	      (obj->relocbase + dynp->d_un.d_ptr);
1031 	    break;
1032 
1033 	case DT_PLTRELSZ:
1034 	    obj->pltrelsize = dynp->d_un.d_val;
1035 	    break;
1036 
1037 	case DT_RELA:
1038 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1039 	    break;
1040 
1041 	case DT_RELASZ:
1042 	    obj->relasize = dynp->d_un.d_val;
1043 	    break;
1044 
1045 	case DT_RELAENT:
1046 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1047 	    break;
1048 
1049 	case DT_PLTREL:
1050 	    plttype = dynp->d_un.d_val;
1051 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1052 	    break;
1053 
1054 	case DT_SYMTAB:
1055 	    obj->symtab = (const Elf_Sym *)
1056 	      (obj->relocbase + dynp->d_un.d_ptr);
1057 	    break;
1058 
1059 	case DT_SYMENT:
1060 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1061 	    break;
1062 
1063 	case DT_STRTAB:
1064 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1065 	    break;
1066 
1067 	case DT_STRSZ:
1068 	    obj->strsize = dynp->d_un.d_val;
1069 	    break;
1070 
1071 	case DT_VERNEED:
1072 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1073 		dynp->d_un.d_val);
1074 	    break;
1075 
1076 	case DT_VERNEEDNUM:
1077 	    obj->verneednum = dynp->d_un.d_val;
1078 	    break;
1079 
1080 	case DT_VERDEF:
1081 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1082 		dynp->d_un.d_val);
1083 	    break;
1084 
1085 	case DT_VERDEFNUM:
1086 	    obj->verdefnum = dynp->d_un.d_val;
1087 	    break;
1088 
1089 	case DT_VERSYM:
1090 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1091 		dynp->d_un.d_val);
1092 	    break;
1093 
1094 	case DT_HASH:
1095 	    {
1096 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1097 		    dynp->d_un.d_ptr);
1098 		obj->nbuckets = hashtab[0];
1099 		obj->nchains = hashtab[1];
1100 		obj->buckets = hashtab + 2;
1101 		obj->chains = obj->buckets + obj->nbuckets;
1102 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1103 		  obj->buckets != NULL;
1104 	    }
1105 	    break;
1106 
1107 	case DT_GNU_HASH:
1108 	    {
1109 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1110 		    dynp->d_un.d_ptr);
1111 		obj->nbuckets_gnu = hashtab[0];
1112 		obj->symndx_gnu = hashtab[1];
1113 		nmaskwords = hashtab[2];
1114 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1115 		obj->maskwords_bm_gnu = nmaskwords - 1;
1116 		obj->shift2_gnu = hashtab[3];
1117 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1118 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1119 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1120 		  obj->symndx_gnu;
1121 		/* Number of bitmask words is required to be power of 2 */
1122 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1123 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1124 	    }
1125 	    break;
1126 
1127 	case DT_NEEDED:
1128 	    if (!obj->rtld) {
1129 		Needed_Entry *nep = NEW(Needed_Entry);
1130 		nep->name = dynp->d_un.d_val;
1131 		nep->obj = NULL;
1132 		nep->next = NULL;
1133 
1134 		*needed_tail = nep;
1135 		needed_tail = &nep->next;
1136 	    }
1137 	    break;
1138 
1139 	case DT_FILTER:
1140 	    if (!obj->rtld) {
1141 		Needed_Entry *nep = NEW(Needed_Entry);
1142 		nep->name = dynp->d_un.d_val;
1143 		nep->obj = NULL;
1144 		nep->next = NULL;
1145 
1146 		*needed_filtees_tail = nep;
1147 		needed_filtees_tail = &nep->next;
1148 	    }
1149 	    break;
1150 
1151 	case DT_AUXILIARY:
1152 	    if (!obj->rtld) {
1153 		Needed_Entry *nep = NEW(Needed_Entry);
1154 		nep->name = dynp->d_un.d_val;
1155 		nep->obj = NULL;
1156 		nep->next = NULL;
1157 
1158 		*needed_aux_filtees_tail = nep;
1159 		needed_aux_filtees_tail = &nep->next;
1160 	    }
1161 	    break;
1162 
1163 	case DT_PLTGOT:
1164 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1165 	    break;
1166 
1167 	case DT_TEXTREL:
1168 	    obj->textrel = true;
1169 	    break;
1170 
1171 	case DT_SYMBOLIC:
1172 	    obj->symbolic = true;
1173 	    break;
1174 
1175 	case DT_RPATH:
1176 	    /*
1177 	     * We have to wait until later to process this, because we
1178 	     * might not have gotten the address of the string table yet.
1179 	     */
1180 	    *dyn_rpath = dynp;
1181 	    break;
1182 
1183 	case DT_SONAME:
1184 	    *dyn_soname = dynp;
1185 	    break;
1186 
1187 	case DT_RUNPATH:
1188 	    *dyn_runpath = dynp;
1189 	    break;
1190 
1191 	case DT_INIT:
1192 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1193 	    break;
1194 
1195 	case DT_PREINIT_ARRAY:
1196 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1197 	    break;
1198 
1199 	case DT_PREINIT_ARRAYSZ:
1200 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1201 	    break;
1202 
1203 	case DT_INIT_ARRAY:
1204 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1205 	    break;
1206 
1207 	case DT_INIT_ARRAYSZ:
1208 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1209 	    break;
1210 
1211 	case DT_FINI:
1212 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1213 	    break;
1214 
1215 	case DT_FINI_ARRAY:
1216 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1217 	    break;
1218 
1219 	case DT_FINI_ARRAYSZ:
1220 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1221 	    break;
1222 
1223 	/*
1224 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1225 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1226 	 */
1227 
1228 #ifndef __mips__
1229 	case DT_DEBUG:
1230 	    if (!early)
1231 		dbg("Filling in DT_DEBUG entry");
1232 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1233 	    break;
1234 #endif
1235 
1236 	case DT_FLAGS:
1237 		if (dynp->d_un.d_val & DF_ORIGIN)
1238 		    obj->z_origin = true;
1239 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1240 		    obj->symbolic = true;
1241 		if (dynp->d_un.d_val & DF_TEXTREL)
1242 		    obj->textrel = true;
1243 		if (dynp->d_un.d_val & DF_BIND_NOW)
1244 		    obj->bind_now = true;
1245 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1246 		    ;*/
1247 	    break;
1248 #ifdef __mips__
1249 	case DT_MIPS_LOCAL_GOTNO:
1250 		obj->local_gotno = dynp->d_un.d_val;
1251 		break;
1252 
1253 	case DT_MIPS_SYMTABNO:
1254 		obj->symtabno = dynp->d_un.d_val;
1255 		break;
1256 
1257 	case DT_MIPS_GOTSYM:
1258 		obj->gotsym = dynp->d_un.d_val;
1259 		break;
1260 
1261 	case DT_MIPS_RLD_MAP:
1262 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1263 		break;
1264 #endif
1265 
1266 #ifdef __powerpc64__
1267 	case DT_PPC64_GLINK:
1268 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1269 		break;
1270 #endif
1271 
1272 	case DT_FLAGS_1:
1273 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1274 		    obj->z_noopen = true;
1275 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1276 		    obj->z_origin = true;
1277 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1278 		    obj->z_global = true;
1279 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1280 		    obj->bind_now = true;
1281 		if (dynp->d_un.d_val & DF_1_NODELETE)
1282 		    obj->z_nodelete = true;
1283 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1284 		    obj->z_loadfltr = true;
1285 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1286 		    obj->z_interpose = true;
1287 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1288 		    obj->z_nodeflib = true;
1289 	    break;
1290 
1291 	default:
1292 	    if (!early) {
1293 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1294 		    (long)dynp->d_tag);
1295 	    }
1296 	    break;
1297 	}
1298     }
1299 
1300     obj->traced = false;
1301 
1302     if (plttype == DT_RELA) {
1303 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1304 	obj->pltrel = NULL;
1305 	obj->pltrelasize = obj->pltrelsize;
1306 	obj->pltrelsize = 0;
1307     }
1308 
1309     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1310     if (obj->valid_hash_sysv)
1311 	obj->dynsymcount = obj->nchains;
1312     else if (obj->valid_hash_gnu) {
1313 	obj->dynsymcount = 0;
1314 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1315 	    if (obj->buckets_gnu[bkt] == 0)
1316 		continue;
1317 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1318 	    do
1319 		obj->dynsymcount++;
1320 	    while ((*hashval++ & 1u) == 0);
1321 	}
1322 	obj->dynsymcount += obj->symndx_gnu;
1323     }
1324 }
1325 
1326 static bool
1327 obj_resolve_origin(Obj_Entry *obj)
1328 {
1329 
1330 	if (obj->origin_path != NULL)
1331 		return (true);
1332 	obj->origin_path = xmalloc(PATH_MAX);
1333 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1334 }
1335 
1336 static void
1337 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1338     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1339 {
1340 
1341 	if (obj->z_origin && !obj_resolve_origin(obj))
1342 		rtld_die();
1343 
1344 	if (dyn_runpath != NULL) {
1345 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1346 		obj->runpath = origin_subst(obj, obj->runpath);
1347 	} else if (dyn_rpath != NULL) {
1348 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1349 		obj->rpath = origin_subst(obj, obj->rpath);
1350 	}
1351 	if (dyn_soname != NULL)
1352 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1353 }
1354 
1355 static void
1356 digest_dynamic(Obj_Entry *obj, int early)
1357 {
1358 	const Elf_Dyn *dyn_rpath;
1359 	const Elf_Dyn *dyn_soname;
1360 	const Elf_Dyn *dyn_runpath;
1361 
1362 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1363 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1364 }
1365 
1366 /*
1367  * Process a shared object's program header.  This is used only for the
1368  * main program, when the kernel has already loaded the main program
1369  * into memory before calling the dynamic linker.  It creates and
1370  * returns an Obj_Entry structure.
1371  */
1372 static Obj_Entry *
1373 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1374 {
1375     Obj_Entry *obj;
1376     const Elf_Phdr *phlimit = phdr + phnum;
1377     const Elf_Phdr *ph;
1378     Elf_Addr note_start, note_end;
1379     int nsegs = 0;
1380 
1381     obj = obj_new();
1382     for (ph = phdr;  ph < phlimit;  ph++) {
1383 	if (ph->p_type != PT_PHDR)
1384 	    continue;
1385 
1386 	obj->phdr = phdr;
1387 	obj->phsize = ph->p_memsz;
1388 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1389 	break;
1390     }
1391 
1392     obj->stack_flags = PF_X | PF_R | PF_W;
1393 
1394     for (ph = phdr;  ph < phlimit;  ph++) {
1395 	switch (ph->p_type) {
1396 
1397 	case PT_INTERP:
1398 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1399 	    break;
1400 
1401 	case PT_LOAD:
1402 	    if (nsegs == 0) {	/* First load segment */
1403 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1404 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1405 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1406 		  obj->vaddrbase;
1407 	    } else {		/* Last load segment */
1408 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1409 		  obj->vaddrbase;
1410 	    }
1411 	    nsegs++;
1412 	    break;
1413 
1414 	case PT_DYNAMIC:
1415 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1416 	    break;
1417 
1418 	case PT_TLS:
1419 	    obj->tlsindex = 1;
1420 	    obj->tlssize = ph->p_memsz;
1421 	    obj->tlsalign = ph->p_align;
1422 	    obj->tlsinitsize = ph->p_filesz;
1423 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1424 	    break;
1425 
1426 	case PT_GNU_STACK:
1427 	    obj->stack_flags = ph->p_flags;
1428 	    break;
1429 
1430 	case PT_GNU_RELRO:
1431 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1432 	    obj->relro_size = round_page(ph->p_memsz);
1433 	    break;
1434 
1435 	case PT_NOTE:
1436 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1437 	    note_end = note_start + ph->p_filesz;
1438 	    digest_notes(obj, note_start, note_end);
1439 	    break;
1440 	}
1441     }
1442     if (nsegs < 1) {
1443 	_rtld_error("%s: too few PT_LOAD segments", path);
1444 	return NULL;
1445     }
1446 
1447     obj->entry = entry;
1448     return obj;
1449 }
1450 
1451 void
1452 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1453 {
1454 	const Elf_Note *note;
1455 	const char *note_name;
1456 	uintptr_t p;
1457 
1458 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1459 	    note = (const Elf_Note *)((const char *)(note + 1) +
1460 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1461 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1462 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1463 		    note->n_descsz != sizeof(int32_t))
1464 			continue;
1465 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1466 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1467 			continue;
1468 		note_name = (const char *)(note + 1);
1469 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1470 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1471 			continue;
1472 		switch (note->n_type) {
1473 		case NT_FREEBSD_ABI_TAG:
1474 			/* FreeBSD osrel note */
1475 			p = (uintptr_t)(note + 1);
1476 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1477 			obj->osrel = *(const int32_t *)(p);
1478 			dbg("note osrel %d", obj->osrel);
1479 			break;
1480 		case NT_FREEBSD_NOINIT_TAG:
1481 			/* FreeBSD 'crt does not call init' note */
1482 			obj->crt_no_init = true;
1483 			dbg("note crt_no_init");
1484 			break;
1485 		}
1486 	}
1487 }
1488 
1489 static Obj_Entry *
1490 dlcheck(void *handle)
1491 {
1492     Obj_Entry *obj;
1493 
1494     TAILQ_FOREACH(obj, &obj_list, next) {
1495 	if (obj == (Obj_Entry *) handle)
1496 	    break;
1497     }
1498 
1499     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1500 	_rtld_error("Invalid shared object handle %p", handle);
1501 	return NULL;
1502     }
1503     return obj;
1504 }
1505 
1506 /*
1507  * If the given object is already in the donelist, return true.  Otherwise
1508  * add the object to the list and return false.
1509  */
1510 static bool
1511 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1512 {
1513     unsigned int i;
1514 
1515     for (i = 0;  i < dlp->num_used;  i++)
1516 	if (dlp->objs[i] == obj)
1517 	    return true;
1518     /*
1519      * Our donelist allocation should always be sufficient.  But if
1520      * our threads locking isn't working properly, more shared objects
1521      * could have been loaded since we allocated the list.  That should
1522      * never happen, but we'll handle it properly just in case it does.
1523      */
1524     if (dlp->num_used < dlp->num_alloc)
1525 	dlp->objs[dlp->num_used++] = obj;
1526     return false;
1527 }
1528 
1529 /*
1530  * Hash function for symbol table lookup.  Don't even think about changing
1531  * this.  It is specified by the System V ABI.
1532  */
1533 unsigned long
1534 elf_hash(const char *name)
1535 {
1536     const unsigned char *p = (const unsigned char *) name;
1537     unsigned long h = 0;
1538     unsigned long g;
1539 
1540     while (*p != '\0') {
1541 	h = (h << 4) + *p++;
1542 	if ((g = h & 0xf0000000) != 0)
1543 	    h ^= g >> 24;
1544 	h &= ~g;
1545     }
1546     return h;
1547 }
1548 
1549 /*
1550  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1551  * unsigned in case it's implemented with a wider type.
1552  */
1553 static uint32_t
1554 gnu_hash(const char *s)
1555 {
1556 	uint32_t h;
1557 	unsigned char c;
1558 
1559 	h = 5381;
1560 	for (c = *s; c != '\0'; c = *++s)
1561 		h = h * 33 + c;
1562 	return (h & 0xffffffff);
1563 }
1564 
1565 
1566 /*
1567  * Find the library with the given name, and return its full pathname.
1568  * The returned string is dynamically allocated.  Generates an error
1569  * message and returns NULL if the library cannot be found.
1570  *
1571  * If the second argument is non-NULL, then it refers to an already-
1572  * loaded shared object, whose library search path will be searched.
1573  *
1574  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1575  * descriptor (which is close-on-exec) will be passed out via the third
1576  * argument.
1577  *
1578  * The search order is:
1579  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1580  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1581  *   LD_LIBRARY_PATH
1582  *   DT_RUNPATH in the referencing file
1583  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1584  *	 from list)
1585  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1586  *
1587  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1588  */
1589 static char *
1590 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1591 {
1592     char *pathname;
1593     char *name;
1594     bool nodeflib, objgiven;
1595 
1596     objgiven = refobj != NULL;
1597     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1598 	if (xname[0] != '/' && !trust) {
1599 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1600 	      xname);
1601 	    return NULL;
1602 	}
1603 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1604 	  __DECONST(char *, xname)));
1605     }
1606 
1607     if (libmap_disable || !objgiven ||
1608 	(name = lm_find(refobj->path, xname)) == NULL)
1609 	name = (char *)xname;
1610 
1611     dbg(" Searching for \"%s\"", name);
1612 
1613     /*
1614      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1615      * back to pre-conforming behaviour if user requested so with
1616      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1617      * nodeflib.
1618      */
1619     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1620 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1621 	  (refobj != NULL &&
1622 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1623 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1624           (pathname = search_library_path(name, gethints(false))) != NULL ||
1625 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1626 	    return (pathname);
1627     } else {
1628 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1629 	if ((objgiven &&
1630 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1631 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1632 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1633 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1634 	  (objgiven &&
1635 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1636 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1637 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1638 	  (objgiven && !nodeflib &&
1639 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1640 	    return (pathname);
1641     }
1642 
1643     if (objgiven && refobj->path != NULL) {
1644 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1645 	  name, basename(refobj->path));
1646     } else {
1647 	_rtld_error("Shared object \"%s\" not found", name);
1648     }
1649     return NULL;
1650 }
1651 
1652 /*
1653  * Given a symbol number in a referencing object, find the corresponding
1654  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1655  * no definition was found.  Returns a pointer to the Obj_Entry of the
1656  * defining object via the reference parameter DEFOBJ_OUT.
1657  */
1658 const Elf_Sym *
1659 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1660     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1661     RtldLockState *lockstate)
1662 {
1663     const Elf_Sym *ref;
1664     const Elf_Sym *def;
1665     const Obj_Entry *defobj;
1666     SymLook req;
1667     const char *name;
1668     int res;
1669 
1670     /*
1671      * If we have already found this symbol, get the information from
1672      * the cache.
1673      */
1674     if (symnum >= refobj->dynsymcount)
1675 	return NULL;	/* Bad object */
1676     if (cache != NULL && cache[symnum].sym != NULL) {
1677 	*defobj_out = cache[symnum].obj;
1678 	return cache[symnum].sym;
1679     }
1680 
1681     ref = refobj->symtab + symnum;
1682     name = refobj->strtab + ref->st_name;
1683     def = NULL;
1684     defobj = NULL;
1685 
1686     /*
1687      * We don't have to do a full scale lookup if the symbol is local.
1688      * We know it will bind to the instance in this load module; to
1689      * which we already have a pointer (ie ref). By not doing a lookup,
1690      * we not only improve performance, but it also avoids unresolvable
1691      * symbols when local symbols are not in the hash table. This has
1692      * been seen with the ia64 toolchain.
1693      */
1694     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1695 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1696 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1697 		symnum);
1698 	}
1699 	symlook_init(&req, name);
1700 	req.flags = flags;
1701 	req.ventry = fetch_ventry(refobj, symnum);
1702 	req.lockstate = lockstate;
1703 	res = symlook_default(&req, refobj);
1704 	if (res == 0) {
1705 	    def = req.sym_out;
1706 	    defobj = req.defobj_out;
1707 	}
1708     } else {
1709 	def = ref;
1710 	defobj = refobj;
1711     }
1712 
1713     /*
1714      * If we found no definition and the reference is weak, treat the
1715      * symbol as having the value zero.
1716      */
1717     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1718 	def = &sym_zero;
1719 	defobj = obj_main;
1720     }
1721 
1722     if (def != NULL) {
1723 	*defobj_out = defobj;
1724 	/* Record the information in the cache to avoid subsequent lookups. */
1725 	if (cache != NULL) {
1726 	    cache[symnum].sym = def;
1727 	    cache[symnum].obj = defobj;
1728 	}
1729     } else {
1730 	if (refobj != &obj_rtld)
1731 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1732     }
1733     return def;
1734 }
1735 
1736 /*
1737  * Return the search path from the ldconfig hints file, reading it if
1738  * necessary.  If nostdlib is true, then the default search paths are
1739  * not added to result.
1740  *
1741  * Returns NULL if there are problems with the hints file,
1742  * or if the search path there is empty.
1743  */
1744 static const char *
1745 gethints(bool nostdlib)
1746 {
1747 	static char *hints, *filtered_path;
1748 	static struct elfhints_hdr hdr;
1749 	struct fill_search_info_args sargs, hargs;
1750 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1751 	struct dl_serpath *SLPpath, *hintpath;
1752 	char *p;
1753 	struct stat hint_stat;
1754 	unsigned int SLPndx, hintndx, fndx, fcount;
1755 	int fd;
1756 	size_t flen;
1757 	uint32_t dl;
1758 	bool skip;
1759 
1760 	/* First call, read the hints file */
1761 	if (hints == NULL) {
1762 		/* Keep from trying again in case the hints file is bad. */
1763 		hints = "";
1764 
1765 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1766 			return (NULL);
1767 
1768 		/*
1769 		 * Check of hdr.dirlistlen value against type limit
1770 		 * intends to pacify static analyzers.  Further
1771 		 * paranoia leads to checks that dirlist is fully
1772 		 * contained in the file range.
1773 		 */
1774 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1775 		    hdr.magic != ELFHINTS_MAGIC ||
1776 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1777 		    fstat(fd, &hint_stat) == -1) {
1778 cleanup1:
1779 			close(fd);
1780 			hdr.dirlistlen = 0;
1781 			return (NULL);
1782 		}
1783 		dl = hdr.strtab;
1784 		if (dl + hdr.dirlist < dl)
1785 			goto cleanup1;
1786 		dl += hdr.dirlist;
1787 		if (dl + hdr.dirlistlen < dl)
1788 			goto cleanup1;
1789 		dl += hdr.dirlistlen;
1790 		if (dl > hint_stat.st_size)
1791 			goto cleanup1;
1792 		p = xmalloc(hdr.dirlistlen + 1);
1793 
1794 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1795 		    read(fd, p, hdr.dirlistlen + 1) !=
1796 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1797 			free(p);
1798 			goto cleanup1;
1799 		}
1800 		hints = p;
1801 		close(fd);
1802 	}
1803 
1804 	/*
1805 	 * If caller agreed to receive list which includes the default
1806 	 * paths, we are done. Otherwise, if we still did not
1807 	 * calculated filtered result, do it now.
1808 	 */
1809 	if (!nostdlib)
1810 		return (hints[0] != '\0' ? hints : NULL);
1811 	if (filtered_path != NULL)
1812 		goto filt_ret;
1813 
1814 	/*
1815 	 * Obtain the list of all configured search paths, and the
1816 	 * list of the default paths.
1817 	 *
1818 	 * First estimate the size of the results.
1819 	 */
1820 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1821 	smeta.dls_cnt = 0;
1822 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1823 	hmeta.dls_cnt = 0;
1824 
1825 	sargs.request = RTLD_DI_SERINFOSIZE;
1826 	sargs.serinfo = &smeta;
1827 	hargs.request = RTLD_DI_SERINFOSIZE;
1828 	hargs.serinfo = &hmeta;
1829 
1830 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1831 	path_enumerate(hints, fill_search_info, &hargs);
1832 
1833 	SLPinfo = xmalloc(smeta.dls_size);
1834 	hintinfo = xmalloc(hmeta.dls_size);
1835 
1836 	/*
1837 	 * Next fetch both sets of paths.
1838 	 */
1839 	sargs.request = RTLD_DI_SERINFO;
1840 	sargs.serinfo = SLPinfo;
1841 	sargs.serpath = &SLPinfo->dls_serpath[0];
1842 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1843 
1844 	hargs.request = RTLD_DI_SERINFO;
1845 	hargs.serinfo = hintinfo;
1846 	hargs.serpath = &hintinfo->dls_serpath[0];
1847 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1848 
1849 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1850 	path_enumerate(hints, fill_search_info, &hargs);
1851 
1852 	/*
1853 	 * Now calculate the difference between two sets, by excluding
1854 	 * standard paths from the full set.
1855 	 */
1856 	fndx = 0;
1857 	fcount = 0;
1858 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1859 	hintpath = &hintinfo->dls_serpath[0];
1860 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1861 		skip = false;
1862 		SLPpath = &SLPinfo->dls_serpath[0];
1863 		/*
1864 		 * Check each standard path against current.
1865 		 */
1866 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1867 			/* matched, skip the path */
1868 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1869 				skip = true;
1870 				break;
1871 			}
1872 		}
1873 		if (skip)
1874 			continue;
1875 		/*
1876 		 * Not matched against any standard path, add the path
1877 		 * to result. Separate consequtive paths with ':'.
1878 		 */
1879 		if (fcount > 0) {
1880 			filtered_path[fndx] = ':';
1881 			fndx++;
1882 		}
1883 		fcount++;
1884 		flen = strlen(hintpath->dls_name);
1885 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1886 		fndx += flen;
1887 	}
1888 	filtered_path[fndx] = '\0';
1889 
1890 	free(SLPinfo);
1891 	free(hintinfo);
1892 
1893 filt_ret:
1894 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1895 }
1896 
1897 static void
1898 init_dag(Obj_Entry *root)
1899 {
1900     const Needed_Entry *needed;
1901     const Objlist_Entry *elm;
1902     DoneList donelist;
1903 
1904     if (root->dag_inited)
1905 	return;
1906     donelist_init(&donelist);
1907 
1908     /* Root object belongs to own DAG. */
1909     objlist_push_tail(&root->dldags, root);
1910     objlist_push_tail(&root->dagmembers, root);
1911     donelist_check(&donelist, root);
1912 
1913     /*
1914      * Add dependencies of root object to DAG in breadth order
1915      * by exploiting the fact that each new object get added
1916      * to the tail of the dagmembers list.
1917      */
1918     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1919 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1920 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1921 		continue;
1922 	    objlist_push_tail(&needed->obj->dldags, root);
1923 	    objlist_push_tail(&root->dagmembers, needed->obj);
1924 	}
1925     }
1926     root->dag_inited = true;
1927 }
1928 
1929 static void
1930 init_marker(Obj_Entry *marker)
1931 {
1932 
1933 	bzero(marker, sizeof(*marker));
1934 	marker->marker = true;
1935 }
1936 
1937 Obj_Entry *
1938 globallist_curr(const Obj_Entry *obj)
1939 {
1940 
1941 	for (;;) {
1942 		if (obj == NULL)
1943 			return (NULL);
1944 		if (!obj->marker)
1945 			return (__DECONST(Obj_Entry *, obj));
1946 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1947 	}
1948 }
1949 
1950 Obj_Entry *
1951 globallist_next(const Obj_Entry *obj)
1952 {
1953 
1954 	for (;;) {
1955 		obj = TAILQ_NEXT(obj, next);
1956 		if (obj == NULL)
1957 			return (NULL);
1958 		if (!obj->marker)
1959 			return (__DECONST(Obj_Entry *, obj));
1960 	}
1961 }
1962 
1963 /* Prevent the object from being unmapped while the bind lock is dropped. */
1964 static void
1965 hold_object(Obj_Entry *obj)
1966 {
1967 
1968 	obj->holdcount++;
1969 }
1970 
1971 static void
1972 unhold_object(Obj_Entry *obj)
1973 {
1974 
1975 	assert(obj->holdcount > 0);
1976 	if (--obj->holdcount == 0 && obj->unholdfree)
1977 		release_object(obj);
1978 }
1979 
1980 static void
1981 process_z(Obj_Entry *root)
1982 {
1983 	const Objlist_Entry *elm;
1984 	Obj_Entry *obj;
1985 
1986 	/*
1987 	 * Walk over object DAG and process every dependent object
1988 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1989 	 * to grow their own DAG.
1990 	 *
1991 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1992 	 * symlook_global() to work.
1993 	 *
1994 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1995 	 */
1996 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1997 		obj = elm->obj;
1998 		if (obj == NULL)
1999 			continue;
2000 		if (obj->z_nodelete && !obj->ref_nodel) {
2001 			dbg("obj %s -z nodelete", obj->path);
2002 			init_dag(obj);
2003 			ref_dag(obj);
2004 			obj->ref_nodel = true;
2005 		}
2006 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2007 			dbg("obj %s -z global", obj->path);
2008 			objlist_push_tail(&list_global, obj);
2009 			init_dag(obj);
2010 		}
2011 	}
2012 }
2013 /*
2014  * Initialize the dynamic linker.  The argument is the address at which
2015  * the dynamic linker has been mapped into memory.  The primary task of
2016  * this function is to relocate the dynamic linker.
2017  */
2018 static void
2019 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2020 {
2021     Obj_Entry objtmp;	/* Temporary rtld object */
2022     const Elf_Ehdr *ehdr;
2023     const Elf_Dyn *dyn_rpath;
2024     const Elf_Dyn *dyn_soname;
2025     const Elf_Dyn *dyn_runpath;
2026 
2027 #ifdef RTLD_INIT_PAGESIZES_EARLY
2028     /* The page size is required by the dynamic memory allocator. */
2029     init_pagesizes(aux_info);
2030 #endif
2031 
2032     /*
2033      * Conjure up an Obj_Entry structure for the dynamic linker.
2034      *
2035      * The "path" member can't be initialized yet because string constants
2036      * cannot yet be accessed. Below we will set it correctly.
2037      */
2038     memset(&objtmp, 0, sizeof(objtmp));
2039     objtmp.path = NULL;
2040     objtmp.rtld = true;
2041     objtmp.mapbase = mapbase;
2042 #ifdef PIC
2043     objtmp.relocbase = mapbase;
2044 #endif
2045 
2046     objtmp.dynamic = rtld_dynamic(&objtmp);
2047     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2048     assert(objtmp.needed == NULL);
2049 #if !defined(__mips__)
2050     /* MIPS has a bogus DT_TEXTREL. */
2051     assert(!objtmp.textrel);
2052 #endif
2053     /*
2054      * Temporarily put the dynamic linker entry into the object list, so
2055      * that symbols can be found.
2056      */
2057     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2058 
2059     ehdr = (Elf_Ehdr *)mapbase;
2060     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2061     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2062 
2063     /* Initialize the object list. */
2064     TAILQ_INIT(&obj_list);
2065 
2066     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2067     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2068 
2069 #ifndef RTLD_INIT_PAGESIZES_EARLY
2070     /* The page size is required by the dynamic memory allocator. */
2071     init_pagesizes(aux_info);
2072 #endif
2073 
2074     if (aux_info[AT_OSRELDATE] != NULL)
2075 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2076 
2077     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2078 
2079     /* Replace the path with a dynamically allocated copy. */
2080     obj_rtld.path = xstrdup(ld_path_rtld);
2081 
2082     r_debug.r_brk = r_debug_state;
2083     r_debug.r_state = RT_CONSISTENT;
2084 }
2085 
2086 /*
2087  * Retrieve the array of supported page sizes.  The kernel provides the page
2088  * sizes in increasing order.
2089  */
2090 static void
2091 init_pagesizes(Elf_Auxinfo **aux_info)
2092 {
2093 	static size_t psa[MAXPAGESIZES];
2094 	int mib[2];
2095 	size_t len, size;
2096 
2097 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2098 	    NULL) {
2099 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2100 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2101 	} else {
2102 		len = 2;
2103 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2104 			size = sizeof(psa);
2105 		else {
2106 			/* As a fallback, retrieve the base page size. */
2107 			size = sizeof(psa[0]);
2108 			if (aux_info[AT_PAGESZ] != NULL) {
2109 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2110 				goto psa_filled;
2111 			} else {
2112 				mib[0] = CTL_HW;
2113 				mib[1] = HW_PAGESIZE;
2114 				len = 2;
2115 			}
2116 		}
2117 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2118 			_rtld_error("sysctl for hw.pagesize(s) failed");
2119 			rtld_die();
2120 		}
2121 psa_filled:
2122 		pagesizes = psa;
2123 	}
2124 	npagesizes = size / sizeof(pagesizes[0]);
2125 	/* Discard any invalid entries at the end of the array. */
2126 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2127 		npagesizes--;
2128 }
2129 
2130 /*
2131  * Add the init functions from a needed object list (and its recursive
2132  * needed objects) to "list".  This is not used directly; it is a helper
2133  * function for initlist_add_objects().  The write lock must be held
2134  * when this function is called.
2135  */
2136 static void
2137 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2138 {
2139     /* Recursively process the successor needed objects. */
2140     if (needed->next != NULL)
2141 	initlist_add_neededs(needed->next, list);
2142 
2143     /* Process the current needed object. */
2144     if (needed->obj != NULL)
2145 	initlist_add_objects(needed->obj, needed->obj, list);
2146 }
2147 
2148 /*
2149  * Scan all of the DAGs rooted in the range of objects from "obj" to
2150  * "tail" and add their init functions to "list".  This recurses over
2151  * the DAGs and ensure the proper init ordering such that each object's
2152  * needed libraries are initialized before the object itself.  At the
2153  * same time, this function adds the objects to the global finalization
2154  * list "list_fini" in the opposite order.  The write lock must be
2155  * held when this function is called.
2156  */
2157 static void
2158 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2159 {
2160     Obj_Entry *nobj;
2161 
2162     if (obj->init_scanned || obj->init_done)
2163 	return;
2164     obj->init_scanned = true;
2165 
2166     /* Recursively process the successor objects. */
2167     nobj = globallist_next(obj);
2168     if (nobj != NULL && obj != tail)
2169 	initlist_add_objects(nobj, tail, list);
2170 
2171     /* Recursively process the needed objects. */
2172     if (obj->needed != NULL)
2173 	initlist_add_neededs(obj->needed, list);
2174     if (obj->needed_filtees != NULL)
2175 	initlist_add_neededs(obj->needed_filtees, list);
2176     if (obj->needed_aux_filtees != NULL)
2177 	initlist_add_neededs(obj->needed_aux_filtees, list);
2178 
2179     /* Add the object to the init list. */
2180     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2181       obj->init_array != (Elf_Addr)NULL)
2182 	objlist_push_tail(list, obj);
2183 
2184     /* Add the object to the global fini list in the reverse order. */
2185     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2186       && !obj->on_fini_list) {
2187 	objlist_push_head(&list_fini, obj);
2188 	obj->on_fini_list = true;
2189     }
2190 }
2191 
2192 #ifndef FPTR_TARGET
2193 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2194 #endif
2195 
2196 static void
2197 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2198 {
2199     Needed_Entry *needed, *needed1;
2200 
2201     for (needed = n; needed != NULL; needed = needed->next) {
2202 	if (needed->obj != NULL) {
2203 	    dlclose_locked(needed->obj, lockstate);
2204 	    needed->obj = NULL;
2205 	}
2206     }
2207     for (needed = n; needed != NULL; needed = needed1) {
2208 	needed1 = needed->next;
2209 	free(needed);
2210     }
2211 }
2212 
2213 static void
2214 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2215 {
2216 
2217 	free_needed_filtees(obj->needed_filtees, lockstate);
2218 	obj->needed_filtees = NULL;
2219 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2220 	obj->needed_aux_filtees = NULL;
2221 	obj->filtees_loaded = false;
2222 }
2223 
2224 static void
2225 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2226     RtldLockState *lockstate)
2227 {
2228 
2229     for (; needed != NULL; needed = needed->next) {
2230 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2231 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2232 	  RTLD_LOCAL, lockstate);
2233     }
2234 }
2235 
2236 static void
2237 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2238 {
2239 
2240     lock_restart_for_upgrade(lockstate);
2241     if (!obj->filtees_loaded) {
2242 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2243 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2244 	obj->filtees_loaded = true;
2245     }
2246 }
2247 
2248 static int
2249 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2250 {
2251     Obj_Entry *obj1;
2252 
2253     for (; needed != NULL; needed = needed->next) {
2254 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2255 	  flags & ~RTLD_LO_NOLOAD);
2256 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2257 	    return (-1);
2258     }
2259     return (0);
2260 }
2261 
2262 /*
2263  * Given a shared object, traverse its list of needed objects, and load
2264  * each of them.  Returns 0 on success.  Generates an error message and
2265  * returns -1 on failure.
2266  */
2267 static int
2268 load_needed_objects(Obj_Entry *first, int flags)
2269 {
2270     Obj_Entry *obj;
2271 
2272     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2273 	if (obj->marker)
2274 	    continue;
2275 	if (process_needed(obj, obj->needed, flags) == -1)
2276 	    return (-1);
2277     }
2278     return (0);
2279 }
2280 
2281 static int
2282 load_preload_objects(void)
2283 {
2284     char *p = ld_preload;
2285     Obj_Entry *obj;
2286     static const char delim[] = " \t:;";
2287 
2288     if (p == NULL)
2289 	return 0;
2290 
2291     p += strspn(p, delim);
2292     while (*p != '\0') {
2293 	size_t len = strcspn(p, delim);
2294 	char savech;
2295 
2296 	savech = p[len];
2297 	p[len] = '\0';
2298 	obj = load_object(p, -1, NULL, 0);
2299 	if (obj == NULL)
2300 	    return -1;	/* XXX - cleanup */
2301 	obj->z_interpose = true;
2302 	p[len] = savech;
2303 	p += len;
2304 	p += strspn(p, delim);
2305     }
2306     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2307     return 0;
2308 }
2309 
2310 static const char *
2311 printable_path(const char *path)
2312 {
2313 
2314 	return (path == NULL ? "<unknown>" : path);
2315 }
2316 
2317 /*
2318  * Load a shared object into memory, if it is not already loaded.  The
2319  * object may be specified by name or by user-supplied file descriptor
2320  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2321  * duplicate is.
2322  *
2323  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2324  * on failure.
2325  */
2326 static Obj_Entry *
2327 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2328 {
2329     Obj_Entry *obj;
2330     int fd;
2331     struct stat sb;
2332     char *path;
2333 
2334     fd = -1;
2335     if (name != NULL) {
2336 	TAILQ_FOREACH(obj, &obj_list, next) {
2337 	    if (obj->marker || obj->doomed)
2338 		continue;
2339 	    if (object_match_name(obj, name))
2340 		return (obj);
2341 	}
2342 
2343 	path = find_library(name, refobj, &fd);
2344 	if (path == NULL)
2345 	    return (NULL);
2346     } else
2347 	path = NULL;
2348 
2349     if (fd >= 0) {
2350 	/*
2351 	 * search_library_pathfds() opens a fresh file descriptor for the
2352 	 * library, so there is no need to dup().
2353 	 */
2354     } else if (fd_u == -1) {
2355 	/*
2356 	 * If we didn't find a match by pathname, or the name is not
2357 	 * supplied, open the file and check again by device and inode.
2358 	 * This avoids false mismatches caused by multiple links or ".."
2359 	 * in pathnames.
2360 	 *
2361 	 * To avoid a race, we open the file and use fstat() rather than
2362 	 * using stat().
2363 	 */
2364 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2365 	    _rtld_error("Cannot open \"%s\"", path);
2366 	    free(path);
2367 	    return (NULL);
2368 	}
2369     } else {
2370 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2371 	if (fd == -1) {
2372 	    _rtld_error("Cannot dup fd");
2373 	    free(path);
2374 	    return (NULL);
2375 	}
2376     }
2377     if (fstat(fd, &sb) == -1) {
2378 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2379 	close(fd);
2380 	free(path);
2381 	return NULL;
2382     }
2383     TAILQ_FOREACH(obj, &obj_list, next) {
2384 	if (obj->marker || obj->doomed)
2385 	    continue;
2386 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2387 	    break;
2388     }
2389     if (obj != NULL && name != NULL) {
2390 	object_add_name(obj, name);
2391 	free(path);
2392 	close(fd);
2393 	return obj;
2394     }
2395     if (flags & RTLD_LO_NOLOAD) {
2396 	free(path);
2397 	close(fd);
2398 	return (NULL);
2399     }
2400 
2401     /* First use of this object, so we must map it in */
2402     obj = do_load_object(fd, name, path, &sb, flags);
2403     if (obj == NULL)
2404 	free(path);
2405     close(fd);
2406 
2407     return obj;
2408 }
2409 
2410 static Obj_Entry *
2411 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2412   int flags)
2413 {
2414     Obj_Entry *obj;
2415     struct statfs fs;
2416 
2417     /*
2418      * but first, make sure that environment variables haven't been
2419      * used to circumvent the noexec flag on a filesystem.
2420      */
2421     if (dangerous_ld_env) {
2422 	if (fstatfs(fd, &fs) != 0) {
2423 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2424 	    return NULL;
2425 	}
2426 	if (fs.f_flags & MNT_NOEXEC) {
2427 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2428 	    return NULL;
2429 	}
2430     }
2431     dbg("loading \"%s\"", printable_path(path));
2432     obj = map_object(fd, printable_path(path), sbp);
2433     if (obj == NULL)
2434         return NULL;
2435 
2436     /*
2437      * If DT_SONAME is present in the object, digest_dynamic2 already
2438      * added it to the object names.
2439      */
2440     if (name != NULL)
2441 	object_add_name(obj, name);
2442     obj->path = path;
2443     digest_dynamic(obj, 0);
2444     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2445 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2446     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2447       RTLD_LO_DLOPEN) {
2448 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2449 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2450 	munmap(obj->mapbase, obj->mapsize);
2451 	obj_free(obj);
2452 	return (NULL);
2453     }
2454 
2455     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2456     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2457     obj_count++;
2458     obj_loads++;
2459     linkmap_add(obj);	/* for GDB & dlinfo() */
2460     max_stack_flags |= obj->stack_flags;
2461 
2462     dbg("  %p .. %p: %s", obj->mapbase,
2463          obj->mapbase + obj->mapsize - 1, obj->path);
2464     if (obj->textrel)
2465 	dbg("  WARNING: %s has impure text", obj->path);
2466     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2467 	obj->path);
2468 
2469     return obj;
2470 }
2471 
2472 static Obj_Entry *
2473 obj_from_addr(const void *addr)
2474 {
2475     Obj_Entry *obj;
2476 
2477     TAILQ_FOREACH(obj, &obj_list, next) {
2478 	if (obj->marker)
2479 	    continue;
2480 	if (addr < (void *) obj->mapbase)
2481 	    continue;
2482 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2483 	    return obj;
2484     }
2485     return NULL;
2486 }
2487 
2488 static void
2489 preinit_main(void)
2490 {
2491     Elf_Addr *preinit_addr;
2492     int index;
2493 
2494     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2495     if (preinit_addr == NULL)
2496 	return;
2497 
2498     for (index = 0; index < obj_main->preinit_array_num; index++) {
2499 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2500 	    dbg("calling preinit function for %s at %p", obj_main->path,
2501 	      (void *)preinit_addr[index]);
2502 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2503 	      0, 0, obj_main->path);
2504 	    call_init_pointer(obj_main, preinit_addr[index]);
2505 	}
2506     }
2507 }
2508 
2509 /*
2510  * Call the finalization functions for each of the objects in "list"
2511  * belonging to the DAG of "root" and referenced once. If NULL "root"
2512  * is specified, every finalization function will be called regardless
2513  * of the reference count and the list elements won't be freed. All of
2514  * the objects are expected to have non-NULL fini functions.
2515  */
2516 static void
2517 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2518 {
2519     Objlist_Entry *elm;
2520     char *saved_msg;
2521     Elf_Addr *fini_addr;
2522     int index;
2523 
2524     assert(root == NULL || root->refcount == 1);
2525 
2526     if (root != NULL)
2527 	root->doomed = true;
2528 
2529     /*
2530      * Preserve the current error message since a fini function might
2531      * call into the dynamic linker and overwrite it.
2532      */
2533     saved_msg = errmsg_save();
2534     do {
2535 	STAILQ_FOREACH(elm, list, link) {
2536 	    if (root != NULL && (elm->obj->refcount != 1 ||
2537 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2538 		continue;
2539 	    /* Remove object from fini list to prevent recursive invocation. */
2540 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2541 	    /* Ensure that new references cannot be acquired. */
2542 	    elm->obj->doomed = true;
2543 
2544 	    hold_object(elm->obj);
2545 	    lock_release(rtld_bind_lock, lockstate);
2546 	    /*
2547 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2548 	     * When this happens, DT_FINI_ARRAY is processed first.
2549 	     */
2550 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2551 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2552 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2553 		  index--) {
2554 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2555 			dbg("calling fini function for %s at %p",
2556 			    elm->obj->path, (void *)fini_addr[index]);
2557 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2558 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2559 			call_initfini_pointer(elm->obj, fini_addr[index]);
2560 		    }
2561 		}
2562 	    }
2563 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2564 		dbg("calling fini function for %s at %p", elm->obj->path,
2565 		    (void *)elm->obj->fini);
2566 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2567 		    0, 0, elm->obj->path);
2568 		call_initfini_pointer(elm->obj, elm->obj->fini);
2569 	    }
2570 	    wlock_acquire(rtld_bind_lock, lockstate);
2571 	    unhold_object(elm->obj);
2572 	    /* No need to free anything if process is going down. */
2573 	    if (root != NULL)
2574 	    	free(elm);
2575 	    /*
2576 	     * We must restart the list traversal after every fini call
2577 	     * because a dlclose() call from the fini function or from
2578 	     * another thread might have modified the reference counts.
2579 	     */
2580 	    break;
2581 	}
2582     } while (elm != NULL);
2583     errmsg_restore(saved_msg);
2584 }
2585 
2586 /*
2587  * Call the initialization functions for each of the objects in
2588  * "list".  All of the objects are expected to have non-NULL init
2589  * functions.
2590  */
2591 static void
2592 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2593 {
2594     Objlist_Entry *elm;
2595     Obj_Entry *obj;
2596     char *saved_msg;
2597     Elf_Addr *init_addr;
2598     int index;
2599 
2600     /*
2601      * Clean init_scanned flag so that objects can be rechecked and
2602      * possibly initialized earlier if any of vectors called below
2603      * cause the change by using dlopen.
2604      */
2605     TAILQ_FOREACH(obj, &obj_list, next) {
2606 	if (obj->marker)
2607 	    continue;
2608 	obj->init_scanned = false;
2609     }
2610 
2611     /*
2612      * Preserve the current error message since an init function might
2613      * call into the dynamic linker and overwrite it.
2614      */
2615     saved_msg = errmsg_save();
2616     STAILQ_FOREACH(elm, list, link) {
2617 	if (elm->obj->init_done) /* Initialized early. */
2618 	    continue;
2619 	/*
2620 	 * Race: other thread might try to use this object before current
2621 	 * one completes the initialization. Not much can be done here
2622 	 * without better locking.
2623 	 */
2624 	elm->obj->init_done = true;
2625 	hold_object(elm->obj);
2626 	lock_release(rtld_bind_lock, lockstate);
2627 
2628         /*
2629          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2630          * When this happens, DT_INIT is processed first.
2631          */
2632 	if (elm->obj->init != (Elf_Addr)NULL) {
2633 	    dbg("calling init function for %s at %p", elm->obj->path,
2634 	        (void *)elm->obj->init);
2635 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2636 	        0, 0, elm->obj->path);
2637 	    call_initfini_pointer(elm->obj, elm->obj->init);
2638 	}
2639 	init_addr = (Elf_Addr *)elm->obj->init_array;
2640 	if (init_addr != NULL) {
2641 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2642 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2643 		    dbg("calling init function for %s at %p", elm->obj->path,
2644 			(void *)init_addr[index]);
2645 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2646 			(void *)init_addr[index], 0, 0, elm->obj->path);
2647 		    call_init_pointer(elm->obj, init_addr[index]);
2648 		}
2649 	    }
2650 	}
2651 	wlock_acquire(rtld_bind_lock, lockstate);
2652 	unhold_object(elm->obj);
2653     }
2654     errmsg_restore(saved_msg);
2655 }
2656 
2657 static void
2658 objlist_clear(Objlist *list)
2659 {
2660     Objlist_Entry *elm;
2661 
2662     while (!STAILQ_EMPTY(list)) {
2663 	elm = STAILQ_FIRST(list);
2664 	STAILQ_REMOVE_HEAD(list, link);
2665 	free(elm);
2666     }
2667 }
2668 
2669 static Objlist_Entry *
2670 objlist_find(Objlist *list, const Obj_Entry *obj)
2671 {
2672     Objlist_Entry *elm;
2673 
2674     STAILQ_FOREACH(elm, list, link)
2675 	if (elm->obj == obj)
2676 	    return elm;
2677     return NULL;
2678 }
2679 
2680 static void
2681 objlist_init(Objlist *list)
2682 {
2683     STAILQ_INIT(list);
2684 }
2685 
2686 static void
2687 objlist_push_head(Objlist *list, Obj_Entry *obj)
2688 {
2689     Objlist_Entry *elm;
2690 
2691     elm = NEW(Objlist_Entry);
2692     elm->obj = obj;
2693     STAILQ_INSERT_HEAD(list, elm, link);
2694 }
2695 
2696 static void
2697 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2698 {
2699     Objlist_Entry *elm;
2700 
2701     elm = NEW(Objlist_Entry);
2702     elm->obj = obj;
2703     STAILQ_INSERT_TAIL(list, elm, link);
2704 }
2705 
2706 static void
2707 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2708 {
2709 	Objlist_Entry *elm, *listelm;
2710 
2711 	STAILQ_FOREACH(listelm, list, link) {
2712 		if (listelm->obj == listobj)
2713 			break;
2714 	}
2715 	elm = NEW(Objlist_Entry);
2716 	elm->obj = obj;
2717 	if (listelm != NULL)
2718 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2719 	else
2720 		STAILQ_INSERT_TAIL(list, elm, link);
2721 }
2722 
2723 static void
2724 objlist_remove(Objlist *list, Obj_Entry *obj)
2725 {
2726     Objlist_Entry *elm;
2727 
2728     if ((elm = objlist_find(list, obj)) != NULL) {
2729 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2730 	free(elm);
2731     }
2732 }
2733 
2734 /*
2735  * Relocate dag rooted in the specified object.
2736  * Returns 0 on success, or -1 on failure.
2737  */
2738 
2739 static int
2740 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2741     int flags, RtldLockState *lockstate)
2742 {
2743 	Objlist_Entry *elm;
2744 	int error;
2745 
2746 	error = 0;
2747 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2748 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2749 		    lockstate);
2750 		if (error == -1)
2751 			break;
2752 	}
2753 	return (error);
2754 }
2755 
2756 /*
2757  * Prepare for, or clean after, relocating an object marked with
2758  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2759  * segments are remapped read-write.  After relocations are done, the
2760  * segment's permissions are returned back to the modes specified in
2761  * the phdrs.  If any relocation happened, or always for wired
2762  * program, COW is triggered.
2763  */
2764 static int
2765 reloc_textrel_prot(Obj_Entry *obj, bool before)
2766 {
2767 	const Elf_Phdr *ph;
2768 	void *base;
2769 	size_t l, sz;
2770 	int prot;
2771 
2772 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2773 	    l--, ph++) {
2774 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2775 			continue;
2776 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2777 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2778 		    trunc_page(ph->p_vaddr);
2779 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2780 		if (mprotect(base, sz, prot) == -1) {
2781 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2782 			    obj->path, before ? "en" : "dis",
2783 			    rtld_strerror(errno));
2784 			return (-1);
2785 		}
2786 	}
2787 	return (0);
2788 }
2789 
2790 /*
2791  * Relocate single object.
2792  * Returns 0 on success, or -1 on failure.
2793  */
2794 static int
2795 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2796     int flags, RtldLockState *lockstate)
2797 {
2798 
2799 	if (obj->relocated)
2800 		return (0);
2801 	obj->relocated = true;
2802 	if (obj != rtldobj)
2803 		dbg("relocating \"%s\"", obj->path);
2804 
2805 	if (obj->symtab == NULL || obj->strtab == NULL ||
2806 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2807 		_rtld_error("%s: Shared object has no run-time symbol table",
2808 			    obj->path);
2809 		return (-1);
2810 	}
2811 
2812 	/* There are relocations to the write-protected text segment. */
2813 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2814 		return (-1);
2815 
2816 	/* Process the non-PLT non-IFUNC relocations. */
2817 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2818 		return (-1);
2819 
2820 	/* Re-protected the text segment. */
2821 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2822 		return (-1);
2823 
2824 	/* Set the special PLT or GOT entries. */
2825 	init_pltgot(obj);
2826 
2827 	/* Process the PLT relocations. */
2828 	if (reloc_plt(obj) == -1)
2829 		return (-1);
2830 	/* Relocate the jump slots if we are doing immediate binding. */
2831 	if (obj->bind_now || bind_now)
2832 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2833 			return (-1);
2834 
2835 	/*
2836 	 * Process the non-PLT IFUNC relocations.  The relocations are
2837 	 * processed in two phases, because IFUNC resolvers may
2838 	 * reference other symbols, which must be readily processed
2839 	 * before resolvers are called.
2840 	 */
2841 	if (obj->non_plt_gnu_ifunc &&
2842 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2843 		return (-1);
2844 
2845 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2846 		return (-1);
2847 
2848 	/*
2849 	 * Set up the magic number and version in the Obj_Entry.  These
2850 	 * were checked in the crt1.o from the original ElfKit, so we
2851 	 * set them for backward compatibility.
2852 	 */
2853 	obj->magic = RTLD_MAGIC;
2854 	obj->version = RTLD_VERSION;
2855 
2856 	return (0);
2857 }
2858 
2859 /*
2860  * Relocate newly-loaded shared objects.  The argument is a pointer to
2861  * the Obj_Entry for the first such object.  All objects from the first
2862  * to the end of the list of objects are relocated.  Returns 0 on success,
2863  * or -1 on failure.
2864  */
2865 static int
2866 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2867     int flags, RtldLockState *lockstate)
2868 {
2869 	Obj_Entry *obj;
2870 	int error;
2871 
2872 	for (error = 0, obj = first;  obj != NULL;
2873 	    obj = TAILQ_NEXT(obj, next)) {
2874 		if (obj->marker)
2875 			continue;
2876 		error = relocate_object(obj, bind_now, rtldobj, flags,
2877 		    lockstate);
2878 		if (error == -1)
2879 			break;
2880 	}
2881 	return (error);
2882 }
2883 
2884 /*
2885  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2886  * referencing STT_GNU_IFUNC symbols is postponed till the other
2887  * relocations are done.  The indirect functions specified as
2888  * ifunc are allowed to call other symbols, so we need to have
2889  * objects relocated before asking for resolution from indirects.
2890  *
2891  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2892  * instead of the usual lazy handling of PLT slots.  It is
2893  * consistent with how GNU does it.
2894  */
2895 static int
2896 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2897     RtldLockState *lockstate)
2898 {
2899 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2900 		return (-1);
2901 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2902 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2903 		return (-1);
2904 	return (0);
2905 }
2906 
2907 static int
2908 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2909     RtldLockState *lockstate)
2910 {
2911 	Obj_Entry *obj;
2912 
2913 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2914 		if (obj->marker)
2915 			continue;
2916 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2917 			return (-1);
2918 	}
2919 	return (0);
2920 }
2921 
2922 static int
2923 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2924     RtldLockState *lockstate)
2925 {
2926 	Objlist_Entry *elm;
2927 
2928 	STAILQ_FOREACH(elm, list, link) {
2929 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2930 		    lockstate) == -1)
2931 			return (-1);
2932 	}
2933 	return (0);
2934 }
2935 
2936 /*
2937  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2938  * before the process exits.
2939  */
2940 static void
2941 rtld_exit(void)
2942 {
2943     RtldLockState lockstate;
2944 
2945     wlock_acquire(rtld_bind_lock, &lockstate);
2946     dbg("rtld_exit()");
2947     objlist_call_fini(&list_fini, NULL, &lockstate);
2948     /* No need to remove the items from the list, since we are exiting. */
2949     if (!libmap_disable)
2950         lm_fini();
2951     lock_release(rtld_bind_lock, &lockstate);
2952 }
2953 
2954 /*
2955  * Iterate over a search path, translate each element, and invoke the
2956  * callback on the result.
2957  */
2958 static void *
2959 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2960 {
2961     const char *trans;
2962     if (path == NULL)
2963 	return (NULL);
2964 
2965     path += strspn(path, ":;");
2966     while (*path != '\0') {
2967 	size_t len;
2968 	char  *res;
2969 
2970 	len = strcspn(path, ":;");
2971 	trans = lm_findn(NULL, path, len);
2972 	if (trans)
2973 	    res = callback(trans, strlen(trans), arg);
2974 	else
2975 	    res = callback(path, len, arg);
2976 
2977 	if (res != NULL)
2978 	    return (res);
2979 
2980 	path += len;
2981 	path += strspn(path, ":;");
2982     }
2983 
2984     return (NULL);
2985 }
2986 
2987 struct try_library_args {
2988     const char	*name;
2989     size_t	 namelen;
2990     char	*buffer;
2991     size_t	 buflen;
2992 };
2993 
2994 static void *
2995 try_library_path(const char *dir, size_t dirlen, void *param)
2996 {
2997     struct try_library_args *arg;
2998 
2999     arg = param;
3000     if (*dir == '/' || trust) {
3001 	char *pathname;
3002 
3003 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3004 		return (NULL);
3005 
3006 	pathname = arg->buffer;
3007 	strncpy(pathname, dir, dirlen);
3008 	pathname[dirlen] = '/';
3009 	strcpy(pathname + dirlen + 1, arg->name);
3010 
3011 	dbg("  Trying \"%s\"", pathname);
3012 	if (access(pathname, F_OK) == 0) {		/* We found it */
3013 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3014 	    strcpy(pathname, arg->buffer);
3015 	    return (pathname);
3016 	}
3017     }
3018     return (NULL);
3019 }
3020 
3021 static char *
3022 search_library_path(const char *name, const char *path)
3023 {
3024     char *p;
3025     struct try_library_args arg;
3026 
3027     if (path == NULL)
3028 	return NULL;
3029 
3030     arg.name = name;
3031     arg.namelen = strlen(name);
3032     arg.buffer = xmalloc(PATH_MAX);
3033     arg.buflen = PATH_MAX;
3034 
3035     p = path_enumerate(path, try_library_path, &arg);
3036 
3037     free(arg.buffer);
3038 
3039     return (p);
3040 }
3041 
3042 
3043 /*
3044  * Finds the library with the given name using the directory descriptors
3045  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3046  *
3047  * Returns a freshly-opened close-on-exec file descriptor for the library,
3048  * or -1 if the library cannot be found.
3049  */
3050 static char *
3051 search_library_pathfds(const char *name, const char *path, int *fdp)
3052 {
3053 	char *envcopy, *fdstr, *found, *last_token;
3054 	size_t len;
3055 	int dirfd, fd;
3056 
3057 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3058 
3059 	/* Don't load from user-specified libdirs into setuid binaries. */
3060 	if (!trust)
3061 		return (NULL);
3062 
3063 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3064 	if (path == NULL)
3065 		return (NULL);
3066 
3067 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3068 	if (name[0] == '/') {
3069 		dbg("Absolute path (%s) passed to %s", name, __func__);
3070 		return (NULL);
3071 	}
3072 
3073 	/*
3074 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3075 	 * copy of the path, as strtok_r rewrites separator tokens
3076 	 * with '\0'.
3077 	 */
3078 	found = NULL;
3079 	envcopy = xstrdup(path);
3080 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3081 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3082 		dirfd = parse_integer(fdstr);
3083 		if (dirfd < 0) {
3084 			_rtld_error("failed to parse directory FD: '%s'",
3085 				fdstr);
3086 			break;
3087 		}
3088 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3089 		if (fd >= 0) {
3090 			*fdp = fd;
3091 			len = strlen(fdstr) + strlen(name) + 3;
3092 			found = xmalloc(len);
3093 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3094 				_rtld_error("error generating '%d/%s'",
3095 				    dirfd, name);
3096 				rtld_die();
3097 			}
3098 			dbg("open('%s') => %d", found, fd);
3099 			break;
3100 		}
3101 	}
3102 	free(envcopy);
3103 
3104 	return (found);
3105 }
3106 
3107 
3108 int
3109 dlclose(void *handle)
3110 {
3111 	RtldLockState lockstate;
3112 	int error;
3113 
3114 	wlock_acquire(rtld_bind_lock, &lockstate);
3115 	error = dlclose_locked(handle, &lockstate);
3116 	lock_release(rtld_bind_lock, &lockstate);
3117 	return (error);
3118 }
3119 
3120 static int
3121 dlclose_locked(void *handle, RtldLockState *lockstate)
3122 {
3123     Obj_Entry *root;
3124 
3125     root = dlcheck(handle);
3126     if (root == NULL)
3127 	return -1;
3128     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3129 	root->path);
3130 
3131     /* Unreference the object and its dependencies. */
3132     root->dl_refcount--;
3133 
3134     if (root->refcount == 1) {
3135 	/*
3136 	 * The object will be no longer referenced, so we must unload it.
3137 	 * First, call the fini functions.
3138 	 */
3139 	objlist_call_fini(&list_fini, root, lockstate);
3140 
3141 	unref_dag(root);
3142 
3143 	/* Finish cleaning up the newly-unreferenced objects. */
3144 	GDB_STATE(RT_DELETE,&root->linkmap);
3145 	unload_object(root, lockstate);
3146 	GDB_STATE(RT_CONSISTENT,NULL);
3147     } else
3148 	unref_dag(root);
3149 
3150     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3151     return 0;
3152 }
3153 
3154 char *
3155 dlerror(void)
3156 {
3157     char *msg = error_message;
3158     error_message = NULL;
3159     return msg;
3160 }
3161 
3162 /*
3163  * This function is deprecated and has no effect.
3164  */
3165 void
3166 dllockinit(void *context,
3167 	   void *(*lock_create)(void *context),
3168            void (*rlock_acquire)(void *lock),
3169            void (*wlock_acquire)(void *lock),
3170            void (*lock_release)(void *lock),
3171            void (*lock_destroy)(void *lock),
3172 	   void (*context_destroy)(void *context))
3173 {
3174     static void *cur_context;
3175     static void (*cur_context_destroy)(void *);
3176 
3177     /* Just destroy the context from the previous call, if necessary. */
3178     if (cur_context_destroy != NULL)
3179 	cur_context_destroy(cur_context);
3180     cur_context = context;
3181     cur_context_destroy = context_destroy;
3182 }
3183 
3184 void *
3185 dlopen(const char *name, int mode)
3186 {
3187 
3188 	return (rtld_dlopen(name, -1, mode));
3189 }
3190 
3191 void *
3192 fdlopen(int fd, int mode)
3193 {
3194 
3195 	return (rtld_dlopen(NULL, fd, mode));
3196 }
3197 
3198 static void *
3199 rtld_dlopen(const char *name, int fd, int mode)
3200 {
3201     RtldLockState lockstate;
3202     int lo_flags;
3203 
3204     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3205     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3206     if (ld_tracing != NULL) {
3207 	rlock_acquire(rtld_bind_lock, &lockstate);
3208 	if (sigsetjmp(lockstate.env, 0) != 0)
3209 	    lock_upgrade(rtld_bind_lock, &lockstate);
3210 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3211 	lock_release(rtld_bind_lock, &lockstate);
3212     }
3213     lo_flags = RTLD_LO_DLOPEN;
3214     if (mode & RTLD_NODELETE)
3215 	    lo_flags |= RTLD_LO_NODELETE;
3216     if (mode & RTLD_NOLOAD)
3217 	    lo_flags |= RTLD_LO_NOLOAD;
3218     if (ld_tracing != NULL)
3219 	    lo_flags |= RTLD_LO_TRACE;
3220 
3221     return (dlopen_object(name, fd, obj_main, lo_flags,
3222       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3223 }
3224 
3225 static void
3226 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3227 {
3228 
3229 	obj->dl_refcount--;
3230 	unref_dag(obj);
3231 	if (obj->refcount == 0)
3232 		unload_object(obj, lockstate);
3233 }
3234 
3235 static Obj_Entry *
3236 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3237     int mode, RtldLockState *lockstate)
3238 {
3239     Obj_Entry *old_obj_tail;
3240     Obj_Entry *obj;
3241     Objlist initlist;
3242     RtldLockState mlockstate;
3243     int result;
3244 
3245     objlist_init(&initlist);
3246 
3247     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3248 	wlock_acquire(rtld_bind_lock, &mlockstate);
3249 	lockstate = &mlockstate;
3250     }
3251     GDB_STATE(RT_ADD,NULL);
3252 
3253     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3254     obj = NULL;
3255     if (name == NULL && fd == -1) {
3256 	obj = obj_main;
3257 	obj->refcount++;
3258     } else {
3259 	obj = load_object(name, fd, refobj, lo_flags);
3260     }
3261 
3262     if (obj) {
3263 	obj->dl_refcount++;
3264 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3265 	    objlist_push_tail(&list_global, obj);
3266 	if (globallist_next(old_obj_tail) != NULL) {
3267 	    /* We loaded something new. */
3268 	    assert(globallist_next(old_obj_tail) == obj);
3269 	    result = load_needed_objects(obj,
3270 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3271 	    init_dag(obj);
3272 	    ref_dag(obj);
3273 	    if (result != -1)
3274 		result = rtld_verify_versions(&obj->dagmembers);
3275 	    if (result != -1 && ld_tracing)
3276 		goto trace;
3277 	    if (result == -1 || relocate_object_dag(obj,
3278 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3279 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3280 	      lockstate) == -1) {
3281 		dlopen_cleanup(obj, lockstate);
3282 		obj = NULL;
3283 	    } else if (lo_flags & RTLD_LO_EARLY) {
3284 		/*
3285 		 * Do not call the init functions for early loaded
3286 		 * filtees.  The image is still not initialized enough
3287 		 * for them to work.
3288 		 *
3289 		 * Our object is found by the global object list and
3290 		 * will be ordered among all init calls done right
3291 		 * before transferring control to main.
3292 		 */
3293 	    } else {
3294 		/* Make list of init functions to call. */
3295 		initlist_add_objects(obj, obj, &initlist);
3296 	    }
3297 	    /*
3298 	     * Process all no_delete or global objects here, given
3299 	     * them own DAGs to prevent their dependencies from being
3300 	     * unloaded.  This has to be done after we have loaded all
3301 	     * of the dependencies, so that we do not miss any.
3302 	     */
3303 	    if (obj != NULL)
3304 		process_z(obj);
3305 	} else {
3306 	    /*
3307 	     * Bump the reference counts for objects on this DAG.  If
3308 	     * this is the first dlopen() call for the object that was
3309 	     * already loaded as a dependency, initialize the dag
3310 	     * starting at it.
3311 	     */
3312 	    init_dag(obj);
3313 	    ref_dag(obj);
3314 
3315 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3316 		goto trace;
3317 	}
3318 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3319 	  obj->z_nodelete) && !obj->ref_nodel) {
3320 	    dbg("obj %s nodelete", obj->path);
3321 	    ref_dag(obj);
3322 	    obj->z_nodelete = obj->ref_nodel = true;
3323 	}
3324     }
3325 
3326     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3327 	name);
3328     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3329 
3330     if (!(lo_flags & RTLD_LO_EARLY)) {
3331 	map_stacks_exec(lockstate);
3332     }
3333 
3334     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3335       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3336       lockstate) == -1) {
3337 	objlist_clear(&initlist);
3338 	dlopen_cleanup(obj, lockstate);
3339 	if (lockstate == &mlockstate)
3340 	    lock_release(rtld_bind_lock, lockstate);
3341 	return (NULL);
3342     }
3343 
3344     if (!(lo_flags & RTLD_LO_EARLY)) {
3345 	/* Call the init functions. */
3346 	objlist_call_init(&initlist, lockstate);
3347     }
3348     objlist_clear(&initlist);
3349     if (lockstate == &mlockstate)
3350 	lock_release(rtld_bind_lock, lockstate);
3351     return obj;
3352 trace:
3353     trace_loaded_objects(obj);
3354     if (lockstate == &mlockstate)
3355 	lock_release(rtld_bind_lock, lockstate);
3356     exit(0);
3357 }
3358 
3359 static void *
3360 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3361     int flags)
3362 {
3363     DoneList donelist;
3364     const Obj_Entry *obj, *defobj;
3365     const Elf_Sym *def;
3366     SymLook req;
3367     RtldLockState lockstate;
3368     tls_index ti;
3369     void *sym;
3370     int res;
3371 
3372     def = NULL;
3373     defobj = NULL;
3374     symlook_init(&req, name);
3375     req.ventry = ve;
3376     req.flags = flags | SYMLOOK_IN_PLT;
3377     req.lockstate = &lockstate;
3378 
3379     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3380     rlock_acquire(rtld_bind_lock, &lockstate);
3381     if (sigsetjmp(lockstate.env, 0) != 0)
3382 	    lock_upgrade(rtld_bind_lock, &lockstate);
3383     if (handle == NULL || handle == RTLD_NEXT ||
3384 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3385 
3386 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3387 	    _rtld_error("Cannot determine caller's shared object");
3388 	    lock_release(rtld_bind_lock, &lockstate);
3389 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3390 	    return NULL;
3391 	}
3392 	if (handle == NULL) {	/* Just the caller's shared object. */
3393 	    res = symlook_obj(&req, obj);
3394 	    if (res == 0) {
3395 		def = req.sym_out;
3396 		defobj = req.defobj_out;
3397 	    }
3398 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3399 		   handle == RTLD_SELF) { /* ... caller included */
3400 	    if (handle == RTLD_NEXT)
3401 		obj = globallist_next(obj);
3402 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3403 		if (obj->marker)
3404 		    continue;
3405 		res = symlook_obj(&req, obj);
3406 		if (res == 0) {
3407 		    if (def == NULL ||
3408 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3409 			def = req.sym_out;
3410 			defobj = req.defobj_out;
3411 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3412 			    break;
3413 		    }
3414 		}
3415 	    }
3416 	    /*
3417 	     * Search the dynamic linker itself, and possibly resolve the
3418 	     * symbol from there.  This is how the application links to
3419 	     * dynamic linker services such as dlopen.
3420 	     */
3421 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3422 		res = symlook_obj(&req, &obj_rtld);
3423 		if (res == 0) {
3424 		    def = req.sym_out;
3425 		    defobj = req.defobj_out;
3426 		}
3427 	    }
3428 	} else {
3429 	    assert(handle == RTLD_DEFAULT);
3430 	    res = symlook_default(&req, obj);
3431 	    if (res == 0) {
3432 		defobj = req.defobj_out;
3433 		def = req.sym_out;
3434 	    }
3435 	}
3436     } else {
3437 	if ((obj = dlcheck(handle)) == NULL) {
3438 	    lock_release(rtld_bind_lock, &lockstate);
3439 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3440 	    return NULL;
3441 	}
3442 
3443 	donelist_init(&donelist);
3444 	if (obj->mainprog) {
3445             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3446 	    res = symlook_global(&req, &donelist);
3447 	    if (res == 0) {
3448 		def = req.sym_out;
3449 		defobj = req.defobj_out;
3450 	    }
3451 	    /*
3452 	     * Search the dynamic linker itself, and possibly resolve the
3453 	     * symbol from there.  This is how the application links to
3454 	     * dynamic linker services such as dlopen.
3455 	     */
3456 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3457 		res = symlook_obj(&req, &obj_rtld);
3458 		if (res == 0) {
3459 		    def = req.sym_out;
3460 		    defobj = req.defobj_out;
3461 		}
3462 	    }
3463 	}
3464 	else {
3465 	    /* Search the whole DAG rooted at the given object. */
3466 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3467 	    if (res == 0) {
3468 		def = req.sym_out;
3469 		defobj = req.defobj_out;
3470 	    }
3471 	}
3472     }
3473 
3474     if (def != NULL) {
3475 	lock_release(rtld_bind_lock, &lockstate);
3476 
3477 	/*
3478 	 * The value required by the caller is derived from the value
3479 	 * of the symbol. this is simply the relocated value of the
3480 	 * symbol.
3481 	 */
3482 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3483 	    sym = make_function_pointer(def, defobj);
3484 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3485 	    sym = rtld_resolve_ifunc(defobj, def);
3486 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3487 	    ti.ti_module = defobj->tlsindex;
3488 	    ti.ti_offset = def->st_value;
3489 	    sym = __tls_get_addr(&ti);
3490 	} else
3491 	    sym = defobj->relocbase + def->st_value;
3492 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3493 	return (sym);
3494     }
3495 
3496     _rtld_error("Undefined symbol \"%s\"", name);
3497     lock_release(rtld_bind_lock, &lockstate);
3498     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3499     return NULL;
3500 }
3501 
3502 void *
3503 dlsym(void *handle, const char *name)
3504 {
3505 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3506 	    SYMLOOK_DLSYM);
3507 }
3508 
3509 dlfunc_t
3510 dlfunc(void *handle, const char *name)
3511 {
3512 	union {
3513 		void *d;
3514 		dlfunc_t f;
3515 	} rv;
3516 
3517 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3518 	    SYMLOOK_DLSYM);
3519 	return (rv.f);
3520 }
3521 
3522 void *
3523 dlvsym(void *handle, const char *name, const char *version)
3524 {
3525 	Ver_Entry ventry;
3526 
3527 	ventry.name = version;
3528 	ventry.file = NULL;
3529 	ventry.hash = elf_hash(version);
3530 	ventry.flags= 0;
3531 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3532 	    SYMLOOK_DLSYM);
3533 }
3534 
3535 int
3536 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3537 {
3538     const Obj_Entry *obj;
3539     RtldLockState lockstate;
3540 
3541     rlock_acquire(rtld_bind_lock, &lockstate);
3542     obj = obj_from_addr(addr);
3543     if (obj == NULL) {
3544         _rtld_error("No shared object contains address");
3545 	lock_release(rtld_bind_lock, &lockstate);
3546         return (0);
3547     }
3548     rtld_fill_dl_phdr_info(obj, phdr_info);
3549     lock_release(rtld_bind_lock, &lockstate);
3550     return (1);
3551 }
3552 
3553 int
3554 dladdr(const void *addr, Dl_info *info)
3555 {
3556     const Obj_Entry *obj;
3557     const Elf_Sym *def;
3558     void *symbol_addr;
3559     unsigned long symoffset;
3560     RtldLockState lockstate;
3561 
3562     rlock_acquire(rtld_bind_lock, &lockstate);
3563     obj = obj_from_addr(addr);
3564     if (obj == NULL) {
3565         _rtld_error("No shared object contains address");
3566 	lock_release(rtld_bind_lock, &lockstate);
3567         return 0;
3568     }
3569     info->dli_fname = obj->path;
3570     info->dli_fbase = obj->mapbase;
3571     info->dli_saddr = (void *)0;
3572     info->dli_sname = NULL;
3573 
3574     /*
3575      * Walk the symbol list looking for the symbol whose address is
3576      * closest to the address sent in.
3577      */
3578     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3579         def = obj->symtab + symoffset;
3580 
3581         /*
3582          * For skip the symbol if st_shndx is either SHN_UNDEF or
3583          * SHN_COMMON.
3584          */
3585         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3586             continue;
3587 
3588         /*
3589          * If the symbol is greater than the specified address, or if it
3590          * is further away from addr than the current nearest symbol,
3591          * then reject it.
3592          */
3593         symbol_addr = obj->relocbase + def->st_value;
3594         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3595             continue;
3596 
3597         /* Update our idea of the nearest symbol. */
3598         info->dli_sname = obj->strtab + def->st_name;
3599         info->dli_saddr = symbol_addr;
3600 
3601         /* Exact match? */
3602         if (info->dli_saddr == addr)
3603             break;
3604     }
3605     lock_release(rtld_bind_lock, &lockstate);
3606     return 1;
3607 }
3608 
3609 int
3610 dlinfo(void *handle, int request, void *p)
3611 {
3612     const Obj_Entry *obj;
3613     RtldLockState lockstate;
3614     int error;
3615 
3616     rlock_acquire(rtld_bind_lock, &lockstate);
3617 
3618     if (handle == NULL || handle == RTLD_SELF) {
3619 	void *retaddr;
3620 
3621 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3622 	if ((obj = obj_from_addr(retaddr)) == NULL)
3623 	    _rtld_error("Cannot determine caller's shared object");
3624     } else
3625 	obj = dlcheck(handle);
3626 
3627     if (obj == NULL) {
3628 	lock_release(rtld_bind_lock, &lockstate);
3629 	return (-1);
3630     }
3631 
3632     error = 0;
3633     switch (request) {
3634     case RTLD_DI_LINKMAP:
3635 	*((struct link_map const **)p) = &obj->linkmap;
3636 	break;
3637     case RTLD_DI_ORIGIN:
3638 	error = rtld_dirname(obj->path, p);
3639 	break;
3640 
3641     case RTLD_DI_SERINFOSIZE:
3642     case RTLD_DI_SERINFO:
3643 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3644 	break;
3645 
3646     default:
3647 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3648 	error = -1;
3649     }
3650 
3651     lock_release(rtld_bind_lock, &lockstate);
3652 
3653     return (error);
3654 }
3655 
3656 static void
3657 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3658 {
3659 
3660 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3661 	phdr_info->dlpi_name = obj->path;
3662 	phdr_info->dlpi_phdr = obj->phdr;
3663 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3664 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3665 	phdr_info->dlpi_tls_data = obj->tlsinit;
3666 	phdr_info->dlpi_adds = obj_loads;
3667 	phdr_info->dlpi_subs = obj_loads - obj_count;
3668 }
3669 
3670 int
3671 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3672 {
3673 	struct dl_phdr_info phdr_info;
3674 	Obj_Entry *obj, marker;
3675 	RtldLockState bind_lockstate, phdr_lockstate;
3676 	int error;
3677 
3678 	init_marker(&marker);
3679 	error = 0;
3680 
3681 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3682 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3683 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3684 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3685 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3686 		hold_object(obj);
3687 		lock_release(rtld_bind_lock, &bind_lockstate);
3688 
3689 		error = callback(&phdr_info, sizeof phdr_info, param);
3690 
3691 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3692 		unhold_object(obj);
3693 		obj = globallist_next(&marker);
3694 		TAILQ_REMOVE(&obj_list, &marker, next);
3695 		if (error != 0) {
3696 			lock_release(rtld_bind_lock, &bind_lockstate);
3697 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3698 			return (error);
3699 		}
3700 	}
3701 
3702 	if (error == 0) {
3703 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3704 		lock_release(rtld_bind_lock, &bind_lockstate);
3705 		error = callback(&phdr_info, sizeof(phdr_info), param);
3706 	}
3707 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3708 	return (error);
3709 }
3710 
3711 static void *
3712 fill_search_info(const char *dir, size_t dirlen, void *param)
3713 {
3714     struct fill_search_info_args *arg;
3715 
3716     arg = param;
3717 
3718     if (arg->request == RTLD_DI_SERINFOSIZE) {
3719 	arg->serinfo->dls_cnt ++;
3720 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3721     } else {
3722 	struct dl_serpath *s_entry;
3723 
3724 	s_entry = arg->serpath;
3725 	s_entry->dls_name  = arg->strspace;
3726 	s_entry->dls_flags = arg->flags;
3727 
3728 	strncpy(arg->strspace, dir, dirlen);
3729 	arg->strspace[dirlen] = '\0';
3730 
3731 	arg->strspace += dirlen + 1;
3732 	arg->serpath++;
3733     }
3734 
3735     return (NULL);
3736 }
3737 
3738 static int
3739 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3740 {
3741     struct dl_serinfo _info;
3742     struct fill_search_info_args args;
3743 
3744     args.request = RTLD_DI_SERINFOSIZE;
3745     args.serinfo = &_info;
3746 
3747     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3748     _info.dls_cnt  = 0;
3749 
3750     path_enumerate(obj->rpath, fill_search_info, &args);
3751     path_enumerate(ld_library_path, fill_search_info, &args);
3752     path_enumerate(obj->runpath, fill_search_info, &args);
3753     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3754     if (!obj->z_nodeflib)
3755       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3756 
3757 
3758     if (request == RTLD_DI_SERINFOSIZE) {
3759 	info->dls_size = _info.dls_size;
3760 	info->dls_cnt = _info.dls_cnt;
3761 	return (0);
3762     }
3763 
3764     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3765 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3766 	return (-1);
3767     }
3768 
3769     args.request  = RTLD_DI_SERINFO;
3770     args.serinfo  = info;
3771     args.serpath  = &info->dls_serpath[0];
3772     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3773 
3774     args.flags = LA_SER_RUNPATH;
3775     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3776 	return (-1);
3777 
3778     args.flags = LA_SER_LIBPATH;
3779     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3780 	return (-1);
3781 
3782     args.flags = LA_SER_RUNPATH;
3783     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3784 	return (-1);
3785 
3786     args.flags = LA_SER_CONFIG;
3787     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3788       != NULL)
3789 	return (-1);
3790 
3791     args.flags = LA_SER_DEFAULT;
3792     if (!obj->z_nodeflib &&
3793       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3794 	return (-1);
3795     return (0);
3796 }
3797 
3798 static int
3799 rtld_dirname(const char *path, char *bname)
3800 {
3801     const char *endp;
3802 
3803     /* Empty or NULL string gets treated as "." */
3804     if (path == NULL || *path == '\0') {
3805 	bname[0] = '.';
3806 	bname[1] = '\0';
3807 	return (0);
3808     }
3809 
3810     /* Strip trailing slashes */
3811     endp = path + strlen(path) - 1;
3812     while (endp > path && *endp == '/')
3813 	endp--;
3814 
3815     /* Find the start of the dir */
3816     while (endp > path && *endp != '/')
3817 	endp--;
3818 
3819     /* Either the dir is "/" or there are no slashes */
3820     if (endp == path) {
3821 	bname[0] = *endp == '/' ? '/' : '.';
3822 	bname[1] = '\0';
3823 	return (0);
3824     } else {
3825 	do {
3826 	    endp--;
3827 	} while (endp > path && *endp == '/');
3828     }
3829 
3830     if (endp - path + 2 > PATH_MAX)
3831     {
3832 	_rtld_error("Filename is too long: %s", path);
3833 	return(-1);
3834     }
3835 
3836     strncpy(bname, path, endp - path + 1);
3837     bname[endp - path + 1] = '\0';
3838     return (0);
3839 }
3840 
3841 static int
3842 rtld_dirname_abs(const char *path, char *base)
3843 {
3844 	char *last;
3845 
3846 	if (realpath(path, base) == NULL)
3847 		return (-1);
3848 	dbg("%s -> %s", path, base);
3849 	last = strrchr(base, '/');
3850 	if (last == NULL)
3851 		return (-1);
3852 	if (last != base)
3853 		*last = '\0';
3854 	return (0);
3855 }
3856 
3857 static void
3858 linkmap_add(Obj_Entry *obj)
3859 {
3860     struct link_map *l = &obj->linkmap;
3861     struct link_map *prev;
3862 
3863     obj->linkmap.l_name = obj->path;
3864     obj->linkmap.l_addr = obj->mapbase;
3865     obj->linkmap.l_ld = obj->dynamic;
3866 #ifdef __mips__
3867     /* GDB needs load offset on MIPS to use the symbols */
3868     obj->linkmap.l_offs = obj->relocbase;
3869 #endif
3870 
3871     if (r_debug.r_map == NULL) {
3872 	r_debug.r_map = l;
3873 	return;
3874     }
3875 
3876     /*
3877      * Scan to the end of the list, but not past the entry for the
3878      * dynamic linker, which we want to keep at the very end.
3879      */
3880     for (prev = r_debug.r_map;
3881       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3882       prev = prev->l_next)
3883 	;
3884 
3885     /* Link in the new entry. */
3886     l->l_prev = prev;
3887     l->l_next = prev->l_next;
3888     if (l->l_next != NULL)
3889 	l->l_next->l_prev = l;
3890     prev->l_next = l;
3891 }
3892 
3893 static void
3894 linkmap_delete(Obj_Entry *obj)
3895 {
3896     struct link_map *l = &obj->linkmap;
3897 
3898     if (l->l_prev == NULL) {
3899 	if ((r_debug.r_map = l->l_next) != NULL)
3900 	    l->l_next->l_prev = NULL;
3901 	return;
3902     }
3903 
3904     if ((l->l_prev->l_next = l->l_next) != NULL)
3905 	l->l_next->l_prev = l->l_prev;
3906 }
3907 
3908 /*
3909  * Function for the debugger to set a breakpoint on to gain control.
3910  *
3911  * The two parameters allow the debugger to easily find and determine
3912  * what the runtime loader is doing and to whom it is doing it.
3913  *
3914  * When the loadhook trap is hit (r_debug_state, set at program
3915  * initialization), the arguments can be found on the stack:
3916  *
3917  *  +8   struct link_map *m
3918  *  +4   struct r_debug  *rd
3919  *  +0   RetAddr
3920  */
3921 void
3922 r_debug_state(struct r_debug* rd, struct link_map *m)
3923 {
3924     /*
3925      * The following is a hack to force the compiler to emit calls to
3926      * this function, even when optimizing.  If the function is empty,
3927      * the compiler is not obliged to emit any code for calls to it,
3928      * even when marked __noinline.  However, gdb depends on those
3929      * calls being made.
3930      */
3931     __compiler_membar();
3932 }
3933 
3934 /*
3935  * A function called after init routines have completed. This can be used to
3936  * break before a program's entry routine is called, and can be used when
3937  * main is not available in the symbol table.
3938  */
3939 void
3940 _r_debug_postinit(struct link_map *m)
3941 {
3942 
3943 	/* See r_debug_state(). */
3944 	__compiler_membar();
3945 }
3946 
3947 static void
3948 release_object(Obj_Entry *obj)
3949 {
3950 
3951 	if (obj->holdcount > 0) {
3952 		obj->unholdfree = true;
3953 		return;
3954 	}
3955 	munmap(obj->mapbase, obj->mapsize);
3956 	linkmap_delete(obj);
3957 	obj_free(obj);
3958 }
3959 
3960 /*
3961  * Get address of the pointer variable in the main program.
3962  * Prefer non-weak symbol over the weak one.
3963  */
3964 static const void **
3965 get_program_var_addr(const char *name, RtldLockState *lockstate)
3966 {
3967     SymLook req;
3968     DoneList donelist;
3969 
3970     symlook_init(&req, name);
3971     req.lockstate = lockstate;
3972     donelist_init(&donelist);
3973     if (symlook_global(&req, &donelist) != 0)
3974 	return (NULL);
3975     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3976 	return ((const void **)make_function_pointer(req.sym_out,
3977 	  req.defobj_out));
3978     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3979 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3980     else
3981 	return ((const void **)(req.defobj_out->relocbase +
3982 	  req.sym_out->st_value));
3983 }
3984 
3985 /*
3986  * Set a pointer variable in the main program to the given value.  This
3987  * is used to set key variables such as "environ" before any of the
3988  * init functions are called.
3989  */
3990 static void
3991 set_program_var(const char *name, const void *value)
3992 {
3993     const void **addr;
3994 
3995     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3996 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3997 	*addr = value;
3998     }
3999 }
4000 
4001 /*
4002  * Search the global objects, including dependencies and main object,
4003  * for the given symbol.
4004  */
4005 static int
4006 symlook_global(SymLook *req, DoneList *donelist)
4007 {
4008     SymLook req1;
4009     const Objlist_Entry *elm;
4010     int res;
4011 
4012     symlook_init_from_req(&req1, req);
4013 
4014     /* Search all objects loaded at program start up. */
4015     if (req->defobj_out == NULL ||
4016       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4017 	res = symlook_list(&req1, &list_main, donelist);
4018 	if (res == 0 && (req->defobj_out == NULL ||
4019 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4020 	    req->sym_out = req1.sym_out;
4021 	    req->defobj_out = req1.defobj_out;
4022 	    assert(req->defobj_out != NULL);
4023 	}
4024     }
4025 
4026     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4027     STAILQ_FOREACH(elm, &list_global, link) {
4028 	if (req->defobj_out != NULL &&
4029 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4030 	    break;
4031 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4032 	if (res == 0 && (req->defobj_out == NULL ||
4033 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4034 	    req->sym_out = req1.sym_out;
4035 	    req->defobj_out = req1.defobj_out;
4036 	    assert(req->defobj_out != NULL);
4037 	}
4038     }
4039 
4040     return (req->sym_out != NULL ? 0 : ESRCH);
4041 }
4042 
4043 /*
4044  * Given a symbol name in a referencing object, find the corresponding
4045  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4046  * no definition was found.  Returns a pointer to the Obj_Entry of the
4047  * defining object via the reference parameter DEFOBJ_OUT.
4048  */
4049 static int
4050 symlook_default(SymLook *req, const Obj_Entry *refobj)
4051 {
4052     DoneList donelist;
4053     const Objlist_Entry *elm;
4054     SymLook req1;
4055     int res;
4056 
4057     donelist_init(&donelist);
4058     symlook_init_from_req(&req1, req);
4059 
4060     /*
4061      * Look first in the referencing object if linked symbolically,
4062      * and similarly handle protected symbols.
4063      */
4064     res = symlook_obj(&req1, refobj);
4065     if (res == 0 && (refobj->symbolic ||
4066       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4067 	req->sym_out = req1.sym_out;
4068 	req->defobj_out = req1.defobj_out;
4069 	assert(req->defobj_out != NULL);
4070     }
4071     if (refobj->symbolic || req->defobj_out != NULL)
4072 	donelist_check(&donelist, refobj);
4073 
4074     symlook_global(req, &donelist);
4075 
4076     /* Search all dlopened DAGs containing the referencing object. */
4077     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4078 	if (req->sym_out != NULL &&
4079 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4080 	    break;
4081 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4082 	if (res == 0 && (req->sym_out == NULL ||
4083 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4084 	    req->sym_out = req1.sym_out;
4085 	    req->defobj_out = req1.defobj_out;
4086 	    assert(req->defobj_out != NULL);
4087 	}
4088     }
4089 
4090     /*
4091      * Search the dynamic linker itself, and possibly resolve the
4092      * symbol from there.  This is how the application links to
4093      * dynamic linker services such as dlopen.
4094      */
4095     if (req->sym_out == NULL ||
4096       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4097 	res = symlook_obj(&req1, &obj_rtld);
4098 	if (res == 0) {
4099 	    req->sym_out = req1.sym_out;
4100 	    req->defobj_out = req1.defobj_out;
4101 	    assert(req->defobj_out != NULL);
4102 	}
4103     }
4104 
4105     return (req->sym_out != NULL ? 0 : ESRCH);
4106 }
4107 
4108 static int
4109 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4110 {
4111     const Elf_Sym *def;
4112     const Obj_Entry *defobj;
4113     const Objlist_Entry *elm;
4114     SymLook req1;
4115     int res;
4116 
4117     def = NULL;
4118     defobj = NULL;
4119     STAILQ_FOREACH(elm, objlist, link) {
4120 	if (donelist_check(dlp, elm->obj))
4121 	    continue;
4122 	symlook_init_from_req(&req1, req);
4123 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4124 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4125 		def = req1.sym_out;
4126 		defobj = req1.defobj_out;
4127 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4128 		    break;
4129 	    }
4130 	}
4131     }
4132     if (def != NULL) {
4133 	req->sym_out = def;
4134 	req->defobj_out = defobj;
4135 	return (0);
4136     }
4137     return (ESRCH);
4138 }
4139 
4140 /*
4141  * Search the chain of DAGS cointed to by the given Needed_Entry
4142  * for a symbol of the given name.  Each DAG is scanned completely
4143  * before advancing to the next one.  Returns a pointer to the symbol,
4144  * or NULL if no definition was found.
4145  */
4146 static int
4147 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4148 {
4149     const Elf_Sym *def;
4150     const Needed_Entry *n;
4151     const Obj_Entry *defobj;
4152     SymLook req1;
4153     int res;
4154 
4155     def = NULL;
4156     defobj = NULL;
4157     symlook_init_from_req(&req1, req);
4158     for (n = needed; n != NULL; n = n->next) {
4159 	if (n->obj == NULL ||
4160 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4161 	    continue;
4162 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4163 	    def = req1.sym_out;
4164 	    defobj = req1.defobj_out;
4165 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4166 		break;
4167 	}
4168     }
4169     if (def != NULL) {
4170 	req->sym_out = def;
4171 	req->defobj_out = defobj;
4172 	return (0);
4173     }
4174     return (ESRCH);
4175 }
4176 
4177 /*
4178  * Search the symbol table of a single shared object for a symbol of
4179  * the given name and version, if requested.  Returns a pointer to the
4180  * symbol, or NULL if no definition was found.  If the object is
4181  * filter, return filtered symbol from filtee.
4182  *
4183  * The symbol's hash value is passed in for efficiency reasons; that
4184  * eliminates many recomputations of the hash value.
4185  */
4186 int
4187 symlook_obj(SymLook *req, const Obj_Entry *obj)
4188 {
4189     DoneList donelist;
4190     SymLook req1;
4191     int flags, res, mres;
4192 
4193     /*
4194      * If there is at least one valid hash at this point, we prefer to
4195      * use the faster GNU version if available.
4196      */
4197     if (obj->valid_hash_gnu)
4198 	mres = symlook_obj1_gnu(req, obj);
4199     else if (obj->valid_hash_sysv)
4200 	mres = symlook_obj1_sysv(req, obj);
4201     else
4202 	return (EINVAL);
4203 
4204     if (mres == 0) {
4205 	if (obj->needed_filtees != NULL) {
4206 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4207 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4208 	    donelist_init(&donelist);
4209 	    symlook_init_from_req(&req1, req);
4210 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4211 	    if (res == 0) {
4212 		req->sym_out = req1.sym_out;
4213 		req->defobj_out = req1.defobj_out;
4214 	    }
4215 	    return (res);
4216 	}
4217 	if (obj->needed_aux_filtees != NULL) {
4218 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4219 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4220 	    donelist_init(&donelist);
4221 	    symlook_init_from_req(&req1, req);
4222 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4223 	    if (res == 0) {
4224 		req->sym_out = req1.sym_out;
4225 		req->defobj_out = req1.defobj_out;
4226 		return (res);
4227 	    }
4228 	}
4229     }
4230     return (mres);
4231 }
4232 
4233 /* Symbol match routine common to both hash functions */
4234 static bool
4235 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4236     const unsigned long symnum)
4237 {
4238 	Elf_Versym verndx;
4239 	const Elf_Sym *symp;
4240 	const char *strp;
4241 
4242 	symp = obj->symtab + symnum;
4243 	strp = obj->strtab + symp->st_name;
4244 
4245 	switch (ELF_ST_TYPE(symp->st_info)) {
4246 	case STT_FUNC:
4247 	case STT_NOTYPE:
4248 	case STT_OBJECT:
4249 	case STT_COMMON:
4250 	case STT_GNU_IFUNC:
4251 		if (symp->st_value == 0)
4252 			return (false);
4253 		/* fallthrough */
4254 	case STT_TLS:
4255 		if (symp->st_shndx != SHN_UNDEF)
4256 			break;
4257 #ifndef __mips__
4258 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4259 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4260 			break;
4261 		/* fallthrough */
4262 #endif
4263 	default:
4264 		return (false);
4265 	}
4266 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4267 		return (false);
4268 
4269 	if (req->ventry == NULL) {
4270 		if (obj->versyms != NULL) {
4271 			verndx = VER_NDX(obj->versyms[symnum]);
4272 			if (verndx > obj->vernum) {
4273 				_rtld_error(
4274 				    "%s: symbol %s references wrong version %d",
4275 				    obj->path, obj->strtab + symnum, verndx);
4276 				return (false);
4277 			}
4278 			/*
4279 			 * If we are not called from dlsym (i.e. this
4280 			 * is a normal relocation from unversioned
4281 			 * binary), accept the symbol immediately if
4282 			 * it happens to have first version after this
4283 			 * shared object became versioned.  Otherwise,
4284 			 * if symbol is versioned and not hidden,
4285 			 * remember it. If it is the only symbol with
4286 			 * this name exported by the shared object, it
4287 			 * will be returned as a match by the calling
4288 			 * function. If symbol is global (verndx < 2)
4289 			 * accept it unconditionally.
4290 			 */
4291 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4292 			    verndx == VER_NDX_GIVEN) {
4293 				result->sym_out = symp;
4294 				return (true);
4295 			}
4296 			else if (verndx >= VER_NDX_GIVEN) {
4297 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4298 				    == 0) {
4299 					if (result->vsymp == NULL)
4300 						result->vsymp = symp;
4301 					result->vcount++;
4302 				}
4303 				return (false);
4304 			}
4305 		}
4306 		result->sym_out = symp;
4307 		return (true);
4308 	}
4309 	if (obj->versyms == NULL) {
4310 		if (object_match_name(obj, req->ventry->name)) {
4311 			_rtld_error("%s: object %s should provide version %s "
4312 			    "for symbol %s", obj_rtld.path, obj->path,
4313 			    req->ventry->name, obj->strtab + symnum);
4314 			return (false);
4315 		}
4316 	} else {
4317 		verndx = VER_NDX(obj->versyms[symnum]);
4318 		if (verndx > obj->vernum) {
4319 			_rtld_error("%s: symbol %s references wrong version %d",
4320 			    obj->path, obj->strtab + symnum, verndx);
4321 			return (false);
4322 		}
4323 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4324 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4325 			/*
4326 			 * Version does not match. Look if this is a
4327 			 * global symbol and if it is not hidden. If
4328 			 * global symbol (verndx < 2) is available,
4329 			 * use it. Do not return symbol if we are
4330 			 * called by dlvsym, because dlvsym looks for
4331 			 * a specific version and default one is not
4332 			 * what dlvsym wants.
4333 			 */
4334 			if ((req->flags & SYMLOOK_DLSYM) ||
4335 			    (verndx >= VER_NDX_GIVEN) ||
4336 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4337 				return (false);
4338 		}
4339 	}
4340 	result->sym_out = symp;
4341 	return (true);
4342 }
4343 
4344 /*
4345  * Search for symbol using SysV hash function.
4346  * obj->buckets is known not to be NULL at this point; the test for this was
4347  * performed with the obj->valid_hash_sysv assignment.
4348  */
4349 static int
4350 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4351 {
4352 	unsigned long symnum;
4353 	Sym_Match_Result matchres;
4354 
4355 	matchres.sym_out = NULL;
4356 	matchres.vsymp = NULL;
4357 	matchres.vcount = 0;
4358 
4359 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4360 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4361 		if (symnum >= obj->nchains)
4362 			return (ESRCH);	/* Bad object */
4363 
4364 		if (matched_symbol(req, obj, &matchres, symnum)) {
4365 			req->sym_out = matchres.sym_out;
4366 			req->defobj_out = obj;
4367 			return (0);
4368 		}
4369 	}
4370 	if (matchres.vcount == 1) {
4371 		req->sym_out = matchres.vsymp;
4372 		req->defobj_out = obj;
4373 		return (0);
4374 	}
4375 	return (ESRCH);
4376 }
4377 
4378 /* Search for symbol using GNU hash function */
4379 static int
4380 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4381 {
4382 	Elf_Addr bloom_word;
4383 	const Elf32_Word *hashval;
4384 	Elf32_Word bucket;
4385 	Sym_Match_Result matchres;
4386 	unsigned int h1, h2;
4387 	unsigned long symnum;
4388 
4389 	matchres.sym_out = NULL;
4390 	matchres.vsymp = NULL;
4391 	matchres.vcount = 0;
4392 
4393 	/* Pick right bitmask word from Bloom filter array */
4394 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4395 	    obj->maskwords_bm_gnu];
4396 
4397 	/* Calculate modulus word size of gnu hash and its derivative */
4398 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4399 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4400 
4401 	/* Filter out the "definitely not in set" queries */
4402 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4403 		return (ESRCH);
4404 
4405 	/* Locate hash chain and corresponding value element*/
4406 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4407 	if (bucket == 0)
4408 		return (ESRCH);
4409 	hashval = &obj->chain_zero_gnu[bucket];
4410 	do {
4411 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4412 			symnum = hashval - obj->chain_zero_gnu;
4413 			if (matched_symbol(req, obj, &matchres, symnum)) {
4414 				req->sym_out = matchres.sym_out;
4415 				req->defobj_out = obj;
4416 				return (0);
4417 			}
4418 		}
4419 	} while ((*hashval++ & 1) == 0);
4420 	if (matchres.vcount == 1) {
4421 		req->sym_out = matchres.vsymp;
4422 		req->defobj_out = obj;
4423 		return (0);
4424 	}
4425 	return (ESRCH);
4426 }
4427 
4428 static void
4429 trace_loaded_objects(Obj_Entry *obj)
4430 {
4431     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4432     int		c;
4433 
4434     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4435 	main_local = "";
4436 
4437     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4438 	fmt1 = "\t%o => %p (%x)\n";
4439 
4440     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4441 	fmt2 = "\t%o (%x)\n";
4442 
4443     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4444 
4445     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4446 	Needed_Entry		*needed;
4447 	char			*name, *path;
4448 	bool			is_lib;
4449 
4450 	if (obj->marker)
4451 	    continue;
4452 	if (list_containers && obj->needed != NULL)
4453 	    rtld_printf("%s:\n", obj->path);
4454 	for (needed = obj->needed; needed; needed = needed->next) {
4455 	    if (needed->obj != NULL) {
4456 		if (needed->obj->traced && !list_containers)
4457 		    continue;
4458 		needed->obj->traced = true;
4459 		path = needed->obj->path;
4460 	    } else
4461 		path = "not found";
4462 
4463 	    name = (char *)obj->strtab + needed->name;
4464 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4465 
4466 	    fmt = is_lib ? fmt1 : fmt2;
4467 	    while ((c = *fmt++) != '\0') {
4468 		switch (c) {
4469 		default:
4470 		    rtld_putchar(c);
4471 		    continue;
4472 		case '\\':
4473 		    switch (c = *fmt) {
4474 		    case '\0':
4475 			continue;
4476 		    case 'n':
4477 			rtld_putchar('\n');
4478 			break;
4479 		    case 't':
4480 			rtld_putchar('\t');
4481 			break;
4482 		    }
4483 		    break;
4484 		case '%':
4485 		    switch (c = *fmt) {
4486 		    case '\0':
4487 			continue;
4488 		    case '%':
4489 		    default:
4490 			rtld_putchar(c);
4491 			break;
4492 		    case 'A':
4493 			rtld_putstr(main_local);
4494 			break;
4495 		    case 'a':
4496 			rtld_putstr(obj_main->path);
4497 			break;
4498 		    case 'o':
4499 			rtld_putstr(name);
4500 			break;
4501 #if 0
4502 		    case 'm':
4503 			rtld_printf("%d", sodp->sod_major);
4504 			break;
4505 		    case 'n':
4506 			rtld_printf("%d", sodp->sod_minor);
4507 			break;
4508 #endif
4509 		    case 'p':
4510 			rtld_putstr(path);
4511 			break;
4512 		    case 'x':
4513 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4514 			  0);
4515 			break;
4516 		    }
4517 		    break;
4518 		}
4519 		++fmt;
4520 	    }
4521 	}
4522     }
4523 }
4524 
4525 /*
4526  * Unload a dlopened object and its dependencies from memory and from
4527  * our data structures.  It is assumed that the DAG rooted in the
4528  * object has already been unreferenced, and that the object has a
4529  * reference count of 0.
4530  */
4531 static void
4532 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4533 {
4534 	Obj_Entry marker, *obj, *next;
4535 
4536 	assert(root->refcount == 0);
4537 
4538 	/*
4539 	 * Pass over the DAG removing unreferenced objects from
4540 	 * appropriate lists.
4541 	 */
4542 	unlink_object(root);
4543 
4544 	/* Unmap all objects that are no longer referenced. */
4545 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4546 		next = TAILQ_NEXT(obj, next);
4547 		if (obj->marker || obj->refcount != 0)
4548 			continue;
4549 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4550 		    obj->mapsize, 0, obj->path);
4551 		dbg("unloading \"%s\"", obj->path);
4552 		/*
4553 		 * Unlink the object now to prevent new references from
4554 		 * being acquired while the bind lock is dropped in
4555 		 * recursive dlclose() invocations.
4556 		 */
4557 		TAILQ_REMOVE(&obj_list, obj, next);
4558 		obj_count--;
4559 
4560 		if (obj->filtees_loaded) {
4561 			if (next != NULL) {
4562 				init_marker(&marker);
4563 				TAILQ_INSERT_BEFORE(next, &marker, next);
4564 				unload_filtees(obj, lockstate);
4565 				next = TAILQ_NEXT(&marker, next);
4566 				TAILQ_REMOVE(&obj_list, &marker, next);
4567 			} else
4568 				unload_filtees(obj, lockstate);
4569 		}
4570 		release_object(obj);
4571 	}
4572 }
4573 
4574 static void
4575 unlink_object(Obj_Entry *root)
4576 {
4577     Objlist_Entry *elm;
4578 
4579     if (root->refcount == 0) {
4580 	/* Remove the object from the RTLD_GLOBAL list. */
4581 	objlist_remove(&list_global, root);
4582 
4583     	/* Remove the object from all objects' DAG lists. */
4584     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4585 	    objlist_remove(&elm->obj->dldags, root);
4586 	    if (elm->obj != root)
4587 		unlink_object(elm->obj);
4588 	}
4589     }
4590 }
4591 
4592 static void
4593 ref_dag(Obj_Entry *root)
4594 {
4595     Objlist_Entry *elm;
4596 
4597     assert(root->dag_inited);
4598     STAILQ_FOREACH(elm, &root->dagmembers, link)
4599 	elm->obj->refcount++;
4600 }
4601 
4602 static void
4603 unref_dag(Obj_Entry *root)
4604 {
4605     Objlist_Entry *elm;
4606 
4607     assert(root->dag_inited);
4608     STAILQ_FOREACH(elm, &root->dagmembers, link)
4609 	elm->obj->refcount--;
4610 }
4611 
4612 /*
4613  * Common code for MD __tls_get_addr().
4614  */
4615 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4616 static void *
4617 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4618 {
4619     Elf_Addr *newdtv, *dtv;
4620     RtldLockState lockstate;
4621     int to_copy;
4622 
4623     dtv = *dtvp;
4624     /* Check dtv generation in case new modules have arrived */
4625     if (dtv[0] != tls_dtv_generation) {
4626 	wlock_acquire(rtld_bind_lock, &lockstate);
4627 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4628 	to_copy = dtv[1];
4629 	if (to_copy > tls_max_index)
4630 	    to_copy = tls_max_index;
4631 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4632 	newdtv[0] = tls_dtv_generation;
4633 	newdtv[1] = tls_max_index;
4634 	free(dtv);
4635 	lock_release(rtld_bind_lock, &lockstate);
4636 	dtv = *dtvp = newdtv;
4637     }
4638 
4639     /* Dynamically allocate module TLS if necessary */
4640     if (dtv[index + 1] == 0) {
4641 	/* Signal safe, wlock will block out signals. */
4642 	wlock_acquire(rtld_bind_lock, &lockstate);
4643 	if (!dtv[index + 1])
4644 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4645 	lock_release(rtld_bind_lock, &lockstate);
4646     }
4647     return ((void *)(dtv[index + 1] + offset));
4648 }
4649 
4650 void *
4651 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4652 {
4653 	Elf_Addr *dtv;
4654 
4655 	dtv = *dtvp;
4656 	/* Check dtv generation in case new modules have arrived */
4657 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4658 	    dtv[index + 1] != 0))
4659 		return ((void *)(dtv[index + 1] + offset));
4660 	return (tls_get_addr_slow(dtvp, index, offset));
4661 }
4662 
4663 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4664     defined(__powerpc__) || defined(__riscv__)
4665 
4666 /*
4667  * Allocate Static TLS using the Variant I method.
4668  */
4669 void *
4670 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4671 {
4672     Obj_Entry *obj;
4673     char *tcb;
4674     Elf_Addr **tls;
4675     Elf_Addr *dtv;
4676     Elf_Addr addr;
4677     int i;
4678 
4679     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4680 	return (oldtcb);
4681 
4682     assert(tcbsize >= TLS_TCB_SIZE);
4683     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4684     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4685 
4686     if (oldtcb != NULL) {
4687 	memcpy(tls, oldtcb, tls_static_space);
4688 	free(oldtcb);
4689 
4690 	/* Adjust the DTV. */
4691 	dtv = tls[0];
4692 	for (i = 0; i < dtv[1]; i++) {
4693 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4694 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4695 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4696 	    }
4697 	}
4698     } else {
4699 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4700 	tls[0] = dtv;
4701 	dtv[0] = tls_dtv_generation;
4702 	dtv[1] = tls_max_index;
4703 
4704 	for (obj = globallist_curr(objs); obj != NULL;
4705 	  obj = globallist_next(obj)) {
4706 	    if (obj->tlsoffset > 0) {
4707 		addr = (Elf_Addr)tls + obj->tlsoffset;
4708 		if (obj->tlsinitsize > 0)
4709 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4710 		if (obj->tlssize > obj->tlsinitsize)
4711 		    memset((void*) (addr + obj->tlsinitsize), 0,
4712 			   obj->tlssize - obj->tlsinitsize);
4713 		dtv[obj->tlsindex + 1] = addr;
4714 	    }
4715 	}
4716     }
4717 
4718     return (tcb);
4719 }
4720 
4721 void
4722 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4723 {
4724     Elf_Addr *dtv;
4725     Elf_Addr tlsstart, tlsend;
4726     int dtvsize, i;
4727 
4728     assert(tcbsize >= TLS_TCB_SIZE);
4729 
4730     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4731     tlsend = tlsstart + tls_static_space;
4732 
4733     dtv = *(Elf_Addr **)tlsstart;
4734     dtvsize = dtv[1];
4735     for (i = 0; i < dtvsize; i++) {
4736 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4737 	    free((void*)dtv[i+2]);
4738 	}
4739     }
4740     free(dtv);
4741     free(tcb);
4742 }
4743 
4744 #endif
4745 
4746 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4747 
4748 /*
4749  * Allocate Static TLS using the Variant II method.
4750  */
4751 void *
4752 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4753 {
4754     Obj_Entry *obj;
4755     size_t size, ralign;
4756     char *tls;
4757     Elf_Addr *dtv, *olddtv;
4758     Elf_Addr segbase, oldsegbase, addr;
4759     int i;
4760 
4761     ralign = tcbalign;
4762     if (tls_static_max_align > ralign)
4763 	    ralign = tls_static_max_align;
4764     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4765 
4766     assert(tcbsize >= 2*sizeof(Elf_Addr));
4767     tls = malloc_aligned(size, ralign);
4768     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4769 
4770     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4771     ((Elf_Addr*)segbase)[0] = segbase;
4772     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4773 
4774     dtv[0] = tls_dtv_generation;
4775     dtv[1] = tls_max_index;
4776 
4777     if (oldtls) {
4778 	/*
4779 	 * Copy the static TLS block over whole.
4780 	 */
4781 	oldsegbase = (Elf_Addr) oldtls;
4782 	memcpy((void *)(segbase - tls_static_space),
4783 	       (const void *)(oldsegbase - tls_static_space),
4784 	       tls_static_space);
4785 
4786 	/*
4787 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4788 	 * move them over.
4789 	 */
4790 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4791 	for (i = 0; i < olddtv[1]; i++) {
4792 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4793 		dtv[i+2] = olddtv[i+2];
4794 		olddtv[i+2] = 0;
4795 	    }
4796 	}
4797 
4798 	/*
4799 	 * We assume that this block was the one we created with
4800 	 * allocate_initial_tls().
4801 	 */
4802 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4803     } else {
4804 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4805 		if (obj->marker || obj->tlsoffset == 0)
4806 			continue;
4807 		addr = segbase - obj->tlsoffset;
4808 		memset((void*) (addr + obj->tlsinitsize),
4809 		       0, obj->tlssize - obj->tlsinitsize);
4810 		if (obj->tlsinit)
4811 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4812 		dtv[obj->tlsindex + 1] = addr;
4813 	}
4814     }
4815 
4816     return (void*) segbase;
4817 }
4818 
4819 void
4820 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4821 {
4822     Elf_Addr* dtv;
4823     size_t size, ralign;
4824     int dtvsize, i;
4825     Elf_Addr tlsstart, tlsend;
4826 
4827     /*
4828      * Figure out the size of the initial TLS block so that we can
4829      * find stuff which ___tls_get_addr() allocated dynamically.
4830      */
4831     ralign = tcbalign;
4832     if (tls_static_max_align > ralign)
4833 	    ralign = tls_static_max_align;
4834     size = round(tls_static_space, ralign);
4835 
4836     dtv = ((Elf_Addr**)tls)[1];
4837     dtvsize = dtv[1];
4838     tlsend = (Elf_Addr) tls;
4839     tlsstart = tlsend - size;
4840     for (i = 0; i < dtvsize; i++) {
4841 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4842 		free_aligned((void *)dtv[i + 2]);
4843 	}
4844     }
4845 
4846     free_aligned((void *)tlsstart);
4847     free((void*) dtv);
4848 }
4849 
4850 #endif
4851 
4852 /*
4853  * Allocate TLS block for module with given index.
4854  */
4855 void *
4856 allocate_module_tls(int index)
4857 {
4858     Obj_Entry* obj;
4859     char* p;
4860 
4861     TAILQ_FOREACH(obj, &obj_list, next) {
4862 	if (obj->marker)
4863 	    continue;
4864 	if (obj->tlsindex == index)
4865 	    break;
4866     }
4867     if (!obj) {
4868 	_rtld_error("Can't find module with TLS index %d", index);
4869 	rtld_die();
4870     }
4871 
4872     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4873     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4874     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4875 
4876     return p;
4877 }
4878 
4879 bool
4880 allocate_tls_offset(Obj_Entry *obj)
4881 {
4882     size_t off;
4883 
4884     if (obj->tls_done)
4885 	return true;
4886 
4887     if (obj->tlssize == 0) {
4888 	obj->tls_done = true;
4889 	return true;
4890     }
4891 
4892     if (tls_last_offset == 0)
4893 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4894     else
4895 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4896 				   obj->tlssize, obj->tlsalign);
4897 
4898     /*
4899      * If we have already fixed the size of the static TLS block, we
4900      * must stay within that size. When allocating the static TLS, we
4901      * leave a small amount of space spare to be used for dynamically
4902      * loading modules which use static TLS.
4903      */
4904     if (tls_static_space != 0) {
4905 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4906 	    return false;
4907     } else if (obj->tlsalign > tls_static_max_align) {
4908 	    tls_static_max_align = obj->tlsalign;
4909     }
4910 
4911     tls_last_offset = obj->tlsoffset = off;
4912     tls_last_size = obj->tlssize;
4913     obj->tls_done = true;
4914 
4915     return true;
4916 }
4917 
4918 void
4919 free_tls_offset(Obj_Entry *obj)
4920 {
4921 
4922     /*
4923      * If we were the last thing to allocate out of the static TLS
4924      * block, we give our space back to the 'allocator'. This is a
4925      * simplistic workaround to allow libGL.so.1 to be loaded and
4926      * unloaded multiple times.
4927      */
4928     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4929 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4930 	tls_last_offset -= obj->tlssize;
4931 	tls_last_size = 0;
4932     }
4933 }
4934 
4935 void *
4936 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4937 {
4938     void *ret;
4939     RtldLockState lockstate;
4940 
4941     wlock_acquire(rtld_bind_lock, &lockstate);
4942     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4943       tcbsize, tcbalign);
4944     lock_release(rtld_bind_lock, &lockstate);
4945     return (ret);
4946 }
4947 
4948 void
4949 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4950 {
4951     RtldLockState lockstate;
4952 
4953     wlock_acquire(rtld_bind_lock, &lockstate);
4954     free_tls(tcb, tcbsize, tcbalign);
4955     lock_release(rtld_bind_lock, &lockstate);
4956 }
4957 
4958 static void
4959 object_add_name(Obj_Entry *obj, const char *name)
4960 {
4961     Name_Entry *entry;
4962     size_t len;
4963 
4964     len = strlen(name);
4965     entry = malloc(sizeof(Name_Entry) + len);
4966 
4967     if (entry != NULL) {
4968 	strcpy(entry->name, name);
4969 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4970     }
4971 }
4972 
4973 static int
4974 object_match_name(const Obj_Entry *obj, const char *name)
4975 {
4976     Name_Entry *entry;
4977 
4978     STAILQ_FOREACH(entry, &obj->names, link) {
4979 	if (strcmp(name, entry->name) == 0)
4980 	    return (1);
4981     }
4982     return (0);
4983 }
4984 
4985 static Obj_Entry *
4986 locate_dependency(const Obj_Entry *obj, const char *name)
4987 {
4988     const Objlist_Entry *entry;
4989     const Needed_Entry *needed;
4990 
4991     STAILQ_FOREACH(entry, &list_main, link) {
4992 	if (object_match_name(entry->obj, name))
4993 	    return entry->obj;
4994     }
4995 
4996     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4997 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4998 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4999 	    /*
5000 	     * If there is DT_NEEDED for the name we are looking for,
5001 	     * we are all set.  Note that object might not be found if
5002 	     * dependency was not loaded yet, so the function can
5003 	     * return NULL here.  This is expected and handled
5004 	     * properly by the caller.
5005 	     */
5006 	    return (needed->obj);
5007 	}
5008     }
5009     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5010 	obj->path, name);
5011     rtld_die();
5012 }
5013 
5014 static int
5015 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5016     const Elf_Vernaux *vna)
5017 {
5018     const Elf_Verdef *vd;
5019     const char *vername;
5020 
5021     vername = refobj->strtab + vna->vna_name;
5022     vd = depobj->verdef;
5023     if (vd == NULL) {
5024 	_rtld_error("%s: version %s required by %s not defined",
5025 	    depobj->path, vername, refobj->path);
5026 	return (-1);
5027     }
5028     for (;;) {
5029 	if (vd->vd_version != VER_DEF_CURRENT) {
5030 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5031 		depobj->path, vd->vd_version);
5032 	    return (-1);
5033 	}
5034 	if (vna->vna_hash == vd->vd_hash) {
5035 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5036 		((char *)vd + vd->vd_aux);
5037 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5038 		return (0);
5039 	}
5040 	if (vd->vd_next == 0)
5041 	    break;
5042 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5043     }
5044     if (vna->vna_flags & VER_FLG_WEAK)
5045 	return (0);
5046     _rtld_error("%s: version %s required by %s not found",
5047 	depobj->path, vername, refobj->path);
5048     return (-1);
5049 }
5050 
5051 static int
5052 rtld_verify_object_versions(Obj_Entry *obj)
5053 {
5054     const Elf_Verneed *vn;
5055     const Elf_Verdef  *vd;
5056     const Elf_Verdaux *vda;
5057     const Elf_Vernaux *vna;
5058     const Obj_Entry *depobj;
5059     int maxvernum, vernum;
5060 
5061     if (obj->ver_checked)
5062 	return (0);
5063     obj->ver_checked = true;
5064 
5065     maxvernum = 0;
5066     /*
5067      * Walk over defined and required version records and figure out
5068      * max index used by any of them. Do very basic sanity checking
5069      * while there.
5070      */
5071     vn = obj->verneed;
5072     while (vn != NULL) {
5073 	if (vn->vn_version != VER_NEED_CURRENT) {
5074 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5075 		obj->path, vn->vn_version);
5076 	    return (-1);
5077 	}
5078 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5079 	for (;;) {
5080 	    vernum = VER_NEED_IDX(vna->vna_other);
5081 	    if (vernum > maxvernum)
5082 		maxvernum = vernum;
5083 	    if (vna->vna_next == 0)
5084 		 break;
5085 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5086 	}
5087 	if (vn->vn_next == 0)
5088 	    break;
5089 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5090     }
5091 
5092     vd = obj->verdef;
5093     while (vd != NULL) {
5094 	if (vd->vd_version != VER_DEF_CURRENT) {
5095 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5096 		obj->path, vd->vd_version);
5097 	    return (-1);
5098 	}
5099 	vernum = VER_DEF_IDX(vd->vd_ndx);
5100 	if (vernum > maxvernum)
5101 		maxvernum = vernum;
5102 	if (vd->vd_next == 0)
5103 	    break;
5104 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5105     }
5106 
5107     if (maxvernum == 0)
5108 	return (0);
5109 
5110     /*
5111      * Store version information in array indexable by version index.
5112      * Verify that object version requirements are satisfied along the
5113      * way.
5114      */
5115     obj->vernum = maxvernum + 1;
5116     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5117 
5118     vd = obj->verdef;
5119     while (vd != NULL) {
5120 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5121 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5122 	    assert(vernum <= maxvernum);
5123 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5124 	    obj->vertab[vernum].hash = vd->vd_hash;
5125 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5126 	    obj->vertab[vernum].file = NULL;
5127 	    obj->vertab[vernum].flags = 0;
5128 	}
5129 	if (vd->vd_next == 0)
5130 	    break;
5131 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5132     }
5133 
5134     vn = obj->verneed;
5135     while (vn != NULL) {
5136 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5137 	if (depobj == NULL)
5138 	    return (-1);
5139 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5140 	for (;;) {
5141 	    if (check_object_provided_version(obj, depobj, vna))
5142 		return (-1);
5143 	    vernum = VER_NEED_IDX(vna->vna_other);
5144 	    assert(vernum <= maxvernum);
5145 	    obj->vertab[vernum].hash = vna->vna_hash;
5146 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5147 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5148 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5149 		VER_INFO_HIDDEN : 0;
5150 	    if (vna->vna_next == 0)
5151 		 break;
5152 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5153 	}
5154 	if (vn->vn_next == 0)
5155 	    break;
5156 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5157     }
5158     return 0;
5159 }
5160 
5161 static int
5162 rtld_verify_versions(const Objlist *objlist)
5163 {
5164     Objlist_Entry *entry;
5165     int rc;
5166 
5167     rc = 0;
5168     STAILQ_FOREACH(entry, objlist, link) {
5169 	/*
5170 	 * Skip dummy objects or objects that have their version requirements
5171 	 * already checked.
5172 	 */
5173 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5174 	    continue;
5175 	if (rtld_verify_object_versions(entry->obj) == -1) {
5176 	    rc = -1;
5177 	    if (ld_tracing == NULL)
5178 		break;
5179 	}
5180     }
5181     if (rc == 0 || ld_tracing != NULL)
5182     	rc = rtld_verify_object_versions(&obj_rtld);
5183     return rc;
5184 }
5185 
5186 const Ver_Entry *
5187 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5188 {
5189     Elf_Versym vernum;
5190 
5191     if (obj->vertab) {
5192 	vernum = VER_NDX(obj->versyms[symnum]);
5193 	if (vernum >= obj->vernum) {
5194 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5195 		obj->path, obj->strtab + symnum, vernum);
5196 	} else if (obj->vertab[vernum].hash != 0) {
5197 	    return &obj->vertab[vernum];
5198 	}
5199     }
5200     return NULL;
5201 }
5202 
5203 int
5204 _rtld_get_stack_prot(void)
5205 {
5206 
5207 	return (stack_prot);
5208 }
5209 
5210 int
5211 _rtld_is_dlopened(void *arg)
5212 {
5213 	Obj_Entry *obj;
5214 	RtldLockState lockstate;
5215 	int res;
5216 
5217 	rlock_acquire(rtld_bind_lock, &lockstate);
5218 	obj = dlcheck(arg);
5219 	if (obj == NULL)
5220 		obj = obj_from_addr(arg);
5221 	if (obj == NULL) {
5222 		_rtld_error("No shared object contains address");
5223 		lock_release(rtld_bind_lock, &lockstate);
5224 		return (-1);
5225 	}
5226 	res = obj->dlopened ? 1 : 0;
5227 	lock_release(rtld_bind_lock, &lockstate);
5228 	return (res);
5229 }
5230 
5231 int
5232 obj_enforce_relro(Obj_Entry *obj)
5233 {
5234 
5235 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5236 	    PROT_READ) == -1) {
5237 		_rtld_error("%s: Cannot enforce relro protection: %s",
5238 		    obj->path, rtld_strerror(errno));
5239 		return (-1);
5240 	}
5241 	return (0);
5242 }
5243 
5244 static void
5245 map_stacks_exec(RtldLockState *lockstate)
5246 {
5247 	void (*thr_map_stacks_exec)(void);
5248 
5249 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5250 		return;
5251 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5252 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5253 	if (thr_map_stacks_exec != NULL) {
5254 		stack_prot |= PROT_EXEC;
5255 		thr_map_stacks_exec();
5256 	}
5257 }
5258 
5259 void
5260 symlook_init(SymLook *dst, const char *name)
5261 {
5262 
5263 	bzero(dst, sizeof(*dst));
5264 	dst->name = name;
5265 	dst->hash = elf_hash(name);
5266 	dst->hash_gnu = gnu_hash(name);
5267 }
5268 
5269 static void
5270 symlook_init_from_req(SymLook *dst, const SymLook *src)
5271 {
5272 
5273 	dst->name = src->name;
5274 	dst->hash = src->hash;
5275 	dst->hash_gnu = src->hash_gnu;
5276 	dst->ventry = src->ventry;
5277 	dst->flags = src->flags;
5278 	dst->defobj_out = NULL;
5279 	dst->sym_out = NULL;
5280 	dst->lockstate = src->lockstate;
5281 }
5282 
5283 
5284 /*
5285  * Parse a set of command-line arguments.
5286  */
5287 static int
5288 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5289 {
5290 	const char *arg;
5291 	int fd, i, j, arglen;
5292 	char opt;
5293 
5294 	dbg("Parsing command-line arguments");
5295 	*use_pathp = false;
5296 	*fdp = -1;
5297 
5298 	for (i = 1; i < argc; i++ ) {
5299 		arg = argv[i];
5300 		dbg("argv[%d]: '%s'", i, arg);
5301 
5302 		/*
5303 		 * rtld arguments end with an explicit "--" or with the first
5304 		 * non-prefixed argument.
5305 		 */
5306 		if (strcmp(arg, "--") == 0) {
5307 			i++;
5308 			break;
5309 		}
5310 		if (arg[0] != '-')
5311 			break;
5312 
5313 		/*
5314 		 * All other arguments are single-character options that can
5315 		 * be combined, so we need to search through `arg` for them.
5316 		 */
5317 		arglen = strlen(arg);
5318 		for (j = 1; j < arglen; j++) {
5319 			opt = arg[j];
5320 			if (opt == 'h') {
5321 				print_usage(argv[0]);
5322 				rtld_die();
5323 			} else if (opt == 'f') {
5324 			/*
5325 			 * -f XX can be used to specify a descriptor for the
5326 			 * binary named at the command line (i.e., the later
5327 			 * argument will specify the process name but the
5328 			 * descriptor is what will actually be executed)
5329 			 */
5330 			if (j != arglen - 1) {
5331 				/* -f must be the last option in, e.g., -abcf */
5332 				_rtld_error("invalid options: %s", arg);
5333 				rtld_die();
5334 			}
5335 			i++;
5336 			fd = parse_integer(argv[i]);
5337 			if (fd == -1) {
5338 				_rtld_error("invalid file descriptor: '%s'",
5339 				    argv[i]);
5340 				rtld_die();
5341 			}
5342 			*fdp = fd;
5343 			break;
5344 			/* TODO:
5345 			} else if (opt == 'p') {
5346 				*use_pathp = true;
5347 			*/
5348 			} else {
5349 				rtld_printf("invalid argument: '%s'\n", arg);
5350 				print_usage(argv[0]);
5351 				rtld_die();
5352 			}
5353 		}
5354 	}
5355 
5356 	return (i);
5357 }
5358 
5359 /*
5360  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5361  */
5362 static int
5363 parse_integer(const char *str)
5364 {
5365 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5366 	const char *orig;
5367 	int n;
5368 	char c;
5369 
5370 	orig = str;
5371 	n = 0;
5372 	for (c = *str; c != '\0'; c = *++str) {
5373 		if (c < '0' || c > '9')
5374 			return (-1);
5375 
5376 		n *= RADIX;
5377 		n += c - '0';
5378 	}
5379 
5380 	/* Make sure we actually parsed something. */
5381 	if (str == orig)
5382 		return (-1);
5383 	return (n);
5384 }
5385 
5386 static void
5387 print_usage(const char *argv0)
5388 {
5389 
5390 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5391 		"\n"
5392 		"Options:\n"
5393 		"  -h        Display this help message\n"
5394 		/* TODO: "  -p        Search in PATH for named binary\n" */
5395 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5396 		"  --        End of RTLD options\n"
5397 		"  <binary>  Name of process to execute\n"
5398 		"  <args>    Arguments to the executed process\n", argv0);
5399 }
5400 
5401 /*
5402  * Overrides for libc_pic-provided functions.
5403  */
5404 
5405 int
5406 __getosreldate(void)
5407 {
5408 	size_t len;
5409 	int oid[2];
5410 	int error, osrel;
5411 
5412 	if (osreldate != 0)
5413 		return (osreldate);
5414 
5415 	oid[0] = CTL_KERN;
5416 	oid[1] = KERN_OSRELDATE;
5417 	osrel = 0;
5418 	len = sizeof(osrel);
5419 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5420 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5421 		osreldate = osrel;
5422 	return (osreldate);
5423 }
5424 
5425 void
5426 exit(int status)
5427 {
5428 
5429 	_exit(status);
5430 }
5431 
5432 void (*__cleanup)(void);
5433 int __isthreaded = 0;
5434 int _thread_autoinit_dummy_decl = 1;
5435 
5436 /*
5437  * No unresolved symbols for rtld.
5438  */
5439 void
5440 __pthread_cxa_finalize(struct dl_phdr_info *a)
5441 {
5442 }
5443 
5444 void
5445 __stack_chk_fail(void)
5446 {
5447 
5448 	_rtld_error("stack overflow detected; terminated");
5449 	rtld_die();
5450 }
5451 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5452 
5453 void
5454 __chk_fail(void)
5455 {
5456 
5457 	_rtld_error("buffer overflow detected; terminated");
5458 	rtld_die();
5459 }
5460 
5461 const char *
5462 rtld_strerror(int errnum)
5463 {
5464 
5465 	if (errnum < 0 || errnum >= sys_nerr)
5466 		return ("Unknown error");
5467 	return (sys_errlist[errnum]);
5468 }
5469