xref: /freebsd/libexec/rtld-elf/rtld.c (revision 991633af2eaf0dbf661ab974973d69ed472e9653)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mount.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/uio.h>
44 #include <sys/utsname.h>
45 #include <sys/ktrace.h>
46 
47 #include <dlfcn.h>
48 #include <err.h>
49 #include <errno.h>
50 #include <fcntl.h>
51 #include <stdarg.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #include <unistd.h>
56 
57 #include "debug.h"
58 #include "rtld.h"
59 #include "libmap.h"
60 #include "rtld_tls.h"
61 
62 #ifndef COMPAT_32BIT
63 #define PATH_RTLD	"/libexec/ld-elf.so.1"
64 #else
65 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
66 #endif
67 
68 /* Types. */
69 typedef void (*func_ptr_type)();
70 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
71 
72 /*
73  * This structure provides a reentrant way to keep a list of objects and
74  * check which ones have already been processed in some way.
75  */
76 typedef struct Struct_DoneList {
77     const Obj_Entry **objs;		/* Array of object pointers */
78     unsigned int num_alloc;		/* Allocated size of the array */
79     unsigned int num_used;		/* Number of array slots used */
80 } DoneList;
81 
82 /*
83  * Function declarations.
84  */
85 static const char *basename(const char *);
86 static void die(void) __dead2;
87 static void digest_dynamic(Obj_Entry *, int);
88 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
89 static Obj_Entry *dlcheck(void *);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *);
97 static const char *gethints(void);
98 static void init_dag(Obj_Entry *);
99 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
100 static void init_rtld(caddr_t);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static bool is_exported(const Elf_Sym *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static int load_needed_objects(Obj_Entry *);
107 static int load_preload_objects(void);
108 static Obj_Entry *load_object(const char *, const Obj_Entry *);
109 static Obj_Entry *obj_from_addr(const void *);
110 static void objlist_call_fini(Objlist *, bool, int *);
111 static void objlist_call_init(Objlist *, int *);
112 static void objlist_clear(Objlist *);
113 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114 static void objlist_init(Objlist *);
115 static void objlist_push_head(Objlist *, Obj_Entry *);
116 static void objlist_push_tail(Objlist *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static int rtld_dirname_abs(const char *, char *);
122 static void rtld_exit(void);
123 static char *search_library_path(const char *, const char *);
124 static const void **get_program_var_addr(const char *);
125 static void set_program_var(const char *, const void *);
126 static const Elf_Sym *symlook_default(const char *, unsigned long,
127   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
128 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
129   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
130 static const Elf_Sym *symlook_needed(const char *, unsigned long,
131   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
132   int, DoneList *);
133 static void trace_loaded_objects(Obj_Entry *);
134 static void unlink_object(Obj_Entry *);
135 static void unload_object(Obj_Entry *);
136 static void unref_dag(Obj_Entry *);
137 static void ref_dag(Obj_Entry *);
138 static int origin_subst_one(char **, const char *, const char *,
139   const char *, char *);
140 static char *origin_subst(const char *, const char *);
141 static int  rtld_verify_versions(const Objlist *);
142 static int  rtld_verify_object_versions(Obj_Entry *);
143 static void object_add_name(Obj_Entry *, const char *);
144 static int  object_match_name(const Obj_Entry *, const char *);
145 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
146 
147 void r_debug_state(struct r_debug *, struct link_map *);
148 
149 /*
150  * Data declarations.
151  */
152 static char *error_message;	/* Message for dlerror(), or NULL */
153 struct r_debug r_debug;		/* for GDB; */
154 static bool libmap_disable;	/* Disable libmap */
155 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
156 static bool trust;		/* False for setuid and setgid programs */
157 static bool dangerous_ld_env;	/* True if environment variables have been
158 				   used to affect the libraries loaded */
159 static char *ld_bind_now;	/* Environment variable for immediate binding */
160 static char *ld_debug;		/* Environment variable for debugging */
161 static char *ld_library_path;	/* Environment variable for search path */
162 static char *ld_preload;	/* Environment variable for libraries to
163 				   load first */
164 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
165 static char *ld_tracing;	/* Called from ldd to print libs */
166 static char *ld_utrace;		/* Use utrace() to log events. */
167 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
168 static Obj_Entry **obj_tail;	/* Link field of last object in list */
169 static Obj_Entry *obj_main;	/* The main program shared object */
170 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
171 static unsigned int obj_count;	/* Number of objects in obj_list */
172 static unsigned int obj_loads;	/* Number of objects in obj_list */
173 
174 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
175   STAILQ_HEAD_INITIALIZER(list_global);
176 static Objlist list_main =	/* Objects loaded at program startup */
177   STAILQ_HEAD_INITIALIZER(list_main);
178 static Objlist list_fini =	/* Objects needing fini() calls */
179   STAILQ_HEAD_INITIALIZER(list_fini);
180 
181 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
182 
183 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
184 
185 extern Elf_Dyn _DYNAMIC;
186 #pragma weak _DYNAMIC
187 #ifndef RTLD_IS_DYNAMIC
188 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
189 #endif
190 
191 /*
192  * These are the functions the dynamic linker exports to application
193  * programs.  They are the only symbols the dynamic linker is willing
194  * to export from itself.
195  */
196 static func_ptr_type exports[] = {
197     (func_ptr_type) &_rtld_error,
198     (func_ptr_type) &dlclose,
199     (func_ptr_type) &dlerror,
200     (func_ptr_type) &dlopen,
201     (func_ptr_type) &dlsym,
202     (func_ptr_type) &dlfunc,
203     (func_ptr_type) &dlvsym,
204     (func_ptr_type) &dladdr,
205     (func_ptr_type) &dllockinit,
206     (func_ptr_type) &dlinfo,
207     (func_ptr_type) &_rtld_thread_init,
208 #ifdef __i386__
209     (func_ptr_type) &___tls_get_addr,
210 #endif
211     (func_ptr_type) &__tls_get_addr,
212     (func_ptr_type) &_rtld_allocate_tls,
213     (func_ptr_type) &_rtld_free_tls,
214     (func_ptr_type) &dl_iterate_phdr,
215     (func_ptr_type) &_rtld_atfork_pre,
216     (func_ptr_type) &_rtld_atfork_post,
217     NULL
218 };
219 
220 /*
221  * Global declarations normally provided by crt1.  The dynamic linker is
222  * not built with crt1, so we have to provide them ourselves.
223  */
224 char *__progname;
225 char **environ;
226 
227 /*
228  * Globals to control TLS allocation.
229  */
230 size_t tls_last_offset;		/* Static TLS offset of last module */
231 size_t tls_last_size;		/* Static TLS size of last module */
232 size_t tls_static_space;	/* Static TLS space allocated */
233 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
234 int tls_max_index = 1;		/* Largest module index allocated */
235 
236 /*
237  * Fill in a DoneList with an allocation large enough to hold all of
238  * the currently-loaded objects.  Keep this as a macro since it calls
239  * alloca and we want that to occur within the scope of the caller.
240  */
241 #define donelist_init(dlp)					\
242     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
243     assert((dlp)->objs != NULL),				\
244     (dlp)->num_alloc = obj_count,				\
245     (dlp)->num_used = 0)
246 
247 #define	UTRACE_DLOPEN_START		1
248 #define	UTRACE_DLOPEN_STOP		2
249 #define	UTRACE_DLCLOSE_START		3
250 #define	UTRACE_DLCLOSE_STOP		4
251 #define	UTRACE_LOAD_OBJECT		5
252 #define	UTRACE_UNLOAD_OBJECT		6
253 #define	UTRACE_ADD_RUNDEP		7
254 #define	UTRACE_PRELOAD_FINISHED		8
255 #define	UTRACE_INIT_CALL		9
256 #define	UTRACE_FINI_CALL		10
257 
258 struct utrace_rtld {
259 	char sig[4];			/* 'RTLD' */
260 	int event;
261 	void *handle;
262 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
263 	size_t mapsize;
264 	int refcnt;			/* Used for 'mode' */
265 	char name[MAXPATHLEN];
266 };
267 
268 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
269 	if (ld_utrace != NULL)					\
270 		ld_utrace_log(e, h, mb, ms, r, n);		\
271 } while (0)
272 
273 static void
274 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
275     int refcnt, const char *name)
276 {
277 	struct utrace_rtld ut;
278 
279 	ut.sig[0] = 'R';
280 	ut.sig[1] = 'T';
281 	ut.sig[2] = 'L';
282 	ut.sig[3] = 'D';
283 	ut.event = event;
284 	ut.handle = handle;
285 	ut.mapbase = mapbase;
286 	ut.mapsize = mapsize;
287 	ut.refcnt = refcnt;
288 	bzero(ut.name, sizeof(ut.name));
289 	if (name)
290 		strlcpy(ut.name, name, sizeof(ut.name));
291 	utrace(&ut, sizeof(ut));
292 }
293 
294 /*
295  * Main entry point for dynamic linking.  The first argument is the
296  * stack pointer.  The stack is expected to be laid out as described
297  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
298  * Specifically, the stack pointer points to a word containing
299  * ARGC.  Following that in the stack is a null-terminated sequence
300  * of pointers to argument strings.  Then comes a null-terminated
301  * sequence of pointers to environment strings.  Finally, there is a
302  * sequence of "auxiliary vector" entries.
303  *
304  * The second argument points to a place to store the dynamic linker's
305  * exit procedure pointer and the third to a place to store the main
306  * program's object.
307  *
308  * The return value is the main program's entry point.
309  */
310 func_ptr_type
311 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
312 {
313     Elf_Auxinfo *aux_info[AT_COUNT];
314     int i;
315     int argc;
316     char **argv;
317     char **env;
318     Elf_Auxinfo *aux;
319     Elf_Auxinfo *auxp;
320     const char *argv0;
321     Objlist_Entry *entry;
322     Obj_Entry *obj;
323     Obj_Entry **preload_tail;
324     Objlist initlist;
325     int lockstate;
326 
327     /*
328      * On entry, the dynamic linker itself has not been relocated yet.
329      * Be very careful not to reference any global data until after
330      * init_rtld has returned.  It is OK to reference file-scope statics
331      * and string constants, and to call static and global functions.
332      */
333 
334     /* Find the auxiliary vector on the stack. */
335     argc = *sp++;
336     argv = (char **) sp;
337     sp += argc + 1;	/* Skip over arguments and NULL terminator */
338     env = (char **) sp;
339     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
340 	;
341     aux = (Elf_Auxinfo *) sp;
342 
343     /* Digest the auxiliary vector. */
344     for (i = 0;  i < AT_COUNT;  i++)
345 	aux_info[i] = NULL;
346     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
347 	if (auxp->a_type < AT_COUNT)
348 	    aux_info[auxp->a_type] = auxp;
349     }
350 
351     /* Initialize and relocate ourselves. */
352     assert(aux_info[AT_BASE] != NULL);
353     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
354 
355     __progname = obj_rtld.path;
356     argv0 = argv[0] != NULL ? argv[0] : "(null)";
357     environ = env;
358 
359     trust = !issetugid();
360 
361     ld_bind_now = getenv(LD_ "BIND_NOW");
362     /*
363      * If the process is tainted, then we un-set the dangerous environment
364      * variables.  The process will be marked as tainted until setuid(2)
365      * is called.  If any child process calls setuid(2) we do not want any
366      * future processes to honor the potentially un-safe variables.
367      */
368     if (!trust) {
369         unsetenv(LD_ "PRELOAD");
370         unsetenv(LD_ "LIBMAP");
371         unsetenv(LD_ "LIBRARY_PATH");
372         unsetenv(LD_ "LIBMAP_DISABLE");
373         unsetenv(LD_ "DEBUG");
374         unsetenv(LD_ "ELF_HINTS_PATH");
375     }
376     ld_debug = getenv(LD_ "DEBUG");
377     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
378     libmap_override = getenv(LD_ "LIBMAP");
379     ld_library_path = getenv(LD_ "LIBRARY_PATH");
380     ld_preload = getenv(LD_ "PRELOAD");
381     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
382     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
383 	(ld_library_path != NULL) || (ld_preload != NULL) ||
384 	(ld_elf_hints_path != NULL);
385     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
386     ld_utrace = getenv(LD_ "UTRACE");
387 
388     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
389 	ld_elf_hints_path = _PATH_ELF_HINTS;
390 
391     if (ld_debug != NULL && *ld_debug != '\0')
392 	debug = 1;
393     dbg("%s is initialized, base address = %p", __progname,
394 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
395     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
396     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
397 
398     /*
399      * Load the main program, or process its program header if it is
400      * already loaded.
401      */
402     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
403 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
404 	dbg("loading main program");
405 	obj_main = map_object(fd, argv0, NULL);
406 	close(fd);
407 	if (obj_main == NULL)
408 	    die();
409     } else {				/* Main program already loaded. */
410 	const Elf_Phdr *phdr;
411 	int phnum;
412 	caddr_t entry;
413 
414 	dbg("processing main program's program header");
415 	assert(aux_info[AT_PHDR] != NULL);
416 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
417 	assert(aux_info[AT_PHNUM] != NULL);
418 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
419 	assert(aux_info[AT_PHENT] != NULL);
420 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
421 	assert(aux_info[AT_ENTRY] != NULL);
422 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
423 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
424 	    die();
425     }
426 
427     if (aux_info[AT_EXECPATH] != 0) {
428 	    char *kexecpath;
429 	    char buf[MAXPATHLEN];
430 
431 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
432 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
433 	    if (kexecpath[0] == '/')
434 		    obj_main->path = kexecpath;
435 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
436 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
437 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
438 		    obj_main->path = xstrdup(argv0);
439 	    else
440 		    obj_main->path = xstrdup(buf);
441     } else {
442 	    dbg("No AT_EXECPATH");
443 	    obj_main->path = xstrdup(argv0);
444     }
445     dbg("obj_main path %s", obj_main->path);
446     obj_main->mainprog = true;
447 
448     /*
449      * Get the actual dynamic linker pathname from the executable if
450      * possible.  (It should always be possible.)  That ensures that
451      * gdb will find the right dynamic linker even if a non-standard
452      * one is being used.
453      */
454     if (obj_main->interp != NULL &&
455       strcmp(obj_main->interp, obj_rtld.path) != 0) {
456 	free(obj_rtld.path);
457 	obj_rtld.path = xstrdup(obj_main->interp);
458         __progname = obj_rtld.path;
459     }
460 
461     digest_dynamic(obj_main, 0);
462 
463     linkmap_add(obj_main);
464     linkmap_add(&obj_rtld);
465 
466     /* Link the main program into the list of objects. */
467     *obj_tail = obj_main;
468     obj_tail = &obj_main->next;
469     obj_count++;
470     obj_loads++;
471     /* Make sure we don't call the main program's init and fini functions. */
472     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
473 
474     /* Initialize a fake symbol for resolving undefined weak references. */
475     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
476     sym_zero.st_shndx = SHN_UNDEF;
477 
478     if (!libmap_disable)
479         libmap_disable = (bool)lm_init(libmap_override);
480 
481     dbg("loading LD_PRELOAD libraries");
482     if (load_preload_objects() == -1)
483 	die();
484     preload_tail = obj_tail;
485 
486     dbg("loading needed objects");
487     if (load_needed_objects(obj_main) == -1)
488 	die();
489 
490     /* Make a list of all objects loaded at startup. */
491     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
492 	objlist_push_tail(&list_main, obj);
493     	obj->refcount++;
494     }
495 
496     dbg("checking for required versions");
497     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
498 	die();
499 
500     if (ld_tracing) {		/* We're done */
501 	trace_loaded_objects(obj_main);
502 	exit(0);
503     }
504 
505     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
506        dump_relocations(obj_main);
507        exit (0);
508     }
509 
510     /* setup TLS for main thread */
511     dbg("initializing initial thread local storage");
512     STAILQ_FOREACH(entry, &list_main, link) {
513 	/*
514 	 * Allocate all the initial objects out of the static TLS
515 	 * block even if they didn't ask for it.
516 	 */
517 	allocate_tls_offset(entry->obj);
518     }
519     allocate_initial_tls(obj_list);
520 
521     if (relocate_objects(obj_main,
522 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
523 	die();
524 
525     dbg("doing copy relocations");
526     if (do_copy_relocations(obj_main) == -1)
527 	die();
528 
529     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
530        dump_relocations(obj_main);
531        exit (0);
532     }
533 
534     dbg("initializing key program variables");
535     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
536     set_program_var("environ", env);
537 
538     dbg("initializing thread locks");
539     lockdflt_init();
540 
541     /* Make a list of init functions to call. */
542     objlist_init(&initlist);
543     initlist_add_objects(obj_list, preload_tail, &initlist);
544 
545     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
546 
547     lockstate = wlock_acquire(rtld_bind_lock);
548     objlist_call_init(&initlist, &lockstate);
549     objlist_clear(&initlist);
550     wlock_release(rtld_bind_lock, lockstate);
551 
552     dbg("transferring control to program entry point = %p", obj_main->entry);
553 
554     /* Return the exit procedure and the program entry point. */
555     *exit_proc = rtld_exit;
556     *objp = obj_main;
557     return (func_ptr_type) obj_main->entry;
558 }
559 
560 Elf_Addr
561 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
562 {
563     const Elf_Rel *rel;
564     const Elf_Sym *def;
565     const Obj_Entry *defobj;
566     Elf_Addr *where;
567     Elf_Addr target;
568     int lockstate;
569 
570     lockstate = rlock_acquire(rtld_bind_lock);
571     if (obj->pltrel)
572 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
573     else
574 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
575 
576     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
577     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
578     if (def == NULL)
579 	die();
580 
581     target = (Elf_Addr)(defobj->relocbase + def->st_value);
582 
583     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
584       defobj->strtab + def->st_name, basename(obj->path),
585       (void *)target, basename(defobj->path));
586 
587     /*
588      * Write the new contents for the jmpslot. Note that depending on
589      * architecture, the value which we need to return back to the
590      * lazy binding trampoline may or may not be the target
591      * address. The value returned from reloc_jmpslot() is the value
592      * that the trampoline needs.
593      */
594     target = reloc_jmpslot(where, target, defobj, obj, rel);
595     rlock_release(rtld_bind_lock, lockstate);
596     return target;
597 }
598 
599 /*
600  * Error reporting function.  Use it like printf.  If formats the message
601  * into a buffer, and sets things up so that the next call to dlerror()
602  * will return the message.
603  */
604 void
605 _rtld_error(const char *fmt, ...)
606 {
607     static char buf[512];
608     va_list ap;
609 
610     va_start(ap, fmt);
611     vsnprintf(buf, sizeof buf, fmt, ap);
612     error_message = buf;
613     va_end(ap);
614 }
615 
616 /*
617  * Return a dynamically-allocated copy of the current error message, if any.
618  */
619 static char *
620 errmsg_save(void)
621 {
622     return error_message == NULL ? NULL : xstrdup(error_message);
623 }
624 
625 /*
626  * Restore the current error message from a copy which was previously saved
627  * by errmsg_save().  The copy is freed.
628  */
629 static void
630 errmsg_restore(char *saved_msg)
631 {
632     if (saved_msg == NULL)
633 	error_message = NULL;
634     else {
635 	_rtld_error("%s", saved_msg);
636 	free(saved_msg);
637     }
638 }
639 
640 static const char *
641 basename(const char *name)
642 {
643     const char *p = strrchr(name, '/');
644     return p != NULL ? p + 1 : name;
645 }
646 
647 static struct utsname uts;
648 
649 static int
650 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
651     char *may_free)
652 {
653     const char *p, *p1;
654     char *res1;
655     int subst_len;
656     int kw_len;
657 
658     res1 = *res = NULL;
659     p = real;
660     subst_len = kw_len = 0;
661     for (;;) {
662 	 p1 = strstr(p, kw);
663 	 if (p1 != NULL) {
664 	     if (subst_len == 0) {
665 		 subst_len = strlen(subst);
666 		 kw_len = strlen(kw);
667 	     }
668 	     if (*res == NULL) {
669 		 *res = xmalloc(PATH_MAX);
670 		 res1 = *res;
671 	     }
672 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
673 		 _rtld_error("Substitution of %s in %s cannot be performed",
674 		     kw, real);
675 		 if (may_free != NULL)
676 		     free(may_free);
677 		 free(res);
678 		 return (false);
679 	     }
680 	     memcpy(res1, p, p1 - p);
681 	     res1 += p1 - p;
682 	     memcpy(res1, subst, subst_len);
683 	     res1 += subst_len;
684 	     p = p1 + kw_len;
685 	 } else {
686 	    if (*res == NULL) {
687 		if (may_free != NULL)
688 		    *res = may_free;
689 		else
690 		    *res = xstrdup(real);
691 		return (true);
692 	    }
693 	    *res1 = '\0';
694 	    if (may_free != NULL)
695 		free(may_free);
696 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
697 		free(res);
698 		return (false);
699 	    }
700 	    return (true);
701 	 }
702     }
703 }
704 
705 static char *
706 origin_subst(const char *real, const char *origin_path)
707 {
708     char *res1, *res2, *res3, *res4;
709 
710     if (uts.sysname[0] == '\0') {
711 	if (uname(&uts) != 0) {
712 	    _rtld_error("utsname failed: %d", errno);
713 	    return (NULL);
714 	}
715     }
716     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
717 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
718 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
719 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
720 	    return (NULL);
721     return (res4);
722 }
723 
724 static void
725 die(void)
726 {
727     const char *msg = dlerror();
728 
729     if (msg == NULL)
730 	msg = "Fatal error";
731     errx(1, "%s", msg);
732 }
733 
734 /*
735  * Process a shared object's DYNAMIC section, and save the important
736  * information in its Obj_Entry structure.
737  */
738 static void
739 digest_dynamic(Obj_Entry *obj, int early)
740 {
741     const Elf_Dyn *dynp;
742     Needed_Entry **needed_tail = &obj->needed;
743     const Elf_Dyn *dyn_rpath = NULL;
744     const Elf_Dyn *dyn_soname = NULL;
745     int plttype = DT_REL;
746 
747     obj->bind_now = false;
748     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
749 	switch (dynp->d_tag) {
750 
751 	case DT_REL:
752 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
753 	    break;
754 
755 	case DT_RELSZ:
756 	    obj->relsize = dynp->d_un.d_val;
757 	    break;
758 
759 	case DT_RELENT:
760 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
761 	    break;
762 
763 	case DT_JMPREL:
764 	    obj->pltrel = (const Elf_Rel *)
765 	      (obj->relocbase + dynp->d_un.d_ptr);
766 	    break;
767 
768 	case DT_PLTRELSZ:
769 	    obj->pltrelsize = dynp->d_un.d_val;
770 	    break;
771 
772 	case DT_RELA:
773 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
774 	    break;
775 
776 	case DT_RELASZ:
777 	    obj->relasize = dynp->d_un.d_val;
778 	    break;
779 
780 	case DT_RELAENT:
781 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
782 	    break;
783 
784 	case DT_PLTREL:
785 	    plttype = dynp->d_un.d_val;
786 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
787 	    break;
788 
789 	case DT_SYMTAB:
790 	    obj->symtab = (const Elf_Sym *)
791 	      (obj->relocbase + dynp->d_un.d_ptr);
792 	    break;
793 
794 	case DT_SYMENT:
795 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
796 	    break;
797 
798 	case DT_STRTAB:
799 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
800 	    break;
801 
802 	case DT_STRSZ:
803 	    obj->strsize = dynp->d_un.d_val;
804 	    break;
805 
806 	case DT_VERNEED:
807 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
808 		dynp->d_un.d_val);
809 	    break;
810 
811 	case DT_VERNEEDNUM:
812 	    obj->verneednum = dynp->d_un.d_val;
813 	    break;
814 
815 	case DT_VERDEF:
816 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
817 		dynp->d_un.d_val);
818 	    break;
819 
820 	case DT_VERDEFNUM:
821 	    obj->verdefnum = dynp->d_un.d_val;
822 	    break;
823 
824 	case DT_VERSYM:
825 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
826 		dynp->d_un.d_val);
827 	    break;
828 
829 	case DT_HASH:
830 	    {
831 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
832 		  (obj->relocbase + dynp->d_un.d_ptr);
833 		obj->nbuckets = hashtab[0];
834 		obj->nchains = hashtab[1];
835 		obj->buckets = hashtab + 2;
836 		obj->chains = obj->buckets + obj->nbuckets;
837 	    }
838 	    break;
839 
840 	case DT_NEEDED:
841 	    if (!obj->rtld) {
842 		Needed_Entry *nep = NEW(Needed_Entry);
843 		nep->name = dynp->d_un.d_val;
844 		nep->obj = NULL;
845 		nep->next = NULL;
846 
847 		*needed_tail = nep;
848 		needed_tail = &nep->next;
849 	    }
850 	    break;
851 
852 	case DT_PLTGOT:
853 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
854 	    break;
855 
856 	case DT_TEXTREL:
857 	    obj->textrel = true;
858 	    break;
859 
860 	case DT_SYMBOLIC:
861 	    obj->symbolic = true;
862 	    break;
863 
864 	case DT_RPATH:
865 	case DT_RUNPATH:	/* XXX: process separately */
866 	    /*
867 	     * We have to wait until later to process this, because we
868 	     * might not have gotten the address of the string table yet.
869 	     */
870 	    dyn_rpath = dynp;
871 	    break;
872 
873 	case DT_SONAME:
874 	    dyn_soname = dynp;
875 	    break;
876 
877 	case DT_INIT:
878 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
879 	    break;
880 
881 	case DT_FINI:
882 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
883 	    break;
884 
885 	/*
886 	 * Don't process DT_DEBUG on MIPS as the dynamic section
887 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
888 	 */
889 
890 #ifndef __mips__
891 	case DT_DEBUG:
892 	    /* XXX - not implemented yet */
893 	    if (!early)
894 		dbg("Filling in DT_DEBUG entry");
895 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
896 	    break;
897 #endif
898 
899 	case DT_FLAGS:
900 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
901 		    obj->z_origin = true;
902 		if (dynp->d_un.d_val & DF_SYMBOLIC)
903 		    obj->symbolic = true;
904 		if (dynp->d_un.d_val & DF_TEXTREL)
905 		    obj->textrel = true;
906 		if (dynp->d_un.d_val & DF_BIND_NOW)
907 		    obj->bind_now = true;
908 		if (dynp->d_un.d_val & DF_STATIC_TLS)
909 		    ;
910 	    break;
911 #ifdef __mips__
912 	case DT_MIPS_LOCAL_GOTNO:
913 		obj->local_gotno = dynp->d_un.d_val;
914 	    break;
915 
916 	case DT_MIPS_SYMTABNO:
917 		obj->symtabno = dynp->d_un.d_val;
918 		break;
919 
920 	case DT_MIPS_GOTSYM:
921 		obj->gotsym = dynp->d_un.d_val;
922 		break;
923 
924 	case DT_MIPS_RLD_MAP:
925 #ifdef notyet
926 		if (!early)
927 			dbg("Filling in DT_DEBUG entry");
928 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
929 #endif
930 		break;
931 #endif
932 
933 	case DT_FLAGS_1:
934 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
935 		    obj->z_origin = true;
936 		if (dynp->d_un.d_val & DF_1_GLOBAL)
937 			/* XXX */;
938 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
939 		    obj->bind_now = true;
940 		if (dynp->d_un.d_val & DF_1_NODELETE)
941 		    obj->z_nodelete = true;
942 	    break;
943 
944 	default:
945 	    if (!early) {
946 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
947 		    (long)dynp->d_tag);
948 	    }
949 	    break;
950 	}
951     }
952 
953     obj->traced = false;
954 
955     if (plttype == DT_RELA) {
956 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
957 	obj->pltrel = NULL;
958 	obj->pltrelasize = obj->pltrelsize;
959 	obj->pltrelsize = 0;
960     }
961 
962     if (obj->z_origin && obj->origin_path == NULL) {
963 	obj->origin_path = xmalloc(PATH_MAX);
964 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
965 	    die();
966     }
967 
968     if (dyn_rpath != NULL) {
969 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
970 	if (obj->z_origin)
971 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
972     }
973 
974     if (dyn_soname != NULL)
975 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
976 }
977 
978 /*
979  * Process a shared object's program header.  This is used only for the
980  * main program, when the kernel has already loaded the main program
981  * into memory before calling the dynamic linker.  It creates and
982  * returns an Obj_Entry structure.
983  */
984 static Obj_Entry *
985 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
986 {
987     Obj_Entry *obj;
988     const Elf_Phdr *phlimit = phdr + phnum;
989     const Elf_Phdr *ph;
990     int nsegs = 0;
991 
992     obj = obj_new();
993     for (ph = phdr;  ph < phlimit;  ph++) {
994 	switch (ph->p_type) {
995 
996 	case PT_PHDR:
997 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
998 		_rtld_error("%s: invalid PT_PHDR", path);
999 		return NULL;
1000 	    }
1001 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
1002 	    obj->phsize = ph->p_memsz;
1003 	    break;
1004 
1005 	case PT_INTERP:
1006 	    obj->interp = (const char *) ph->p_vaddr;
1007 	    break;
1008 
1009 	case PT_LOAD:
1010 	    if (nsegs == 0) {	/* First load segment */
1011 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1012 		obj->mapbase = (caddr_t) obj->vaddrbase;
1013 		obj->relocbase = obj->mapbase - obj->vaddrbase;
1014 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1015 		  obj->vaddrbase;
1016 	    } else {		/* Last load segment */
1017 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1018 		  obj->vaddrbase;
1019 	    }
1020 	    nsegs++;
1021 	    break;
1022 
1023 	case PT_DYNAMIC:
1024 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
1025 	    break;
1026 
1027 	case PT_TLS:
1028 	    obj->tlsindex = 1;
1029 	    obj->tlssize = ph->p_memsz;
1030 	    obj->tlsalign = ph->p_align;
1031 	    obj->tlsinitsize = ph->p_filesz;
1032 	    obj->tlsinit = (void*) ph->p_vaddr;
1033 	    break;
1034 	}
1035     }
1036     if (nsegs < 1) {
1037 	_rtld_error("%s: too few PT_LOAD segments", path);
1038 	return NULL;
1039     }
1040 
1041     obj->entry = entry;
1042     return obj;
1043 }
1044 
1045 static Obj_Entry *
1046 dlcheck(void *handle)
1047 {
1048     Obj_Entry *obj;
1049 
1050     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1051 	if (obj == (Obj_Entry *) handle)
1052 	    break;
1053 
1054     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1055 	_rtld_error("Invalid shared object handle %p", handle);
1056 	return NULL;
1057     }
1058     return obj;
1059 }
1060 
1061 /*
1062  * If the given object is already in the donelist, return true.  Otherwise
1063  * add the object to the list and return false.
1064  */
1065 static bool
1066 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1067 {
1068     unsigned int i;
1069 
1070     for (i = 0;  i < dlp->num_used;  i++)
1071 	if (dlp->objs[i] == obj)
1072 	    return true;
1073     /*
1074      * Our donelist allocation should always be sufficient.  But if
1075      * our threads locking isn't working properly, more shared objects
1076      * could have been loaded since we allocated the list.  That should
1077      * never happen, but we'll handle it properly just in case it does.
1078      */
1079     if (dlp->num_used < dlp->num_alloc)
1080 	dlp->objs[dlp->num_used++] = obj;
1081     return false;
1082 }
1083 
1084 /*
1085  * Hash function for symbol table lookup.  Don't even think about changing
1086  * this.  It is specified by the System V ABI.
1087  */
1088 unsigned long
1089 elf_hash(const char *name)
1090 {
1091     const unsigned char *p = (const unsigned char *) name;
1092     unsigned long h = 0;
1093     unsigned long g;
1094 
1095     while (*p != '\0') {
1096 	h = (h << 4) + *p++;
1097 	if ((g = h & 0xf0000000) != 0)
1098 	    h ^= g >> 24;
1099 	h &= ~g;
1100     }
1101     return h;
1102 }
1103 
1104 /*
1105  * Find the library with the given name, and return its full pathname.
1106  * The returned string is dynamically allocated.  Generates an error
1107  * message and returns NULL if the library cannot be found.
1108  *
1109  * If the second argument is non-NULL, then it refers to an already-
1110  * loaded shared object, whose library search path will be searched.
1111  *
1112  * The search order is:
1113  *   LD_LIBRARY_PATH
1114  *   rpath in the referencing file
1115  *   ldconfig hints
1116  *   /lib:/usr/lib
1117  */
1118 static char *
1119 find_library(const char *xname, const Obj_Entry *refobj)
1120 {
1121     char *pathname;
1122     char *name;
1123 
1124     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1125 	if (xname[0] != '/' && !trust) {
1126 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1127 	      xname);
1128 	    return NULL;
1129 	}
1130 	if (refobj != NULL && refobj->z_origin)
1131 	    return origin_subst(xname, refobj->origin_path);
1132 	else
1133 	    return xstrdup(xname);
1134     }
1135 
1136     if (libmap_disable || (refobj == NULL) ||
1137 	(name = lm_find(refobj->path, xname)) == NULL)
1138 	name = (char *)xname;
1139 
1140     dbg(" Searching for \"%s\"", name);
1141 
1142     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1143       (refobj != NULL &&
1144       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1145       (pathname = search_library_path(name, gethints())) != NULL ||
1146       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1147 	return pathname;
1148 
1149     if(refobj != NULL && refobj->path != NULL) {
1150 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1151 	  name, basename(refobj->path));
1152     } else {
1153 	_rtld_error("Shared object \"%s\" not found", name);
1154     }
1155     return NULL;
1156 }
1157 
1158 /*
1159  * Given a symbol number in a referencing object, find the corresponding
1160  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1161  * no definition was found.  Returns a pointer to the Obj_Entry of the
1162  * defining object via the reference parameter DEFOBJ_OUT.
1163  */
1164 const Elf_Sym *
1165 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1166     const Obj_Entry **defobj_out, int flags, SymCache *cache)
1167 {
1168     const Elf_Sym *ref;
1169     const Elf_Sym *def;
1170     const Obj_Entry *defobj;
1171     const Ver_Entry *ventry;
1172     const char *name;
1173     unsigned long hash;
1174 
1175     /*
1176      * If we have already found this symbol, get the information from
1177      * the cache.
1178      */
1179     if (symnum >= refobj->nchains)
1180 	return NULL;	/* Bad object */
1181     if (cache != NULL && cache[symnum].sym != NULL) {
1182 	*defobj_out = cache[symnum].obj;
1183 	return cache[symnum].sym;
1184     }
1185 
1186     ref = refobj->symtab + symnum;
1187     name = refobj->strtab + ref->st_name;
1188     defobj = NULL;
1189 
1190     /*
1191      * We don't have to do a full scale lookup if the symbol is local.
1192      * We know it will bind to the instance in this load module; to
1193      * which we already have a pointer (ie ref). By not doing a lookup,
1194      * we not only improve performance, but it also avoids unresolvable
1195      * symbols when local symbols are not in the hash table. This has
1196      * been seen with the ia64 toolchain.
1197      */
1198     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1199 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1200 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1201 		symnum);
1202 	}
1203 	ventry = fetch_ventry(refobj, symnum);
1204 	hash = elf_hash(name);
1205 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1206     } else {
1207 	def = ref;
1208 	defobj = refobj;
1209     }
1210 
1211     /*
1212      * If we found no definition and the reference is weak, treat the
1213      * symbol as having the value zero.
1214      */
1215     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1216 	def = &sym_zero;
1217 	defobj = obj_main;
1218     }
1219 
1220     if (def != NULL) {
1221 	*defobj_out = defobj;
1222 	/* Record the information in the cache to avoid subsequent lookups. */
1223 	if (cache != NULL) {
1224 	    cache[symnum].sym = def;
1225 	    cache[symnum].obj = defobj;
1226 	}
1227     } else {
1228 	if (refobj != &obj_rtld)
1229 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1230     }
1231     return def;
1232 }
1233 
1234 /*
1235  * Return the search path from the ldconfig hints file, reading it if
1236  * necessary.  Returns NULL if there are problems with the hints file,
1237  * or if the search path there is empty.
1238  */
1239 static const char *
1240 gethints(void)
1241 {
1242     static char *hints;
1243 
1244     if (hints == NULL) {
1245 	int fd;
1246 	struct elfhints_hdr hdr;
1247 	char *p;
1248 
1249 	/* Keep from trying again in case the hints file is bad. */
1250 	hints = "";
1251 
1252 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1253 	    return NULL;
1254 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1255 	  hdr.magic != ELFHINTS_MAGIC ||
1256 	  hdr.version != 1) {
1257 	    close(fd);
1258 	    return NULL;
1259 	}
1260 	p = xmalloc(hdr.dirlistlen + 1);
1261 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1262 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1263 	    free(p);
1264 	    close(fd);
1265 	    return NULL;
1266 	}
1267 	hints = p;
1268 	close(fd);
1269     }
1270     return hints[0] != '\0' ? hints : NULL;
1271 }
1272 
1273 static void
1274 init_dag(Obj_Entry *root)
1275 {
1276     DoneList donelist;
1277 
1278     donelist_init(&donelist);
1279     init_dag1(root, root, &donelist);
1280 }
1281 
1282 static void
1283 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1284 {
1285     const Needed_Entry *needed;
1286 
1287     if (donelist_check(dlp, obj))
1288 	return;
1289 
1290     obj->refcount++;
1291     objlist_push_tail(&obj->dldags, root);
1292     objlist_push_tail(&root->dagmembers, obj);
1293     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1294 	if (needed->obj != NULL)
1295 	    init_dag1(root, needed->obj, dlp);
1296 }
1297 
1298 /*
1299  * Initialize the dynamic linker.  The argument is the address at which
1300  * the dynamic linker has been mapped into memory.  The primary task of
1301  * this function is to relocate the dynamic linker.
1302  */
1303 static void
1304 init_rtld(caddr_t mapbase)
1305 {
1306     Obj_Entry objtmp;	/* Temporary rtld object */
1307 
1308     /*
1309      * Conjure up an Obj_Entry structure for the dynamic linker.
1310      *
1311      * The "path" member can't be initialized yet because string constatns
1312      * cannot yet be acessed. Below we will set it correctly.
1313      */
1314     memset(&objtmp, 0, sizeof(objtmp));
1315     objtmp.path = NULL;
1316     objtmp.rtld = true;
1317     objtmp.mapbase = mapbase;
1318 #ifdef PIC
1319     objtmp.relocbase = mapbase;
1320 #endif
1321     if (RTLD_IS_DYNAMIC()) {
1322 	objtmp.dynamic = rtld_dynamic(&objtmp);
1323 	digest_dynamic(&objtmp, 1);
1324 	assert(objtmp.needed == NULL);
1325 #if !defined(__mips__)
1326 	/* MIPS and SH{3,5} have a bogus DT_TEXTREL. */
1327 	assert(!objtmp.textrel);
1328 #endif
1329 
1330 	/*
1331 	 * Temporarily put the dynamic linker entry into the object list, so
1332 	 * that symbols can be found.
1333 	 */
1334 
1335 	relocate_objects(&objtmp, true, &objtmp);
1336     }
1337 
1338     /* Initialize the object list. */
1339     obj_tail = &obj_list;
1340 
1341     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1342     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1343 
1344     /* Replace the path with a dynamically allocated copy. */
1345     obj_rtld.path = xstrdup(PATH_RTLD);
1346 
1347     r_debug.r_brk = r_debug_state;
1348     r_debug.r_state = RT_CONSISTENT;
1349 }
1350 
1351 /*
1352  * Add the init functions from a needed object list (and its recursive
1353  * needed objects) to "list".  This is not used directly; it is a helper
1354  * function for initlist_add_objects().  The write lock must be held
1355  * when this function is called.
1356  */
1357 static void
1358 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1359 {
1360     /* Recursively process the successor needed objects. */
1361     if (needed->next != NULL)
1362 	initlist_add_neededs(needed->next, list);
1363 
1364     /* Process the current needed object. */
1365     if (needed->obj != NULL)
1366 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1367 }
1368 
1369 /*
1370  * Scan all of the DAGs rooted in the range of objects from "obj" to
1371  * "tail" and add their init functions to "list".  This recurses over
1372  * the DAGs and ensure the proper init ordering such that each object's
1373  * needed libraries are initialized before the object itself.  At the
1374  * same time, this function adds the objects to the global finalization
1375  * list "list_fini" in the opposite order.  The write lock must be
1376  * held when this function is called.
1377  */
1378 static void
1379 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1380 {
1381     if (obj->init_scanned || obj->init_done)
1382 	return;
1383     obj->init_scanned = true;
1384 
1385     /* Recursively process the successor objects. */
1386     if (&obj->next != tail)
1387 	initlist_add_objects(obj->next, tail, list);
1388 
1389     /* Recursively process the needed objects. */
1390     if (obj->needed != NULL)
1391 	initlist_add_neededs(obj->needed, list);
1392 
1393     /* Add the object to the init list. */
1394     if (obj->init != (Elf_Addr)NULL)
1395 	objlist_push_tail(list, obj);
1396 
1397     /* Add the object to the global fini list in the reverse order. */
1398     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1399 	objlist_push_head(&list_fini, obj);
1400 	obj->on_fini_list = true;
1401     }
1402 }
1403 
1404 #ifndef FPTR_TARGET
1405 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1406 #endif
1407 
1408 static bool
1409 is_exported(const Elf_Sym *def)
1410 {
1411     Elf_Addr value;
1412     const func_ptr_type *p;
1413 
1414     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1415     for (p = exports;  *p != NULL;  p++)
1416 	if (FPTR_TARGET(*p) == value)
1417 	    return true;
1418     return false;
1419 }
1420 
1421 /*
1422  * Given a shared object, traverse its list of needed objects, and load
1423  * each of them.  Returns 0 on success.  Generates an error message and
1424  * returns -1 on failure.
1425  */
1426 static int
1427 load_needed_objects(Obj_Entry *first)
1428 {
1429     Obj_Entry *obj, *obj1;
1430 
1431     for (obj = first;  obj != NULL;  obj = obj->next) {
1432 	Needed_Entry *needed;
1433 
1434 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1435 	    obj1 = needed->obj = load_object(obj->strtab + needed->name, obj);
1436 	    if (obj1 == NULL && !ld_tracing)
1437 		return -1;
1438 	    if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1439 		dbg("obj %s nodelete", obj1->path);
1440 		init_dag(obj1);
1441 		ref_dag(obj1);
1442 		obj1->ref_nodel = true;
1443 	    }
1444 	}
1445     }
1446 
1447     return 0;
1448 }
1449 
1450 static int
1451 load_preload_objects(void)
1452 {
1453     char *p = ld_preload;
1454     static const char delim[] = " \t:;";
1455 
1456     if (p == NULL)
1457 	return 0;
1458 
1459     p += strspn(p, delim);
1460     while (*p != '\0') {
1461 	size_t len = strcspn(p, delim);
1462 	char savech;
1463 
1464 	savech = p[len];
1465 	p[len] = '\0';
1466 	if (load_object(p, NULL) == NULL)
1467 	    return -1;	/* XXX - cleanup */
1468 	p[len] = savech;
1469 	p += len;
1470 	p += strspn(p, delim);
1471     }
1472     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1473     return 0;
1474 }
1475 
1476 /*
1477  * Load a shared object into memory, if it is not already loaded.
1478  *
1479  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1480  * on failure.
1481  */
1482 static Obj_Entry *
1483 load_object(const char *name, const Obj_Entry *refobj)
1484 {
1485     Obj_Entry *obj;
1486     int fd = -1;
1487     struct stat sb;
1488     char *path;
1489 
1490     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1491 	if (object_match_name(obj, name))
1492 	    return obj;
1493 
1494     path = find_library(name, refobj);
1495     if (path == NULL)
1496 	return NULL;
1497 
1498     /*
1499      * If we didn't find a match by pathname, open the file and check
1500      * again by device and inode.  This avoids false mismatches caused
1501      * by multiple links or ".." in pathnames.
1502      *
1503      * To avoid a race, we open the file and use fstat() rather than
1504      * using stat().
1505      */
1506     if ((fd = open(path, O_RDONLY)) == -1) {
1507 	_rtld_error("Cannot open \"%s\"", path);
1508 	free(path);
1509 	return NULL;
1510     }
1511     if (fstat(fd, &sb) == -1) {
1512 	_rtld_error("Cannot fstat \"%s\"", path);
1513 	close(fd);
1514 	free(path);
1515 	return NULL;
1516     }
1517     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1518 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1519 	    close(fd);
1520 	    break;
1521 	}
1522     }
1523     if (obj != NULL) {
1524 	object_add_name(obj, name);
1525 	free(path);
1526 	close(fd);
1527 	return obj;
1528     }
1529 
1530     /* First use of this object, so we must map it in */
1531     obj = do_load_object(fd, name, path, &sb);
1532     if (obj == NULL)
1533 	free(path);
1534     close(fd);
1535 
1536     return obj;
1537 }
1538 
1539 static Obj_Entry *
1540 do_load_object(int fd, const char *name, char *path, struct stat *sbp)
1541 {
1542     Obj_Entry *obj;
1543     struct statfs fs;
1544 
1545     /*
1546      * but first, make sure that environment variables haven't been
1547      * used to circumvent the noexec flag on a filesystem.
1548      */
1549     if (dangerous_ld_env) {
1550 	if (fstatfs(fd, &fs) != 0) {
1551 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1552 		return NULL;
1553 	}
1554 	if (fs.f_flags & MNT_NOEXEC) {
1555 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1556 	    return NULL;
1557 	}
1558     }
1559     dbg("loading \"%s\"", path);
1560     obj = map_object(fd, path, sbp);
1561     if (obj == NULL)
1562         return NULL;
1563 
1564     object_add_name(obj, name);
1565     obj->path = path;
1566     digest_dynamic(obj, 0);
1567 
1568     *obj_tail = obj;
1569     obj_tail = &obj->next;
1570     obj_count++;
1571     obj_loads++;
1572     linkmap_add(obj);	/* for GDB & dlinfo() */
1573 
1574     dbg("  %p .. %p: %s", obj->mapbase,
1575          obj->mapbase + obj->mapsize - 1, obj->path);
1576     if (obj->textrel)
1577 	dbg("  WARNING: %s has impure text", obj->path);
1578     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1579 	obj->path);
1580 
1581     return obj;
1582 }
1583 
1584 static Obj_Entry *
1585 obj_from_addr(const void *addr)
1586 {
1587     Obj_Entry *obj;
1588 
1589     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1590 	if (addr < (void *) obj->mapbase)
1591 	    continue;
1592 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1593 	    return obj;
1594     }
1595     return NULL;
1596 }
1597 
1598 /*
1599  * Call the finalization functions for each of the objects in "list"
1600  * which are unreferenced.  All of the objects are expected to have
1601  * non-NULL fini functions.
1602  */
1603 static void
1604 objlist_call_fini(Objlist *list, bool force, int *lockstate)
1605 {
1606     Objlist_Entry *elm, *elm_tmp;
1607     char *saved_msg;
1608 
1609     /*
1610      * Preserve the current error message since a fini function might
1611      * call into the dynamic linker and overwrite it.
1612      */
1613     saved_msg = errmsg_save();
1614     STAILQ_FOREACH_SAFE(elm, list, link, elm_tmp) {
1615 	if (elm->obj->refcount == 0 || force) {
1616 	    dbg("calling fini function for %s at %p", elm->obj->path,
1617 	        (void *)elm->obj->fini);
1618 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1619 		elm->obj->path);
1620 	    /* Remove object from fini list to prevent recursive invocation. */
1621 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1622 	    wlock_release(rtld_bind_lock, *lockstate);
1623 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1624 	    *lockstate = wlock_acquire(rtld_bind_lock);
1625 	    /* No need to free anything if process is going down. */
1626 	    if (!force)
1627 	    	free(elm);
1628 	}
1629     }
1630     errmsg_restore(saved_msg);
1631 }
1632 
1633 /*
1634  * Call the initialization functions for each of the objects in
1635  * "list".  All of the objects are expected to have non-NULL init
1636  * functions.
1637  */
1638 static void
1639 objlist_call_init(Objlist *list, int *lockstate)
1640 {
1641     Objlist_Entry *elm;
1642     Obj_Entry *obj;
1643     char *saved_msg;
1644 
1645     /*
1646      * Clean init_scanned flag so that objects can be rechecked and
1647      * possibly initialized earlier if any of vectors called below
1648      * cause the change by using dlopen.
1649      */
1650     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1651 	obj->init_scanned = false;
1652 
1653     /*
1654      * Preserve the current error message since an init function might
1655      * call into the dynamic linker and overwrite it.
1656      */
1657     saved_msg = errmsg_save();
1658     STAILQ_FOREACH(elm, list, link) {
1659 	if (elm->obj->init_done) /* Initialized early. */
1660 	    continue;
1661 	dbg("calling init function for %s at %p", elm->obj->path,
1662 	    (void *)elm->obj->init);
1663 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1664 	    elm->obj->path);
1665 	/*
1666 	 * Race: other thread might try to use this object before current
1667 	 * one completes the initilization. Not much can be done here
1668 	 * without better locking.
1669 	 */
1670 	elm->obj->init_done = true;
1671     	wlock_release(rtld_bind_lock, *lockstate);
1672 	call_initfini_pointer(elm->obj, elm->obj->init);
1673 	*lockstate = wlock_acquire(rtld_bind_lock);
1674     }
1675     errmsg_restore(saved_msg);
1676 }
1677 
1678 static void
1679 objlist_clear(Objlist *list)
1680 {
1681     Objlist_Entry *elm;
1682 
1683     while (!STAILQ_EMPTY(list)) {
1684 	elm = STAILQ_FIRST(list);
1685 	STAILQ_REMOVE_HEAD(list, link);
1686 	free(elm);
1687     }
1688 }
1689 
1690 static Objlist_Entry *
1691 objlist_find(Objlist *list, const Obj_Entry *obj)
1692 {
1693     Objlist_Entry *elm;
1694 
1695     STAILQ_FOREACH(elm, list, link)
1696 	if (elm->obj == obj)
1697 	    return elm;
1698     return NULL;
1699 }
1700 
1701 static void
1702 objlist_init(Objlist *list)
1703 {
1704     STAILQ_INIT(list);
1705 }
1706 
1707 static void
1708 objlist_push_head(Objlist *list, Obj_Entry *obj)
1709 {
1710     Objlist_Entry *elm;
1711 
1712     elm = NEW(Objlist_Entry);
1713     elm->obj = obj;
1714     STAILQ_INSERT_HEAD(list, elm, link);
1715 }
1716 
1717 static void
1718 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1719 {
1720     Objlist_Entry *elm;
1721 
1722     elm = NEW(Objlist_Entry);
1723     elm->obj = obj;
1724     STAILQ_INSERT_TAIL(list, elm, link);
1725 }
1726 
1727 static void
1728 objlist_remove(Objlist *list, Obj_Entry *obj)
1729 {
1730     Objlist_Entry *elm;
1731 
1732     if ((elm = objlist_find(list, obj)) != NULL) {
1733 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1734 	free(elm);
1735     }
1736 }
1737 
1738 /*
1739  * Relocate newly-loaded shared objects.  The argument is a pointer to
1740  * the Obj_Entry for the first such object.  All objects from the first
1741  * to the end of the list of objects are relocated.  Returns 0 on success,
1742  * or -1 on failure.
1743  */
1744 static int
1745 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1746 {
1747     Obj_Entry *obj;
1748 
1749     for (obj = first;  obj != NULL;  obj = obj->next) {
1750 	if (obj != rtldobj)
1751 	    dbg("relocating \"%s\"", obj->path);
1752 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1753 	    obj->symtab == NULL || obj->strtab == NULL) {
1754 	    _rtld_error("%s: Shared object has no run-time symbol table",
1755 	      obj->path);
1756 	    return -1;
1757 	}
1758 
1759 	if (obj->textrel) {
1760 	    /* There are relocations to the write-protected text segment. */
1761 	    if (mprotect(obj->mapbase, obj->textsize,
1762 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1763 		_rtld_error("%s: Cannot write-enable text segment: %s",
1764 		  obj->path, strerror(errno));
1765 		return -1;
1766 	    }
1767 	}
1768 
1769 	/* Process the non-PLT relocations. */
1770 	if (reloc_non_plt(obj, rtldobj))
1771 		return -1;
1772 
1773 	if (obj->textrel) {	/* Re-protected the text segment. */
1774 	    if (mprotect(obj->mapbase, obj->textsize,
1775 	      PROT_READ|PROT_EXEC) == -1) {
1776 		_rtld_error("%s: Cannot write-protect text segment: %s",
1777 		  obj->path, strerror(errno));
1778 		return -1;
1779 	    }
1780 	}
1781 
1782 	/* Process the PLT relocations. */
1783 	if (reloc_plt(obj) == -1)
1784 	    return -1;
1785 	/* Relocate the jump slots if we are doing immediate binding. */
1786 	if (obj->bind_now || bind_now)
1787 	    if (reloc_jmpslots(obj) == -1)
1788 		return -1;
1789 
1790 
1791 	/*
1792 	 * Set up the magic number and version in the Obj_Entry.  These
1793 	 * were checked in the crt1.o from the original ElfKit, so we
1794 	 * set them for backward compatibility.
1795 	 */
1796 	obj->magic = RTLD_MAGIC;
1797 	obj->version = RTLD_VERSION;
1798 
1799 	/* Set the special PLT or GOT entries. */
1800 	init_pltgot(obj);
1801     }
1802 
1803     return 0;
1804 }
1805 
1806 /*
1807  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1808  * before the process exits.
1809  */
1810 static void
1811 rtld_exit(void)
1812 {
1813     int	lockstate;
1814 
1815     lockstate = wlock_acquire(rtld_bind_lock);
1816     dbg("rtld_exit()");
1817     objlist_call_fini(&list_fini, true, &lockstate);
1818     /* No need to remove the items from the list, since we are exiting. */
1819     if (!libmap_disable)
1820         lm_fini();
1821     wlock_release(rtld_bind_lock, lockstate);
1822 }
1823 
1824 static void *
1825 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1826 {
1827 #ifdef COMPAT_32BIT
1828     const char *trans;
1829 #endif
1830     if (path == NULL)
1831 	return (NULL);
1832 
1833     path += strspn(path, ":;");
1834     while (*path != '\0') {
1835 	size_t len;
1836 	char  *res;
1837 
1838 	len = strcspn(path, ":;");
1839 #ifdef COMPAT_32BIT
1840 	trans = lm_findn(NULL, path, len);
1841 	if (trans)
1842 	    res = callback(trans, strlen(trans), arg);
1843 	else
1844 #endif
1845 	res = callback(path, len, arg);
1846 
1847 	if (res != NULL)
1848 	    return (res);
1849 
1850 	path += len;
1851 	path += strspn(path, ":;");
1852     }
1853 
1854     return (NULL);
1855 }
1856 
1857 struct try_library_args {
1858     const char	*name;
1859     size_t	 namelen;
1860     char	*buffer;
1861     size_t	 buflen;
1862 };
1863 
1864 static void *
1865 try_library_path(const char *dir, size_t dirlen, void *param)
1866 {
1867     struct try_library_args *arg;
1868 
1869     arg = param;
1870     if (*dir == '/' || trust) {
1871 	char *pathname;
1872 
1873 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1874 		return (NULL);
1875 
1876 	pathname = arg->buffer;
1877 	strncpy(pathname, dir, dirlen);
1878 	pathname[dirlen] = '/';
1879 	strcpy(pathname + dirlen + 1, arg->name);
1880 
1881 	dbg("  Trying \"%s\"", pathname);
1882 	if (access(pathname, F_OK) == 0) {		/* We found it */
1883 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1884 	    strcpy(pathname, arg->buffer);
1885 	    return (pathname);
1886 	}
1887     }
1888     return (NULL);
1889 }
1890 
1891 static char *
1892 search_library_path(const char *name, const char *path)
1893 {
1894     char *p;
1895     struct try_library_args arg;
1896 
1897     if (path == NULL)
1898 	return NULL;
1899 
1900     arg.name = name;
1901     arg.namelen = strlen(name);
1902     arg.buffer = xmalloc(PATH_MAX);
1903     arg.buflen = PATH_MAX;
1904 
1905     p = path_enumerate(path, try_library_path, &arg);
1906 
1907     free(arg.buffer);
1908 
1909     return (p);
1910 }
1911 
1912 int
1913 dlclose(void *handle)
1914 {
1915     Obj_Entry *root;
1916     int lockstate;
1917 
1918     lockstate = wlock_acquire(rtld_bind_lock);
1919     root = dlcheck(handle);
1920     if (root == NULL) {
1921 	wlock_release(rtld_bind_lock, lockstate);
1922 	return -1;
1923     }
1924     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
1925 	root->path);
1926 
1927     /* Unreference the object and its dependencies. */
1928     root->dl_refcount--;
1929 
1930     unref_dag(root);
1931 
1932     if (root->refcount == 0) {
1933 	/*
1934 	 * The object is no longer referenced, so we must unload it.
1935 	 * First, call the fini functions.
1936 	 */
1937 	objlist_call_fini(&list_fini, false, &lockstate);
1938 
1939 	/* Finish cleaning up the newly-unreferenced objects. */
1940 	GDB_STATE(RT_DELETE,&root->linkmap);
1941 	unload_object(root);
1942 	GDB_STATE(RT_CONSISTENT,NULL);
1943     }
1944     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
1945     wlock_release(rtld_bind_lock, lockstate);
1946     return 0;
1947 }
1948 
1949 const char *
1950 dlerror(void)
1951 {
1952     char *msg = error_message;
1953     error_message = NULL;
1954     return msg;
1955 }
1956 
1957 /*
1958  * This function is deprecated and has no effect.
1959  */
1960 void
1961 dllockinit(void *context,
1962 	   void *(*lock_create)(void *context),
1963            void (*rlock_acquire)(void *lock),
1964            void (*wlock_acquire)(void *lock),
1965            void (*lock_release)(void *lock),
1966            void (*lock_destroy)(void *lock),
1967 	   void (*context_destroy)(void *context))
1968 {
1969     static void *cur_context;
1970     static void (*cur_context_destroy)(void *);
1971 
1972     /* Just destroy the context from the previous call, if necessary. */
1973     if (cur_context_destroy != NULL)
1974 	cur_context_destroy(cur_context);
1975     cur_context = context;
1976     cur_context_destroy = context_destroy;
1977 }
1978 
1979 void *
1980 dlopen(const char *name, int mode)
1981 {
1982     Obj_Entry **old_obj_tail;
1983     Obj_Entry *obj;
1984     Objlist initlist;
1985     int result, lockstate, nodelete;
1986 
1987     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
1988     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1989     if (ld_tracing != NULL)
1990 	environ = (char **)*get_program_var_addr("environ");
1991     nodelete = mode & RTLD_NODELETE;
1992 
1993     objlist_init(&initlist);
1994 
1995     lockstate = wlock_acquire(rtld_bind_lock);
1996     GDB_STATE(RT_ADD,NULL);
1997 
1998     old_obj_tail = obj_tail;
1999     obj = NULL;
2000     if (name == NULL) {
2001 	obj = obj_main;
2002 	obj->refcount++;
2003     } else {
2004 	obj = load_object(name, obj_main);
2005     }
2006 
2007     if (obj) {
2008 	obj->dl_refcount++;
2009 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2010 	    objlist_push_tail(&list_global, obj);
2011 	mode &= RTLD_MODEMASK;
2012 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2013 	    assert(*old_obj_tail == obj);
2014 	    result = load_needed_objects(obj);
2015 	    init_dag(obj);
2016 	    if (result != -1)
2017 		result = rtld_verify_versions(&obj->dagmembers);
2018 	    if (result != -1 && ld_tracing)
2019 		goto trace;
2020 	    if (result == -1 ||
2021 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2022 		obj->dl_refcount--;
2023 		unref_dag(obj);
2024 		if (obj->refcount == 0)
2025 		    unload_object(obj);
2026 		obj = NULL;
2027 	    } else {
2028 		/* Make list of init functions to call. */
2029 		initlist_add_objects(obj, &obj->next, &initlist);
2030 	    }
2031 	} else {
2032 
2033 	    /* Bump the reference counts for objects on this DAG. */
2034 	    ref_dag(obj);
2035 
2036 	    if (ld_tracing)
2037 		goto trace;
2038 	}
2039 	if (obj != NULL && (nodelete || obj->z_nodelete) && !obj->ref_nodel) {
2040 	    dbg("obj %s nodelete", obj->path);
2041 	    ref_dag(obj);
2042 	    obj->z_nodelete = obj->ref_nodel = true;
2043 	}
2044     }
2045 
2046     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2047 	name);
2048     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2049 
2050     /* Call the init functions. */
2051     objlist_call_init(&initlist, &lockstate);
2052     objlist_clear(&initlist);
2053     wlock_release(rtld_bind_lock, lockstate);
2054     return obj;
2055 trace:
2056     trace_loaded_objects(obj);
2057     wlock_release(rtld_bind_lock, lockstate);
2058     exit(0);
2059 }
2060 
2061 static void *
2062 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2063     int flags)
2064 {
2065     DoneList donelist;
2066     const Obj_Entry *obj, *defobj;
2067     const Elf_Sym *def, *symp;
2068     unsigned long hash;
2069     int lockstate;
2070 
2071     hash = elf_hash(name);
2072     def = NULL;
2073     defobj = NULL;
2074     flags |= SYMLOOK_IN_PLT;
2075 
2076     lockstate = rlock_acquire(rtld_bind_lock);
2077     if (handle == NULL || handle == RTLD_NEXT ||
2078 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2079 
2080 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2081 	    _rtld_error("Cannot determine caller's shared object");
2082 	    rlock_release(rtld_bind_lock, lockstate);
2083 	    return NULL;
2084 	}
2085 	if (handle == NULL) {	/* Just the caller's shared object. */
2086 	    def = symlook_obj(name, hash, obj, ve, flags);
2087 	    defobj = obj;
2088 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2089 		   handle == RTLD_SELF) { /* ... caller included */
2090 	    if (handle == RTLD_NEXT)
2091 		obj = obj->next;
2092 	    for (; obj != NULL; obj = obj->next) {
2093 	    	if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2094 		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2095 			def = symp;
2096 			defobj = obj;
2097 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2098 			    break;
2099 		    }
2100 		}
2101 	    }
2102 	    /*
2103 	     * Search the dynamic linker itself, and possibly resolve the
2104 	     * symbol from there.  This is how the application links to
2105 	     * dynamic linker services such as dlopen.  Only the values listed
2106 	     * in the "exports" array can be resolved from the dynamic linker.
2107 	     */
2108 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2109 		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2110 		if (symp != NULL && is_exported(symp)) {
2111 		    def = symp;
2112 		    defobj = &obj_rtld;
2113 		}
2114 	    }
2115 	} else {
2116 	    assert(handle == RTLD_DEFAULT);
2117 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2118 	}
2119     } else {
2120 	if ((obj = dlcheck(handle)) == NULL) {
2121 	    rlock_release(rtld_bind_lock, lockstate);
2122 	    return NULL;
2123 	}
2124 
2125 	donelist_init(&donelist);
2126 	if (obj->mainprog) {
2127 	    /* Search main program and all libraries loaded by it. */
2128 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2129 			       &donelist);
2130 
2131 	    /*
2132 	     * We do not distinguish between 'main' object and global scope.
2133 	     * If symbol is not defined by objects loaded at startup, continue
2134 	     * search among dynamically loaded objects with RTLD_GLOBAL
2135 	     * scope.
2136 	     */
2137 	    if (def == NULL)
2138 		def = symlook_list(name, hash, &list_global, &defobj, ve,
2139 		    		    flags, &donelist);
2140 	} else {
2141 	    Needed_Entry fake;
2142 
2143 	    /* Search the whole DAG rooted at the given object. */
2144 	    fake.next = NULL;
2145 	    fake.obj = (Obj_Entry *)obj;
2146 	    fake.name = 0;
2147 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2148 				 &donelist);
2149 	}
2150     }
2151 
2152     if (def != NULL) {
2153 	rlock_release(rtld_bind_lock, lockstate);
2154 
2155 	/*
2156 	 * The value required by the caller is derived from the value
2157 	 * of the symbol. For the ia64 architecture, we need to
2158 	 * construct a function descriptor which the caller can use to
2159 	 * call the function with the right 'gp' value. For other
2160 	 * architectures and for non-functions, the value is simply
2161 	 * the relocated value of the symbol.
2162 	 */
2163 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2164 	    return make_function_pointer(def, defobj);
2165 	else
2166 	    return defobj->relocbase + def->st_value;
2167     }
2168 
2169     _rtld_error("Undefined symbol \"%s\"", name);
2170     rlock_release(rtld_bind_lock, lockstate);
2171     return NULL;
2172 }
2173 
2174 void *
2175 dlsym(void *handle, const char *name)
2176 {
2177 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2178 	    SYMLOOK_DLSYM);
2179 }
2180 
2181 dlfunc_t
2182 dlfunc(void *handle, const char *name)
2183 {
2184 	union {
2185 		void *d;
2186 		dlfunc_t f;
2187 	} rv;
2188 
2189 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2190 	    SYMLOOK_DLSYM);
2191 	return (rv.f);
2192 }
2193 
2194 void *
2195 dlvsym(void *handle, const char *name, const char *version)
2196 {
2197 	Ver_Entry ventry;
2198 
2199 	ventry.name = version;
2200 	ventry.file = NULL;
2201 	ventry.hash = elf_hash(version);
2202 	ventry.flags= 0;
2203 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2204 	    SYMLOOK_DLSYM);
2205 }
2206 
2207 int
2208 dladdr(const void *addr, Dl_info *info)
2209 {
2210     const Obj_Entry *obj;
2211     const Elf_Sym *def;
2212     void *symbol_addr;
2213     unsigned long symoffset;
2214     int lockstate;
2215 
2216     lockstate = rlock_acquire(rtld_bind_lock);
2217     obj = obj_from_addr(addr);
2218     if (obj == NULL) {
2219         _rtld_error("No shared object contains address");
2220 	rlock_release(rtld_bind_lock, lockstate);
2221         return 0;
2222     }
2223     info->dli_fname = obj->path;
2224     info->dli_fbase = obj->mapbase;
2225     info->dli_saddr = (void *)0;
2226     info->dli_sname = NULL;
2227 
2228     /*
2229      * Walk the symbol list looking for the symbol whose address is
2230      * closest to the address sent in.
2231      */
2232     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2233         def = obj->symtab + symoffset;
2234 
2235         /*
2236          * For skip the symbol if st_shndx is either SHN_UNDEF or
2237          * SHN_COMMON.
2238          */
2239         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2240             continue;
2241 
2242         /*
2243          * If the symbol is greater than the specified address, or if it
2244          * is further away from addr than the current nearest symbol,
2245          * then reject it.
2246          */
2247         symbol_addr = obj->relocbase + def->st_value;
2248         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2249             continue;
2250 
2251         /* Update our idea of the nearest symbol. */
2252         info->dli_sname = obj->strtab + def->st_name;
2253         info->dli_saddr = symbol_addr;
2254 
2255         /* Exact match? */
2256         if (info->dli_saddr == addr)
2257             break;
2258     }
2259     rlock_release(rtld_bind_lock, lockstate);
2260     return 1;
2261 }
2262 
2263 int
2264 dlinfo(void *handle, int request, void *p)
2265 {
2266     const Obj_Entry *obj;
2267     int error, lockstate;
2268 
2269     lockstate = rlock_acquire(rtld_bind_lock);
2270 
2271     if (handle == NULL || handle == RTLD_SELF) {
2272 	void *retaddr;
2273 
2274 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2275 	if ((obj = obj_from_addr(retaddr)) == NULL)
2276 	    _rtld_error("Cannot determine caller's shared object");
2277     } else
2278 	obj = dlcheck(handle);
2279 
2280     if (obj == NULL) {
2281 	rlock_release(rtld_bind_lock, lockstate);
2282 	return (-1);
2283     }
2284 
2285     error = 0;
2286     switch (request) {
2287     case RTLD_DI_LINKMAP:
2288 	*((struct link_map const **)p) = &obj->linkmap;
2289 	break;
2290     case RTLD_DI_ORIGIN:
2291 	error = rtld_dirname(obj->path, p);
2292 	break;
2293 
2294     case RTLD_DI_SERINFOSIZE:
2295     case RTLD_DI_SERINFO:
2296 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2297 	break;
2298 
2299     default:
2300 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2301 	error = -1;
2302     }
2303 
2304     rlock_release(rtld_bind_lock, lockstate);
2305 
2306     return (error);
2307 }
2308 
2309 int
2310 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2311 {
2312     struct dl_phdr_info phdr_info;
2313     const Obj_Entry *obj;
2314     int error, bind_lockstate, phdr_lockstate;
2315 
2316     phdr_lockstate = wlock_acquire(rtld_phdr_lock);
2317     bind_lockstate = rlock_acquire(rtld_bind_lock);
2318 
2319     error = 0;
2320 
2321     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2322 	phdr_info.dlpi_addr = (Elf_Addr)obj->relocbase;
2323 	phdr_info.dlpi_name = STAILQ_FIRST(&obj->names) ?
2324 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2325 	phdr_info.dlpi_phdr = obj->phdr;
2326 	phdr_info.dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2327 	phdr_info.dlpi_tls_modid = obj->tlsindex;
2328 	phdr_info.dlpi_tls_data = obj->tlsinit;
2329 	phdr_info.dlpi_adds = obj_loads;
2330 	phdr_info.dlpi_subs = obj_loads - obj_count;
2331 
2332 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2333 		break;
2334 
2335     }
2336     rlock_release(rtld_bind_lock, bind_lockstate);
2337     wlock_release(rtld_phdr_lock, phdr_lockstate);
2338 
2339     return (error);
2340 }
2341 
2342 struct fill_search_info_args {
2343     int		 request;
2344     unsigned int flags;
2345     Dl_serinfo  *serinfo;
2346     Dl_serpath  *serpath;
2347     char	*strspace;
2348 };
2349 
2350 static void *
2351 fill_search_info(const char *dir, size_t dirlen, void *param)
2352 {
2353     struct fill_search_info_args *arg;
2354 
2355     arg = param;
2356 
2357     if (arg->request == RTLD_DI_SERINFOSIZE) {
2358 	arg->serinfo->dls_cnt ++;
2359 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2360     } else {
2361 	struct dl_serpath *s_entry;
2362 
2363 	s_entry = arg->serpath;
2364 	s_entry->dls_name  = arg->strspace;
2365 	s_entry->dls_flags = arg->flags;
2366 
2367 	strncpy(arg->strspace, dir, dirlen);
2368 	arg->strspace[dirlen] = '\0';
2369 
2370 	arg->strspace += dirlen + 1;
2371 	arg->serpath++;
2372     }
2373 
2374     return (NULL);
2375 }
2376 
2377 static int
2378 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2379 {
2380     struct dl_serinfo _info;
2381     struct fill_search_info_args args;
2382 
2383     args.request = RTLD_DI_SERINFOSIZE;
2384     args.serinfo = &_info;
2385 
2386     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2387     _info.dls_cnt  = 0;
2388 
2389     path_enumerate(ld_library_path, fill_search_info, &args);
2390     path_enumerate(obj->rpath, fill_search_info, &args);
2391     path_enumerate(gethints(), fill_search_info, &args);
2392     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2393 
2394 
2395     if (request == RTLD_DI_SERINFOSIZE) {
2396 	info->dls_size = _info.dls_size;
2397 	info->dls_cnt = _info.dls_cnt;
2398 	return (0);
2399     }
2400 
2401     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2402 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2403 	return (-1);
2404     }
2405 
2406     args.request  = RTLD_DI_SERINFO;
2407     args.serinfo  = info;
2408     args.serpath  = &info->dls_serpath[0];
2409     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2410 
2411     args.flags = LA_SER_LIBPATH;
2412     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2413 	return (-1);
2414 
2415     args.flags = LA_SER_RUNPATH;
2416     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2417 	return (-1);
2418 
2419     args.flags = LA_SER_CONFIG;
2420     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2421 	return (-1);
2422 
2423     args.flags = LA_SER_DEFAULT;
2424     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2425 	return (-1);
2426     return (0);
2427 }
2428 
2429 static int
2430 rtld_dirname(const char *path, char *bname)
2431 {
2432     const char *endp;
2433 
2434     /* Empty or NULL string gets treated as "." */
2435     if (path == NULL || *path == '\0') {
2436 	bname[0] = '.';
2437 	bname[1] = '\0';
2438 	return (0);
2439     }
2440 
2441     /* Strip trailing slashes */
2442     endp = path + strlen(path) - 1;
2443     while (endp > path && *endp == '/')
2444 	endp--;
2445 
2446     /* Find the start of the dir */
2447     while (endp > path && *endp != '/')
2448 	endp--;
2449 
2450     /* Either the dir is "/" or there are no slashes */
2451     if (endp == path) {
2452 	bname[0] = *endp == '/' ? '/' : '.';
2453 	bname[1] = '\0';
2454 	return (0);
2455     } else {
2456 	do {
2457 	    endp--;
2458 	} while (endp > path && *endp == '/');
2459     }
2460 
2461     if (endp - path + 2 > PATH_MAX)
2462     {
2463 	_rtld_error("Filename is too long: %s", path);
2464 	return(-1);
2465     }
2466 
2467     strncpy(bname, path, endp - path + 1);
2468     bname[endp - path + 1] = '\0';
2469     return (0);
2470 }
2471 
2472 static int
2473 rtld_dirname_abs(const char *path, char *base)
2474 {
2475 	char base_rel[PATH_MAX];
2476 
2477 	if (rtld_dirname(path, base) == -1)
2478 		return (-1);
2479 	if (base[0] == '/')
2480 		return (0);
2481 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2482 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2483 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2484 		return (-1);
2485 	strcpy(base, base_rel);
2486 	return (0);
2487 }
2488 
2489 static void
2490 linkmap_add(Obj_Entry *obj)
2491 {
2492     struct link_map *l = &obj->linkmap;
2493     struct link_map *prev;
2494 
2495     obj->linkmap.l_name = obj->path;
2496     obj->linkmap.l_addr = obj->mapbase;
2497     obj->linkmap.l_ld = obj->dynamic;
2498 #ifdef __mips__
2499     /* GDB needs load offset on MIPS to use the symbols */
2500     obj->linkmap.l_offs = obj->relocbase;
2501 #endif
2502 
2503     if (r_debug.r_map == NULL) {
2504 	r_debug.r_map = l;
2505 	return;
2506     }
2507 
2508     /*
2509      * Scan to the end of the list, but not past the entry for the
2510      * dynamic linker, which we want to keep at the very end.
2511      */
2512     for (prev = r_debug.r_map;
2513       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2514       prev = prev->l_next)
2515 	;
2516 
2517     /* Link in the new entry. */
2518     l->l_prev = prev;
2519     l->l_next = prev->l_next;
2520     if (l->l_next != NULL)
2521 	l->l_next->l_prev = l;
2522     prev->l_next = l;
2523 }
2524 
2525 static void
2526 linkmap_delete(Obj_Entry *obj)
2527 {
2528     struct link_map *l = &obj->linkmap;
2529 
2530     if (l->l_prev == NULL) {
2531 	if ((r_debug.r_map = l->l_next) != NULL)
2532 	    l->l_next->l_prev = NULL;
2533 	return;
2534     }
2535 
2536     if ((l->l_prev->l_next = l->l_next) != NULL)
2537 	l->l_next->l_prev = l->l_prev;
2538 }
2539 
2540 /*
2541  * Function for the debugger to set a breakpoint on to gain control.
2542  *
2543  * The two parameters allow the debugger to easily find and determine
2544  * what the runtime loader is doing and to whom it is doing it.
2545  *
2546  * When the loadhook trap is hit (r_debug_state, set at program
2547  * initialization), the arguments can be found on the stack:
2548  *
2549  *  +8   struct link_map *m
2550  *  +4   struct r_debug  *rd
2551  *  +0   RetAddr
2552  */
2553 void
2554 r_debug_state(struct r_debug* rd, struct link_map *m)
2555 {
2556 }
2557 
2558 /*
2559  * Get address of the pointer variable in the main program.
2560  */
2561 static const void **
2562 get_program_var_addr(const char *name)
2563 {
2564     const Obj_Entry *obj;
2565     unsigned long hash;
2566 
2567     hash = elf_hash(name);
2568     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2569 	const Elf_Sym *def;
2570 
2571 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2572 	    const void **addr;
2573 
2574 	    addr = (const void **)(obj->relocbase + def->st_value);
2575 	    return addr;
2576 	}
2577     }
2578     return NULL;
2579 }
2580 
2581 /*
2582  * Set a pointer variable in the main program to the given value.  This
2583  * is used to set key variables such as "environ" before any of the
2584  * init functions are called.
2585  */
2586 static void
2587 set_program_var(const char *name, const void *value)
2588 {
2589     const void **addr;
2590 
2591     if ((addr = get_program_var_addr(name)) != NULL) {
2592 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2593 	*addr = value;
2594     }
2595 }
2596 
2597 /*
2598  * Given a symbol name in a referencing object, find the corresponding
2599  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2600  * no definition was found.  Returns a pointer to the Obj_Entry of the
2601  * defining object via the reference parameter DEFOBJ_OUT.
2602  */
2603 static const Elf_Sym *
2604 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2605     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2606 {
2607     DoneList donelist;
2608     const Elf_Sym *def;
2609     const Elf_Sym *symp;
2610     const Obj_Entry *obj;
2611     const Obj_Entry *defobj;
2612     const Objlist_Entry *elm;
2613     def = NULL;
2614     defobj = NULL;
2615     donelist_init(&donelist);
2616 
2617     /* Look first in the referencing object if linked symbolically. */
2618     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2619 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2620 	if (symp != NULL) {
2621 	    def = symp;
2622 	    defobj = refobj;
2623 	}
2624     }
2625 
2626     /* Search all objects loaded at program start up. */
2627     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2628 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2629 	    &donelist);
2630 	if (symp != NULL &&
2631 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2632 	    def = symp;
2633 	    defobj = obj;
2634 	}
2635     }
2636 
2637     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2638     STAILQ_FOREACH(elm, &list_global, link) {
2639        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2640            break;
2641        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2642 	   flags, &donelist);
2643 	if (symp != NULL &&
2644 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2645 	    def = symp;
2646 	    defobj = obj;
2647 	}
2648     }
2649 
2650     /* Search all dlopened DAGs containing the referencing object. */
2651     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2652 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2653 	    break;
2654 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2655 	    flags, &donelist);
2656 	if (symp != NULL &&
2657 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2658 	    def = symp;
2659 	    defobj = obj;
2660 	}
2661     }
2662 
2663     /*
2664      * Search the dynamic linker itself, and possibly resolve the
2665      * symbol from there.  This is how the application links to
2666      * dynamic linker services such as dlopen.  Only the values listed
2667      * in the "exports" array can be resolved from the dynamic linker.
2668      */
2669     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2670 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2671 	if (symp != NULL && is_exported(symp)) {
2672 	    def = symp;
2673 	    defobj = &obj_rtld;
2674 	}
2675     }
2676 
2677     if (def != NULL)
2678 	*defobj_out = defobj;
2679     return def;
2680 }
2681 
2682 static const Elf_Sym *
2683 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2684   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2685   DoneList *dlp)
2686 {
2687     const Elf_Sym *symp;
2688     const Elf_Sym *def;
2689     const Obj_Entry *defobj;
2690     const Objlist_Entry *elm;
2691 
2692     def = NULL;
2693     defobj = NULL;
2694     STAILQ_FOREACH(elm, objlist, link) {
2695 	if (donelist_check(dlp, elm->obj))
2696 	    continue;
2697 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2698 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2699 		def = symp;
2700 		defobj = elm->obj;
2701 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2702 		    break;
2703 	    }
2704 	}
2705     }
2706     if (def != NULL)
2707 	*defobj_out = defobj;
2708     return def;
2709 }
2710 
2711 /*
2712  * Search the symbol table of a shared object and all objects needed
2713  * by it for a symbol of the given name.  Search order is
2714  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2715  * definition was found.
2716  */
2717 static const Elf_Sym *
2718 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2719   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2720   DoneList *dlp)
2721 {
2722     const Elf_Sym *def, *def_w;
2723     const Needed_Entry *n;
2724     const Obj_Entry *obj, *defobj, *defobj1;
2725 
2726     def = def_w = NULL;
2727     defobj = NULL;
2728     for (n = needed; n != NULL; n = n->next) {
2729 	if ((obj = n->obj) == NULL ||
2730 	    donelist_check(dlp, obj) ||
2731 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2732 	    continue;
2733 	defobj = obj;
2734 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2735 	    *defobj_out = defobj;
2736 	    return (def);
2737 	}
2738     }
2739     /*
2740      * There we come when either symbol definition is not found in
2741      * directly needed objects, or found symbol is weak.
2742      */
2743     for (n = needed; n != NULL; n = n->next) {
2744 	if ((obj = n->obj) == NULL)
2745 	    continue;
2746 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2747 			       ventry, flags, dlp);
2748 	if (def_w == NULL)
2749 	    continue;
2750 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2751 	    def = def_w;
2752 	    defobj = defobj1;
2753 	}
2754 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2755 	    break;
2756     }
2757     if (def != NULL)
2758 	*defobj_out = defobj;
2759     return (def);
2760 }
2761 
2762 /*
2763  * Search the symbol table of a single shared object for a symbol of
2764  * the given name and version, if requested.  Returns a pointer to the
2765  * symbol, or NULL if no definition was found.
2766  *
2767  * The symbol's hash value is passed in for efficiency reasons; that
2768  * eliminates many recomputations of the hash value.
2769  */
2770 const Elf_Sym *
2771 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2772     const Ver_Entry *ventry, int flags)
2773 {
2774     unsigned long symnum;
2775     const Elf_Sym *vsymp;
2776     Elf_Versym verndx;
2777     int vcount;
2778 
2779     if (obj->buckets == NULL)
2780 	return NULL;
2781 
2782     vsymp = NULL;
2783     vcount = 0;
2784     symnum = obj->buckets[hash % obj->nbuckets];
2785 
2786     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2787 	const Elf_Sym *symp;
2788 	const char *strp;
2789 
2790 	if (symnum >= obj->nchains)
2791 		return NULL;	/* Bad object */
2792 
2793 	symp = obj->symtab + symnum;
2794 	strp = obj->strtab + symp->st_name;
2795 
2796 	switch (ELF_ST_TYPE(symp->st_info)) {
2797 	case STT_FUNC:
2798 	case STT_NOTYPE:
2799 	case STT_OBJECT:
2800 	    if (symp->st_value == 0)
2801 		continue;
2802 		/* fallthrough */
2803 	case STT_TLS:
2804 	    if (symp->st_shndx != SHN_UNDEF)
2805 		break;
2806 #ifndef __mips__
2807 	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
2808 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
2809 		break;
2810 		/* fallthrough */
2811 #endif
2812 	default:
2813 	    continue;
2814 	}
2815 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
2816 	    continue;
2817 
2818 	if (ventry == NULL) {
2819 	    if (obj->versyms != NULL) {
2820 		verndx = VER_NDX(obj->versyms[symnum]);
2821 		if (verndx > obj->vernum) {
2822 		    _rtld_error("%s: symbol %s references wrong version %d",
2823 			obj->path, obj->strtab + symnum, verndx);
2824 		    continue;
2825 		}
2826 		/*
2827 		 * If we are not called from dlsym (i.e. this is a normal
2828 		 * relocation from unversioned binary, accept the symbol
2829 		 * immediately if it happens to have first version after
2830 		 * this shared object became versioned. Otherwise, if
2831 		 * symbol is versioned and not hidden, remember it. If it
2832 		 * is the only symbol with this name exported by the
2833 		 * shared object, it will be returned as a match at the
2834 		 * end of the function. If symbol is global (verndx < 2)
2835 		 * accept it unconditionally.
2836 		 */
2837 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
2838 		    return symp;
2839 	        else if (verndx >= VER_NDX_GIVEN) {
2840 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
2841 			if (vsymp == NULL)
2842 			    vsymp = symp;
2843 			vcount ++;
2844 		    }
2845 		    continue;
2846 		}
2847 	    }
2848 	    return symp;
2849 	} else {
2850 	    if (obj->versyms == NULL) {
2851 		if (object_match_name(obj, ventry->name)) {
2852 		    _rtld_error("%s: object %s should provide version %s for "
2853 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
2854 			obj->strtab + symnum);
2855 		    continue;
2856 		}
2857 	    } else {
2858 		verndx = VER_NDX(obj->versyms[symnum]);
2859 		if (verndx > obj->vernum) {
2860 		    _rtld_error("%s: symbol %s references wrong version %d",
2861 			obj->path, obj->strtab + symnum, verndx);
2862 		    continue;
2863 		}
2864 		if (obj->vertab[verndx].hash != ventry->hash ||
2865 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
2866 		    /*
2867 		     * Version does not match. Look if this is a global symbol
2868 		     * and if it is not hidden. If global symbol (verndx < 2)
2869 		     * is available, use it. Do not return symbol if we are
2870 		     * called by dlvsym, because dlvsym looks for a specific
2871 		     * version and default one is not what dlvsym wants.
2872 		     */
2873 		    if ((flags & SYMLOOK_DLSYM) ||
2874 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
2875 			(verndx >= VER_NDX_GIVEN))
2876 			continue;
2877 		}
2878 	    }
2879 	    return symp;
2880 	}
2881     }
2882     return (vcount == 1) ? vsymp : NULL;
2883 }
2884 
2885 static void
2886 trace_loaded_objects(Obj_Entry *obj)
2887 {
2888     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2889     int		c;
2890 
2891     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2892 	main_local = "";
2893 
2894     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2895 	fmt1 = "\t%o => %p (%x)\n";
2896 
2897     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2898 	fmt2 = "\t%o (%x)\n";
2899 
2900     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2901 
2902     for (; obj; obj = obj->next) {
2903 	Needed_Entry		*needed;
2904 	char			*name, *path;
2905 	bool			is_lib;
2906 
2907 	if (list_containers && obj->needed != NULL)
2908 	    printf("%s:\n", obj->path);
2909 	for (needed = obj->needed; needed; needed = needed->next) {
2910 	    if (needed->obj != NULL) {
2911 		if (needed->obj->traced && !list_containers)
2912 		    continue;
2913 		needed->obj->traced = true;
2914 		path = needed->obj->path;
2915 	    } else
2916 		path = "not found";
2917 
2918 	    name = (char *)obj->strtab + needed->name;
2919 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2920 
2921 	    fmt = is_lib ? fmt1 : fmt2;
2922 	    while ((c = *fmt++) != '\0') {
2923 		switch (c) {
2924 		default:
2925 		    putchar(c);
2926 		    continue;
2927 		case '\\':
2928 		    switch (c = *fmt) {
2929 		    case '\0':
2930 			continue;
2931 		    case 'n':
2932 			putchar('\n');
2933 			break;
2934 		    case 't':
2935 			putchar('\t');
2936 			break;
2937 		    }
2938 		    break;
2939 		case '%':
2940 		    switch (c = *fmt) {
2941 		    case '\0':
2942 			continue;
2943 		    case '%':
2944 		    default:
2945 			putchar(c);
2946 			break;
2947 		    case 'A':
2948 			printf("%s", main_local);
2949 			break;
2950 		    case 'a':
2951 			printf("%s", obj_main->path);
2952 			break;
2953 		    case 'o':
2954 			printf("%s", name);
2955 			break;
2956 #if 0
2957 		    case 'm':
2958 			printf("%d", sodp->sod_major);
2959 			break;
2960 		    case 'n':
2961 			printf("%d", sodp->sod_minor);
2962 			break;
2963 #endif
2964 		    case 'p':
2965 			printf("%s", path);
2966 			break;
2967 		    case 'x':
2968 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2969 			break;
2970 		    }
2971 		    break;
2972 		}
2973 		++fmt;
2974 	    }
2975 	}
2976     }
2977 }
2978 
2979 /*
2980  * Unload a dlopened object and its dependencies from memory and from
2981  * our data structures.  It is assumed that the DAG rooted in the
2982  * object has already been unreferenced, and that the object has a
2983  * reference count of 0.
2984  */
2985 static void
2986 unload_object(Obj_Entry *root)
2987 {
2988     Obj_Entry *obj;
2989     Obj_Entry **linkp;
2990 
2991     assert(root->refcount == 0);
2992 
2993     /*
2994      * Pass over the DAG removing unreferenced objects from
2995      * appropriate lists.
2996      */
2997     unlink_object(root);
2998 
2999     /* Unmap all objects that are no longer referenced. */
3000     linkp = &obj_list->next;
3001     while ((obj = *linkp) != NULL) {
3002 	if (obj->refcount == 0) {
3003 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3004 		obj->path);
3005 	    dbg("unloading \"%s\"", obj->path);
3006 	    munmap(obj->mapbase, obj->mapsize);
3007 	    linkmap_delete(obj);
3008 	    *linkp = obj->next;
3009 	    obj_count--;
3010 	    obj_free(obj);
3011 	} else
3012 	    linkp = &obj->next;
3013     }
3014     obj_tail = linkp;
3015 }
3016 
3017 static void
3018 unlink_object(Obj_Entry *root)
3019 {
3020     Objlist_Entry *elm;
3021 
3022     if (root->refcount == 0) {
3023 	/* Remove the object from the RTLD_GLOBAL list. */
3024 	objlist_remove(&list_global, root);
3025 
3026     	/* Remove the object from all objects' DAG lists. */
3027     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3028 	    objlist_remove(&elm->obj->dldags, root);
3029 	    if (elm->obj != root)
3030 		unlink_object(elm->obj);
3031 	}
3032     }
3033 }
3034 
3035 static void
3036 ref_dag(Obj_Entry *root)
3037 {
3038     Objlist_Entry *elm;
3039 
3040     STAILQ_FOREACH(elm, &root->dagmembers, link)
3041 	elm->obj->refcount++;
3042 }
3043 
3044 static void
3045 unref_dag(Obj_Entry *root)
3046 {
3047     Objlist_Entry *elm;
3048 
3049     STAILQ_FOREACH(elm, &root->dagmembers, link)
3050 	elm->obj->refcount--;
3051 }
3052 
3053 /*
3054  * Common code for MD __tls_get_addr().
3055  */
3056 void *
3057 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3058 {
3059     Elf_Addr* dtv = *dtvp;
3060     int lockstate;
3061 
3062     /* Check dtv generation in case new modules have arrived */
3063     if (dtv[0] != tls_dtv_generation) {
3064 	Elf_Addr* newdtv;
3065 	int to_copy;
3066 
3067 	lockstate = wlock_acquire(rtld_bind_lock);
3068 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3069 	to_copy = dtv[1];
3070 	if (to_copy > tls_max_index)
3071 	    to_copy = tls_max_index;
3072 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3073 	newdtv[0] = tls_dtv_generation;
3074 	newdtv[1] = tls_max_index;
3075 	free(dtv);
3076 	wlock_release(rtld_bind_lock, lockstate);
3077 	*dtvp = newdtv;
3078     }
3079 
3080     /* Dynamically allocate module TLS if necessary */
3081     if (!dtv[index + 1]) {
3082 	/* Signal safe, wlock will block out signals. */
3083 	lockstate = wlock_acquire(rtld_bind_lock);
3084 	if (!dtv[index + 1])
3085 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3086 	wlock_release(rtld_bind_lock, lockstate);
3087     }
3088     return (void*) (dtv[index + 1] + offset);
3089 }
3090 
3091 /* XXX not sure what variants to use for arm. */
3092 
3093 #if defined(__ia64__) || defined(__powerpc__)
3094 
3095 /*
3096  * Allocate Static TLS using the Variant I method.
3097  */
3098 void *
3099 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3100 {
3101     Obj_Entry *obj;
3102     char *tcb;
3103     Elf_Addr **tls;
3104     Elf_Addr *dtv;
3105     Elf_Addr addr;
3106     int i;
3107 
3108     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3109 	return (oldtcb);
3110 
3111     assert(tcbsize >= TLS_TCB_SIZE);
3112     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3113     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3114 
3115     if (oldtcb != NULL) {
3116 	memcpy(tls, oldtcb, tls_static_space);
3117 	free(oldtcb);
3118 
3119 	/* Adjust the DTV. */
3120 	dtv = tls[0];
3121 	for (i = 0; i < dtv[1]; i++) {
3122 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3123 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3124 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3125 	    }
3126 	}
3127     } else {
3128 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3129 	tls[0] = dtv;
3130 	dtv[0] = tls_dtv_generation;
3131 	dtv[1] = tls_max_index;
3132 
3133 	for (obj = objs; obj; obj = obj->next) {
3134 	    if (obj->tlsoffset) {
3135 		addr = (Elf_Addr)tls + obj->tlsoffset;
3136 		memset((void*) (addr + obj->tlsinitsize),
3137 		       0, obj->tlssize - obj->tlsinitsize);
3138 		if (obj->tlsinit)
3139 		    memcpy((void*) addr, obj->tlsinit,
3140 			   obj->tlsinitsize);
3141 		dtv[obj->tlsindex + 1] = addr;
3142 	    }
3143 	}
3144     }
3145 
3146     return (tcb);
3147 }
3148 
3149 void
3150 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3151 {
3152     Elf_Addr *dtv;
3153     Elf_Addr tlsstart, tlsend;
3154     int dtvsize, i;
3155 
3156     assert(tcbsize >= TLS_TCB_SIZE);
3157 
3158     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3159     tlsend = tlsstart + tls_static_space;
3160 
3161     dtv = *(Elf_Addr **)tlsstart;
3162     dtvsize = dtv[1];
3163     for (i = 0; i < dtvsize; i++) {
3164 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3165 	    free((void*)dtv[i+2]);
3166 	}
3167     }
3168     free(dtv);
3169     free(tcb);
3170 }
3171 
3172 #endif
3173 
3174 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3175     defined(__arm__) || defined(__mips__)
3176 
3177 /*
3178  * Allocate Static TLS using the Variant II method.
3179  */
3180 void *
3181 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3182 {
3183     Obj_Entry *obj;
3184     size_t size;
3185     char *tls;
3186     Elf_Addr *dtv, *olddtv;
3187     Elf_Addr segbase, oldsegbase, addr;
3188     int i;
3189 
3190     size = round(tls_static_space, tcbalign);
3191 
3192     assert(tcbsize >= 2*sizeof(Elf_Addr));
3193     tls = calloc(1, size + tcbsize);
3194     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3195 
3196     segbase = (Elf_Addr)(tls + size);
3197     ((Elf_Addr*)segbase)[0] = segbase;
3198     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3199 
3200     dtv[0] = tls_dtv_generation;
3201     dtv[1] = tls_max_index;
3202 
3203     if (oldtls) {
3204 	/*
3205 	 * Copy the static TLS block over whole.
3206 	 */
3207 	oldsegbase = (Elf_Addr) oldtls;
3208 	memcpy((void *)(segbase - tls_static_space),
3209 	       (const void *)(oldsegbase - tls_static_space),
3210 	       tls_static_space);
3211 
3212 	/*
3213 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3214 	 * move them over.
3215 	 */
3216 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3217 	for (i = 0; i < olddtv[1]; i++) {
3218 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3219 		dtv[i+2] = olddtv[i+2];
3220 		olddtv[i+2] = 0;
3221 	    }
3222 	}
3223 
3224 	/*
3225 	 * We assume that this block was the one we created with
3226 	 * allocate_initial_tls().
3227 	 */
3228 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3229     } else {
3230 	for (obj = objs; obj; obj = obj->next) {
3231 	    if (obj->tlsoffset) {
3232 		addr = segbase - obj->tlsoffset;
3233 		memset((void*) (addr + obj->tlsinitsize),
3234 		       0, obj->tlssize - obj->tlsinitsize);
3235 		if (obj->tlsinit)
3236 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3237 		dtv[obj->tlsindex + 1] = addr;
3238 	    }
3239 	}
3240     }
3241 
3242     return (void*) segbase;
3243 }
3244 
3245 void
3246 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3247 {
3248     size_t size;
3249     Elf_Addr* dtv;
3250     int dtvsize, i;
3251     Elf_Addr tlsstart, tlsend;
3252 
3253     /*
3254      * Figure out the size of the initial TLS block so that we can
3255      * find stuff which ___tls_get_addr() allocated dynamically.
3256      */
3257     size = round(tls_static_space, tcbalign);
3258 
3259     dtv = ((Elf_Addr**)tls)[1];
3260     dtvsize = dtv[1];
3261     tlsend = (Elf_Addr) tls;
3262     tlsstart = tlsend - size;
3263     for (i = 0; i < dtvsize; i++) {
3264 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3265 	    free((void*) dtv[i+2]);
3266 	}
3267     }
3268 
3269     free((void*) tlsstart);
3270     free((void*) dtv);
3271 }
3272 
3273 #endif
3274 
3275 /*
3276  * Allocate TLS block for module with given index.
3277  */
3278 void *
3279 allocate_module_tls(int index)
3280 {
3281     Obj_Entry* obj;
3282     char* p;
3283 
3284     for (obj = obj_list; obj; obj = obj->next) {
3285 	if (obj->tlsindex == index)
3286 	    break;
3287     }
3288     if (!obj) {
3289 	_rtld_error("Can't find module with TLS index %d", index);
3290 	die();
3291     }
3292 
3293     p = malloc(obj->tlssize);
3294     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3295     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3296 
3297     return p;
3298 }
3299 
3300 bool
3301 allocate_tls_offset(Obj_Entry *obj)
3302 {
3303     size_t off;
3304 
3305     if (obj->tls_done)
3306 	return true;
3307 
3308     if (obj->tlssize == 0) {
3309 	obj->tls_done = true;
3310 	return true;
3311     }
3312 
3313     if (obj->tlsindex == 1)
3314 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3315     else
3316 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3317 				   obj->tlssize, obj->tlsalign);
3318 
3319     /*
3320      * If we have already fixed the size of the static TLS block, we
3321      * must stay within that size. When allocating the static TLS, we
3322      * leave a small amount of space spare to be used for dynamically
3323      * loading modules which use static TLS.
3324      */
3325     if (tls_static_space) {
3326 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3327 	    return false;
3328     }
3329 
3330     tls_last_offset = obj->tlsoffset = off;
3331     tls_last_size = obj->tlssize;
3332     obj->tls_done = true;
3333 
3334     return true;
3335 }
3336 
3337 void
3338 free_tls_offset(Obj_Entry *obj)
3339 {
3340 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3341     defined(__arm__) || defined(__mips__)
3342     /*
3343      * If we were the last thing to allocate out of the static TLS
3344      * block, we give our space back to the 'allocator'. This is a
3345      * simplistic workaround to allow libGL.so.1 to be loaded and
3346      * unloaded multiple times. We only handle the Variant II
3347      * mechanism for now - this really needs a proper allocator.
3348      */
3349     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3350 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3351 	tls_last_offset -= obj->tlssize;
3352 	tls_last_size = 0;
3353     }
3354 #endif
3355 }
3356 
3357 void *
3358 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3359 {
3360     void *ret;
3361     int lockstate;
3362 
3363     lockstate = wlock_acquire(rtld_bind_lock);
3364     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3365     wlock_release(rtld_bind_lock, lockstate);
3366     return (ret);
3367 }
3368 
3369 void
3370 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3371 {
3372     int lockstate;
3373 
3374     lockstate = wlock_acquire(rtld_bind_lock);
3375     free_tls(tcb, tcbsize, tcbalign);
3376     wlock_release(rtld_bind_lock, lockstate);
3377 }
3378 
3379 static void
3380 object_add_name(Obj_Entry *obj, const char *name)
3381 {
3382     Name_Entry *entry;
3383     size_t len;
3384 
3385     len = strlen(name);
3386     entry = malloc(sizeof(Name_Entry) + len);
3387 
3388     if (entry != NULL) {
3389 	strcpy(entry->name, name);
3390 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3391     }
3392 }
3393 
3394 static int
3395 object_match_name(const Obj_Entry *obj, const char *name)
3396 {
3397     Name_Entry *entry;
3398 
3399     STAILQ_FOREACH(entry, &obj->names, link) {
3400 	if (strcmp(name, entry->name) == 0)
3401 	    return (1);
3402     }
3403     return (0);
3404 }
3405 
3406 static Obj_Entry *
3407 locate_dependency(const Obj_Entry *obj, const char *name)
3408 {
3409     const Objlist_Entry *entry;
3410     const Needed_Entry *needed;
3411 
3412     STAILQ_FOREACH(entry, &list_main, link) {
3413 	if (object_match_name(entry->obj, name))
3414 	    return entry->obj;
3415     }
3416 
3417     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3418 	if (needed->obj == NULL)
3419 	    continue;
3420 	if (object_match_name(needed->obj, name))
3421 	    return needed->obj;
3422     }
3423     _rtld_error("%s: Unexpected  inconsistency: dependency %s not found",
3424 	obj->path, name);
3425     die();
3426 }
3427 
3428 static int
3429 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3430     const Elf_Vernaux *vna)
3431 {
3432     const Elf_Verdef *vd;
3433     const char *vername;
3434 
3435     vername = refobj->strtab + vna->vna_name;
3436     vd = depobj->verdef;
3437     if (vd == NULL) {
3438 	_rtld_error("%s: version %s required by %s not defined",
3439 	    depobj->path, vername, refobj->path);
3440 	return (-1);
3441     }
3442     for (;;) {
3443 	if (vd->vd_version != VER_DEF_CURRENT) {
3444 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3445 		depobj->path, vd->vd_version);
3446 	    return (-1);
3447 	}
3448 	if (vna->vna_hash == vd->vd_hash) {
3449 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3450 		((char *)vd + vd->vd_aux);
3451 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3452 		return (0);
3453 	}
3454 	if (vd->vd_next == 0)
3455 	    break;
3456 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3457     }
3458     if (vna->vna_flags & VER_FLG_WEAK)
3459 	return (0);
3460     _rtld_error("%s: version %s required by %s not found",
3461 	depobj->path, vername, refobj->path);
3462     return (-1);
3463 }
3464 
3465 static int
3466 rtld_verify_object_versions(Obj_Entry *obj)
3467 {
3468     const Elf_Verneed *vn;
3469     const Elf_Verdef  *vd;
3470     const Elf_Verdaux *vda;
3471     const Elf_Vernaux *vna;
3472     const Obj_Entry *depobj;
3473     int maxvernum, vernum;
3474 
3475     maxvernum = 0;
3476     /*
3477      * Walk over defined and required version records and figure out
3478      * max index used by any of them. Do very basic sanity checking
3479      * while there.
3480      */
3481     vn = obj->verneed;
3482     while (vn != NULL) {
3483 	if (vn->vn_version != VER_NEED_CURRENT) {
3484 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3485 		obj->path, vn->vn_version);
3486 	    return (-1);
3487 	}
3488 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3489 	for (;;) {
3490 	    vernum = VER_NEED_IDX(vna->vna_other);
3491 	    if (vernum > maxvernum)
3492 		maxvernum = vernum;
3493 	    if (vna->vna_next == 0)
3494 		 break;
3495 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3496 	}
3497 	if (vn->vn_next == 0)
3498 	    break;
3499 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3500     }
3501 
3502     vd = obj->verdef;
3503     while (vd != NULL) {
3504 	if (vd->vd_version != VER_DEF_CURRENT) {
3505 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3506 		obj->path, vd->vd_version);
3507 	    return (-1);
3508 	}
3509 	vernum = VER_DEF_IDX(vd->vd_ndx);
3510 	if (vernum > maxvernum)
3511 		maxvernum = vernum;
3512 	if (vd->vd_next == 0)
3513 	    break;
3514 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3515     }
3516 
3517     if (maxvernum == 0)
3518 	return (0);
3519 
3520     /*
3521      * Store version information in array indexable by version index.
3522      * Verify that object version requirements are satisfied along the
3523      * way.
3524      */
3525     obj->vernum = maxvernum + 1;
3526     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3527 
3528     vd = obj->verdef;
3529     while (vd != NULL) {
3530 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3531 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3532 	    assert(vernum <= maxvernum);
3533 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3534 	    obj->vertab[vernum].hash = vd->vd_hash;
3535 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3536 	    obj->vertab[vernum].file = NULL;
3537 	    obj->vertab[vernum].flags = 0;
3538 	}
3539 	if (vd->vd_next == 0)
3540 	    break;
3541 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3542     }
3543 
3544     vn = obj->verneed;
3545     while (vn != NULL) {
3546 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3547 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3548 	for (;;) {
3549 	    if (check_object_provided_version(obj, depobj, vna))
3550 		return (-1);
3551 	    vernum = VER_NEED_IDX(vna->vna_other);
3552 	    assert(vernum <= maxvernum);
3553 	    obj->vertab[vernum].hash = vna->vna_hash;
3554 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3555 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3556 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3557 		VER_INFO_HIDDEN : 0;
3558 	    if (vna->vna_next == 0)
3559 		 break;
3560 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3561 	}
3562 	if (vn->vn_next == 0)
3563 	    break;
3564 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3565     }
3566     return 0;
3567 }
3568 
3569 static int
3570 rtld_verify_versions(const Objlist *objlist)
3571 {
3572     Objlist_Entry *entry;
3573     int rc;
3574 
3575     rc = 0;
3576     STAILQ_FOREACH(entry, objlist, link) {
3577 	/*
3578 	 * Skip dummy objects or objects that have their version requirements
3579 	 * already checked.
3580 	 */
3581 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3582 	    continue;
3583 	if (rtld_verify_object_versions(entry->obj) == -1) {
3584 	    rc = -1;
3585 	    if (ld_tracing == NULL)
3586 		break;
3587 	}
3588     }
3589     if (rc == 0 || ld_tracing != NULL)
3590     	rc = rtld_verify_object_versions(&obj_rtld);
3591     return rc;
3592 }
3593 
3594 const Ver_Entry *
3595 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3596 {
3597     Elf_Versym vernum;
3598 
3599     if (obj->vertab) {
3600 	vernum = VER_NDX(obj->versyms[symnum]);
3601 	if (vernum >= obj->vernum) {
3602 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3603 		obj->path, obj->strtab + symnum, vernum);
3604 	} else if (obj->vertab[vernum].hash != 0) {
3605 	    return &obj->vertab[vernum];
3606 	}
3607     }
3608     return NULL;
3609 }
3610