xref: /freebsd/libexec/rtld-elf/rtld.c (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void errmsg_restore(char *);
104 static char *errmsg_save(void);
105 static void *fill_search_info(const char *, size_t, void *);
106 static char *find_library(const char *, const Obj_Entry *, int *);
107 static const char *gethints(bool);
108 static void hold_object(Obj_Entry *);
109 static void unhold_object(Obj_Entry *);
110 static void init_dag(Obj_Entry *);
111 static void init_marker(Obj_Entry *);
112 static void init_pagesizes(Elf_Auxinfo **aux_info);
113 static void init_rtld(caddr_t, Elf_Auxinfo **);
114 static void initlist_add_neededs(Needed_Entry *, Objlist *);
115 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
116 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
117 static void linkmap_add(Obj_Entry *);
118 static void linkmap_delete(Obj_Entry *);
119 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
120 static void unload_filtees(Obj_Entry *, RtldLockState *);
121 static int load_needed_objects(Obj_Entry *, int);
122 static int load_preload_objects(void);
123 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
124 static void map_stacks_exec(RtldLockState *);
125 static int obj_disable_relro(Obj_Entry *);
126 static int obj_enforce_relro(Obj_Entry *);
127 static Obj_Entry *obj_from_addr(const void *);
128 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
129 static void objlist_call_init(Objlist *, RtldLockState *);
130 static void objlist_clear(Objlist *);
131 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
132 static void objlist_init(Objlist *);
133 static void objlist_push_head(Objlist *, Obj_Entry *);
134 static void objlist_push_tail(Objlist *, Obj_Entry *);
135 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
136 static void objlist_remove(Objlist *, Obj_Entry *);
137 static int open_binary_fd(const char *argv0, bool search_in_path,
138     const char **binpath_res);
139 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
140     const char **argv0);
141 static int parse_integer(const char *);
142 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
143 static void print_usage(const char *argv0);
144 static void release_object(Obj_Entry *);
145 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
146     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
147 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
148     int flags, RtldLockState *lockstate);
149 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
150     RtldLockState *);
151 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
152 static int rtld_dirname(const char *, char *);
153 static int rtld_dirname_abs(const char *, char *);
154 static void *rtld_dlopen(const char *name, int fd, int mode);
155 static void rtld_exit(void);
156 static void rtld_nop_exit(void);
157 static char *search_library_path(const char *, const char *, const char *,
158     int *);
159 static char *search_library_pathfds(const char *, const char *, int *);
160 static const void **get_program_var_addr(const char *, RtldLockState *);
161 static void set_program_var(const char *, const void *);
162 static int symlook_default(SymLook *, const Obj_Entry *refobj);
163 static int symlook_global(SymLook *, DoneList *);
164 static void symlook_init_from_req(SymLook *, const SymLook *);
165 static int symlook_list(SymLook *, const Objlist *, DoneList *);
166 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
167 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
168 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
169 static void trace_loaded_objects(Obj_Entry *);
170 static void unlink_object(Obj_Entry *);
171 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
172 static void unref_dag(Obj_Entry *);
173 static void ref_dag(Obj_Entry *);
174 static char *origin_subst_one(Obj_Entry *, char *, const char *,
175     const char *, bool);
176 static char *origin_subst(Obj_Entry *, const char *);
177 static bool obj_resolve_origin(Obj_Entry *obj);
178 static void preinit_main(void);
179 static int  rtld_verify_versions(const Objlist *);
180 static int  rtld_verify_object_versions(Obj_Entry *);
181 static void object_add_name(Obj_Entry *, const char *);
182 static int  object_match_name(const Obj_Entry *, const char *);
183 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
184 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
185     struct dl_phdr_info *phdr_info);
186 static uint32_t gnu_hash(const char *);
187 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
188     const unsigned long);
189 
190 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
191 void _r_debug_postinit(struct link_map *) __noinline __exported;
192 
193 int __sys_openat(int, const char *, int, ...);
194 
195 /*
196  * Data declarations.
197  */
198 static char *error_message;	/* Message for dlerror(), or NULL */
199 struct r_debug r_debug __exported;	/* for GDB; */
200 static bool libmap_disable;	/* Disable libmap */
201 static bool ld_loadfltr;	/* Immediate filters processing */
202 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
203 static bool trust;		/* False for setuid and setgid programs */
204 static bool dangerous_ld_env;	/* True if environment variables have been
205 				   used to affect the libraries loaded */
206 bool ld_bind_not;		/* Disable PLT update */
207 static char *ld_bind_now;	/* Environment variable for immediate binding */
208 static char *ld_debug;		/* Environment variable for debugging */
209 static char *ld_library_path;	/* Environment variable for search path */
210 static char *ld_library_dirs;	/* Environment variable for library descriptors */
211 static char *ld_preload;	/* Environment variable for libraries to
212 				   load first */
213 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
214 static const char *ld_tracing;	/* Called from ldd to print libs */
215 static char *ld_utrace;		/* Use utrace() to log events. */
216 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
217 static Obj_Entry *obj_main;	/* The main program shared object */
218 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
219 static unsigned int obj_count;	/* Number of objects in obj_list */
220 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
221 
222 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
223   STAILQ_HEAD_INITIALIZER(list_global);
224 static Objlist list_main =	/* Objects loaded at program startup */
225   STAILQ_HEAD_INITIALIZER(list_main);
226 static Objlist list_fini =	/* Objects needing fini() calls */
227   STAILQ_HEAD_INITIALIZER(list_fini);
228 
229 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
230 
231 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
232 
233 extern Elf_Dyn _DYNAMIC;
234 #pragma weak _DYNAMIC
235 
236 int dlclose(void *) __exported;
237 char *dlerror(void) __exported;
238 void *dlopen(const char *, int) __exported;
239 void *fdlopen(int, int) __exported;
240 void *dlsym(void *, const char *) __exported;
241 dlfunc_t dlfunc(void *, const char *) __exported;
242 void *dlvsym(void *, const char *, const char *) __exported;
243 int dladdr(const void *, Dl_info *) __exported;
244 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
245     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
246 int dlinfo(void *, int , void *) __exported;
247 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
248 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
249 int _rtld_get_stack_prot(void) __exported;
250 int _rtld_is_dlopened(void *) __exported;
251 void _rtld_error(const char *, ...) __exported;
252 
253 /* Only here to fix -Wmissing-prototypes warnings */
254 int __getosreldate(void);
255 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
256 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
257 
258 
259 int npagesizes;
260 static int osreldate;
261 size_t *pagesizes;
262 
263 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
264 static int max_stack_flags;
265 
266 /*
267  * Global declarations normally provided by crt1.  The dynamic linker is
268  * not built with crt1, so we have to provide them ourselves.
269  */
270 char *__progname;
271 char **environ;
272 
273 /*
274  * Used to pass argc, argv to init functions.
275  */
276 int main_argc;
277 char **main_argv;
278 
279 /*
280  * Globals to control TLS allocation.
281  */
282 size_t tls_last_offset;		/* Static TLS offset of last module */
283 size_t tls_last_size;		/* Static TLS size of last module */
284 size_t tls_static_space;	/* Static TLS space allocated */
285 static size_t tls_static_max_align;
286 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
287 int tls_max_index = 1;		/* Largest module index allocated */
288 
289 static bool ld_library_path_rpath = false;
290 bool ld_fast_sigblock = false;
291 
292 /*
293  * Globals for path names, and such
294  */
295 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
296 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
297 const char *ld_path_rtld = _PATH_RTLD;
298 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
299 const char *ld_env_prefix = LD_;
300 
301 static void (*rtld_exit_ptr)(void);
302 
303 /*
304  * Fill in a DoneList with an allocation large enough to hold all of
305  * the currently-loaded objects.  Keep this as a macro since it calls
306  * alloca and we want that to occur within the scope of the caller.
307  */
308 #define donelist_init(dlp)					\
309     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
310     assert((dlp)->objs != NULL),				\
311     (dlp)->num_alloc = obj_count,				\
312     (dlp)->num_used = 0)
313 
314 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
315 	if (ld_utrace != NULL)					\
316 		ld_utrace_log(e, h, mb, ms, r, n);		\
317 } while (0)
318 
319 static void
320 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
321     int refcnt, const char *name)
322 {
323 	struct utrace_rtld ut;
324 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
325 
326 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
327 	ut.event = event;
328 	ut.handle = handle;
329 	ut.mapbase = mapbase;
330 	ut.mapsize = mapsize;
331 	ut.refcnt = refcnt;
332 	bzero(ut.name, sizeof(ut.name));
333 	if (name)
334 		strlcpy(ut.name, name, sizeof(ut.name));
335 	utrace(&ut, sizeof(ut));
336 }
337 
338 #ifdef RTLD_VARIANT_ENV_NAMES
339 /*
340  * construct the env variable based on the type of binary that's
341  * running.
342  */
343 static inline const char *
344 _LD(const char *var)
345 {
346 	static char buffer[128];
347 
348 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
349 	strlcat(buffer, var, sizeof(buffer));
350 	return (buffer);
351 }
352 #else
353 #define _LD(x)	LD_ x
354 #endif
355 
356 /*
357  * Main entry point for dynamic linking.  The first argument is the
358  * stack pointer.  The stack is expected to be laid out as described
359  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
360  * Specifically, the stack pointer points to a word containing
361  * ARGC.  Following that in the stack is a null-terminated sequence
362  * of pointers to argument strings.  Then comes a null-terminated
363  * sequence of pointers to environment strings.  Finally, there is a
364  * sequence of "auxiliary vector" entries.
365  *
366  * The second argument points to a place to store the dynamic linker's
367  * exit procedure pointer and the third to a place to store the main
368  * program's object.
369  *
370  * The return value is the main program's entry point.
371  */
372 func_ptr_type
373 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
374 {
375     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
376     Objlist_Entry *entry;
377     Obj_Entry *last_interposer, *obj, *preload_tail;
378     const Elf_Phdr *phdr;
379     Objlist initlist;
380     RtldLockState lockstate;
381     struct stat st;
382     Elf_Addr *argcp;
383     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
384     const char *argv0, *binpath;
385     caddr_t imgentry;
386     char buf[MAXPATHLEN];
387     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
388     size_t sz;
389 #ifdef __powerpc__
390     int old_auxv_format = 1;
391 #endif
392     bool dir_enable, direct_exec, explicit_fd, search_in_path;
393 
394     /*
395      * On entry, the dynamic linker itself has not been relocated yet.
396      * Be very careful not to reference any global data until after
397      * init_rtld has returned.  It is OK to reference file-scope statics
398      * and string constants, and to call static and global functions.
399      */
400 
401     /* Find the auxiliary vector on the stack. */
402     argcp = sp;
403     argc = *sp++;
404     argv = (char **) sp;
405     sp += argc + 1;	/* Skip over arguments and NULL terminator */
406     env = (char **) sp;
407     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
408 	;
409     aux = (Elf_Auxinfo *) sp;
410 
411     /* Digest the auxiliary vector. */
412     for (i = 0;  i < AT_COUNT;  i++)
413 	aux_info[i] = NULL;
414     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
415 	if (auxp->a_type < AT_COUNT)
416 	    aux_info[auxp->a_type] = auxp;
417 #ifdef __powerpc__
418 	if (auxp->a_type == 23) /* AT_STACKPROT */
419 	    old_auxv_format = 0;
420 #endif
421     }
422 
423 #ifdef __powerpc__
424     if (old_auxv_format) {
425 	/* Remap from old-style auxv numbers. */
426 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
427 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
428 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
429 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
430 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
431 	aux_info[13] = NULL;		/* AT_GID */
432 
433 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
434 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
435 	aux_info[16] = aux_info[14];	/* AT_CANARY */
436 	aux_info[14] = NULL;		/* AT_EGID */
437     }
438 #endif
439 
440     /* Initialize and relocate ourselves. */
441     assert(aux_info[AT_BASE] != NULL);
442     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
443 
444     __progname = obj_rtld.path;
445     argv0 = argv[0] != NULL ? argv[0] : "(null)";
446     environ = env;
447     main_argc = argc;
448     main_argv = argv;
449 
450     if (aux_info[AT_BSDFLAGS] != NULL &&
451 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
452 	    ld_fast_sigblock = true;
453 
454     trust = !issetugid();
455     direct_exec = false;
456 
457     md_abi_variant_hook(aux_info);
458 
459     fd = -1;
460     if (aux_info[AT_EXECFD] != NULL) {
461 	fd = aux_info[AT_EXECFD]->a_un.a_val;
462     } else {
463 	assert(aux_info[AT_PHDR] != NULL);
464 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
465 	if (phdr == obj_rtld.phdr) {
466 	    if (!trust) {
467 		_rtld_error("Tainted process refusing to run binary %s",
468 		    argv0);
469 		rtld_die();
470 	    }
471 	    direct_exec = true;
472 
473 	    /*
474 	     * Set osrel for us, it is later reset to the binary'
475 	     * value before first instruction of code from the binary
476 	     * is executed.
477 	     */
478 	    mib[0] = CTL_KERN;
479 	    mib[1] = KERN_PROC;
480 	    mib[2] = KERN_PROC_OSREL;
481 	    mib[3] = getpid();
482 	    osrel = __FreeBSD_version;
483 	    sz = sizeof(old_osrel);
484 	    (void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
485 
486 	    dbg("opening main program in direct exec mode");
487 	    if (argc >= 2) {
488 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
489 		explicit_fd = (fd != -1);
490 		binpath = NULL;
491 		if (!explicit_fd)
492 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
493 		if (fstat(fd, &st) == -1) {
494 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
495 		      explicit_fd ? "user-provided descriptor" : argv0,
496 		      rtld_strerror(errno));
497 		    rtld_die();
498 		}
499 
500 		/*
501 		 * Rough emulation of the permission checks done by
502 		 * execve(2), only Unix DACs are checked, ACLs are
503 		 * ignored.  Preserve the semantic of disabling owner
504 		 * to execute if owner x bit is cleared, even if
505 		 * others x bit is enabled.
506 		 * mmap(2) does not allow to mmap with PROT_EXEC if
507 		 * binary' file comes from noexec mount.  We cannot
508 		 * set a text reference on the binary.
509 		 */
510 		dir_enable = false;
511 		if (st.st_uid == geteuid()) {
512 		    if ((st.st_mode & S_IXUSR) != 0)
513 			dir_enable = true;
514 		} else if (st.st_gid == getegid()) {
515 		    if ((st.st_mode & S_IXGRP) != 0)
516 			dir_enable = true;
517 		} else if ((st.st_mode & S_IXOTH) != 0) {
518 		    dir_enable = true;
519 		}
520 		if (!dir_enable) {
521 		    _rtld_error("No execute permission for binary %s",
522 		        argv0);
523 		    rtld_die();
524 		}
525 
526 		/*
527 		 * For direct exec mode, argv[0] is the interpreter
528 		 * name, we must remove it and shift arguments left
529 		 * before invoking binary main.  Since stack layout
530 		 * places environment pointers and aux vectors right
531 		 * after the terminating NULL, we must shift
532 		 * environment and aux as well.
533 		 */
534 		main_argc = argc - rtld_argc;
535 		for (i = 0; i <= main_argc; i++)
536 		    argv[i] = argv[i + rtld_argc];
537 		*argcp -= rtld_argc;
538 		environ = env = envp = argv + main_argc + 1;
539 		dbg("move env from %p to %p", envp + rtld_argc, envp);
540 		do {
541 		    *envp = *(envp + rtld_argc);
542 		}  while (*envp++ != NULL);
543 		aux = auxp = (Elf_Auxinfo *)envp;
544 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
545 		dbg("move aux from %p to %p", auxpf, aux);
546 		/* XXXKIB insert place for AT_EXECPATH if not present */
547 		for (;; auxp++, auxpf++) {
548 		    *auxp = *auxpf;
549 		    if (auxp->a_type == AT_NULL)
550 			    break;
551 		}
552 		/* Since the auxiliary vector has moved, redigest it. */
553 		for (i = 0;  i < AT_COUNT;  i++)
554 		    aux_info[i] = NULL;
555 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
556 		    if (auxp->a_type < AT_COUNT)
557 			aux_info[auxp->a_type] = auxp;
558 		}
559 
560 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
561 		if (binpath == NULL) {
562 		    aux_info[AT_EXECPATH] = NULL;
563 		} else {
564 		    if (aux_info[AT_EXECPATH] == NULL) {
565 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
566 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
567 		    }
568 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
569 		      binpath);
570 		}
571 	    } else {
572 		_rtld_error("No binary");
573 		rtld_die();
574 	    }
575 	}
576     }
577 
578     ld_bind_now = getenv(_LD("BIND_NOW"));
579 
580     /*
581      * If the process is tainted, then we un-set the dangerous environment
582      * variables.  The process will be marked as tainted until setuid(2)
583      * is called.  If any child process calls setuid(2) we do not want any
584      * future processes to honor the potentially un-safe variables.
585      */
586     if (!trust) {
587 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
588 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
589 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
590 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
591 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
592 		_rtld_error("environment corrupt; aborting");
593 		rtld_die();
594 	}
595     }
596     ld_debug = getenv(_LD("DEBUG"));
597     if (ld_bind_now == NULL)
598 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
599     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
600     libmap_override = getenv(_LD("LIBMAP"));
601     ld_library_path = getenv(_LD("LIBRARY_PATH"));
602     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
603     ld_preload = getenv(_LD("PRELOAD"));
604     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
605     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
606     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
607     if (library_path_rpath != NULL) {
608 	    if (library_path_rpath[0] == 'y' ||
609 		library_path_rpath[0] == 'Y' ||
610 		library_path_rpath[0] == '1')
611 		    ld_library_path_rpath = true;
612 	    else
613 		    ld_library_path_rpath = false;
614     }
615     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
616 	(ld_library_path != NULL) || (ld_preload != NULL) ||
617 	(ld_elf_hints_path != NULL) || ld_loadfltr;
618     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
619     ld_utrace = getenv(_LD("UTRACE"));
620 
621     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
622 	ld_elf_hints_path = ld_elf_hints_default;
623 
624     if (ld_debug != NULL && *ld_debug != '\0')
625 	debug = 1;
626     dbg("%s is initialized, base address = %p", __progname,
627 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
628     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
629     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
630 
631     dbg("initializing thread locks");
632     lockdflt_init();
633 
634     /*
635      * Load the main program, or process its program header if it is
636      * already loaded.
637      */
638     if (fd != -1) {	/* Load the main program. */
639 	dbg("loading main program");
640 	obj_main = map_object(fd, argv0, NULL);
641 	close(fd);
642 	if (obj_main == NULL)
643 	    rtld_die();
644 	max_stack_flags = obj_main->stack_flags;
645     } else {				/* Main program already loaded. */
646 	dbg("processing main program's program header");
647 	assert(aux_info[AT_PHDR] != NULL);
648 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
649 	assert(aux_info[AT_PHNUM] != NULL);
650 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
651 	assert(aux_info[AT_PHENT] != NULL);
652 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
653 	assert(aux_info[AT_ENTRY] != NULL);
654 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
655 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
656 	    rtld_die();
657     }
658 
659     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
660 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
661 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
662 	    if (kexecpath[0] == '/')
663 		    obj_main->path = kexecpath;
664 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
665 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
666 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
667 		    obj_main->path = xstrdup(argv0);
668 	    else
669 		    obj_main->path = xstrdup(buf);
670     } else {
671 	    dbg("No AT_EXECPATH or direct exec");
672 	    obj_main->path = xstrdup(argv0);
673     }
674     dbg("obj_main path %s", obj_main->path);
675     obj_main->mainprog = true;
676 
677     if (aux_info[AT_STACKPROT] != NULL &&
678       aux_info[AT_STACKPROT]->a_un.a_val != 0)
679 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
680 
681 #ifndef COMPAT_32BIT
682     /*
683      * Get the actual dynamic linker pathname from the executable if
684      * possible.  (It should always be possible.)  That ensures that
685      * gdb will find the right dynamic linker even if a non-standard
686      * one is being used.
687      */
688     if (obj_main->interp != NULL &&
689       strcmp(obj_main->interp, obj_rtld.path) != 0) {
690 	free(obj_rtld.path);
691 	obj_rtld.path = xstrdup(obj_main->interp);
692         __progname = obj_rtld.path;
693     }
694 #endif
695 
696     if (!digest_dynamic(obj_main, 0))
697 	rtld_die();
698     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
699 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
700 	obj_main->dynsymcount);
701 
702     linkmap_add(obj_main);
703     linkmap_add(&obj_rtld);
704 
705     /* Link the main program into the list of objects. */
706     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
707     obj_count++;
708     obj_loads++;
709 
710     /* Initialize a fake symbol for resolving undefined weak references. */
711     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
712     sym_zero.st_shndx = SHN_UNDEF;
713     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
714 
715     if (!libmap_disable)
716         libmap_disable = (bool)lm_init(libmap_override);
717 
718     dbg("loading LD_PRELOAD libraries");
719     if (load_preload_objects() == -1)
720 	rtld_die();
721     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
722 
723     dbg("loading needed objects");
724     if (load_needed_objects(obj_main, 0) == -1)
725 	rtld_die();
726 
727     /* Make a list of all objects loaded at startup. */
728     last_interposer = obj_main;
729     TAILQ_FOREACH(obj, &obj_list, next) {
730 	if (obj->marker)
731 	    continue;
732 	if (obj->z_interpose && obj != obj_main) {
733 	    objlist_put_after(&list_main, last_interposer, obj);
734 	    last_interposer = obj;
735 	} else {
736 	    objlist_push_tail(&list_main, obj);
737 	}
738     	obj->refcount++;
739     }
740 
741     dbg("checking for required versions");
742     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
743 	rtld_die();
744 
745     if (ld_tracing) {		/* We're done */
746 	trace_loaded_objects(obj_main);
747 	exit(0);
748     }
749 
750     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
751        dump_relocations(obj_main);
752        exit (0);
753     }
754 
755     /*
756      * Processing tls relocations requires having the tls offsets
757      * initialized.  Prepare offsets before starting initial
758      * relocation processing.
759      */
760     dbg("initializing initial thread local storage offsets");
761     STAILQ_FOREACH(entry, &list_main, link) {
762 	/*
763 	 * Allocate all the initial objects out of the static TLS
764 	 * block even if they didn't ask for it.
765 	 */
766 	allocate_tls_offset(entry->obj);
767     }
768 
769     if (relocate_objects(obj_main,
770       ld_bind_now != NULL && *ld_bind_now != '\0',
771       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
772 	rtld_die();
773 
774     dbg("doing copy relocations");
775     if (do_copy_relocations(obj_main) == -1)
776 	rtld_die();
777 
778     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
779        dump_relocations(obj_main);
780        exit (0);
781     }
782 
783     ifunc_init(aux);
784 
785     /*
786      * Setup TLS for main thread.  This must be done after the
787      * relocations are processed, since tls initialization section
788      * might be the subject for relocations.
789      */
790     dbg("initializing initial thread local storage");
791     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
792 
793     dbg("initializing key program variables");
794     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
795     set_program_var("environ", env);
796     set_program_var("__elf_aux_vector", aux);
797 
798     /* Make a list of init functions to call. */
799     objlist_init(&initlist);
800     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
801       preload_tail, &initlist);
802 
803     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
804 
805     map_stacks_exec(NULL);
806 
807     if (!obj_main->crt_no_init) {
808 	/*
809 	 * Make sure we don't call the main program's init and fini
810 	 * functions for binaries linked with old crt1 which calls
811 	 * _init itself.
812 	 */
813 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
814 	obj_main->preinit_array = obj_main->init_array =
815 	    obj_main->fini_array = (Elf_Addr)NULL;
816     }
817 
818     /*
819      * Execute MD initializers required before we call the objects'
820      * init functions.
821      */
822     pre_init();
823 
824     if (direct_exec) {
825 	/* Set osrel for direct-execed binary */
826 	mib[0] = CTL_KERN;
827 	mib[1] = KERN_PROC;
828 	mib[2] = KERN_PROC_OSREL;
829 	mib[3] = getpid();
830 	osrel = obj_main->osrel;
831 	sz = sizeof(old_osrel);
832 	dbg("setting osrel to %d", osrel);
833 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
834     }
835 
836     wlock_acquire(rtld_bind_lock, &lockstate);
837 
838     dbg("resolving ifuncs");
839     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
840       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
841 	rtld_die();
842 
843     rtld_exit_ptr = rtld_exit;
844     if (obj_main->crt_no_init)
845 	preinit_main();
846     objlist_call_init(&initlist, &lockstate);
847     _r_debug_postinit(&obj_main->linkmap);
848     objlist_clear(&initlist);
849     dbg("loading filtees");
850     TAILQ_FOREACH(obj, &obj_list, next) {
851 	if (obj->marker)
852 	    continue;
853 	if (ld_loadfltr || obj->z_loadfltr)
854 	    load_filtees(obj, 0, &lockstate);
855     }
856 
857     dbg("enforcing main obj relro");
858     if (obj_enforce_relro(obj_main) == -1)
859 	rtld_die();
860 
861     lock_release(rtld_bind_lock, &lockstate);
862 
863     dbg("transferring control to program entry point = %p", obj_main->entry);
864 
865     /* Return the exit procedure and the program entry point. */
866     *exit_proc = rtld_exit_ptr;
867     *objp = obj_main;
868     return (func_ptr_type) obj_main->entry;
869 }
870 
871 void *
872 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
873 {
874 	void *ptr;
875 	Elf_Addr target;
876 
877 	ptr = (void *)make_function_pointer(def, obj);
878 	target = call_ifunc_resolver(ptr);
879 	return ((void *)target);
880 }
881 
882 /*
883  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
884  * Changes to this function should be applied there as well.
885  */
886 Elf_Addr
887 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
888 {
889     const Elf_Rel *rel;
890     const Elf_Sym *def;
891     const Obj_Entry *defobj;
892     Elf_Addr *where;
893     Elf_Addr target;
894     RtldLockState lockstate;
895 
896     rlock_acquire(rtld_bind_lock, &lockstate);
897     if (sigsetjmp(lockstate.env, 0) != 0)
898 	    lock_upgrade(rtld_bind_lock, &lockstate);
899     if (obj->pltrel)
900 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
901     else
902 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
903 
904     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
905     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
906 	NULL, &lockstate);
907     if (def == NULL)
908 	rtld_die();
909     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
910 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
911     else
912 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
913 
914     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
915       defobj->strtab + def->st_name, basename(obj->path),
916       (void *)target, basename(defobj->path));
917 
918     /*
919      * Write the new contents for the jmpslot. Note that depending on
920      * architecture, the value which we need to return back to the
921      * lazy binding trampoline may or may not be the target
922      * address. The value returned from reloc_jmpslot() is the value
923      * that the trampoline needs.
924      */
925     target = reloc_jmpslot(where, target, defobj, obj, rel);
926     lock_release(rtld_bind_lock, &lockstate);
927     return target;
928 }
929 
930 /*
931  * Error reporting function.  Use it like printf.  If formats the message
932  * into a buffer, and sets things up so that the next call to dlerror()
933  * will return the message.
934  */
935 void
936 _rtld_error(const char *fmt, ...)
937 {
938     static char buf[512];
939     va_list ap;
940 
941     va_start(ap, fmt);
942     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
943     error_message = buf;
944     va_end(ap);
945     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
946 }
947 
948 /*
949  * Return a dynamically-allocated copy of the current error message, if any.
950  */
951 static char *
952 errmsg_save(void)
953 {
954     return error_message == NULL ? NULL : xstrdup(error_message);
955 }
956 
957 /*
958  * Restore the current error message from a copy which was previously saved
959  * by errmsg_save().  The copy is freed.
960  */
961 static void
962 errmsg_restore(char *saved_msg)
963 {
964     if (saved_msg == NULL)
965 	error_message = NULL;
966     else {
967 	_rtld_error("%s", saved_msg);
968 	free(saved_msg);
969     }
970 }
971 
972 static const char *
973 basename(const char *name)
974 {
975     const char *p = strrchr(name, '/');
976     return p != NULL ? p + 1 : name;
977 }
978 
979 static struct utsname uts;
980 
981 static char *
982 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
983     const char *subst, bool may_free)
984 {
985 	char *p, *p1, *res, *resp;
986 	int subst_len, kw_len, subst_count, old_len, new_len;
987 
988 	kw_len = strlen(kw);
989 
990 	/*
991 	 * First, count the number of the keyword occurrences, to
992 	 * preallocate the final string.
993 	 */
994 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
995 		p1 = strstr(p, kw);
996 		if (p1 == NULL)
997 			break;
998 	}
999 
1000 	/*
1001 	 * If the keyword is not found, just return.
1002 	 *
1003 	 * Return non-substituted string if resolution failed.  We
1004 	 * cannot do anything more reasonable, the failure mode of the
1005 	 * caller is unresolved library anyway.
1006 	 */
1007 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1008 		return (may_free ? real : xstrdup(real));
1009 	if (obj != NULL)
1010 		subst = obj->origin_path;
1011 
1012 	/*
1013 	 * There is indeed something to substitute.  Calculate the
1014 	 * length of the resulting string, and allocate it.
1015 	 */
1016 	subst_len = strlen(subst);
1017 	old_len = strlen(real);
1018 	new_len = old_len + (subst_len - kw_len) * subst_count;
1019 	res = xmalloc(new_len + 1);
1020 
1021 	/*
1022 	 * Now, execute the substitution loop.
1023 	 */
1024 	for (p = real, resp = res, *resp = '\0';;) {
1025 		p1 = strstr(p, kw);
1026 		if (p1 != NULL) {
1027 			/* Copy the prefix before keyword. */
1028 			memcpy(resp, p, p1 - p);
1029 			resp += p1 - p;
1030 			/* Keyword replacement. */
1031 			memcpy(resp, subst, subst_len);
1032 			resp += subst_len;
1033 			*resp = '\0';
1034 			p = p1 + kw_len;
1035 		} else
1036 			break;
1037 	}
1038 
1039 	/* Copy to the end of string and finish. */
1040 	strcat(resp, p);
1041 	if (may_free)
1042 		free(real);
1043 	return (res);
1044 }
1045 
1046 static char *
1047 origin_subst(Obj_Entry *obj, const char *real)
1048 {
1049 	char *res1, *res2, *res3, *res4;
1050 
1051 	if (obj == NULL || !trust)
1052 		return (xstrdup(real));
1053 	if (uts.sysname[0] == '\0') {
1054 		if (uname(&uts) != 0) {
1055 			_rtld_error("utsname failed: %d", errno);
1056 			return (NULL);
1057 		}
1058 	}
1059 	/* __DECONST is safe here since without may_free real is unchanged */
1060 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1061 	    false);
1062 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1063 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1064 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1065 	return (res4);
1066 }
1067 
1068 void
1069 rtld_die(void)
1070 {
1071     const char *msg = dlerror();
1072 
1073     if (msg == NULL)
1074 	msg = "Fatal error";
1075     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1076     rtld_fdputstr(STDERR_FILENO, msg);
1077     rtld_fdputchar(STDERR_FILENO, '\n');
1078     _exit(1);
1079 }
1080 
1081 /*
1082  * Process a shared object's DYNAMIC section, and save the important
1083  * information in its Obj_Entry structure.
1084  */
1085 static void
1086 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1087     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1088 {
1089     const Elf_Dyn *dynp;
1090     Needed_Entry **needed_tail = &obj->needed;
1091     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1092     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1093     const Elf_Hashelt *hashtab;
1094     const Elf32_Word *hashval;
1095     Elf32_Word bkt, nmaskwords;
1096     int bloom_size32;
1097     int plttype = DT_REL;
1098 
1099     *dyn_rpath = NULL;
1100     *dyn_soname = NULL;
1101     *dyn_runpath = NULL;
1102 
1103     obj->bind_now = false;
1104     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1105 	switch (dynp->d_tag) {
1106 
1107 	case DT_REL:
1108 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1109 	    break;
1110 
1111 	case DT_RELSZ:
1112 	    obj->relsize = dynp->d_un.d_val;
1113 	    break;
1114 
1115 	case DT_RELENT:
1116 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1117 	    break;
1118 
1119 	case DT_JMPREL:
1120 	    obj->pltrel = (const Elf_Rel *)
1121 	      (obj->relocbase + dynp->d_un.d_ptr);
1122 	    break;
1123 
1124 	case DT_PLTRELSZ:
1125 	    obj->pltrelsize = dynp->d_un.d_val;
1126 	    break;
1127 
1128 	case DT_RELA:
1129 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1130 	    break;
1131 
1132 	case DT_RELASZ:
1133 	    obj->relasize = dynp->d_un.d_val;
1134 	    break;
1135 
1136 	case DT_RELAENT:
1137 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1138 	    break;
1139 
1140 	case DT_PLTREL:
1141 	    plttype = dynp->d_un.d_val;
1142 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1143 	    break;
1144 
1145 	case DT_SYMTAB:
1146 	    obj->symtab = (const Elf_Sym *)
1147 	      (obj->relocbase + dynp->d_un.d_ptr);
1148 	    break;
1149 
1150 	case DT_SYMENT:
1151 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1152 	    break;
1153 
1154 	case DT_STRTAB:
1155 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1156 	    break;
1157 
1158 	case DT_STRSZ:
1159 	    obj->strsize = dynp->d_un.d_val;
1160 	    break;
1161 
1162 	case DT_VERNEED:
1163 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1164 		dynp->d_un.d_val);
1165 	    break;
1166 
1167 	case DT_VERNEEDNUM:
1168 	    obj->verneednum = dynp->d_un.d_val;
1169 	    break;
1170 
1171 	case DT_VERDEF:
1172 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1173 		dynp->d_un.d_val);
1174 	    break;
1175 
1176 	case DT_VERDEFNUM:
1177 	    obj->verdefnum = dynp->d_un.d_val;
1178 	    break;
1179 
1180 	case DT_VERSYM:
1181 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1182 		dynp->d_un.d_val);
1183 	    break;
1184 
1185 	case DT_HASH:
1186 	    {
1187 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1188 		    dynp->d_un.d_ptr);
1189 		obj->nbuckets = hashtab[0];
1190 		obj->nchains = hashtab[1];
1191 		obj->buckets = hashtab + 2;
1192 		obj->chains = obj->buckets + obj->nbuckets;
1193 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1194 		  obj->buckets != NULL;
1195 	    }
1196 	    break;
1197 
1198 	case DT_GNU_HASH:
1199 	    {
1200 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1201 		    dynp->d_un.d_ptr);
1202 		obj->nbuckets_gnu = hashtab[0];
1203 		obj->symndx_gnu = hashtab[1];
1204 		nmaskwords = hashtab[2];
1205 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1206 		obj->maskwords_bm_gnu = nmaskwords - 1;
1207 		obj->shift2_gnu = hashtab[3];
1208 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1209 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1210 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1211 		  obj->symndx_gnu;
1212 		/* Number of bitmask words is required to be power of 2 */
1213 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1214 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1215 	    }
1216 	    break;
1217 
1218 	case DT_NEEDED:
1219 	    if (!obj->rtld) {
1220 		Needed_Entry *nep = NEW(Needed_Entry);
1221 		nep->name = dynp->d_un.d_val;
1222 		nep->obj = NULL;
1223 		nep->next = NULL;
1224 
1225 		*needed_tail = nep;
1226 		needed_tail = &nep->next;
1227 	    }
1228 	    break;
1229 
1230 	case DT_FILTER:
1231 	    if (!obj->rtld) {
1232 		Needed_Entry *nep = NEW(Needed_Entry);
1233 		nep->name = dynp->d_un.d_val;
1234 		nep->obj = NULL;
1235 		nep->next = NULL;
1236 
1237 		*needed_filtees_tail = nep;
1238 		needed_filtees_tail = &nep->next;
1239 
1240 		if (obj->linkmap.l_refname == NULL)
1241 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1242 	    }
1243 	    break;
1244 
1245 	case DT_AUXILIARY:
1246 	    if (!obj->rtld) {
1247 		Needed_Entry *nep = NEW(Needed_Entry);
1248 		nep->name = dynp->d_un.d_val;
1249 		nep->obj = NULL;
1250 		nep->next = NULL;
1251 
1252 		*needed_aux_filtees_tail = nep;
1253 		needed_aux_filtees_tail = &nep->next;
1254 	    }
1255 	    break;
1256 
1257 	case DT_PLTGOT:
1258 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1259 	    break;
1260 
1261 	case DT_TEXTREL:
1262 	    obj->textrel = true;
1263 	    break;
1264 
1265 	case DT_SYMBOLIC:
1266 	    obj->symbolic = true;
1267 	    break;
1268 
1269 	case DT_RPATH:
1270 	    /*
1271 	     * We have to wait until later to process this, because we
1272 	     * might not have gotten the address of the string table yet.
1273 	     */
1274 	    *dyn_rpath = dynp;
1275 	    break;
1276 
1277 	case DT_SONAME:
1278 	    *dyn_soname = dynp;
1279 	    break;
1280 
1281 	case DT_RUNPATH:
1282 	    *dyn_runpath = dynp;
1283 	    break;
1284 
1285 	case DT_INIT:
1286 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1287 	    break;
1288 
1289 	case DT_PREINIT_ARRAY:
1290 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1291 	    break;
1292 
1293 	case DT_PREINIT_ARRAYSZ:
1294 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1295 	    break;
1296 
1297 	case DT_INIT_ARRAY:
1298 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1299 	    break;
1300 
1301 	case DT_INIT_ARRAYSZ:
1302 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1303 	    break;
1304 
1305 	case DT_FINI:
1306 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1307 	    break;
1308 
1309 	case DT_FINI_ARRAY:
1310 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1311 	    break;
1312 
1313 	case DT_FINI_ARRAYSZ:
1314 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1315 	    break;
1316 
1317 	/*
1318 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1319 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1320 	 */
1321 
1322 #ifndef __mips__
1323 	case DT_DEBUG:
1324 	    if (!early)
1325 		dbg("Filling in DT_DEBUG entry");
1326 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1327 	    break;
1328 #endif
1329 
1330 	case DT_FLAGS:
1331 		if (dynp->d_un.d_val & DF_ORIGIN)
1332 		    obj->z_origin = true;
1333 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1334 		    obj->symbolic = true;
1335 		if (dynp->d_un.d_val & DF_TEXTREL)
1336 		    obj->textrel = true;
1337 		if (dynp->d_un.d_val & DF_BIND_NOW)
1338 		    obj->bind_now = true;
1339 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1340 		    obj->static_tls = true;
1341 	    break;
1342 #ifdef __mips__
1343 	case DT_MIPS_LOCAL_GOTNO:
1344 		obj->local_gotno = dynp->d_un.d_val;
1345 		break;
1346 
1347 	case DT_MIPS_SYMTABNO:
1348 		obj->symtabno = dynp->d_un.d_val;
1349 		break;
1350 
1351 	case DT_MIPS_GOTSYM:
1352 		obj->gotsym = dynp->d_un.d_val;
1353 		break;
1354 
1355 	case DT_MIPS_RLD_MAP:
1356 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1357 		break;
1358 
1359 	case DT_MIPS_RLD_MAP_REL:
1360 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1361 		// section relative to the address of the tag itself.
1362 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1363 		    (Elf_Addr) &r_debug;
1364 		break;
1365 
1366 	case DT_MIPS_PLTGOT:
1367 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1368 		    dynp->d_un.d_ptr);
1369 		break;
1370 
1371 #endif
1372 
1373 #ifdef __powerpc__
1374 #ifdef __powerpc64__
1375 	case DT_PPC64_GLINK:
1376 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1377 		break;
1378 #else
1379 	case DT_PPC_GOT:
1380 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1381 		break;
1382 #endif
1383 #endif
1384 
1385 	case DT_FLAGS_1:
1386 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1387 		    obj->z_noopen = true;
1388 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1389 		    obj->z_origin = true;
1390 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1391 		    obj->z_global = true;
1392 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1393 		    obj->bind_now = true;
1394 		if (dynp->d_un.d_val & DF_1_NODELETE)
1395 		    obj->z_nodelete = true;
1396 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1397 		    obj->z_loadfltr = true;
1398 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1399 		    obj->z_interpose = true;
1400 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1401 		    obj->z_nodeflib = true;
1402 		if (dynp->d_un.d_val & DF_1_PIE)
1403 		    obj->z_pie = true;
1404 	    break;
1405 
1406 	default:
1407 	    if (!early) {
1408 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1409 		    (long)dynp->d_tag);
1410 	    }
1411 	    break;
1412 	}
1413     }
1414 
1415     obj->traced = false;
1416 
1417     if (plttype == DT_RELA) {
1418 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1419 	obj->pltrel = NULL;
1420 	obj->pltrelasize = obj->pltrelsize;
1421 	obj->pltrelsize = 0;
1422     }
1423 
1424     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1425     if (obj->valid_hash_sysv)
1426 	obj->dynsymcount = obj->nchains;
1427     else if (obj->valid_hash_gnu) {
1428 	obj->dynsymcount = 0;
1429 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1430 	    if (obj->buckets_gnu[bkt] == 0)
1431 		continue;
1432 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1433 	    do
1434 		obj->dynsymcount++;
1435 	    while ((*hashval++ & 1u) == 0);
1436 	}
1437 	obj->dynsymcount += obj->symndx_gnu;
1438     }
1439 
1440     if (obj->linkmap.l_refname != NULL)
1441 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1442 	  linkmap.l_refname;
1443 }
1444 
1445 static bool
1446 obj_resolve_origin(Obj_Entry *obj)
1447 {
1448 
1449 	if (obj->origin_path != NULL)
1450 		return (true);
1451 	obj->origin_path = xmalloc(PATH_MAX);
1452 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1453 }
1454 
1455 static bool
1456 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1457     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1458 {
1459 
1460 	if (obj->z_origin && !obj_resolve_origin(obj))
1461 		return (false);
1462 
1463 	if (dyn_runpath != NULL) {
1464 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1465 		obj->runpath = origin_subst(obj, obj->runpath);
1466 	} else if (dyn_rpath != NULL) {
1467 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1468 		obj->rpath = origin_subst(obj, obj->rpath);
1469 	}
1470 	if (dyn_soname != NULL)
1471 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1472 	return (true);
1473 }
1474 
1475 static bool
1476 digest_dynamic(Obj_Entry *obj, int early)
1477 {
1478 	const Elf_Dyn *dyn_rpath;
1479 	const Elf_Dyn *dyn_soname;
1480 	const Elf_Dyn *dyn_runpath;
1481 
1482 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1483 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1484 }
1485 
1486 /*
1487  * Process a shared object's program header.  This is used only for the
1488  * main program, when the kernel has already loaded the main program
1489  * into memory before calling the dynamic linker.  It creates and
1490  * returns an Obj_Entry structure.
1491  */
1492 static Obj_Entry *
1493 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1494 {
1495     Obj_Entry *obj;
1496     const Elf_Phdr *phlimit = phdr + phnum;
1497     const Elf_Phdr *ph;
1498     Elf_Addr note_start, note_end;
1499     int nsegs = 0;
1500 
1501     obj = obj_new();
1502     for (ph = phdr;  ph < phlimit;  ph++) {
1503 	if (ph->p_type != PT_PHDR)
1504 	    continue;
1505 
1506 	obj->phdr = phdr;
1507 	obj->phsize = ph->p_memsz;
1508 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1509 	break;
1510     }
1511 
1512     obj->stack_flags = PF_X | PF_R | PF_W;
1513 
1514     for (ph = phdr;  ph < phlimit;  ph++) {
1515 	switch (ph->p_type) {
1516 
1517 	case PT_INTERP:
1518 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1519 	    break;
1520 
1521 	case PT_LOAD:
1522 	    if (nsegs == 0) {	/* First load segment */
1523 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1524 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1525 	    } else {		/* Last load segment */
1526 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1527 		  obj->vaddrbase;
1528 	    }
1529 	    nsegs++;
1530 	    break;
1531 
1532 	case PT_DYNAMIC:
1533 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1534 	    break;
1535 
1536 	case PT_TLS:
1537 	    obj->tlsindex = 1;
1538 	    obj->tlssize = ph->p_memsz;
1539 	    obj->tlsalign = ph->p_align;
1540 	    obj->tlsinitsize = ph->p_filesz;
1541 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1542 	    obj->tlspoffset = ph->p_offset;
1543 	    break;
1544 
1545 	case PT_GNU_STACK:
1546 	    obj->stack_flags = ph->p_flags;
1547 	    break;
1548 
1549 	case PT_GNU_RELRO:
1550 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1551 	    obj->relro_size = round_page(ph->p_memsz);
1552 	    break;
1553 
1554 	case PT_NOTE:
1555 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1556 	    note_end = note_start + ph->p_filesz;
1557 	    digest_notes(obj, note_start, note_end);
1558 	    break;
1559 	}
1560     }
1561     if (nsegs < 1) {
1562 	_rtld_error("%s: too few PT_LOAD segments", path);
1563 	return NULL;
1564     }
1565 
1566     obj->entry = entry;
1567     return obj;
1568 }
1569 
1570 void
1571 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1572 {
1573 	const Elf_Note *note;
1574 	const char *note_name;
1575 	uintptr_t p;
1576 
1577 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1578 	    note = (const Elf_Note *)((const char *)(note + 1) +
1579 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1580 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1581 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1582 		    note->n_descsz != sizeof(int32_t))
1583 			continue;
1584 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1585 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1586 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1587 			continue;
1588 		note_name = (const char *)(note + 1);
1589 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1590 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1591 			continue;
1592 		switch (note->n_type) {
1593 		case NT_FREEBSD_ABI_TAG:
1594 			/* FreeBSD osrel note */
1595 			p = (uintptr_t)(note + 1);
1596 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1597 			obj->osrel = *(const int32_t *)(p);
1598 			dbg("note osrel %d", obj->osrel);
1599 			break;
1600 		case NT_FREEBSD_FEATURE_CTL:
1601 			/* FreeBSD ABI feature control note */
1602 			p = (uintptr_t)(note + 1);
1603 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1604 			obj->fctl0 = *(const uint32_t *)(p);
1605 			dbg("note fctl0 %#x", obj->fctl0);
1606 			break;
1607 		case NT_FREEBSD_NOINIT_TAG:
1608 			/* FreeBSD 'crt does not call init' note */
1609 			obj->crt_no_init = true;
1610 			dbg("note crt_no_init");
1611 			break;
1612 		}
1613 	}
1614 }
1615 
1616 static Obj_Entry *
1617 dlcheck(void *handle)
1618 {
1619     Obj_Entry *obj;
1620 
1621     TAILQ_FOREACH(obj, &obj_list, next) {
1622 	if (obj == (Obj_Entry *) handle)
1623 	    break;
1624     }
1625 
1626     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1627 	_rtld_error("Invalid shared object handle %p", handle);
1628 	return NULL;
1629     }
1630     return obj;
1631 }
1632 
1633 /*
1634  * If the given object is already in the donelist, return true.  Otherwise
1635  * add the object to the list and return false.
1636  */
1637 static bool
1638 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1639 {
1640     unsigned int i;
1641 
1642     for (i = 0;  i < dlp->num_used;  i++)
1643 	if (dlp->objs[i] == obj)
1644 	    return true;
1645     /*
1646      * Our donelist allocation should always be sufficient.  But if
1647      * our threads locking isn't working properly, more shared objects
1648      * could have been loaded since we allocated the list.  That should
1649      * never happen, but we'll handle it properly just in case it does.
1650      */
1651     if (dlp->num_used < dlp->num_alloc)
1652 	dlp->objs[dlp->num_used++] = obj;
1653     return false;
1654 }
1655 
1656 /*
1657  * Hash function for symbol table lookup.  Don't even think about changing
1658  * this.  It is specified by the System V ABI.
1659  */
1660 unsigned long
1661 elf_hash(const char *name)
1662 {
1663     const unsigned char *p = (const unsigned char *) name;
1664     unsigned long h = 0;
1665     unsigned long g;
1666 
1667     while (*p != '\0') {
1668 	h = (h << 4) + *p++;
1669 	if ((g = h & 0xf0000000) != 0)
1670 	    h ^= g >> 24;
1671 	h &= ~g;
1672     }
1673     return h;
1674 }
1675 
1676 /*
1677  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1678  * unsigned in case it's implemented with a wider type.
1679  */
1680 static uint32_t
1681 gnu_hash(const char *s)
1682 {
1683 	uint32_t h;
1684 	unsigned char c;
1685 
1686 	h = 5381;
1687 	for (c = *s; c != '\0'; c = *++s)
1688 		h = h * 33 + c;
1689 	return (h & 0xffffffff);
1690 }
1691 
1692 
1693 /*
1694  * Find the library with the given name, and return its full pathname.
1695  * The returned string is dynamically allocated.  Generates an error
1696  * message and returns NULL if the library cannot be found.
1697  *
1698  * If the second argument is non-NULL, then it refers to an already-
1699  * loaded shared object, whose library search path will be searched.
1700  *
1701  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1702  * descriptor (which is close-on-exec) will be passed out via the third
1703  * argument.
1704  *
1705  * The search order is:
1706  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1707  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1708  *   LD_LIBRARY_PATH
1709  *   DT_RUNPATH in the referencing file
1710  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1711  *	 from list)
1712  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1713  *
1714  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1715  */
1716 static char *
1717 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1718 {
1719 	char *pathname, *refobj_path;
1720 	const char *name;
1721 	bool nodeflib, objgiven;
1722 
1723 	objgiven = refobj != NULL;
1724 
1725 	if (libmap_disable || !objgiven ||
1726 	    (name = lm_find(refobj->path, xname)) == NULL)
1727 		name = xname;
1728 
1729 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1730 		if (name[0] != '/' && !trust) {
1731 			_rtld_error("Absolute pathname required "
1732 			    "for shared object \"%s\"", name);
1733 			return (NULL);
1734 		}
1735 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1736 		    __DECONST(char *, name)));
1737 	}
1738 
1739 	dbg(" Searching for \"%s\"", name);
1740 	refobj_path = objgiven ? refobj->path : NULL;
1741 
1742 	/*
1743 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1744 	 * back to pre-conforming behaviour if user requested so with
1745 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1746 	 * nodeflib.
1747 	 */
1748 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1749 		pathname = search_library_path(name, ld_library_path,
1750 		    refobj_path, fdp);
1751 		if (pathname != NULL)
1752 			return (pathname);
1753 		if (refobj != NULL) {
1754 			pathname = search_library_path(name, refobj->rpath,
1755 			    refobj_path, fdp);
1756 			if (pathname != NULL)
1757 				return (pathname);
1758 		}
1759 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1760 		if (pathname != NULL)
1761 			return (pathname);
1762 		pathname = search_library_path(name, gethints(false),
1763 		    refobj_path, fdp);
1764 		if (pathname != NULL)
1765 			return (pathname);
1766 		pathname = search_library_path(name, ld_standard_library_path,
1767 		    refobj_path, fdp);
1768 		if (pathname != NULL)
1769 			return (pathname);
1770 	} else {
1771 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1772 		if (objgiven) {
1773 			pathname = search_library_path(name, refobj->rpath,
1774 			    refobj->path, fdp);
1775 			if (pathname != NULL)
1776 				return (pathname);
1777 		}
1778 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1779 			pathname = search_library_path(name, obj_main->rpath,
1780 			    refobj_path, fdp);
1781 			if (pathname != NULL)
1782 				return (pathname);
1783 		}
1784 		pathname = search_library_path(name, ld_library_path,
1785 		    refobj_path, fdp);
1786 		if (pathname != NULL)
1787 			return (pathname);
1788 		if (objgiven) {
1789 			pathname = search_library_path(name, refobj->runpath,
1790 			    refobj_path, fdp);
1791 			if (pathname != NULL)
1792 				return (pathname);
1793 		}
1794 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1795 		if (pathname != NULL)
1796 			return (pathname);
1797 		pathname = search_library_path(name, gethints(nodeflib),
1798 		    refobj_path, fdp);
1799 		if (pathname != NULL)
1800 			return (pathname);
1801 		if (objgiven && !nodeflib) {
1802 			pathname = search_library_path(name,
1803 			    ld_standard_library_path, refobj_path, fdp);
1804 			if (pathname != NULL)
1805 				return (pathname);
1806 		}
1807 	}
1808 
1809 	if (objgiven && refobj->path != NULL) {
1810 		_rtld_error("Shared object \"%s\" not found, "
1811 		    "required by \"%s\"", name, basename(refobj->path));
1812 	} else {
1813 		_rtld_error("Shared object \"%s\" not found", name);
1814 	}
1815 	return (NULL);
1816 }
1817 
1818 /*
1819  * Given a symbol number in a referencing object, find the corresponding
1820  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1821  * no definition was found.  Returns a pointer to the Obj_Entry of the
1822  * defining object via the reference parameter DEFOBJ_OUT.
1823  */
1824 const Elf_Sym *
1825 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1826     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1827     RtldLockState *lockstate)
1828 {
1829     const Elf_Sym *ref;
1830     const Elf_Sym *def;
1831     const Obj_Entry *defobj;
1832     const Ver_Entry *ve;
1833     SymLook req;
1834     const char *name;
1835     int res;
1836 
1837     /*
1838      * If we have already found this symbol, get the information from
1839      * the cache.
1840      */
1841     if (symnum >= refobj->dynsymcount)
1842 	return NULL;	/* Bad object */
1843     if (cache != NULL && cache[symnum].sym != NULL) {
1844 	*defobj_out = cache[symnum].obj;
1845 	return cache[symnum].sym;
1846     }
1847 
1848     ref = refobj->symtab + symnum;
1849     name = refobj->strtab + ref->st_name;
1850     def = NULL;
1851     defobj = NULL;
1852     ve = NULL;
1853 
1854     /*
1855      * We don't have to do a full scale lookup if the symbol is local.
1856      * We know it will bind to the instance in this load module; to
1857      * which we already have a pointer (ie ref). By not doing a lookup,
1858      * we not only improve performance, but it also avoids unresolvable
1859      * symbols when local symbols are not in the hash table. This has
1860      * been seen with the ia64 toolchain.
1861      */
1862     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1863 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1864 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1865 		symnum);
1866 	}
1867 	symlook_init(&req, name);
1868 	req.flags = flags;
1869 	ve = req.ventry = fetch_ventry(refobj, symnum);
1870 	req.lockstate = lockstate;
1871 	res = symlook_default(&req, refobj);
1872 	if (res == 0) {
1873 	    def = req.sym_out;
1874 	    defobj = req.defobj_out;
1875 	}
1876     } else {
1877 	def = ref;
1878 	defobj = refobj;
1879     }
1880 
1881     /*
1882      * If we found no definition and the reference is weak, treat the
1883      * symbol as having the value zero.
1884      */
1885     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1886 	def = &sym_zero;
1887 	defobj = obj_main;
1888     }
1889 
1890     if (def != NULL) {
1891 	*defobj_out = defobj;
1892 	/* Record the information in the cache to avoid subsequent lookups. */
1893 	if (cache != NULL) {
1894 	    cache[symnum].sym = def;
1895 	    cache[symnum].obj = defobj;
1896 	}
1897     } else {
1898 	if (refobj != &obj_rtld)
1899 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1900 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1901     }
1902     return def;
1903 }
1904 
1905 /*
1906  * Return the search path from the ldconfig hints file, reading it if
1907  * necessary.  If nostdlib is true, then the default search paths are
1908  * not added to result.
1909  *
1910  * Returns NULL if there are problems with the hints file,
1911  * or if the search path there is empty.
1912  */
1913 static const char *
1914 gethints(bool nostdlib)
1915 {
1916 	static char *filtered_path;
1917 	static const char *hints;
1918 	static struct elfhints_hdr hdr;
1919 	struct fill_search_info_args sargs, hargs;
1920 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1921 	struct dl_serpath *SLPpath, *hintpath;
1922 	char *p;
1923 	struct stat hint_stat;
1924 	unsigned int SLPndx, hintndx, fndx, fcount;
1925 	int fd;
1926 	size_t flen;
1927 	uint32_t dl;
1928 	bool skip;
1929 
1930 	/* First call, read the hints file */
1931 	if (hints == NULL) {
1932 		/* Keep from trying again in case the hints file is bad. */
1933 		hints = "";
1934 
1935 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1936 			return (NULL);
1937 
1938 		/*
1939 		 * Check of hdr.dirlistlen value against type limit
1940 		 * intends to pacify static analyzers.  Further
1941 		 * paranoia leads to checks that dirlist is fully
1942 		 * contained in the file range.
1943 		 */
1944 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1945 		    hdr.magic != ELFHINTS_MAGIC ||
1946 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1947 		    fstat(fd, &hint_stat) == -1) {
1948 cleanup1:
1949 			close(fd);
1950 			hdr.dirlistlen = 0;
1951 			return (NULL);
1952 		}
1953 		dl = hdr.strtab;
1954 		if (dl + hdr.dirlist < dl)
1955 			goto cleanup1;
1956 		dl += hdr.dirlist;
1957 		if (dl + hdr.dirlistlen < dl)
1958 			goto cleanup1;
1959 		dl += hdr.dirlistlen;
1960 		if (dl > hint_stat.st_size)
1961 			goto cleanup1;
1962 		p = xmalloc(hdr.dirlistlen + 1);
1963 		if (pread(fd, p, hdr.dirlistlen + 1,
1964 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1965 		    p[hdr.dirlistlen] != '\0') {
1966 			free(p);
1967 			goto cleanup1;
1968 		}
1969 		hints = p;
1970 		close(fd);
1971 	}
1972 
1973 	/*
1974 	 * If caller agreed to receive list which includes the default
1975 	 * paths, we are done. Otherwise, if we still did not
1976 	 * calculated filtered result, do it now.
1977 	 */
1978 	if (!nostdlib)
1979 		return (hints[0] != '\0' ? hints : NULL);
1980 	if (filtered_path != NULL)
1981 		goto filt_ret;
1982 
1983 	/*
1984 	 * Obtain the list of all configured search paths, and the
1985 	 * list of the default paths.
1986 	 *
1987 	 * First estimate the size of the results.
1988 	 */
1989 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1990 	smeta.dls_cnt = 0;
1991 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1992 	hmeta.dls_cnt = 0;
1993 
1994 	sargs.request = RTLD_DI_SERINFOSIZE;
1995 	sargs.serinfo = &smeta;
1996 	hargs.request = RTLD_DI_SERINFOSIZE;
1997 	hargs.serinfo = &hmeta;
1998 
1999 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2000 	    &sargs);
2001 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2002 
2003 	SLPinfo = xmalloc(smeta.dls_size);
2004 	hintinfo = xmalloc(hmeta.dls_size);
2005 
2006 	/*
2007 	 * Next fetch both sets of paths.
2008 	 */
2009 	sargs.request = RTLD_DI_SERINFO;
2010 	sargs.serinfo = SLPinfo;
2011 	sargs.serpath = &SLPinfo->dls_serpath[0];
2012 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2013 
2014 	hargs.request = RTLD_DI_SERINFO;
2015 	hargs.serinfo = hintinfo;
2016 	hargs.serpath = &hintinfo->dls_serpath[0];
2017 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2018 
2019 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2020 	    &sargs);
2021 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2022 
2023 	/*
2024 	 * Now calculate the difference between two sets, by excluding
2025 	 * standard paths from the full set.
2026 	 */
2027 	fndx = 0;
2028 	fcount = 0;
2029 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2030 	hintpath = &hintinfo->dls_serpath[0];
2031 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2032 		skip = false;
2033 		SLPpath = &SLPinfo->dls_serpath[0];
2034 		/*
2035 		 * Check each standard path against current.
2036 		 */
2037 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2038 			/* matched, skip the path */
2039 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2040 				skip = true;
2041 				break;
2042 			}
2043 		}
2044 		if (skip)
2045 			continue;
2046 		/*
2047 		 * Not matched against any standard path, add the path
2048 		 * to result. Separate consequtive paths with ':'.
2049 		 */
2050 		if (fcount > 0) {
2051 			filtered_path[fndx] = ':';
2052 			fndx++;
2053 		}
2054 		fcount++;
2055 		flen = strlen(hintpath->dls_name);
2056 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2057 		fndx += flen;
2058 	}
2059 	filtered_path[fndx] = '\0';
2060 
2061 	free(SLPinfo);
2062 	free(hintinfo);
2063 
2064 filt_ret:
2065 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2066 }
2067 
2068 static void
2069 init_dag(Obj_Entry *root)
2070 {
2071     const Needed_Entry *needed;
2072     const Objlist_Entry *elm;
2073     DoneList donelist;
2074 
2075     if (root->dag_inited)
2076 	return;
2077     donelist_init(&donelist);
2078 
2079     /* Root object belongs to own DAG. */
2080     objlist_push_tail(&root->dldags, root);
2081     objlist_push_tail(&root->dagmembers, root);
2082     donelist_check(&donelist, root);
2083 
2084     /*
2085      * Add dependencies of root object to DAG in breadth order
2086      * by exploiting the fact that each new object get added
2087      * to the tail of the dagmembers list.
2088      */
2089     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2090 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2091 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2092 		continue;
2093 	    objlist_push_tail(&needed->obj->dldags, root);
2094 	    objlist_push_tail(&root->dagmembers, needed->obj);
2095 	}
2096     }
2097     root->dag_inited = true;
2098 }
2099 
2100 static void
2101 init_marker(Obj_Entry *marker)
2102 {
2103 
2104 	bzero(marker, sizeof(*marker));
2105 	marker->marker = true;
2106 }
2107 
2108 Obj_Entry *
2109 globallist_curr(const Obj_Entry *obj)
2110 {
2111 
2112 	for (;;) {
2113 		if (obj == NULL)
2114 			return (NULL);
2115 		if (!obj->marker)
2116 			return (__DECONST(Obj_Entry *, obj));
2117 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2118 	}
2119 }
2120 
2121 Obj_Entry *
2122 globallist_next(const Obj_Entry *obj)
2123 {
2124 
2125 	for (;;) {
2126 		obj = TAILQ_NEXT(obj, next);
2127 		if (obj == NULL)
2128 			return (NULL);
2129 		if (!obj->marker)
2130 			return (__DECONST(Obj_Entry *, obj));
2131 	}
2132 }
2133 
2134 /* Prevent the object from being unmapped while the bind lock is dropped. */
2135 static void
2136 hold_object(Obj_Entry *obj)
2137 {
2138 
2139 	obj->holdcount++;
2140 }
2141 
2142 static void
2143 unhold_object(Obj_Entry *obj)
2144 {
2145 
2146 	assert(obj->holdcount > 0);
2147 	if (--obj->holdcount == 0 && obj->unholdfree)
2148 		release_object(obj);
2149 }
2150 
2151 static void
2152 process_z(Obj_Entry *root)
2153 {
2154 	const Objlist_Entry *elm;
2155 	Obj_Entry *obj;
2156 
2157 	/*
2158 	 * Walk over object DAG and process every dependent object
2159 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2160 	 * to grow their own DAG.
2161 	 *
2162 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2163 	 * symlook_global() to work.
2164 	 *
2165 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2166 	 */
2167 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2168 		obj = elm->obj;
2169 		if (obj == NULL)
2170 			continue;
2171 		if (obj->z_nodelete && !obj->ref_nodel) {
2172 			dbg("obj %s -z nodelete", obj->path);
2173 			init_dag(obj);
2174 			ref_dag(obj);
2175 			obj->ref_nodel = true;
2176 		}
2177 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2178 			dbg("obj %s -z global", obj->path);
2179 			objlist_push_tail(&list_global, obj);
2180 			init_dag(obj);
2181 		}
2182 	}
2183 }
2184 /*
2185  * Initialize the dynamic linker.  The argument is the address at which
2186  * the dynamic linker has been mapped into memory.  The primary task of
2187  * this function is to relocate the dynamic linker.
2188  */
2189 static void
2190 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2191 {
2192     Obj_Entry objtmp;	/* Temporary rtld object */
2193     const Elf_Ehdr *ehdr;
2194     const Elf_Dyn *dyn_rpath;
2195     const Elf_Dyn *dyn_soname;
2196     const Elf_Dyn *dyn_runpath;
2197 
2198 #ifdef RTLD_INIT_PAGESIZES_EARLY
2199     /* The page size is required by the dynamic memory allocator. */
2200     init_pagesizes(aux_info);
2201 #endif
2202 
2203     /*
2204      * Conjure up an Obj_Entry structure for the dynamic linker.
2205      *
2206      * The "path" member can't be initialized yet because string constants
2207      * cannot yet be accessed. Below we will set it correctly.
2208      */
2209     memset(&objtmp, 0, sizeof(objtmp));
2210     objtmp.path = NULL;
2211     objtmp.rtld = true;
2212     objtmp.mapbase = mapbase;
2213 #ifdef PIC
2214     objtmp.relocbase = mapbase;
2215 #endif
2216 
2217     objtmp.dynamic = rtld_dynamic(&objtmp);
2218     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2219     assert(objtmp.needed == NULL);
2220 #if !defined(__mips__)
2221     /* MIPS has a bogus DT_TEXTREL. */
2222     assert(!objtmp.textrel);
2223 #endif
2224     /*
2225      * Temporarily put the dynamic linker entry into the object list, so
2226      * that symbols can be found.
2227      */
2228     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2229 
2230     ehdr = (Elf_Ehdr *)mapbase;
2231     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2232     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2233 
2234     /* Initialize the object list. */
2235     TAILQ_INIT(&obj_list);
2236 
2237     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2238     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2239 
2240 #ifndef RTLD_INIT_PAGESIZES_EARLY
2241     /* The page size is required by the dynamic memory allocator. */
2242     init_pagesizes(aux_info);
2243 #endif
2244 
2245     if (aux_info[AT_OSRELDATE] != NULL)
2246 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2247 
2248     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2249 
2250     /* Replace the path with a dynamically allocated copy. */
2251     obj_rtld.path = xstrdup(ld_path_rtld);
2252 
2253     r_debug.r_brk = r_debug_state;
2254     r_debug.r_state = RT_CONSISTENT;
2255 }
2256 
2257 /*
2258  * Retrieve the array of supported page sizes.  The kernel provides the page
2259  * sizes in increasing order.
2260  */
2261 static void
2262 init_pagesizes(Elf_Auxinfo **aux_info)
2263 {
2264 	static size_t psa[MAXPAGESIZES];
2265 	int mib[2];
2266 	size_t len, size;
2267 
2268 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2269 	    NULL) {
2270 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2271 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2272 	} else {
2273 		len = 2;
2274 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2275 			size = sizeof(psa);
2276 		else {
2277 			/* As a fallback, retrieve the base page size. */
2278 			size = sizeof(psa[0]);
2279 			if (aux_info[AT_PAGESZ] != NULL) {
2280 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2281 				goto psa_filled;
2282 			} else {
2283 				mib[0] = CTL_HW;
2284 				mib[1] = HW_PAGESIZE;
2285 				len = 2;
2286 			}
2287 		}
2288 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2289 			_rtld_error("sysctl for hw.pagesize(s) failed");
2290 			rtld_die();
2291 		}
2292 psa_filled:
2293 		pagesizes = psa;
2294 	}
2295 	npagesizes = size / sizeof(pagesizes[0]);
2296 	/* Discard any invalid entries at the end of the array. */
2297 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2298 		npagesizes--;
2299 }
2300 
2301 /*
2302  * Add the init functions from a needed object list (and its recursive
2303  * needed objects) to "list".  This is not used directly; it is a helper
2304  * function for initlist_add_objects().  The write lock must be held
2305  * when this function is called.
2306  */
2307 static void
2308 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2309 {
2310     /* Recursively process the successor needed objects. */
2311     if (needed->next != NULL)
2312 	initlist_add_neededs(needed->next, list);
2313 
2314     /* Process the current needed object. */
2315     if (needed->obj != NULL)
2316 	initlist_add_objects(needed->obj, needed->obj, list);
2317 }
2318 
2319 /*
2320  * Scan all of the DAGs rooted in the range of objects from "obj" to
2321  * "tail" and add their init functions to "list".  This recurses over
2322  * the DAGs and ensure the proper init ordering such that each object's
2323  * needed libraries are initialized before the object itself.  At the
2324  * same time, this function adds the objects to the global finalization
2325  * list "list_fini" in the opposite order.  The write lock must be
2326  * held when this function is called.
2327  */
2328 static void
2329 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2330 {
2331     Obj_Entry *nobj;
2332 
2333     if (obj->init_scanned || obj->init_done)
2334 	return;
2335     obj->init_scanned = true;
2336 
2337     /* Recursively process the successor objects. */
2338     nobj = globallist_next(obj);
2339     if (nobj != NULL && obj != tail)
2340 	initlist_add_objects(nobj, tail, list);
2341 
2342     /* Recursively process the needed objects. */
2343     if (obj->needed != NULL)
2344 	initlist_add_neededs(obj->needed, list);
2345     if (obj->needed_filtees != NULL)
2346 	initlist_add_neededs(obj->needed_filtees, list);
2347     if (obj->needed_aux_filtees != NULL)
2348 	initlist_add_neededs(obj->needed_aux_filtees, list);
2349 
2350     /* Add the object to the init list. */
2351     objlist_push_tail(list, obj);
2352 
2353     /* Add the object to the global fini list in the reverse order. */
2354     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2355       && !obj->on_fini_list) {
2356 	objlist_push_head(&list_fini, obj);
2357 	obj->on_fini_list = true;
2358     }
2359 }
2360 
2361 #ifndef FPTR_TARGET
2362 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2363 #endif
2364 
2365 static void
2366 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2367 {
2368     Needed_Entry *needed, *needed1;
2369 
2370     for (needed = n; needed != NULL; needed = needed->next) {
2371 	if (needed->obj != NULL) {
2372 	    dlclose_locked(needed->obj, lockstate);
2373 	    needed->obj = NULL;
2374 	}
2375     }
2376     for (needed = n; needed != NULL; needed = needed1) {
2377 	needed1 = needed->next;
2378 	free(needed);
2379     }
2380 }
2381 
2382 static void
2383 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2384 {
2385 
2386 	free_needed_filtees(obj->needed_filtees, lockstate);
2387 	obj->needed_filtees = NULL;
2388 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2389 	obj->needed_aux_filtees = NULL;
2390 	obj->filtees_loaded = false;
2391 }
2392 
2393 static void
2394 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2395     RtldLockState *lockstate)
2396 {
2397 
2398     for (; needed != NULL; needed = needed->next) {
2399 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2400 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2401 	  RTLD_LOCAL, lockstate);
2402     }
2403 }
2404 
2405 static void
2406 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2407 {
2408 
2409     lock_restart_for_upgrade(lockstate);
2410     if (!obj->filtees_loaded) {
2411 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2412 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2413 	obj->filtees_loaded = true;
2414     }
2415 }
2416 
2417 static int
2418 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2419 {
2420     Obj_Entry *obj1;
2421 
2422     for (; needed != NULL; needed = needed->next) {
2423 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2424 	  flags & ~RTLD_LO_NOLOAD);
2425 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2426 	    return (-1);
2427     }
2428     return (0);
2429 }
2430 
2431 /*
2432  * Given a shared object, traverse its list of needed objects, and load
2433  * each of them.  Returns 0 on success.  Generates an error message and
2434  * returns -1 on failure.
2435  */
2436 static int
2437 load_needed_objects(Obj_Entry *first, int flags)
2438 {
2439     Obj_Entry *obj;
2440 
2441     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2442 	if (obj->marker)
2443 	    continue;
2444 	if (process_needed(obj, obj->needed, flags) == -1)
2445 	    return (-1);
2446     }
2447     return (0);
2448 }
2449 
2450 static int
2451 load_preload_objects(void)
2452 {
2453     char *p = ld_preload;
2454     Obj_Entry *obj;
2455     static const char delim[] = " \t:;";
2456 
2457     if (p == NULL)
2458 	return 0;
2459 
2460     p += strspn(p, delim);
2461     while (*p != '\0') {
2462 	size_t len = strcspn(p, delim);
2463 	char savech;
2464 
2465 	savech = p[len];
2466 	p[len] = '\0';
2467 	obj = load_object(p, -1, NULL, 0);
2468 	if (obj == NULL)
2469 	    return -1;	/* XXX - cleanup */
2470 	obj->z_interpose = true;
2471 	p[len] = savech;
2472 	p += len;
2473 	p += strspn(p, delim);
2474     }
2475     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2476     return 0;
2477 }
2478 
2479 static const char *
2480 printable_path(const char *path)
2481 {
2482 
2483 	return (path == NULL ? "<unknown>" : path);
2484 }
2485 
2486 /*
2487  * Load a shared object into memory, if it is not already loaded.  The
2488  * object may be specified by name or by user-supplied file descriptor
2489  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2490  * duplicate is.
2491  *
2492  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2493  * on failure.
2494  */
2495 static Obj_Entry *
2496 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2497 {
2498     Obj_Entry *obj;
2499     int fd;
2500     struct stat sb;
2501     char *path;
2502 
2503     fd = -1;
2504     if (name != NULL) {
2505 	TAILQ_FOREACH(obj, &obj_list, next) {
2506 	    if (obj->marker || obj->doomed)
2507 		continue;
2508 	    if (object_match_name(obj, name))
2509 		return (obj);
2510 	}
2511 
2512 	path = find_library(name, refobj, &fd);
2513 	if (path == NULL)
2514 	    return (NULL);
2515     } else
2516 	path = NULL;
2517 
2518     if (fd >= 0) {
2519 	/*
2520 	 * search_library_pathfds() opens a fresh file descriptor for the
2521 	 * library, so there is no need to dup().
2522 	 */
2523     } else if (fd_u == -1) {
2524 	/*
2525 	 * If we didn't find a match by pathname, or the name is not
2526 	 * supplied, open the file and check again by device and inode.
2527 	 * This avoids false mismatches caused by multiple links or ".."
2528 	 * in pathnames.
2529 	 *
2530 	 * To avoid a race, we open the file and use fstat() rather than
2531 	 * using stat().
2532 	 */
2533 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2534 	    _rtld_error("Cannot open \"%s\"", path);
2535 	    free(path);
2536 	    return (NULL);
2537 	}
2538     } else {
2539 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2540 	if (fd == -1) {
2541 	    _rtld_error("Cannot dup fd");
2542 	    free(path);
2543 	    return (NULL);
2544 	}
2545     }
2546     if (fstat(fd, &sb) == -1) {
2547 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2548 	close(fd);
2549 	free(path);
2550 	return NULL;
2551     }
2552     TAILQ_FOREACH(obj, &obj_list, next) {
2553 	if (obj->marker || obj->doomed)
2554 	    continue;
2555 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2556 	    break;
2557     }
2558     if (obj != NULL && name != NULL) {
2559 	object_add_name(obj, name);
2560 	free(path);
2561 	close(fd);
2562 	return obj;
2563     }
2564     if (flags & RTLD_LO_NOLOAD) {
2565 	free(path);
2566 	close(fd);
2567 	return (NULL);
2568     }
2569 
2570     /* First use of this object, so we must map it in */
2571     obj = do_load_object(fd, name, path, &sb, flags);
2572     if (obj == NULL)
2573 	free(path);
2574     close(fd);
2575 
2576     return obj;
2577 }
2578 
2579 static Obj_Entry *
2580 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2581   int flags)
2582 {
2583     Obj_Entry *obj;
2584     struct statfs fs;
2585 
2586     /*
2587      * but first, make sure that environment variables haven't been
2588      * used to circumvent the noexec flag on a filesystem.
2589      */
2590     if (dangerous_ld_env) {
2591 	if (fstatfs(fd, &fs) != 0) {
2592 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2593 	    return NULL;
2594 	}
2595 	if (fs.f_flags & MNT_NOEXEC) {
2596 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2597 	    return NULL;
2598 	}
2599     }
2600     dbg("loading \"%s\"", printable_path(path));
2601     obj = map_object(fd, printable_path(path), sbp);
2602     if (obj == NULL)
2603         return NULL;
2604 
2605     /*
2606      * If DT_SONAME is present in the object, digest_dynamic2 already
2607      * added it to the object names.
2608      */
2609     if (name != NULL)
2610 	object_add_name(obj, name);
2611     obj->path = path;
2612     if (!digest_dynamic(obj, 0))
2613 	goto errp;
2614     if (obj->z_pie) {
2615 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2616 	goto errp;
2617     }
2618     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2619 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2620     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2621       RTLD_LO_DLOPEN) {
2622 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2623 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2624 	goto errp;
2625     }
2626 
2627     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2628     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2629     obj_count++;
2630     obj_loads++;
2631     linkmap_add(obj);	/* for GDB & dlinfo() */
2632     max_stack_flags |= obj->stack_flags;
2633 
2634     dbg("  %p .. %p: %s", obj->mapbase,
2635          obj->mapbase + obj->mapsize - 1, obj->path);
2636     if (obj->textrel)
2637 	dbg("  WARNING: %s has impure text", obj->path);
2638     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2639 	obj->path);
2640 
2641     return (obj);
2642 
2643 errp:
2644     munmap(obj->mapbase, obj->mapsize);
2645     obj_free(obj);
2646     return (NULL);
2647 }
2648 
2649 static Obj_Entry *
2650 obj_from_addr(const void *addr)
2651 {
2652     Obj_Entry *obj;
2653 
2654     TAILQ_FOREACH(obj, &obj_list, next) {
2655 	if (obj->marker)
2656 	    continue;
2657 	if (addr < (void *) obj->mapbase)
2658 	    continue;
2659 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2660 	    return obj;
2661     }
2662     return NULL;
2663 }
2664 
2665 static void
2666 preinit_main(void)
2667 {
2668     Elf_Addr *preinit_addr;
2669     int index;
2670 
2671     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2672     if (preinit_addr == NULL)
2673 	return;
2674 
2675     for (index = 0; index < obj_main->preinit_array_num; index++) {
2676 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2677 	    dbg("calling preinit function for %s at %p", obj_main->path,
2678 	      (void *)preinit_addr[index]);
2679 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2680 	      0, 0, obj_main->path);
2681 	    call_init_pointer(obj_main, preinit_addr[index]);
2682 	}
2683     }
2684 }
2685 
2686 /*
2687  * Call the finalization functions for each of the objects in "list"
2688  * belonging to the DAG of "root" and referenced once. If NULL "root"
2689  * is specified, every finalization function will be called regardless
2690  * of the reference count and the list elements won't be freed. All of
2691  * the objects are expected to have non-NULL fini functions.
2692  */
2693 static void
2694 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2695 {
2696     Objlist_Entry *elm;
2697     char *saved_msg;
2698     Elf_Addr *fini_addr;
2699     int index;
2700 
2701     assert(root == NULL || root->refcount == 1);
2702 
2703     if (root != NULL)
2704 	root->doomed = true;
2705 
2706     /*
2707      * Preserve the current error message since a fini function might
2708      * call into the dynamic linker and overwrite it.
2709      */
2710     saved_msg = errmsg_save();
2711     do {
2712 	STAILQ_FOREACH(elm, list, link) {
2713 	    if (root != NULL && (elm->obj->refcount != 1 ||
2714 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2715 		continue;
2716 	    /* Remove object from fini list to prevent recursive invocation. */
2717 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2718 	    /* Ensure that new references cannot be acquired. */
2719 	    elm->obj->doomed = true;
2720 
2721 	    hold_object(elm->obj);
2722 	    lock_release(rtld_bind_lock, lockstate);
2723 	    /*
2724 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2725 	     * When this happens, DT_FINI_ARRAY is processed first.
2726 	     */
2727 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2728 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2729 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2730 		  index--) {
2731 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2732 			dbg("calling fini function for %s at %p",
2733 			    elm->obj->path, (void *)fini_addr[index]);
2734 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2735 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2736 			call_initfini_pointer(elm->obj, fini_addr[index]);
2737 		    }
2738 		}
2739 	    }
2740 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2741 		dbg("calling fini function for %s at %p", elm->obj->path,
2742 		    (void *)elm->obj->fini);
2743 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2744 		    0, 0, elm->obj->path);
2745 		call_initfini_pointer(elm->obj, elm->obj->fini);
2746 	    }
2747 	    wlock_acquire(rtld_bind_lock, lockstate);
2748 	    unhold_object(elm->obj);
2749 	    /* No need to free anything if process is going down. */
2750 	    if (root != NULL)
2751 	    	free(elm);
2752 	    /*
2753 	     * We must restart the list traversal after every fini call
2754 	     * because a dlclose() call from the fini function or from
2755 	     * another thread might have modified the reference counts.
2756 	     */
2757 	    break;
2758 	}
2759     } while (elm != NULL);
2760     errmsg_restore(saved_msg);
2761 }
2762 
2763 /*
2764  * Call the initialization functions for each of the objects in
2765  * "list".  All of the objects are expected to have non-NULL init
2766  * functions.
2767  */
2768 static void
2769 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2770 {
2771     Objlist_Entry *elm;
2772     Obj_Entry *obj;
2773     char *saved_msg;
2774     Elf_Addr *init_addr;
2775     void (*reg)(void (*)(void));
2776     int index;
2777 
2778     /*
2779      * Clean init_scanned flag so that objects can be rechecked and
2780      * possibly initialized earlier if any of vectors called below
2781      * cause the change by using dlopen.
2782      */
2783     TAILQ_FOREACH(obj, &obj_list, next) {
2784 	if (obj->marker)
2785 	    continue;
2786 	obj->init_scanned = false;
2787     }
2788 
2789     /*
2790      * Preserve the current error message since an init function might
2791      * call into the dynamic linker and overwrite it.
2792      */
2793     saved_msg = errmsg_save();
2794     STAILQ_FOREACH(elm, list, link) {
2795 	if (elm->obj->init_done) /* Initialized early. */
2796 	    continue;
2797 	/*
2798 	 * Race: other thread might try to use this object before current
2799 	 * one completes the initialization. Not much can be done here
2800 	 * without better locking.
2801 	 */
2802 	elm->obj->init_done = true;
2803 	hold_object(elm->obj);
2804 	reg = NULL;
2805 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2806 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2807 		    "__libc_atexit", lockstate);
2808 	}
2809 	lock_release(rtld_bind_lock, lockstate);
2810 	if (reg != NULL) {
2811 		reg(rtld_exit);
2812 		rtld_exit_ptr = rtld_nop_exit;
2813 	}
2814 
2815         /*
2816          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2817          * When this happens, DT_INIT is processed first.
2818          */
2819 	if (elm->obj->init != (Elf_Addr)NULL) {
2820 	    dbg("calling init function for %s at %p", elm->obj->path,
2821 	        (void *)elm->obj->init);
2822 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2823 	        0, 0, elm->obj->path);
2824 	    call_initfini_pointer(elm->obj, elm->obj->init);
2825 	}
2826 	init_addr = (Elf_Addr *)elm->obj->init_array;
2827 	if (init_addr != NULL) {
2828 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2829 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2830 		    dbg("calling init function for %s at %p", elm->obj->path,
2831 			(void *)init_addr[index]);
2832 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2833 			(void *)init_addr[index], 0, 0, elm->obj->path);
2834 		    call_init_pointer(elm->obj, init_addr[index]);
2835 		}
2836 	    }
2837 	}
2838 	wlock_acquire(rtld_bind_lock, lockstate);
2839 	unhold_object(elm->obj);
2840     }
2841     errmsg_restore(saved_msg);
2842 }
2843 
2844 static void
2845 objlist_clear(Objlist *list)
2846 {
2847     Objlist_Entry *elm;
2848 
2849     while (!STAILQ_EMPTY(list)) {
2850 	elm = STAILQ_FIRST(list);
2851 	STAILQ_REMOVE_HEAD(list, link);
2852 	free(elm);
2853     }
2854 }
2855 
2856 static Objlist_Entry *
2857 objlist_find(Objlist *list, const Obj_Entry *obj)
2858 {
2859     Objlist_Entry *elm;
2860 
2861     STAILQ_FOREACH(elm, list, link)
2862 	if (elm->obj == obj)
2863 	    return elm;
2864     return NULL;
2865 }
2866 
2867 static void
2868 objlist_init(Objlist *list)
2869 {
2870     STAILQ_INIT(list);
2871 }
2872 
2873 static void
2874 objlist_push_head(Objlist *list, Obj_Entry *obj)
2875 {
2876     Objlist_Entry *elm;
2877 
2878     elm = NEW(Objlist_Entry);
2879     elm->obj = obj;
2880     STAILQ_INSERT_HEAD(list, elm, link);
2881 }
2882 
2883 static void
2884 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2885 {
2886     Objlist_Entry *elm;
2887 
2888     elm = NEW(Objlist_Entry);
2889     elm->obj = obj;
2890     STAILQ_INSERT_TAIL(list, elm, link);
2891 }
2892 
2893 static void
2894 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2895 {
2896 	Objlist_Entry *elm, *listelm;
2897 
2898 	STAILQ_FOREACH(listelm, list, link) {
2899 		if (listelm->obj == listobj)
2900 			break;
2901 	}
2902 	elm = NEW(Objlist_Entry);
2903 	elm->obj = obj;
2904 	if (listelm != NULL)
2905 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2906 	else
2907 		STAILQ_INSERT_TAIL(list, elm, link);
2908 }
2909 
2910 static void
2911 objlist_remove(Objlist *list, Obj_Entry *obj)
2912 {
2913     Objlist_Entry *elm;
2914 
2915     if ((elm = objlist_find(list, obj)) != NULL) {
2916 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2917 	free(elm);
2918     }
2919 }
2920 
2921 /*
2922  * Relocate dag rooted in the specified object.
2923  * Returns 0 on success, or -1 on failure.
2924  */
2925 
2926 static int
2927 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2928     int flags, RtldLockState *lockstate)
2929 {
2930 	Objlist_Entry *elm;
2931 	int error;
2932 
2933 	error = 0;
2934 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2935 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2936 		    lockstate);
2937 		if (error == -1)
2938 			break;
2939 	}
2940 	return (error);
2941 }
2942 
2943 /*
2944  * Prepare for, or clean after, relocating an object marked with
2945  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2946  * segments are remapped read-write.  After relocations are done, the
2947  * segment's permissions are returned back to the modes specified in
2948  * the phdrs.  If any relocation happened, or always for wired
2949  * program, COW is triggered.
2950  */
2951 static int
2952 reloc_textrel_prot(Obj_Entry *obj, bool before)
2953 {
2954 	const Elf_Phdr *ph;
2955 	void *base;
2956 	size_t l, sz;
2957 	int prot;
2958 
2959 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2960 	    l--, ph++) {
2961 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2962 			continue;
2963 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2964 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2965 		    trunc_page(ph->p_vaddr);
2966 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2967 		if (mprotect(base, sz, prot) == -1) {
2968 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2969 			    obj->path, before ? "en" : "dis",
2970 			    rtld_strerror(errno));
2971 			return (-1);
2972 		}
2973 	}
2974 	return (0);
2975 }
2976 
2977 /*
2978  * Relocate single object.
2979  * Returns 0 on success, or -1 on failure.
2980  */
2981 static int
2982 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2983     int flags, RtldLockState *lockstate)
2984 {
2985 
2986 	if (obj->relocated)
2987 		return (0);
2988 	obj->relocated = true;
2989 	if (obj != rtldobj)
2990 		dbg("relocating \"%s\"", obj->path);
2991 
2992 	if (obj->symtab == NULL || obj->strtab == NULL ||
2993 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2994 		_rtld_error("%s: Shared object has no run-time symbol table",
2995 			    obj->path);
2996 		return (-1);
2997 	}
2998 
2999 	/* There are relocations to the write-protected text segment. */
3000 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3001 		return (-1);
3002 
3003 	/* Process the non-PLT non-IFUNC relocations. */
3004 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3005 		return (-1);
3006 
3007 	/* Re-protected the text segment. */
3008 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3009 		return (-1);
3010 
3011 	/* Set the special PLT or GOT entries. */
3012 	init_pltgot(obj);
3013 
3014 	/* Process the PLT relocations. */
3015 	if (reloc_plt(obj, flags, lockstate) == -1)
3016 		return (-1);
3017 	/* Relocate the jump slots if we are doing immediate binding. */
3018 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3019 	    lockstate) == -1)
3020 		return (-1);
3021 
3022 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3023 		return (-1);
3024 
3025 	/*
3026 	 * Set up the magic number and version in the Obj_Entry.  These
3027 	 * were checked in the crt1.o from the original ElfKit, so we
3028 	 * set them for backward compatibility.
3029 	 */
3030 	obj->magic = RTLD_MAGIC;
3031 	obj->version = RTLD_VERSION;
3032 
3033 	return (0);
3034 }
3035 
3036 /*
3037  * Relocate newly-loaded shared objects.  The argument is a pointer to
3038  * the Obj_Entry for the first such object.  All objects from the first
3039  * to the end of the list of objects are relocated.  Returns 0 on success,
3040  * or -1 on failure.
3041  */
3042 static int
3043 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3044     int flags, RtldLockState *lockstate)
3045 {
3046 	Obj_Entry *obj;
3047 	int error;
3048 
3049 	for (error = 0, obj = first;  obj != NULL;
3050 	    obj = TAILQ_NEXT(obj, next)) {
3051 		if (obj->marker)
3052 			continue;
3053 		error = relocate_object(obj, bind_now, rtldobj, flags,
3054 		    lockstate);
3055 		if (error == -1)
3056 			break;
3057 	}
3058 	return (error);
3059 }
3060 
3061 /*
3062  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3063  * referencing STT_GNU_IFUNC symbols is postponed till the other
3064  * relocations are done.  The indirect functions specified as
3065  * ifunc are allowed to call other symbols, so we need to have
3066  * objects relocated before asking for resolution from indirects.
3067  *
3068  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3069  * instead of the usual lazy handling of PLT slots.  It is
3070  * consistent with how GNU does it.
3071  */
3072 static int
3073 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3074     RtldLockState *lockstate)
3075 {
3076 
3077 	if (obj->ifuncs_resolved)
3078 		return (0);
3079 	obj->ifuncs_resolved = true;
3080 	if (!obj->irelative && !obj->irelative_nonplt &&
3081 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc))
3082 		return (0);
3083 	if (obj_disable_relro(obj) == -1 ||
3084 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3085 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3086 	    lockstate) == -1) ||
3087 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3088 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3089 	    obj_enforce_relro(obj) == -1)
3090 		return (-1);
3091 	return (0);
3092 }
3093 
3094 static int
3095 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3096     RtldLockState *lockstate)
3097 {
3098 	Objlist_Entry *elm;
3099 	Obj_Entry *obj;
3100 
3101 	STAILQ_FOREACH(elm, list, link) {
3102 		obj = elm->obj;
3103 		if (obj->marker)
3104 			continue;
3105 		if (resolve_object_ifunc(obj, bind_now, flags,
3106 		    lockstate) == -1)
3107 			return (-1);
3108 	}
3109 	return (0);
3110 }
3111 
3112 /*
3113  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3114  * before the process exits.
3115  */
3116 static void
3117 rtld_exit(void)
3118 {
3119     RtldLockState lockstate;
3120 
3121     wlock_acquire(rtld_bind_lock, &lockstate);
3122     dbg("rtld_exit()");
3123     objlist_call_fini(&list_fini, NULL, &lockstate);
3124     /* No need to remove the items from the list, since we are exiting. */
3125     if (!libmap_disable)
3126         lm_fini();
3127     lock_release(rtld_bind_lock, &lockstate);
3128 }
3129 
3130 static void
3131 rtld_nop_exit(void)
3132 {
3133 }
3134 
3135 /*
3136  * Iterate over a search path, translate each element, and invoke the
3137  * callback on the result.
3138  */
3139 static void *
3140 path_enumerate(const char *path, path_enum_proc callback,
3141     const char *refobj_path, void *arg)
3142 {
3143     const char *trans;
3144     if (path == NULL)
3145 	return (NULL);
3146 
3147     path += strspn(path, ":;");
3148     while (*path != '\0') {
3149 	size_t len;
3150 	char  *res;
3151 
3152 	len = strcspn(path, ":;");
3153 	trans = lm_findn(refobj_path, path, len);
3154 	if (trans)
3155 	    res = callback(trans, strlen(trans), arg);
3156 	else
3157 	    res = callback(path, len, arg);
3158 
3159 	if (res != NULL)
3160 	    return (res);
3161 
3162 	path += len;
3163 	path += strspn(path, ":;");
3164     }
3165 
3166     return (NULL);
3167 }
3168 
3169 struct try_library_args {
3170     const char	*name;
3171     size_t	 namelen;
3172     char	*buffer;
3173     size_t	 buflen;
3174     int		 fd;
3175 };
3176 
3177 static void *
3178 try_library_path(const char *dir, size_t dirlen, void *param)
3179 {
3180     struct try_library_args *arg;
3181     int fd;
3182 
3183     arg = param;
3184     if (*dir == '/' || trust) {
3185 	char *pathname;
3186 
3187 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3188 		return (NULL);
3189 
3190 	pathname = arg->buffer;
3191 	strncpy(pathname, dir, dirlen);
3192 	pathname[dirlen] = '/';
3193 	strcpy(pathname + dirlen + 1, arg->name);
3194 
3195 	dbg("  Trying \"%s\"", pathname);
3196 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3197 	if (fd >= 0) {
3198 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3199 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3200 	    strcpy(pathname, arg->buffer);
3201 	    arg->fd = fd;
3202 	    return (pathname);
3203 	} else {
3204 	    dbg("  Failed to open \"%s\": %s",
3205 		pathname, rtld_strerror(errno));
3206 	}
3207     }
3208     return (NULL);
3209 }
3210 
3211 static char *
3212 search_library_path(const char *name, const char *path,
3213     const char *refobj_path, int *fdp)
3214 {
3215     char *p;
3216     struct try_library_args arg;
3217 
3218     if (path == NULL)
3219 	return NULL;
3220 
3221     arg.name = name;
3222     arg.namelen = strlen(name);
3223     arg.buffer = xmalloc(PATH_MAX);
3224     arg.buflen = PATH_MAX;
3225     arg.fd = -1;
3226 
3227     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3228     *fdp = arg.fd;
3229 
3230     free(arg.buffer);
3231 
3232     return (p);
3233 }
3234 
3235 
3236 /*
3237  * Finds the library with the given name using the directory descriptors
3238  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3239  *
3240  * Returns a freshly-opened close-on-exec file descriptor for the library,
3241  * or -1 if the library cannot be found.
3242  */
3243 static char *
3244 search_library_pathfds(const char *name, const char *path, int *fdp)
3245 {
3246 	char *envcopy, *fdstr, *found, *last_token;
3247 	size_t len;
3248 	int dirfd, fd;
3249 
3250 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3251 
3252 	/* Don't load from user-specified libdirs into setuid binaries. */
3253 	if (!trust)
3254 		return (NULL);
3255 
3256 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3257 	if (path == NULL)
3258 		return (NULL);
3259 
3260 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3261 	if (name[0] == '/') {
3262 		dbg("Absolute path (%s) passed to %s", name, __func__);
3263 		return (NULL);
3264 	}
3265 
3266 	/*
3267 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3268 	 * copy of the path, as strtok_r rewrites separator tokens
3269 	 * with '\0'.
3270 	 */
3271 	found = NULL;
3272 	envcopy = xstrdup(path);
3273 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3274 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3275 		dirfd = parse_integer(fdstr);
3276 		if (dirfd < 0) {
3277 			_rtld_error("failed to parse directory FD: '%s'",
3278 				fdstr);
3279 			break;
3280 		}
3281 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3282 		if (fd >= 0) {
3283 			*fdp = fd;
3284 			len = strlen(fdstr) + strlen(name) + 3;
3285 			found = xmalloc(len);
3286 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3287 				_rtld_error("error generating '%d/%s'",
3288 				    dirfd, name);
3289 				rtld_die();
3290 			}
3291 			dbg("open('%s') => %d", found, fd);
3292 			break;
3293 		}
3294 	}
3295 	free(envcopy);
3296 
3297 	return (found);
3298 }
3299 
3300 
3301 int
3302 dlclose(void *handle)
3303 {
3304 	RtldLockState lockstate;
3305 	int error;
3306 
3307 	wlock_acquire(rtld_bind_lock, &lockstate);
3308 	error = dlclose_locked(handle, &lockstate);
3309 	lock_release(rtld_bind_lock, &lockstate);
3310 	return (error);
3311 }
3312 
3313 static int
3314 dlclose_locked(void *handle, RtldLockState *lockstate)
3315 {
3316     Obj_Entry *root;
3317 
3318     root = dlcheck(handle);
3319     if (root == NULL)
3320 	return -1;
3321     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3322 	root->path);
3323 
3324     /* Unreference the object and its dependencies. */
3325     root->dl_refcount--;
3326 
3327     if (root->refcount == 1) {
3328 	/*
3329 	 * The object will be no longer referenced, so we must unload it.
3330 	 * First, call the fini functions.
3331 	 */
3332 	objlist_call_fini(&list_fini, root, lockstate);
3333 
3334 	unref_dag(root);
3335 
3336 	/* Finish cleaning up the newly-unreferenced objects. */
3337 	GDB_STATE(RT_DELETE,&root->linkmap);
3338 	unload_object(root, lockstate);
3339 	GDB_STATE(RT_CONSISTENT,NULL);
3340     } else
3341 	unref_dag(root);
3342 
3343     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3344     return 0;
3345 }
3346 
3347 char *
3348 dlerror(void)
3349 {
3350     char *msg = error_message;
3351     error_message = NULL;
3352     return msg;
3353 }
3354 
3355 /*
3356  * This function is deprecated and has no effect.
3357  */
3358 void
3359 dllockinit(void *context,
3360     void *(*_lock_create)(void *context) __unused,
3361     void (*_rlock_acquire)(void *lock) __unused,
3362     void (*_wlock_acquire)(void *lock)  __unused,
3363     void (*_lock_release)(void *lock) __unused,
3364     void (*_lock_destroy)(void *lock) __unused,
3365     void (*context_destroy)(void *context))
3366 {
3367     static void *cur_context;
3368     static void (*cur_context_destroy)(void *);
3369 
3370     /* Just destroy the context from the previous call, if necessary. */
3371     if (cur_context_destroy != NULL)
3372 	cur_context_destroy(cur_context);
3373     cur_context = context;
3374     cur_context_destroy = context_destroy;
3375 }
3376 
3377 void *
3378 dlopen(const char *name, int mode)
3379 {
3380 
3381 	return (rtld_dlopen(name, -1, mode));
3382 }
3383 
3384 void *
3385 fdlopen(int fd, int mode)
3386 {
3387 
3388 	return (rtld_dlopen(NULL, fd, mode));
3389 }
3390 
3391 static void *
3392 rtld_dlopen(const char *name, int fd, int mode)
3393 {
3394     RtldLockState lockstate;
3395     int lo_flags;
3396 
3397     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3398     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3399     if (ld_tracing != NULL) {
3400 	rlock_acquire(rtld_bind_lock, &lockstate);
3401 	if (sigsetjmp(lockstate.env, 0) != 0)
3402 	    lock_upgrade(rtld_bind_lock, &lockstate);
3403 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3404 	lock_release(rtld_bind_lock, &lockstate);
3405     }
3406     lo_flags = RTLD_LO_DLOPEN;
3407     if (mode & RTLD_NODELETE)
3408 	    lo_flags |= RTLD_LO_NODELETE;
3409     if (mode & RTLD_NOLOAD)
3410 	    lo_flags |= RTLD_LO_NOLOAD;
3411     if (mode & RTLD_DEEPBIND)
3412 	    lo_flags |= RTLD_LO_DEEPBIND;
3413     if (ld_tracing != NULL)
3414 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3415 
3416     return (dlopen_object(name, fd, obj_main, lo_flags,
3417       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3418 }
3419 
3420 static void
3421 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3422 {
3423 
3424 	obj->dl_refcount--;
3425 	unref_dag(obj);
3426 	if (obj->refcount == 0)
3427 		unload_object(obj, lockstate);
3428 }
3429 
3430 static Obj_Entry *
3431 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3432     int mode, RtldLockState *lockstate)
3433 {
3434     Obj_Entry *old_obj_tail;
3435     Obj_Entry *obj;
3436     Objlist initlist;
3437     RtldLockState mlockstate;
3438     int result;
3439 
3440     objlist_init(&initlist);
3441 
3442     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3443 	wlock_acquire(rtld_bind_lock, &mlockstate);
3444 	lockstate = &mlockstate;
3445     }
3446     GDB_STATE(RT_ADD,NULL);
3447 
3448     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3449     obj = NULL;
3450     if (name == NULL && fd == -1) {
3451 	obj = obj_main;
3452 	obj->refcount++;
3453     } else {
3454 	obj = load_object(name, fd, refobj, lo_flags);
3455     }
3456 
3457     if (obj) {
3458 	obj->dl_refcount++;
3459 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3460 	    objlist_push_tail(&list_global, obj);
3461 	if (globallist_next(old_obj_tail) != NULL) {
3462 	    /* We loaded something new. */
3463 	    assert(globallist_next(old_obj_tail) == obj);
3464 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3465 		obj->symbolic = true;
3466 	    result = 0;
3467 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3468 	      obj->static_tls && !allocate_tls_offset(obj)) {
3469 		_rtld_error("%s: No space available "
3470 		  "for static Thread Local Storage", obj->path);
3471 		result = -1;
3472 	    }
3473 	    if (result != -1)
3474 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3475 		    RTLD_LO_EARLY | RTLD_LO_IGNSTLS));
3476 	    init_dag(obj);
3477 	    ref_dag(obj);
3478 	    if (result != -1)
3479 		result = rtld_verify_versions(&obj->dagmembers);
3480 	    if (result != -1 && ld_tracing)
3481 		goto trace;
3482 	    if (result == -1 || relocate_object_dag(obj,
3483 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3484 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3485 	      lockstate) == -1) {
3486 		dlopen_cleanup(obj, lockstate);
3487 		obj = NULL;
3488 	    } else if (lo_flags & RTLD_LO_EARLY) {
3489 		/*
3490 		 * Do not call the init functions for early loaded
3491 		 * filtees.  The image is still not initialized enough
3492 		 * for them to work.
3493 		 *
3494 		 * Our object is found by the global object list and
3495 		 * will be ordered among all init calls done right
3496 		 * before transferring control to main.
3497 		 */
3498 	    } else {
3499 		/* Make list of init functions to call. */
3500 		initlist_add_objects(obj, obj, &initlist);
3501 	    }
3502 	    /*
3503 	     * Process all no_delete or global objects here, given
3504 	     * them own DAGs to prevent their dependencies from being
3505 	     * unloaded.  This has to be done after we have loaded all
3506 	     * of the dependencies, so that we do not miss any.
3507 	     */
3508 	    if (obj != NULL)
3509 		process_z(obj);
3510 	} else {
3511 	    /*
3512 	     * Bump the reference counts for objects on this DAG.  If
3513 	     * this is the first dlopen() call for the object that was
3514 	     * already loaded as a dependency, initialize the dag
3515 	     * starting at it.
3516 	     */
3517 	    init_dag(obj);
3518 	    ref_dag(obj);
3519 
3520 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3521 		goto trace;
3522 	}
3523 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3524 	  obj->z_nodelete) && !obj->ref_nodel) {
3525 	    dbg("obj %s nodelete", obj->path);
3526 	    ref_dag(obj);
3527 	    obj->z_nodelete = obj->ref_nodel = true;
3528 	}
3529     }
3530 
3531     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3532 	name);
3533     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3534 
3535     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3536 	map_stacks_exec(lockstate);
3537 	if (obj != NULL)
3538 	    distribute_static_tls(&initlist, lockstate);
3539     }
3540 
3541     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3542       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3543       lockstate) == -1) {
3544 	objlist_clear(&initlist);
3545 	dlopen_cleanup(obj, lockstate);
3546 	if (lockstate == &mlockstate)
3547 	    lock_release(rtld_bind_lock, lockstate);
3548 	return (NULL);
3549     }
3550 
3551     if (!(lo_flags & RTLD_LO_EARLY)) {
3552 	/* Call the init functions. */
3553 	objlist_call_init(&initlist, lockstate);
3554     }
3555     objlist_clear(&initlist);
3556     if (lockstate == &mlockstate)
3557 	lock_release(rtld_bind_lock, lockstate);
3558     return obj;
3559 trace:
3560     trace_loaded_objects(obj);
3561     if (lockstate == &mlockstate)
3562 	lock_release(rtld_bind_lock, lockstate);
3563     exit(0);
3564 }
3565 
3566 static void *
3567 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3568     int flags)
3569 {
3570     DoneList donelist;
3571     const Obj_Entry *obj, *defobj;
3572     const Elf_Sym *def;
3573     SymLook req;
3574     RtldLockState lockstate;
3575     tls_index ti;
3576     void *sym;
3577     int res;
3578 
3579     def = NULL;
3580     defobj = NULL;
3581     symlook_init(&req, name);
3582     req.ventry = ve;
3583     req.flags = flags | SYMLOOK_IN_PLT;
3584     req.lockstate = &lockstate;
3585 
3586     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3587     rlock_acquire(rtld_bind_lock, &lockstate);
3588     if (sigsetjmp(lockstate.env, 0) != 0)
3589 	    lock_upgrade(rtld_bind_lock, &lockstate);
3590     if (handle == NULL || handle == RTLD_NEXT ||
3591 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3592 
3593 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3594 	    _rtld_error("Cannot determine caller's shared object");
3595 	    lock_release(rtld_bind_lock, &lockstate);
3596 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3597 	    return NULL;
3598 	}
3599 	if (handle == NULL) {	/* Just the caller's shared object. */
3600 	    res = symlook_obj(&req, obj);
3601 	    if (res == 0) {
3602 		def = req.sym_out;
3603 		defobj = req.defobj_out;
3604 	    }
3605 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3606 		   handle == RTLD_SELF) { /* ... caller included */
3607 	    if (handle == RTLD_NEXT)
3608 		obj = globallist_next(obj);
3609 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3610 		if (obj->marker)
3611 		    continue;
3612 		res = symlook_obj(&req, obj);
3613 		if (res == 0) {
3614 		    if (def == NULL ||
3615 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3616 			def = req.sym_out;
3617 			defobj = req.defobj_out;
3618 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3619 			    break;
3620 		    }
3621 		}
3622 	    }
3623 	    /*
3624 	     * Search the dynamic linker itself, and possibly resolve the
3625 	     * symbol from there.  This is how the application links to
3626 	     * dynamic linker services such as dlopen.
3627 	     */
3628 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3629 		res = symlook_obj(&req, &obj_rtld);
3630 		if (res == 0) {
3631 		    def = req.sym_out;
3632 		    defobj = req.defobj_out;
3633 		}
3634 	    }
3635 	} else {
3636 	    assert(handle == RTLD_DEFAULT);
3637 	    res = symlook_default(&req, obj);
3638 	    if (res == 0) {
3639 		defobj = req.defobj_out;
3640 		def = req.sym_out;
3641 	    }
3642 	}
3643     } else {
3644 	if ((obj = dlcheck(handle)) == NULL) {
3645 	    lock_release(rtld_bind_lock, &lockstate);
3646 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3647 	    return NULL;
3648 	}
3649 
3650 	donelist_init(&donelist);
3651 	if (obj->mainprog) {
3652             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3653 	    res = symlook_global(&req, &donelist);
3654 	    if (res == 0) {
3655 		def = req.sym_out;
3656 		defobj = req.defobj_out;
3657 	    }
3658 	    /*
3659 	     * Search the dynamic linker itself, and possibly resolve the
3660 	     * symbol from there.  This is how the application links to
3661 	     * dynamic linker services such as dlopen.
3662 	     */
3663 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3664 		res = symlook_obj(&req, &obj_rtld);
3665 		if (res == 0) {
3666 		    def = req.sym_out;
3667 		    defobj = req.defobj_out;
3668 		}
3669 	    }
3670 	}
3671 	else {
3672 	    /* Search the whole DAG rooted at the given object. */
3673 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3674 	    if (res == 0) {
3675 		def = req.sym_out;
3676 		defobj = req.defobj_out;
3677 	    }
3678 	}
3679     }
3680 
3681     if (def != NULL) {
3682 	lock_release(rtld_bind_lock, &lockstate);
3683 
3684 	/*
3685 	 * The value required by the caller is derived from the value
3686 	 * of the symbol. this is simply the relocated value of the
3687 	 * symbol.
3688 	 */
3689 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3690 	    sym = make_function_pointer(def, defobj);
3691 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3692 	    sym = rtld_resolve_ifunc(defobj, def);
3693 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3694 	    ti.ti_module = defobj->tlsindex;
3695 	    ti.ti_offset = def->st_value;
3696 	    sym = __tls_get_addr(&ti);
3697 	} else
3698 	    sym = defobj->relocbase + def->st_value;
3699 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3700 	return (sym);
3701     }
3702 
3703     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3704       ve != NULL ? ve->name : "");
3705     lock_release(rtld_bind_lock, &lockstate);
3706     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3707     return NULL;
3708 }
3709 
3710 void *
3711 dlsym(void *handle, const char *name)
3712 {
3713 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3714 	    SYMLOOK_DLSYM);
3715 }
3716 
3717 dlfunc_t
3718 dlfunc(void *handle, const char *name)
3719 {
3720 	union {
3721 		void *d;
3722 		dlfunc_t f;
3723 	} rv;
3724 
3725 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3726 	    SYMLOOK_DLSYM);
3727 	return (rv.f);
3728 }
3729 
3730 void *
3731 dlvsym(void *handle, const char *name, const char *version)
3732 {
3733 	Ver_Entry ventry;
3734 
3735 	ventry.name = version;
3736 	ventry.file = NULL;
3737 	ventry.hash = elf_hash(version);
3738 	ventry.flags= 0;
3739 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3740 	    SYMLOOK_DLSYM);
3741 }
3742 
3743 int
3744 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3745 {
3746     const Obj_Entry *obj;
3747     RtldLockState lockstate;
3748 
3749     rlock_acquire(rtld_bind_lock, &lockstate);
3750     obj = obj_from_addr(addr);
3751     if (obj == NULL) {
3752         _rtld_error("No shared object contains address");
3753 	lock_release(rtld_bind_lock, &lockstate);
3754         return (0);
3755     }
3756     rtld_fill_dl_phdr_info(obj, phdr_info);
3757     lock_release(rtld_bind_lock, &lockstate);
3758     return (1);
3759 }
3760 
3761 int
3762 dladdr(const void *addr, Dl_info *info)
3763 {
3764     const Obj_Entry *obj;
3765     const Elf_Sym *def;
3766     void *symbol_addr;
3767     unsigned long symoffset;
3768     RtldLockState lockstate;
3769 
3770     rlock_acquire(rtld_bind_lock, &lockstate);
3771     obj = obj_from_addr(addr);
3772     if (obj == NULL) {
3773         _rtld_error("No shared object contains address");
3774 	lock_release(rtld_bind_lock, &lockstate);
3775         return 0;
3776     }
3777     info->dli_fname = obj->path;
3778     info->dli_fbase = obj->mapbase;
3779     info->dli_saddr = (void *)0;
3780     info->dli_sname = NULL;
3781 
3782     /*
3783      * Walk the symbol list looking for the symbol whose address is
3784      * closest to the address sent in.
3785      */
3786     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3787         def = obj->symtab + symoffset;
3788 
3789         /*
3790          * For skip the symbol if st_shndx is either SHN_UNDEF or
3791          * SHN_COMMON.
3792          */
3793         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3794             continue;
3795 
3796         /*
3797          * If the symbol is greater than the specified address, or if it
3798          * is further away from addr than the current nearest symbol,
3799          * then reject it.
3800          */
3801         symbol_addr = obj->relocbase + def->st_value;
3802         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3803             continue;
3804 
3805         /* Update our idea of the nearest symbol. */
3806         info->dli_sname = obj->strtab + def->st_name;
3807         info->dli_saddr = symbol_addr;
3808 
3809         /* Exact match? */
3810         if (info->dli_saddr == addr)
3811             break;
3812     }
3813     lock_release(rtld_bind_lock, &lockstate);
3814     return 1;
3815 }
3816 
3817 int
3818 dlinfo(void *handle, int request, void *p)
3819 {
3820     const Obj_Entry *obj;
3821     RtldLockState lockstate;
3822     int error;
3823 
3824     rlock_acquire(rtld_bind_lock, &lockstate);
3825 
3826     if (handle == NULL || handle == RTLD_SELF) {
3827 	void *retaddr;
3828 
3829 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3830 	if ((obj = obj_from_addr(retaddr)) == NULL)
3831 	    _rtld_error("Cannot determine caller's shared object");
3832     } else
3833 	obj = dlcheck(handle);
3834 
3835     if (obj == NULL) {
3836 	lock_release(rtld_bind_lock, &lockstate);
3837 	return (-1);
3838     }
3839 
3840     error = 0;
3841     switch (request) {
3842     case RTLD_DI_LINKMAP:
3843 	*((struct link_map const **)p) = &obj->linkmap;
3844 	break;
3845     case RTLD_DI_ORIGIN:
3846 	error = rtld_dirname(obj->path, p);
3847 	break;
3848 
3849     case RTLD_DI_SERINFOSIZE:
3850     case RTLD_DI_SERINFO:
3851 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3852 	break;
3853 
3854     default:
3855 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3856 	error = -1;
3857     }
3858 
3859     lock_release(rtld_bind_lock, &lockstate);
3860 
3861     return (error);
3862 }
3863 
3864 static void
3865 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3866 {
3867 
3868 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3869 	phdr_info->dlpi_name = obj->path;
3870 	phdr_info->dlpi_phdr = obj->phdr;
3871 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3872 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3873 	phdr_info->dlpi_tls_data = obj->tlsinit;
3874 	phdr_info->dlpi_adds = obj_loads;
3875 	phdr_info->dlpi_subs = obj_loads - obj_count;
3876 }
3877 
3878 int
3879 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3880 {
3881 	struct dl_phdr_info phdr_info;
3882 	Obj_Entry *obj, marker;
3883 	RtldLockState bind_lockstate, phdr_lockstate;
3884 	int error;
3885 
3886 	init_marker(&marker);
3887 	error = 0;
3888 
3889 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3890 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3891 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3892 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3893 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3894 		hold_object(obj);
3895 		lock_release(rtld_bind_lock, &bind_lockstate);
3896 
3897 		error = callback(&phdr_info, sizeof phdr_info, param);
3898 
3899 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3900 		unhold_object(obj);
3901 		obj = globallist_next(&marker);
3902 		TAILQ_REMOVE(&obj_list, &marker, next);
3903 		if (error != 0) {
3904 			lock_release(rtld_bind_lock, &bind_lockstate);
3905 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3906 			return (error);
3907 		}
3908 	}
3909 
3910 	if (error == 0) {
3911 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3912 		lock_release(rtld_bind_lock, &bind_lockstate);
3913 		error = callback(&phdr_info, sizeof(phdr_info), param);
3914 	}
3915 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3916 	return (error);
3917 }
3918 
3919 static void *
3920 fill_search_info(const char *dir, size_t dirlen, void *param)
3921 {
3922     struct fill_search_info_args *arg;
3923 
3924     arg = param;
3925 
3926     if (arg->request == RTLD_DI_SERINFOSIZE) {
3927 	arg->serinfo->dls_cnt ++;
3928 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3929     } else {
3930 	struct dl_serpath *s_entry;
3931 
3932 	s_entry = arg->serpath;
3933 	s_entry->dls_name  = arg->strspace;
3934 	s_entry->dls_flags = arg->flags;
3935 
3936 	strncpy(arg->strspace, dir, dirlen);
3937 	arg->strspace[dirlen] = '\0';
3938 
3939 	arg->strspace += dirlen + 1;
3940 	arg->serpath++;
3941     }
3942 
3943     return (NULL);
3944 }
3945 
3946 static int
3947 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3948 {
3949     struct dl_serinfo _info;
3950     struct fill_search_info_args args;
3951 
3952     args.request = RTLD_DI_SERINFOSIZE;
3953     args.serinfo = &_info;
3954 
3955     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3956     _info.dls_cnt  = 0;
3957 
3958     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
3959     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
3960     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
3961     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
3962     if (!obj->z_nodeflib)
3963       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
3964 
3965 
3966     if (request == RTLD_DI_SERINFOSIZE) {
3967 	info->dls_size = _info.dls_size;
3968 	info->dls_cnt = _info.dls_cnt;
3969 	return (0);
3970     }
3971 
3972     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3973 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3974 	return (-1);
3975     }
3976 
3977     args.request  = RTLD_DI_SERINFO;
3978     args.serinfo  = info;
3979     args.serpath  = &info->dls_serpath[0];
3980     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3981 
3982     args.flags = LA_SER_RUNPATH;
3983     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
3984 	return (-1);
3985 
3986     args.flags = LA_SER_LIBPATH;
3987     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
3988 	return (-1);
3989 
3990     args.flags = LA_SER_RUNPATH;
3991     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
3992 	return (-1);
3993 
3994     args.flags = LA_SER_CONFIG;
3995     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
3996       != NULL)
3997 	return (-1);
3998 
3999     args.flags = LA_SER_DEFAULT;
4000     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4001       fill_search_info, NULL, &args) != NULL)
4002 	return (-1);
4003     return (0);
4004 }
4005 
4006 static int
4007 rtld_dirname(const char *path, char *bname)
4008 {
4009     const char *endp;
4010 
4011     /* Empty or NULL string gets treated as "." */
4012     if (path == NULL || *path == '\0') {
4013 	bname[0] = '.';
4014 	bname[1] = '\0';
4015 	return (0);
4016     }
4017 
4018     /* Strip trailing slashes */
4019     endp = path + strlen(path) - 1;
4020     while (endp > path && *endp == '/')
4021 	endp--;
4022 
4023     /* Find the start of the dir */
4024     while (endp > path && *endp != '/')
4025 	endp--;
4026 
4027     /* Either the dir is "/" or there are no slashes */
4028     if (endp == path) {
4029 	bname[0] = *endp == '/' ? '/' : '.';
4030 	bname[1] = '\0';
4031 	return (0);
4032     } else {
4033 	do {
4034 	    endp--;
4035 	} while (endp > path && *endp == '/');
4036     }
4037 
4038     if (endp - path + 2 > PATH_MAX)
4039     {
4040 	_rtld_error("Filename is too long: %s", path);
4041 	return(-1);
4042     }
4043 
4044     strncpy(bname, path, endp - path + 1);
4045     bname[endp - path + 1] = '\0';
4046     return (0);
4047 }
4048 
4049 static int
4050 rtld_dirname_abs(const char *path, char *base)
4051 {
4052 	char *last;
4053 
4054 	if (realpath(path, base) == NULL) {
4055 		_rtld_error("realpath \"%s\" failed (%s)", path,
4056 		    rtld_strerror(errno));
4057 		return (-1);
4058 	}
4059 	dbg("%s -> %s", path, base);
4060 	last = strrchr(base, '/');
4061 	if (last == NULL) {
4062 		_rtld_error("non-abs result from realpath \"%s\"", path);
4063 		return (-1);
4064 	}
4065 	if (last != base)
4066 		*last = '\0';
4067 	return (0);
4068 }
4069 
4070 static void
4071 linkmap_add(Obj_Entry *obj)
4072 {
4073 	struct link_map *l, *prev;
4074 
4075 	l = &obj->linkmap;
4076 	l->l_name = obj->path;
4077 	l->l_base = obj->mapbase;
4078 	l->l_ld = obj->dynamic;
4079 	l->l_addr = obj->relocbase;
4080 
4081 	if (r_debug.r_map == NULL) {
4082 		r_debug.r_map = l;
4083 		return;
4084 	}
4085 
4086 	/*
4087 	 * Scan to the end of the list, but not past the entry for the
4088 	 * dynamic linker, which we want to keep at the very end.
4089 	 */
4090 	for (prev = r_debug.r_map;
4091 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4092 	     prev = prev->l_next)
4093 		;
4094 
4095 	/* Link in the new entry. */
4096 	l->l_prev = prev;
4097 	l->l_next = prev->l_next;
4098 	if (l->l_next != NULL)
4099 		l->l_next->l_prev = l;
4100 	prev->l_next = l;
4101 }
4102 
4103 static void
4104 linkmap_delete(Obj_Entry *obj)
4105 {
4106 	struct link_map *l;
4107 
4108 	l = &obj->linkmap;
4109 	if (l->l_prev == NULL) {
4110 		if ((r_debug.r_map = l->l_next) != NULL)
4111 			l->l_next->l_prev = NULL;
4112 		return;
4113 	}
4114 
4115 	if ((l->l_prev->l_next = l->l_next) != NULL)
4116 		l->l_next->l_prev = l->l_prev;
4117 }
4118 
4119 /*
4120  * Function for the debugger to set a breakpoint on to gain control.
4121  *
4122  * The two parameters allow the debugger to easily find and determine
4123  * what the runtime loader is doing and to whom it is doing it.
4124  *
4125  * When the loadhook trap is hit (r_debug_state, set at program
4126  * initialization), the arguments can be found on the stack:
4127  *
4128  *  +8   struct link_map *m
4129  *  +4   struct r_debug  *rd
4130  *  +0   RetAddr
4131  */
4132 void
4133 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4134 {
4135     /*
4136      * The following is a hack to force the compiler to emit calls to
4137      * this function, even when optimizing.  If the function is empty,
4138      * the compiler is not obliged to emit any code for calls to it,
4139      * even when marked __noinline.  However, gdb depends on those
4140      * calls being made.
4141      */
4142     __compiler_membar();
4143 }
4144 
4145 /*
4146  * A function called after init routines have completed. This can be used to
4147  * break before a program's entry routine is called, and can be used when
4148  * main is not available in the symbol table.
4149  */
4150 void
4151 _r_debug_postinit(struct link_map *m __unused)
4152 {
4153 
4154 	/* See r_debug_state(). */
4155 	__compiler_membar();
4156 }
4157 
4158 static void
4159 release_object(Obj_Entry *obj)
4160 {
4161 
4162 	if (obj->holdcount > 0) {
4163 		obj->unholdfree = true;
4164 		return;
4165 	}
4166 	munmap(obj->mapbase, obj->mapsize);
4167 	linkmap_delete(obj);
4168 	obj_free(obj);
4169 }
4170 
4171 /*
4172  * Get address of the pointer variable in the main program.
4173  * Prefer non-weak symbol over the weak one.
4174  */
4175 static const void **
4176 get_program_var_addr(const char *name, RtldLockState *lockstate)
4177 {
4178     SymLook req;
4179     DoneList donelist;
4180 
4181     symlook_init(&req, name);
4182     req.lockstate = lockstate;
4183     donelist_init(&donelist);
4184     if (symlook_global(&req, &donelist) != 0)
4185 	return (NULL);
4186     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4187 	return ((const void **)make_function_pointer(req.sym_out,
4188 	  req.defobj_out));
4189     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4190 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4191     else
4192 	return ((const void **)(req.defobj_out->relocbase +
4193 	  req.sym_out->st_value));
4194 }
4195 
4196 /*
4197  * Set a pointer variable in the main program to the given value.  This
4198  * is used to set key variables such as "environ" before any of the
4199  * init functions are called.
4200  */
4201 static void
4202 set_program_var(const char *name, const void *value)
4203 {
4204     const void **addr;
4205 
4206     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4207 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4208 	*addr = value;
4209     }
4210 }
4211 
4212 /*
4213  * Search the global objects, including dependencies and main object,
4214  * for the given symbol.
4215  */
4216 static int
4217 symlook_global(SymLook *req, DoneList *donelist)
4218 {
4219     SymLook req1;
4220     const Objlist_Entry *elm;
4221     int res;
4222 
4223     symlook_init_from_req(&req1, req);
4224 
4225     /* Search all objects loaded at program start up. */
4226     if (req->defobj_out == NULL ||
4227       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4228 	res = symlook_list(&req1, &list_main, donelist);
4229 	if (res == 0 && (req->defobj_out == NULL ||
4230 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4231 	    req->sym_out = req1.sym_out;
4232 	    req->defobj_out = req1.defobj_out;
4233 	    assert(req->defobj_out != NULL);
4234 	}
4235     }
4236 
4237     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4238     STAILQ_FOREACH(elm, &list_global, link) {
4239 	if (req->defobj_out != NULL &&
4240 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4241 	    break;
4242 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4243 	if (res == 0 && (req->defobj_out == NULL ||
4244 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4245 	    req->sym_out = req1.sym_out;
4246 	    req->defobj_out = req1.defobj_out;
4247 	    assert(req->defobj_out != NULL);
4248 	}
4249     }
4250 
4251     return (req->sym_out != NULL ? 0 : ESRCH);
4252 }
4253 
4254 /*
4255  * Given a symbol name in a referencing object, find the corresponding
4256  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4257  * no definition was found.  Returns a pointer to the Obj_Entry of the
4258  * defining object via the reference parameter DEFOBJ_OUT.
4259  */
4260 static int
4261 symlook_default(SymLook *req, const Obj_Entry *refobj)
4262 {
4263     DoneList donelist;
4264     const Objlist_Entry *elm;
4265     SymLook req1;
4266     int res;
4267 
4268     donelist_init(&donelist);
4269     symlook_init_from_req(&req1, req);
4270 
4271     /*
4272      * Look first in the referencing object if linked symbolically,
4273      * and similarly handle protected symbols.
4274      */
4275     res = symlook_obj(&req1, refobj);
4276     if (res == 0 && (refobj->symbolic ||
4277       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4278 	req->sym_out = req1.sym_out;
4279 	req->defobj_out = req1.defobj_out;
4280 	assert(req->defobj_out != NULL);
4281     }
4282     if (refobj->symbolic || req->defobj_out != NULL)
4283 	donelist_check(&donelist, refobj);
4284 
4285     symlook_global(req, &donelist);
4286 
4287     /* Search all dlopened DAGs containing the referencing object. */
4288     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4289 	if (req->sym_out != NULL &&
4290 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4291 	    break;
4292 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4293 	if (res == 0 && (req->sym_out == NULL ||
4294 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4295 	    req->sym_out = req1.sym_out;
4296 	    req->defobj_out = req1.defobj_out;
4297 	    assert(req->defobj_out != NULL);
4298 	}
4299     }
4300 
4301     /*
4302      * Search the dynamic linker itself, and possibly resolve the
4303      * symbol from there.  This is how the application links to
4304      * dynamic linker services such as dlopen.
4305      */
4306     if (req->sym_out == NULL ||
4307       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4308 	res = symlook_obj(&req1, &obj_rtld);
4309 	if (res == 0) {
4310 	    req->sym_out = req1.sym_out;
4311 	    req->defobj_out = req1.defobj_out;
4312 	    assert(req->defobj_out != NULL);
4313 	}
4314     }
4315 
4316     return (req->sym_out != NULL ? 0 : ESRCH);
4317 }
4318 
4319 static int
4320 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4321 {
4322     const Elf_Sym *def;
4323     const Obj_Entry *defobj;
4324     const Objlist_Entry *elm;
4325     SymLook req1;
4326     int res;
4327 
4328     def = NULL;
4329     defobj = NULL;
4330     STAILQ_FOREACH(elm, objlist, link) {
4331 	if (donelist_check(dlp, elm->obj))
4332 	    continue;
4333 	symlook_init_from_req(&req1, req);
4334 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4335 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4336 		def = req1.sym_out;
4337 		defobj = req1.defobj_out;
4338 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4339 		    break;
4340 	    }
4341 	}
4342     }
4343     if (def != NULL) {
4344 	req->sym_out = def;
4345 	req->defobj_out = defobj;
4346 	return (0);
4347     }
4348     return (ESRCH);
4349 }
4350 
4351 /*
4352  * Search the chain of DAGS cointed to by the given Needed_Entry
4353  * for a symbol of the given name.  Each DAG is scanned completely
4354  * before advancing to the next one.  Returns a pointer to the symbol,
4355  * or NULL if no definition was found.
4356  */
4357 static int
4358 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4359 {
4360     const Elf_Sym *def;
4361     const Needed_Entry *n;
4362     const Obj_Entry *defobj;
4363     SymLook req1;
4364     int res;
4365 
4366     def = NULL;
4367     defobj = NULL;
4368     symlook_init_from_req(&req1, req);
4369     for (n = needed; n != NULL; n = n->next) {
4370 	if (n->obj == NULL ||
4371 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4372 	    continue;
4373 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4374 	    def = req1.sym_out;
4375 	    defobj = req1.defobj_out;
4376 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4377 		break;
4378 	}
4379     }
4380     if (def != NULL) {
4381 	req->sym_out = def;
4382 	req->defobj_out = defobj;
4383 	return (0);
4384     }
4385     return (ESRCH);
4386 }
4387 
4388 /*
4389  * Search the symbol table of a single shared object for a symbol of
4390  * the given name and version, if requested.  Returns a pointer to the
4391  * symbol, or NULL if no definition was found.  If the object is
4392  * filter, return filtered symbol from filtee.
4393  *
4394  * The symbol's hash value is passed in for efficiency reasons; that
4395  * eliminates many recomputations of the hash value.
4396  */
4397 int
4398 symlook_obj(SymLook *req, const Obj_Entry *obj)
4399 {
4400     DoneList donelist;
4401     SymLook req1;
4402     int flags, res, mres;
4403 
4404     /*
4405      * If there is at least one valid hash at this point, we prefer to
4406      * use the faster GNU version if available.
4407      */
4408     if (obj->valid_hash_gnu)
4409 	mres = symlook_obj1_gnu(req, obj);
4410     else if (obj->valid_hash_sysv)
4411 	mres = symlook_obj1_sysv(req, obj);
4412     else
4413 	return (EINVAL);
4414 
4415     if (mres == 0) {
4416 	if (obj->needed_filtees != NULL) {
4417 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4418 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4419 	    donelist_init(&donelist);
4420 	    symlook_init_from_req(&req1, req);
4421 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4422 	    if (res == 0) {
4423 		req->sym_out = req1.sym_out;
4424 		req->defobj_out = req1.defobj_out;
4425 	    }
4426 	    return (res);
4427 	}
4428 	if (obj->needed_aux_filtees != NULL) {
4429 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4430 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4431 	    donelist_init(&donelist);
4432 	    symlook_init_from_req(&req1, req);
4433 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4434 	    if (res == 0) {
4435 		req->sym_out = req1.sym_out;
4436 		req->defobj_out = req1.defobj_out;
4437 		return (res);
4438 	    }
4439 	}
4440     }
4441     return (mres);
4442 }
4443 
4444 /* Symbol match routine common to both hash functions */
4445 static bool
4446 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4447     const unsigned long symnum)
4448 {
4449 	Elf_Versym verndx;
4450 	const Elf_Sym *symp;
4451 	const char *strp;
4452 
4453 	symp = obj->symtab + symnum;
4454 	strp = obj->strtab + symp->st_name;
4455 
4456 	switch (ELF_ST_TYPE(symp->st_info)) {
4457 	case STT_FUNC:
4458 	case STT_NOTYPE:
4459 	case STT_OBJECT:
4460 	case STT_COMMON:
4461 	case STT_GNU_IFUNC:
4462 		if (symp->st_value == 0)
4463 			return (false);
4464 		/* fallthrough */
4465 	case STT_TLS:
4466 		if (symp->st_shndx != SHN_UNDEF)
4467 			break;
4468 #ifndef __mips__
4469 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4470 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4471 			break;
4472 #endif
4473 		/* fallthrough */
4474 	default:
4475 		return (false);
4476 	}
4477 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4478 		return (false);
4479 
4480 	if (req->ventry == NULL) {
4481 		if (obj->versyms != NULL) {
4482 			verndx = VER_NDX(obj->versyms[symnum]);
4483 			if (verndx > obj->vernum) {
4484 				_rtld_error(
4485 				    "%s: symbol %s references wrong version %d",
4486 				    obj->path, obj->strtab + symnum, verndx);
4487 				return (false);
4488 			}
4489 			/*
4490 			 * If we are not called from dlsym (i.e. this
4491 			 * is a normal relocation from unversioned
4492 			 * binary), accept the symbol immediately if
4493 			 * it happens to have first version after this
4494 			 * shared object became versioned.  Otherwise,
4495 			 * if symbol is versioned and not hidden,
4496 			 * remember it. If it is the only symbol with
4497 			 * this name exported by the shared object, it
4498 			 * will be returned as a match by the calling
4499 			 * function. If symbol is global (verndx < 2)
4500 			 * accept it unconditionally.
4501 			 */
4502 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4503 			    verndx == VER_NDX_GIVEN) {
4504 				result->sym_out = symp;
4505 				return (true);
4506 			}
4507 			else if (verndx >= VER_NDX_GIVEN) {
4508 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4509 				    == 0) {
4510 					if (result->vsymp == NULL)
4511 						result->vsymp = symp;
4512 					result->vcount++;
4513 				}
4514 				return (false);
4515 			}
4516 		}
4517 		result->sym_out = symp;
4518 		return (true);
4519 	}
4520 	if (obj->versyms == NULL) {
4521 		if (object_match_name(obj, req->ventry->name)) {
4522 			_rtld_error("%s: object %s should provide version %s "
4523 			    "for symbol %s", obj_rtld.path, obj->path,
4524 			    req->ventry->name, obj->strtab + symnum);
4525 			return (false);
4526 		}
4527 	} else {
4528 		verndx = VER_NDX(obj->versyms[symnum]);
4529 		if (verndx > obj->vernum) {
4530 			_rtld_error("%s: symbol %s references wrong version %d",
4531 			    obj->path, obj->strtab + symnum, verndx);
4532 			return (false);
4533 		}
4534 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4535 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4536 			/*
4537 			 * Version does not match. Look if this is a
4538 			 * global symbol and if it is not hidden. If
4539 			 * global symbol (verndx < 2) is available,
4540 			 * use it. Do not return symbol if we are
4541 			 * called by dlvsym, because dlvsym looks for
4542 			 * a specific version and default one is not
4543 			 * what dlvsym wants.
4544 			 */
4545 			if ((req->flags & SYMLOOK_DLSYM) ||
4546 			    (verndx >= VER_NDX_GIVEN) ||
4547 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4548 				return (false);
4549 		}
4550 	}
4551 	result->sym_out = symp;
4552 	return (true);
4553 }
4554 
4555 /*
4556  * Search for symbol using SysV hash function.
4557  * obj->buckets is known not to be NULL at this point; the test for this was
4558  * performed with the obj->valid_hash_sysv assignment.
4559  */
4560 static int
4561 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4562 {
4563 	unsigned long symnum;
4564 	Sym_Match_Result matchres;
4565 
4566 	matchres.sym_out = NULL;
4567 	matchres.vsymp = NULL;
4568 	matchres.vcount = 0;
4569 
4570 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4571 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4572 		if (symnum >= obj->nchains)
4573 			return (ESRCH);	/* Bad object */
4574 
4575 		if (matched_symbol(req, obj, &matchres, symnum)) {
4576 			req->sym_out = matchres.sym_out;
4577 			req->defobj_out = obj;
4578 			return (0);
4579 		}
4580 	}
4581 	if (matchres.vcount == 1) {
4582 		req->sym_out = matchres.vsymp;
4583 		req->defobj_out = obj;
4584 		return (0);
4585 	}
4586 	return (ESRCH);
4587 }
4588 
4589 /* Search for symbol using GNU hash function */
4590 static int
4591 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4592 {
4593 	Elf_Addr bloom_word;
4594 	const Elf32_Word *hashval;
4595 	Elf32_Word bucket;
4596 	Sym_Match_Result matchres;
4597 	unsigned int h1, h2;
4598 	unsigned long symnum;
4599 
4600 	matchres.sym_out = NULL;
4601 	matchres.vsymp = NULL;
4602 	matchres.vcount = 0;
4603 
4604 	/* Pick right bitmask word from Bloom filter array */
4605 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4606 	    obj->maskwords_bm_gnu];
4607 
4608 	/* Calculate modulus word size of gnu hash and its derivative */
4609 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4610 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4611 
4612 	/* Filter out the "definitely not in set" queries */
4613 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4614 		return (ESRCH);
4615 
4616 	/* Locate hash chain and corresponding value element*/
4617 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4618 	if (bucket == 0)
4619 		return (ESRCH);
4620 	hashval = &obj->chain_zero_gnu[bucket];
4621 	do {
4622 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4623 			symnum = hashval - obj->chain_zero_gnu;
4624 			if (matched_symbol(req, obj, &matchres, symnum)) {
4625 				req->sym_out = matchres.sym_out;
4626 				req->defobj_out = obj;
4627 				return (0);
4628 			}
4629 		}
4630 	} while ((*hashval++ & 1) == 0);
4631 	if (matchres.vcount == 1) {
4632 		req->sym_out = matchres.vsymp;
4633 		req->defobj_out = obj;
4634 		return (0);
4635 	}
4636 	return (ESRCH);
4637 }
4638 
4639 static void
4640 trace_loaded_objects(Obj_Entry *obj)
4641 {
4642     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4643     int c;
4644 
4645     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4646 	main_local = "";
4647 
4648     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4649 	fmt1 = "\t%o => %p (%x)\n";
4650 
4651     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4652 	fmt2 = "\t%o (%x)\n";
4653 
4654     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4655 
4656     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4657 	Needed_Entry *needed;
4658 	const char *name, *path;
4659 	bool is_lib;
4660 
4661 	if (obj->marker)
4662 	    continue;
4663 	if (list_containers && obj->needed != NULL)
4664 	    rtld_printf("%s:\n", obj->path);
4665 	for (needed = obj->needed; needed; needed = needed->next) {
4666 	    if (needed->obj != NULL) {
4667 		if (needed->obj->traced && !list_containers)
4668 		    continue;
4669 		needed->obj->traced = true;
4670 		path = needed->obj->path;
4671 	    } else
4672 		path = "not found";
4673 
4674 	    name = obj->strtab + needed->name;
4675 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4676 
4677 	    fmt = is_lib ? fmt1 : fmt2;
4678 	    while ((c = *fmt++) != '\0') {
4679 		switch (c) {
4680 		default:
4681 		    rtld_putchar(c);
4682 		    continue;
4683 		case '\\':
4684 		    switch (c = *fmt) {
4685 		    case '\0':
4686 			continue;
4687 		    case 'n':
4688 			rtld_putchar('\n');
4689 			break;
4690 		    case 't':
4691 			rtld_putchar('\t');
4692 			break;
4693 		    }
4694 		    break;
4695 		case '%':
4696 		    switch (c = *fmt) {
4697 		    case '\0':
4698 			continue;
4699 		    case '%':
4700 		    default:
4701 			rtld_putchar(c);
4702 			break;
4703 		    case 'A':
4704 			rtld_putstr(main_local);
4705 			break;
4706 		    case 'a':
4707 			rtld_putstr(obj_main->path);
4708 			break;
4709 		    case 'o':
4710 			rtld_putstr(name);
4711 			break;
4712 #if 0
4713 		    case 'm':
4714 			rtld_printf("%d", sodp->sod_major);
4715 			break;
4716 		    case 'n':
4717 			rtld_printf("%d", sodp->sod_minor);
4718 			break;
4719 #endif
4720 		    case 'p':
4721 			rtld_putstr(path);
4722 			break;
4723 		    case 'x':
4724 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4725 			  0);
4726 			break;
4727 		    }
4728 		    break;
4729 		}
4730 		++fmt;
4731 	    }
4732 	}
4733     }
4734 }
4735 
4736 /*
4737  * Unload a dlopened object and its dependencies from memory and from
4738  * our data structures.  It is assumed that the DAG rooted in the
4739  * object has already been unreferenced, and that the object has a
4740  * reference count of 0.
4741  */
4742 static void
4743 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4744 {
4745 	Obj_Entry marker, *obj, *next;
4746 
4747 	assert(root->refcount == 0);
4748 
4749 	/*
4750 	 * Pass over the DAG removing unreferenced objects from
4751 	 * appropriate lists.
4752 	 */
4753 	unlink_object(root);
4754 
4755 	/* Unmap all objects that are no longer referenced. */
4756 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4757 		next = TAILQ_NEXT(obj, next);
4758 		if (obj->marker || obj->refcount != 0)
4759 			continue;
4760 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4761 		    obj->mapsize, 0, obj->path);
4762 		dbg("unloading \"%s\"", obj->path);
4763 		/*
4764 		 * Unlink the object now to prevent new references from
4765 		 * being acquired while the bind lock is dropped in
4766 		 * recursive dlclose() invocations.
4767 		 */
4768 		TAILQ_REMOVE(&obj_list, obj, next);
4769 		obj_count--;
4770 
4771 		if (obj->filtees_loaded) {
4772 			if (next != NULL) {
4773 				init_marker(&marker);
4774 				TAILQ_INSERT_BEFORE(next, &marker, next);
4775 				unload_filtees(obj, lockstate);
4776 				next = TAILQ_NEXT(&marker, next);
4777 				TAILQ_REMOVE(&obj_list, &marker, next);
4778 			} else
4779 				unload_filtees(obj, lockstate);
4780 		}
4781 		release_object(obj);
4782 	}
4783 }
4784 
4785 static void
4786 unlink_object(Obj_Entry *root)
4787 {
4788     Objlist_Entry *elm;
4789 
4790     if (root->refcount == 0) {
4791 	/* Remove the object from the RTLD_GLOBAL list. */
4792 	objlist_remove(&list_global, root);
4793 
4794     	/* Remove the object from all objects' DAG lists. */
4795     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4796 	    objlist_remove(&elm->obj->dldags, root);
4797 	    if (elm->obj != root)
4798 		unlink_object(elm->obj);
4799 	}
4800     }
4801 }
4802 
4803 static void
4804 ref_dag(Obj_Entry *root)
4805 {
4806     Objlist_Entry *elm;
4807 
4808     assert(root->dag_inited);
4809     STAILQ_FOREACH(elm, &root->dagmembers, link)
4810 	elm->obj->refcount++;
4811 }
4812 
4813 static void
4814 unref_dag(Obj_Entry *root)
4815 {
4816     Objlist_Entry *elm;
4817 
4818     assert(root->dag_inited);
4819     STAILQ_FOREACH(elm, &root->dagmembers, link)
4820 	elm->obj->refcount--;
4821 }
4822 
4823 /*
4824  * Common code for MD __tls_get_addr().
4825  */
4826 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4827 static void *
4828 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4829 {
4830     Elf_Addr *newdtv, *dtv;
4831     RtldLockState lockstate;
4832     int to_copy;
4833 
4834     dtv = *dtvp;
4835     /* Check dtv generation in case new modules have arrived */
4836     if (dtv[0] != tls_dtv_generation) {
4837 	wlock_acquire(rtld_bind_lock, &lockstate);
4838 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4839 	to_copy = dtv[1];
4840 	if (to_copy > tls_max_index)
4841 	    to_copy = tls_max_index;
4842 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4843 	newdtv[0] = tls_dtv_generation;
4844 	newdtv[1] = tls_max_index;
4845 	free(dtv);
4846 	lock_release(rtld_bind_lock, &lockstate);
4847 	dtv = *dtvp = newdtv;
4848     }
4849 
4850     /* Dynamically allocate module TLS if necessary */
4851     if (dtv[index + 1] == 0) {
4852 	/* Signal safe, wlock will block out signals. */
4853 	wlock_acquire(rtld_bind_lock, &lockstate);
4854 	if (!dtv[index + 1])
4855 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4856 	lock_release(rtld_bind_lock, &lockstate);
4857     }
4858     return ((void *)(dtv[index + 1] + offset));
4859 }
4860 
4861 void *
4862 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4863 {
4864 	Elf_Addr *dtv;
4865 
4866 	dtv = *dtvp;
4867 	/* Check dtv generation in case new modules have arrived */
4868 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4869 	    dtv[index + 1] != 0))
4870 		return ((void *)(dtv[index + 1] + offset));
4871 	return (tls_get_addr_slow(dtvp, index, offset));
4872 }
4873 
4874 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4875     defined(__powerpc__) || defined(__riscv)
4876 
4877 /*
4878  * Return pointer to allocated TLS block
4879  */
4880 static void *
4881 get_tls_block_ptr(void *tcb, size_t tcbsize)
4882 {
4883     size_t extra_size, post_size, pre_size, tls_block_size;
4884     size_t tls_init_align;
4885 
4886     tls_init_align = MAX(obj_main->tlsalign, 1);
4887 
4888     /* Compute fragments sizes. */
4889     extra_size = tcbsize - TLS_TCB_SIZE;
4890     post_size = calculate_tls_post_size(tls_init_align);
4891     tls_block_size = tcbsize + post_size;
4892     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4893 
4894     return ((char *)tcb - pre_size - extra_size);
4895 }
4896 
4897 /*
4898  * Allocate Static TLS using the Variant I method.
4899  *
4900  * For details on the layout, see lib/libc/gen/tls.c.
4901  *
4902  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4903  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4904  *     offsets, whereas libc's tls_static_space is just the executable's static
4905  *     TLS segment.
4906  */
4907 void *
4908 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4909 {
4910     Obj_Entry *obj;
4911     char *tls_block;
4912     Elf_Addr *dtv, **tcb;
4913     Elf_Addr addr;
4914     Elf_Addr i;
4915     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4916     size_t tls_init_align, tls_init_offset;
4917 
4918     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4919 	return (oldtcb);
4920 
4921     assert(tcbsize >= TLS_TCB_SIZE);
4922     maxalign = MAX(tcbalign, tls_static_max_align);
4923     tls_init_align = MAX(obj_main->tlsalign, 1);
4924 
4925     /* Compute fragmets sizes. */
4926     extra_size = tcbsize - TLS_TCB_SIZE;
4927     post_size = calculate_tls_post_size(tls_init_align);
4928     tls_block_size = tcbsize + post_size;
4929     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4930     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4931 
4932     /* Allocate whole TLS block */
4933     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
4934     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
4935 
4936     if (oldtcb != NULL) {
4937 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
4938 	    tls_static_space);
4939 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
4940 
4941 	/* Adjust the DTV. */
4942 	dtv = tcb[0];
4943 	for (i = 0; i < dtv[1]; i++) {
4944 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4945 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4946 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
4947 	    }
4948 	}
4949     } else {
4950 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4951 	tcb[0] = dtv;
4952 	dtv[0] = tls_dtv_generation;
4953 	dtv[1] = tls_max_index;
4954 
4955 	for (obj = globallist_curr(objs); obj != NULL;
4956 	  obj = globallist_next(obj)) {
4957 	    if (obj->tlsoffset == 0)
4958 		continue;
4959 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
4960 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
4961 	    if (tls_init_offset > 0)
4962 		memset((void *)addr, 0, tls_init_offset);
4963 	    if (obj->tlsinitsize > 0) {
4964 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
4965 		    obj->tlsinitsize);
4966 	    }
4967 	    if (obj->tlssize > obj->tlsinitsize) {
4968 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
4969 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
4970 	    }
4971 	    dtv[obj->tlsindex + 1] = addr;
4972 	}
4973     }
4974 
4975     return (tcb);
4976 }
4977 
4978 void
4979 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
4980 {
4981     Elf_Addr *dtv;
4982     Elf_Addr tlsstart, tlsend;
4983     size_t post_size;
4984     size_t dtvsize, i, tls_init_align;
4985 
4986     assert(tcbsize >= TLS_TCB_SIZE);
4987     tls_init_align = MAX(obj_main->tlsalign, 1);
4988 
4989     /* Compute fragments sizes. */
4990     post_size = calculate_tls_post_size(tls_init_align);
4991 
4992     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
4993     tlsend = (Elf_Addr)tcb + tls_static_space;
4994 
4995     dtv = *(Elf_Addr **)tcb;
4996     dtvsize = dtv[1];
4997     for (i = 0; i < dtvsize; i++) {
4998 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4999 	    free((void*)dtv[i+2]);
5000 	}
5001     }
5002     free(dtv);
5003     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5004 }
5005 
5006 #endif
5007 
5008 #if defined(__i386__) || defined(__amd64__)
5009 
5010 /*
5011  * Allocate Static TLS using the Variant II method.
5012  */
5013 void *
5014 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5015 {
5016     Obj_Entry *obj;
5017     size_t size, ralign;
5018     char *tls;
5019     Elf_Addr *dtv, *olddtv;
5020     Elf_Addr segbase, oldsegbase, addr;
5021     size_t i;
5022 
5023     ralign = tcbalign;
5024     if (tls_static_max_align > ralign)
5025 	    ralign = tls_static_max_align;
5026     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5027 
5028     assert(tcbsize >= 2*sizeof(Elf_Addr));
5029     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5030     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5031 
5032     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5033     ((Elf_Addr*)segbase)[0] = segbase;
5034     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5035 
5036     dtv[0] = tls_dtv_generation;
5037     dtv[1] = tls_max_index;
5038 
5039     if (oldtls) {
5040 	/*
5041 	 * Copy the static TLS block over whole.
5042 	 */
5043 	oldsegbase = (Elf_Addr) oldtls;
5044 	memcpy((void *)(segbase - tls_static_space),
5045 	       (const void *)(oldsegbase - tls_static_space),
5046 	       tls_static_space);
5047 
5048 	/*
5049 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5050 	 * move them over.
5051 	 */
5052 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5053 	for (i = 0; i < olddtv[1]; i++) {
5054 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5055 		dtv[i+2] = olddtv[i+2];
5056 		olddtv[i+2] = 0;
5057 	    }
5058 	}
5059 
5060 	/*
5061 	 * We assume that this block was the one we created with
5062 	 * allocate_initial_tls().
5063 	 */
5064 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5065     } else {
5066 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5067 		if (obj->marker || obj->tlsoffset == 0)
5068 			continue;
5069 		addr = segbase - obj->tlsoffset;
5070 		memset((void*)(addr + obj->tlsinitsize),
5071 		       0, obj->tlssize - obj->tlsinitsize);
5072 		if (obj->tlsinit) {
5073 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5074 		    obj->static_tls_copied = true;
5075 		}
5076 		dtv[obj->tlsindex + 1] = addr;
5077 	}
5078     }
5079 
5080     return (void*) segbase;
5081 }
5082 
5083 void
5084 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5085 {
5086     Elf_Addr* dtv;
5087     size_t size, ralign;
5088     int dtvsize, i;
5089     Elf_Addr tlsstart, tlsend;
5090 
5091     /*
5092      * Figure out the size of the initial TLS block so that we can
5093      * find stuff which ___tls_get_addr() allocated dynamically.
5094      */
5095     ralign = tcbalign;
5096     if (tls_static_max_align > ralign)
5097 	    ralign = tls_static_max_align;
5098     size = roundup(tls_static_space, ralign);
5099 
5100     dtv = ((Elf_Addr**)tls)[1];
5101     dtvsize = dtv[1];
5102     tlsend = (Elf_Addr) tls;
5103     tlsstart = tlsend - size;
5104     for (i = 0; i < dtvsize; i++) {
5105 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5106 		free_aligned((void *)dtv[i + 2]);
5107 	}
5108     }
5109 
5110     free_aligned((void *)tlsstart);
5111     free((void*) dtv);
5112 }
5113 
5114 #endif
5115 
5116 /*
5117  * Allocate TLS block for module with given index.
5118  */
5119 void *
5120 allocate_module_tls(int index)
5121 {
5122 	Obj_Entry *obj;
5123 	char *p;
5124 
5125 	TAILQ_FOREACH(obj, &obj_list, next) {
5126 		if (obj->marker)
5127 			continue;
5128 		if (obj->tlsindex == index)
5129 			break;
5130 	}
5131 	if (obj == NULL) {
5132 		_rtld_error("Can't find module with TLS index %d", index);
5133 		rtld_die();
5134 	}
5135 
5136 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5137 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5138 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5139 	return (p);
5140 }
5141 
5142 bool
5143 allocate_tls_offset(Obj_Entry *obj)
5144 {
5145     size_t off;
5146 
5147     if (obj->tls_done)
5148 	return true;
5149 
5150     if (obj->tlssize == 0) {
5151 	obj->tls_done = true;
5152 	return true;
5153     }
5154 
5155     if (tls_last_offset == 0)
5156 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5157 	  obj->tlspoffset);
5158     else
5159 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5160 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5161 
5162     /*
5163      * If we have already fixed the size of the static TLS block, we
5164      * must stay within that size. When allocating the static TLS, we
5165      * leave a small amount of space spare to be used for dynamically
5166      * loading modules which use static TLS.
5167      */
5168     if (tls_static_space != 0) {
5169 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
5170 	    return false;
5171     } else if (obj->tlsalign > tls_static_max_align) {
5172 	    tls_static_max_align = obj->tlsalign;
5173     }
5174 
5175     tls_last_offset = obj->tlsoffset = off;
5176     tls_last_size = obj->tlssize;
5177     obj->tls_done = true;
5178 
5179     return true;
5180 }
5181 
5182 void
5183 free_tls_offset(Obj_Entry *obj)
5184 {
5185 
5186     /*
5187      * If we were the last thing to allocate out of the static TLS
5188      * block, we give our space back to the 'allocator'. This is a
5189      * simplistic workaround to allow libGL.so.1 to be loaded and
5190      * unloaded multiple times.
5191      */
5192     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
5193 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
5194 	tls_last_offset -= obj->tlssize;
5195 	tls_last_size = 0;
5196     }
5197 }
5198 
5199 void *
5200 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5201 {
5202     void *ret;
5203     RtldLockState lockstate;
5204 
5205     wlock_acquire(rtld_bind_lock, &lockstate);
5206     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5207       tcbsize, tcbalign);
5208     lock_release(rtld_bind_lock, &lockstate);
5209     return (ret);
5210 }
5211 
5212 void
5213 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5214 {
5215     RtldLockState lockstate;
5216 
5217     wlock_acquire(rtld_bind_lock, &lockstate);
5218     free_tls(tcb, tcbsize, tcbalign);
5219     lock_release(rtld_bind_lock, &lockstate);
5220 }
5221 
5222 static void
5223 object_add_name(Obj_Entry *obj, const char *name)
5224 {
5225     Name_Entry *entry;
5226     size_t len;
5227 
5228     len = strlen(name);
5229     entry = malloc(sizeof(Name_Entry) + len);
5230 
5231     if (entry != NULL) {
5232 	strcpy(entry->name, name);
5233 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5234     }
5235 }
5236 
5237 static int
5238 object_match_name(const Obj_Entry *obj, const char *name)
5239 {
5240     Name_Entry *entry;
5241 
5242     STAILQ_FOREACH(entry, &obj->names, link) {
5243 	if (strcmp(name, entry->name) == 0)
5244 	    return (1);
5245     }
5246     return (0);
5247 }
5248 
5249 static Obj_Entry *
5250 locate_dependency(const Obj_Entry *obj, const char *name)
5251 {
5252     const Objlist_Entry *entry;
5253     const Needed_Entry *needed;
5254 
5255     STAILQ_FOREACH(entry, &list_main, link) {
5256 	if (object_match_name(entry->obj, name))
5257 	    return entry->obj;
5258     }
5259 
5260     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5261 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5262 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5263 	    /*
5264 	     * If there is DT_NEEDED for the name we are looking for,
5265 	     * we are all set.  Note that object might not be found if
5266 	     * dependency was not loaded yet, so the function can
5267 	     * return NULL here.  This is expected and handled
5268 	     * properly by the caller.
5269 	     */
5270 	    return (needed->obj);
5271 	}
5272     }
5273     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5274 	obj->path, name);
5275     rtld_die();
5276 }
5277 
5278 static int
5279 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5280     const Elf_Vernaux *vna)
5281 {
5282     const Elf_Verdef *vd;
5283     const char *vername;
5284 
5285     vername = refobj->strtab + vna->vna_name;
5286     vd = depobj->verdef;
5287     if (vd == NULL) {
5288 	_rtld_error("%s: version %s required by %s not defined",
5289 	    depobj->path, vername, refobj->path);
5290 	return (-1);
5291     }
5292     for (;;) {
5293 	if (vd->vd_version != VER_DEF_CURRENT) {
5294 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5295 		depobj->path, vd->vd_version);
5296 	    return (-1);
5297 	}
5298 	if (vna->vna_hash == vd->vd_hash) {
5299 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5300 		((const char *)vd + vd->vd_aux);
5301 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5302 		return (0);
5303 	}
5304 	if (vd->vd_next == 0)
5305 	    break;
5306 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5307     }
5308     if (vna->vna_flags & VER_FLG_WEAK)
5309 	return (0);
5310     _rtld_error("%s: version %s required by %s not found",
5311 	depobj->path, vername, refobj->path);
5312     return (-1);
5313 }
5314 
5315 static int
5316 rtld_verify_object_versions(Obj_Entry *obj)
5317 {
5318     const Elf_Verneed *vn;
5319     const Elf_Verdef  *vd;
5320     const Elf_Verdaux *vda;
5321     const Elf_Vernaux *vna;
5322     const Obj_Entry *depobj;
5323     int maxvernum, vernum;
5324 
5325     if (obj->ver_checked)
5326 	return (0);
5327     obj->ver_checked = true;
5328 
5329     maxvernum = 0;
5330     /*
5331      * Walk over defined and required version records and figure out
5332      * max index used by any of them. Do very basic sanity checking
5333      * while there.
5334      */
5335     vn = obj->verneed;
5336     while (vn != NULL) {
5337 	if (vn->vn_version != VER_NEED_CURRENT) {
5338 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5339 		obj->path, vn->vn_version);
5340 	    return (-1);
5341 	}
5342 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5343 	for (;;) {
5344 	    vernum = VER_NEED_IDX(vna->vna_other);
5345 	    if (vernum > maxvernum)
5346 		maxvernum = vernum;
5347 	    if (vna->vna_next == 0)
5348 		 break;
5349 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5350 	}
5351 	if (vn->vn_next == 0)
5352 	    break;
5353 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5354     }
5355 
5356     vd = obj->verdef;
5357     while (vd != NULL) {
5358 	if (vd->vd_version != VER_DEF_CURRENT) {
5359 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5360 		obj->path, vd->vd_version);
5361 	    return (-1);
5362 	}
5363 	vernum = VER_DEF_IDX(vd->vd_ndx);
5364 	if (vernum > maxvernum)
5365 		maxvernum = vernum;
5366 	if (vd->vd_next == 0)
5367 	    break;
5368 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5369     }
5370 
5371     if (maxvernum == 0)
5372 	return (0);
5373 
5374     /*
5375      * Store version information in array indexable by version index.
5376      * Verify that object version requirements are satisfied along the
5377      * way.
5378      */
5379     obj->vernum = maxvernum + 1;
5380     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5381 
5382     vd = obj->verdef;
5383     while (vd != NULL) {
5384 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5385 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5386 	    assert(vernum <= maxvernum);
5387 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5388 	    obj->vertab[vernum].hash = vd->vd_hash;
5389 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5390 	    obj->vertab[vernum].file = NULL;
5391 	    obj->vertab[vernum].flags = 0;
5392 	}
5393 	if (vd->vd_next == 0)
5394 	    break;
5395 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5396     }
5397 
5398     vn = obj->verneed;
5399     while (vn != NULL) {
5400 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5401 	if (depobj == NULL)
5402 	    return (-1);
5403 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5404 	for (;;) {
5405 	    if (check_object_provided_version(obj, depobj, vna))
5406 		return (-1);
5407 	    vernum = VER_NEED_IDX(vna->vna_other);
5408 	    assert(vernum <= maxvernum);
5409 	    obj->vertab[vernum].hash = vna->vna_hash;
5410 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5411 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5412 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5413 		VER_INFO_HIDDEN : 0;
5414 	    if (vna->vna_next == 0)
5415 		 break;
5416 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5417 	}
5418 	if (vn->vn_next == 0)
5419 	    break;
5420 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5421     }
5422     return 0;
5423 }
5424 
5425 static int
5426 rtld_verify_versions(const Objlist *objlist)
5427 {
5428     Objlist_Entry *entry;
5429     int rc;
5430 
5431     rc = 0;
5432     STAILQ_FOREACH(entry, objlist, link) {
5433 	/*
5434 	 * Skip dummy objects or objects that have their version requirements
5435 	 * already checked.
5436 	 */
5437 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5438 	    continue;
5439 	if (rtld_verify_object_versions(entry->obj) == -1) {
5440 	    rc = -1;
5441 	    if (ld_tracing == NULL)
5442 		break;
5443 	}
5444     }
5445     if (rc == 0 || ld_tracing != NULL)
5446     	rc = rtld_verify_object_versions(&obj_rtld);
5447     return rc;
5448 }
5449 
5450 const Ver_Entry *
5451 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5452 {
5453     Elf_Versym vernum;
5454 
5455     if (obj->vertab) {
5456 	vernum = VER_NDX(obj->versyms[symnum]);
5457 	if (vernum >= obj->vernum) {
5458 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5459 		obj->path, obj->strtab + symnum, vernum);
5460 	} else if (obj->vertab[vernum].hash != 0) {
5461 	    return &obj->vertab[vernum];
5462 	}
5463     }
5464     return NULL;
5465 }
5466 
5467 int
5468 _rtld_get_stack_prot(void)
5469 {
5470 
5471 	return (stack_prot);
5472 }
5473 
5474 int
5475 _rtld_is_dlopened(void *arg)
5476 {
5477 	Obj_Entry *obj;
5478 	RtldLockState lockstate;
5479 	int res;
5480 
5481 	rlock_acquire(rtld_bind_lock, &lockstate);
5482 	obj = dlcheck(arg);
5483 	if (obj == NULL)
5484 		obj = obj_from_addr(arg);
5485 	if (obj == NULL) {
5486 		_rtld_error("No shared object contains address");
5487 		lock_release(rtld_bind_lock, &lockstate);
5488 		return (-1);
5489 	}
5490 	res = obj->dlopened ? 1 : 0;
5491 	lock_release(rtld_bind_lock, &lockstate);
5492 	return (res);
5493 }
5494 
5495 static int
5496 obj_remap_relro(Obj_Entry *obj, int prot)
5497 {
5498 
5499 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5500 	    prot) == -1) {
5501 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5502 		    obj->path, prot, rtld_strerror(errno));
5503 		return (-1);
5504 	}
5505 	return (0);
5506 }
5507 
5508 static int
5509 obj_disable_relro(Obj_Entry *obj)
5510 {
5511 
5512 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5513 }
5514 
5515 static int
5516 obj_enforce_relro(Obj_Entry *obj)
5517 {
5518 
5519 	return (obj_remap_relro(obj, PROT_READ));
5520 }
5521 
5522 static void
5523 map_stacks_exec(RtldLockState *lockstate)
5524 {
5525 	void (*thr_map_stacks_exec)(void);
5526 
5527 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5528 		return;
5529 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5530 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5531 	if (thr_map_stacks_exec != NULL) {
5532 		stack_prot |= PROT_EXEC;
5533 		thr_map_stacks_exec();
5534 	}
5535 }
5536 
5537 static void
5538 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5539 {
5540 	Objlist_Entry *elm;
5541 	Obj_Entry *obj;
5542 	void (*distrib)(size_t, void *, size_t, size_t);
5543 
5544 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5545 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5546 	if (distrib == NULL)
5547 		return;
5548 	STAILQ_FOREACH(elm, list, link) {
5549 		obj = elm->obj;
5550 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5551 			continue;
5552 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5553 		    obj->tlssize);
5554 		obj->static_tls_copied = true;
5555 	}
5556 }
5557 
5558 void
5559 symlook_init(SymLook *dst, const char *name)
5560 {
5561 
5562 	bzero(dst, sizeof(*dst));
5563 	dst->name = name;
5564 	dst->hash = elf_hash(name);
5565 	dst->hash_gnu = gnu_hash(name);
5566 }
5567 
5568 static void
5569 symlook_init_from_req(SymLook *dst, const SymLook *src)
5570 {
5571 
5572 	dst->name = src->name;
5573 	dst->hash = src->hash;
5574 	dst->hash_gnu = src->hash_gnu;
5575 	dst->ventry = src->ventry;
5576 	dst->flags = src->flags;
5577 	dst->defobj_out = NULL;
5578 	dst->sym_out = NULL;
5579 	dst->lockstate = src->lockstate;
5580 }
5581 
5582 static int
5583 open_binary_fd(const char *argv0, bool search_in_path,
5584     const char **binpath_res)
5585 {
5586 	char *binpath, *pathenv, *pe, *res1;
5587 	const char *res;
5588 	int fd;
5589 
5590 	binpath = NULL;
5591 	res = NULL;
5592 	if (search_in_path && strchr(argv0, '/') == NULL) {
5593 		binpath = xmalloc(PATH_MAX);
5594 		pathenv = getenv("PATH");
5595 		if (pathenv == NULL) {
5596 			_rtld_error("-p and no PATH environment variable");
5597 			rtld_die();
5598 		}
5599 		pathenv = strdup(pathenv);
5600 		if (pathenv == NULL) {
5601 			_rtld_error("Cannot allocate memory");
5602 			rtld_die();
5603 		}
5604 		fd = -1;
5605 		errno = ENOENT;
5606 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5607 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5608 				continue;
5609 			if (binpath[0] != '\0' &&
5610 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5611 				continue;
5612 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5613 				continue;
5614 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5615 			if (fd != -1 || errno != ENOENT) {
5616 				res = binpath;
5617 				break;
5618 			}
5619 		}
5620 		free(pathenv);
5621 	} else {
5622 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5623 		res = argv0;
5624 	}
5625 
5626 	if (fd == -1) {
5627 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5628 		rtld_die();
5629 	}
5630 	if (res != NULL && res[0] != '/') {
5631 		res1 = xmalloc(PATH_MAX);
5632 		if (realpath(res, res1) != NULL) {
5633 			if (res != argv0)
5634 				free(__DECONST(char *, res));
5635 			res = res1;
5636 		} else {
5637 			free(res1);
5638 		}
5639 	}
5640 	*binpath_res = res;
5641 	return (fd);
5642 }
5643 
5644 /*
5645  * Parse a set of command-line arguments.
5646  */
5647 static int
5648 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5649     const char **argv0)
5650 {
5651 	const char *arg;
5652 	char machine[64];
5653 	size_t sz;
5654 	int arglen, fd, i, j, mib[2];
5655 	char opt;
5656 	bool seen_b, seen_f;
5657 
5658 	dbg("Parsing command-line arguments");
5659 	*use_pathp = false;
5660 	*fdp = -1;
5661 	seen_b = seen_f = false;
5662 
5663 	for (i = 1; i < argc; i++ ) {
5664 		arg = argv[i];
5665 		dbg("argv[%d]: '%s'", i, arg);
5666 
5667 		/*
5668 		 * rtld arguments end with an explicit "--" or with the first
5669 		 * non-prefixed argument.
5670 		 */
5671 		if (strcmp(arg, "--") == 0) {
5672 			i++;
5673 			break;
5674 		}
5675 		if (arg[0] != '-')
5676 			break;
5677 
5678 		/*
5679 		 * All other arguments are single-character options that can
5680 		 * be combined, so we need to search through `arg` for them.
5681 		 */
5682 		arglen = strlen(arg);
5683 		for (j = 1; j < arglen; j++) {
5684 			opt = arg[j];
5685 			if (opt == 'h') {
5686 				print_usage(argv[0]);
5687 				_exit(0);
5688 			} else if (opt == 'b') {
5689 				if (seen_f) {
5690 					_rtld_error("Both -b and -f specified");
5691 					rtld_die();
5692 				}
5693 				i++;
5694 				*argv0 = argv[i];
5695 				seen_b = true;
5696 				break;
5697 			} else if (opt == 'f') {
5698 				if (seen_b) {
5699 					_rtld_error("Both -b and -f specified");
5700 					rtld_die();
5701 				}
5702 
5703 				/*
5704 				 * -f XX can be used to specify a
5705 				 * descriptor for the binary named at
5706 				 * the command line (i.e., the later
5707 				 * argument will specify the process
5708 				 * name but the descriptor is what
5709 				 * will actually be executed).
5710 				 *
5711 				 * -f must be the last option in, e.g., -abcf.
5712 				 */
5713 				if (j != arglen - 1) {
5714 					_rtld_error("Invalid options: %s", arg);
5715 					rtld_die();
5716 				}
5717 				i++;
5718 				fd = parse_integer(argv[i]);
5719 				if (fd == -1) {
5720 					_rtld_error(
5721 					    "Invalid file descriptor: '%s'",
5722 					    argv[i]);
5723 					rtld_die();
5724 				}
5725 				*fdp = fd;
5726 				seen_f = true;
5727 				break;
5728 			} else if (opt == 'p') {
5729 				*use_pathp = true;
5730 			} else if (opt == 'v') {
5731 				machine[0] = '\0';
5732 				mib[0] = CTL_HW;
5733 				mib[1] = HW_MACHINE;
5734 				sz = sizeof(machine);
5735 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5736 				rtld_printf(
5737 				    "FreeBSD ld-elf.so.1 %s\n"
5738 				    "FreeBSD_version %d\n"
5739 				    "Default lib path %s\n"
5740 				    "Env prefix %s\n"
5741 				    "Hint file %s\n"
5742 				    "libmap file %s\n",
5743 				    machine,
5744 				    __FreeBSD_version, ld_standard_library_path,
5745 				    ld_env_prefix, ld_elf_hints_default,
5746 				    ld_path_libmap_conf);
5747 				_exit(0);
5748 			} else {
5749 				_rtld_error("Invalid argument: '%s'", arg);
5750 				print_usage(argv[0]);
5751 				rtld_die();
5752 			}
5753 		}
5754 	}
5755 
5756 	if (!seen_b)
5757 		*argv0 = argv[i];
5758 	return (i);
5759 }
5760 
5761 /*
5762  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5763  */
5764 static int
5765 parse_integer(const char *str)
5766 {
5767 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5768 	const char *orig;
5769 	int n;
5770 	char c;
5771 
5772 	orig = str;
5773 	n = 0;
5774 	for (c = *str; c != '\0'; c = *++str) {
5775 		if (c < '0' || c > '9')
5776 			return (-1);
5777 
5778 		n *= RADIX;
5779 		n += c - '0';
5780 	}
5781 
5782 	/* Make sure we actually parsed something. */
5783 	if (str == orig)
5784 		return (-1);
5785 	return (n);
5786 }
5787 
5788 static void
5789 print_usage(const char *argv0)
5790 {
5791 
5792 	rtld_printf(
5793 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5794 	    "\n"
5795 	    "Options:\n"
5796 	    "  -h        Display this help message\n"
5797 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5798 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5799 	    "  -p        Search in PATH for named binary\n"
5800 	    "  -v        Display identification information\n"
5801 	    "  --        End of RTLD options\n"
5802 	    "  <binary>  Name of process to execute\n"
5803 	    "  <args>    Arguments to the executed process\n", argv0);
5804 }
5805 
5806 /*
5807  * Overrides for libc_pic-provided functions.
5808  */
5809 
5810 int
5811 __getosreldate(void)
5812 {
5813 	size_t len;
5814 	int oid[2];
5815 	int error, osrel;
5816 
5817 	if (osreldate != 0)
5818 		return (osreldate);
5819 
5820 	oid[0] = CTL_KERN;
5821 	oid[1] = KERN_OSRELDATE;
5822 	osrel = 0;
5823 	len = sizeof(osrel);
5824 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5825 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5826 		osreldate = osrel;
5827 	return (osreldate);
5828 }
5829 const char *
5830 rtld_strerror(int errnum)
5831 {
5832 
5833 	if (errnum < 0 || errnum >= sys_nerr)
5834 		return ("Unknown error");
5835 	return (sys_errlist[errnum]);
5836 }
5837 
5838 /* malloc */
5839 void *
5840 malloc(size_t nbytes)
5841 {
5842 
5843 	return (__crt_malloc(nbytes));
5844 }
5845 
5846 void *
5847 calloc(size_t num, size_t size)
5848 {
5849 
5850 	return (__crt_calloc(num, size));
5851 }
5852 
5853 void
5854 free(void *cp)
5855 {
5856 
5857 	__crt_free(cp);
5858 }
5859 
5860 void *
5861 realloc(void *cp, size_t nbytes)
5862 {
5863 
5864 	return (__crt_realloc(cp, nbytes));
5865 }
5866 
5867 extern int _rtld_version__FreeBSD_version __exported;
5868 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5869 
5870 extern char _rtld_version_laddr_offset __exported;
5871 char _rtld_version_laddr_offset;
5872