xref: /freebsd/libexec/rtld-elf/rtld.c (revision 9124ddeb4a551977cf6b2218291e7c666ce25f47)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 #include "notes.h"
65 
66 #ifndef COMPAT_32BIT
67 #define PATH_RTLD	"/libexec/ld-elf.so.1"
68 #else
69 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
70 #endif
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static const char *basename(const char *);
80 static void die(void) __dead2;
81 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82     const Elf_Dyn **);
83 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
84 static void digest_dynamic(Obj_Entry *, int);
85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86 static Obj_Entry *dlcheck(void *);
87 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
88     int lo_flags, int mode);
89 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
90 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
91 static bool donelist_check(DoneList *, const Obj_Entry *);
92 static void errmsg_restore(char *);
93 static char *errmsg_save(void);
94 static void *fill_search_info(const char *, size_t, void *);
95 static char *find_library(const char *, const Obj_Entry *);
96 static const char *gethints(void);
97 static void init_dag(Obj_Entry *);
98 static void init_rtld(caddr_t, Elf_Auxinfo **);
99 static void initlist_add_neededs(Needed_Entry *, Objlist *);
100 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
101 static void linkmap_add(Obj_Entry *);
102 static void linkmap_delete(Obj_Entry *);
103 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
104 static void unload_filtees(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *, int);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
108 static void map_stacks_exec(RtldLockState *);
109 static Obj_Entry *obj_from_addr(const void *);
110 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
111 static void objlist_call_init(Objlist *, RtldLockState *);
112 static void objlist_clear(Objlist *);
113 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114 static void objlist_init(Objlist *);
115 static void objlist_push_head(Objlist *, Obj_Entry *);
116 static void objlist_push_tail(Objlist *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
120 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
121     RtldLockState *lockstate);
122 static int rtld_dirname(const char *, char *);
123 static int rtld_dirname_abs(const char *, char *);
124 static void *rtld_dlopen(const char *name, int fd, int mode);
125 static void rtld_exit(void);
126 static char *search_library_path(const char *, const char *);
127 static const void **get_program_var_addr(const char *, RtldLockState *);
128 static void set_program_var(const char *, const void *);
129 static int symlook_default(SymLook *, const Obj_Entry *refobj);
130 static int symlook_global(SymLook *, DoneList *);
131 static void symlook_init_from_req(SymLook *, const SymLook *);
132 static int symlook_list(SymLook *, const Objlist *, DoneList *);
133 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
134 static int symlook_obj1(SymLook *, const Obj_Entry *);
135 static void trace_loaded_objects(Obj_Entry *);
136 static void unlink_object(Obj_Entry *);
137 static void unload_object(Obj_Entry *);
138 static void unref_dag(Obj_Entry *);
139 static void ref_dag(Obj_Entry *);
140 static int origin_subst_one(char **, const char *, const char *,
141   const char *, char *);
142 static char *origin_subst(const char *, const char *);
143 static void preinit_main(void);
144 static int  rtld_verify_versions(const Objlist *);
145 static int  rtld_verify_object_versions(Obj_Entry *);
146 static void object_add_name(Obj_Entry *, const char *);
147 static int  object_match_name(const Obj_Entry *, const char *);
148 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
149 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
150     struct dl_phdr_info *phdr_info);
151 
152 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
153 
154 /*
155  * Data declarations.
156  */
157 static char *error_message;	/* Message for dlerror(), or NULL */
158 struct r_debug r_debug;		/* for GDB; */
159 static bool libmap_disable;	/* Disable libmap */
160 static bool ld_loadfltr;	/* Immediate filters processing */
161 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
162 static bool trust;		/* False for setuid and setgid programs */
163 static bool dangerous_ld_env;	/* True if environment variables have been
164 				   used to affect the libraries loaded */
165 static char *ld_bind_now;	/* Environment variable for immediate binding */
166 static char *ld_debug;		/* Environment variable for debugging */
167 static char *ld_library_path;	/* Environment variable for search path */
168 static char *ld_preload;	/* Environment variable for libraries to
169 				   load first */
170 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
171 static char *ld_tracing;	/* Called from ldd to print libs */
172 static char *ld_utrace;		/* Use utrace() to log events. */
173 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
174 static Obj_Entry **obj_tail;	/* Link field of last object in list */
175 static Obj_Entry *obj_main;	/* The main program shared object */
176 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
177 static unsigned int obj_count;	/* Number of objects in obj_list */
178 static unsigned int obj_loads;	/* Number of objects in obj_list */
179 
180 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
181   STAILQ_HEAD_INITIALIZER(list_global);
182 static Objlist list_main =	/* Objects loaded at program startup */
183   STAILQ_HEAD_INITIALIZER(list_main);
184 static Objlist list_fini =	/* Objects needing fini() calls */
185   STAILQ_HEAD_INITIALIZER(list_fini);
186 
187 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
188 
189 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
190 
191 extern Elf_Dyn _DYNAMIC;
192 #pragma weak _DYNAMIC
193 #ifndef RTLD_IS_DYNAMIC
194 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
195 #endif
196 
197 int osreldate, pagesize;
198 
199 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
200 
201 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
202 static int max_stack_flags;
203 
204 /*
205  * Global declarations normally provided by crt1.  The dynamic linker is
206  * not built with crt1, so we have to provide them ourselves.
207  */
208 char *__progname;
209 char **environ;
210 
211 /*
212  * Used to pass argc, argv to init functions.
213  */
214 int main_argc;
215 char **main_argv;
216 
217 /*
218  * Globals to control TLS allocation.
219  */
220 size_t tls_last_offset;		/* Static TLS offset of last module */
221 size_t tls_last_size;		/* Static TLS size of last module */
222 size_t tls_static_space;	/* Static TLS space allocated */
223 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
224 int tls_max_index = 1;		/* Largest module index allocated */
225 
226 /*
227  * Fill in a DoneList with an allocation large enough to hold all of
228  * the currently-loaded objects.  Keep this as a macro since it calls
229  * alloca and we want that to occur within the scope of the caller.
230  */
231 #define donelist_init(dlp)					\
232     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
233     assert((dlp)->objs != NULL),				\
234     (dlp)->num_alloc = obj_count,				\
235     (dlp)->num_used = 0)
236 
237 #define	UTRACE_DLOPEN_START		1
238 #define	UTRACE_DLOPEN_STOP		2
239 #define	UTRACE_DLCLOSE_START		3
240 #define	UTRACE_DLCLOSE_STOP		4
241 #define	UTRACE_LOAD_OBJECT		5
242 #define	UTRACE_UNLOAD_OBJECT		6
243 #define	UTRACE_ADD_RUNDEP		7
244 #define	UTRACE_PRELOAD_FINISHED		8
245 #define	UTRACE_INIT_CALL		9
246 #define	UTRACE_FINI_CALL		10
247 
248 struct utrace_rtld {
249 	char sig[4];			/* 'RTLD' */
250 	int event;
251 	void *handle;
252 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
253 	size_t mapsize;
254 	int refcnt;			/* Used for 'mode' */
255 	char name[MAXPATHLEN];
256 };
257 
258 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
259 	if (ld_utrace != NULL)					\
260 		ld_utrace_log(e, h, mb, ms, r, n);		\
261 } while (0)
262 
263 static void
264 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
265     int refcnt, const char *name)
266 {
267 	struct utrace_rtld ut;
268 
269 	ut.sig[0] = 'R';
270 	ut.sig[1] = 'T';
271 	ut.sig[2] = 'L';
272 	ut.sig[3] = 'D';
273 	ut.event = event;
274 	ut.handle = handle;
275 	ut.mapbase = mapbase;
276 	ut.mapsize = mapsize;
277 	ut.refcnt = refcnt;
278 	bzero(ut.name, sizeof(ut.name));
279 	if (name)
280 		strlcpy(ut.name, name, sizeof(ut.name));
281 	utrace(&ut, sizeof(ut));
282 }
283 
284 /*
285  * Main entry point for dynamic linking.  The first argument is the
286  * stack pointer.  The stack is expected to be laid out as described
287  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
288  * Specifically, the stack pointer points to a word containing
289  * ARGC.  Following that in the stack is a null-terminated sequence
290  * of pointers to argument strings.  Then comes a null-terminated
291  * sequence of pointers to environment strings.  Finally, there is a
292  * sequence of "auxiliary vector" entries.
293  *
294  * The second argument points to a place to store the dynamic linker's
295  * exit procedure pointer and the third to a place to store the main
296  * program's object.
297  *
298  * The return value is the main program's entry point.
299  */
300 func_ptr_type
301 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
302 {
303     Elf_Auxinfo *aux_info[AT_COUNT];
304     int i;
305     int argc;
306     char **argv;
307     char **env;
308     Elf_Auxinfo *aux;
309     Elf_Auxinfo *auxp;
310     const char *argv0;
311     Objlist_Entry *entry;
312     Obj_Entry *obj;
313     Obj_Entry **preload_tail;
314     Objlist initlist;
315     RtldLockState lockstate;
316     int mib[2];
317     size_t len;
318 
319     /*
320      * On entry, the dynamic linker itself has not been relocated yet.
321      * Be very careful not to reference any global data until after
322      * init_rtld has returned.  It is OK to reference file-scope statics
323      * and string constants, and to call static and global functions.
324      */
325 
326     /* Find the auxiliary vector on the stack. */
327     argc = *sp++;
328     argv = (char **) sp;
329     sp += argc + 1;	/* Skip over arguments and NULL terminator */
330     env = (char **) sp;
331     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
332 	;
333     aux = (Elf_Auxinfo *) sp;
334 
335     /* Digest the auxiliary vector. */
336     for (i = 0;  i < AT_COUNT;  i++)
337 	aux_info[i] = NULL;
338     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
339 	if (auxp->a_type < AT_COUNT)
340 	    aux_info[auxp->a_type] = auxp;
341     }
342 
343     /* Initialize and relocate ourselves. */
344     assert(aux_info[AT_BASE] != NULL);
345     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
346 
347     __progname = obj_rtld.path;
348     argv0 = argv[0] != NULL ? argv[0] : "(null)";
349     environ = env;
350     main_argc = argc;
351     main_argv = argv;
352 
353     if (aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
354 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
355 	    if (i > sizeof(__stack_chk_guard))
356 		    i = sizeof(__stack_chk_guard);
357 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
358     } else {
359 	mib[0] = CTL_KERN;
360 	mib[1] = KERN_ARND;
361 
362 	len = sizeof(__stack_chk_guard);
363 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
364 	    len != sizeof(__stack_chk_guard)) {
365 		/* If sysctl was unsuccessful, use the "terminator canary". */
366 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
367 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
368 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
369 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
370 	}
371     }
372 
373     trust = !issetugid();
374 
375     ld_bind_now = getenv(LD_ "BIND_NOW");
376     /*
377      * If the process is tainted, then we un-set the dangerous environment
378      * variables.  The process will be marked as tainted until setuid(2)
379      * is called.  If any child process calls setuid(2) we do not want any
380      * future processes to honor the potentially un-safe variables.
381      */
382     if (!trust) {
383         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
384 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
385 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
386 	    unsetenv(LD_ "LOADFLTR")) {
387 		_rtld_error("environment corrupt; aborting");
388 		die();
389 	}
390     }
391     ld_debug = getenv(LD_ "DEBUG");
392     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
393     libmap_override = getenv(LD_ "LIBMAP");
394     ld_library_path = getenv(LD_ "LIBRARY_PATH");
395     ld_preload = getenv(LD_ "PRELOAD");
396     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
397     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
398     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
399 	(ld_library_path != NULL) || (ld_preload != NULL) ||
400 	(ld_elf_hints_path != NULL) || ld_loadfltr;
401     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
402     ld_utrace = getenv(LD_ "UTRACE");
403 
404     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
405 	ld_elf_hints_path = _PATH_ELF_HINTS;
406 
407     if (ld_debug != NULL && *ld_debug != '\0')
408 	debug = 1;
409     dbg("%s is initialized, base address = %p", __progname,
410 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
411     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
412     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
413 
414     dbg("initializing thread locks");
415     lockdflt_init();
416 
417     /*
418      * Load the main program, or process its program header if it is
419      * already loaded.
420      */
421     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
422 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
423 	dbg("loading main program");
424 	obj_main = map_object(fd, argv0, NULL);
425 	close(fd);
426 	if (obj_main == NULL)
427 	    die();
428 	max_stack_flags = obj->stack_flags;
429     } else {				/* Main program already loaded. */
430 	const Elf_Phdr *phdr;
431 	int phnum;
432 	caddr_t entry;
433 
434 	dbg("processing main program's program header");
435 	assert(aux_info[AT_PHDR] != NULL);
436 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
437 	assert(aux_info[AT_PHNUM] != NULL);
438 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
439 	assert(aux_info[AT_PHENT] != NULL);
440 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
441 	assert(aux_info[AT_ENTRY] != NULL);
442 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
443 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
444 	    die();
445     }
446 
447     if (aux_info[AT_EXECPATH] != 0) {
448 	    char *kexecpath;
449 	    char buf[MAXPATHLEN];
450 
451 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
452 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
453 	    if (kexecpath[0] == '/')
454 		    obj_main->path = kexecpath;
455 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
456 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
457 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
458 		    obj_main->path = xstrdup(argv0);
459 	    else
460 		    obj_main->path = xstrdup(buf);
461     } else {
462 	    dbg("No AT_EXECPATH");
463 	    obj_main->path = xstrdup(argv0);
464     }
465     dbg("obj_main path %s", obj_main->path);
466     obj_main->mainprog = true;
467 
468     if (aux_info[AT_STACKPROT] != NULL &&
469       aux_info[AT_STACKPROT]->a_un.a_val != 0)
470 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
471 
472     /*
473      * Get the actual dynamic linker pathname from the executable if
474      * possible.  (It should always be possible.)  That ensures that
475      * gdb will find the right dynamic linker even if a non-standard
476      * one is being used.
477      */
478     if (obj_main->interp != NULL &&
479       strcmp(obj_main->interp, obj_rtld.path) != 0) {
480 	free(obj_rtld.path);
481 	obj_rtld.path = xstrdup(obj_main->interp);
482         __progname = obj_rtld.path;
483     }
484 
485     digest_dynamic(obj_main, 0);
486 
487     linkmap_add(obj_main);
488     linkmap_add(&obj_rtld);
489 
490     /* Link the main program into the list of objects. */
491     *obj_tail = obj_main;
492     obj_tail = &obj_main->next;
493     obj_count++;
494     obj_loads++;
495 
496     /* Initialize a fake symbol for resolving undefined weak references. */
497     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
498     sym_zero.st_shndx = SHN_UNDEF;
499     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
500 
501     if (!libmap_disable)
502         libmap_disable = (bool)lm_init(libmap_override);
503 
504     dbg("loading LD_PRELOAD libraries");
505     if (load_preload_objects() == -1)
506 	die();
507     preload_tail = obj_tail;
508 
509     dbg("loading needed objects");
510     if (load_needed_objects(obj_main, 0) == -1)
511 	die();
512 
513     /* Make a list of all objects loaded at startup. */
514     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
515 	objlist_push_tail(&list_main, obj);
516     	obj->refcount++;
517     }
518 
519     dbg("checking for required versions");
520     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
521 	die();
522 
523     if (ld_tracing) {		/* We're done */
524 	trace_loaded_objects(obj_main);
525 	exit(0);
526     }
527 
528     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
529        dump_relocations(obj_main);
530        exit (0);
531     }
532 
533     /*
534      * Processing tls relocations requires having the tls offsets
535      * initialized.  Prepare offsets before starting initial
536      * relocation processing.
537      */
538     dbg("initializing initial thread local storage offsets");
539     STAILQ_FOREACH(entry, &list_main, link) {
540 	/*
541 	 * Allocate all the initial objects out of the static TLS
542 	 * block even if they didn't ask for it.
543 	 */
544 	allocate_tls_offset(entry->obj);
545     }
546 
547     if (relocate_objects(obj_main,
548       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
549 	die();
550 
551     dbg("doing copy relocations");
552     if (do_copy_relocations(obj_main) == -1)
553 	die();
554 
555     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
556        dump_relocations(obj_main);
557        exit (0);
558     }
559 
560     /*
561      * Setup TLS for main thread.  This must be done after the
562      * relocations are processed, since tls initialization section
563      * might be the subject for relocations.
564      */
565     dbg("initializing initial thread local storage");
566     allocate_initial_tls(obj_list);
567 
568     dbg("initializing key program variables");
569     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
570     set_program_var("environ", env);
571     set_program_var("__elf_aux_vector", aux);
572 
573     /* Make a list of init functions to call. */
574     objlist_init(&initlist);
575     initlist_add_objects(obj_list, preload_tail, &initlist);
576 
577     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
578 
579     map_stacks_exec(NULL);
580 
581     dbg("resolving ifuncs");
582     if (resolve_objects_ifunc(obj_main,
583       ld_bind_now != NULL && *ld_bind_now != '\0', NULL) == -1)
584 	die();
585 
586     if (!obj_main->crt_no_init) {
587 	/*
588 	 * Make sure we don't call the main program's init and fini
589 	 * functions for binaries linked with old crt1 which calls
590 	 * _init itself.
591 	 */
592 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
593 	obj_main->preinit_array = obj_main->init_array =
594 	    obj_main->fini_array = (Elf_Addr)NULL;
595     }
596 
597     wlock_acquire(rtld_bind_lock, &lockstate);
598     if (obj_main->crt_no_init)
599 	preinit_main();
600     objlist_call_init(&initlist, &lockstate);
601     objlist_clear(&initlist);
602     dbg("loading filtees");
603     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
604 	if (ld_loadfltr || obj->z_loadfltr)
605 	    load_filtees(obj, 0, &lockstate);
606     }
607     lock_release(rtld_bind_lock, &lockstate);
608 
609     dbg("transferring control to program entry point = %p", obj_main->entry);
610 
611     /* Return the exit procedure and the program entry point. */
612     *exit_proc = rtld_exit;
613     *objp = obj_main;
614     return (func_ptr_type) obj_main->entry;
615 }
616 
617 void *
618 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
619 {
620 	void *ptr;
621 	Elf_Addr target;
622 
623 	ptr = (void *)make_function_pointer(def, obj);
624 	target = ((Elf_Addr (*)(void))ptr)();
625 	return ((void *)target);
626 }
627 
628 Elf_Addr
629 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
630 {
631     const Elf_Rel *rel;
632     const Elf_Sym *def;
633     const Obj_Entry *defobj;
634     Elf_Addr *where;
635     Elf_Addr target;
636     RtldLockState lockstate;
637 
638     rlock_acquire(rtld_bind_lock, &lockstate);
639     if (sigsetjmp(lockstate.env, 0) != 0)
640 	    lock_upgrade(rtld_bind_lock, &lockstate);
641     if (obj->pltrel)
642 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
643     else
644 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
645 
646     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
647     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
648 	&lockstate);
649     if (def == NULL)
650 	die();
651     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
652 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
653     else
654 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
655 
656     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
657       defobj->strtab + def->st_name, basename(obj->path),
658       (void *)target, basename(defobj->path));
659 
660     /*
661      * Write the new contents for the jmpslot. Note that depending on
662      * architecture, the value which we need to return back to the
663      * lazy binding trampoline may or may not be the target
664      * address. The value returned from reloc_jmpslot() is the value
665      * that the trampoline needs.
666      */
667     target = reloc_jmpslot(where, target, defobj, obj, rel);
668     lock_release(rtld_bind_lock, &lockstate);
669     return target;
670 }
671 
672 /*
673  * Error reporting function.  Use it like printf.  If formats the message
674  * into a buffer, and sets things up so that the next call to dlerror()
675  * will return the message.
676  */
677 void
678 _rtld_error(const char *fmt, ...)
679 {
680     static char buf[512];
681     va_list ap;
682 
683     va_start(ap, fmt);
684     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
685     error_message = buf;
686     va_end(ap);
687 }
688 
689 /*
690  * Return a dynamically-allocated copy of the current error message, if any.
691  */
692 static char *
693 errmsg_save(void)
694 {
695     return error_message == NULL ? NULL : xstrdup(error_message);
696 }
697 
698 /*
699  * Restore the current error message from a copy which was previously saved
700  * by errmsg_save().  The copy is freed.
701  */
702 static void
703 errmsg_restore(char *saved_msg)
704 {
705     if (saved_msg == NULL)
706 	error_message = NULL;
707     else {
708 	_rtld_error("%s", saved_msg);
709 	free(saved_msg);
710     }
711 }
712 
713 static const char *
714 basename(const char *name)
715 {
716     const char *p = strrchr(name, '/');
717     return p != NULL ? p + 1 : name;
718 }
719 
720 static struct utsname uts;
721 
722 static int
723 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
724     char *may_free)
725 {
726     const char *p, *p1;
727     char *res1;
728     int subst_len;
729     int kw_len;
730 
731     res1 = *res = NULL;
732     p = real;
733     subst_len = kw_len = 0;
734     for (;;) {
735 	 p1 = strstr(p, kw);
736 	 if (p1 != NULL) {
737 	     if (subst_len == 0) {
738 		 subst_len = strlen(subst);
739 		 kw_len = strlen(kw);
740 	     }
741 	     if (*res == NULL) {
742 		 *res = xmalloc(PATH_MAX);
743 		 res1 = *res;
744 	     }
745 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
746 		 _rtld_error("Substitution of %s in %s cannot be performed",
747 		     kw, real);
748 		 if (may_free != NULL)
749 		     free(may_free);
750 		 free(res);
751 		 return (false);
752 	     }
753 	     memcpy(res1, p, p1 - p);
754 	     res1 += p1 - p;
755 	     memcpy(res1, subst, subst_len);
756 	     res1 += subst_len;
757 	     p = p1 + kw_len;
758 	 } else {
759 	    if (*res == NULL) {
760 		if (may_free != NULL)
761 		    *res = may_free;
762 		else
763 		    *res = xstrdup(real);
764 		return (true);
765 	    }
766 	    *res1 = '\0';
767 	    if (may_free != NULL)
768 		free(may_free);
769 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
770 		free(res);
771 		return (false);
772 	    }
773 	    return (true);
774 	 }
775     }
776 }
777 
778 static char *
779 origin_subst(const char *real, const char *origin_path)
780 {
781     char *res1, *res2, *res3, *res4;
782 
783     if (uts.sysname[0] == '\0') {
784 	if (uname(&uts) != 0) {
785 	    _rtld_error("utsname failed: %d", errno);
786 	    return (NULL);
787 	}
788     }
789     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
790 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
791 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
792 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
793 	    return (NULL);
794     return (res4);
795 }
796 
797 static void
798 die(void)
799 {
800     const char *msg = dlerror();
801 
802     if (msg == NULL)
803 	msg = "Fatal error";
804     rtld_fdputstr(STDERR_FILENO, msg);
805     rtld_fdputchar(STDERR_FILENO, '\n');
806     _exit(1);
807 }
808 
809 /*
810  * Process a shared object's DYNAMIC section, and save the important
811  * information in its Obj_Entry structure.
812  */
813 static void
814 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
815     const Elf_Dyn **dyn_soname)
816 {
817     const Elf_Dyn *dynp;
818     Needed_Entry **needed_tail = &obj->needed;
819     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
820     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
821     int plttype = DT_REL;
822 
823     *dyn_rpath = NULL;
824     *dyn_soname = NULL;
825 
826     obj->bind_now = false;
827     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
828 	switch (dynp->d_tag) {
829 
830 	case DT_REL:
831 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
832 	    break;
833 
834 	case DT_RELSZ:
835 	    obj->relsize = dynp->d_un.d_val;
836 	    break;
837 
838 	case DT_RELENT:
839 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
840 	    break;
841 
842 	case DT_JMPREL:
843 	    obj->pltrel = (const Elf_Rel *)
844 	      (obj->relocbase + dynp->d_un.d_ptr);
845 	    break;
846 
847 	case DT_PLTRELSZ:
848 	    obj->pltrelsize = dynp->d_un.d_val;
849 	    break;
850 
851 	case DT_RELA:
852 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
853 	    break;
854 
855 	case DT_RELASZ:
856 	    obj->relasize = dynp->d_un.d_val;
857 	    break;
858 
859 	case DT_RELAENT:
860 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
861 	    break;
862 
863 	case DT_PLTREL:
864 	    plttype = dynp->d_un.d_val;
865 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
866 	    break;
867 
868 	case DT_SYMTAB:
869 	    obj->symtab = (const Elf_Sym *)
870 	      (obj->relocbase + dynp->d_un.d_ptr);
871 	    break;
872 
873 	case DT_SYMENT:
874 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
875 	    break;
876 
877 	case DT_STRTAB:
878 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
879 	    break;
880 
881 	case DT_STRSZ:
882 	    obj->strsize = dynp->d_un.d_val;
883 	    break;
884 
885 	case DT_VERNEED:
886 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
887 		dynp->d_un.d_val);
888 	    break;
889 
890 	case DT_VERNEEDNUM:
891 	    obj->verneednum = dynp->d_un.d_val;
892 	    break;
893 
894 	case DT_VERDEF:
895 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
896 		dynp->d_un.d_val);
897 	    break;
898 
899 	case DT_VERDEFNUM:
900 	    obj->verdefnum = dynp->d_un.d_val;
901 	    break;
902 
903 	case DT_VERSYM:
904 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
905 		dynp->d_un.d_val);
906 	    break;
907 
908 	case DT_HASH:
909 	    {
910 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
911 		  (obj->relocbase + dynp->d_un.d_ptr);
912 		obj->nbuckets = hashtab[0];
913 		obj->nchains = hashtab[1];
914 		obj->buckets = hashtab + 2;
915 		obj->chains = obj->buckets + obj->nbuckets;
916 	    }
917 	    break;
918 
919 	case DT_NEEDED:
920 	    if (!obj->rtld) {
921 		Needed_Entry *nep = NEW(Needed_Entry);
922 		nep->name = dynp->d_un.d_val;
923 		nep->obj = NULL;
924 		nep->next = NULL;
925 
926 		*needed_tail = nep;
927 		needed_tail = &nep->next;
928 	    }
929 	    break;
930 
931 	case DT_FILTER:
932 	    if (!obj->rtld) {
933 		Needed_Entry *nep = NEW(Needed_Entry);
934 		nep->name = dynp->d_un.d_val;
935 		nep->obj = NULL;
936 		nep->next = NULL;
937 
938 		*needed_filtees_tail = nep;
939 		needed_filtees_tail = &nep->next;
940 	    }
941 	    break;
942 
943 	case DT_AUXILIARY:
944 	    if (!obj->rtld) {
945 		Needed_Entry *nep = NEW(Needed_Entry);
946 		nep->name = dynp->d_un.d_val;
947 		nep->obj = NULL;
948 		nep->next = NULL;
949 
950 		*needed_aux_filtees_tail = nep;
951 		needed_aux_filtees_tail = &nep->next;
952 	    }
953 	    break;
954 
955 	case DT_PLTGOT:
956 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
957 	    break;
958 
959 	case DT_TEXTREL:
960 	    obj->textrel = true;
961 	    break;
962 
963 	case DT_SYMBOLIC:
964 	    obj->symbolic = true;
965 	    break;
966 
967 	case DT_RPATH:
968 	case DT_RUNPATH:	/* XXX: process separately */
969 	    /*
970 	     * We have to wait until later to process this, because we
971 	     * might not have gotten the address of the string table yet.
972 	     */
973 	    *dyn_rpath = dynp;
974 	    break;
975 
976 	case DT_SONAME:
977 	    *dyn_soname = dynp;
978 	    break;
979 
980 	case DT_INIT:
981 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
982 	    break;
983 
984 	case DT_PREINIT_ARRAY:
985 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
986 	    break;
987 
988 	case DT_PREINIT_ARRAYSZ:
989 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
990 	    break;
991 
992 	case DT_INIT_ARRAY:
993 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
994 	    break;
995 
996 	case DT_INIT_ARRAYSZ:
997 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
998 	    break;
999 
1000 	case DT_FINI:
1001 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1002 	    break;
1003 
1004 	case DT_FINI_ARRAY:
1005 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1006 	    break;
1007 
1008 	case DT_FINI_ARRAYSZ:
1009 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1010 	    break;
1011 
1012 	/*
1013 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1014 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1015 	 */
1016 
1017 #ifndef __mips__
1018 	case DT_DEBUG:
1019 	    /* XXX - not implemented yet */
1020 	    if (!early)
1021 		dbg("Filling in DT_DEBUG entry");
1022 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1023 	    break;
1024 #endif
1025 
1026 	case DT_FLAGS:
1027 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1028 		    obj->z_origin = true;
1029 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1030 		    obj->symbolic = true;
1031 		if (dynp->d_un.d_val & DF_TEXTREL)
1032 		    obj->textrel = true;
1033 		if (dynp->d_un.d_val & DF_BIND_NOW)
1034 		    obj->bind_now = true;
1035 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1036 		    ;*/
1037 	    break;
1038 #ifdef __mips__
1039 	case DT_MIPS_LOCAL_GOTNO:
1040 		obj->local_gotno = dynp->d_un.d_val;
1041 	    break;
1042 
1043 	case DT_MIPS_SYMTABNO:
1044 		obj->symtabno = dynp->d_un.d_val;
1045 		break;
1046 
1047 	case DT_MIPS_GOTSYM:
1048 		obj->gotsym = dynp->d_un.d_val;
1049 		break;
1050 
1051 	case DT_MIPS_RLD_MAP:
1052 #ifdef notyet
1053 		if (!early)
1054 			dbg("Filling in DT_DEBUG entry");
1055 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1056 #endif
1057 		break;
1058 #endif
1059 
1060 	case DT_FLAGS_1:
1061 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1062 		    obj->z_noopen = true;
1063 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1064 		    obj->z_origin = true;
1065 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1066 		    XXX ;*/
1067 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1068 		    obj->bind_now = true;
1069 		if (dynp->d_un.d_val & DF_1_NODELETE)
1070 		    obj->z_nodelete = true;
1071 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1072 		    obj->z_loadfltr = true;
1073 	    break;
1074 
1075 	default:
1076 	    if (!early) {
1077 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1078 		    (long)dynp->d_tag);
1079 	    }
1080 	    break;
1081 	}
1082     }
1083 
1084     obj->traced = false;
1085 
1086     if (plttype == DT_RELA) {
1087 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1088 	obj->pltrel = NULL;
1089 	obj->pltrelasize = obj->pltrelsize;
1090 	obj->pltrelsize = 0;
1091     }
1092 }
1093 
1094 static void
1095 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1096     const Elf_Dyn *dyn_soname)
1097 {
1098 
1099     if (obj->z_origin && obj->origin_path == NULL) {
1100 	obj->origin_path = xmalloc(PATH_MAX);
1101 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1102 	    die();
1103     }
1104 
1105     if (dyn_rpath != NULL) {
1106 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1107 	if (obj->z_origin)
1108 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1109     }
1110 
1111     if (dyn_soname != NULL)
1112 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1113 }
1114 
1115 static void
1116 digest_dynamic(Obj_Entry *obj, int early)
1117 {
1118 	const Elf_Dyn *dyn_rpath;
1119 	const Elf_Dyn *dyn_soname;
1120 
1121 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1122 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1123 }
1124 
1125 /*
1126  * Process a shared object's program header.  This is used only for the
1127  * main program, when the kernel has already loaded the main program
1128  * into memory before calling the dynamic linker.  It creates and
1129  * returns an Obj_Entry structure.
1130  */
1131 static Obj_Entry *
1132 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1133 {
1134     Obj_Entry *obj;
1135     const Elf_Phdr *phlimit = phdr + phnum;
1136     const Elf_Phdr *ph;
1137     Elf_Addr note_start, note_end;
1138     int nsegs = 0;
1139 
1140     obj = obj_new();
1141     for (ph = phdr;  ph < phlimit;  ph++) {
1142 	if (ph->p_type != PT_PHDR)
1143 	    continue;
1144 
1145 	obj->phdr = phdr;
1146 	obj->phsize = ph->p_memsz;
1147 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1148 	break;
1149     }
1150 
1151     obj->stack_flags = PF_X | PF_R | PF_W;
1152 
1153     for (ph = phdr;  ph < phlimit;  ph++) {
1154 	switch (ph->p_type) {
1155 
1156 	case PT_INTERP:
1157 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1158 	    break;
1159 
1160 	case PT_LOAD:
1161 	    if (nsegs == 0) {	/* First load segment */
1162 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1163 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1164 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1165 		  obj->vaddrbase;
1166 	    } else {		/* Last load segment */
1167 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1168 		  obj->vaddrbase;
1169 	    }
1170 	    nsegs++;
1171 	    break;
1172 
1173 	case PT_DYNAMIC:
1174 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1175 	    break;
1176 
1177 	case PT_TLS:
1178 	    obj->tlsindex = 1;
1179 	    obj->tlssize = ph->p_memsz;
1180 	    obj->tlsalign = ph->p_align;
1181 	    obj->tlsinitsize = ph->p_filesz;
1182 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1183 	    break;
1184 
1185 	case PT_GNU_STACK:
1186 	    obj->stack_flags = ph->p_flags;
1187 	    break;
1188 
1189 	case PT_GNU_RELRO:
1190 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1191 	    obj->relro_size = round_page(ph->p_memsz);
1192 	    break;
1193 
1194 	case PT_NOTE:
1195 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1196 	    note_end = note_start + ph->p_filesz;
1197 	    digest_notes(obj, note_start, note_end);
1198 	    break;
1199 	}
1200     }
1201     if (nsegs < 1) {
1202 	_rtld_error("%s: too few PT_LOAD segments", path);
1203 	return NULL;
1204     }
1205 
1206     obj->entry = entry;
1207     return obj;
1208 }
1209 
1210 void
1211 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1212 {
1213 	const Elf_Note *note;
1214 	const char *note_name;
1215 	uintptr_t p;
1216 
1217 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1218 	    note = (const Elf_Note *)((const char *)(note + 1) +
1219 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1220 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1221 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1222 		    note->n_descsz != sizeof(int32_t))
1223 			continue;
1224 		if (note->n_type != ABI_NOTETYPE &&
1225 		    note->n_type != CRT_NOINIT_NOTETYPE)
1226 			continue;
1227 		note_name = (const char *)(note + 1);
1228 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1229 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1230 			continue;
1231 		switch (note->n_type) {
1232 		case ABI_NOTETYPE:
1233 			/* FreeBSD osrel note */
1234 			p = (uintptr_t)(note + 1);
1235 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1236 			obj->osrel = *(const int32_t *)(p);
1237 			dbg("note osrel %d", obj->osrel);
1238 			break;
1239 		case CRT_NOINIT_NOTETYPE:
1240 			/* FreeBSD 'crt does not call init' note */
1241 			obj->crt_no_init = true;
1242 			dbg("note crt_no_init");
1243 			break;
1244 		}
1245 	}
1246 }
1247 
1248 static Obj_Entry *
1249 dlcheck(void *handle)
1250 {
1251     Obj_Entry *obj;
1252 
1253     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1254 	if (obj == (Obj_Entry *) handle)
1255 	    break;
1256 
1257     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1258 	_rtld_error("Invalid shared object handle %p", handle);
1259 	return NULL;
1260     }
1261     return obj;
1262 }
1263 
1264 /*
1265  * If the given object is already in the donelist, return true.  Otherwise
1266  * add the object to the list and return false.
1267  */
1268 static bool
1269 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1270 {
1271     unsigned int i;
1272 
1273     for (i = 0;  i < dlp->num_used;  i++)
1274 	if (dlp->objs[i] == obj)
1275 	    return true;
1276     /*
1277      * Our donelist allocation should always be sufficient.  But if
1278      * our threads locking isn't working properly, more shared objects
1279      * could have been loaded since we allocated the list.  That should
1280      * never happen, but we'll handle it properly just in case it does.
1281      */
1282     if (dlp->num_used < dlp->num_alloc)
1283 	dlp->objs[dlp->num_used++] = obj;
1284     return false;
1285 }
1286 
1287 /*
1288  * Hash function for symbol table lookup.  Don't even think about changing
1289  * this.  It is specified by the System V ABI.
1290  */
1291 unsigned long
1292 elf_hash(const char *name)
1293 {
1294     const unsigned char *p = (const unsigned char *) name;
1295     unsigned long h = 0;
1296     unsigned long g;
1297 
1298     while (*p != '\0') {
1299 	h = (h << 4) + *p++;
1300 	if ((g = h & 0xf0000000) != 0)
1301 	    h ^= g >> 24;
1302 	h &= ~g;
1303     }
1304     return h;
1305 }
1306 
1307 /*
1308  * Find the library with the given name, and return its full pathname.
1309  * The returned string is dynamically allocated.  Generates an error
1310  * message and returns NULL if the library cannot be found.
1311  *
1312  * If the second argument is non-NULL, then it refers to an already-
1313  * loaded shared object, whose library search path will be searched.
1314  *
1315  * The search order is:
1316  *   LD_LIBRARY_PATH
1317  *   rpath in the referencing file
1318  *   ldconfig hints
1319  *   /lib:/usr/lib
1320  */
1321 static char *
1322 find_library(const char *xname, const Obj_Entry *refobj)
1323 {
1324     char *pathname;
1325     char *name;
1326 
1327     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1328 	if (xname[0] != '/' && !trust) {
1329 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1330 	      xname);
1331 	    return NULL;
1332 	}
1333 	if (refobj != NULL && refobj->z_origin)
1334 	    return origin_subst(xname, refobj->origin_path);
1335 	else
1336 	    return xstrdup(xname);
1337     }
1338 
1339     if (libmap_disable || (refobj == NULL) ||
1340 	(name = lm_find(refobj->path, xname)) == NULL)
1341 	name = (char *)xname;
1342 
1343     dbg(" Searching for \"%s\"", name);
1344 
1345     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1346       (refobj != NULL &&
1347       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1348       (pathname = search_library_path(name, gethints())) != NULL ||
1349       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1350 	return pathname;
1351 
1352     if(refobj != NULL && refobj->path != NULL) {
1353 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1354 	  name, basename(refobj->path));
1355     } else {
1356 	_rtld_error("Shared object \"%s\" not found", name);
1357     }
1358     return NULL;
1359 }
1360 
1361 /*
1362  * Given a symbol number in a referencing object, find the corresponding
1363  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1364  * no definition was found.  Returns a pointer to the Obj_Entry of the
1365  * defining object via the reference parameter DEFOBJ_OUT.
1366  */
1367 const Elf_Sym *
1368 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1369     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1370     RtldLockState *lockstate)
1371 {
1372     const Elf_Sym *ref;
1373     const Elf_Sym *def;
1374     const Obj_Entry *defobj;
1375     SymLook req;
1376     const char *name;
1377     int res;
1378 
1379     /*
1380      * If we have already found this symbol, get the information from
1381      * the cache.
1382      */
1383     if (symnum >= refobj->nchains)
1384 	return NULL;	/* Bad object */
1385     if (cache != NULL && cache[symnum].sym != NULL) {
1386 	*defobj_out = cache[symnum].obj;
1387 	return cache[symnum].sym;
1388     }
1389 
1390     ref = refobj->symtab + symnum;
1391     name = refobj->strtab + ref->st_name;
1392     def = NULL;
1393     defobj = NULL;
1394 
1395     /*
1396      * We don't have to do a full scale lookup if the symbol is local.
1397      * We know it will bind to the instance in this load module; to
1398      * which we already have a pointer (ie ref). By not doing a lookup,
1399      * we not only improve performance, but it also avoids unresolvable
1400      * symbols when local symbols are not in the hash table. This has
1401      * been seen with the ia64 toolchain.
1402      */
1403     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1404 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1405 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1406 		symnum);
1407 	}
1408 	symlook_init(&req, name);
1409 	req.flags = flags;
1410 	req.ventry = fetch_ventry(refobj, symnum);
1411 	req.lockstate = lockstate;
1412 	res = symlook_default(&req, refobj);
1413 	if (res == 0) {
1414 	    def = req.sym_out;
1415 	    defobj = req.defobj_out;
1416 	}
1417     } else {
1418 	def = ref;
1419 	defobj = refobj;
1420     }
1421 
1422     /*
1423      * If we found no definition and the reference is weak, treat the
1424      * symbol as having the value zero.
1425      */
1426     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1427 	def = &sym_zero;
1428 	defobj = obj_main;
1429     }
1430 
1431     if (def != NULL) {
1432 	*defobj_out = defobj;
1433 	/* Record the information in the cache to avoid subsequent lookups. */
1434 	if (cache != NULL) {
1435 	    cache[symnum].sym = def;
1436 	    cache[symnum].obj = defobj;
1437 	}
1438     } else {
1439 	if (refobj != &obj_rtld)
1440 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1441     }
1442     return def;
1443 }
1444 
1445 /*
1446  * Return the search path from the ldconfig hints file, reading it if
1447  * necessary.  Returns NULL if there are problems with the hints file,
1448  * or if the search path there is empty.
1449  */
1450 static const char *
1451 gethints(void)
1452 {
1453     static char *hints;
1454 
1455     if (hints == NULL) {
1456 	int fd;
1457 	struct elfhints_hdr hdr;
1458 	char *p;
1459 
1460 	/* Keep from trying again in case the hints file is bad. */
1461 	hints = "";
1462 
1463 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1464 	    return NULL;
1465 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1466 	  hdr.magic != ELFHINTS_MAGIC ||
1467 	  hdr.version != 1) {
1468 	    close(fd);
1469 	    return NULL;
1470 	}
1471 	p = xmalloc(hdr.dirlistlen + 1);
1472 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1473 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1474 	    free(p);
1475 	    close(fd);
1476 	    return NULL;
1477 	}
1478 	hints = p;
1479 	close(fd);
1480     }
1481     return hints[0] != '\0' ? hints : NULL;
1482 }
1483 
1484 static void
1485 init_dag(Obj_Entry *root)
1486 {
1487     const Needed_Entry *needed;
1488     const Objlist_Entry *elm;
1489     DoneList donelist;
1490 
1491     if (root->dag_inited)
1492 	return;
1493     donelist_init(&donelist);
1494 
1495     /* Root object belongs to own DAG. */
1496     objlist_push_tail(&root->dldags, root);
1497     objlist_push_tail(&root->dagmembers, root);
1498     donelist_check(&donelist, root);
1499 
1500     /*
1501      * Add dependencies of root object to DAG in breadth order
1502      * by exploiting the fact that each new object get added
1503      * to the tail of the dagmembers list.
1504      */
1505     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1506 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1507 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1508 		continue;
1509 	    objlist_push_tail(&needed->obj->dldags, root);
1510 	    objlist_push_tail(&root->dagmembers, needed->obj);
1511 	}
1512     }
1513     root->dag_inited = true;
1514 }
1515 
1516 /*
1517  * Initialize the dynamic linker.  The argument is the address at which
1518  * the dynamic linker has been mapped into memory.  The primary task of
1519  * this function is to relocate the dynamic linker.
1520  */
1521 static void
1522 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1523 {
1524     Obj_Entry objtmp;	/* Temporary rtld object */
1525     const Elf_Dyn *dyn_rpath;
1526     const Elf_Dyn *dyn_soname;
1527 
1528     /*
1529      * Conjure up an Obj_Entry structure for the dynamic linker.
1530      *
1531      * The "path" member can't be initialized yet because string constants
1532      * cannot yet be accessed. Below we will set it correctly.
1533      */
1534     memset(&objtmp, 0, sizeof(objtmp));
1535     objtmp.path = NULL;
1536     objtmp.rtld = true;
1537     objtmp.mapbase = mapbase;
1538 #ifdef PIC
1539     objtmp.relocbase = mapbase;
1540 #endif
1541     if (RTLD_IS_DYNAMIC()) {
1542 	objtmp.dynamic = rtld_dynamic(&objtmp);
1543 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1544 	assert(objtmp.needed == NULL);
1545 #if !defined(__mips__)
1546 	/* MIPS has a bogus DT_TEXTREL. */
1547 	assert(!objtmp.textrel);
1548 #endif
1549 
1550 	/*
1551 	 * Temporarily put the dynamic linker entry into the object list, so
1552 	 * that symbols can be found.
1553 	 */
1554 
1555 	relocate_objects(&objtmp, true, &objtmp, NULL);
1556     }
1557 
1558     /* Initialize the object list. */
1559     obj_tail = &obj_list;
1560 
1561     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1562     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1563 
1564     if (aux_info[AT_PAGESZ] != NULL)
1565 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1566     if (aux_info[AT_OSRELDATE] != NULL)
1567 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1568 
1569     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1570 
1571     /* Replace the path with a dynamically allocated copy. */
1572     obj_rtld.path = xstrdup(PATH_RTLD);
1573 
1574     r_debug.r_brk = r_debug_state;
1575     r_debug.r_state = RT_CONSISTENT;
1576 }
1577 
1578 /*
1579  * Add the init functions from a needed object list (and its recursive
1580  * needed objects) to "list".  This is not used directly; it is a helper
1581  * function for initlist_add_objects().  The write lock must be held
1582  * when this function is called.
1583  */
1584 static void
1585 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1586 {
1587     /* Recursively process the successor needed objects. */
1588     if (needed->next != NULL)
1589 	initlist_add_neededs(needed->next, list);
1590 
1591     /* Process the current needed object. */
1592     if (needed->obj != NULL)
1593 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1594 }
1595 
1596 /*
1597  * Scan all of the DAGs rooted in the range of objects from "obj" to
1598  * "tail" and add their init functions to "list".  This recurses over
1599  * the DAGs and ensure the proper init ordering such that each object's
1600  * needed libraries are initialized before the object itself.  At the
1601  * same time, this function adds the objects to the global finalization
1602  * list "list_fini" in the opposite order.  The write lock must be
1603  * held when this function is called.
1604  */
1605 static void
1606 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1607 {
1608     if (obj->init_scanned || obj->init_done)
1609 	return;
1610     obj->init_scanned = true;
1611 
1612     /* Recursively process the successor objects. */
1613     if (&obj->next != tail)
1614 	initlist_add_objects(obj->next, tail, list);
1615 
1616     /* Recursively process the needed objects. */
1617     if (obj->needed != NULL)
1618 	initlist_add_neededs(obj->needed, list);
1619 
1620     /* Add the object to the init list. */
1621     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1622       obj->init_array != (Elf_Addr)NULL)
1623 	objlist_push_tail(list, obj);
1624 
1625     /* Add the object to the global fini list in the reverse order. */
1626     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1627       && !obj->on_fini_list) {
1628 	objlist_push_head(&list_fini, obj);
1629 	obj->on_fini_list = true;
1630     }
1631 }
1632 
1633 #ifndef FPTR_TARGET
1634 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1635 #endif
1636 
1637 static void
1638 free_needed_filtees(Needed_Entry *n)
1639 {
1640     Needed_Entry *needed, *needed1;
1641 
1642     for (needed = n; needed != NULL; needed = needed->next) {
1643 	if (needed->obj != NULL) {
1644 	    dlclose(needed->obj);
1645 	    needed->obj = NULL;
1646 	}
1647     }
1648     for (needed = n; needed != NULL; needed = needed1) {
1649 	needed1 = needed->next;
1650 	free(needed);
1651     }
1652 }
1653 
1654 static void
1655 unload_filtees(Obj_Entry *obj)
1656 {
1657 
1658     free_needed_filtees(obj->needed_filtees);
1659     obj->needed_filtees = NULL;
1660     free_needed_filtees(obj->needed_aux_filtees);
1661     obj->needed_aux_filtees = NULL;
1662     obj->filtees_loaded = false;
1663 }
1664 
1665 static void
1666 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1667 {
1668 
1669     for (; needed != NULL; needed = needed->next) {
1670 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1671 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1672 	  RTLD_LOCAL);
1673     }
1674 }
1675 
1676 static void
1677 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1678 {
1679 
1680     lock_restart_for_upgrade(lockstate);
1681     if (!obj->filtees_loaded) {
1682 	load_filtee1(obj, obj->needed_filtees, flags);
1683 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1684 	obj->filtees_loaded = true;
1685     }
1686 }
1687 
1688 static int
1689 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1690 {
1691     Obj_Entry *obj1;
1692 
1693     for (; needed != NULL; needed = needed->next) {
1694 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1695 	  flags & ~RTLD_LO_NOLOAD);
1696 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1697 	    return (-1);
1698 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1699 	    dbg("obj %s nodelete", obj1->path);
1700 	    init_dag(obj1);
1701 	    ref_dag(obj1);
1702 	    obj1->ref_nodel = true;
1703 	}
1704     }
1705     return (0);
1706 }
1707 
1708 /*
1709  * Given a shared object, traverse its list of needed objects, and load
1710  * each of them.  Returns 0 on success.  Generates an error message and
1711  * returns -1 on failure.
1712  */
1713 static int
1714 load_needed_objects(Obj_Entry *first, int flags)
1715 {
1716     Obj_Entry *obj;
1717 
1718     for (obj = first;  obj != NULL;  obj = obj->next) {
1719 	if (process_needed(obj, obj->needed, flags) == -1)
1720 	    return (-1);
1721     }
1722     return (0);
1723 }
1724 
1725 static int
1726 load_preload_objects(void)
1727 {
1728     char *p = ld_preload;
1729     static const char delim[] = " \t:;";
1730 
1731     if (p == NULL)
1732 	return 0;
1733 
1734     p += strspn(p, delim);
1735     while (*p != '\0') {
1736 	size_t len = strcspn(p, delim);
1737 	char savech;
1738 
1739 	savech = p[len];
1740 	p[len] = '\0';
1741 	if (load_object(p, -1, NULL, 0) == NULL)
1742 	    return -1;	/* XXX - cleanup */
1743 	p[len] = savech;
1744 	p += len;
1745 	p += strspn(p, delim);
1746     }
1747     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1748     return 0;
1749 }
1750 
1751 static const char *
1752 printable_path(const char *path)
1753 {
1754 
1755 	return (path == NULL ? "<unknown>" : path);
1756 }
1757 
1758 /*
1759  * Load a shared object into memory, if it is not already loaded.  The
1760  * object may be specified by name or by user-supplied file descriptor
1761  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1762  * duplicate is.
1763  *
1764  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1765  * on failure.
1766  */
1767 static Obj_Entry *
1768 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1769 {
1770     Obj_Entry *obj;
1771     int fd;
1772     struct stat sb;
1773     char *path;
1774 
1775     if (name != NULL) {
1776 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1777 	    if (object_match_name(obj, name))
1778 		return (obj);
1779 	}
1780 
1781 	path = find_library(name, refobj);
1782 	if (path == NULL)
1783 	    return (NULL);
1784     } else
1785 	path = NULL;
1786 
1787     /*
1788      * If we didn't find a match by pathname, or the name is not
1789      * supplied, open the file and check again by device and inode.
1790      * This avoids false mismatches caused by multiple links or ".."
1791      * in pathnames.
1792      *
1793      * To avoid a race, we open the file and use fstat() rather than
1794      * using stat().
1795      */
1796     fd = -1;
1797     if (fd_u == -1) {
1798 	if ((fd = open(path, O_RDONLY)) == -1) {
1799 	    _rtld_error("Cannot open \"%s\"", path);
1800 	    free(path);
1801 	    return (NULL);
1802 	}
1803     } else {
1804 	fd = dup(fd_u);
1805 	if (fd == -1) {
1806 	    _rtld_error("Cannot dup fd");
1807 	    free(path);
1808 	    return (NULL);
1809 	}
1810     }
1811     if (fstat(fd, &sb) == -1) {
1812 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1813 	close(fd);
1814 	free(path);
1815 	return NULL;
1816     }
1817     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1818 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1819 	    break;
1820     if (obj != NULL && name != NULL) {
1821 	object_add_name(obj, name);
1822 	free(path);
1823 	close(fd);
1824 	return obj;
1825     }
1826     if (flags & RTLD_LO_NOLOAD) {
1827 	free(path);
1828 	close(fd);
1829 	return (NULL);
1830     }
1831 
1832     /* First use of this object, so we must map it in */
1833     obj = do_load_object(fd, name, path, &sb, flags);
1834     if (obj == NULL)
1835 	free(path);
1836     close(fd);
1837 
1838     return obj;
1839 }
1840 
1841 static Obj_Entry *
1842 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1843   int flags)
1844 {
1845     Obj_Entry *obj;
1846     struct statfs fs;
1847 
1848     /*
1849      * but first, make sure that environment variables haven't been
1850      * used to circumvent the noexec flag on a filesystem.
1851      */
1852     if (dangerous_ld_env) {
1853 	if (fstatfs(fd, &fs) != 0) {
1854 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1855 	    return NULL;
1856 	}
1857 	if (fs.f_flags & MNT_NOEXEC) {
1858 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1859 	    return NULL;
1860 	}
1861     }
1862     dbg("loading \"%s\"", printable_path(path));
1863     obj = map_object(fd, printable_path(path), sbp);
1864     if (obj == NULL)
1865         return NULL;
1866 
1867     /*
1868      * If DT_SONAME is present in the object, digest_dynamic2 already
1869      * added it to the object names.
1870      */
1871     if (name != NULL)
1872 	object_add_name(obj, name);
1873     obj->path = path;
1874     digest_dynamic(obj, 0);
1875     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1876       RTLD_LO_DLOPEN) {
1877 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1878 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1879 	munmap(obj->mapbase, obj->mapsize);
1880 	obj_free(obj);
1881 	return (NULL);
1882     }
1883 
1884     *obj_tail = obj;
1885     obj_tail = &obj->next;
1886     obj_count++;
1887     obj_loads++;
1888     linkmap_add(obj);	/* for GDB & dlinfo() */
1889     max_stack_flags |= obj->stack_flags;
1890 
1891     dbg("  %p .. %p: %s", obj->mapbase,
1892          obj->mapbase + obj->mapsize - 1, obj->path);
1893     if (obj->textrel)
1894 	dbg("  WARNING: %s has impure text", obj->path);
1895     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1896 	obj->path);
1897 
1898     return obj;
1899 }
1900 
1901 static Obj_Entry *
1902 obj_from_addr(const void *addr)
1903 {
1904     Obj_Entry *obj;
1905 
1906     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1907 	if (addr < (void *) obj->mapbase)
1908 	    continue;
1909 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1910 	    return obj;
1911     }
1912     return NULL;
1913 }
1914 
1915 static void
1916 preinit_main(void)
1917 {
1918     Elf_Addr *preinit_addr;
1919     int index;
1920 
1921     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
1922     if (preinit_addr == NULL)
1923 	return;
1924 
1925     for (index = 0; index < obj_main->preinit_array_num; index++) {
1926 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
1927 	    dbg("calling preinit function for %s at %p", obj_main->path,
1928 	      (void *)preinit_addr[index]);
1929 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
1930 	      0, 0, obj_main->path);
1931 	    call_init_pointer(obj_main, preinit_addr[index]);
1932 	}
1933     }
1934 }
1935 
1936 /*
1937  * Call the finalization functions for each of the objects in "list"
1938  * belonging to the DAG of "root" and referenced once. If NULL "root"
1939  * is specified, every finalization function will be called regardless
1940  * of the reference count and the list elements won't be freed. All of
1941  * the objects are expected to have non-NULL fini functions.
1942  */
1943 static void
1944 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1945 {
1946     Objlist_Entry *elm;
1947     char *saved_msg;
1948     Elf_Addr *fini_addr;
1949     int index;
1950 
1951     assert(root == NULL || root->refcount == 1);
1952 
1953     /*
1954      * Preserve the current error message since a fini function might
1955      * call into the dynamic linker and overwrite it.
1956      */
1957     saved_msg = errmsg_save();
1958     do {
1959 	STAILQ_FOREACH(elm, list, link) {
1960 	    if (root != NULL && (elm->obj->refcount != 1 ||
1961 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1962 		continue;
1963 	    /* Remove object from fini list to prevent recursive invocation. */
1964 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1965 	    /*
1966 	     * XXX: If a dlopen() call references an object while the
1967 	     * fini function is in progress, we might end up trying to
1968 	     * unload the referenced object in dlclose() or the object
1969 	     * won't be unloaded although its fini function has been
1970 	     * called.
1971 	     */
1972 	    lock_release(rtld_bind_lock, lockstate);
1973 
1974 	    /*
1975 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
1976 	     * When this happens, DT_FINI_ARRAY is processed first.
1977 	     */
1978 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
1979 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
1980 		for (index = elm->obj->fini_array_num - 1; index >= 0;
1981 		  index--) {
1982 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
1983 			dbg("calling fini function for %s at %p",
1984 			    elm->obj->path, (void *)fini_addr[index]);
1985 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
1986 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
1987 			call_initfini_pointer(elm->obj, fini_addr[index]);
1988 		    }
1989 		}
1990 	    }
1991 	    if (elm->obj->fini != (Elf_Addr)NULL) {
1992 		dbg("calling fini function for %s at %p", elm->obj->path,
1993 		    (void *)elm->obj->fini);
1994 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
1995 		    0, 0, elm->obj->path);
1996 		call_initfini_pointer(elm->obj, elm->obj->fini);
1997 	    }
1998 	    wlock_acquire(rtld_bind_lock, lockstate);
1999 	    /* No need to free anything if process is going down. */
2000 	    if (root != NULL)
2001 	    	free(elm);
2002 	    /*
2003 	     * We must restart the list traversal after every fini call
2004 	     * because a dlclose() call from the fini function or from
2005 	     * another thread might have modified the reference counts.
2006 	     */
2007 	    break;
2008 	}
2009     } while (elm != NULL);
2010     errmsg_restore(saved_msg);
2011 }
2012 
2013 /*
2014  * Call the initialization functions for each of the objects in
2015  * "list".  All of the objects are expected to have non-NULL init
2016  * functions.
2017  */
2018 static void
2019 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2020 {
2021     Objlist_Entry *elm;
2022     Obj_Entry *obj;
2023     char *saved_msg;
2024     Elf_Addr *init_addr;
2025     int index;
2026 
2027     /*
2028      * Clean init_scanned flag so that objects can be rechecked and
2029      * possibly initialized earlier if any of vectors called below
2030      * cause the change by using dlopen.
2031      */
2032     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2033 	obj->init_scanned = false;
2034 
2035     /*
2036      * Preserve the current error message since an init function might
2037      * call into the dynamic linker and overwrite it.
2038      */
2039     saved_msg = errmsg_save();
2040     STAILQ_FOREACH(elm, list, link) {
2041 	if (elm->obj->init_done) /* Initialized early. */
2042 	    continue;
2043 	/*
2044 	 * Race: other thread might try to use this object before current
2045 	 * one completes the initilization. Not much can be done here
2046 	 * without better locking.
2047 	 */
2048 	elm->obj->init_done = true;
2049 	lock_release(rtld_bind_lock, lockstate);
2050 
2051         /*
2052          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2053          * When this happens, DT_INIT is processed first.
2054          */
2055 	if (elm->obj->init != (Elf_Addr)NULL) {
2056 	    dbg("calling init function for %s at %p", elm->obj->path,
2057 	        (void *)elm->obj->init);
2058 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2059 	        0, 0, elm->obj->path);
2060 	    call_initfini_pointer(elm->obj, elm->obj->init);
2061 	}
2062 	init_addr = (Elf_Addr *)elm->obj->init_array;
2063 	if (init_addr != NULL) {
2064 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2065 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2066 		    dbg("calling init function for %s at %p", elm->obj->path,
2067 			(void *)init_addr[index]);
2068 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2069 			(void *)init_addr[index], 0, 0, elm->obj->path);
2070 		    call_init_pointer(elm->obj, init_addr[index]);
2071 		}
2072 	    }
2073 	}
2074 	wlock_acquire(rtld_bind_lock, lockstate);
2075     }
2076     errmsg_restore(saved_msg);
2077 }
2078 
2079 static void
2080 objlist_clear(Objlist *list)
2081 {
2082     Objlist_Entry *elm;
2083 
2084     while (!STAILQ_EMPTY(list)) {
2085 	elm = STAILQ_FIRST(list);
2086 	STAILQ_REMOVE_HEAD(list, link);
2087 	free(elm);
2088     }
2089 }
2090 
2091 static Objlist_Entry *
2092 objlist_find(Objlist *list, const Obj_Entry *obj)
2093 {
2094     Objlist_Entry *elm;
2095 
2096     STAILQ_FOREACH(elm, list, link)
2097 	if (elm->obj == obj)
2098 	    return elm;
2099     return NULL;
2100 }
2101 
2102 static void
2103 objlist_init(Objlist *list)
2104 {
2105     STAILQ_INIT(list);
2106 }
2107 
2108 static void
2109 objlist_push_head(Objlist *list, Obj_Entry *obj)
2110 {
2111     Objlist_Entry *elm;
2112 
2113     elm = NEW(Objlist_Entry);
2114     elm->obj = obj;
2115     STAILQ_INSERT_HEAD(list, elm, link);
2116 }
2117 
2118 static void
2119 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2120 {
2121     Objlist_Entry *elm;
2122 
2123     elm = NEW(Objlist_Entry);
2124     elm->obj = obj;
2125     STAILQ_INSERT_TAIL(list, elm, link);
2126 }
2127 
2128 static void
2129 objlist_remove(Objlist *list, Obj_Entry *obj)
2130 {
2131     Objlist_Entry *elm;
2132 
2133     if ((elm = objlist_find(list, obj)) != NULL) {
2134 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2135 	free(elm);
2136     }
2137 }
2138 
2139 /*
2140  * Relocate newly-loaded shared objects.  The argument is a pointer to
2141  * the Obj_Entry for the first such object.  All objects from the first
2142  * to the end of the list of objects are relocated.  Returns 0 on success,
2143  * or -1 on failure.
2144  */
2145 static int
2146 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2147     RtldLockState *lockstate)
2148 {
2149     Obj_Entry *obj;
2150 
2151     for (obj = first;  obj != NULL;  obj = obj->next) {
2152 	if (obj != rtldobj)
2153 	    dbg("relocating \"%s\"", obj->path);
2154 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
2155 	    obj->symtab == NULL || obj->strtab == NULL) {
2156 	    _rtld_error("%s: Shared object has no run-time symbol table",
2157 	      obj->path);
2158 	    return -1;
2159 	}
2160 
2161 	if (obj->textrel) {
2162 	    /* There are relocations to the write-protected text segment. */
2163 	    if (mprotect(obj->mapbase, obj->textsize,
2164 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2165 		_rtld_error("%s: Cannot write-enable text segment: %s",
2166 		  obj->path, strerror(errno));
2167 		return -1;
2168 	    }
2169 	}
2170 
2171 	/* Process the non-PLT relocations. */
2172 	if (reloc_non_plt(obj, rtldobj, lockstate))
2173 		return -1;
2174 
2175 	if (obj->textrel) {	/* Re-protected the text segment. */
2176 	    if (mprotect(obj->mapbase, obj->textsize,
2177 	      PROT_READ|PROT_EXEC) == -1) {
2178 		_rtld_error("%s: Cannot write-protect text segment: %s",
2179 		  obj->path, strerror(errno));
2180 		return -1;
2181 	    }
2182 	}
2183 
2184 
2185 	/* Set the special PLT or GOT entries. */
2186 	init_pltgot(obj);
2187 
2188 	/* Process the PLT relocations. */
2189 	if (reloc_plt(obj) == -1)
2190 	    return -1;
2191 	/* Relocate the jump slots if we are doing immediate binding. */
2192 	if (obj->bind_now || bind_now)
2193 	    if (reloc_jmpslots(obj, lockstate) == -1)
2194 		return -1;
2195 
2196 	if (obj->relro_size > 0) {
2197 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2198 		_rtld_error("%s: Cannot enforce relro protection: %s",
2199 		  obj->path, strerror(errno));
2200 		return -1;
2201 	    }
2202 	}
2203 
2204 	/*
2205 	 * Set up the magic number and version in the Obj_Entry.  These
2206 	 * were checked in the crt1.o from the original ElfKit, so we
2207 	 * set them for backward compatibility.
2208 	 */
2209 	obj->magic = RTLD_MAGIC;
2210 	obj->version = RTLD_VERSION;
2211     }
2212 
2213     return (0);
2214 }
2215 
2216 /*
2217  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2218  * referencing STT_GNU_IFUNC symbols is postponed till the other
2219  * relocations are done.  The indirect functions specified as
2220  * ifunc are allowed to call other symbols, so we need to have
2221  * objects relocated before asking for resolution from indirects.
2222  *
2223  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2224  * instead of the usual lazy handling of PLT slots.  It is
2225  * consistent with how GNU does it.
2226  */
2227 static int
2228 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, RtldLockState *lockstate)
2229 {
2230 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2231 		return (-1);
2232 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2233 	    reloc_gnu_ifunc(obj, lockstate) == -1)
2234 		return (-1);
2235 	return (0);
2236 }
2237 
2238 static int
2239 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, RtldLockState *lockstate)
2240 {
2241 	Obj_Entry *obj;
2242 
2243 	for (obj = first;  obj != NULL;  obj = obj->next) {
2244 		if (resolve_object_ifunc(obj, bind_now, lockstate) == -1)
2245 			return (-1);
2246 	}
2247 	return (0);
2248 }
2249 
2250 static int
2251 initlist_objects_ifunc(Objlist *list, bool bind_now, RtldLockState *lockstate)
2252 {
2253 	Objlist_Entry *elm;
2254 
2255 	STAILQ_FOREACH(elm, list, link) {
2256 		if (resolve_object_ifunc(elm->obj, bind_now, lockstate) == -1)
2257 			return (-1);
2258 	}
2259 	return (0);
2260 }
2261 
2262 /*
2263  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2264  * before the process exits.
2265  */
2266 static void
2267 rtld_exit(void)
2268 {
2269     RtldLockState lockstate;
2270 
2271     wlock_acquire(rtld_bind_lock, &lockstate);
2272     dbg("rtld_exit()");
2273     objlist_call_fini(&list_fini, NULL, &lockstate);
2274     /* No need to remove the items from the list, since we are exiting. */
2275     if (!libmap_disable)
2276         lm_fini();
2277     lock_release(rtld_bind_lock, &lockstate);
2278 }
2279 
2280 static void *
2281 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2282 {
2283 #ifdef COMPAT_32BIT
2284     const char *trans;
2285 #endif
2286     if (path == NULL)
2287 	return (NULL);
2288 
2289     path += strspn(path, ":;");
2290     while (*path != '\0') {
2291 	size_t len;
2292 	char  *res;
2293 
2294 	len = strcspn(path, ":;");
2295 #ifdef COMPAT_32BIT
2296 	trans = lm_findn(NULL, path, len);
2297 	if (trans)
2298 	    res = callback(trans, strlen(trans), arg);
2299 	else
2300 #endif
2301 	res = callback(path, len, arg);
2302 
2303 	if (res != NULL)
2304 	    return (res);
2305 
2306 	path += len;
2307 	path += strspn(path, ":;");
2308     }
2309 
2310     return (NULL);
2311 }
2312 
2313 struct try_library_args {
2314     const char	*name;
2315     size_t	 namelen;
2316     char	*buffer;
2317     size_t	 buflen;
2318 };
2319 
2320 static void *
2321 try_library_path(const char *dir, size_t dirlen, void *param)
2322 {
2323     struct try_library_args *arg;
2324 
2325     arg = param;
2326     if (*dir == '/' || trust) {
2327 	char *pathname;
2328 
2329 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2330 		return (NULL);
2331 
2332 	pathname = arg->buffer;
2333 	strncpy(pathname, dir, dirlen);
2334 	pathname[dirlen] = '/';
2335 	strcpy(pathname + dirlen + 1, arg->name);
2336 
2337 	dbg("  Trying \"%s\"", pathname);
2338 	if (access(pathname, F_OK) == 0) {		/* We found it */
2339 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2340 	    strcpy(pathname, arg->buffer);
2341 	    return (pathname);
2342 	}
2343     }
2344     return (NULL);
2345 }
2346 
2347 static char *
2348 search_library_path(const char *name, const char *path)
2349 {
2350     char *p;
2351     struct try_library_args arg;
2352 
2353     if (path == NULL)
2354 	return NULL;
2355 
2356     arg.name = name;
2357     arg.namelen = strlen(name);
2358     arg.buffer = xmalloc(PATH_MAX);
2359     arg.buflen = PATH_MAX;
2360 
2361     p = path_enumerate(path, try_library_path, &arg);
2362 
2363     free(arg.buffer);
2364 
2365     return (p);
2366 }
2367 
2368 int
2369 dlclose(void *handle)
2370 {
2371     Obj_Entry *root;
2372     RtldLockState lockstate;
2373 
2374     wlock_acquire(rtld_bind_lock, &lockstate);
2375     root = dlcheck(handle);
2376     if (root == NULL) {
2377 	lock_release(rtld_bind_lock, &lockstate);
2378 	return -1;
2379     }
2380     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2381 	root->path);
2382 
2383     /* Unreference the object and its dependencies. */
2384     root->dl_refcount--;
2385 
2386     if (root->refcount == 1) {
2387 	/*
2388 	 * The object will be no longer referenced, so we must unload it.
2389 	 * First, call the fini functions.
2390 	 */
2391 	objlist_call_fini(&list_fini, root, &lockstate);
2392 
2393 	unref_dag(root);
2394 
2395 	/* Finish cleaning up the newly-unreferenced objects. */
2396 	GDB_STATE(RT_DELETE,&root->linkmap);
2397 	unload_object(root);
2398 	GDB_STATE(RT_CONSISTENT,NULL);
2399     } else
2400 	unref_dag(root);
2401 
2402     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2403     lock_release(rtld_bind_lock, &lockstate);
2404     return 0;
2405 }
2406 
2407 char *
2408 dlerror(void)
2409 {
2410     char *msg = error_message;
2411     error_message = NULL;
2412     return msg;
2413 }
2414 
2415 /*
2416  * This function is deprecated and has no effect.
2417  */
2418 void
2419 dllockinit(void *context,
2420 	   void *(*lock_create)(void *context),
2421            void (*rlock_acquire)(void *lock),
2422            void (*wlock_acquire)(void *lock),
2423            void (*lock_release)(void *lock),
2424            void (*lock_destroy)(void *lock),
2425 	   void (*context_destroy)(void *context))
2426 {
2427     static void *cur_context;
2428     static void (*cur_context_destroy)(void *);
2429 
2430     /* Just destroy the context from the previous call, if necessary. */
2431     if (cur_context_destroy != NULL)
2432 	cur_context_destroy(cur_context);
2433     cur_context = context;
2434     cur_context_destroy = context_destroy;
2435 }
2436 
2437 void *
2438 dlopen(const char *name, int mode)
2439 {
2440 
2441 	return (rtld_dlopen(name, -1, mode));
2442 }
2443 
2444 void *
2445 fdlopen(int fd, int mode)
2446 {
2447 
2448 	return (rtld_dlopen(NULL, fd, mode));
2449 }
2450 
2451 static void *
2452 rtld_dlopen(const char *name, int fd, int mode)
2453 {
2454     RtldLockState lockstate;
2455     int lo_flags;
2456 
2457     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2458     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2459     if (ld_tracing != NULL) {
2460 	rlock_acquire(rtld_bind_lock, &lockstate);
2461 	if (sigsetjmp(lockstate.env, 0) != 0)
2462 	    lock_upgrade(rtld_bind_lock, &lockstate);
2463 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2464 	lock_release(rtld_bind_lock, &lockstate);
2465     }
2466     lo_flags = RTLD_LO_DLOPEN;
2467     if (mode & RTLD_NODELETE)
2468 	    lo_flags |= RTLD_LO_NODELETE;
2469     if (mode & RTLD_NOLOAD)
2470 	    lo_flags |= RTLD_LO_NOLOAD;
2471     if (ld_tracing != NULL)
2472 	    lo_flags |= RTLD_LO_TRACE;
2473 
2474     return (dlopen_object(name, fd, obj_main, lo_flags,
2475       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2476 }
2477 
2478 static void
2479 dlopen_cleanup(Obj_Entry *obj)
2480 {
2481 
2482 	obj->dl_refcount--;
2483 	unref_dag(obj);
2484 	if (obj->refcount == 0)
2485 		unload_object(obj);
2486 }
2487 
2488 static Obj_Entry *
2489 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2490     int mode)
2491 {
2492     Obj_Entry **old_obj_tail;
2493     Obj_Entry *obj;
2494     Objlist initlist;
2495     RtldLockState lockstate;
2496     int result;
2497 
2498     objlist_init(&initlist);
2499 
2500     wlock_acquire(rtld_bind_lock, &lockstate);
2501     GDB_STATE(RT_ADD,NULL);
2502 
2503     old_obj_tail = obj_tail;
2504     obj = NULL;
2505     if (name == NULL && fd == -1) {
2506 	obj = obj_main;
2507 	obj->refcount++;
2508     } else {
2509 	obj = load_object(name, fd, refobj, lo_flags);
2510     }
2511 
2512     if (obj) {
2513 	obj->dl_refcount++;
2514 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2515 	    objlist_push_tail(&list_global, obj);
2516 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2517 	    assert(*old_obj_tail == obj);
2518 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2519 	    init_dag(obj);
2520 	    ref_dag(obj);
2521 	    if (result != -1)
2522 		result = rtld_verify_versions(&obj->dagmembers);
2523 	    if (result != -1 && ld_tracing)
2524 		goto trace;
2525 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2526 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2527 		dlopen_cleanup(obj);
2528 		obj = NULL;
2529 	    } else {
2530 		/* Make list of init functions to call. */
2531 		initlist_add_objects(obj, &obj->next, &initlist);
2532 	    }
2533 	} else {
2534 
2535 	    /*
2536 	     * Bump the reference counts for objects on this DAG.  If
2537 	     * this is the first dlopen() call for the object that was
2538 	     * already loaded as a dependency, initialize the dag
2539 	     * starting at it.
2540 	     */
2541 	    init_dag(obj);
2542 	    ref_dag(obj);
2543 
2544 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2545 		goto trace;
2546 	}
2547 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2548 	  obj->z_nodelete) && !obj->ref_nodel) {
2549 	    dbg("obj %s nodelete", obj->path);
2550 	    ref_dag(obj);
2551 	    obj->z_nodelete = obj->ref_nodel = true;
2552 	}
2553     }
2554 
2555     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2556 	name);
2557     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2558 
2559     map_stacks_exec(&lockstate);
2560 
2561     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2562       &lockstate) == -1) {
2563 	objlist_clear(&initlist);
2564 	dlopen_cleanup(obj);
2565 	lock_release(rtld_bind_lock, &lockstate);
2566 	return (NULL);
2567     }
2568 
2569     /* Call the init functions. */
2570     objlist_call_init(&initlist, &lockstate);
2571     objlist_clear(&initlist);
2572     lock_release(rtld_bind_lock, &lockstate);
2573     return obj;
2574 trace:
2575     trace_loaded_objects(obj);
2576     lock_release(rtld_bind_lock, &lockstate);
2577     exit(0);
2578 }
2579 
2580 static void *
2581 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2582     int flags)
2583 {
2584     DoneList donelist;
2585     const Obj_Entry *obj, *defobj;
2586     const Elf_Sym *def;
2587     SymLook req;
2588     RtldLockState lockstate;
2589     int res;
2590 
2591     def = NULL;
2592     defobj = NULL;
2593     symlook_init(&req, name);
2594     req.ventry = ve;
2595     req.flags = flags | SYMLOOK_IN_PLT;
2596     req.lockstate = &lockstate;
2597 
2598     rlock_acquire(rtld_bind_lock, &lockstate);
2599     if (sigsetjmp(lockstate.env, 0) != 0)
2600 	    lock_upgrade(rtld_bind_lock, &lockstate);
2601     if (handle == NULL || handle == RTLD_NEXT ||
2602 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2603 
2604 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2605 	    _rtld_error("Cannot determine caller's shared object");
2606 	    lock_release(rtld_bind_lock, &lockstate);
2607 	    return NULL;
2608 	}
2609 	if (handle == NULL) {	/* Just the caller's shared object. */
2610 	    res = symlook_obj(&req, obj);
2611 	    if (res == 0) {
2612 		def = req.sym_out;
2613 		defobj = req.defobj_out;
2614 	    }
2615 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2616 		   handle == RTLD_SELF) { /* ... caller included */
2617 	    if (handle == RTLD_NEXT)
2618 		obj = obj->next;
2619 	    for (; obj != NULL; obj = obj->next) {
2620 		res = symlook_obj(&req, obj);
2621 		if (res == 0) {
2622 		    if (def == NULL ||
2623 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2624 			def = req.sym_out;
2625 			defobj = req.defobj_out;
2626 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2627 			    break;
2628 		    }
2629 		}
2630 	    }
2631 	    /*
2632 	     * Search the dynamic linker itself, and possibly resolve the
2633 	     * symbol from there.  This is how the application links to
2634 	     * dynamic linker services such as dlopen.
2635 	     */
2636 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2637 		res = symlook_obj(&req, &obj_rtld);
2638 		if (res == 0) {
2639 		    def = req.sym_out;
2640 		    defobj = req.defobj_out;
2641 		}
2642 	    }
2643 	} else {
2644 	    assert(handle == RTLD_DEFAULT);
2645 	    res = symlook_default(&req, obj);
2646 	    if (res == 0) {
2647 		defobj = req.defobj_out;
2648 		def = req.sym_out;
2649 	    }
2650 	}
2651     } else {
2652 	if ((obj = dlcheck(handle)) == NULL) {
2653 	    lock_release(rtld_bind_lock, &lockstate);
2654 	    return NULL;
2655 	}
2656 
2657 	donelist_init(&donelist);
2658 	if (obj->mainprog) {
2659             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2660 	    res = symlook_global(&req, &donelist);
2661 	    if (res == 0) {
2662 		def = req.sym_out;
2663 		defobj = req.defobj_out;
2664 	    }
2665 	    /*
2666 	     * Search the dynamic linker itself, and possibly resolve the
2667 	     * symbol from there.  This is how the application links to
2668 	     * dynamic linker services such as dlopen.
2669 	     */
2670 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2671 		res = symlook_obj(&req, &obj_rtld);
2672 		if (res == 0) {
2673 		    def = req.sym_out;
2674 		    defobj = req.defobj_out;
2675 		}
2676 	    }
2677 	}
2678 	else {
2679 	    /* Search the whole DAG rooted at the given object. */
2680 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2681 	    if (res == 0) {
2682 		def = req.sym_out;
2683 		defobj = req.defobj_out;
2684 	    }
2685 	}
2686     }
2687 
2688     if (def != NULL) {
2689 	lock_release(rtld_bind_lock, &lockstate);
2690 
2691 	/*
2692 	 * The value required by the caller is derived from the value
2693 	 * of the symbol. For the ia64 architecture, we need to
2694 	 * construct a function descriptor which the caller can use to
2695 	 * call the function with the right 'gp' value. For other
2696 	 * architectures and for non-functions, the value is simply
2697 	 * the relocated value of the symbol.
2698 	 */
2699 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2700 	    return (make_function_pointer(def, defobj));
2701 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2702 	    return (rtld_resolve_ifunc(defobj, def));
2703 	else
2704 	    return (defobj->relocbase + def->st_value);
2705     }
2706 
2707     _rtld_error("Undefined symbol \"%s\"", name);
2708     lock_release(rtld_bind_lock, &lockstate);
2709     return NULL;
2710 }
2711 
2712 void *
2713 dlsym(void *handle, const char *name)
2714 {
2715 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2716 	    SYMLOOK_DLSYM);
2717 }
2718 
2719 dlfunc_t
2720 dlfunc(void *handle, const char *name)
2721 {
2722 	union {
2723 		void *d;
2724 		dlfunc_t f;
2725 	} rv;
2726 
2727 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2728 	    SYMLOOK_DLSYM);
2729 	return (rv.f);
2730 }
2731 
2732 void *
2733 dlvsym(void *handle, const char *name, const char *version)
2734 {
2735 	Ver_Entry ventry;
2736 
2737 	ventry.name = version;
2738 	ventry.file = NULL;
2739 	ventry.hash = elf_hash(version);
2740 	ventry.flags= 0;
2741 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2742 	    SYMLOOK_DLSYM);
2743 }
2744 
2745 int
2746 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2747 {
2748     const Obj_Entry *obj;
2749     RtldLockState lockstate;
2750 
2751     rlock_acquire(rtld_bind_lock, &lockstate);
2752     obj = obj_from_addr(addr);
2753     if (obj == NULL) {
2754         _rtld_error("No shared object contains address");
2755 	lock_release(rtld_bind_lock, &lockstate);
2756         return (0);
2757     }
2758     rtld_fill_dl_phdr_info(obj, phdr_info);
2759     lock_release(rtld_bind_lock, &lockstate);
2760     return (1);
2761 }
2762 
2763 int
2764 dladdr(const void *addr, Dl_info *info)
2765 {
2766     const Obj_Entry *obj;
2767     const Elf_Sym *def;
2768     void *symbol_addr;
2769     unsigned long symoffset;
2770     RtldLockState lockstate;
2771 
2772     rlock_acquire(rtld_bind_lock, &lockstate);
2773     obj = obj_from_addr(addr);
2774     if (obj == NULL) {
2775         _rtld_error("No shared object contains address");
2776 	lock_release(rtld_bind_lock, &lockstate);
2777         return 0;
2778     }
2779     info->dli_fname = obj->path;
2780     info->dli_fbase = obj->mapbase;
2781     info->dli_saddr = (void *)0;
2782     info->dli_sname = NULL;
2783 
2784     /*
2785      * Walk the symbol list looking for the symbol whose address is
2786      * closest to the address sent in.
2787      */
2788     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2789         def = obj->symtab + symoffset;
2790 
2791         /*
2792          * For skip the symbol if st_shndx is either SHN_UNDEF or
2793          * SHN_COMMON.
2794          */
2795         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2796             continue;
2797 
2798         /*
2799          * If the symbol is greater than the specified address, or if it
2800          * is further away from addr than the current nearest symbol,
2801          * then reject it.
2802          */
2803         symbol_addr = obj->relocbase + def->st_value;
2804         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2805             continue;
2806 
2807         /* Update our idea of the nearest symbol. */
2808         info->dli_sname = obj->strtab + def->st_name;
2809         info->dli_saddr = symbol_addr;
2810 
2811         /* Exact match? */
2812         if (info->dli_saddr == addr)
2813             break;
2814     }
2815     lock_release(rtld_bind_lock, &lockstate);
2816     return 1;
2817 }
2818 
2819 int
2820 dlinfo(void *handle, int request, void *p)
2821 {
2822     const Obj_Entry *obj;
2823     RtldLockState lockstate;
2824     int error;
2825 
2826     rlock_acquire(rtld_bind_lock, &lockstate);
2827 
2828     if (handle == NULL || handle == RTLD_SELF) {
2829 	void *retaddr;
2830 
2831 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2832 	if ((obj = obj_from_addr(retaddr)) == NULL)
2833 	    _rtld_error("Cannot determine caller's shared object");
2834     } else
2835 	obj = dlcheck(handle);
2836 
2837     if (obj == NULL) {
2838 	lock_release(rtld_bind_lock, &lockstate);
2839 	return (-1);
2840     }
2841 
2842     error = 0;
2843     switch (request) {
2844     case RTLD_DI_LINKMAP:
2845 	*((struct link_map const **)p) = &obj->linkmap;
2846 	break;
2847     case RTLD_DI_ORIGIN:
2848 	error = rtld_dirname(obj->path, p);
2849 	break;
2850 
2851     case RTLD_DI_SERINFOSIZE:
2852     case RTLD_DI_SERINFO:
2853 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2854 	break;
2855 
2856     default:
2857 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2858 	error = -1;
2859     }
2860 
2861     lock_release(rtld_bind_lock, &lockstate);
2862 
2863     return (error);
2864 }
2865 
2866 static void
2867 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2868 {
2869 
2870 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2871 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2872 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2873 	phdr_info->dlpi_phdr = obj->phdr;
2874 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2875 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2876 	phdr_info->dlpi_tls_data = obj->tlsinit;
2877 	phdr_info->dlpi_adds = obj_loads;
2878 	phdr_info->dlpi_subs = obj_loads - obj_count;
2879 }
2880 
2881 int
2882 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2883 {
2884     struct dl_phdr_info phdr_info;
2885     const Obj_Entry *obj;
2886     RtldLockState bind_lockstate, phdr_lockstate;
2887     int error;
2888 
2889     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2890     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2891 
2892     error = 0;
2893 
2894     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2895 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2896 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2897 		break;
2898 
2899     }
2900     lock_release(rtld_bind_lock, &bind_lockstate);
2901     lock_release(rtld_phdr_lock, &phdr_lockstate);
2902 
2903     return (error);
2904 }
2905 
2906 struct fill_search_info_args {
2907     int		 request;
2908     unsigned int flags;
2909     Dl_serinfo  *serinfo;
2910     Dl_serpath  *serpath;
2911     char	*strspace;
2912 };
2913 
2914 static void *
2915 fill_search_info(const char *dir, size_t dirlen, void *param)
2916 {
2917     struct fill_search_info_args *arg;
2918 
2919     arg = param;
2920 
2921     if (arg->request == RTLD_DI_SERINFOSIZE) {
2922 	arg->serinfo->dls_cnt ++;
2923 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2924     } else {
2925 	struct dl_serpath *s_entry;
2926 
2927 	s_entry = arg->serpath;
2928 	s_entry->dls_name  = arg->strspace;
2929 	s_entry->dls_flags = arg->flags;
2930 
2931 	strncpy(arg->strspace, dir, dirlen);
2932 	arg->strspace[dirlen] = '\0';
2933 
2934 	arg->strspace += dirlen + 1;
2935 	arg->serpath++;
2936     }
2937 
2938     return (NULL);
2939 }
2940 
2941 static int
2942 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2943 {
2944     struct dl_serinfo _info;
2945     struct fill_search_info_args args;
2946 
2947     args.request = RTLD_DI_SERINFOSIZE;
2948     args.serinfo = &_info;
2949 
2950     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2951     _info.dls_cnt  = 0;
2952 
2953     path_enumerate(ld_library_path, fill_search_info, &args);
2954     path_enumerate(obj->rpath, fill_search_info, &args);
2955     path_enumerate(gethints(), fill_search_info, &args);
2956     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2957 
2958 
2959     if (request == RTLD_DI_SERINFOSIZE) {
2960 	info->dls_size = _info.dls_size;
2961 	info->dls_cnt = _info.dls_cnt;
2962 	return (0);
2963     }
2964 
2965     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2966 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2967 	return (-1);
2968     }
2969 
2970     args.request  = RTLD_DI_SERINFO;
2971     args.serinfo  = info;
2972     args.serpath  = &info->dls_serpath[0];
2973     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2974 
2975     args.flags = LA_SER_LIBPATH;
2976     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2977 	return (-1);
2978 
2979     args.flags = LA_SER_RUNPATH;
2980     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2981 	return (-1);
2982 
2983     args.flags = LA_SER_CONFIG;
2984     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2985 	return (-1);
2986 
2987     args.flags = LA_SER_DEFAULT;
2988     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2989 	return (-1);
2990     return (0);
2991 }
2992 
2993 static int
2994 rtld_dirname(const char *path, char *bname)
2995 {
2996     const char *endp;
2997 
2998     /* Empty or NULL string gets treated as "." */
2999     if (path == NULL || *path == '\0') {
3000 	bname[0] = '.';
3001 	bname[1] = '\0';
3002 	return (0);
3003     }
3004 
3005     /* Strip trailing slashes */
3006     endp = path + strlen(path) - 1;
3007     while (endp > path && *endp == '/')
3008 	endp--;
3009 
3010     /* Find the start of the dir */
3011     while (endp > path && *endp != '/')
3012 	endp--;
3013 
3014     /* Either the dir is "/" or there are no slashes */
3015     if (endp == path) {
3016 	bname[0] = *endp == '/' ? '/' : '.';
3017 	bname[1] = '\0';
3018 	return (0);
3019     } else {
3020 	do {
3021 	    endp--;
3022 	} while (endp > path && *endp == '/');
3023     }
3024 
3025     if (endp - path + 2 > PATH_MAX)
3026     {
3027 	_rtld_error("Filename is too long: %s", path);
3028 	return(-1);
3029     }
3030 
3031     strncpy(bname, path, endp - path + 1);
3032     bname[endp - path + 1] = '\0';
3033     return (0);
3034 }
3035 
3036 static int
3037 rtld_dirname_abs(const char *path, char *base)
3038 {
3039 	char base_rel[PATH_MAX];
3040 
3041 	if (rtld_dirname(path, base) == -1)
3042 		return (-1);
3043 	if (base[0] == '/')
3044 		return (0);
3045 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3046 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3047 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3048 		return (-1);
3049 	strcpy(base, base_rel);
3050 	return (0);
3051 }
3052 
3053 static void
3054 linkmap_add(Obj_Entry *obj)
3055 {
3056     struct link_map *l = &obj->linkmap;
3057     struct link_map *prev;
3058 
3059     obj->linkmap.l_name = obj->path;
3060     obj->linkmap.l_addr = obj->mapbase;
3061     obj->linkmap.l_ld = obj->dynamic;
3062 #ifdef __mips__
3063     /* GDB needs load offset on MIPS to use the symbols */
3064     obj->linkmap.l_offs = obj->relocbase;
3065 #endif
3066 
3067     if (r_debug.r_map == NULL) {
3068 	r_debug.r_map = l;
3069 	return;
3070     }
3071 
3072     /*
3073      * Scan to the end of the list, but not past the entry for the
3074      * dynamic linker, which we want to keep at the very end.
3075      */
3076     for (prev = r_debug.r_map;
3077       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3078       prev = prev->l_next)
3079 	;
3080 
3081     /* Link in the new entry. */
3082     l->l_prev = prev;
3083     l->l_next = prev->l_next;
3084     if (l->l_next != NULL)
3085 	l->l_next->l_prev = l;
3086     prev->l_next = l;
3087 }
3088 
3089 static void
3090 linkmap_delete(Obj_Entry *obj)
3091 {
3092     struct link_map *l = &obj->linkmap;
3093 
3094     if (l->l_prev == NULL) {
3095 	if ((r_debug.r_map = l->l_next) != NULL)
3096 	    l->l_next->l_prev = NULL;
3097 	return;
3098     }
3099 
3100     if ((l->l_prev->l_next = l->l_next) != NULL)
3101 	l->l_next->l_prev = l->l_prev;
3102 }
3103 
3104 /*
3105  * Function for the debugger to set a breakpoint on to gain control.
3106  *
3107  * The two parameters allow the debugger to easily find and determine
3108  * what the runtime loader is doing and to whom it is doing it.
3109  *
3110  * When the loadhook trap is hit (r_debug_state, set at program
3111  * initialization), the arguments can be found on the stack:
3112  *
3113  *  +8   struct link_map *m
3114  *  +4   struct r_debug  *rd
3115  *  +0   RetAddr
3116  */
3117 void
3118 r_debug_state(struct r_debug* rd, struct link_map *m)
3119 {
3120     /*
3121      * The following is a hack to force the compiler to emit calls to
3122      * this function, even when optimizing.  If the function is empty,
3123      * the compiler is not obliged to emit any code for calls to it,
3124      * even when marked __noinline.  However, gdb depends on those
3125      * calls being made.
3126      */
3127     __asm __volatile("" : : : "memory");
3128 }
3129 
3130 /*
3131  * Get address of the pointer variable in the main program.
3132  * Prefer non-weak symbol over the weak one.
3133  */
3134 static const void **
3135 get_program_var_addr(const char *name, RtldLockState *lockstate)
3136 {
3137     SymLook req;
3138     DoneList donelist;
3139 
3140     symlook_init(&req, name);
3141     req.lockstate = lockstate;
3142     donelist_init(&donelist);
3143     if (symlook_global(&req, &donelist) != 0)
3144 	return (NULL);
3145     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3146 	return ((const void **)make_function_pointer(req.sym_out,
3147 	  req.defobj_out));
3148     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3149 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3150     else
3151 	return ((const void **)(req.defobj_out->relocbase +
3152 	  req.sym_out->st_value));
3153 }
3154 
3155 /*
3156  * Set a pointer variable in the main program to the given value.  This
3157  * is used to set key variables such as "environ" before any of the
3158  * init functions are called.
3159  */
3160 static void
3161 set_program_var(const char *name, const void *value)
3162 {
3163     const void **addr;
3164 
3165     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3166 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3167 	*addr = value;
3168     }
3169 }
3170 
3171 /*
3172  * Search the global objects, including dependencies and main object,
3173  * for the given symbol.
3174  */
3175 static int
3176 symlook_global(SymLook *req, DoneList *donelist)
3177 {
3178     SymLook req1;
3179     const Objlist_Entry *elm;
3180     int res;
3181 
3182     symlook_init_from_req(&req1, req);
3183 
3184     /* Search all objects loaded at program start up. */
3185     if (req->defobj_out == NULL ||
3186       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3187 	res = symlook_list(&req1, &list_main, donelist);
3188 	if (res == 0 && (req->defobj_out == NULL ||
3189 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3190 	    req->sym_out = req1.sym_out;
3191 	    req->defobj_out = req1.defobj_out;
3192 	    assert(req->defobj_out != NULL);
3193 	}
3194     }
3195 
3196     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3197     STAILQ_FOREACH(elm, &list_global, link) {
3198 	if (req->defobj_out != NULL &&
3199 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3200 	    break;
3201 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3202 	if (res == 0 && (req->defobj_out == NULL ||
3203 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3204 	    req->sym_out = req1.sym_out;
3205 	    req->defobj_out = req1.defobj_out;
3206 	    assert(req->defobj_out != NULL);
3207 	}
3208     }
3209 
3210     return (req->sym_out != NULL ? 0 : ESRCH);
3211 }
3212 
3213 /*
3214  * Given a symbol name in a referencing object, find the corresponding
3215  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3216  * no definition was found.  Returns a pointer to the Obj_Entry of the
3217  * defining object via the reference parameter DEFOBJ_OUT.
3218  */
3219 static int
3220 symlook_default(SymLook *req, const Obj_Entry *refobj)
3221 {
3222     DoneList donelist;
3223     const Objlist_Entry *elm;
3224     SymLook req1;
3225     int res;
3226 
3227     donelist_init(&donelist);
3228     symlook_init_from_req(&req1, req);
3229 
3230     /* Look first in the referencing object if linked symbolically. */
3231     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3232 	res = symlook_obj(&req1, refobj);
3233 	if (res == 0) {
3234 	    req->sym_out = req1.sym_out;
3235 	    req->defobj_out = req1.defobj_out;
3236 	    assert(req->defobj_out != NULL);
3237 	}
3238     }
3239 
3240     symlook_global(req, &donelist);
3241 
3242     /* Search all dlopened DAGs containing the referencing object. */
3243     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3244 	if (req->sym_out != NULL &&
3245 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3246 	    break;
3247 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3248 	if (res == 0 && (req->sym_out == NULL ||
3249 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3250 	    req->sym_out = req1.sym_out;
3251 	    req->defobj_out = req1.defobj_out;
3252 	    assert(req->defobj_out != NULL);
3253 	}
3254     }
3255 
3256     /*
3257      * Search the dynamic linker itself, and possibly resolve the
3258      * symbol from there.  This is how the application links to
3259      * dynamic linker services such as dlopen.
3260      */
3261     if (req->sym_out == NULL ||
3262       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3263 	res = symlook_obj(&req1, &obj_rtld);
3264 	if (res == 0) {
3265 	    req->sym_out = req1.sym_out;
3266 	    req->defobj_out = req1.defobj_out;
3267 	    assert(req->defobj_out != NULL);
3268 	}
3269     }
3270 
3271     return (req->sym_out != NULL ? 0 : ESRCH);
3272 }
3273 
3274 static int
3275 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3276 {
3277     const Elf_Sym *def;
3278     const Obj_Entry *defobj;
3279     const Objlist_Entry *elm;
3280     SymLook req1;
3281     int res;
3282 
3283     def = NULL;
3284     defobj = NULL;
3285     STAILQ_FOREACH(elm, objlist, link) {
3286 	if (donelist_check(dlp, elm->obj))
3287 	    continue;
3288 	symlook_init_from_req(&req1, req);
3289 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3290 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3291 		def = req1.sym_out;
3292 		defobj = req1.defobj_out;
3293 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3294 		    break;
3295 	    }
3296 	}
3297     }
3298     if (def != NULL) {
3299 	req->sym_out = def;
3300 	req->defobj_out = defobj;
3301 	return (0);
3302     }
3303     return (ESRCH);
3304 }
3305 
3306 /*
3307  * Search the chain of DAGS cointed to by the given Needed_Entry
3308  * for a symbol of the given name.  Each DAG is scanned completely
3309  * before advancing to the next one.  Returns a pointer to the symbol,
3310  * or NULL if no definition was found.
3311  */
3312 static int
3313 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3314 {
3315     const Elf_Sym *def;
3316     const Needed_Entry *n;
3317     const Obj_Entry *defobj;
3318     SymLook req1;
3319     int res;
3320 
3321     def = NULL;
3322     defobj = NULL;
3323     symlook_init_from_req(&req1, req);
3324     for (n = needed; n != NULL; n = n->next) {
3325 	if (n->obj == NULL ||
3326 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3327 	    continue;
3328 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3329 	    def = req1.sym_out;
3330 	    defobj = req1.defobj_out;
3331 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3332 		break;
3333 	}
3334     }
3335     if (def != NULL) {
3336 	req->sym_out = def;
3337 	req->defobj_out = defobj;
3338 	return (0);
3339     }
3340     return (ESRCH);
3341 }
3342 
3343 /*
3344  * Search the symbol table of a single shared object for a symbol of
3345  * the given name and version, if requested.  Returns a pointer to the
3346  * symbol, or NULL if no definition was found.  If the object is
3347  * filter, return filtered symbol from filtee.
3348  *
3349  * The symbol's hash value is passed in for efficiency reasons; that
3350  * eliminates many recomputations of the hash value.
3351  */
3352 int
3353 symlook_obj(SymLook *req, const Obj_Entry *obj)
3354 {
3355     DoneList donelist;
3356     SymLook req1;
3357     int res, mres;
3358 
3359     mres = symlook_obj1(req, obj);
3360     if (mres == 0) {
3361 	if (obj->needed_filtees != NULL) {
3362 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3363 	    donelist_init(&donelist);
3364 	    symlook_init_from_req(&req1, req);
3365 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3366 	    if (res == 0) {
3367 		req->sym_out = req1.sym_out;
3368 		req->defobj_out = req1.defobj_out;
3369 	    }
3370 	    return (res);
3371 	}
3372 	if (obj->needed_aux_filtees != NULL) {
3373 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3374 	    donelist_init(&donelist);
3375 	    symlook_init_from_req(&req1, req);
3376 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3377 	    if (res == 0) {
3378 		req->sym_out = req1.sym_out;
3379 		req->defobj_out = req1.defobj_out;
3380 		return (res);
3381 	    }
3382 	}
3383     }
3384     return (mres);
3385 }
3386 
3387 static int
3388 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3389 {
3390     unsigned long symnum;
3391     const Elf_Sym *vsymp;
3392     Elf_Versym verndx;
3393     int vcount;
3394 
3395     if (obj->buckets == NULL)
3396 	return (ESRCH);
3397 
3398     vsymp = NULL;
3399     vcount = 0;
3400     symnum = obj->buckets[req->hash % obj->nbuckets];
3401 
3402     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3403 	const Elf_Sym *symp;
3404 	const char *strp;
3405 
3406 	if (symnum >= obj->nchains)
3407 	    return (ESRCH);	/* Bad object */
3408 
3409 	symp = obj->symtab + symnum;
3410 	strp = obj->strtab + symp->st_name;
3411 
3412 	switch (ELF_ST_TYPE(symp->st_info)) {
3413 	case STT_FUNC:
3414 	case STT_NOTYPE:
3415 	case STT_OBJECT:
3416 	case STT_GNU_IFUNC:
3417 	    if (symp->st_value == 0)
3418 		continue;
3419 		/* fallthrough */
3420 	case STT_TLS:
3421 	    if (symp->st_shndx != SHN_UNDEF)
3422 		break;
3423 #ifndef __mips__
3424 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3425 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3426 		break;
3427 		/* fallthrough */
3428 #endif
3429 	default:
3430 	    continue;
3431 	}
3432 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3433 	    continue;
3434 
3435 	if (req->ventry == NULL) {
3436 	    if (obj->versyms != NULL) {
3437 		verndx = VER_NDX(obj->versyms[symnum]);
3438 		if (verndx > obj->vernum) {
3439 		    _rtld_error("%s: symbol %s references wrong version %d",
3440 			obj->path, obj->strtab + symnum, verndx);
3441 		    continue;
3442 		}
3443 		/*
3444 		 * If we are not called from dlsym (i.e. this is a normal
3445 		 * relocation from unversioned binary), accept the symbol
3446 		 * immediately if it happens to have first version after
3447 		 * this shared object became versioned. Otherwise, if
3448 		 * symbol is versioned and not hidden, remember it. If it
3449 		 * is the only symbol with this name exported by the
3450 		 * shared object, it will be returned as a match at the
3451 		 * end of the function. If symbol is global (verndx < 2)
3452 		 * accept it unconditionally.
3453 		 */
3454 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3455 		  verndx == VER_NDX_GIVEN) {
3456 		    req->sym_out = symp;
3457 		    req->defobj_out = obj;
3458 		    return (0);
3459 		}
3460 		else if (verndx >= VER_NDX_GIVEN) {
3461 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3462 			if (vsymp == NULL)
3463 			    vsymp = symp;
3464 			vcount ++;
3465 		    }
3466 		    continue;
3467 		}
3468 	    }
3469 	    req->sym_out = symp;
3470 	    req->defobj_out = obj;
3471 	    return (0);
3472 	} else {
3473 	    if (obj->versyms == NULL) {
3474 		if (object_match_name(obj, req->ventry->name)) {
3475 		    _rtld_error("%s: object %s should provide version %s for "
3476 			"symbol %s", obj_rtld.path, obj->path,
3477 			req->ventry->name, obj->strtab + symnum);
3478 		    continue;
3479 		}
3480 	    } else {
3481 		verndx = VER_NDX(obj->versyms[symnum]);
3482 		if (verndx > obj->vernum) {
3483 		    _rtld_error("%s: symbol %s references wrong version %d",
3484 			obj->path, obj->strtab + symnum, verndx);
3485 		    continue;
3486 		}
3487 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3488 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3489 		    /*
3490 		     * Version does not match. Look if this is a global symbol
3491 		     * and if it is not hidden. If global symbol (verndx < 2)
3492 		     * is available, use it. Do not return symbol if we are
3493 		     * called by dlvsym, because dlvsym looks for a specific
3494 		     * version and default one is not what dlvsym wants.
3495 		     */
3496 		    if ((req->flags & SYMLOOK_DLSYM) ||
3497 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3498 			(verndx >= VER_NDX_GIVEN))
3499 			continue;
3500 		}
3501 	    }
3502 	    req->sym_out = symp;
3503 	    req->defobj_out = obj;
3504 	    return (0);
3505 	}
3506     }
3507     if (vcount == 1) {
3508 	req->sym_out = vsymp;
3509 	req->defobj_out = obj;
3510 	return (0);
3511     }
3512     return (ESRCH);
3513 }
3514 
3515 static void
3516 trace_loaded_objects(Obj_Entry *obj)
3517 {
3518     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3519     int		c;
3520 
3521     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3522 	main_local = "";
3523 
3524     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3525 	fmt1 = "\t%o => %p (%x)\n";
3526 
3527     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3528 	fmt2 = "\t%o (%x)\n";
3529 
3530     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3531 
3532     for (; obj; obj = obj->next) {
3533 	Needed_Entry		*needed;
3534 	char			*name, *path;
3535 	bool			is_lib;
3536 
3537 	if (list_containers && obj->needed != NULL)
3538 	    rtld_printf("%s:\n", obj->path);
3539 	for (needed = obj->needed; needed; needed = needed->next) {
3540 	    if (needed->obj != NULL) {
3541 		if (needed->obj->traced && !list_containers)
3542 		    continue;
3543 		needed->obj->traced = true;
3544 		path = needed->obj->path;
3545 	    } else
3546 		path = "not found";
3547 
3548 	    name = (char *)obj->strtab + needed->name;
3549 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3550 
3551 	    fmt = is_lib ? fmt1 : fmt2;
3552 	    while ((c = *fmt++) != '\0') {
3553 		switch (c) {
3554 		default:
3555 		    rtld_putchar(c);
3556 		    continue;
3557 		case '\\':
3558 		    switch (c = *fmt) {
3559 		    case '\0':
3560 			continue;
3561 		    case 'n':
3562 			rtld_putchar('\n');
3563 			break;
3564 		    case 't':
3565 			rtld_putchar('\t');
3566 			break;
3567 		    }
3568 		    break;
3569 		case '%':
3570 		    switch (c = *fmt) {
3571 		    case '\0':
3572 			continue;
3573 		    case '%':
3574 		    default:
3575 			rtld_putchar(c);
3576 			break;
3577 		    case 'A':
3578 			rtld_putstr(main_local);
3579 			break;
3580 		    case 'a':
3581 			rtld_putstr(obj_main->path);
3582 			break;
3583 		    case 'o':
3584 			rtld_putstr(name);
3585 			break;
3586 #if 0
3587 		    case 'm':
3588 			rtld_printf("%d", sodp->sod_major);
3589 			break;
3590 		    case 'n':
3591 			rtld_printf("%d", sodp->sod_minor);
3592 			break;
3593 #endif
3594 		    case 'p':
3595 			rtld_putstr(path);
3596 			break;
3597 		    case 'x':
3598 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3599 			  0);
3600 			break;
3601 		    }
3602 		    break;
3603 		}
3604 		++fmt;
3605 	    }
3606 	}
3607     }
3608 }
3609 
3610 /*
3611  * Unload a dlopened object and its dependencies from memory and from
3612  * our data structures.  It is assumed that the DAG rooted in the
3613  * object has already been unreferenced, and that the object has a
3614  * reference count of 0.
3615  */
3616 static void
3617 unload_object(Obj_Entry *root)
3618 {
3619     Obj_Entry *obj;
3620     Obj_Entry **linkp;
3621 
3622     assert(root->refcount == 0);
3623 
3624     /*
3625      * Pass over the DAG removing unreferenced objects from
3626      * appropriate lists.
3627      */
3628     unlink_object(root);
3629 
3630     /* Unmap all objects that are no longer referenced. */
3631     linkp = &obj_list->next;
3632     while ((obj = *linkp) != NULL) {
3633 	if (obj->refcount == 0) {
3634 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3635 		obj->path);
3636 	    dbg("unloading \"%s\"", obj->path);
3637 	    unload_filtees(root);
3638 	    munmap(obj->mapbase, obj->mapsize);
3639 	    linkmap_delete(obj);
3640 	    *linkp = obj->next;
3641 	    obj_count--;
3642 	    obj_free(obj);
3643 	} else
3644 	    linkp = &obj->next;
3645     }
3646     obj_tail = linkp;
3647 }
3648 
3649 static void
3650 unlink_object(Obj_Entry *root)
3651 {
3652     Objlist_Entry *elm;
3653 
3654     if (root->refcount == 0) {
3655 	/* Remove the object from the RTLD_GLOBAL list. */
3656 	objlist_remove(&list_global, root);
3657 
3658     	/* Remove the object from all objects' DAG lists. */
3659     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3660 	    objlist_remove(&elm->obj->dldags, root);
3661 	    if (elm->obj != root)
3662 		unlink_object(elm->obj);
3663 	}
3664     }
3665 }
3666 
3667 static void
3668 ref_dag(Obj_Entry *root)
3669 {
3670     Objlist_Entry *elm;
3671 
3672     assert(root->dag_inited);
3673     STAILQ_FOREACH(elm, &root->dagmembers, link)
3674 	elm->obj->refcount++;
3675 }
3676 
3677 static void
3678 unref_dag(Obj_Entry *root)
3679 {
3680     Objlist_Entry *elm;
3681 
3682     assert(root->dag_inited);
3683     STAILQ_FOREACH(elm, &root->dagmembers, link)
3684 	elm->obj->refcount--;
3685 }
3686 
3687 /*
3688  * Common code for MD __tls_get_addr().
3689  */
3690 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3691 static void *
3692 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3693 {
3694     Elf_Addr *newdtv, *dtv;
3695     RtldLockState lockstate;
3696     int to_copy;
3697 
3698     dtv = *dtvp;
3699     /* Check dtv generation in case new modules have arrived */
3700     if (dtv[0] != tls_dtv_generation) {
3701 	wlock_acquire(rtld_bind_lock, &lockstate);
3702 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3703 	to_copy = dtv[1];
3704 	if (to_copy > tls_max_index)
3705 	    to_copy = tls_max_index;
3706 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3707 	newdtv[0] = tls_dtv_generation;
3708 	newdtv[1] = tls_max_index;
3709 	free(dtv);
3710 	lock_release(rtld_bind_lock, &lockstate);
3711 	dtv = *dtvp = newdtv;
3712     }
3713 
3714     /* Dynamically allocate module TLS if necessary */
3715     if (dtv[index + 1] == 0) {
3716 	/* Signal safe, wlock will block out signals. */
3717 	wlock_acquire(rtld_bind_lock, &lockstate);
3718 	if (!dtv[index + 1])
3719 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3720 	lock_release(rtld_bind_lock, &lockstate);
3721     }
3722     return ((void *)(dtv[index + 1] + offset));
3723 }
3724 
3725 void *
3726 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3727 {
3728 	Elf_Addr *dtv;
3729 
3730 	dtv = *dtvp;
3731 	/* Check dtv generation in case new modules have arrived */
3732 	if (__predict_true(dtv[0] == tls_dtv_generation &&
3733 	    dtv[index + 1] != 0))
3734 		return ((void *)(dtv[index + 1] + offset));
3735 	return (tls_get_addr_slow(dtvp, index, offset));
3736 }
3737 
3738 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3739 
3740 /*
3741  * Allocate Static TLS using the Variant I method.
3742  */
3743 void *
3744 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3745 {
3746     Obj_Entry *obj;
3747     char *tcb;
3748     Elf_Addr **tls;
3749     Elf_Addr *dtv;
3750     Elf_Addr addr;
3751     int i;
3752 
3753     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3754 	return (oldtcb);
3755 
3756     assert(tcbsize >= TLS_TCB_SIZE);
3757     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3758     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3759 
3760     if (oldtcb != NULL) {
3761 	memcpy(tls, oldtcb, tls_static_space);
3762 	free(oldtcb);
3763 
3764 	/* Adjust the DTV. */
3765 	dtv = tls[0];
3766 	for (i = 0; i < dtv[1]; i++) {
3767 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3768 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3769 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3770 	    }
3771 	}
3772     } else {
3773 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3774 	tls[0] = dtv;
3775 	dtv[0] = tls_dtv_generation;
3776 	dtv[1] = tls_max_index;
3777 
3778 	for (obj = objs; obj; obj = obj->next) {
3779 	    if (obj->tlsoffset > 0) {
3780 		addr = (Elf_Addr)tls + obj->tlsoffset;
3781 		if (obj->tlsinitsize > 0)
3782 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3783 		if (obj->tlssize > obj->tlsinitsize)
3784 		    memset((void*) (addr + obj->tlsinitsize), 0,
3785 			   obj->tlssize - obj->tlsinitsize);
3786 		dtv[obj->tlsindex + 1] = addr;
3787 	    }
3788 	}
3789     }
3790 
3791     return (tcb);
3792 }
3793 
3794 void
3795 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3796 {
3797     Elf_Addr *dtv;
3798     Elf_Addr tlsstart, tlsend;
3799     int dtvsize, i;
3800 
3801     assert(tcbsize >= TLS_TCB_SIZE);
3802 
3803     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3804     tlsend = tlsstart + tls_static_space;
3805 
3806     dtv = *(Elf_Addr **)tlsstart;
3807     dtvsize = dtv[1];
3808     for (i = 0; i < dtvsize; i++) {
3809 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3810 	    free((void*)dtv[i+2]);
3811 	}
3812     }
3813     free(dtv);
3814     free(tcb);
3815 }
3816 
3817 #endif
3818 
3819 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
3820 
3821 /*
3822  * Allocate Static TLS using the Variant II method.
3823  */
3824 void *
3825 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3826 {
3827     Obj_Entry *obj;
3828     size_t size;
3829     char *tls;
3830     Elf_Addr *dtv, *olddtv;
3831     Elf_Addr segbase, oldsegbase, addr;
3832     int i;
3833 
3834     size = round(tls_static_space, tcbalign);
3835 
3836     assert(tcbsize >= 2*sizeof(Elf_Addr));
3837     tls = calloc(1, size + tcbsize);
3838     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3839 
3840     segbase = (Elf_Addr)(tls + size);
3841     ((Elf_Addr*)segbase)[0] = segbase;
3842     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3843 
3844     dtv[0] = tls_dtv_generation;
3845     dtv[1] = tls_max_index;
3846 
3847     if (oldtls) {
3848 	/*
3849 	 * Copy the static TLS block over whole.
3850 	 */
3851 	oldsegbase = (Elf_Addr) oldtls;
3852 	memcpy((void *)(segbase - tls_static_space),
3853 	       (const void *)(oldsegbase - tls_static_space),
3854 	       tls_static_space);
3855 
3856 	/*
3857 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3858 	 * move them over.
3859 	 */
3860 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3861 	for (i = 0; i < olddtv[1]; i++) {
3862 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3863 		dtv[i+2] = olddtv[i+2];
3864 		olddtv[i+2] = 0;
3865 	    }
3866 	}
3867 
3868 	/*
3869 	 * We assume that this block was the one we created with
3870 	 * allocate_initial_tls().
3871 	 */
3872 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3873     } else {
3874 	for (obj = objs; obj; obj = obj->next) {
3875 	    if (obj->tlsoffset) {
3876 		addr = segbase - obj->tlsoffset;
3877 		memset((void*) (addr + obj->tlsinitsize),
3878 		       0, obj->tlssize - obj->tlsinitsize);
3879 		if (obj->tlsinit)
3880 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3881 		dtv[obj->tlsindex + 1] = addr;
3882 	    }
3883 	}
3884     }
3885 
3886     return (void*) segbase;
3887 }
3888 
3889 void
3890 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3891 {
3892     size_t size;
3893     Elf_Addr* dtv;
3894     int dtvsize, i;
3895     Elf_Addr tlsstart, tlsend;
3896 
3897     /*
3898      * Figure out the size of the initial TLS block so that we can
3899      * find stuff which ___tls_get_addr() allocated dynamically.
3900      */
3901     size = round(tls_static_space, tcbalign);
3902 
3903     dtv = ((Elf_Addr**)tls)[1];
3904     dtvsize = dtv[1];
3905     tlsend = (Elf_Addr) tls;
3906     tlsstart = tlsend - size;
3907     for (i = 0; i < dtvsize; i++) {
3908 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3909 	    free((void*) dtv[i+2]);
3910 	}
3911     }
3912 
3913     free((void*) tlsstart);
3914     free((void*) dtv);
3915 }
3916 
3917 #endif
3918 
3919 /*
3920  * Allocate TLS block for module with given index.
3921  */
3922 void *
3923 allocate_module_tls(int index)
3924 {
3925     Obj_Entry* obj;
3926     char* p;
3927 
3928     for (obj = obj_list; obj; obj = obj->next) {
3929 	if (obj->tlsindex == index)
3930 	    break;
3931     }
3932     if (!obj) {
3933 	_rtld_error("Can't find module with TLS index %d", index);
3934 	die();
3935     }
3936 
3937     p = malloc(obj->tlssize);
3938     if (p == NULL) {
3939 	_rtld_error("Cannot allocate TLS block for index %d", index);
3940 	die();
3941     }
3942     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3943     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3944 
3945     return p;
3946 }
3947 
3948 bool
3949 allocate_tls_offset(Obj_Entry *obj)
3950 {
3951     size_t off;
3952 
3953     if (obj->tls_done)
3954 	return true;
3955 
3956     if (obj->tlssize == 0) {
3957 	obj->tls_done = true;
3958 	return true;
3959     }
3960 
3961     if (obj->tlsindex == 1)
3962 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3963     else
3964 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3965 				   obj->tlssize, obj->tlsalign);
3966 
3967     /*
3968      * If we have already fixed the size of the static TLS block, we
3969      * must stay within that size. When allocating the static TLS, we
3970      * leave a small amount of space spare to be used for dynamically
3971      * loading modules which use static TLS.
3972      */
3973     if (tls_static_space) {
3974 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3975 	    return false;
3976     }
3977 
3978     tls_last_offset = obj->tlsoffset = off;
3979     tls_last_size = obj->tlssize;
3980     obj->tls_done = true;
3981 
3982     return true;
3983 }
3984 
3985 void
3986 free_tls_offset(Obj_Entry *obj)
3987 {
3988 
3989     /*
3990      * If we were the last thing to allocate out of the static TLS
3991      * block, we give our space back to the 'allocator'. This is a
3992      * simplistic workaround to allow libGL.so.1 to be loaded and
3993      * unloaded multiple times.
3994      */
3995     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3996 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3997 	tls_last_offset -= obj->tlssize;
3998 	tls_last_size = 0;
3999     }
4000 }
4001 
4002 void *
4003 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4004 {
4005     void *ret;
4006     RtldLockState lockstate;
4007 
4008     wlock_acquire(rtld_bind_lock, &lockstate);
4009     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4010     lock_release(rtld_bind_lock, &lockstate);
4011     return (ret);
4012 }
4013 
4014 void
4015 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4016 {
4017     RtldLockState lockstate;
4018 
4019     wlock_acquire(rtld_bind_lock, &lockstate);
4020     free_tls(tcb, tcbsize, tcbalign);
4021     lock_release(rtld_bind_lock, &lockstate);
4022 }
4023 
4024 static void
4025 object_add_name(Obj_Entry *obj, const char *name)
4026 {
4027     Name_Entry *entry;
4028     size_t len;
4029 
4030     len = strlen(name);
4031     entry = malloc(sizeof(Name_Entry) + len);
4032 
4033     if (entry != NULL) {
4034 	strcpy(entry->name, name);
4035 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4036     }
4037 }
4038 
4039 static int
4040 object_match_name(const Obj_Entry *obj, const char *name)
4041 {
4042     Name_Entry *entry;
4043 
4044     STAILQ_FOREACH(entry, &obj->names, link) {
4045 	if (strcmp(name, entry->name) == 0)
4046 	    return (1);
4047     }
4048     return (0);
4049 }
4050 
4051 static Obj_Entry *
4052 locate_dependency(const Obj_Entry *obj, const char *name)
4053 {
4054     const Objlist_Entry *entry;
4055     const Needed_Entry *needed;
4056 
4057     STAILQ_FOREACH(entry, &list_main, link) {
4058 	if (object_match_name(entry->obj, name))
4059 	    return entry->obj;
4060     }
4061 
4062     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4063 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4064 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4065 	    /*
4066 	     * If there is DT_NEEDED for the name we are looking for,
4067 	     * we are all set.  Note that object might not be found if
4068 	     * dependency was not loaded yet, so the function can
4069 	     * return NULL here.  This is expected and handled
4070 	     * properly by the caller.
4071 	     */
4072 	    return (needed->obj);
4073 	}
4074     }
4075     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4076 	obj->path, name);
4077     die();
4078 }
4079 
4080 static int
4081 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4082     const Elf_Vernaux *vna)
4083 {
4084     const Elf_Verdef *vd;
4085     const char *vername;
4086 
4087     vername = refobj->strtab + vna->vna_name;
4088     vd = depobj->verdef;
4089     if (vd == NULL) {
4090 	_rtld_error("%s: version %s required by %s not defined",
4091 	    depobj->path, vername, refobj->path);
4092 	return (-1);
4093     }
4094     for (;;) {
4095 	if (vd->vd_version != VER_DEF_CURRENT) {
4096 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4097 		depobj->path, vd->vd_version);
4098 	    return (-1);
4099 	}
4100 	if (vna->vna_hash == vd->vd_hash) {
4101 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4102 		((char *)vd + vd->vd_aux);
4103 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4104 		return (0);
4105 	}
4106 	if (vd->vd_next == 0)
4107 	    break;
4108 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4109     }
4110     if (vna->vna_flags & VER_FLG_WEAK)
4111 	return (0);
4112     _rtld_error("%s: version %s required by %s not found",
4113 	depobj->path, vername, refobj->path);
4114     return (-1);
4115 }
4116 
4117 static int
4118 rtld_verify_object_versions(Obj_Entry *obj)
4119 {
4120     const Elf_Verneed *vn;
4121     const Elf_Verdef  *vd;
4122     const Elf_Verdaux *vda;
4123     const Elf_Vernaux *vna;
4124     const Obj_Entry *depobj;
4125     int maxvernum, vernum;
4126 
4127     maxvernum = 0;
4128     /*
4129      * Walk over defined and required version records and figure out
4130      * max index used by any of them. Do very basic sanity checking
4131      * while there.
4132      */
4133     vn = obj->verneed;
4134     while (vn != NULL) {
4135 	if (vn->vn_version != VER_NEED_CURRENT) {
4136 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4137 		obj->path, vn->vn_version);
4138 	    return (-1);
4139 	}
4140 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4141 	for (;;) {
4142 	    vernum = VER_NEED_IDX(vna->vna_other);
4143 	    if (vernum > maxvernum)
4144 		maxvernum = vernum;
4145 	    if (vna->vna_next == 0)
4146 		 break;
4147 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4148 	}
4149 	if (vn->vn_next == 0)
4150 	    break;
4151 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4152     }
4153 
4154     vd = obj->verdef;
4155     while (vd != NULL) {
4156 	if (vd->vd_version != VER_DEF_CURRENT) {
4157 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4158 		obj->path, vd->vd_version);
4159 	    return (-1);
4160 	}
4161 	vernum = VER_DEF_IDX(vd->vd_ndx);
4162 	if (vernum > maxvernum)
4163 		maxvernum = vernum;
4164 	if (vd->vd_next == 0)
4165 	    break;
4166 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4167     }
4168 
4169     if (maxvernum == 0)
4170 	return (0);
4171 
4172     /*
4173      * Store version information in array indexable by version index.
4174      * Verify that object version requirements are satisfied along the
4175      * way.
4176      */
4177     obj->vernum = maxvernum + 1;
4178     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
4179 
4180     vd = obj->verdef;
4181     while (vd != NULL) {
4182 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4183 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4184 	    assert(vernum <= maxvernum);
4185 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4186 	    obj->vertab[vernum].hash = vd->vd_hash;
4187 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4188 	    obj->vertab[vernum].file = NULL;
4189 	    obj->vertab[vernum].flags = 0;
4190 	}
4191 	if (vd->vd_next == 0)
4192 	    break;
4193 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4194     }
4195 
4196     vn = obj->verneed;
4197     while (vn != NULL) {
4198 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4199 	if (depobj == NULL)
4200 	    return (-1);
4201 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4202 	for (;;) {
4203 	    if (check_object_provided_version(obj, depobj, vna))
4204 		return (-1);
4205 	    vernum = VER_NEED_IDX(vna->vna_other);
4206 	    assert(vernum <= maxvernum);
4207 	    obj->vertab[vernum].hash = vna->vna_hash;
4208 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4209 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4210 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4211 		VER_INFO_HIDDEN : 0;
4212 	    if (vna->vna_next == 0)
4213 		 break;
4214 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4215 	}
4216 	if (vn->vn_next == 0)
4217 	    break;
4218 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4219     }
4220     return 0;
4221 }
4222 
4223 static int
4224 rtld_verify_versions(const Objlist *objlist)
4225 {
4226     Objlist_Entry *entry;
4227     int rc;
4228 
4229     rc = 0;
4230     STAILQ_FOREACH(entry, objlist, link) {
4231 	/*
4232 	 * Skip dummy objects or objects that have their version requirements
4233 	 * already checked.
4234 	 */
4235 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4236 	    continue;
4237 	if (rtld_verify_object_versions(entry->obj) == -1) {
4238 	    rc = -1;
4239 	    if (ld_tracing == NULL)
4240 		break;
4241 	}
4242     }
4243     if (rc == 0 || ld_tracing != NULL)
4244     	rc = rtld_verify_object_versions(&obj_rtld);
4245     return rc;
4246 }
4247 
4248 const Ver_Entry *
4249 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4250 {
4251     Elf_Versym vernum;
4252 
4253     if (obj->vertab) {
4254 	vernum = VER_NDX(obj->versyms[symnum]);
4255 	if (vernum >= obj->vernum) {
4256 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4257 		obj->path, obj->strtab + symnum, vernum);
4258 	} else if (obj->vertab[vernum].hash != 0) {
4259 	    return &obj->vertab[vernum];
4260 	}
4261     }
4262     return NULL;
4263 }
4264 
4265 int
4266 _rtld_get_stack_prot(void)
4267 {
4268 
4269 	return (stack_prot);
4270 }
4271 
4272 static void
4273 map_stacks_exec(RtldLockState *lockstate)
4274 {
4275 	void (*thr_map_stacks_exec)(void);
4276 
4277 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4278 		return;
4279 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4280 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4281 	if (thr_map_stacks_exec != NULL) {
4282 		stack_prot |= PROT_EXEC;
4283 		thr_map_stacks_exec();
4284 	}
4285 }
4286 
4287 void
4288 symlook_init(SymLook *dst, const char *name)
4289 {
4290 
4291 	bzero(dst, sizeof(*dst));
4292 	dst->name = name;
4293 	dst->hash = elf_hash(name);
4294 }
4295 
4296 static void
4297 symlook_init_from_req(SymLook *dst, const SymLook *src)
4298 {
4299 
4300 	dst->name = src->name;
4301 	dst->hash = src->hash;
4302 	dst->ventry = src->ventry;
4303 	dst->flags = src->flags;
4304 	dst->defobj_out = NULL;
4305 	dst->sym_out = NULL;
4306 	dst->lockstate = src->lockstate;
4307 }
4308 
4309 /*
4310  * Overrides for libc_pic-provided functions.
4311  */
4312 
4313 int
4314 __getosreldate(void)
4315 {
4316 	size_t len;
4317 	int oid[2];
4318 	int error, osrel;
4319 
4320 	if (osreldate != 0)
4321 		return (osreldate);
4322 
4323 	oid[0] = CTL_KERN;
4324 	oid[1] = KERN_OSRELDATE;
4325 	osrel = 0;
4326 	len = sizeof(osrel);
4327 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4328 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4329 		osreldate = osrel;
4330 	return (osreldate);
4331 }
4332 
4333 /*
4334  * No unresolved symbols for rtld.
4335  */
4336 void
4337 __pthread_cxa_finalize(struct dl_phdr_info *a)
4338 {
4339 }
4340 
4341 void
4342 __stack_chk_fail(void)
4343 {
4344 
4345 	_rtld_error("stack overflow detected; terminated");
4346 	die();
4347 }
4348 
4349 void
4350 __chk_fail(void)
4351 {
4352 
4353 	_rtld_error("buffer overflow detected; terminated");
4354 	die();
4355 }
4356