xref: /freebsd/libexec/rtld-elf/rtld.c (revision 8f87df16d414c7b09739ba95030e1e5650207b73)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "rtld_utrace.h"
63 #include "notes.h"
64 
65 /* Types. */
66 typedef void (*func_ptr_type)();
67 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
68 
69 /*
70  * Function declarations.
71  */
72 static const char *basename(const char *);
73 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
74     const Elf_Dyn **, const Elf_Dyn **);
75 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
76     const Elf_Dyn *);
77 static void digest_dynamic(Obj_Entry *, int);
78 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
79 static Obj_Entry *dlcheck(void *);
80 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
81     int lo_flags, int mode, RtldLockState *lockstate);
82 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
83 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
84 static bool donelist_check(DoneList *, const Obj_Entry *);
85 static void errmsg_restore(char *);
86 static char *errmsg_save(void);
87 static void *fill_search_info(const char *, size_t, void *);
88 static char *find_library(const char *, const Obj_Entry *, int *);
89 static const char *gethints(bool);
90 static void hold_object(Obj_Entry *);
91 static void unhold_object(Obj_Entry *);
92 static void init_dag(Obj_Entry *);
93 static void init_marker(Obj_Entry *);
94 static void init_pagesizes(Elf_Auxinfo **aux_info);
95 static void init_rtld(caddr_t, Elf_Auxinfo **);
96 static void initlist_add_neededs(Needed_Entry *, Objlist *);
97 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
98 static void linkmap_add(Obj_Entry *);
99 static void linkmap_delete(Obj_Entry *);
100 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
101 static void unload_filtees(Obj_Entry *);
102 static int load_needed_objects(Obj_Entry *, int);
103 static int load_preload_objects(void);
104 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
105 static void map_stacks_exec(RtldLockState *);
106 static Obj_Entry *obj_from_addr(const void *);
107 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
108 static void objlist_call_init(Objlist *, RtldLockState *);
109 static void objlist_clear(Objlist *);
110 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
111 static void objlist_init(Objlist *);
112 static void objlist_push_head(Objlist *, Obj_Entry *);
113 static void objlist_push_tail(Objlist *, Obj_Entry *);
114 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
115 static void objlist_remove(Objlist *, Obj_Entry *);
116 static int parse_libdir(const char *);
117 static void *path_enumerate(const char *, path_enum_proc, void *);
118 static void release_object(Obj_Entry *);
119 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
120     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
121 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
122     int flags, RtldLockState *lockstate);
123 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
124     RtldLockState *);
125 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
126     int flags, RtldLockState *lockstate);
127 static int rtld_dirname(const char *, char *);
128 static int rtld_dirname_abs(const char *, char *);
129 static void *rtld_dlopen(const char *name, int fd, int mode);
130 static void rtld_exit(void);
131 static char *search_library_path(const char *, const char *);
132 static char *search_library_pathfds(const char *, const char *, int *);
133 static const void **get_program_var_addr(const char *, RtldLockState *);
134 static void set_program_var(const char *, const void *);
135 static int symlook_default(SymLook *, const Obj_Entry *refobj);
136 static int symlook_global(SymLook *, DoneList *);
137 static void symlook_init_from_req(SymLook *, const SymLook *);
138 static int symlook_list(SymLook *, const Objlist *, DoneList *);
139 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
140 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
141 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
142 static void trace_loaded_objects(Obj_Entry *);
143 static void unlink_object(Obj_Entry *);
144 static void unload_object(Obj_Entry *);
145 static void unref_dag(Obj_Entry *);
146 static void ref_dag(Obj_Entry *);
147 static char *origin_subst_one(Obj_Entry *, char *, const char *,
148     const char *, bool);
149 static char *origin_subst(Obj_Entry *, char *);
150 static bool obj_resolve_origin(Obj_Entry *obj);
151 static void preinit_main(void);
152 static int  rtld_verify_versions(const Objlist *);
153 static int  rtld_verify_object_versions(Obj_Entry *);
154 static void object_add_name(Obj_Entry *, const char *);
155 static int  object_match_name(const Obj_Entry *, const char *);
156 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158     struct dl_phdr_info *phdr_info);
159 static uint32_t gnu_hash(const char *);
160 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161     const unsigned long);
162 
163 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
164 void _r_debug_postinit(struct link_map *) __noinline __exported;
165 
166 int __sys_openat(int, const char *, int, ...);
167 
168 /*
169  * Data declarations.
170  */
171 static char *error_message;	/* Message for dlerror(), or NULL */
172 struct r_debug r_debug __exported;	/* for GDB; */
173 static bool libmap_disable;	/* Disable libmap */
174 static bool ld_loadfltr;	/* Immediate filters processing */
175 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
176 static bool trust;		/* False for setuid and setgid programs */
177 static bool dangerous_ld_env;	/* True if environment variables have been
178 				   used to affect the libraries loaded */
179 static char *ld_bind_now;	/* Environment variable for immediate binding */
180 static char *ld_debug;		/* Environment variable for debugging */
181 static char *ld_library_path;	/* Environment variable for search path */
182 static char *ld_library_dirs;	/* Environment variable for library descriptors */
183 static char *ld_preload;	/* Environment variable for libraries to
184 				   load first */
185 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
186 static char *ld_tracing;	/* Called from ldd to print libs */
187 static char *ld_utrace;		/* Use utrace() to log events. */
188 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
189 static Obj_Entry *obj_main;	/* The main program shared object */
190 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
191 static unsigned int obj_count;	/* Number of objects in obj_list */
192 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
193 
194 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
195   STAILQ_HEAD_INITIALIZER(list_global);
196 static Objlist list_main =	/* Objects loaded at program startup */
197   STAILQ_HEAD_INITIALIZER(list_main);
198 static Objlist list_fini =	/* Objects needing fini() calls */
199   STAILQ_HEAD_INITIALIZER(list_fini);
200 
201 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
202 
203 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
204 
205 extern Elf_Dyn _DYNAMIC;
206 #pragma weak _DYNAMIC
207 
208 int dlclose(void *) __exported;
209 char *dlerror(void) __exported;
210 void *dlopen(const char *, int) __exported;
211 void *fdlopen(int, int) __exported;
212 void *dlsym(void *, const char *) __exported;
213 dlfunc_t dlfunc(void *, const char *) __exported;
214 void *dlvsym(void *, const char *, const char *) __exported;
215 int dladdr(const void *, Dl_info *) __exported;
216 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
217     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
218 int dlinfo(void *, int , void *) __exported;
219 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
220 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
221 int _rtld_get_stack_prot(void) __exported;
222 int _rtld_is_dlopened(void *) __exported;
223 void _rtld_error(const char *, ...) __exported;
224 
225 int npagesizes, osreldate;
226 size_t *pagesizes;
227 
228 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
229 
230 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
231 static int max_stack_flags;
232 
233 /*
234  * Global declarations normally provided by crt1.  The dynamic linker is
235  * not built with crt1, so we have to provide them ourselves.
236  */
237 char *__progname;
238 char **environ;
239 
240 /*
241  * Used to pass argc, argv to init functions.
242  */
243 int main_argc;
244 char **main_argv;
245 
246 /*
247  * Globals to control TLS allocation.
248  */
249 size_t tls_last_offset;		/* Static TLS offset of last module */
250 size_t tls_last_size;		/* Static TLS size of last module */
251 size_t tls_static_space;	/* Static TLS space allocated */
252 size_t tls_static_max_align;
253 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
254 int tls_max_index = 1;		/* Largest module index allocated */
255 
256 bool ld_library_path_rpath = false;
257 
258 /*
259  * Globals for path names, and such
260  */
261 char *ld_elf_hints_default = _PATH_ELF_HINTS;
262 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
263 char *ld_path_rtld = _PATH_RTLD;
264 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
265 char *ld_env_prefix = LD_;
266 
267 /*
268  * Fill in a DoneList with an allocation large enough to hold all of
269  * the currently-loaded objects.  Keep this as a macro since it calls
270  * alloca and we want that to occur within the scope of the caller.
271  */
272 #define donelist_init(dlp)					\
273     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
274     assert((dlp)->objs != NULL),				\
275     (dlp)->num_alloc = obj_count,				\
276     (dlp)->num_used = 0)
277 
278 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
279 	if (ld_utrace != NULL)					\
280 		ld_utrace_log(e, h, mb, ms, r, n);		\
281 } while (0)
282 
283 static void
284 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
285     int refcnt, const char *name)
286 {
287 	struct utrace_rtld ut;
288 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
289 
290 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
291 	ut.event = event;
292 	ut.handle = handle;
293 	ut.mapbase = mapbase;
294 	ut.mapsize = mapsize;
295 	ut.refcnt = refcnt;
296 	bzero(ut.name, sizeof(ut.name));
297 	if (name)
298 		strlcpy(ut.name, name, sizeof(ut.name));
299 	utrace(&ut, sizeof(ut));
300 }
301 
302 #ifdef RTLD_VARIANT_ENV_NAMES
303 /*
304  * construct the env variable based on the type of binary that's
305  * running.
306  */
307 static inline const char *
308 _LD(const char *var)
309 {
310 	static char buffer[128];
311 
312 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
313 	strlcat(buffer, var, sizeof(buffer));
314 	return (buffer);
315 }
316 #else
317 #define _LD(x)	LD_ x
318 #endif
319 
320 /*
321  * Main entry point for dynamic linking.  The first argument is the
322  * stack pointer.  The stack is expected to be laid out as described
323  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
324  * Specifically, the stack pointer points to a word containing
325  * ARGC.  Following that in the stack is a null-terminated sequence
326  * of pointers to argument strings.  Then comes a null-terminated
327  * sequence of pointers to environment strings.  Finally, there is a
328  * sequence of "auxiliary vector" entries.
329  *
330  * The second argument points to a place to store the dynamic linker's
331  * exit procedure pointer and the third to a place to store the main
332  * program's object.
333  *
334  * The return value is the main program's entry point.
335  */
336 func_ptr_type
337 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
338 {
339     Elf_Auxinfo *aux_info[AT_COUNT];
340     int i;
341     int argc;
342     char **argv;
343     char **env;
344     Elf_Auxinfo *aux;
345     Elf_Auxinfo *auxp;
346     const char *argv0;
347     Objlist_Entry *entry;
348     Obj_Entry *obj;
349     Obj_Entry *preload_tail;
350     Obj_Entry *last_interposer;
351     Objlist initlist;
352     RtldLockState lockstate;
353     char *library_path_rpath;
354     int mib[2];
355     size_t len;
356 
357     /*
358      * On entry, the dynamic linker itself has not been relocated yet.
359      * Be very careful not to reference any global data until after
360      * init_rtld has returned.  It is OK to reference file-scope statics
361      * and string constants, and to call static and global functions.
362      */
363 
364     /* Find the auxiliary vector on the stack. */
365     argc = *sp++;
366     argv = (char **) sp;
367     sp += argc + 1;	/* Skip over arguments and NULL terminator */
368     env = (char **) sp;
369     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
370 	;
371     aux = (Elf_Auxinfo *) sp;
372 
373     /* Digest the auxiliary vector. */
374     for (i = 0;  i < AT_COUNT;  i++)
375 	aux_info[i] = NULL;
376     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
377 	if (auxp->a_type < AT_COUNT)
378 	    aux_info[auxp->a_type] = auxp;
379     }
380 
381     /* Initialize and relocate ourselves. */
382     assert(aux_info[AT_BASE] != NULL);
383     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
384 
385     __progname = obj_rtld.path;
386     argv0 = argv[0] != NULL ? argv[0] : "(null)";
387     environ = env;
388     main_argc = argc;
389     main_argv = argv;
390 
391     if (aux_info[AT_CANARY] != NULL &&
392 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
393 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
394 	    if (i > sizeof(__stack_chk_guard))
395 		    i = sizeof(__stack_chk_guard);
396 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
397     } else {
398 	mib[0] = CTL_KERN;
399 	mib[1] = KERN_ARND;
400 
401 	len = sizeof(__stack_chk_guard);
402 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
403 	    len != sizeof(__stack_chk_guard)) {
404 		/* If sysctl was unsuccessful, use the "terminator canary". */
405 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
406 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
407 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
408 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
409 	}
410     }
411 
412     trust = !issetugid();
413 
414     md_abi_variant_hook(aux_info);
415 
416     ld_bind_now = getenv(_LD("BIND_NOW"));
417     /*
418      * If the process is tainted, then we un-set the dangerous environment
419      * variables.  The process will be marked as tainted until setuid(2)
420      * is called.  If any child process calls setuid(2) we do not want any
421      * future processes to honor the potentially un-safe variables.
422      */
423     if (!trust) {
424 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
425 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
426 	    unsetenv(_LD("LIBMAP_DISABLE")) ||
427 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
428 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
429 		_rtld_error("environment corrupt; aborting");
430 		rtld_die();
431 	}
432     }
433     ld_debug = getenv(_LD("DEBUG"));
434     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
435     libmap_override = getenv(_LD("LIBMAP"));
436     ld_library_path = getenv(_LD("LIBRARY_PATH"));
437     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
438     ld_preload = getenv(_LD("PRELOAD"));
439     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
440     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
441     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
442     if (library_path_rpath != NULL) {
443 	    if (library_path_rpath[0] == 'y' ||
444 		library_path_rpath[0] == 'Y' ||
445 		library_path_rpath[0] == '1')
446 		    ld_library_path_rpath = true;
447 	    else
448 		    ld_library_path_rpath = false;
449     }
450     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
451 	(ld_library_path != NULL) || (ld_preload != NULL) ||
452 	(ld_elf_hints_path != NULL) || ld_loadfltr;
453     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
454     ld_utrace = getenv(_LD("UTRACE"));
455 
456     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
457 	ld_elf_hints_path = ld_elf_hints_default;
458 
459     if (ld_debug != NULL && *ld_debug != '\0')
460 	debug = 1;
461     dbg("%s is initialized, base address = %p", __progname,
462 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
463     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
464     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
465 
466     dbg("initializing thread locks");
467     lockdflt_init();
468 
469     /*
470      * Load the main program, or process its program header if it is
471      * already loaded.
472      */
473     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
474 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
475 	dbg("loading main program");
476 	obj_main = map_object(fd, argv0, NULL);
477 	close(fd);
478 	if (obj_main == NULL)
479 	    rtld_die();
480 	max_stack_flags = obj->stack_flags;
481     } else {				/* Main program already loaded. */
482 	const Elf_Phdr *phdr;
483 	int phnum;
484 	caddr_t entry;
485 
486 	dbg("processing main program's program header");
487 	assert(aux_info[AT_PHDR] != NULL);
488 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
489 	assert(aux_info[AT_PHNUM] != NULL);
490 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
491 	assert(aux_info[AT_PHENT] != NULL);
492 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
493 	assert(aux_info[AT_ENTRY] != NULL);
494 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
495 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
496 	    rtld_die();
497     }
498 
499     if (aux_info[AT_EXECPATH] != NULL) {
500 	    char *kexecpath;
501 	    char buf[MAXPATHLEN];
502 
503 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
504 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
505 	    if (kexecpath[0] == '/')
506 		    obj_main->path = kexecpath;
507 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
508 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
509 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
510 		    obj_main->path = xstrdup(argv0);
511 	    else
512 		    obj_main->path = xstrdup(buf);
513     } else {
514 	    dbg("No AT_EXECPATH");
515 	    obj_main->path = xstrdup(argv0);
516     }
517     dbg("obj_main path %s", obj_main->path);
518     obj_main->mainprog = true;
519 
520     if (aux_info[AT_STACKPROT] != NULL &&
521       aux_info[AT_STACKPROT]->a_un.a_val != 0)
522 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
523 
524 #ifndef COMPAT_32BIT
525     /*
526      * Get the actual dynamic linker pathname from the executable if
527      * possible.  (It should always be possible.)  That ensures that
528      * gdb will find the right dynamic linker even if a non-standard
529      * one is being used.
530      */
531     if (obj_main->interp != NULL &&
532       strcmp(obj_main->interp, obj_rtld.path) != 0) {
533 	free(obj_rtld.path);
534 	obj_rtld.path = xstrdup(obj_main->interp);
535         __progname = obj_rtld.path;
536     }
537 #endif
538 
539     digest_dynamic(obj_main, 0);
540     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
541 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
542 	obj_main->dynsymcount);
543 
544     linkmap_add(obj_main);
545     linkmap_add(&obj_rtld);
546 
547     /* Link the main program into the list of objects. */
548     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
549     obj_count++;
550     obj_loads++;
551 
552     /* Initialize a fake symbol for resolving undefined weak references. */
553     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
554     sym_zero.st_shndx = SHN_UNDEF;
555     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
556 
557     if (!libmap_disable)
558         libmap_disable = (bool)lm_init(libmap_override);
559 
560     dbg("loading LD_PRELOAD libraries");
561     if (load_preload_objects() == -1)
562 	rtld_die();
563     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
564 
565     dbg("loading needed objects");
566     if (load_needed_objects(obj_main, 0) == -1)
567 	rtld_die();
568 
569     /* Make a list of all objects loaded at startup. */
570     last_interposer = obj_main;
571     TAILQ_FOREACH(obj, &obj_list, next) {
572 	if (obj->marker)
573 	    continue;
574 	if (obj->z_interpose && obj != obj_main) {
575 	    objlist_put_after(&list_main, last_interposer, obj);
576 	    last_interposer = obj;
577 	} else {
578 	    objlist_push_tail(&list_main, obj);
579 	}
580     	obj->refcount++;
581     }
582 
583     dbg("checking for required versions");
584     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
585 	rtld_die();
586 
587     if (ld_tracing) {		/* We're done */
588 	trace_loaded_objects(obj_main);
589 	exit(0);
590     }
591 
592     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
593        dump_relocations(obj_main);
594        exit (0);
595     }
596 
597     /*
598      * Processing tls relocations requires having the tls offsets
599      * initialized.  Prepare offsets before starting initial
600      * relocation processing.
601      */
602     dbg("initializing initial thread local storage offsets");
603     STAILQ_FOREACH(entry, &list_main, link) {
604 	/*
605 	 * Allocate all the initial objects out of the static TLS
606 	 * block even if they didn't ask for it.
607 	 */
608 	allocate_tls_offset(entry->obj);
609     }
610 
611     if (relocate_objects(obj_main,
612       ld_bind_now != NULL && *ld_bind_now != '\0',
613       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
614 	rtld_die();
615 
616     dbg("doing copy relocations");
617     if (do_copy_relocations(obj_main) == -1)
618 	rtld_die();
619 
620     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
621        dump_relocations(obj_main);
622        exit (0);
623     }
624 
625     /*
626      * Setup TLS for main thread.  This must be done after the
627      * relocations are processed, since tls initialization section
628      * might be the subject for relocations.
629      */
630     dbg("initializing initial thread local storage");
631     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
632 
633     dbg("initializing key program variables");
634     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
635     set_program_var("environ", env);
636     set_program_var("__elf_aux_vector", aux);
637 
638     /* Make a list of init functions to call. */
639     objlist_init(&initlist);
640     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
641       preload_tail, &initlist);
642 
643     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
644 
645     map_stacks_exec(NULL);
646     ifunc_init(aux);
647 
648     dbg("resolving ifuncs");
649     if (resolve_objects_ifunc(obj_main,
650       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
651       NULL) == -1)
652 	rtld_die();
653 
654     if (!obj_main->crt_no_init) {
655 	/*
656 	 * Make sure we don't call the main program's init and fini
657 	 * functions for binaries linked with old crt1 which calls
658 	 * _init itself.
659 	 */
660 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
661 	obj_main->preinit_array = obj_main->init_array =
662 	    obj_main->fini_array = (Elf_Addr)NULL;
663     }
664 
665     wlock_acquire(rtld_bind_lock, &lockstate);
666     if (obj_main->crt_no_init)
667 	preinit_main();
668     objlist_call_init(&initlist, &lockstate);
669     _r_debug_postinit(&obj_main->linkmap);
670     objlist_clear(&initlist);
671     dbg("loading filtees");
672     TAILQ_FOREACH(obj, &obj_list, next) {
673 	if (obj->marker)
674 	    continue;
675 	if (ld_loadfltr || obj->z_loadfltr)
676 	    load_filtees(obj, 0, &lockstate);
677     }
678     lock_release(rtld_bind_lock, &lockstate);
679 
680     dbg("transferring control to program entry point = %p", obj_main->entry);
681 
682     /* Return the exit procedure and the program entry point. */
683     *exit_proc = rtld_exit;
684     *objp = obj_main;
685     return (func_ptr_type) obj_main->entry;
686 }
687 
688 void *
689 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
690 {
691 	void *ptr;
692 	Elf_Addr target;
693 
694 	ptr = (void *)make_function_pointer(def, obj);
695 	target = call_ifunc_resolver(ptr);
696 	return ((void *)target);
697 }
698 
699 /*
700  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
701  * Changes to this function should be applied there as well.
702  */
703 Elf_Addr
704 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
705 {
706     const Elf_Rel *rel;
707     const Elf_Sym *def;
708     const Obj_Entry *defobj;
709     Elf_Addr *where;
710     Elf_Addr target;
711     RtldLockState lockstate;
712 
713     rlock_acquire(rtld_bind_lock, &lockstate);
714     if (sigsetjmp(lockstate.env, 0) != 0)
715 	    lock_upgrade(rtld_bind_lock, &lockstate);
716     if (obj->pltrel)
717 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
718     else
719 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
720 
721     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
722     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
723 	NULL, &lockstate);
724     if (def == NULL)
725 	rtld_die();
726     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
727 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
728     else
729 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
730 
731     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
732       defobj->strtab + def->st_name, basename(obj->path),
733       (void *)target, basename(defobj->path));
734 
735     /*
736      * Write the new contents for the jmpslot. Note that depending on
737      * architecture, the value which we need to return back to the
738      * lazy binding trampoline may or may not be the target
739      * address. The value returned from reloc_jmpslot() is the value
740      * that the trampoline needs.
741      */
742     target = reloc_jmpslot(where, target, defobj, obj, rel);
743     lock_release(rtld_bind_lock, &lockstate);
744     return target;
745 }
746 
747 /*
748  * Error reporting function.  Use it like printf.  If formats the message
749  * into a buffer, and sets things up so that the next call to dlerror()
750  * will return the message.
751  */
752 void
753 _rtld_error(const char *fmt, ...)
754 {
755     static char buf[512];
756     va_list ap;
757 
758     va_start(ap, fmt);
759     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
760     error_message = buf;
761     va_end(ap);
762 }
763 
764 /*
765  * Return a dynamically-allocated copy of the current error message, if any.
766  */
767 static char *
768 errmsg_save(void)
769 {
770     return error_message == NULL ? NULL : xstrdup(error_message);
771 }
772 
773 /*
774  * Restore the current error message from a copy which was previously saved
775  * by errmsg_save().  The copy is freed.
776  */
777 static void
778 errmsg_restore(char *saved_msg)
779 {
780     if (saved_msg == NULL)
781 	error_message = NULL;
782     else {
783 	_rtld_error("%s", saved_msg);
784 	free(saved_msg);
785     }
786 }
787 
788 static const char *
789 basename(const char *name)
790 {
791     const char *p = strrchr(name, '/');
792     return p != NULL ? p + 1 : name;
793 }
794 
795 static struct utsname uts;
796 
797 static char *
798 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
799     const char *subst, bool may_free)
800 {
801 	char *p, *p1, *res, *resp;
802 	int subst_len, kw_len, subst_count, old_len, new_len;
803 
804 	kw_len = strlen(kw);
805 
806 	/*
807 	 * First, count the number of the keyword occurrences, to
808 	 * preallocate the final string.
809 	 */
810 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
811 		p1 = strstr(p, kw);
812 		if (p1 == NULL)
813 			break;
814 	}
815 
816 	/*
817 	 * If the keyword is not found, just return.
818 	 *
819 	 * Return non-substituted string if resolution failed.  We
820 	 * cannot do anything more reasonable, the failure mode of the
821 	 * caller is unresolved library anyway.
822 	 */
823 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
824 		return (may_free ? real : xstrdup(real));
825 	if (obj != NULL)
826 		subst = obj->origin_path;
827 
828 	/*
829 	 * There is indeed something to substitute.  Calculate the
830 	 * length of the resulting string, and allocate it.
831 	 */
832 	subst_len = strlen(subst);
833 	old_len = strlen(real);
834 	new_len = old_len + (subst_len - kw_len) * subst_count;
835 	res = xmalloc(new_len + 1);
836 
837 	/*
838 	 * Now, execute the substitution loop.
839 	 */
840 	for (p = real, resp = res, *resp = '\0';;) {
841 		p1 = strstr(p, kw);
842 		if (p1 != NULL) {
843 			/* Copy the prefix before keyword. */
844 			memcpy(resp, p, p1 - p);
845 			resp += p1 - p;
846 			/* Keyword replacement. */
847 			memcpy(resp, subst, subst_len);
848 			resp += subst_len;
849 			*resp = '\0';
850 			p = p1 + kw_len;
851 		} else
852 			break;
853 	}
854 
855 	/* Copy to the end of string and finish. */
856 	strcat(resp, p);
857 	if (may_free)
858 		free(real);
859 	return (res);
860 }
861 
862 static char *
863 origin_subst(Obj_Entry *obj, char *real)
864 {
865 	char *res1, *res2, *res3, *res4;
866 
867 	if (obj == NULL || !trust)
868 		return (xstrdup(real));
869 	if (uts.sysname[0] == '\0') {
870 		if (uname(&uts) != 0) {
871 			_rtld_error("utsname failed: %d", errno);
872 			return (NULL);
873 		}
874 	}
875 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
876 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
877 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
878 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
879 	return (res4);
880 }
881 
882 void
883 rtld_die(void)
884 {
885     const char *msg = dlerror();
886 
887     if (msg == NULL)
888 	msg = "Fatal error";
889     rtld_fdputstr(STDERR_FILENO, msg);
890     rtld_fdputchar(STDERR_FILENO, '\n');
891     _exit(1);
892 }
893 
894 /*
895  * Process a shared object's DYNAMIC section, and save the important
896  * information in its Obj_Entry structure.
897  */
898 static void
899 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
900     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
901 {
902     const Elf_Dyn *dynp;
903     Needed_Entry **needed_tail = &obj->needed;
904     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
905     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
906     const Elf_Hashelt *hashtab;
907     const Elf32_Word *hashval;
908     Elf32_Word bkt, nmaskwords;
909     int bloom_size32;
910     int plttype = DT_REL;
911 
912     *dyn_rpath = NULL;
913     *dyn_soname = NULL;
914     *dyn_runpath = NULL;
915 
916     obj->bind_now = false;
917     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
918 	switch (dynp->d_tag) {
919 
920 	case DT_REL:
921 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
922 	    break;
923 
924 	case DT_RELSZ:
925 	    obj->relsize = dynp->d_un.d_val;
926 	    break;
927 
928 	case DT_RELENT:
929 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
930 	    break;
931 
932 	case DT_JMPREL:
933 	    obj->pltrel = (const Elf_Rel *)
934 	      (obj->relocbase + dynp->d_un.d_ptr);
935 	    break;
936 
937 	case DT_PLTRELSZ:
938 	    obj->pltrelsize = dynp->d_un.d_val;
939 	    break;
940 
941 	case DT_RELA:
942 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
943 	    break;
944 
945 	case DT_RELASZ:
946 	    obj->relasize = dynp->d_un.d_val;
947 	    break;
948 
949 	case DT_RELAENT:
950 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
951 	    break;
952 
953 	case DT_PLTREL:
954 	    plttype = dynp->d_un.d_val;
955 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
956 	    break;
957 
958 	case DT_SYMTAB:
959 	    obj->symtab = (const Elf_Sym *)
960 	      (obj->relocbase + dynp->d_un.d_ptr);
961 	    break;
962 
963 	case DT_SYMENT:
964 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
965 	    break;
966 
967 	case DT_STRTAB:
968 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
969 	    break;
970 
971 	case DT_STRSZ:
972 	    obj->strsize = dynp->d_un.d_val;
973 	    break;
974 
975 	case DT_VERNEED:
976 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
977 		dynp->d_un.d_val);
978 	    break;
979 
980 	case DT_VERNEEDNUM:
981 	    obj->verneednum = dynp->d_un.d_val;
982 	    break;
983 
984 	case DT_VERDEF:
985 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
986 		dynp->d_un.d_val);
987 	    break;
988 
989 	case DT_VERDEFNUM:
990 	    obj->verdefnum = dynp->d_un.d_val;
991 	    break;
992 
993 	case DT_VERSYM:
994 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
995 		dynp->d_un.d_val);
996 	    break;
997 
998 	case DT_HASH:
999 	    {
1000 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1001 		    dynp->d_un.d_ptr);
1002 		obj->nbuckets = hashtab[0];
1003 		obj->nchains = hashtab[1];
1004 		obj->buckets = hashtab + 2;
1005 		obj->chains = obj->buckets + obj->nbuckets;
1006 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1007 		  obj->buckets != NULL;
1008 	    }
1009 	    break;
1010 
1011 	case DT_GNU_HASH:
1012 	    {
1013 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1014 		    dynp->d_un.d_ptr);
1015 		obj->nbuckets_gnu = hashtab[0];
1016 		obj->symndx_gnu = hashtab[1];
1017 		nmaskwords = hashtab[2];
1018 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1019 		obj->maskwords_bm_gnu = nmaskwords - 1;
1020 		obj->shift2_gnu = hashtab[3];
1021 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1022 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1023 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1024 		  obj->symndx_gnu;
1025 		/* Number of bitmask words is required to be power of 2 */
1026 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1027 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1028 	    }
1029 	    break;
1030 
1031 	case DT_NEEDED:
1032 	    if (!obj->rtld) {
1033 		Needed_Entry *nep = NEW(Needed_Entry);
1034 		nep->name = dynp->d_un.d_val;
1035 		nep->obj = NULL;
1036 		nep->next = NULL;
1037 
1038 		*needed_tail = nep;
1039 		needed_tail = &nep->next;
1040 	    }
1041 	    break;
1042 
1043 	case DT_FILTER:
1044 	    if (!obj->rtld) {
1045 		Needed_Entry *nep = NEW(Needed_Entry);
1046 		nep->name = dynp->d_un.d_val;
1047 		nep->obj = NULL;
1048 		nep->next = NULL;
1049 
1050 		*needed_filtees_tail = nep;
1051 		needed_filtees_tail = &nep->next;
1052 	    }
1053 	    break;
1054 
1055 	case DT_AUXILIARY:
1056 	    if (!obj->rtld) {
1057 		Needed_Entry *nep = NEW(Needed_Entry);
1058 		nep->name = dynp->d_un.d_val;
1059 		nep->obj = NULL;
1060 		nep->next = NULL;
1061 
1062 		*needed_aux_filtees_tail = nep;
1063 		needed_aux_filtees_tail = &nep->next;
1064 	    }
1065 	    break;
1066 
1067 	case DT_PLTGOT:
1068 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1069 	    break;
1070 
1071 	case DT_TEXTREL:
1072 	    obj->textrel = true;
1073 	    break;
1074 
1075 	case DT_SYMBOLIC:
1076 	    obj->symbolic = true;
1077 	    break;
1078 
1079 	case DT_RPATH:
1080 	    /*
1081 	     * We have to wait until later to process this, because we
1082 	     * might not have gotten the address of the string table yet.
1083 	     */
1084 	    *dyn_rpath = dynp;
1085 	    break;
1086 
1087 	case DT_SONAME:
1088 	    *dyn_soname = dynp;
1089 	    break;
1090 
1091 	case DT_RUNPATH:
1092 	    *dyn_runpath = dynp;
1093 	    break;
1094 
1095 	case DT_INIT:
1096 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1097 	    break;
1098 
1099 	case DT_PREINIT_ARRAY:
1100 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1101 	    break;
1102 
1103 	case DT_PREINIT_ARRAYSZ:
1104 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1105 	    break;
1106 
1107 	case DT_INIT_ARRAY:
1108 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1109 	    break;
1110 
1111 	case DT_INIT_ARRAYSZ:
1112 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1113 	    break;
1114 
1115 	case DT_FINI:
1116 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1117 	    break;
1118 
1119 	case DT_FINI_ARRAY:
1120 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1121 	    break;
1122 
1123 	case DT_FINI_ARRAYSZ:
1124 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1125 	    break;
1126 
1127 	/*
1128 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1129 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1130 	 */
1131 
1132 #ifndef __mips__
1133 	case DT_DEBUG:
1134 	    if (!early)
1135 		dbg("Filling in DT_DEBUG entry");
1136 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1137 	    break;
1138 #endif
1139 
1140 	case DT_FLAGS:
1141 		if (dynp->d_un.d_val & DF_ORIGIN)
1142 		    obj->z_origin = true;
1143 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1144 		    obj->symbolic = true;
1145 		if (dynp->d_un.d_val & DF_TEXTREL)
1146 		    obj->textrel = true;
1147 		if (dynp->d_un.d_val & DF_BIND_NOW)
1148 		    obj->bind_now = true;
1149 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1150 		    ;*/
1151 	    break;
1152 #ifdef __mips__
1153 	case DT_MIPS_LOCAL_GOTNO:
1154 		obj->local_gotno = dynp->d_un.d_val;
1155 		break;
1156 
1157 	case DT_MIPS_SYMTABNO:
1158 		obj->symtabno = dynp->d_un.d_val;
1159 		break;
1160 
1161 	case DT_MIPS_GOTSYM:
1162 		obj->gotsym = dynp->d_un.d_val;
1163 		break;
1164 
1165 	case DT_MIPS_RLD_MAP:
1166 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1167 		break;
1168 #endif
1169 
1170 #ifdef __powerpc64__
1171 	case DT_PPC64_GLINK:
1172 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1173 		break;
1174 #endif
1175 
1176 	case DT_FLAGS_1:
1177 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1178 		    obj->z_noopen = true;
1179 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1180 		    obj->z_origin = true;
1181 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1182 		    obj->z_global = true;
1183 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1184 		    obj->bind_now = true;
1185 		if (dynp->d_un.d_val & DF_1_NODELETE)
1186 		    obj->z_nodelete = true;
1187 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1188 		    obj->z_loadfltr = true;
1189 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1190 		    obj->z_interpose = true;
1191 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1192 		    obj->z_nodeflib = true;
1193 	    break;
1194 
1195 	default:
1196 	    if (!early) {
1197 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1198 		    (long)dynp->d_tag);
1199 	    }
1200 	    break;
1201 	}
1202     }
1203 
1204     obj->traced = false;
1205 
1206     if (plttype == DT_RELA) {
1207 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1208 	obj->pltrel = NULL;
1209 	obj->pltrelasize = obj->pltrelsize;
1210 	obj->pltrelsize = 0;
1211     }
1212 
1213     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1214     if (obj->valid_hash_sysv)
1215 	obj->dynsymcount = obj->nchains;
1216     else if (obj->valid_hash_gnu) {
1217 	obj->dynsymcount = 0;
1218 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1219 	    if (obj->buckets_gnu[bkt] == 0)
1220 		continue;
1221 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1222 	    do
1223 		obj->dynsymcount++;
1224 	    while ((*hashval++ & 1u) == 0);
1225 	}
1226 	obj->dynsymcount += obj->symndx_gnu;
1227     }
1228 }
1229 
1230 static bool
1231 obj_resolve_origin(Obj_Entry *obj)
1232 {
1233 
1234 	if (obj->origin_path != NULL)
1235 		return (true);
1236 	obj->origin_path = xmalloc(PATH_MAX);
1237 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1238 }
1239 
1240 static void
1241 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1242     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1243 {
1244 
1245 	if (obj->z_origin && !obj_resolve_origin(obj))
1246 		rtld_die();
1247 
1248 	if (dyn_runpath != NULL) {
1249 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1250 		obj->runpath = origin_subst(obj, obj->runpath);
1251 	} else if (dyn_rpath != NULL) {
1252 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1253 		obj->rpath = origin_subst(obj, obj->rpath);
1254 	}
1255 	if (dyn_soname != NULL)
1256 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1257 }
1258 
1259 static void
1260 digest_dynamic(Obj_Entry *obj, int early)
1261 {
1262 	const Elf_Dyn *dyn_rpath;
1263 	const Elf_Dyn *dyn_soname;
1264 	const Elf_Dyn *dyn_runpath;
1265 
1266 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1267 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1268 }
1269 
1270 /*
1271  * Process a shared object's program header.  This is used only for the
1272  * main program, when the kernel has already loaded the main program
1273  * into memory before calling the dynamic linker.  It creates and
1274  * returns an Obj_Entry structure.
1275  */
1276 static Obj_Entry *
1277 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1278 {
1279     Obj_Entry *obj;
1280     const Elf_Phdr *phlimit = phdr + phnum;
1281     const Elf_Phdr *ph;
1282     Elf_Addr note_start, note_end;
1283     int nsegs = 0;
1284 
1285     obj = obj_new();
1286     for (ph = phdr;  ph < phlimit;  ph++) {
1287 	if (ph->p_type != PT_PHDR)
1288 	    continue;
1289 
1290 	obj->phdr = phdr;
1291 	obj->phsize = ph->p_memsz;
1292 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1293 	break;
1294     }
1295 
1296     obj->stack_flags = PF_X | PF_R | PF_W;
1297 
1298     for (ph = phdr;  ph < phlimit;  ph++) {
1299 	switch (ph->p_type) {
1300 
1301 	case PT_INTERP:
1302 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1303 	    break;
1304 
1305 	case PT_LOAD:
1306 	    if (nsegs == 0) {	/* First load segment */
1307 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1308 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1309 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1310 		  obj->vaddrbase;
1311 	    } else {		/* Last load segment */
1312 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1313 		  obj->vaddrbase;
1314 	    }
1315 	    nsegs++;
1316 	    break;
1317 
1318 	case PT_DYNAMIC:
1319 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1320 	    break;
1321 
1322 	case PT_TLS:
1323 	    obj->tlsindex = 1;
1324 	    obj->tlssize = ph->p_memsz;
1325 	    obj->tlsalign = ph->p_align;
1326 	    obj->tlsinitsize = ph->p_filesz;
1327 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1328 	    break;
1329 
1330 	case PT_GNU_STACK:
1331 	    obj->stack_flags = ph->p_flags;
1332 	    break;
1333 
1334 	case PT_GNU_RELRO:
1335 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1336 	    obj->relro_size = round_page(ph->p_memsz);
1337 	    break;
1338 
1339 	case PT_NOTE:
1340 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1341 	    note_end = note_start + ph->p_filesz;
1342 	    digest_notes(obj, note_start, note_end);
1343 	    break;
1344 	}
1345     }
1346     if (nsegs < 1) {
1347 	_rtld_error("%s: too few PT_LOAD segments", path);
1348 	return NULL;
1349     }
1350 
1351     obj->entry = entry;
1352     return obj;
1353 }
1354 
1355 void
1356 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1357 {
1358 	const Elf_Note *note;
1359 	const char *note_name;
1360 	uintptr_t p;
1361 
1362 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1363 	    note = (const Elf_Note *)((const char *)(note + 1) +
1364 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1365 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1366 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1367 		    note->n_descsz != sizeof(int32_t))
1368 			continue;
1369 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1370 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1371 			continue;
1372 		note_name = (const char *)(note + 1);
1373 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1374 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1375 			continue;
1376 		switch (note->n_type) {
1377 		case NT_FREEBSD_ABI_TAG:
1378 			/* FreeBSD osrel note */
1379 			p = (uintptr_t)(note + 1);
1380 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1381 			obj->osrel = *(const int32_t *)(p);
1382 			dbg("note osrel %d", obj->osrel);
1383 			break;
1384 		case NT_FREEBSD_NOINIT_TAG:
1385 			/* FreeBSD 'crt does not call init' note */
1386 			obj->crt_no_init = true;
1387 			dbg("note crt_no_init");
1388 			break;
1389 		}
1390 	}
1391 }
1392 
1393 static Obj_Entry *
1394 dlcheck(void *handle)
1395 {
1396     Obj_Entry *obj;
1397 
1398     TAILQ_FOREACH(obj, &obj_list, next) {
1399 	if (obj == (Obj_Entry *) handle)
1400 	    break;
1401     }
1402 
1403     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1404 	_rtld_error("Invalid shared object handle %p", handle);
1405 	return NULL;
1406     }
1407     return obj;
1408 }
1409 
1410 /*
1411  * If the given object is already in the donelist, return true.  Otherwise
1412  * add the object to the list and return false.
1413  */
1414 static bool
1415 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1416 {
1417     unsigned int i;
1418 
1419     for (i = 0;  i < dlp->num_used;  i++)
1420 	if (dlp->objs[i] == obj)
1421 	    return true;
1422     /*
1423      * Our donelist allocation should always be sufficient.  But if
1424      * our threads locking isn't working properly, more shared objects
1425      * could have been loaded since we allocated the list.  That should
1426      * never happen, but we'll handle it properly just in case it does.
1427      */
1428     if (dlp->num_used < dlp->num_alloc)
1429 	dlp->objs[dlp->num_used++] = obj;
1430     return false;
1431 }
1432 
1433 /*
1434  * Hash function for symbol table lookup.  Don't even think about changing
1435  * this.  It is specified by the System V ABI.
1436  */
1437 unsigned long
1438 elf_hash(const char *name)
1439 {
1440     const unsigned char *p = (const unsigned char *) name;
1441     unsigned long h = 0;
1442     unsigned long g;
1443 
1444     while (*p != '\0') {
1445 	h = (h << 4) + *p++;
1446 	if ((g = h & 0xf0000000) != 0)
1447 	    h ^= g >> 24;
1448 	h &= ~g;
1449     }
1450     return h;
1451 }
1452 
1453 /*
1454  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1455  * unsigned in case it's implemented with a wider type.
1456  */
1457 static uint32_t
1458 gnu_hash(const char *s)
1459 {
1460 	uint32_t h;
1461 	unsigned char c;
1462 
1463 	h = 5381;
1464 	for (c = *s; c != '\0'; c = *++s)
1465 		h = h * 33 + c;
1466 	return (h & 0xffffffff);
1467 }
1468 
1469 
1470 /*
1471  * Find the library with the given name, and return its full pathname.
1472  * The returned string is dynamically allocated.  Generates an error
1473  * message and returns NULL if the library cannot be found.
1474  *
1475  * If the second argument is non-NULL, then it refers to an already-
1476  * loaded shared object, whose library search path will be searched.
1477  *
1478  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1479  * descriptor (which is close-on-exec) will be passed out via the third
1480  * argument.
1481  *
1482  * The search order is:
1483  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1484  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1485  *   LD_LIBRARY_PATH
1486  *   DT_RUNPATH in the referencing file
1487  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1488  *	 from list)
1489  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1490  *
1491  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1492  */
1493 static char *
1494 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1495 {
1496     char *pathname;
1497     char *name;
1498     bool nodeflib, objgiven;
1499 
1500     objgiven = refobj != NULL;
1501     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1502 	if (xname[0] != '/' && !trust) {
1503 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1504 	      xname);
1505 	    return NULL;
1506 	}
1507 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1508 	  __DECONST(char *, xname)));
1509     }
1510 
1511     if (libmap_disable || !objgiven ||
1512 	(name = lm_find(refobj->path, xname)) == NULL)
1513 	name = (char *)xname;
1514 
1515     dbg(" Searching for \"%s\"", name);
1516 
1517     /*
1518      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1519      * back to pre-conforming behaviour if user requested so with
1520      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1521      * nodeflib.
1522      */
1523     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1524 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1525 	  (refobj != NULL &&
1526 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1527 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1528           (pathname = search_library_path(name, gethints(false))) != NULL ||
1529 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1530 	    return (pathname);
1531     } else {
1532 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1533 	if ((objgiven &&
1534 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1535 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1536 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1537 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1538 	  (objgiven &&
1539 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1540 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1541 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1542 	  (objgiven && !nodeflib &&
1543 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1544 	    return (pathname);
1545     }
1546 
1547     if (objgiven && refobj->path != NULL) {
1548 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1549 	  name, basename(refobj->path));
1550     } else {
1551 	_rtld_error("Shared object \"%s\" not found", name);
1552     }
1553     return NULL;
1554 }
1555 
1556 /*
1557  * Given a symbol number in a referencing object, find the corresponding
1558  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1559  * no definition was found.  Returns a pointer to the Obj_Entry of the
1560  * defining object via the reference parameter DEFOBJ_OUT.
1561  */
1562 const Elf_Sym *
1563 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1564     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1565     RtldLockState *lockstate)
1566 {
1567     const Elf_Sym *ref;
1568     const Elf_Sym *def;
1569     const Obj_Entry *defobj;
1570     SymLook req;
1571     const char *name;
1572     int res;
1573 
1574     /*
1575      * If we have already found this symbol, get the information from
1576      * the cache.
1577      */
1578     if (symnum >= refobj->dynsymcount)
1579 	return NULL;	/* Bad object */
1580     if (cache != NULL && cache[symnum].sym != NULL) {
1581 	*defobj_out = cache[symnum].obj;
1582 	return cache[symnum].sym;
1583     }
1584 
1585     ref = refobj->symtab + symnum;
1586     name = refobj->strtab + ref->st_name;
1587     def = NULL;
1588     defobj = NULL;
1589 
1590     /*
1591      * We don't have to do a full scale lookup if the symbol is local.
1592      * We know it will bind to the instance in this load module; to
1593      * which we already have a pointer (ie ref). By not doing a lookup,
1594      * we not only improve performance, but it also avoids unresolvable
1595      * symbols when local symbols are not in the hash table. This has
1596      * been seen with the ia64 toolchain.
1597      */
1598     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1599 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1600 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1601 		symnum);
1602 	}
1603 	symlook_init(&req, name);
1604 	req.flags = flags;
1605 	req.ventry = fetch_ventry(refobj, symnum);
1606 	req.lockstate = lockstate;
1607 	res = symlook_default(&req, refobj);
1608 	if (res == 0) {
1609 	    def = req.sym_out;
1610 	    defobj = req.defobj_out;
1611 	}
1612     } else {
1613 	def = ref;
1614 	defobj = refobj;
1615     }
1616 
1617     /*
1618      * If we found no definition and the reference is weak, treat the
1619      * symbol as having the value zero.
1620      */
1621     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1622 	def = &sym_zero;
1623 	defobj = obj_main;
1624     }
1625 
1626     if (def != NULL) {
1627 	*defobj_out = defobj;
1628 	/* Record the information in the cache to avoid subsequent lookups. */
1629 	if (cache != NULL) {
1630 	    cache[symnum].sym = def;
1631 	    cache[symnum].obj = defobj;
1632 	}
1633     } else {
1634 	if (refobj != &obj_rtld)
1635 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1636     }
1637     return def;
1638 }
1639 
1640 /*
1641  * Return the search path from the ldconfig hints file, reading it if
1642  * necessary.  If nostdlib is true, then the default search paths are
1643  * not added to result.
1644  *
1645  * Returns NULL if there are problems with the hints file,
1646  * or if the search path there is empty.
1647  */
1648 static const char *
1649 gethints(bool nostdlib)
1650 {
1651 	static char *hints, *filtered_path;
1652 	static struct elfhints_hdr hdr;
1653 	struct fill_search_info_args sargs, hargs;
1654 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1655 	struct dl_serpath *SLPpath, *hintpath;
1656 	char *p;
1657 	struct stat hint_stat;
1658 	unsigned int SLPndx, hintndx, fndx, fcount;
1659 	int fd;
1660 	size_t flen;
1661 	uint32_t dl;
1662 	bool skip;
1663 
1664 	/* First call, read the hints file */
1665 	if (hints == NULL) {
1666 		/* Keep from trying again in case the hints file is bad. */
1667 		hints = "";
1668 
1669 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1670 			return (NULL);
1671 
1672 		/*
1673 		 * Check of hdr.dirlistlen value against type limit
1674 		 * intends to pacify static analyzers.  Further
1675 		 * paranoia leads to checks that dirlist is fully
1676 		 * contained in the file range.
1677 		 */
1678 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1679 		    hdr.magic != ELFHINTS_MAGIC ||
1680 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1681 		    fstat(fd, &hint_stat) == -1) {
1682 cleanup1:
1683 			close(fd);
1684 			hdr.dirlistlen = 0;
1685 			return (NULL);
1686 		}
1687 		dl = hdr.strtab;
1688 		if (dl + hdr.dirlist < dl)
1689 			goto cleanup1;
1690 		dl += hdr.dirlist;
1691 		if (dl + hdr.dirlistlen < dl)
1692 			goto cleanup1;
1693 		dl += hdr.dirlistlen;
1694 		if (dl > hint_stat.st_size)
1695 			goto cleanup1;
1696 		p = xmalloc(hdr.dirlistlen + 1);
1697 
1698 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1699 		    read(fd, p, hdr.dirlistlen + 1) !=
1700 		    (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') {
1701 			free(p);
1702 			goto cleanup1;
1703 		}
1704 		hints = p;
1705 		close(fd);
1706 	}
1707 
1708 	/*
1709 	 * If caller agreed to receive list which includes the default
1710 	 * paths, we are done. Otherwise, if we still did not
1711 	 * calculated filtered result, do it now.
1712 	 */
1713 	if (!nostdlib)
1714 		return (hints[0] != '\0' ? hints : NULL);
1715 	if (filtered_path != NULL)
1716 		goto filt_ret;
1717 
1718 	/*
1719 	 * Obtain the list of all configured search paths, and the
1720 	 * list of the default paths.
1721 	 *
1722 	 * First estimate the size of the results.
1723 	 */
1724 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1725 	smeta.dls_cnt = 0;
1726 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1727 	hmeta.dls_cnt = 0;
1728 
1729 	sargs.request = RTLD_DI_SERINFOSIZE;
1730 	sargs.serinfo = &smeta;
1731 	hargs.request = RTLD_DI_SERINFOSIZE;
1732 	hargs.serinfo = &hmeta;
1733 
1734 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1735 	path_enumerate(hints, fill_search_info, &hargs);
1736 
1737 	SLPinfo = xmalloc(smeta.dls_size);
1738 	hintinfo = xmalloc(hmeta.dls_size);
1739 
1740 	/*
1741 	 * Next fetch both sets of paths.
1742 	 */
1743 	sargs.request = RTLD_DI_SERINFO;
1744 	sargs.serinfo = SLPinfo;
1745 	sargs.serpath = &SLPinfo->dls_serpath[0];
1746 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1747 
1748 	hargs.request = RTLD_DI_SERINFO;
1749 	hargs.serinfo = hintinfo;
1750 	hargs.serpath = &hintinfo->dls_serpath[0];
1751 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1752 
1753 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1754 	path_enumerate(hints, fill_search_info, &hargs);
1755 
1756 	/*
1757 	 * Now calculate the difference between two sets, by excluding
1758 	 * standard paths from the full set.
1759 	 */
1760 	fndx = 0;
1761 	fcount = 0;
1762 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1763 	hintpath = &hintinfo->dls_serpath[0];
1764 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1765 		skip = false;
1766 		SLPpath = &SLPinfo->dls_serpath[0];
1767 		/*
1768 		 * Check each standard path against current.
1769 		 */
1770 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1771 			/* matched, skip the path */
1772 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1773 				skip = true;
1774 				break;
1775 			}
1776 		}
1777 		if (skip)
1778 			continue;
1779 		/*
1780 		 * Not matched against any standard path, add the path
1781 		 * to result. Separate consequtive paths with ':'.
1782 		 */
1783 		if (fcount > 0) {
1784 			filtered_path[fndx] = ':';
1785 			fndx++;
1786 		}
1787 		fcount++;
1788 		flen = strlen(hintpath->dls_name);
1789 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1790 		fndx += flen;
1791 	}
1792 	filtered_path[fndx] = '\0';
1793 
1794 	free(SLPinfo);
1795 	free(hintinfo);
1796 
1797 filt_ret:
1798 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1799 }
1800 
1801 static void
1802 init_dag(Obj_Entry *root)
1803 {
1804     const Needed_Entry *needed;
1805     const Objlist_Entry *elm;
1806     DoneList donelist;
1807 
1808     if (root->dag_inited)
1809 	return;
1810     donelist_init(&donelist);
1811 
1812     /* Root object belongs to own DAG. */
1813     objlist_push_tail(&root->dldags, root);
1814     objlist_push_tail(&root->dagmembers, root);
1815     donelist_check(&donelist, root);
1816 
1817     /*
1818      * Add dependencies of root object to DAG in breadth order
1819      * by exploiting the fact that each new object get added
1820      * to the tail of the dagmembers list.
1821      */
1822     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1823 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1824 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1825 		continue;
1826 	    objlist_push_tail(&needed->obj->dldags, root);
1827 	    objlist_push_tail(&root->dagmembers, needed->obj);
1828 	}
1829     }
1830     root->dag_inited = true;
1831 }
1832 
1833 static void
1834 init_marker(Obj_Entry *marker)
1835 {
1836 
1837 	bzero(marker, sizeof(*marker));
1838 	marker->marker = true;
1839 }
1840 
1841 Obj_Entry *
1842 globallist_curr(const Obj_Entry *obj)
1843 {
1844 
1845 	for (;;) {
1846 		if (obj == NULL)
1847 			return (NULL);
1848 		if (!obj->marker)
1849 			return (__DECONST(Obj_Entry *, obj));
1850 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1851 	}
1852 }
1853 
1854 Obj_Entry *
1855 globallist_next(const Obj_Entry *obj)
1856 {
1857 
1858 	for (;;) {
1859 		obj = TAILQ_NEXT(obj, next);
1860 		if (obj == NULL)
1861 			return (NULL);
1862 		if (!obj->marker)
1863 			return (__DECONST(Obj_Entry *, obj));
1864 	}
1865 }
1866 
1867 /* Prevent the object from being unmapped while the bind lock is dropped. */
1868 static void
1869 hold_object(Obj_Entry *obj)
1870 {
1871 
1872 	obj->holdcount++;
1873 }
1874 
1875 static void
1876 unhold_object(Obj_Entry *obj)
1877 {
1878 
1879 	assert(obj->holdcount > 0);
1880 	if (--obj->holdcount == 0 && obj->unholdfree)
1881 		release_object(obj);
1882 }
1883 
1884 static void
1885 process_z(Obj_Entry *root)
1886 {
1887 	const Objlist_Entry *elm;
1888 	Obj_Entry *obj;
1889 
1890 	/*
1891 	 * Walk over object DAG and process every dependent object
1892 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1893 	 * to grow their own DAG.
1894 	 *
1895 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1896 	 * symlook_global() to work.
1897 	 *
1898 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1899 	 */
1900 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1901 		obj = elm->obj;
1902 		if (obj == NULL)
1903 			continue;
1904 		if (obj->z_nodelete && !obj->ref_nodel) {
1905 			dbg("obj %s -z nodelete", obj->path);
1906 			init_dag(obj);
1907 			ref_dag(obj);
1908 			obj->ref_nodel = true;
1909 		}
1910 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1911 			dbg("obj %s -z global", obj->path);
1912 			objlist_push_tail(&list_global, obj);
1913 			init_dag(obj);
1914 		}
1915 	}
1916 }
1917 /*
1918  * Initialize the dynamic linker.  The argument is the address at which
1919  * the dynamic linker has been mapped into memory.  The primary task of
1920  * this function is to relocate the dynamic linker.
1921  */
1922 static void
1923 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1924 {
1925     Obj_Entry objtmp;	/* Temporary rtld object */
1926     const Elf_Ehdr *ehdr;
1927     const Elf_Dyn *dyn_rpath;
1928     const Elf_Dyn *dyn_soname;
1929     const Elf_Dyn *dyn_runpath;
1930 
1931 #ifdef RTLD_INIT_PAGESIZES_EARLY
1932     /* The page size is required by the dynamic memory allocator. */
1933     init_pagesizes(aux_info);
1934 #endif
1935 
1936     /*
1937      * Conjure up an Obj_Entry structure for the dynamic linker.
1938      *
1939      * The "path" member can't be initialized yet because string constants
1940      * cannot yet be accessed. Below we will set it correctly.
1941      */
1942     memset(&objtmp, 0, sizeof(objtmp));
1943     objtmp.path = NULL;
1944     objtmp.rtld = true;
1945     objtmp.mapbase = mapbase;
1946 #ifdef PIC
1947     objtmp.relocbase = mapbase;
1948 #endif
1949 
1950     objtmp.dynamic = rtld_dynamic(&objtmp);
1951     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1952     assert(objtmp.needed == NULL);
1953 #if !defined(__mips__)
1954     /* MIPS has a bogus DT_TEXTREL. */
1955     assert(!objtmp.textrel);
1956 #endif
1957     /*
1958      * Temporarily put the dynamic linker entry into the object list, so
1959      * that symbols can be found.
1960      */
1961     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1962 
1963     ehdr = (Elf_Ehdr *)mapbase;
1964     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1965     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1966 
1967     /* Initialize the object list. */
1968     TAILQ_INIT(&obj_list);
1969 
1970     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1971     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1972 
1973 #ifndef RTLD_INIT_PAGESIZES_EARLY
1974     /* The page size is required by the dynamic memory allocator. */
1975     init_pagesizes(aux_info);
1976 #endif
1977 
1978     if (aux_info[AT_OSRELDATE] != NULL)
1979 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1980 
1981     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1982 
1983     /* Replace the path with a dynamically allocated copy. */
1984     obj_rtld.path = xstrdup(ld_path_rtld);
1985 
1986     r_debug.r_brk = r_debug_state;
1987     r_debug.r_state = RT_CONSISTENT;
1988 }
1989 
1990 /*
1991  * Retrieve the array of supported page sizes.  The kernel provides the page
1992  * sizes in increasing order.
1993  */
1994 static void
1995 init_pagesizes(Elf_Auxinfo **aux_info)
1996 {
1997 	static size_t psa[MAXPAGESIZES];
1998 	int mib[2];
1999 	size_t len, size;
2000 
2001 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2002 	    NULL) {
2003 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2004 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2005 	} else {
2006 		len = 2;
2007 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2008 			size = sizeof(psa);
2009 		else {
2010 			/* As a fallback, retrieve the base page size. */
2011 			size = sizeof(psa[0]);
2012 			if (aux_info[AT_PAGESZ] != NULL) {
2013 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2014 				goto psa_filled;
2015 			} else {
2016 				mib[0] = CTL_HW;
2017 				mib[1] = HW_PAGESIZE;
2018 				len = 2;
2019 			}
2020 		}
2021 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2022 			_rtld_error("sysctl for hw.pagesize(s) failed");
2023 			rtld_die();
2024 		}
2025 psa_filled:
2026 		pagesizes = psa;
2027 	}
2028 	npagesizes = size / sizeof(pagesizes[0]);
2029 	/* Discard any invalid entries at the end of the array. */
2030 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2031 		npagesizes--;
2032 }
2033 
2034 /*
2035  * Add the init functions from a needed object list (and its recursive
2036  * needed objects) to "list".  This is not used directly; it is a helper
2037  * function for initlist_add_objects().  The write lock must be held
2038  * when this function is called.
2039  */
2040 static void
2041 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2042 {
2043     /* Recursively process the successor needed objects. */
2044     if (needed->next != NULL)
2045 	initlist_add_neededs(needed->next, list);
2046 
2047     /* Process the current needed object. */
2048     if (needed->obj != NULL)
2049 	initlist_add_objects(needed->obj, needed->obj, list);
2050 }
2051 
2052 /*
2053  * Scan all of the DAGs rooted in the range of objects from "obj" to
2054  * "tail" and add their init functions to "list".  This recurses over
2055  * the DAGs and ensure the proper init ordering such that each object's
2056  * needed libraries are initialized before the object itself.  At the
2057  * same time, this function adds the objects to the global finalization
2058  * list "list_fini" in the opposite order.  The write lock must be
2059  * held when this function is called.
2060  */
2061 static void
2062 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2063 {
2064     Obj_Entry *nobj;
2065 
2066     if (obj->init_scanned || obj->init_done)
2067 	return;
2068     obj->init_scanned = true;
2069 
2070     /* Recursively process the successor objects. */
2071     nobj = globallist_next(obj);
2072     if (nobj != NULL && obj != tail)
2073 	initlist_add_objects(nobj, tail, list);
2074 
2075     /* Recursively process the needed objects. */
2076     if (obj->needed != NULL)
2077 	initlist_add_neededs(obj->needed, list);
2078     if (obj->needed_filtees != NULL)
2079 	initlist_add_neededs(obj->needed_filtees, list);
2080     if (obj->needed_aux_filtees != NULL)
2081 	initlist_add_neededs(obj->needed_aux_filtees, list);
2082 
2083     /* Add the object to the init list. */
2084     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2085       obj->init_array != (Elf_Addr)NULL)
2086 	objlist_push_tail(list, obj);
2087 
2088     /* Add the object to the global fini list in the reverse order. */
2089     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2090       && !obj->on_fini_list) {
2091 	objlist_push_head(&list_fini, obj);
2092 	obj->on_fini_list = true;
2093     }
2094 }
2095 
2096 #ifndef FPTR_TARGET
2097 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2098 #endif
2099 
2100 static void
2101 free_needed_filtees(Needed_Entry *n)
2102 {
2103     Needed_Entry *needed, *needed1;
2104 
2105     for (needed = n; needed != NULL; needed = needed->next) {
2106 	if (needed->obj != NULL) {
2107 	    dlclose(needed->obj);
2108 	    needed->obj = NULL;
2109 	}
2110     }
2111     for (needed = n; needed != NULL; needed = needed1) {
2112 	needed1 = needed->next;
2113 	free(needed);
2114     }
2115 }
2116 
2117 static void
2118 unload_filtees(Obj_Entry *obj)
2119 {
2120 
2121     free_needed_filtees(obj->needed_filtees);
2122     obj->needed_filtees = NULL;
2123     free_needed_filtees(obj->needed_aux_filtees);
2124     obj->needed_aux_filtees = NULL;
2125     obj->filtees_loaded = false;
2126 }
2127 
2128 static void
2129 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2130     RtldLockState *lockstate)
2131 {
2132 
2133     for (; needed != NULL; needed = needed->next) {
2134 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2135 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2136 	  RTLD_LOCAL, lockstate);
2137     }
2138 }
2139 
2140 static void
2141 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2142 {
2143 
2144     lock_restart_for_upgrade(lockstate);
2145     if (!obj->filtees_loaded) {
2146 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2147 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2148 	obj->filtees_loaded = true;
2149     }
2150 }
2151 
2152 static int
2153 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2154 {
2155     Obj_Entry *obj1;
2156 
2157     for (; needed != NULL; needed = needed->next) {
2158 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2159 	  flags & ~RTLD_LO_NOLOAD);
2160 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2161 	    return (-1);
2162     }
2163     return (0);
2164 }
2165 
2166 /*
2167  * Given a shared object, traverse its list of needed objects, and load
2168  * each of them.  Returns 0 on success.  Generates an error message and
2169  * returns -1 on failure.
2170  */
2171 static int
2172 load_needed_objects(Obj_Entry *first, int flags)
2173 {
2174     Obj_Entry *obj;
2175 
2176     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2177 	if (obj->marker)
2178 	    continue;
2179 	if (process_needed(obj, obj->needed, flags) == -1)
2180 	    return (-1);
2181     }
2182     return (0);
2183 }
2184 
2185 static int
2186 load_preload_objects(void)
2187 {
2188     char *p = ld_preload;
2189     Obj_Entry *obj;
2190     static const char delim[] = " \t:;";
2191 
2192     if (p == NULL)
2193 	return 0;
2194 
2195     p += strspn(p, delim);
2196     while (*p != '\0') {
2197 	size_t len = strcspn(p, delim);
2198 	char savech;
2199 
2200 	savech = p[len];
2201 	p[len] = '\0';
2202 	obj = load_object(p, -1, NULL, 0);
2203 	if (obj == NULL)
2204 	    return -1;	/* XXX - cleanup */
2205 	obj->z_interpose = true;
2206 	p[len] = savech;
2207 	p += len;
2208 	p += strspn(p, delim);
2209     }
2210     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2211     return 0;
2212 }
2213 
2214 static const char *
2215 printable_path(const char *path)
2216 {
2217 
2218 	return (path == NULL ? "<unknown>" : path);
2219 }
2220 
2221 /*
2222  * Load a shared object into memory, if it is not already loaded.  The
2223  * object may be specified by name or by user-supplied file descriptor
2224  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2225  * duplicate is.
2226  *
2227  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2228  * on failure.
2229  */
2230 static Obj_Entry *
2231 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2232 {
2233     Obj_Entry *obj;
2234     int fd;
2235     struct stat sb;
2236     char *path;
2237 
2238     fd = -1;
2239     if (name != NULL) {
2240 	TAILQ_FOREACH(obj, &obj_list, next) {
2241 	    if (obj->marker || obj->doomed)
2242 		continue;
2243 	    if (object_match_name(obj, name))
2244 		return (obj);
2245 	}
2246 
2247 	path = find_library(name, refobj, &fd);
2248 	if (path == NULL)
2249 	    return (NULL);
2250     } else
2251 	path = NULL;
2252 
2253     if (fd >= 0) {
2254 	/*
2255 	 * search_library_pathfds() opens a fresh file descriptor for the
2256 	 * library, so there is no need to dup().
2257 	 */
2258     } else if (fd_u == -1) {
2259 	/*
2260 	 * If we didn't find a match by pathname, or the name is not
2261 	 * supplied, open the file and check again by device and inode.
2262 	 * This avoids false mismatches caused by multiple links or ".."
2263 	 * in pathnames.
2264 	 *
2265 	 * To avoid a race, we open the file and use fstat() rather than
2266 	 * using stat().
2267 	 */
2268 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2269 	    _rtld_error("Cannot open \"%s\"", path);
2270 	    free(path);
2271 	    return (NULL);
2272 	}
2273     } else {
2274 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2275 	if (fd == -1) {
2276 	    _rtld_error("Cannot dup fd");
2277 	    free(path);
2278 	    return (NULL);
2279 	}
2280     }
2281     if (fstat(fd, &sb) == -1) {
2282 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2283 	close(fd);
2284 	free(path);
2285 	return NULL;
2286     }
2287     TAILQ_FOREACH(obj, &obj_list, next) {
2288 	if (obj->marker || obj->doomed)
2289 	    continue;
2290 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2291 	    break;
2292     }
2293     if (obj != NULL && name != NULL) {
2294 	object_add_name(obj, name);
2295 	free(path);
2296 	close(fd);
2297 	return obj;
2298     }
2299     if (flags & RTLD_LO_NOLOAD) {
2300 	free(path);
2301 	close(fd);
2302 	return (NULL);
2303     }
2304 
2305     /* First use of this object, so we must map it in */
2306     obj = do_load_object(fd, name, path, &sb, flags);
2307     if (obj == NULL)
2308 	free(path);
2309     close(fd);
2310 
2311     return obj;
2312 }
2313 
2314 static Obj_Entry *
2315 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2316   int flags)
2317 {
2318     Obj_Entry *obj;
2319     struct statfs fs;
2320 
2321     /*
2322      * but first, make sure that environment variables haven't been
2323      * used to circumvent the noexec flag on a filesystem.
2324      */
2325     if (dangerous_ld_env) {
2326 	if (fstatfs(fd, &fs) != 0) {
2327 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2328 	    return NULL;
2329 	}
2330 	if (fs.f_flags & MNT_NOEXEC) {
2331 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2332 	    return NULL;
2333 	}
2334     }
2335     dbg("loading \"%s\"", printable_path(path));
2336     obj = map_object(fd, printable_path(path), sbp);
2337     if (obj == NULL)
2338         return NULL;
2339 
2340     /*
2341      * If DT_SONAME is present in the object, digest_dynamic2 already
2342      * added it to the object names.
2343      */
2344     if (name != NULL)
2345 	object_add_name(obj, name);
2346     obj->path = path;
2347     digest_dynamic(obj, 0);
2348     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2349 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2350     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2351       RTLD_LO_DLOPEN) {
2352 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2353 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2354 	munmap(obj->mapbase, obj->mapsize);
2355 	obj_free(obj);
2356 	return (NULL);
2357     }
2358 
2359     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2360     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2361     obj_count++;
2362     obj_loads++;
2363     linkmap_add(obj);	/* for GDB & dlinfo() */
2364     max_stack_flags |= obj->stack_flags;
2365 
2366     dbg("  %p .. %p: %s", obj->mapbase,
2367          obj->mapbase + obj->mapsize - 1, obj->path);
2368     if (obj->textrel)
2369 	dbg("  WARNING: %s has impure text", obj->path);
2370     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2371 	obj->path);
2372 
2373     return obj;
2374 }
2375 
2376 static Obj_Entry *
2377 obj_from_addr(const void *addr)
2378 {
2379     Obj_Entry *obj;
2380 
2381     TAILQ_FOREACH(obj, &obj_list, next) {
2382 	if (obj->marker)
2383 	    continue;
2384 	if (addr < (void *) obj->mapbase)
2385 	    continue;
2386 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2387 	    return obj;
2388     }
2389     return NULL;
2390 }
2391 
2392 static void
2393 preinit_main(void)
2394 {
2395     Elf_Addr *preinit_addr;
2396     int index;
2397 
2398     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2399     if (preinit_addr == NULL)
2400 	return;
2401 
2402     for (index = 0; index < obj_main->preinit_array_num; index++) {
2403 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2404 	    dbg("calling preinit function for %s at %p", obj_main->path,
2405 	      (void *)preinit_addr[index]);
2406 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2407 	      0, 0, obj_main->path);
2408 	    call_init_pointer(obj_main, preinit_addr[index]);
2409 	}
2410     }
2411 }
2412 
2413 /*
2414  * Call the finalization functions for each of the objects in "list"
2415  * belonging to the DAG of "root" and referenced once. If NULL "root"
2416  * is specified, every finalization function will be called regardless
2417  * of the reference count and the list elements won't be freed. All of
2418  * the objects are expected to have non-NULL fini functions.
2419  */
2420 static void
2421 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2422 {
2423     Objlist_Entry *elm;
2424     char *saved_msg;
2425     Elf_Addr *fini_addr;
2426     int index;
2427 
2428     assert(root == NULL || root->refcount == 1);
2429 
2430     if (root != NULL)
2431 	root->doomed = true;
2432 
2433     /*
2434      * Preserve the current error message since a fini function might
2435      * call into the dynamic linker and overwrite it.
2436      */
2437     saved_msg = errmsg_save();
2438     do {
2439 	STAILQ_FOREACH(elm, list, link) {
2440 	    if (root != NULL && (elm->obj->refcount != 1 ||
2441 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2442 		continue;
2443 	    /* Remove object from fini list to prevent recursive invocation. */
2444 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2445 	    /* Ensure that new references cannot be acquired. */
2446 	    elm->obj->doomed = true;
2447 
2448 	    hold_object(elm->obj);
2449 	    lock_release(rtld_bind_lock, lockstate);
2450 	    /*
2451 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2452 	     * When this happens, DT_FINI_ARRAY is processed first.
2453 	     */
2454 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2455 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2456 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2457 		  index--) {
2458 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2459 			dbg("calling fini function for %s at %p",
2460 			    elm->obj->path, (void *)fini_addr[index]);
2461 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2462 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2463 			call_initfini_pointer(elm->obj, fini_addr[index]);
2464 		    }
2465 		}
2466 	    }
2467 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2468 		dbg("calling fini function for %s at %p", elm->obj->path,
2469 		    (void *)elm->obj->fini);
2470 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2471 		    0, 0, elm->obj->path);
2472 		call_initfini_pointer(elm->obj, elm->obj->fini);
2473 	    }
2474 	    wlock_acquire(rtld_bind_lock, lockstate);
2475 	    unhold_object(elm->obj);
2476 	    /* No need to free anything if process is going down. */
2477 	    if (root != NULL)
2478 	    	free(elm);
2479 	    /*
2480 	     * We must restart the list traversal after every fini call
2481 	     * because a dlclose() call from the fini function or from
2482 	     * another thread might have modified the reference counts.
2483 	     */
2484 	    break;
2485 	}
2486     } while (elm != NULL);
2487     errmsg_restore(saved_msg);
2488 }
2489 
2490 /*
2491  * Call the initialization functions for each of the objects in
2492  * "list".  All of the objects are expected to have non-NULL init
2493  * functions.
2494  */
2495 static void
2496 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2497 {
2498     Objlist_Entry *elm;
2499     Obj_Entry *obj;
2500     char *saved_msg;
2501     Elf_Addr *init_addr;
2502     int index;
2503 
2504     /*
2505      * Clean init_scanned flag so that objects can be rechecked and
2506      * possibly initialized earlier if any of vectors called below
2507      * cause the change by using dlopen.
2508      */
2509     TAILQ_FOREACH(obj, &obj_list, next) {
2510 	if (obj->marker)
2511 	    continue;
2512 	obj->init_scanned = false;
2513     }
2514 
2515     /*
2516      * Preserve the current error message since an init function might
2517      * call into the dynamic linker and overwrite it.
2518      */
2519     saved_msg = errmsg_save();
2520     STAILQ_FOREACH(elm, list, link) {
2521 	if (elm->obj->init_done) /* Initialized early. */
2522 	    continue;
2523 	/*
2524 	 * Race: other thread might try to use this object before current
2525 	 * one completes the initialization. Not much can be done here
2526 	 * without better locking.
2527 	 */
2528 	elm->obj->init_done = true;
2529 	hold_object(elm->obj);
2530 	lock_release(rtld_bind_lock, lockstate);
2531 
2532         /*
2533          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2534          * When this happens, DT_INIT is processed first.
2535          */
2536 	if (elm->obj->init != (Elf_Addr)NULL) {
2537 	    dbg("calling init function for %s at %p", elm->obj->path,
2538 	        (void *)elm->obj->init);
2539 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2540 	        0, 0, elm->obj->path);
2541 	    call_initfini_pointer(elm->obj, elm->obj->init);
2542 	}
2543 	init_addr = (Elf_Addr *)elm->obj->init_array;
2544 	if (init_addr != NULL) {
2545 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2546 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2547 		    dbg("calling init function for %s at %p", elm->obj->path,
2548 			(void *)init_addr[index]);
2549 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2550 			(void *)init_addr[index], 0, 0, elm->obj->path);
2551 		    call_init_pointer(elm->obj, init_addr[index]);
2552 		}
2553 	    }
2554 	}
2555 	wlock_acquire(rtld_bind_lock, lockstate);
2556 	unhold_object(elm->obj);
2557     }
2558     errmsg_restore(saved_msg);
2559 }
2560 
2561 static void
2562 objlist_clear(Objlist *list)
2563 {
2564     Objlist_Entry *elm;
2565 
2566     while (!STAILQ_EMPTY(list)) {
2567 	elm = STAILQ_FIRST(list);
2568 	STAILQ_REMOVE_HEAD(list, link);
2569 	free(elm);
2570     }
2571 }
2572 
2573 static Objlist_Entry *
2574 objlist_find(Objlist *list, const Obj_Entry *obj)
2575 {
2576     Objlist_Entry *elm;
2577 
2578     STAILQ_FOREACH(elm, list, link)
2579 	if (elm->obj == obj)
2580 	    return elm;
2581     return NULL;
2582 }
2583 
2584 static void
2585 objlist_init(Objlist *list)
2586 {
2587     STAILQ_INIT(list);
2588 }
2589 
2590 static void
2591 objlist_push_head(Objlist *list, Obj_Entry *obj)
2592 {
2593     Objlist_Entry *elm;
2594 
2595     elm = NEW(Objlist_Entry);
2596     elm->obj = obj;
2597     STAILQ_INSERT_HEAD(list, elm, link);
2598 }
2599 
2600 static void
2601 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2602 {
2603     Objlist_Entry *elm;
2604 
2605     elm = NEW(Objlist_Entry);
2606     elm->obj = obj;
2607     STAILQ_INSERT_TAIL(list, elm, link);
2608 }
2609 
2610 static void
2611 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2612 {
2613 	Objlist_Entry *elm, *listelm;
2614 
2615 	STAILQ_FOREACH(listelm, list, link) {
2616 		if (listelm->obj == listobj)
2617 			break;
2618 	}
2619 	elm = NEW(Objlist_Entry);
2620 	elm->obj = obj;
2621 	if (listelm != NULL)
2622 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2623 	else
2624 		STAILQ_INSERT_TAIL(list, elm, link);
2625 }
2626 
2627 static void
2628 objlist_remove(Objlist *list, Obj_Entry *obj)
2629 {
2630     Objlist_Entry *elm;
2631 
2632     if ((elm = objlist_find(list, obj)) != NULL) {
2633 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2634 	free(elm);
2635     }
2636 }
2637 
2638 /*
2639  * Relocate dag rooted in the specified object.
2640  * Returns 0 on success, or -1 on failure.
2641  */
2642 
2643 static int
2644 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2645     int flags, RtldLockState *lockstate)
2646 {
2647 	Objlist_Entry *elm;
2648 	int error;
2649 
2650 	error = 0;
2651 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2652 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2653 		    lockstate);
2654 		if (error == -1)
2655 			break;
2656 	}
2657 	return (error);
2658 }
2659 
2660 /*
2661  * Prepare for, or clean after, relocating an object marked with
2662  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2663  * segments are remapped read-write.  After relocations are done, the
2664  * segment's permissions are returned back to the modes specified in
2665  * the phdrs.  If any relocation happened, or always for wired
2666  * program, COW is triggered.
2667  */
2668 static int
2669 reloc_textrel_prot(Obj_Entry *obj, bool before)
2670 {
2671 	const Elf_Phdr *ph;
2672 	void *base;
2673 	size_t l, sz;
2674 	int prot;
2675 
2676 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2677 	    l--, ph++) {
2678 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2679 			continue;
2680 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2681 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2682 		    trunc_page(ph->p_vaddr);
2683 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2684 		if (mprotect(base, sz, prot) == -1) {
2685 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2686 			    obj->path, before ? "en" : "dis",
2687 			    rtld_strerror(errno));
2688 			return (-1);
2689 		}
2690 	}
2691 	return (0);
2692 }
2693 
2694 /*
2695  * Relocate single object.
2696  * Returns 0 on success, or -1 on failure.
2697  */
2698 static int
2699 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2700     int flags, RtldLockState *lockstate)
2701 {
2702 
2703 	if (obj->relocated)
2704 		return (0);
2705 	obj->relocated = true;
2706 	if (obj != rtldobj)
2707 		dbg("relocating \"%s\"", obj->path);
2708 
2709 	if (obj->symtab == NULL || obj->strtab == NULL ||
2710 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2711 		_rtld_error("%s: Shared object has no run-time symbol table",
2712 			    obj->path);
2713 		return (-1);
2714 	}
2715 
2716 	/* There are relocations to the write-protected text segment. */
2717 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2718 		return (-1);
2719 
2720 	/* Process the non-PLT non-IFUNC relocations. */
2721 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2722 		return (-1);
2723 
2724 	/* Re-protected the text segment. */
2725 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2726 		return (-1);
2727 
2728 	/* Set the special PLT or GOT entries. */
2729 	init_pltgot(obj);
2730 
2731 	/* Process the PLT relocations. */
2732 	if (reloc_plt(obj) == -1)
2733 		return (-1);
2734 	/* Relocate the jump slots if we are doing immediate binding. */
2735 	if (obj->bind_now || bind_now)
2736 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2737 			return (-1);
2738 
2739 	/*
2740 	 * Process the non-PLT IFUNC relocations.  The relocations are
2741 	 * processed in two phases, because IFUNC resolvers may
2742 	 * reference other symbols, which must be readily processed
2743 	 * before resolvers are called.
2744 	 */
2745 	if (obj->non_plt_gnu_ifunc &&
2746 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2747 		return (-1);
2748 
2749 	if (obj->relro_size > 0) {
2750 		if (mprotect(obj->relro_page, obj->relro_size,
2751 		    PROT_READ) == -1) {
2752 			_rtld_error("%s: Cannot enforce relro protection: %s",
2753 			    obj->path, rtld_strerror(errno));
2754 			return (-1);
2755 		}
2756 	}
2757 
2758 	/*
2759 	 * Set up the magic number and version in the Obj_Entry.  These
2760 	 * were checked in the crt1.o from the original ElfKit, so we
2761 	 * set them for backward compatibility.
2762 	 */
2763 	obj->magic = RTLD_MAGIC;
2764 	obj->version = RTLD_VERSION;
2765 
2766 	return (0);
2767 }
2768 
2769 /*
2770  * Relocate newly-loaded shared objects.  The argument is a pointer to
2771  * the Obj_Entry for the first such object.  All objects from the first
2772  * to the end of the list of objects are relocated.  Returns 0 on success,
2773  * or -1 on failure.
2774  */
2775 static int
2776 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2777     int flags, RtldLockState *lockstate)
2778 {
2779 	Obj_Entry *obj;
2780 	int error;
2781 
2782 	for (error = 0, obj = first;  obj != NULL;
2783 	    obj = TAILQ_NEXT(obj, next)) {
2784 		if (obj->marker)
2785 			continue;
2786 		error = relocate_object(obj, bind_now, rtldobj, flags,
2787 		    lockstate);
2788 		if (error == -1)
2789 			break;
2790 	}
2791 	return (error);
2792 }
2793 
2794 /*
2795  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2796  * referencing STT_GNU_IFUNC symbols is postponed till the other
2797  * relocations are done.  The indirect functions specified as
2798  * ifunc are allowed to call other symbols, so we need to have
2799  * objects relocated before asking for resolution from indirects.
2800  *
2801  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2802  * instead of the usual lazy handling of PLT slots.  It is
2803  * consistent with how GNU does it.
2804  */
2805 static int
2806 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2807     RtldLockState *lockstate)
2808 {
2809 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2810 		return (-1);
2811 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2812 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2813 		return (-1);
2814 	return (0);
2815 }
2816 
2817 static int
2818 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2819     RtldLockState *lockstate)
2820 {
2821 	Obj_Entry *obj;
2822 
2823 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2824 		if (obj->marker)
2825 			continue;
2826 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2827 			return (-1);
2828 	}
2829 	return (0);
2830 }
2831 
2832 static int
2833 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2834     RtldLockState *lockstate)
2835 {
2836 	Objlist_Entry *elm;
2837 
2838 	STAILQ_FOREACH(elm, list, link) {
2839 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2840 		    lockstate) == -1)
2841 			return (-1);
2842 	}
2843 	return (0);
2844 }
2845 
2846 /*
2847  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2848  * before the process exits.
2849  */
2850 static void
2851 rtld_exit(void)
2852 {
2853     RtldLockState lockstate;
2854 
2855     wlock_acquire(rtld_bind_lock, &lockstate);
2856     dbg("rtld_exit()");
2857     objlist_call_fini(&list_fini, NULL, &lockstate);
2858     /* No need to remove the items from the list, since we are exiting. */
2859     if (!libmap_disable)
2860         lm_fini();
2861     lock_release(rtld_bind_lock, &lockstate);
2862 }
2863 
2864 /*
2865  * Iterate over a search path, translate each element, and invoke the
2866  * callback on the result.
2867  */
2868 static void *
2869 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2870 {
2871     const char *trans;
2872     if (path == NULL)
2873 	return (NULL);
2874 
2875     path += strspn(path, ":;");
2876     while (*path != '\0') {
2877 	size_t len;
2878 	char  *res;
2879 
2880 	len = strcspn(path, ":;");
2881 	trans = lm_findn(NULL, path, len);
2882 	if (trans)
2883 	    res = callback(trans, strlen(trans), arg);
2884 	else
2885 	    res = callback(path, len, arg);
2886 
2887 	if (res != NULL)
2888 	    return (res);
2889 
2890 	path += len;
2891 	path += strspn(path, ":;");
2892     }
2893 
2894     return (NULL);
2895 }
2896 
2897 struct try_library_args {
2898     const char	*name;
2899     size_t	 namelen;
2900     char	*buffer;
2901     size_t	 buflen;
2902 };
2903 
2904 static void *
2905 try_library_path(const char *dir, size_t dirlen, void *param)
2906 {
2907     struct try_library_args *arg;
2908 
2909     arg = param;
2910     if (*dir == '/' || trust) {
2911 	char *pathname;
2912 
2913 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2914 		return (NULL);
2915 
2916 	pathname = arg->buffer;
2917 	strncpy(pathname, dir, dirlen);
2918 	pathname[dirlen] = '/';
2919 	strcpy(pathname + dirlen + 1, arg->name);
2920 
2921 	dbg("  Trying \"%s\"", pathname);
2922 	if (access(pathname, F_OK) == 0) {		/* We found it */
2923 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2924 	    strcpy(pathname, arg->buffer);
2925 	    return (pathname);
2926 	}
2927     }
2928     return (NULL);
2929 }
2930 
2931 static char *
2932 search_library_path(const char *name, const char *path)
2933 {
2934     char *p;
2935     struct try_library_args arg;
2936 
2937     if (path == NULL)
2938 	return NULL;
2939 
2940     arg.name = name;
2941     arg.namelen = strlen(name);
2942     arg.buffer = xmalloc(PATH_MAX);
2943     arg.buflen = PATH_MAX;
2944 
2945     p = path_enumerate(path, try_library_path, &arg);
2946 
2947     free(arg.buffer);
2948 
2949     return (p);
2950 }
2951 
2952 
2953 /*
2954  * Finds the library with the given name using the directory descriptors
2955  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2956  *
2957  * Returns a freshly-opened close-on-exec file descriptor for the library,
2958  * or -1 if the library cannot be found.
2959  */
2960 static char *
2961 search_library_pathfds(const char *name, const char *path, int *fdp)
2962 {
2963 	char *envcopy, *fdstr, *found, *last_token;
2964 	size_t len;
2965 	int dirfd, fd;
2966 
2967 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2968 
2969 	/* Don't load from user-specified libdirs into setuid binaries. */
2970 	if (!trust)
2971 		return (NULL);
2972 
2973 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2974 	if (path == NULL)
2975 		return (NULL);
2976 
2977 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2978 	if (name[0] == '/') {
2979 		dbg("Absolute path (%s) passed to %s", name, __func__);
2980 		return (NULL);
2981 	}
2982 
2983 	/*
2984 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2985 	 * copy of the path, as strtok_r rewrites separator tokens
2986 	 * with '\0'.
2987 	 */
2988 	found = NULL;
2989 	envcopy = xstrdup(path);
2990 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2991 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2992 		dirfd = parse_libdir(fdstr);
2993 		if (dirfd < 0)
2994 			break;
2995 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2996 		if (fd >= 0) {
2997 			*fdp = fd;
2998 			len = strlen(fdstr) + strlen(name) + 3;
2999 			found = xmalloc(len);
3000 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3001 				_rtld_error("error generating '%d/%s'",
3002 				    dirfd, name);
3003 				rtld_die();
3004 			}
3005 			dbg("open('%s') => %d", found, fd);
3006 			break;
3007 		}
3008 	}
3009 	free(envcopy);
3010 
3011 	return (found);
3012 }
3013 
3014 
3015 int
3016 dlclose(void *handle)
3017 {
3018     Obj_Entry *root;
3019     RtldLockState lockstate;
3020 
3021     wlock_acquire(rtld_bind_lock, &lockstate);
3022     root = dlcheck(handle);
3023     if (root == NULL) {
3024 	lock_release(rtld_bind_lock, &lockstate);
3025 	return -1;
3026     }
3027     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3028 	root->path);
3029 
3030     /* Unreference the object and its dependencies. */
3031     root->dl_refcount--;
3032 
3033     if (root->refcount == 1) {
3034 	/*
3035 	 * The object will be no longer referenced, so we must unload it.
3036 	 * First, call the fini functions.
3037 	 */
3038 	objlist_call_fini(&list_fini, root, &lockstate);
3039 
3040 	unref_dag(root);
3041 
3042 	/* Finish cleaning up the newly-unreferenced objects. */
3043 	GDB_STATE(RT_DELETE,&root->linkmap);
3044 	unload_object(root);
3045 	GDB_STATE(RT_CONSISTENT,NULL);
3046     } else
3047 	unref_dag(root);
3048 
3049     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3050     lock_release(rtld_bind_lock, &lockstate);
3051     return 0;
3052 }
3053 
3054 char *
3055 dlerror(void)
3056 {
3057     char *msg = error_message;
3058     error_message = NULL;
3059     return msg;
3060 }
3061 
3062 /*
3063  * This function is deprecated and has no effect.
3064  */
3065 void
3066 dllockinit(void *context,
3067 	   void *(*lock_create)(void *context),
3068            void (*rlock_acquire)(void *lock),
3069            void (*wlock_acquire)(void *lock),
3070            void (*lock_release)(void *lock),
3071            void (*lock_destroy)(void *lock),
3072 	   void (*context_destroy)(void *context))
3073 {
3074     static void *cur_context;
3075     static void (*cur_context_destroy)(void *);
3076 
3077     /* Just destroy the context from the previous call, if necessary. */
3078     if (cur_context_destroy != NULL)
3079 	cur_context_destroy(cur_context);
3080     cur_context = context;
3081     cur_context_destroy = context_destroy;
3082 }
3083 
3084 void *
3085 dlopen(const char *name, int mode)
3086 {
3087 
3088 	return (rtld_dlopen(name, -1, mode));
3089 }
3090 
3091 void *
3092 fdlopen(int fd, int mode)
3093 {
3094 
3095 	return (rtld_dlopen(NULL, fd, mode));
3096 }
3097 
3098 static void *
3099 rtld_dlopen(const char *name, int fd, int mode)
3100 {
3101     RtldLockState lockstate;
3102     int lo_flags;
3103 
3104     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3105     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3106     if (ld_tracing != NULL) {
3107 	rlock_acquire(rtld_bind_lock, &lockstate);
3108 	if (sigsetjmp(lockstate.env, 0) != 0)
3109 	    lock_upgrade(rtld_bind_lock, &lockstate);
3110 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3111 	lock_release(rtld_bind_lock, &lockstate);
3112     }
3113     lo_flags = RTLD_LO_DLOPEN;
3114     if (mode & RTLD_NODELETE)
3115 	    lo_flags |= RTLD_LO_NODELETE;
3116     if (mode & RTLD_NOLOAD)
3117 	    lo_flags |= RTLD_LO_NOLOAD;
3118     if (ld_tracing != NULL)
3119 	    lo_flags |= RTLD_LO_TRACE;
3120 
3121     return (dlopen_object(name, fd, obj_main, lo_flags,
3122       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3123 }
3124 
3125 static void
3126 dlopen_cleanup(Obj_Entry *obj)
3127 {
3128 
3129 	obj->dl_refcount--;
3130 	unref_dag(obj);
3131 	if (obj->refcount == 0)
3132 		unload_object(obj);
3133 }
3134 
3135 static Obj_Entry *
3136 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3137     int mode, RtldLockState *lockstate)
3138 {
3139     Obj_Entry *old_obj_tail;
3140     Obj_Entry *obj;
3141     Objlist initlist;
3142     RtldLockState mlockstate;
3143     int result;
3144 
3145     objlist_init(&initlist);
3146 
3147     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3148 	wlock_acquire(rtld_bind_lock, &mlockstate);
3149 	lockstate = &mlockstate;
3150     }
3151     GDB_STATE(RT_ADD,NULL);
3152 
3153     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3154     obj = NULL;
3155     if (name == NULL && fd == -1) {
3156 	obj = obj_main;
3157 	obj->refcount++;
3158     } else {
3159 	obj = load_object(name, fd, refobj, lo_flags);
3160     }
3161 
3162     if (obj) {
3163 	obj->dl_refcount++;
3164 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3165 	    objlist_push_tail(&list_global, obj);
3166 	if (globallist_next(old_obj_tail) != NULL) {
3167 	    /* We loaded something new. */
3168 	    assert(globallist_next(old_obj_tail) == obj);
3169 	    result = load_needed_objects(obj,
3170 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3171 	    init_dag(obj);
3172 	    ref_dag(obj);
3173 	    if (result != -1)
3174 		result = rtld_verify_versions(&obj->dagmembers);
3175 	    if (result != -1 && ld_tracing)
3176 		goto trace;
3177 	    if (result == -1 || relocate_object_dag(obj,
3178 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3179 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3180 	      lockstate) == -1) {
3181 		dlopen_cleanup(obj);
3182 		obj = NULL;
3183 	    } else if (lo_flags & RTLD_LO_EARLY) {
3184 		/*
3185 		 * Do not call the init functions for early loaded
3186 		 * filtees.  The image is still not initialized enough
3187 		 * for them to work.
3188 		 *
3189 		 * Our object is found by the global object list and
3190 		 * will be ordered among all init calls done right
3191 		 * before transferring control to main.
3192 		 */
3193 	    } else {
3194 		/* Make list of init functions to call. */
3195 		initlist_add_objects(obj, obj, &initlist);
3196 	    }
3197 	    /*
3198 	     * Process all no_delete or global objects here, given
3199 	     * them own DAGs to prevent their dependencies from being
3200 	     * unloaded.  This has to be done after we have loaded all
3201 	     * of the dependencies, so that we do not miss any.
3202 	     */
3203 	    if (obj != NULL)
3204 		process_z(obj);
3205 	} else {
3206 	    /*
3207 	     * Bump the reference counts for objects on this DAG.  If
3208 	     * this is the first dlopen() call for the object that was
3209 	     * already loaded as a dependency, initialize the dag
3210 	     * starting at it.
3211 	     */
3212 	    init_dag(obj);
3213 	    ref_dag(obj);
3214 
3215 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3216 		goto trace;
3217 	}
3218 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3219 	  obj->z_nodelete) && !obj->ref_nodel) {
3220 	    dbg("obj %s nodelete", obj->path);
3221 	    ref_dag(obj);
3222 	    obj->z_nodelete = obj->ref_nodel = true;
3223 	}
3224     }
3225 
3226     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3227 	name);
3228     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3229 
3230     if (!(lo_flags & RTLD_LO_EARLY)) {
3231 	map_stacks_exec(lockstate);
3232     }
3233 
3234     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3235       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3236       lockstate) == -1) {
3237 	objlist_clear(&initlist);
3238 	dlopen_cleanup(obj);
3239 	if (lockstate == &mlockstate)
3240 	    lock_release(rtld_bind_lock, lockstate);
3241 	return (NULL);
3242     }
3243 
3244     if (!(lo_flags & RTLD_LO_EARLY)) {
3245 	/* Call the init functions. */
3246 	objlist_call_init(&initlist, lockstate);
3247     }
3248     objlist_clear(&initlist);
3249     if (lockstate == &mlockstate)
3250 	lock_release(rtld_bind_lock, lockstate);
3251     return obj;
3252 trace:
3253     trace_loaded_objects(obj);
3254     if (lockstate == &mlockstate)
3255 	lock_release(rtld_bind_lock, lockstate);
3256     exit(0);
3257 }
3258 
3259 static void *
3260 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3261     int flags)
3262 {
3263     DoneList donelist;
3264     const Obj_Entry *obj, *defobj;
3265     const Elf_Sym *def;
3266     SymLook req;
3267     RtldLockState lockstate;
3268     tls_index ti;
3269     void *sym;
3270     int res;
3271 
3272     def = NULL;
3273     defobj = NULL;
3274     symlook_init(&req, name);
3275     req.ventry = ve;
3276     req.flags = flags | SYMLOOK_IN_PLT;
3277     req.lockstate = &lockstate;
3278 
3279     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3280     rlock_acquire(rtld_bind_lock, &lockstate);
3281     if (sigsetjmp(lockstate.env, 0) != 0)
3282 	    lock_upgrade(rtld_bind_lock, &lockstate);
3283     if (handle == NULL || handle == RTLD_NEXT ||
3284 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3285 
3286 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3287 	    _rtld_error("Cannot determine caller's shared object");
3288 	    lock_release(rtld_bind_lock, &lockstate);
3289 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3290 	    return NULL;
3291 	}
3292 	if (handle == NULL) {	/* Just the caller's shared object. */
3293 	    res = symlook_obj(&req, obj);
3294 	    if (res == 0) {
3295 		def = req.sym_out;
3296 		defobj = req.defobj_out;
3297 	    }
3298 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3299 		   handle == RTLD_SELF) { /* ... caller included */
3300 	    if (handle == RTLD_NEXT)
3301 		obj = globallist_next(obj);
3302 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3303 		if (obj->marker)
3304 		    continue;
3305 		res = symlook_obj(&req, obj);
3306 		if (res == 0) {
3307 		    if (def == NULL ||
3308 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3309 			def = req.sym_out;
3310 			defobj = req.defobj_out;
3311 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3312 			    break;
3313 		    }
3314 		}
3315 	    }
3316 	    /*
3317 	     * Search the dynamic linker itself, and possibly resolve the
3318 	     * symbol from there.  This is how the application links to
3319 	     * dynamic linker services such as dlopen.
3320 	     */
3321 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3322 		res = symlook_obj(&req, &obj_rtld);
3323 		if (res == 0) {
3324 		    def = req.sym_out;
3325 		    defobj = req.defobj_out;
3326 		}
3327 	    }
3328 	} else {
3329 	    assert(handle == RTLD_DEFAULT);
3330 	    res = symlook_default(&req, obj);
3331 	    if (res == 0) {
3332 		defobj = req.defobj_out;
3333 		def = req.sym_out;
3334 	    }
3335 	}
3336     } else {
3337 	if ((obj = dlcheck(handle)) == NULL) {
3338 	    lock_release(rtld_bind_lock, &lockstate);
3339 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3340 	    return NULL;
3341 	}
3342 
3343 	donelist_init(&donelist);
3344 	if (obj->mainprog) {
3345             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3346 	    res = symlook_global(&req, &donelist);
3347 	    if (res == 0) {
3348 		def = req.sym_out;
3349 		defobj = req.defobj_out;
3350 	    }
3351 	    /*
3352 	     * Search the dynamic linker itself, and possibly resolve the
3353 	     * symbol from there.  This is how the application links to
3354 	     * dynamic linker services such as dlopen.
3355 	     */
3356 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3357 		res = symlook_obj(&req, &obj_rtld);
3358 		if (res == 0) {
3359 		    def = req.sym_out;
3360 		    defobj = req.defobj_out;
3361 		}
3362 	    }
3363 	}
3364 	else {
3365 	    /* Search the whole DAG rooted at the given object. */
3366 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3367 	    if (res == 0) {
3368 		def = req.sym_out;
3369 		defobj = req.defobj_out;
3370 	    }
3371 	}
3372     }
3373 
3374     if (def != NULL) {
3375 	lock_release(rtld_bind_lock, &lockstate);
3376 
3377 	/*
3378 	 * The value required by the caller is derived from the value
3379 	 * of the symbol. this is simply the relocated value of the
3380 	 * symbol.
3381 	 */
3382 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3383 	    sym = make_function_pointer(def, defobj);
3384 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3385 	    sym = rtld_resolve_ifunc(defobj, def);
3386 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3387 	    ti.ti_module = defobj->tlsindex;
3388 	    ti.ti_offset = def->st_value;
3389 	    sym = __tls_get_addr(&ti);
3390 	} else
3391 	    sym = defobj->relocbase + def->st_value;
3392 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3393 	return (sym);
3394     }
3395 
3396     _rtld_error("Undefined symbol \"%s\"", name);
3397     lock_release(rtld_bind_lock, &lockstate);
3398     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3399     return NULL;
3400 }
3401 
3402 void *
3403 dlsym(void *handle, const char *name)
3404 {
3405 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3406 	    SYMLOOK_DLSYM);
3407 }
3408 
3409 dlfunc_t
3410 dlfunc(void *handle, const char *name)
3411 {
3412 	union {
3413 		void *d;
3414 		dlfunc_t f;
3415 	} rv;
3416 
3417 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3418 	    SYMLOOK_DLSYM);
3419 	return (rv.f);
3420 }
3421 
3422 void *
3423 dlvsym(void *handle, const char *name, const char *version)
3424 {
3425 	Ver_Entry ventry;
3426 
3427 	ventry.name = version;
3428 	ventry.file = NULL;
3429 	ventry.hash = elf_hash(version);
3430 	ventry.flags= 0;
3431 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3432 	    SYMLOOK_DLSYM);
3433 }
3434 
3435 int
3436 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3437 {
3438     const Obj_Entry *obj;
3439     RtldLockState lockstate;
3440 
3441     rlock_acquire(rtld_bind_lock, &lockstate);
3442     obj = obj_from_addr(addr);
3443     if (obj == NULL) {
3444         _rtld_error("No shared object contains address");
3445 	lock_release(rtld_bind_lock, &lockstate);
3446         return (0);
3447     }
3448     rtld_fill_dl_phdr_info(obj, phdr_info);
3449     lock_release(rtld_bind_lock, &lockstate);
3450     return (1);
3451 }
3452 
3453 int
3454 dladdr(const void *addr, Dl_info *info)
3455 {
3456     const Obj_Entry *obj;
3457     const Elf_Sym *def;
3458     void *symbol_addr;
3459     unsigned long symoffset;
3460     RtldLockState lockstate;
3461 
3462     rlock_acquire(rtld_bind_lock, &lockstate);
3463     obj = obj_from_addr(addr);
3464     if (obj == NULL) {
3465         _rtld_error("No shared object contains address");
3466 	lock_release(rtld_bind_lock, &lockstate);
3467         return 0;
3468     }
3469     info->dli_fname = obj->path;
3470     info->dli_fbase = obj->mapbase;
3471     info->dli_saddr = (void *)0;
3472     info->dli_sname = NULL;
3473 
3474     /*
3475      * Walk the symbol list looking for the symbol whose address is
3476      * closest to the address sent in.
3477      */
3478     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3479         def = obj->symtab + symoffset;
3480 
3481         /*
3482          * For skip the symbol if st_shndx is either SHN_UNDEF or
3483          * SHN_COMMON.
3484          */
3485         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3486             continue;
3487 
3488         /*
3489          * If the symbol is greater than the specified address, or if it
3490          * is further away from addr than the current nearest symbol,
3491          * then reject it.
3492          */
3493         symbol_addr = obj->relocbase + def->st_value;
3494         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3495             continue;
3496 
3497         /* Update our idea of the nearest symbol. */
3498         info->dli_sname = obj->strtab + def->st_name;
3499         info->dli_saddr = symbol_addr;
3500 
3501         /* Exact match? */
3502         if (info->dli_saddr == addr)
3503             break;
3504     }
3505     lock_release(rtld_bind_lock, &lockstate);
3506     return 1;
3507 }
3508 
3509 int
3510 dlinfo(void *handle, int request, void *p)
3511 {
3512     const Obj_Entry *obj;
3513     RtldLockState lockstate;
3514     int error;
3515 
3516     rlock_acquire(rtld_bind_lock, &lockstate);
3517 
3518     if (handle == NULL || handle == RTLD_SELF) {
3519 	void *retaddr;
3520 
3521 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3522 	if ((obj = obj_from_addr(retaddr)) == NULL)
3523 	    _rtld_error("Cannot determine caller's shared object");
3524     } else
3525 	obj = dlcheck(handle);
3526 
3527     if (obj == NULL) {
3528 	lock_release(rtld_bind_lock, &lockstate);
3529 	return (-1);
3530     }
3531 
3532     error = 0;
3533     switch (request) {
3534     case RTLD_DI_LINKMAP:
3535 	*((struct link_map const **)p) = &obj->linkmap;
3536 	break;
3537     case RTLD_DI_ORIGIN:
3538 	error = rtld_dirname(obj->path, p);
3539 	break;
3540 
3541     case RTLD_DI_SERINFOSIZE:
3542     case RTLD_DI_SERINFO:
3543 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3544 	break;
3545 
3546     default:
3547 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3548 	error = -1;
3549     }
3550 
3551     lock_release(rtld_bind_lock, &lockstate);
3552 
3553     return (error);
3554 }
3555 
3556 static void
3557 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3558 {
3559 
3560 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3561 	phdr_info->dlpi_name = obj->path;
3562 	phdr_info->dlpi_phdr = obj->phdr;
3563 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3564 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3565 	phdr_info->dlpi_tls_data = obj->tlsinit;
3566 	phdr_info->dlpi_adds = obj_loads;
3567 	phdr_info->dlpi_subs = obj_loads - obj_count;
3568 }
3569 
3570 int
3571 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3572 {
3573 	struct dl_phdr_info phdr_info;
3574 	Obj_Entry *obj, marker;
3575 	RtldLockState bind_lockstate, phdr_lockstate;
3576 	int error;
3577 
3578 	init_marker(&marker);
3579 	error = 0;
3580 
3581 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3582 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3583 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3584 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3585 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3586 		hold_object(obj);
3587 		lock_release(rtld_bind_lock, &bind_lockstate);
3588 
3589 		error = callback(&phdr_info, sizeof phdr_info, param);
3590 
3591 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3592 		unhold_object(obj);
3593 		obj = globallist_next(&marker);
3594 		TAILQ_REMOVE(&obj_list, &marker, next);
3595 		if (error != 0) {
3596 			lock_release(rtld_bind_lock, &bind_lockstate);
3597 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3598 			return (error);
3599 		}
3600 	}
3601 
3602 	if (error == 0) {
3603 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3604 		lock_release(rtld_bind_lock, &bind_lockstate);
3605 		error = callback(&phdr_info, sizeof(phdr_info), param);
3606 	}
3607 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3608 	return (error);
3609 }
3610 
3611 static void *
3612 fill_search_info(const char *dir, size_t dirlen, void *param)
3613 {
3614     struct fill_search_info_args *arg;
3615 
3616     arg = param;
3617 
3618     if (arg->request == RTLD_DI_SERINFOSIZE) {
3619 	arg->serinfo->dls_cnt ++;
3620 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3621     } else {
3622 	struct dl_serpath *s_entry;
3623 
3624 	s_entry = arg->serpath;
3625 	s_entry->dls_name  = arg->strspace;
3626 	s_entry->dls_flags = arg->flags;
3627 
3628 	strncpy(arg->strspace, dir, dirlen);
3629 	arg->strspace[dirlen] = '\0';
3630 
3631 	arg->strspace += dirlen + 1;
3632 	arg->serpath++;
3633     }
3634 
3635     return (NULL);
3636 }
3637 
3638 static int
3639 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3640 {
3641     struct dl_serinfo _info;
3642     struct fill_search_info_args args;
3643 
3644     args.request = RTLD_DI_SERINFOSIZE;
3645     args.serinfo = &_info;
3646 
3647     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3648     _info.dls_cnt  = 0;
3649 
3650     path_enumerate(obj->rpath, fill_search_info, &args);
3651     path_enumerate(ld_library_path, fill_search_info, &args);
3652     path_enumerate(obj->runpath, fill_search_info, &args);
3653     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3654     if (!obj->z_nodeflib)
3655       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3656 
3657 
3658     if (request == RTLD_DI_SERINFOSIZE) {
3659 	info->dls_size = _info.dls_size;
3660 	info->dls_cnt = _info.dls_cnt;
3661 	return (0);
3662     }
3663 
3664     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3665 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3666 	return (-1);
3667     }
3668 
3669     args.request  = RTLD_DI_SERINFO;
3670     args.serinfo  = info;
3671     args.serpath  = &info->dls_serpath[0];
3672     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3673 
3674     args.flags = LA_SER_RUNPATH;
3675     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3676 	return (-1);
3677 
3678     args.flags = LA_SER_LIBPATH;
3679     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3680 	return (-1);
3681 
3682     args.flags = LA_SER_RUNPATH;
3683     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3684 	return (-1);
3685 
3686     args.flags = LA_SER_CONFIG;
3687     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3688       != NULL)
3689 	return (-1);
3690 
3691     args.flags = LA_SER_DEFAULT;
3692     if (!obj->z_nodeflib &&
3693       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3694 	return (-1);
3695     return (0);
3696 }
3697 
3698 static int
3699 rtld_dirname(const char *path, char *bname)
3700 {
3701     const char *endp;
3702 
3703     /* Empty or NULL string gets treated as "." */
3704     if (path == NULL || *path == '\0') {
3705 	bname[0] = '.';
3706 	bname[1] = '\0';
3707 	return (0);
3708     }
3709 
3710     /* Strip trailing slashes */
3711     endp = path + strlen(path) - 1;
3712     while (endp > path && *endp == '/')
3713 	endp--;
3714 
3715     /* Find the start of the dir */
3716     while (endp > path && *endp != '/')
3717 	endp--;
3718 
3719     /* Either the dir is "/" or there are no slashes */
3720     if (endp == path) {
3721 	bname[0] = *endp == '/' ? '/' : '.';
3722 	bname[1] = '\0';
3723 	return (0);
3724     } else {
3725 	do {
3726 	    endp--;
3727 	} while (endp > path && *endp == '/');
3728     }
3729 
3730     if (endp - path + 2 > PATH_MAX)
3731     {
3732 	_rtld_error("Filename is too long: %s", path);
3733 	return(-1);
3734     }
3735 
3736     strncpy(bname, path, endp - path + 1);
3737     bname[endp - path + 1] = '\0';
3738     return (0);
3739 }
3740 
3741 static int
3742 rtld_dirname_abs(const char *path, char *base)
3743 {
3744 	char *last;
3745 
3746 	if (realpath(path, base) == NULL)
3747 		return (-1);
3748 	dbg("%s -> %s", path, base);
3749 	last = strrchr(base, '/');
3750 	if (last == NULL)
3751 		return (-1);
3752 	if (last != base)
3753 		*last = '\0';
3754 	return (0);
3755 }
3756 
3757 static void
3758 linkmap_add(Obj_Entry *obj)
3759 {
3760     struct link_map *l = &obj->linkmap;
3761     struct link_map *prev;
3762 
3763     obj->linkmap.l_name = obj->path;
3764     obj->linkmap.l_addr = obj->mapbase;
3765     obj->linkmap.l_ld = obj->dynamic;
3766 #ifdef __mips__
3767     /* GDB needs load offset on MIPS to use the symbols */
3768     obj->linkmap.l_offs = obj->relocbase;
3769 #endif
3770 
3771     if (r_debug.r_map == NULL) {
3772 	r_debug.r_map = l;
3773 	return;
3774     }
3775 
3776     /*
3777      * Scan to the end of the list, but not past the entry for the
3778      * dynamic linker, which we want to keep at the very end.
3779      */
3780     for (prev = r_debug.r_map;
3781       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3782       prev = prev->l_next)
3783 	;
3784 
3785     /* Link in the new entry. */
3786     l->l_prev = prev;
3787     l->l_next = prev->l_next;
3788     if (l->l_next != NULL)
3789 	l->l_next->l_prev = l;
3790     prev->l_next = l;
3791 }
3792 
3793 static void
3794 linkmap_delete(Obj_Entry *obj)
3795 {
3796     struct link_map *l = &obj->linkmap;
3797 
3798     if (l->l_prev == NULL) {
3799 	if ((r_debug.r_map = l->l_next) != NULL)
3800 	    l->l_next->l_prev = NULL;
3801 	return;
3802     }
3803 
3804     if ((l->l_prev->l_next = l->l_next) != NULL)
3805 	l->l_next->l_prev = l->l_prev;
3806 }
3807 
3808 /*
3809  * Function for the debugger to set a breakpoint on to gain control.
3810  *
3811  * The two parameters allow the debugger to easily find and determine
3812  * what the runtime loader is doing and to whom it is doing it.
3813  *
3814  * When the loadhook trap is hit (r_debug_state, set at program
3815  * initialization), the arguments can be found on the stack:
3816  *
3817  *  +8   struct link_map *m
3818  *  +4   struct r_debug  *rd
3819  *  +0   RetAddr
3820  */
3821 void
3822 r_debug_state(struct r_debug* rd, struct link_map *m)
3823 {
3824     /*
3825      * The following is a hack to force the compiler to emit calls to
3826      * this function, even when optimizing.  If the function is empty,
3827      * the compiler is not obliged to emit any code for calls to it,
3828      * even when marked __noinline.  However, gdb depends on those
3829      * calls being made.
3830      */
3831     __compiler_membar();
3832 }
3833 
3834 /*
3835  * A function called after init routines have completed. This can be used to
3836  * break before a program's entry routine is called, and can be used when
3837  * main is not available in the symbol table.
3838  */
3839 void
3840 _r_debug_postinit(struct link_map *m)
3841 {
3842 
3843 	/* See r_debug_state(). */
3844 	__compiler_membar();
3845 }
3846 
3847 static void
3848 release_object(Obj_Entry *obj)
3849 {
3850 
3851 	if (obj->holdcount > 0) {
3852 		obj->unholdfree = true;
3853 		return;
3854 	}
3855 	munmap(obj->mapbase, obj->mapsize);
3856 	linkmap_delete(obj);
3857 	obj_free(obj);
3858 }
3859 
3860 /*
3861  * Get address of the pointer variable in the main program.
3862  * Prefer non-weak symbol over the weak one.
3863  */
3864 static const void **
3865 get_program_var_addr(const char *name, RtldLockState *lockstate)
3866 {
3867     SymLook req;
3868     DoneList donelist;
3869 
3870     symlook_init(&req, name);
3871     req.lockstate = lockstate;
3872     donelist_init(&donelist);
3873     if (symlook_global(&req, &donelist) != 0)
3874 	return (NULL);
3875     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3876 	return ((const void **)make_function_pointer(req.sym_out,
3877 	  req.defobj_out));
3878     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3879 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3880     else
3881 	return ((const void **)(req.defobj_out->relocbase +
3882 	  req.sym_out->st_value));
3883 }
3884 
3885 /*
3886  * Set a pointer variable in the main program to the given value.  This
3887  * is used to set key variables such as "environ" before any of the
3888  * init functions are called.
3889  */
3890 static void
3891 set_program_var(const char *name, const void *value)
3892 {
3893     const void **addr;
3894 
3895     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3896 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3897 	*addr = value;
3898     }
3899 }
3900 
3901 /*
3902  * Search the global objects, including dependencies and main object,
3903  * for the given symbol.
3904  */
3905 static int
3906 symlook_global(SymLook *req, DoneList *donelist)
3907 {
3908     SymLook req1;
3909     const Objlist_Entry *elm;
3910     int res;
3911 
3912     symlook_init_from_req(&req1, req);
3913 
3914     /* Search all objects loaded at program start up. */
3915     if (req->defobj_out == NULL ||
3916       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3917 	res = symlook_list(&req1, &list_main, donelist);
3918 	if (res == 0 && (req->defobj_out == NULL ||
3919 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3920 	    req->sym_out = req1.sym_out;
3921 	    req->defobj_out = req1.defobj_out;
3922 	    assert(req->defobj_out != NULL);
3923 	}
3924     }
3925 
3926     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3927     STAILQ_FOREACH(elm, &list_global, link) {
3928 	if (req->defobj_out != NULL &&
3929 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3930 	    break;
3931 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3932 	if (res == 0 && (req->defobj_out == NULL ||
3933 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3934 	    req->sym_out = req1.sym_out;
3935 	    req->defobj_out = req1.defobj_out;
3936 	    assert(req->defobj_out != NULL);
3937 	}
3938     }
3939 
3940     return (req->sym_out != NULL ? 0 : ESRCH);
3941 }
3942 
3943 /*
3944  * Given a symbol name in a referencing object, find the corresponding
3945  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3946  * no definition was found.  Returns a pointer to the Obj_Entry of the
3947  * defining object via the reference parameter DEFOBJ_OUT.
3948  */
3949 static int
3950 symlook_default(SymLook *req, const Obj_Entry *refobj)
3951 {
3952     DoneList donelist;
3953     const Objlist_Entry *elm;
3954     SymLook req1;
3955     int res;
3956 
3957     donelist_init(&donelist);
3958     symlook_init_from_req(&req1, req);
3959 
3960     /* Look first in the referencing object if linked symbolically. */
3961     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3962 	res = symlook_obj(&req1, refobj);
3963 	if (res == 0) {
3964 	    req->sym_out = req1.sym_out;
3965 	    req->defobj_out = req1.defobj_out;
3966 	    assert(req->defobj_out != NULL);
3967 	}
3968     }
3969 
3970     symlook_global(req, &donelist);
3971 
3972     /* Search all dlopened DAGs containing the referencing object. */
3973     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3974 	if (req->sym_out != NULL &&
3975 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3976 	    break;
3977 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3978 	if (res == 0 && (req->sym_out == NULL ||
3979 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3980 	    req->sym_out = req1.sym_out;
3981 	    req->defobj_out = req1.defobj_out;
3982 	    assert(req->defobj_out != NULL);
3983 	}
3984     }
3985 
3986     /*
3987      * Search the dynamic linker itself, and possibly resolve the
3988      * symbol from there.  This is how the application links to
3989      * dynamic linker services such as dlopen.
3990      */
3991     if (req->sym_out == NULL ||
3992       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3993 	res = symlook_obj(&req1, &obj_rtld);
3994 	if (res == 0) {
3995 	    req->sym_out = req1.sym_out;
3996 	    req->defobj_out = req1.defobj_out;
3997 	    assert(req->defobj_out != NULL);
3998 	}
3999     }
4000 
4001     return (req->sym_out != NULL ? 0 : ESRCH);
4002 }
4003 
4004 static int
4005 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4006 {
4007     const Elf_Sym *def;
4008     const Obj_Entry *defobj;
4009     const Objlist_Entry *elm;
4010     SymLook req1;
4011     int res;
4012 
4013     def = NULL;
4014     defobj = NULL;
4015     STAILQ_FOREACH(elm, objlist, link) {
4016 	if (donelist_check(dlp, elm->obj))
4017 	    continue;
4018 	symlook_init_from_req(&req1, req);
4019 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4020 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4021 		def = req1.sym_out;
4022 		defobj = req1.defobj_out;
4023 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4024 		    break;
4025 	    }
4026 	}
4027     }
4028     if (def != NULL) {
4029 	req->sym_out = def;
4030 	req->defobj_out = defobj;
4031 	return (0);
4032     }
4033     return (ESRCH);
4034 }
4035 
4036 /*
4037  * Search the chain of DAGS cointed to by the given Needed_Entry
4038  * for a symbol of the given name.  Each DAG is scanned completely
4039  * before advancing to the next one.  Returns a pointer to the symbol,
4040  * or NULL if no definition was found.
4041  */
4042 static int
4043 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4044 {
4045     const Elf_Sym *def;
4046     const Needed_Entry *n;
4047     const Obj_Entry *defobj;
4048     SymLook req1;
4049     int res;
4050 
4051     def = NULL;
4052     defobj = NULL;
4053     symlook_init_from_req(&req1, req);
4054     for (n = needed; n != NULL; n = n->next) {
4055 	if (n->obj == NULL ||
4056 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4057 	    continue;
4058 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4059 	    def = req1.sym_out;
4060 	    defobj = req1.defobj_out;
4061 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4062 		break;
4063 	}
4064     }
4065     if (def != NULL) {
4066 	req->sym_out = def;
4067 	req->defobj_out = defobj;
4068 	return (0);
4069     }
4070     return (ESRCH);
4071 }
4072 
4073 /*
4074  * Search the symbol table of a single shared object for a symbol of
4075  * the given name and version, if requested.  Returns a pointer to the
4076  * symbol, or NULL if no definition was found.  If the object is
4077  * filter, return filtered symbol from filtee.
4078  *
4079  * The symbol's hash value is passed in for efficiency reasons; that
4080  * eliminates many recomputations of the hash value.
4081  */
4082 int
4083 symlook_obj(SymLook *req, const Obj_Entry *obj)
4084 {
4085     DoneList donelist;
4086     SymLook req1;
4087     int flags, res, mres;
4088 
4089     /*
4090      * If there is at least one valid hash at this point, we prefer to
4091      * use the faster GNU version if available.
4092      */
4093     if (obj->valid_hash_gnu)
4094 	mres = symlook_obj1_gnu(req, obj);
4095     else if (obj->valid_hash_sysv)
4096 	mres = symlook_obj1_sysv(req, obj);
4097     else
4098 	return (EINVAL);
4099 
4100     if (mres == 0) {
4101 	if (obj->needed_filtees != NULL) {
4102 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4103 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4104 	    donelist_init(&donelist);
4105 	    symlook_init_from_req(&req1, req);
4106 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4107 	    if (res == 0) {
4108 		req->sym_out = req1.sym_out;
4109 		req->defobj_out = req1.defobj_out;
4110 	    }
4111 	    return (res);
4112 	}
4113 	if (obj->needed_aux_filtees != NULL) {
4114 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4115 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4116 	    donelist_init(&donelist);
4117 	    symlook_init_from_req(&req1, req);
4118 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4119 	    if (res == 0) {
4120 		req->sym_out = req1.sym_out;
4121 		req->defobj_out = req1.defobj_out;
4122 		return (res);
4123 	    }
4124 	}
4125     }
4126     return (mres);
4127 }
4128 
4129 /* Symbol match routine common to both hash functions */
4130 static bool
4131 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4132     const unsigned long symnum)
4133 {
4134 	Elf_Versym verndx;
4135 	const Elf_Sym *symp;
4136 	const char *strp;
4137 
4138 	symp = obj->symtab + symnum;
4139 	strp = obj->strtab + symp->st_name;
4140 
4141 	switch (ELF_ST_TYPE(symp->st_info)) {
4142 	case STT_FUNC:
4143 	case STT_NOTYPE:
4144 	case STT_OBJECT:
4145 	case STT_COMMON:
4146 	case STT_GNU_IFUNC:
4147 		if (symp->st_value == 0)
4148 			return (false);
4149 		/* fallthrough */
4150 	case STT_TLS:
4151 		if (symp->st_shndx != SHN_UNDEF)
4152 			break;
4153 #ifndef __mips__
4154 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4155 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4156 			break;
4157 		/* fallthrough */
4158 #endif
4159 	default:
4160 		return (false);
4161 	}
4162 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4163 		return (false);
4164 
4165 	if (req->ventry == NULL) {
4166 		if (obj->versyms != NULL) {
4167 			verndx = VER_NDX(obj->versyms[symnum]);
4168 			if (verndx > obj->vernum) {
4169 				_rtld_error(
4170 				    "%s: symbol %s references wrong version %d",
4171 				    obj->path, obj->strtab + symnum, verndx);
4172 				return (false);
4173 			}
4174 			/*
4175 			 * If we are not called from dlsym (i.e. this
4176 			 * is a normal relocation from unversioned
4177 			 * binary), accept the symbol immediately if
4178 			 * it happens to have first version after this
4179 			 * shared object became versioned.  Otherwise,
4180 			 * if symbol is versioned and not hidden,
4181 			 * remember it. If it is the only symbol with
4182 			 * this name exported by the shared object, it
4183 			 * will be returned as a match by the calling
4184 			 * function. If symbol is global (verndx < 2)
4185 			 * accept it unconditionally.
4186 			 */
4187 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4188 			    verndx == VER_NDX_GIVEN) {
4189 				result->sym_out = symp;
4190 				return (true);
4191 			}
4192 			else if (verndx >= VER_NDX_GIVEN) {
4193 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4194 				    == 0) {
4195 					if (result->vsymp == NULL)
4196 						result->vsymp = symp;
4197 					result->vcount++;
4198 				}
4199 				return (false);
4200 			}
4201 		}
4202 		result->sym_out = symp;
4203 		return (true);
4204 	}
4205 	if (obj->versyms == NULL) {
4206 		if (object_match_name(obj, req->ventry->name)) {
4207 			_rtld_error("%s: object %s should provide version %s "
4208 			    "for symbol %s", obj_rtld.path, obj->path,
4209 			    req->ventry->name, obj->strtab + symnum);
4210 			return (false);
4211 		}
4212 	} else {
4213 		verndx = VER_NDX(obj->versyms[symnum]);
4214 		if (verndx > obj->vernum) {
4215 			_rtld_error("%s: symbol %s references wrong version %d",
4216 			    obj->path, obj->strtab + symnum, verndx);
4217 			return (false);
4218 		}
4219 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4220 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4221 			/*
4222 			 * Version does not match. Look if this is a
4223 			 * global symbol and if it is not hidden. If
4224 			 * global symbol (verndx < 2) is available,
4225 			 * use it. Do not return symbol if we are
4226 			 * called by dlvsym, because dlvsym looks for
4227 			 * a specific version and default one is not
4228 			 * what dlvsym wants.
4229 			 */
4230 			if ((req->flags & SYMLOOK_DLSYM) ||
4231 			    (verndx >= VER_NDX_GIVEN) ||
4232 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4233 				return (false);
4234 		}
4235 	}
4236 	result->sym_out = symp;
4237 	return (true);
4238 }
4239 
4240 /*
4241  * Search for symbol using SysV hash function.
4242  * obj->buckets is known not to be NULL at this point; the test for this was
4243  * performed with the obj->valid_hash_sysv assignment.
4244  */
4245 static int
4246 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4247 {
4248 	unsigned long symnum;
4249 	Sym_Match_Result matchres;
4250 
4251 	matchres.sym_out = NULL;
4252 	matchres.vsymp = NULL;
4253 	matchres.vcount = 0;
4254 
4255 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4256 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4257 		if (symnum >= obj->nchains)
4258 			return (ESRCH);	/* Bad object */
4259 
4260 		if (matched_symbol(req, obj, &matchres, symnum)) {
4261 			req->sym_out = matchres.sym_out;
4262 			req->defobj_out = obj;
4263 			return (0);
4264 		}
4265 	}
4266 	if (matchres.vcount == 1) {
4267 		req->sym_out = matchres.vsymp;
4268 		req->defobj_out = obj;
4269 		return (0);
4270 	}
4271 	return (ESRCH);
4272 }
4273 
4274 /* Search for symbol using GNU hash function */
4275 static int
4276 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4277 {
4278 	Elf_Addr bloom_word;
4279 	const Elf32_Word *hashval;
4280 	Elf32_Word bucket;
4281 	Sym_Match_Result matchres;
4282 	unsigned int h1, h2;
4283 	unsigned long symnum;
4284 
4285 	matchres.sym_out = NULL;
4286 	matchres.vsymp = NULL;
4287 	matchres.vcount = 0;
4288 
4289 	/* Pick right bitmask word from Bloom filter array */
4290 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4291 	    obj->maskwords_bm_gnu];
4292 
4293 	/* Calculate modulus word size of gnu hash and its derivative */
4294 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4295 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4296 
4297 	/* Filter out the "definitely not in set" queries */
4298 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4299 		return (ESRCH);
4300 
4301 	/* Locate hash chain and corresponding value element*/
4302 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4303 	if (bucket == 0)
4304 		return (ESRCH);
4305 	hashval = &obj->chain_zero_gnu[bucket];
4306 	do {
4307 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4308 			symnum = hashval - obj->chain_zero_gnu;
4309 			if (matched_symbol(req, obj, &matchres, symnum)) {
4310 				req->sym_out = matchres.sym_out;
4311 				req->defobj_out = obj;
4312 				return (0);
4313 			}
4314 		}
4315 	} while ((*hashval++ & 1) == 0);
4316 	if (matchres.vcount == 1) {
4317 		req->sym_out = matchres.vsymp;
4318 		req->defobj_out = obj;
4319 		return (0);
4320 	}
4321 	return (ESRCH);
4322 }
4323 
4324 static void
4325 trace_loaded_objects(Obj_Entry *obj)
4326 {
4327     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4328     int		c;
4329 
4330     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4331 	main_local = "";
4332 
4333     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4334 	fmt1 = "\t%o => %p (%x)\n";
4335 
4336     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4337 	fmt2 = "\t%o (%x)\n";
4338 
4339     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4340 
4341     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4342 	Needed_Entry		*needed;
4343 	char			*name, *path;
4344 	bool			is_lib;
4345 
4346 	if (obj->marker)
4347 	    continue;
4348 	if (list_containers && obj->needed != NULL)
4349 	    rtld_printf("%s:\n", obj->path);
4350 	for (needed = obj->needed; needed; needed = needed->next) {
4351 	    if (needed->obj != NULL) {
4352 		if (needed->obj->traced && !list_containers)
4353 		    continue;
4354 		needed->obj->traced = true;
4355 		path = needed->obj->path;
4356 	    } else
4357 		path = "not found";
4358 
4359 	    name = (char *)obj->strtab + needed->name;
4360 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4361 
4362 	    fmt = is_lib ? fmt1 : fmt2;
4363 	    while ((c = *fmt++) != '\0') {
4364 		switch (c) {
4365 		default:
4366 		    rtld_putchar(c);
4367 		    continue;
4368 		case '\\':
4369 		    switch (c = *fmt) {
4370 		    case '\0':
4371 			continue;
4372 		    case 'n':
4373 			rtld_putchar('\n');
4374 			break;
4375 		    case 't':
4376 			rtld_putchar('\t');
4377 			break;
4378 		    }
4379 		    break;
4380 		case '%':
4381 		    switch (c = *fmt) {
4382 		    case '\0':
4383 			continue;
4384 		    case '%':
4385 		    default:
4386 			rtld_putchar(c);
4387 			break;
4388 		    case 'A':
4389 			rtld_putstr(main_local);
4390 			break;
4391 		    case 'a':
4392 			rtld_putstr(obj_main->path);
4393 			break;
4394 		    case 'o':
4395 			rtld_putstr(name);
4396 			break;
4397 #if 0
4398 		    case 'm':
4399 			rtld_printf("%d", sodp->sod_major);
4400 			break;
4401 		    case 'n':
4402 			rtld_printf("%d", sodp->sod_minor);
4403 			break;
4404 #endif
4405 		    case 'p':
4406 			rtld_putstr(path);
4407 			break;
4408 		    case 'x':
4409 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4410 			  0);
4411 			break;
4412 		    }
4413 		    break;
4414 		}
4415 		++fmt;
4416 	    }
4417 	}
4418     }
4419 }
4420 
4421 /*
4422  * Unload a dlopened object and its dependencies from memory and from
4423  * our data structures.  It is assumed that the DAG rooted in the
4424  * object has already been unreferenced, and that the object has a
4425  * reference count of 0.
4426  */
4427 static void
4428 unload_object(Obj_Entry *root)
4429 {
4430 	Obj_Entry marker, *obj, *next;
4431 
4432 	assert(root->refcount == 0);
4433 
4434 	/*
4435 	 * Pass over the DAG removing unreferenced objects from
4436 	 * appropriate lists.
4437 	 */
4438 	unlink_object(root);
4439 
4440 	/* Unmap all objects that are no longer referenced. */
4441 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4442 		next = TAILQ_NEXT(obj, next);
4443 		if (obj->marker || obj->refcount != 0)
4444 			continue;
4445 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4446 		    obj->mapsize, 0, obj->path);
4447 		dbg("unloading \"%s\"", obj->path);
4448 		/*
4449 		 * Unlink the object now to prevent new references from
4450 		 * being acquired while the bind lock is dropped in
4451 		 * recursive dlclose() invocations.
4452 		 */
4453 		TAILQ_REMOVE(&obj_list, obj, next);
4454 		obj_count--;
4455 
4456 		if (obj->filtees_loaded) {
4457 			if (next != NULL) {
4458 				init_marker(&marker);
4459 				TAILQ_INSERT_BEFORE(next, &marker, next);
4460 				unload_filtees(obj);
4461 				next = TAILQ_NEXT(&marker, next);
4462 				TAILQ_REMOVE(&obj_list, &marker, next);
4463 			} else
4464 				unload_filtees(obj);
4465 		}
4466 		release_object(obj);
4467 	}
4468 }
4469 
4470 static void
4471 unlink_object(Obj_Entry *root)
4472 {
4473     Objlist_Entry *elm;
4474 
4475     if (root->refcount == 0) {
4476 	/* Remove the object from the RTLD_GLOBAL list. */
4477 	objlist_remove(&list_global, root);
4478 
4479     	/* Remove the object from all objects' DAG lists. */
4480     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4481 	    objlist_remove(&elm->obj->dldags, root);
4482 	    if (elm->obj != root)
4483 		unlink_object(elm->obj);
4484 	}
4485     }
4486 }
4487 
4488 static void
4489 ref_dag(Obj_Entry *root)
4490 {
4491     Objlist_Entry *elm;
4492 
4493     assert(root->dag_inited);
4494     STAILQ_FOREACH(elm, &root->dagmembers, link)
4495 	elm->obj->refcount++;
4496 }
4497 
4498 static void
4499 unref_dag(Obj_Entry *root)
4500 {
4501     Objlist_Entry *elm;
4502 
4503     assert(root->dag_inited);
4504     STAILQ_FOREACH(elm, &root->dagmembers, link)
4505 	elm->obj->refcount--;
4506 }
4507 
4508 /*
4509  * Common code for MD __tls_get_addr().
4510  */
4511 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4512 static void *
4513 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4514 {
4515     Elf_Addr *newdtv, *dtv;
4516     RtldLockState lockstate;
4517     int to_copy;
4518 
4519     dtv = *dtvp;
4520     /* Check dtv generation in case new modules have arrived */
4521     if (dtv[0] != tls_dtv_generation) {
4522 	wlock_acquire(rtld_bind_lock, &lockstate);
4523 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4524 	to_copy = dtv[1];
4525 	if (to_copy > tls_max_index)
4526 	    to_copy = tls_max_index;
4527 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4528 	newdtv[0] = tls_dtv_generation;
4529 	newdtv[1] = tls_max_index;
4530 	free(dtv);
4531 	lock_release(rtld_bind_lock, &lockstate);
4532 	dtv = *dtvp = newdtv;
4533     }
4534 
4535     /* Dynamically allocate module TLS if necessary */
4536     if (dtv[index + 1] == 0) {
4537 	/* Signal safe, wlock will block out signals. */
4538 	wlock_acquire(rtld_bind_lock, &lockstate);
4539 	if (!dtv[index + 1])
4540 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4541 	lock_release(rtld_bind_lock, &lockstate);
4542     }
4543     return ((void *)(dtv[index + 1] + offset));
4544 }
4545 
4546 void *
4547 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4548 {
4549 	Elf_Addr *dtv;
4550 
4551 	dtv = *dtvp;
4552 	/* Check dtv generation in case new modules have arrived */
4553 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4554 	    dtv[index + 1] != 0))
4555 		return ((void *)(dtv[index + 1] + offset));
4556 	return (tls_get_addr_slow(dtvp, index, offset));
4557 }
4558 
4559 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4560     defined(__powerpc__) || defined(__riscv__)
4561 
4562 /*
4563  * Allocate Static TLS using the Variant I method.
4564  */
4565 void *
4566 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4567 {
4568     Obj_Entry *obj;
4569     char *tcb;
4570     Elf_Addr **tls;
4571     Elf_Addr *dtv;
4572     Elf_Addr addr;
4573     int i;
4574 
4575     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4576 	return (oldtcb);
4577 
4578     assert(tcbsize >= TLS_TCB_SIZE);
4579     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4580     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4581 
4582     if (oldtcb != NULL) {
4583 	memcpy(tls, oldtcb, tls_static_space);
4584 	free(oldtcb);
4585 
4586 	/* Adjust the DTV. */
4587 	dtv = tls[0];
4588 	for (i = 0; i < dtv[1]; i++) {
4589 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4590 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4591 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4592 	    }
4593 	}
4594     } else {
4595 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4596 	tls[0] = dtv;
4597 	dtv[0] = tls_dtv_generation;
4598 	dtv[1] = tls_max_index;
4599 
4600 	for (obj = globallist_curr(objs); obj != NULL;
4601 	  obj = globallist_next(obj)) {
4602 	    if (obj->tlsoffset > 0) {
4603 		addr = (Elf_Addr)tls + obj->tlsoffset;
4604 		if (obj->tlsinitsize > 0)
4605 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4606 		if (obj->tlssize > obj->tlsinitsize)
4607 		    memset((void*) (addr + obj->tlsinitsize), 0,
4608 			   obj->tlssize - obj->tlsinitsize);
4609 		dtv[obj->tlsindex + 1] = addr;
4610 	    }
4611 	}
4612     }
4613 
4614     return (tcb);
4615 }
4616 
4617 void
4618 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4619 {
4620     Elf_Addr *dtv;
4621     Elf_Addr tlsstart, tlsend;
4622     int dtvsize, i;
4623 
4624     assert(tcbsize >= TLS_TCB_SIZE);
4625 
4626     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4627     tlsend = tlsstart + tls_static_space;
4628 
4629     dtv = *(Elf_Addr **)tlsstart;
4630     dtvsize = dtv[1];
4631     for (i = 0; i < dtvsize; i++) {
4632 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4633 	    free((void*)dtv[i+2]);
4634 	}
4635     }
4636     free(dtv);
4637     free(tcb);
4638 }
4639 
4640 #endif
4641 
4642 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4643 
4644 /*
4645  * Allocate Static TLS using the Variant II method.
4646  */
4647 void *
4648 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4649 {
4650     Obj_Entry *obj;
4651     size_t size, ralign;
4652     char *tls;
4653     Elf_Addr *dtv, *olddtv;
4654     Elf_Addr segbase, oldsegbase, addr;
4655     int i;
4656 
4657     ralign = tcbalign;
4658     if (tls_static_max_align > ralign)
4659 	    ralign = tls_static_max_align;
4660     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4661 
4662     assert(tcbsize >= 2*sizeof(Elf_Addr));
4663     tls = malloc_aligned(size, ralign);
4664     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4665 
4666     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4667     ((Elf_Addr*)segbase)[0] = segbase;
4668     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4669 
4670     dtv[0] = tls_dtv_generation;
4671     dtv[1] = tls_max_index;
4672 
4673     if (oldtls) {
4674 	/*
4675 	 * Copy the static TLS block over whole.
4676 	 */
4677 	oldsegbase = (Elf_Addr) oldtls;
4678 	memcpy((void *)(segbase - tls_static_space),
4679 	       (const void *)(oldsegbase - tls_static_space),
4680 	       tls_static_space);
4681 
4682 	/*
4683 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4684 	 * move them over.
4685 	 */
4686 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4687 	for (i = 0; i < olddtv[1]; i++) {
4688 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4689 		dtv[i+2] = olddtv[i+2];
4690 		olddtv[i+2] = 0;
4691 	    }
4692 	}
4693 
4694 	/*
4695 	 * We assume that this block was the one we created with
4696 	 * allocate_initial_tls().
4697 	 */
4698 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4699     } else {
4700 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4701 		if (obj->marker || obj->tlsoffset == 0)
4702 			continue;
4703 		addr = segbase - obj->tlsoffset;
4704 		memset((void*) (addr + obj->tlsinitsize),
4705 		       0, obj->tlssize - obj->tlsinitsize);
4706 		if (obj->tlsinit)
4707 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4708 		dtv[obj->tlsindex + 1] = addr;
4709 	}
4710     }
4711 
4712     return (void*) segbase;
4713 }
4714 
4715 void
4716 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4717 {
4718     Elf_Addr* dtv;
4719     size_t size, ralign;
4720     int dtvsize, i;
4721     Elf_Addr tlsstart, tlsend;
4722 
4723     /*
4724      * Figure out the size of the initial TLS block so that we can
4725      * find stuff which ___tls_get_addr() allocated dynamically.
4726      */
4727     ralign = tcbalign;
4728     if (tls_static_max_align > ralign)
4729 	    ralign = tls_static_max_align;
4730     size = round(tls_static_space, ralign);
4731 
4732     dtv = ((Elf_Addr**)tls)[1];
4733     dtvsize = dtv[1];
4734     tlsend = (Elf_Addr) tls;
4735     tlsstart = tlsend - size;
4736     for (i = 0; i < dtvsize; i++) {
4737 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4738 		free_aligned((void *)dtv[i + 2]);
4739 	}
4740     }
4741 
4742     free_aligned((void *)tlsstart);
4743     free((void*) dtv);
4744 }
4745 
4746 #endif
4747 
4748 /*
4749  * Allocate TLS block for module with given index.
4750  */
4751 void *
4752 allocate_module_tls(int index)
4753 {
4754     Obj_Entry* obj;
4755     char* p;
4756 
4757     TAILQ_FOREACH(obj, &obj_list, next) {
4758 	if (obj->marker)
4759 	    continue;
4760 	if (obj->tlsindex == index)
4761 	    break;
4762     }
4763     if (!obj) {
4764 	_rtld_error("Can't find module with TLS index %d", index);
4765 	rtld_die();
4766     }
4767 
4768     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4769     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4770     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4771 
4772     return p;
4773 }
4774 
4775 bool
4776 allocate_tls_offset(Obj_Entry *obj)
4777 {
4778     size_t off;
4779 
4780     if (obj->tls_done)
4781 	return true;
4782 
4783     if (obj->tlssize == 0) {
4784 	obj->tls_done = true;
4785 	return true;
4786     }
4787 
4788     if (tls_last_offset == 0)
4789 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4790     else
4791 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4792 				   obj->tlssize, obj->tlsalign);
4793 
4794     /*
4795      * If we have already fixed the size of the static TLS block, we
4796      * must stay within that size. When allocating the static TLS, we
4797      * leave a small amount of space spare to be used for dynamically
4798      * loading modules which use static TLS.
4799      */
4800     if (tls_static_space != 0) {
4801 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4802 	    return false;
4803     } else if (obj->tlsalign > tls_static_max_align) {
4804 	    tls_static_max_align = obj->tlsalign;
4805     }
4806 
4807     tls_last_offset = obj->tlsoffset = off;
4808     tls_last_size = obj->tlssize;
4809     obj->tls_done = true;
4810 
4811     return true;
4812 }
4813 
4814 void
4815 free_tls_offset(Obj_Entry *obj)
4816 {
4817 
4818     /*
4819      * If we were the last thing to allocate out of the static TLS
4820      * block, we give our space back to the 'allocator'. This is a
4821      * simplistic workaround to allow libGL.so.1 to be loaded and
4822      * unloaded multiple times.
4823      */
4824     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4825 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4826 	tls_last_offset -= obj->tlssize;
4827 	tls_last_size = 0;
4828     }
4829 }
4830 
4831 void *
4832 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4833 {
4834     void *ret;
4835     RtldLockState lockstate;
4836 
4837     wlock_acquire(rtld_bind_lock, &lockstate);
4838     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4839       tcbsize, tcbalign);
4840     lock_release(rtld_bind_lock, &lockstate);
4841     return (ret);
4842 }
4843 
4844 void
4845 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4846 {
4847     RtldLockState lockstate;
4848 
4849     wlock_acquire(rtld_bind_lock, &lockstate);
4850     free_tls(tcb, tcbsize, tcbalign);
4851     lock_release(rtld_bind_lock, &lockstate);
4852 }
4853 
4854 static void
4855 object_add_name(Obj_Entry *obj, const char *name)
4856 {
4857     Name_Entry *entry;
4858     size_t len;
4859 
4860     len = strlen(name);
4861     entry = malloc(sizeof(Name_Entry) + len);
4862 
4863     if (entry != NULL) {
4864 	strcpy(entry->name, name);
4865 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4866     }
4867 }
4868 
4869 static int
4870 object_match_name(const Obj_Entry *obj, const char *name)
4871 {
4872     Name_Entry *entry;
4873 
4874     STAILQ_FOREACH(entry, &obj->names, link) {
4875 	if (strcmp(name, entry->name) == 0)
4876 	    return (1);
4877     }
4878     return (0);
4879 }
4880 
4881 static Obj_Entry *
4882 locate_dependency(const Obj_Entry *obj, const char *name)
4883 {
4884     const Objlist_Entry *entry;
4885     const Needed_Entry *needed;
4886 
4887     STAILQ_FOREACH(entry, &list_main, link) {
4888 	if (object_match_name(entry->obj, name))
4889 	    return entry->obj;
4890     }
4891 
4892     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4893 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4894 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4895 	    /*
4896 	     * If there is DT_NEEDED for the name we are looking for,
4897 	     * we are all set.  Note that object might not be found if
4898 	     * dependency was not loaded yet, so the function can
4899 	     * return NULL here.  This is expected and handled
4900 	     * properly by the caller.
4901 	     */
4902 	    return (needed->obj);
4903 	}
4904     }
4905     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4906 	obj->path, name);
4907     rtld_die();
4908 }
4909 
4910 static int
4911 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4912     const Elf_Vernaux *vna)
4913 {
4914     const Elf_Verdef *vd;
4915     const char *vername;
4916 
4917     vername = refobj->strtab + vna->vna_name;
4918     vd = depobj->verdef;
4919     if (vd == NULL) {
4920 	_rtld_error("%s: version %s required by %s not defined",
4921 	    depobj->path, vername, refobj->path);
4922 	return (-1);
4923     }
4924     for (;;) {
4925 	if (vd->vd_version != VER_DEF_CURRENT) {
4926 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4927 		depobj->path, vd->vd_version);
4928 	    return (-1);
4929 	}
4930 	if (vna->vna_hash == vd->vd_hash) {
4931 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4932 		((char *)vd + vd->vd_aux);
4933 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4934 		return (0);
4935 	}
4936 	if (vd->vd_next == 0)
4937 	    break;
4938 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4939     }
4940     if (vna->vna_flags & VER_FLG_WEAK)
4941 	return (0);
4942     _rtld_error("%s: version %s required by %s not found",
4943 	depobj->path, vername, refobj->path);
4944     return (-1);
4945 }
4946 
4947 static int
4948 rtld_verify_object_versions(Obj_Entry *obj)
4949 {
4950     const Elf_Verneed *vn;
4951     const Elf_Verdef  *vd;
4952     const Elf_Verdaux *vda;
4953     const Elf_Vernaux *vna;
4954     const Obj_Entry *depobj;
4955     int maxvernum, vernum;
4956 
4957     if (obj->ver_checked)
4958 	return (0);
4959     obj->ver_checked = true;
4960 
4961     maxvernum = 0;
4962     /*
4963      * Walk over defined and required version records and figure out
4964      * max index used by any of them. Do very basic sanity checking
4965      * while there.
4966      */
4967     vn = obj->verneed;
4968     while (vn != NULL) {
4969 	if (vn->vn_version != VER_NEED_CURRENT) {
4970 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4971 		obj->path, vn->vn_version);
4972 	    return (-1);
4973 	}
4974 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4975 	for (;;) {
4976 	    vernum = VER_NEED_IDX(vna->vna_other);
4977 	    if (vernum > maxvernum)
4978 		maxvernum = vernum;
4979 	    if (vna->vna_next == 0)
4980 		 break;
4981 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4982 	}
4983 	if (vn->vn_next == 0)
4984 	    break;
4985 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4986     }
4987 
4988     vd = obj->verdef;
4989     while (vd != NULL) {
4990 	if (vd->vd_version != VER_DEF_CURRENT) {
4991 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4992 		obj->path, vd->vd_version);
4993 	    return (-1);
4994 	}
4995 	vernum = VER_DEF_IDX(vd->vd_ndx);
4996 	if (vernum > maxvernum)
4997 		maxvernum = vernum;
4998 	if (vd->vd_next == 0)
4999 	    break;
5000 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5001     }
5002 
5003     if (maxvernum == 0)
5004 	return (0);
5005 
5006     /*
5007      * Store version information in array indexable by version index.
5008      * Verify that object version requirements are satisfied along the
5009      * way.
5010      */
5011     obj->vernum = maxvernum + 1;
5012     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5013 
5014     vd = obj->verdef;
5015     while (vd != NULL) {
5016 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5017 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5018 	    assert(vernum <= maxvernum);
5019 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5020 	    obj->vertab[vernum].hash = vd->vd_hash;
5021 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5022 	    obj->vertab[vernum].file = NULL;
5023 	    obj->vertab[vernum].flags = 0;
5024 	}
5025 	if (vd->vd_next == 0)
5026 	    break;
5027 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5028     }
5029 
5030     vn = obj->verneed;
5031     while (vn != NULL) {
5032 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5033 	if (depobj == NULL)
5034 	    return (-1);
5035 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5036 	for (;;) {
5037 	    if (check_object_provided_version(obj, depobj, vna))
5038 		return (-1);
5039 	    vernum = VER_NEED_IDX(vna->vna_other);
5040 	    assert(vernum <= maxvernum);
5041 	    obj->vertab[vernum].hash = vna->vna_hash;
5042 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5043 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5044 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5045 		VER_INFO_HIDDEN : 0;
5046 	    if (vna->vna_next == 0)
5047 		 break;
5048 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5049 	}
5050 	if (vn->vn_next == 0)
5051 	    break;
5052 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5053     }
5054     return 0;
5055 }
5056 
5057 static int
5058 rtld_verify_versions(const Objlist *objlist)
5059 {
5060     Objlist_Entry *entry;
5061     int rc;
5062 
5063     rc = 0;
5064     STAILQ_FOREACH(entry, objlist, link) {
5065 	/*
5066 	 * Skip dummy objects or objects that have their version requirements
5067 	 * already checked.
5068 	 */
5069 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5070 	    continue;
5071 	if (rtld_verify_object_versions(entry->obj) == -1) {
5072 	    rc = -1;
5073 	    if (ld_tracing == NULL)
5074 		break;
5075 	}
5076     }
5077     if (rc == 0 || ld_tracing != NULL)
5078     	rc = rtld_verify_object_versions(&obj_rtld);
5079     return rc;
5080 }
5081 
5082 const Ver_Entry *
5083 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5084 {
5085     Elf_Versym vernum;
5086 
5087     if (obj->vertab) {
5088 	vernum = VER_NDX(obj->versyms[symnum]);
5089 	if (vernum >= obj->vernum) {
5090 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5091 		obj->path, obj->strtab + symnum, vernum);
5092 	} else if (obj->vertab[vernum].hash != 0) {
5093 	    return &obj->vertab[vernum];
5094 	}
5095     }
5096     return NULL;
5097 }
5098 
5099 int
5100 _rtld_get_stack_prot(void)
5101 {
5102 
5103 	return (stack_prot);
5104 }
5105 
5106 int
5107 _rtld_is_dlopened(void *arg)
5108 {
5109 	Obj_Entry *obj;
5110 	RtldLockState lockstate;
5111 	int res;
5112 
5113 	rlock_acquire(rtld_bind_lock, &lockstate);
5114 	obj = dlcheck(arg);
5115 	if (obj == NULL)
5116 		obj = obj_from_addr(arg);
5117 	if (obj == NULL) {
5118 		_rtld_error("No shared object contains address");
5119 		lock_release(rtld_bind_lock, &lockstate);
5120 		return (-1);
5121 	}
5122 	res = obj->dlopened ? 1 : 0;
5123 	lock_release(rtld_bind_lock, &lockstate);
5124 	return (res);
5125 }
5126 
5127 static void
5128 map_stacks_exec(RtldLockState *lockstate)
5129 {
5130 	void (*thr_map_stacks_exec)(void);
5131 
5132 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5133 		return;
5134 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5135 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5136 	if (thr_map_stacks_exec != NULL) {
5137 		stack_prot |= PROT_EXEC;
5138 		thr_map_stacks_exec();
5139 	}
5140 }
5141 
5142 void
5143 symlook_init(SymLook *dst, const char *name)
5144 {
5145 
5146 	bzero(dst, sizeof(*dst));
5147 	dst->name = name;
5148 	dst->hash = elf_hash(name);
5149 	dst->hash_gnu = gnu_hash(name);
5150 }
5151 
5152 static void
5153 symlook_init_from_req(SymLook *dst, const SymLook *src)
5154 {
5155 
5156 	dst->name = src->name;
5157 	dst->hash = src->hash;
5158 	dst->hash_gnu = src->hash_gnu;
5159 	dst->ventry = src->ventry;
5160 	dst->flags = src->flags;
5161 	dst->defobj_out = NULL;
5162 	dst->sym_out = NULL;
5163 	dst->lockstate = src->lockstate;
5164 }
5165 
5166 
5167 /*
5168  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5169  */
5170 static int
5171 parse_libdir(const char *str)
5172 {
5173 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5174 	const char *orig;
5175 	int fd;
5176 	char c;
5177 
5178 	orig = str;
5179 	fd = 0;
5180 	for (c = *str; c != '\0'; c = *++str) {
5181 		if (c < '0' || c > '9')
5182 			return (-1);
5183 
5184 		fd *= RADIX;
5185 		fd += c - '0';
5186 	}
5187 
5188 	/* Make sure we actually parsed something. */
5189 	if (str == orig) {
5190 		_rtld_error("failed to parse directory FD from '%s'", str);
5191 		return (-1);
5192 	}
5193 	return (fd);
5194 }
5195 
5196 /*
5197  * Overrides for libc_pic-provided functions.
5198  */
5199 
5200 int
5201 __getosreldate(void)
5202 {
5203 	size_t len;
5204 	int oid[2];
5205 	int error, osrel;
5206 
5207 	if (osreldate != 0)
5208 		return (osreldate);
5209 
5210 	oid[0] = CTL_KERN;
5211 	oid[1] = KERN_OSRELDATE;
5212 	osrel = 0;
5213 	len = sizeof(osrel);
5214 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5215 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5216 		osreldate = osrel;
5217 	return (osreldate);
5218 }
5219 
5220 void
5221 exit(int status)
5222 {
5223 
5224 	_exit(status);
5225 }
5226 
5227 void (*__cleanup)(void);
5228 int __isthreaded = 0;
5229 int _thread_autoinit_dummy_decl = 1;
5230 
5231 /*
5232  * No unresolved symbols for rtld.
5233  */
5234 void
5235 __pthread_cxa_finalize(struct dl_phdr_info *a)
5236 {
5237 }
5238 
5239 void
5240 __stack_chk_fail(void)
5241 {
5242 
5243 	_rtld_error("stack overflow detected; terminated");
5244 	rtld_die();
5245 }
5246 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5247 
5248 void
5249 __chk_fail(void)
5250 {
5251 
5252 	_rtld_error("buffer overflow detected; terminated");
5253 	rtld_die();
5254 }
5255 
5256 const char *
5257 rtld_strerror(int errnum)
5258 {
5259 
5260 	if (errnum < 0 || errnum >= sys_nerr)
5261 		return ("Unknown error");
5262 	return (sys_errlist[errnum]);
5263 }
5264