xref: /freebsd/libexec/rtld-elf/rtld.c (revision 8f63fa78e84afd23fa68c82eabfe64763c92d4f5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void errmsg_restore(struct dlerror_save *);
108 static struct dlerror_save *errmsg_save(void);
109 static void *fill_search_info(const char *, size_t, void *);
110 static char *find_library(const char *, const Obj_Entry *, int *);
111 static const char *gethints(bool);
112 static void hold_object(Obj_Entry *);
113 static void unhold_object(Obj_Entry *);
114 static void init_dag(Obj_Entry *);
115 static void init_marker(Obj_Entry *);
116 static void init_pagesizes(Elf_Auxinfo **aux_info);
117 static void init_rtld(caddr_t, Elf_Auxinfo **);
118 static void initlist_add_neededs(Needed_Entry *, Objlist *);
119 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
120 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
121 static void linkmap_add(Obj_Entry *);
122 static void linkmap_delete(Obj_Entry *);
123 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
124 static void unload_filtees(Obj_Entry *, RtldLockState *);
125 static int load_needed_objects(Obj_Entry *, int);
126 static int load_preload_objects(char *, bool);
127 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
128 static void map_stacks_exec(RtldLockState *);
129 static int obj_disable_relro(Obj_Entry *);
130 static int obj_enforce_relro(Obj_Entry *);
131 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
132 static void objlist_call_init(Objlist *, RtldLockState *);
133 static void objlist_clear(Objlist *);
134 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
135 static void objlist_init(Objlist *);
136 static void objlist_push_head(Objlist *, Obj_Entry *);
137 static void objlist_push_tail(Objlist *, Obj_Entry *);
138 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
139 static void objlist_remove(Objlist *, Obj_Entry *);
140 static int open_binary_fd(const char *argv0, bool search_in_path,
141     const char **binpath_res);
142 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
143     const char **argv0);
144 static int parse_integer(const char *);
145 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
146 static void print_usage(const char *argv0);
147 static void release_object(Obj_Entry *);
148 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
149     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
150 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
151     int flags, RtldLockState *lockstate);
152 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
153     RtldLockState *);
154 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
155 static int rtld_dirname(const char *, char *);
156 static int rtld_dirname_abs(const char *, char *);
157 static void *rtld_dlopen(const char *name, int fd, int mode);
158 static void rtld_exit(void);
159 static void rtld_nop_exit(void);
160 static char *search_library_path(const char *, const char *, const char *,
161     int *);
162 static char *search_library_pathfds(const char *, const char *, int *);
163 static const void **get_program_var_addr(const char *, RtldLockState *);
164 static void set_program_var(const char *, const void *);
165 static int symlook_default(SymLook *, const Obj_Entry *refobj);
166 static int symlook_global(SymLook *, DoneList *);
167 static void symlook_init_from_req(SymLook *, const SymLook *);
168 static int symlook_list(SymLook *, const Objlist *, DoneList *);
169 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
170 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
171 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
172 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
173 static void trace_loaded_objects(Obj_Entry *);
174 static void unlink_object(Obj_Entry *);
175 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
176 static void unref_dag(Obj_Entry *);
177 static void ref_dag(Obj_Entry *);
178 static char *origin_subst_one(Obj_Entry *, char *, const char *,
179     const char *, bool);
180 static char *origin_subst(Obj_Entry *, const char *);
181 static bool obj_resolve_origin(Obj_Entry *obj);
182 static void preinit_main(void);
183 static int  rtld_verify_versions(const Objlist *);
184 static int  rtld_verify_object_versions(Obj_Entry *);
185 static void object_add_name(Obj_Entry *, const char *);
186 static int  object_match_name(const Obj_Entry *, const char *);
187 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
188 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
189     struct dl_phdr_info *phdr_info);
190 static uint32_t gnu_hash(const char *);
191 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
192     const unsigned long);
193 
194 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
195 void _r_debug_postinit(struct link_map *) __noinline __exported;
196 
197 int __sys_openat(int, const char *, int, ...);
198 
199 /*
200  * Data declarations.
201  */
202 struct r_debug r_debug __exported;	/* for GDB; */
203 static bool libmap_disable;	/* Disable libmap */
204 static bool ld_loadfltr;	/* Immediate filters processing */
205 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
206 static bool trust;		/* False for setuid and setgid programs */
207 static bool dangerous_ld_env;	/* True if environment variables have been
208 				   used to affect the libraries loaded */
209 bool ld_bind_not;		/* Disable PLT update */
210 static char *ld_bind_now;	/* Environment variable for immediate binding */
211 static char *ld_debug;		/* Environment variable for debugging */
212 static char *ld_library_path;	/* Environment variable for search path */
213 static char *ld_library_dirs;	/* Environment variable for library descriptors */
214 static char *ld_preload;	/* Environment variable for libraries to
215 				   load first */
216 static char *ld_preload_fds;	/* Environment variable for libraries represented by
217 				   descriptors */
218 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
219 static const char *ld_tracing;	/* Called from ldd to print libs */
220 static char *ld_utrace;		/* Use utrace() to log events. */
221 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
222 static Obj_Entry *obj_main;	/* The main program shared object */
223 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
224 static unsigned int obj_count;	/* Number of objects in obj_list */
225 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
226 
227 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
228   STAILQ_HEAD_INITIALIZER(list_global);
229 static Objlist list_main =	/* Objects loaded at program startup */
230   STAILQ_HEAD_INITIALIZER(list_main);
231 static Objlist list_fini =	/* Objects needing fini() calls */
232   STAILQ_HEAD_INITIALIZER(list_fini);
233 
234 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
235 
236 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
237 
238 extern Elf_Dyn _DYNAMIC;
239 #pragma weak _DYNAMIC
240 
241 int dlclose(void *) __exported;
242 char *dlerror(void) __exported;
243 void *dlopen(const char *, int) __exported;
244 void *fdlopen(int, int) __exported;
245 void *dlsym(void *, const char *) __exported;
246 dlfunc_t dlfunc(void *, const char *) __exported;
247 void *dlvsym(void *, const char *, const char *) __exported;
248 int dladdr(const void *, Dl_info *) __exported;
249 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
250     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
251 int dlinfo(void *, int , void *) __exported;
252 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
253 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
254 int _rtld_get_stack_prot(void) __exported;
255 int _rtld_is_dlopened(void *) __exported;
256 void _rtld_error(const char *, ...) __exported;
257 
258 /* Only here to fix -Wmissing-prototypes warnings */
259 int __getosreldate(void);
260 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
261 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
262 
263 
264 int npagesizes;
265 static int osreldate;
266 size_t *pagesizes;
267 
268 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
269 static int max_stack_flags;
270 
271 /*
272  * Global declarations normally provided by crt1.  The dynamic linker is
273  * not built with crt1, so we have to provide them ourselves.
274  */
275 char *__progname;
276 char **environ;
277 
278 /*
279  * Used to pass argc, argv to init functions.
280  */
281 int main_argc;
282 char **main_argv;
283 
284 /*
285  * Globals to control TLS allocation.
286  */
287 size_t tls_last_offset;		/* Static TLS offset of last module */
288 size_t tls_last_size;		/* Static TLS size of last module */
289 size_t tls_static_space;	/* Static TLS space allocated */
290 static size_t tls_static_max_align;
291 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
292 int tls_max_index = 1;		/* Largest module index allocated */
293 
294 static bool ld_library_path_rpath = false;
295 bool ld_fast_sigblock = false;
296 
297 /*
298  * Globals for path names, and such
299  */
300 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
301 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
302 const char *ld_path_rtld = _PATH_RTLD;
303 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
304 const char *ld_env_prefix = LD_;
305 
306 static void (*rtld_exit_ptr)(void);
307 
308 /*
309  * Fill in a DoneList with an allocation large enough to hold all of
310  * the currently-loaded objects.  Keep this as a macro since it calls
311  * alloca and we want that to occur within the scope of the caller.
312  */
313 #define donelist_init(dlp)					\
314     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
315     assert((dlp)->objs != NULL),				\
316     (dlp)->num_alloc = obj_count,				\
317     (dlp)->num_used = 0)
318 
319 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
320 	if (ld_utrace != NULL)					\
321 		ld_utrace_log(e, h, mb, ms, r, n);		\
322 } while (0)
323 
324 static void
325 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
326     int refcnt, const char *name)
327 {
328 	struct utrace_rtld ut;
329 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
330 
331 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
332 	ut.event = event;
333 	ut.handle = handle;
334 	ut.mapbase = mapbase;
335 	ut.mapsize = mapsize;
336 	ut.refcnt = refcnt;
337 	bzero(ut.name, sizeof(ut.name));
338 	if (name)
339 		strlcpy(ut.name, name, sizeof(ut.name));
340 	utrace(&ut, sizeof(ut));
341 }
342 
343 #ifdef RTLD_VARIANT_ENV_NAMES
344 /*
345  * construct the env variable based on the type of binary that's
346  * running.
347  */
348 static inline const char *
349 _LD(const char *var)
350 {
351 	static char buffer[128];
352 
353 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
354 	strlcat(buffer, var, sizeof(buffer));
355 	return (buffer);
356 }
357 #else
358 #define _LD(x)	LD_ x
359 #endif
360 
361 /*
362  * Main entry point for dynamic linking.  The first argument is the
363  * stack pointer.  The stack is expected to be laid out as described
364  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
365  * Specifically, the stack pointer points to a word containing
366  * ARGC.  Following that in the stack is a null-terminated sequence
367  * of pointers to argument strings.  Then comes a null-terminated
368  * sequence of pointers to environment strings.  Finally, there is a
369  * sequence of "auxiliary vector" entries.
370  *
371  * The second argument points to a place to store the dynamic linker's
372  * exit procedure pointer and the third to a place to store the main
373  * program's object.
374  *
375  * The return value is the main program's entry point.
376  */
377 func_ptr_type
378 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
379 {
380     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
381     Objlist_Entry *entry;
382     Obj_Entry *last_interposer, *obj, *preload_tail;
383     const Elf_Phdr *phdr;
384     Objlist initlist;
385     RtldLockState lockstate;
386     struct stat st;
387     Elf_Addr *argcp;
388     char **argv, **env, **envp, *kexecpath, *library_path_rpath;
389     const char *argv0, *binpath;
390     caddr_t imgentry;
391     char buf[MAXPATHLEN];
392     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
393     size_t sz;
394 #ifdef __powerpc__
395     int old_auxv_format = 1;
396 #endif
397     bool dir_enable, direct_exec, explicit_fd, search_in_path;
398 
399     /*
400      * On entry, the dynamic linker itself has not been relocated yet.
401      * Be very careful not to reference any global data until after
402      * init_rtld has returned.  It is OK to reference file-scope statics
403      * and string constants, and to call static and global functions.
404      */
405 
406     /* Find the auxiliary vector on the stack. */
407     argcp = sp;
408     argc = *sp++;
409     argv = (char **) sp;
410     sp += argc + 1;	/* Skip over arguments and NULL terminator */
411     env = (char **) sp;
412     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
413 	;
414     aux = (Elf_Auxinfo *) sp;
415 
416     /* Digest the auxiliary vector. */
417     for (i = 0;  i < AT_COUNT;  i++)
418 	aux_info[i] = NULL;
419     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
420 	if (auxp->a_type < AT_COUNT)
421 	    aux_info[auxp->a_type] = auxp;
422 #ifdef __powerpc__
423 	if (auxp->a_type == 23) /* AT_STACKPROT */
424 	    old_auxv_format = 0;
425 #endif
426     }
427 
428 #ifdef __powerpc__
429     if (old_auxv_format) {
430 	/* Remap from old-style auxv numbers. */
431 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
432 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
433 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
434 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
435 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
436 	aux_info[13] = NULL;		/* AT_GID */
437 
438 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
439 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
440 	aux_info[16] = aux_info[14];	/* AT_CANARY */
441 	aux_info[14] = NULL;		/* AT_EGID */
442     }
443 #endif
444 
445     /* Initialize and relocate ourselves. */
446     assert(aux_info[AT_BASE] != NULL);
447     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
448 
449     dlerror_dflt_init();
450 
451     __progname = obj_rtld.path;
452     argv0 = argv[0] != NULL ? argv[0] : "(null)";
453     environ = env;
454     main_argc = argc;
455     main_argv = argv;
456 
457     if (aux_info[AT_BSDFLAGS] != NULL &&
458 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
459 	    ld_fast_sigblock = true;
460 
461     trust = !issetugid();
462     direct_exec = false;
463 
464     md_abi_variant_hook(aux_info);
465 
466     fd = -1;
467     if (aux_info[AT_EXECFD] != NULL) {
468 	fd = aux_info[AT_EXECFD]->a_un.a_val;
469     } else {
470 	assert(aux_info[AT_PHDR] != NULL);
471 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
472 	if (phdr == obj_rtld.phdr) {
473 	    if (!trust) {
474 		_rtld_error("Tainted process refusing to run binary %s",
475 		    argv0);
476 		rtld_die();
477 	    }
478 	    direct_exec = true;
479 
480 	    dbg("opening main program in direct exec mode");
481 	    if (argc >= 2) {
482 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd, &argv0);
483 		explicit_fd = (fd != -1);
484 		binpath = NULL;
485 		if (!explicit_fd)
486 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
487 		if (fstat(fd, &st) == -1) {
488 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
489 		      explicit_fd ? "user-provided descriptor" : argv0,
490 		      rtld_strerror(errno));
491 		    rtld_die();
492 		}
493 
494 		/*
495 		 * Rough emulation of the permission checks done by
496 		 * execve(2), only Unix DACs are checked, ACLs are
497 		 * ignored.  Preserve the semantic of disabling owner
498 		 * to execute if owner x bit is cleared, even if
499 		 * others x bit is enabled.
500 		 * mmap(2) does not allow to mmap with PROT_EXEC if
501 		 * binary' file comes from noexec mount.  We cannot
502 		 * set a text reference on the binary.
503 		 */
504 		dir_enable = false;
505 		if (st.st_uid == geteuid()) {
506 		    if ((st.st_mode & S_IXUSR) != 0)
507 			dir_enable = true;
508 		} else if (st.st_gid == getegid()) {
509 		    if ((st.st_mode & S_IXGRP) != 0)
510 			dir_enable = true;
511 		} else if ((st.st_mode & S_IXOTH) != 0) {
512 		    dir_enable = true;
513 		}
514 		if (!dir_enable) {
515 		    _rtld_error("No execute permission for binary %s",
516 		        argv0);
517 		    rtld_die();
518 		}
519 
520 		/*
521 		 * For direct exec mode, argv[0] is the interpreter
522 		 * name, we must remove it and shift arguments left
523 		 * before invoking binary main.  Since stack layout
524 		 * places environment pointers and aux vectors right
525 		 * after the terminating NULL, we must shift
526 		 * environment and aux as well.
527 		 */
528 		main_argc = argc - rtld_argc;
529 		for (i = 0; i <= main_argc; i++)
530 		    argv[i] = argv[i + rtld_argc];
531 		*argcp -= rtld_argc;
532 		environ = env = envp = argv + main_argc + 1;
533 		dbg("move env from %p to %p", envp + rtld_argc, envp);
534 		do {
535 		    *envp = *(envp + rtld_argc);
536 		}  while (*envp++ != NULL);
537 		aux = auxp = (Elf_Auxinfo *)envp;
538 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
539 		dbg("move aux from %p to %p", auxpf, aux);
540 		/* XXXKIB insert place for AT_EXECPATH if not present */
541 		for (;; auxp++, auxpf++) {
542 		    *auxp = *auxpf;
543 		    if (auxp->a_type == AT_NULL)
544 			    break;
545 		}
546 		/* Since the auxiliary vector has moved, redigest it. */
547 		for (i = 0;  i < AT_COUNT;  i++)
548 		    aux_info[i] = NULL;
549 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
550 		    if (auxp->a_type < AT_COUNT)
551 			aux_info[auxp->a_type] = auxp;
552 		}
553 
554 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
555 		if (binpath == NULL) {
556 		    aux_info[AT_EXECPATH] = NULL;
557 		} else {
558 		    if (aux_info[AT_EXECPATH] == NULL) {
559 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
560 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
561 		    }
562 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
563 		      binpath);
564 		}
565 	    } else {
566 		_rtld_error("No binary");
567 		rtld_die();
568 	    }
569 	}
570     }
571 
572     ld_bind_now = getenv(_LD("BIND_NOW"));
573 
574     /*
575      * If the process is tainted, then we un-set the dangerous environment
576      * variables.  The process will be marked as tainted until setuid(2)
577      * is called.  If any child process calls setuid(2) we do not want any
578      * future processes to honor the potentially un-safe variables.
579      */
580     if (!trust) {
581 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
582 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
583 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
584 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
585 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH")) ||
586 	    unsetenv(_LD("PRELOAD_FDS"))) {
587 		_rtld_error("environment corrupt; aborting");
588 		rtld_die();
589 	}
590     }
591     ld_debug = getenv(_LD("DEBUG"));
592     if (ld_bind_now == NULL)
593 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
594     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
595     libmap_override = getenv(_LD("LIBMAP"));
596     ld_library_path = getenv(_LD("LIBRARY_PATH"));
597     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
598     ld_preload = getenv(_LD("PRELOAD"));
599     ld_preload_fds = getenv(_LD("PRELOAD_FDS"));
600     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
601     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
602     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
603     if (library_path_rpath != NULL) {
604 	    if (library_path_rpath[0] == 'y' ||
605 		library_path_rpath[0] == 'Y' ||
606 		library_path_rpath[0] == '1')
607 		    ld_library_path_rpath = true;
608 	    else
609 		    ld_library_path_rpath = false;
610     }
611     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
612 	(ld_library_path != NULL) || (ld_preload != NULL) ||
613 	(ld_elf_hints_path != NULL) || ld_loadfltr;
614     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
615     ld_utrace = getenv(_LD("UTRACE"));
616 
617     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
618 	ld_elf_hints_path = ld_elf_hints_default;
619 
620     if (ld_debug != NULL && *ld_debug != '\0')
621 	debug = 1;
622     dbg("%s is initialized, base address = %p", __progname,
623 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
624     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
625     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
626 
627     dbg("initializing thread locks");
628     lockdflt_init();
629 
630     /*
631      * Load the main program, or process its program header if it is
632      * already loaded.
633      */
634     if (fd != -1) {	/* Load the main program. */
635 	dbg("loading main program");
636 	obj_main = map_object(fd, argv0, NULL);
637 	close(fd);
638 	if (obj_main == NULL)
639 	    rtld_die();
640 	max_stack_flags = obj_main->stack_flags;
641     } else {				/* Main program already loaded. */
642 	dbg("processing main program's program header");
643 	assert(aux_info[AT_PHDR] != NULL);
644 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
645 	assert(aux_info[AT_PHNUM] != NULL);
646 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
647 	assert(aux_info[AT_PHENT] != NULL);
648 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
649 	assert(aux_info[AT_ENTRY] != NULL);
650 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
651 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
652 	    rtld_die();
653     }
654 
655     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
656 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
657 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
658 	    if (kexecpath[0] == '/')
659 		    obj_main->path = kexecpath;
660 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
661 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
662 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
663 		    obj_main->path = xstrdup(argv0);
664 	    else
665 		    obj_main->path = xstrdup(buf);
666     } else {
667 	    dbg("No AT_EXECPATH or direct exec");
668 	    obj_main->path = xstrdup(argv0);
669     }
670     dbg("obj_main path %s", obj_main->path);
671     obj_main->mainprog = true;
672 
673     if (aux_info[AT_STACKPROT] != NULL &&
674       aux_info[AT_STACKPROT]->a_un.a_val != 0)
675 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
676 
677 #ifndef COMPAT_32BIT
678     /*
679      * Get the actual dynamic linker pathname from the executable if
680      * possible.  (It should always be possible.)  That ensures that
681      * gdb will find the right dynamic linker even if a non-standard
682      * one is being used.
683      */
684     if (obj_main->interp != NULL &&
685       strcmp(obj_main->interp, obj_rtld.path) != 0) {
686 	free(obj_rtld.path);
687 	obj_rtld.path = xstrdup(obj_main->interp);
688         __progname = obj_rtld.path;
689     }
690 #endif
691 
692     if (!digest_dynamic(obj_main, 0))
693 	rtld_die();
694     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
695 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
696 	obj_main->dynsymcount);
697 
698     linkmap_add(obj_main);
699     linkmap_add(&obj_rtld);
700 
701     /* Link the main program into the list of objects. */
702     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
703     obj_count++;
704     obj_loads++;
705 
706     /* Initialize a fake symbol for resolving undefined weak references. */
707     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
708     sym_zero.st_shndx = SHN_UNDEF;
709     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
710 
711     if (!libmap_disable)
712         libmap_disable = (bool)lm_init(libmap_override);
713 
714     dbg("loading LD_PRELOAD_FDS libraries");
715     if (load_preload_objects(ld_preload_fds, true) == -1)
716 	rtld_die();
717 
718     dbg("loading LD_PRELOAD libraries");
719     if (load_preload_objects(ld_preload, false) == -1)
720 	rtld_die();
721     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
722 
723     dbg("loading needed objects");
724     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
725       0) == -1)
726 	rtld_die();
727 
728     /* Make a list of all objects loaded at startup. */
729     last_interposer = obj_main;
730     TAILQ_FOREACH(obj, &obj_list, next) {
731 	if (obj->marker)
732 	    continue;
733 	if (obj->z_interpose && obj != obj_main) {
734 	    objlist_put_after(&list_main, last_interposer, obj);
735 	    last_interposer = obj;
736 	} else {
737 	    objlist_push_tail(&list_main, obj);
738 	}
739     	obj->refcount++;
740     }
741 
742     dbg("checking for required versions");
743     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
744 	rtld_die();
745 
746     if (ld_tracing) {		/* We're done */
747 	trace_loaded_objects(obj_main);
748 	exit(0);
749     }
750 
751     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
752        dump_relocations(obj_main);
753        exit (0);
754     }
755 
756     /*
757      * Processing tls relocations requires having the tls offsets
758      * initialized.  Prepare offsets before starting initial
759      * relocation processing.
760      */
761     dbg("initializing initial thread local storage offsets");
762     STAILQ_FOREACH(entry, &list_main, link) {
763 	/*
764 	 * Allocate all the initial objects out of the static TLS
765 	 * block even if they didn't ask for it.
766 	 */
767 	allocate_tls_offset(entry->obj);
768     }
769 
770     if (relocate_objects(obj_main,
771       ld_bind_now != NULL && *ld_bind_now != '\0',
772       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
773 	rtld_die();
774 
775     dbg("doing copy relocations");
776     if (do_copy_relocations(obj_main) == -1)
777 	rtld_die();
778 
779     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
780        dump_relocations(obj_main);
781        exit (0);
782     }
783 
784     ifunc_init(aux);
785 
786     /*
787      * Setup TLS for main thread.  This must be done after the
788      * relocations are processed, since tls initialization section
789      * might be the subject for relocations.
790      */
791     dbg("initializing initial thread local storage");
792     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
793 
794     dbg("initializing key program variables");
795     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
796     set_program_var("environ", env);
797     set_program_var("__elf_aux_vector", aux);
798 
799     /* Make a list of init functions to call. */
800     objlist_init(&initlist);
801     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
802       preload_tail, &initlist);
803 
804     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
805 
806     map_stacks_exec(NULL);
807 
808     if (!obj_main->crt_no_init) {
809 	/*
810 	 * Make sure we don't call the main program's init and fini
811 	 * functions for binaries linked with old crt1 which calls
812 	 * _init itself.
813 	 */
814 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
815 	obj_main->preinit_array = obj_main->init_array =
816 	    obj_main->fini_array = (Elf_Addr)NULL;
817     }
818 
819     if (direct_exec) {
820 	/* Set osrel for direct-execed binary */
821 	mib[0] = CTL_KERN;
822 	mib[1] = KERN_PROC;
823 	mib[2] = KERN_PROC_OSREL;
824 	mib[3] = getpid();
825 	osrel = obj_main->osrel;
826 	sz = sizeof(old_osrel);
827 	dbg("setting osrel to %d", osrel);
828 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
829     }
830 
831     wlock_acquire(rtld_bind_lock, &lockstate);
832 
833     dbg("resolving ifuncs");
834     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
835       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
836 	rtld_die();
837 
838     rtld_exit_ptr = rtld_exit;
839     if (obj_main->crt_no_init)
840 	preinit_main();
841     objlist_call_init(&initlist, &lockstate);
842     _r_debug_postinit(&obj_main->linkmap);
843     objlist_clear(&initlist);
844     dbg("loading filtees");
845     TAILQ_FOREACH(obj, &obj_list, next) {
846 	if (obj->marker)
847 	    continue;
848 	if (ld_loadfltr || obj->z_loadfltr)
849 	    load_filtees(obj, 0, &lockstate);
850     }
851 
852     dbg("enforcing main obj relro");
853     if (obj_enforce_relro(obj_main) == -1)
854 	rtld_die();
855 
856     lock_release(rtld_bind_lock, &lockstate);
857 
858     dbg("transferring control to program entry point = %p", obj_main->entry);
859 
860     /* Return the exit procedure and the program entry point. */
861     *exit_proc = rtld_exit_ptr;
862     *objp = obj_main;
863     return (func_ptr_type) obj_main->entry;
864 }
865 
866 void *
867 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
868 {
869 	void *ptr;
870 	Elf_Addr target;
871 
872 	ptr = (void *)make_function_pointer(def, obj);
873 	target = call_ifunc_resolver(ptr);
874 	return ((void *)target);
875 }
876 
877 /*
878  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
879  * Changes to this function should be applied there as well.
880  */
881 Elf_Addr
882 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
883 {
884     const Elf_Rel *rel;
885     const Elf_Sym *def;
886     const Obj_Entry *defobj;
887     Elf_Addr *where;
888     Elf_Addr target;
889     RtldLockState lockstate;
890 
891     rlock_acquire(rtld_bind_lock, &lockstate);
892     if (sigsetjmp(lockstate.env, 0) != 0)
893 	    lock_upgrade(rtld_bind_lock, &lockstate);
894     if (obj->pltrel)
895 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
896     else
897 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
898 
899     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
900     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
901 	NULL, &lockstate);
902     if (def == NULL)
903 	rtld_die();
904     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
905 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
906     else
907 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
908 
909     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
910       defobj->strtab + def->st_name,
911       obj->path == NULL ? NULL : basename(obj->path),
912       (void *)target,
913       defobj->path == NULL ? NULL : basename(defobj->path));
914 
915     /*
916      * Write the new contents for the jmpslot. Note that depending on
917      * architecture, the value which we need to return back to the
918      * lazy binding trampoline may or may not be the target
919      * address. The value returned from reloc_jmpslot() is the value
920      * that the trampoline needs.
921      */
922     target = reloc_jmpslot(where, target, defobj, obj, rel);
923     lock_release(rtld_bind_lock, &lockstate);
924     return target;
925 }
926 
927 /*
928  * Error reporting function.  Use it like printf.  If formats the message
929  * into a buffer, and sets things up so that the next call to dlerror()
930  * will return the message.
931  */
932 void
933 _rtld_error(const char *fmt, ...)
934 {
935 	va_list ap;
936 
937 	va_start(ap, fmt);
938 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
939 	    fmt, ap);
940 	va_end(ap);
941 	*lockinfo.dlerror_seen() = 0;
942 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
943 }
944 
945 /*
946  * Return a dynamically-allocated copy of the current error message, if any.
947  */
948 static struct dlerror_save *
949 errmsg_save(void)
950 {
951 	struct dlerror_save *res;
952 
953 	res = xmalloc(sizeof(*res));
954 	res->seen = *lockinfo.dlerror_seen();
955 	if (res->seen == 0)
956 		res->msg = xstrdup(lockinfo.dlerror_loc());
957 	return (res);
958 }
959 
960 /*
961  * Restore the current error message from a copy which was previously saved
962  * by errmsg_save().  The copy is freed.
963  */
964 static void
965 errmsg_restore(struct dlerror_save *saved_msg)
966 {
967 	if (saved_msg == NULL || saved_msg->seen == 1) {
968 		*lockinfo.dlerror_seen() = 1;
969 	} else {
970 		*lockinfo.dlerror_seen() = 0;
971 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
972 		    lockinfo.dlerror_loc_sz);
973 		free(saved_msg->msg);
974 	}
975 	free(saved_msg);
976 }
977 
978 static const char *
979 basename(const char *name)
980 {
981     const char *p = strrchr(name, '/');
982     return p != NULL ? p + 1 : name;
983 }
984 
985 static struct utsname uts;
986 
987 static char *
988 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
989     const char *subst, bool may_free)
990 {
991 	char *p, *p1, *res, *resp;
992 	int subst_len, kw_len, subst_count, old_len, new_len;
993 
994 	kw_len = strlen(kw);
995 
996 	/*
997 	 * First, count the number of the keyword occurrences, to
998 	 * preallocate the final string.
999 	 */
1000 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1001 		p1 = strstr(p, kw);
1002 		if (p1 == NULL)
1003 			break;
1004 	}
1005 
1006 	/*
1007 	 * If the keyword is not found, just return.
1008 	 *
1009 	 * Return non-substituted string if resolution failed.  We
1010 	 * cannot do anything more reasonable, the failure mode of the
1011 	 * caller is unresolved library anyway.
1012 	 */
1013 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1014 		return (may_free ? real : xstrdup(real));
1015 	if (obj != NULL)
1016 		subst = obj->origin_path;
1017 
1018 	/*
1019 	 * There is indeed something to substitute.  Calculate the
1020 	 * length of the resulting string, and allocate it.
1021 	 */
1022 	subst_len = strlen(subst);
1023 	old_len = strlen(real);
1024 	new_len = old_len + (subst_len - kw_len) * subst_count;
1025 	res = xmalloc(new_len + 1);
1026 
1027 	/*
1028 	 * Now, execute the substitution loop.
1029 	 */
1030 	for (p = real, resp = res, *resp = '\0';;) {
1031 		p1 = strstr(p, kw);
1032 		if (p1 != NULL) {
1033 			/* Copy the prefix before keyword. */
1034 			memcpy(resp, p, p1 - p);
1035 			resp += p1 - p;
1036 			/* Keyword replacement. */
1037 			memcpy(resp, subst, subst_len);
1038 			resp += subst_len;
1039 			*resp = '\0';
1040 			p = p1 + kw_len;
1041 		} else
1042 			break;
1043 	}
1044 
1045 	/* Copy to the end of string and finish. */
1046 	strcat(resp, p);
1047 	if (may_free)
1048 		free(real);
1049 	return (res);
1050 }
1051 
1052 static char *
1053 origin_subst(Obj_Entry *obj, const char *real)
1054 {
1055 	char *res1, *res2, *res3, *res4;
1056 
1057 	if (obj == NULL || !trust)
1058 		return (xstrdup(real));
1059 	if (uts.sysname[0] == '\0') {
1060 		if (uname(&uts) != 0) {
1061 			_rtld_error("utsname failed: %d", errno);
1062 			return (NULL);
1063 		}
1064 	}
1065 	/* __DECONST is safe here since without may_free real is unchanged */
1066 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1067 	    false);
1068 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1069 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1070 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1071 	return (res4);
1072 }
1073 
1074 void
1075 rtld_die(void)
1076 {
1077     const char *msg = dlerror();
1078 
1079     if (msg == NULL)
1080 	msg = "Fatal error";
1081     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1082     rtld_fdputstr(STDERR_FILENO, msg);
1083     rtld_fdputchar(STDERR_FILENO, '\n');
1084     _exit(1);
1085 }
1086 
1087 /*
1088  * Process a shared object's DYNAMIC section, and save the important
1089  * information in its Obj_Entry structure.
1090  */
1091 static void
1092 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1093     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1094 {
1095     const Elf_Dyn *dynp;
1096     Needed_Entry **needed_tail = &obj->needed;
1097     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1098     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1099     const Elf_Hashelt *hashtab;
1100     const Elf32_Word *hashval;
1101     Elf32_Word bkt, nmaskwords;
1102     int bloom_size32;
1103     int plttype = DT_REL;
1104 
1105     *dyn_rpath = NULL;
1106     *dyn_soname = NULL;
1107     *dyn_runpath = NULL;
1108 
1109     obj->bind_now = false;
1110     dynp = obj->dynamic;
1111     if (dynp == NULL)
1112 	return;
1113     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1114 	switch (dynp->d_tag) {
1115 
1116 	case DT_REL:
1117 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1118 	    break;
1119 
1120 	case DT_RELSZ:
1121 	    obj->relsize = dynp->d_un.d_val;
1122 	    break;
1123 
1124 	case DT_RELENT:
1125 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1126 	    break;
1127 
1128 	case DT_JMPREL:
1129 	    obj->pltrel = (const Elf_Rel *)
1130 	      (obj->relocbase + dynp->d_un.d_ptr);
1131 	    break;
1132 
1133 	case DT_PLTRELSZ:
1134 	    obj->pltrelsize = dynp->d_un.d_val;
1135 	    break;
1136 
1137 	case DT_RELA:
1138 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1139 	    break;
1140 
1141 	case DT_RELASZ:
1142 	    obj->relasize = dynp->d_un.d_val;
1143 	    break;
1144 
1145 	case DT_RELAENT:
1146 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1147 	    break;
1148 
1149 	case DT_PLTREL:
1150 	    plttype = dynp->d_un.d_val;
1151 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1152 	    break;
1153 
1154 	case DT_SYMTAB:
1155 	    obj->symtab = (const Elf_Sym *)
1156 	      (obj->relocbase + dynp->d_un.d_ptr);
1157 	    break;
1158 
1159 	case DT_SYMENT:
1160 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1161 	    break;
1162 
1163 	case DT_STRTAB:
1164 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1165 	    break;
1166 
1167 	case DT_STRSZ:
1168 	    obj->strsize = dynp->d_un.d_val;
1169 	    break;
1170 
1171 	case DT_VERNEED:
1172 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1173 		dynp->d_un.d_val);
1174 	    break;
1175 
1176 	case DT_VERNEEDNUM:
1177 	    obj->verneednum = dynp->d_un.d_val;
1178 	    break;
1179 
1180 	case DT_VERDEF:
1181 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1182 		dynp->d_un.d_val);
1183 	    break;
1184 
1185 	case DT_VERDEFNUM:
1186 	    obj->verdefnum = dynp->d_un.d_val;
1187 	    break;
1188 
1189 	case DT_VERSYM:
1190 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1191 		dynp->d_un.d_val);
1192 	    break;
1193 
1194 	case DT_HASH:
1195 	    {
1196 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1197 		    dynp->d_un.d_ptr);
1198 		obj->nbuckets = hashtab[0];
1199 		obj->nchains = hashtab[1];
1200 		obj->buckets = hashtab + 2;
1201 		obj->chains = obj->buckets + obj->nbuckets;
1202 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1203 		  obj->buckets != NULL;
1204 	    }
1205 	    break;
1206 
1207 	case DT_GNU_HASH:
1208 	    {
1209 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1210 		    dynp->d_un.d_ptr);
1211 		obj->nbuckets_gnu = hashtab[0];
1212 		obj->symndx_gnu = hashtab[1];
1213 		nmaskwords = hashtab[2];
1214 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1215 		obj->maskwords_bm_gnu = nmaskwords - 1;
1216 		obj->shift2_gnu = hashtab[3];
1217 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1218 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1219 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1220 		  obj->symndx_gnu;
1221 		/* Number of bitmask words is required to be power of 2 */
1222 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1223 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1224 	    }
1225 	    break;
1226 
1227 	case DT_NEEDED:
1228 	    if (!obj->rtld) {
1229 		Needed_Entry *nep = NEW(Needed_Entry);
1230 		nep->name = dynp->d_un.d_val;
1231 		nep->obj = NULL;
1232 		nep->next = NULL;
1233 
1234 		*needed_tail = nep;
1235 		needed_tail = &nep->next;
1236 	    }
1237 	    break;
1238 
1239 	case DT_FILTER:
1240 	    if (!obj->rtld) {
1241 		Needed_Entry *nep = NEW(Needed_Entry);
1242 		nep->name = dynp->d_un.d_val;
1243 		nep->obj = NULL;
1244 		nep->next = NULL;
1245 
1246 		*needed_filtees_tail = nep;
1247 		needed_filtees_tail = &nep->next;
1248 
1249 		if (obj->linkmap.l_refname == NULL)
1250 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1251 	    }
1252 	    break;
1253 
1254 	case DT_AUXILIARY:
1255 	    if (!obj->rtld) {
1256 		Needed_Entry *nep = NEW(Needed_Entry);
1257 		nep->name = dynp->d_un.d_val;
1258 		nep->obj = NULL;
1259 		nep->next = NULL;
1260 
1261 		*needed_aux_filtees_tail = nep;
1262 		needed_aux_filtees_tail = &nep->next;
1263 	    }
1264 	    break;
1265 
1266 	case DT_PLTGOT:
1267 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1268 	    break;
1269 
1270 	case DT_TEXTREL:
1271 	    obj->textrel = true;
1272 	    break;
1273 
1274 	case DT_SYMBOLIC:
1275 	    obj->symbolic = true;
1276 	    break;
1277 
1278 	case DT_RPATH:
1279 	    /*
1280 	     * We have to wait until later to process this, because we
1281 	     * might not have gotten the address of the string table yet.
1282 	     */
1283 	    *dyn_rpath = dynp;
1284 	    break;
1285 
1286 	case DT_SONAME:
1287 	    *dyn_soname = dynp;
1288 	    break;
1289 
1290 	case DT_RUNPATH:
1291 	    *dyn_runpath = dynp;
1292 	    break;
1293 
1294 	case DT_INIT:
1295 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1296 	    break;
1297 
1298 	case DT_PREINIT_ARRAY:
1299 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1300 	    break;
1301 
1302 	case DT_PREINIT_ARRAYSZ:
1303 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1304 	    break;
1305 
1306 	case DT_INIT_ARRAY:
1307 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1308 	    break;
1309 
1310 	case DT_INIT_ARRAYSZ:
1311 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1312 	    break;
1313 
1314 	case DT_FINI:
1315 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1316 	    break;
1317 
1318 	case DT_FINI_ARRAY:
1319 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1320 	    break;
1321 
1322 	case DT_FINI_ARRAYSZ:
1323 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1324 	    break;
1325 
1326 	/*
1327 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1328 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1329 	 */
1330 
1331 #ifndef __mips__
1332 	case DT_DEBUG:
1333 	    if (!early)
1334 		dbg("Filling in DT_DEBUG entry");
1335 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1336 	    break;
1337 #endif
1338 
1339 	case DT_FLAGS:
1340 		if (dynp->d_un.d_val & DF_ORIGIN)
1341 		    obj->z_origin = true;
1342 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1343 		    obj->symbolic = true;
1344 		if (dynp->d_un.d_val & DF_TEXTREL)
1345 		    obj->textrel = true;
1346 		if (dynp->d_un.d_val & DF_BIND_NOW)
1347 		    obj->bind_now = true;
1348 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1349 		    obj->static_tls = true;
1350 	    break;
1351 #ifdef __mips__
1352 	case DT_MIPS_LOCAL_GOTNO:
1353 		obj->local_gotno = dynp->d_un.d_val;
1354 		break;
1355 
1356 	case DT_MIPS_SYMTABNO:
1357 		obj->symtabno = dynp->d_un.d_val;
1358 		break;
1359 
1360 	case DT_MIPS_GOTSYM:
1361 		obj->gotsym = dynp->d_un.d_val;
1362 		break;
1363 
1364 	case DT_MIPS_RLD_MAP:
1365 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1366 		break;
1367 
1368 	case DT_MIPS_RLD_MAP_REL:
1369 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1370 		// section relative to the address of the tag itself.
1371 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1372 		    (Elf_Addr) &r_debug;
1373 		break;
1374 
1375 	case DT_MIPS_PLTGOT:
1376 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1377 		    dynp->d_un.d_ptr);
1378 		break;
1379 
1380 #endif
1381 
1382 #ifdef __powerpc__
1383 #ifdef __powerpc64__
1384 	case DT_PPC64_GLINK:
1385 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1386 		break;
1387 #else
1388 	case DT_PPC_GOT:
1389 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1390 		break;
1391 #endif
1392 #endif
1393 
1394 	case DT_FLAGS_1:
1395 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1396 		    obj->z_noopen = true;
1397 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1398 		    obj->z_origin = true;
1399 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1400 		    obj->z_global = true;
1401 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1402 		    obj->bind_now = true;
1403 		if (dynp->d_un.d_val & DF_1_NODELETE)
1404 		    obj->z_nodelete = true;
1405 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1406 		    obj->z_loadfltr = true;
1407 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1408 		    obj->z_interpose = true;
1409 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1410 		    obj->z_nodeflib = true;
1411 		if (dynp->d_un.d_val & DF_1_PIE)
1412 		    obj->z_pie = true;
1413 	    break;
1414 
1415 	default:
1416 	    if (!early) {
1417 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1418 		    (long)dynp->d_tag);
1419 	    }
1420 	    break;
1421 	}
1422     }
1423 
1424     obj->traced = false;
1425 
1426     if (plttype == DT_RELA) {
1427 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1428 	obj->pltrel = NULL;
1429 	obj->pltrelasize = obj->pltrelsize;
1430 	obj->pltrelsize = 0;
1431     }
1432 
1433     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1434     if (obj->valid_hash_sysv)
1435 	obj->dynsymcount = obj->nchains;
1436     else if (obj->valid_hash_gnu) {
1437 	obj->dynsymcount = 0;
1438 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1439 	    if (obj->buckets_gnu[bkt] == 0)
1440 		continue;
1441 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1442 	    do
1443 		obj->dynsymcount++;
1444 	    while ((*hashval++ & 1u) == 0);
1445 	}
1446 	obj->dynsymcount += obj->symndx_gnu;
1447     }
1448 
1449     if (obj->linkmap.l_refname != NULL)
1450 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1451 	  linkmap.l_refname;
1452 }
1453 
1454 static bool
1455 obj_resolve_origin(Obj_Entry *obj)
1456 {
1457 
1458 	if (obj->origin_path != NULL)
1459 		return (true);
1460 	obj->origin_path = xmalloc(PATH_MAX);
1461 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1462 }
1463 
1464 static bool
1465 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1466     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1467 {
1468 
1469 	if (obj->z_origin && !obj_resolve_origin(obj))
1470 		return (false);
1471 
1472 	if (dyn_runpath != NULL) {
1473 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1474 		obj->runpath = origin_subst(obj, obj->runpath);
1475 	} else if (dyn_rpath != NULL) {
1476 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1477 		obj->rpath = origin_subst(obj, obj->rpath);
1478 	}
1479 	if (dyn_soname != NULL)
1480 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1481 	return (true);
1482 }
1483 
1484 static bool
1485 digest_dynamic(Obj_Entry *obj, int early)
1486 {
1487 	const Elf_Dyn *dyn_rpath;
1488 	const Elf_Dyn *dyn_soname;
1489 	const Elf_Dyn *dyn_runpath;
1490 
1491 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1492 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1493 }
1494 
1495 /*
1496  * Process a shared object's program header.  This is used only for the
1497  * main program, when the kernel has already loaded the main program
1498  * into memory before calling the dynamic linker.  It creates and
1499  * returns an Obj_Entry structure.
1500  */
1501 static Obj_Entry *
1502 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1503 {
1504     Obj_Entry *obj;
1505     const Elf_Phdr *phlimit = phdr + phnum;
1506     const Elf_Phdr *ph;
1507     Elf_Addr note_start, note_end;
1508     int nsegs = 0;
1509 
1510     obj = obj_new();
1511     for (ph = phdr;  ph < phlimit;  ph++) {
1512 	if (ph->p_type != PT_PHDR)
1513 	    continue;
1514 
1515 	obj->phdr = phdr;
1516 	obj->phsize = ph->p_memsz;
1517 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1518 	break;
1519     }
1520 
1521     obj->stack_flags = PF_X | PF_R | PF_W;
1522 
1523     for (ph = phdr;  ph < phlimit;  ph++) {
1524 	switch (ph->p_type) {
1525 
1526 	case PT_INTERP:
1527 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1528 	    break;
1529 
1530 	case PT_LOAD:
1531 	    if (nsegs == 0) {	/* First load segment */
1532 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1533 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1534 	    } else {		/* Last load segment */
1535 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1536 		  obj->vaddrbase;
1537 	    }
1538 	    nsegs++;
1539 	    break;
1540 
1541 	case PT_DYNAMIC:
1542 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1543 	    break;
1544 
1545 	case PT_TLS:
1546 	    obj->tlsindex = 1;
1547 	    obj->tlssize = ph->p_memsz;
1548 	    obj->tlsalign = ph->p_align;
1549 	    obj->tlsinitsize = ph->p_filesz;
1550 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1551 	    obj->tlspoffset = ph->p_offset;
1552 	    break;
1553 
1554 	case PT_GNU_STACK:
1555 	    obj->stack_flags = ph->p_flags;
1556 	    break;
1557 
1558 	case PT_GNU_RELRO:
1559 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1560 	    obj->relro_size = trunc_page(ph->p_vaddr + ph->p_memsz) -
1561 	      trunc_page(ph->p_vaddr);
1562 	    break;
1563 
1564 	case PT_NOTE:
1565 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1566 	    note_end = note_start + ph->p_filesz;
1567 	    digest_notes(obj, note_start, note_end);
1568 	    break;
1569 	}
1570     }
1571     if (nsegs < 1) {
1572 	_rtld_error("%s: too few PT_LOAD segments", path);
1573 	return NULL;
1574     }
1575 
1576     obj->entry = entry;
1577     return obj;
1578 }
1579 
1580 void
1581 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1582 {
1583 	const Elf_Note *note;
1584 	const char *note_name;
1585 	uintptr_t p;
1586 
1587 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1588 	    note = (const Elf_Note *)((const char *)(note + 1) +
1589 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1590 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1591 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1592 		    note->n_descsz != sizeof(int32_t))
1593 			continue;
1594 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1595 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1596 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1597 			continue;
1598 		note_name = (const char *)(note + 1);
1599 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1600 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1601 			continue;
1602 		switch (note->n_type) {
1603 		case NT_FREEBSD_ABI_TAG:
1604 			/* FreeBSD osrel note */
1605 			p = (uintptr_t)(note + 1);
1606 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1607 			obj->osrel = *(const int32_t *)(p);
1608 			dbg("note osrel %d", obj->osrel);
1609 			break;
1610 		case NT_FREEBSD_FEATURE_CTL:
1611 			/* FreeBSD ABI feature control note */
1612 			p = (uintptr_t)(note + 1);
1613 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1614 			obj->fctl0 = *(const uint32_t *)(p);
1615 			dbg("note fctl0 %#x", obj->fctl0);
1616 			break;
1617 		case NT_FREEBSD_NOINIT_TAG:
1618 			/* FreeBSD 'crt does not call init' note */
1619 			obj->crt_no_init = true;
1620 			dbg("note crt_no_init");
1621 			break;
1622 		}
1623 	}
1624 }
1625 
1626 static Obj_Entry *
1627 dlcheck(void *handle)
1628 {
1629     Obj_Entry *obj;
1630 
1631     TAILQ_FOREACH(obj, &obj_list, next) {
1632 	if (obj == (Obj_Entry *) handle)
1633 	    break;
1634     }
1635 
1636     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1637 	_rtld_error("Invalid shared object handle %p", handle);
1638 	return NULL;
1639     }
1640     return obj;
1641 }
1642 
1643 /*
1644  * If the given object is already in the donelist, return true.  Otherwise
1645  * add the object to the list and return false.
1646  */
1647 static bool
1648 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1649 {
1650     unsigned int i;
1651 
1652     for (i = 0;  i < dlp->num_used;  i++)
1653 	if (dlp->objs[i] == obj)
1654 	    return true;
1655     /*
1656      * Our donelist allocation should always be sufficient.  But if
1657      * our threads locking isn't working properly, more shared objects
1658      * could have been loaded since we allocated the list.  That should
1659      * never happen, but we'll handle it properly just in case it does.
1660      */
1661     if (dlp->num_used < dlp->num_alloc)
1662 	dlp->objs[dlp->num_used++] = obj;
1663     return false;
1664 }
1665 
1666 /*
1667  * Hash function for symbol table lookup.  Don't even think about changing
1668  * this.  It is specified by the System V ABI.
1669  */
1670 unsigned long
1671 elf_hash(const char *name)
1672 {
1673     const unsigned char *p = (const unsigned char *) name;
1674     unsigned long h = 0;
1675     unsigned long g;
1676 
1677     while (*p != '\0') {
1678 	h = (h << 4) + *p++;
1679 	if ((g = h & 0xf0000000) != 0)
1680 	    h ^= g >> 24;
1681 	h &= ~g;
1682     }
1683     return h;
1684 }
1685 
1686 /*
1687  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1688  * unsigned in case it's implemented with a wider type.
1689  */
1690 static uint32_t
1691 gnu_hash(const char *s)
1692 {
1693 	uint32_t h;
1694 	unsigned char c;
1695 
1696 	h = 5381;
1697 	for (c = *s; c != '\0'; c = *++s)
1698 		h = h * 33 + c;
1699 	return (h & 0xffffffff);
1700 }
1701 
1702 
1703 /*
1704  * Find the library with the given name, and return its full pathname.
1705  * The returned string is dynamically allocated.  Generates an error
1706  * message and returns NULL if the library cannot be found.
1707  *
1708  * If the second argument is non-NULL, then it refers to an already-
1709  * loaded shared object, whose library search path will be searched.
1710  *
1711  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1712  * descriptor (which is close-on-exec) will be passed out via the third
1713  * argument.
1714  *
1715  * The search order is:
1716  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1717  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1718  *   LD_LIBRARY_PATH
1719  *   DT_RUNPATH in the referencing file
1720  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1721  *	 from list)
1722  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1723  *
1724  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1725  */
1726 static char *
1727 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1728 {
1729 	char *pathname, *refobj_path;
1730 	const char *name;
1731 	bool nodeflib, objgiven;
1732 
1733 	objgiven = refobj != NULL;
1734 
1735 	if (libmap_disable || !objgiven ||
1736 	    (name = lm_find(refobj->path, xname)) == NULL)
1737 		name = xname;
1738 
1739 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1740 		if (name[0] != '/' && !trust) {
1741 			_rtld_error("Absolute pathname required "
1742 			    "for shared object \"%s\"", name);
1743 			return (NULL);
1744 		}
1745 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1746 		    __DECONST(char *, name)));
1747 	}
1748 
1749 	dbg(" Searching for \"%s\"", name);
1750 	refobj_path = objgiven ? refobj->path : NULL;
1751 
1752 	/*
1753 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1754 	 * back to pre-conforming behaviour if user requested so with
1755 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1756 	 * nodeflib.
1757 	 */
1758 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1759 		pathname = search_library_path(name, ld_library_path,
1760 		    refobj_path, fdp);
1761 		if (pathname != NULL)
1762 			return (pathname);
1763 		if (refobj != NULL) {
1764 			pathname = search_library_path(name, refobj->rpath,
1765 			    refobj_path, fdp);
1766 			if (pathname != NULL)
1767 				return (pathname);
1768 		}
1769 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1770 		if (pathname != NULL)
1771 			return (pathname);
1772 		pathname = search_library_path(name, gethints(false),
1773 		    refobj_path, fdp);
1774 		if (pathname != NULL)
1775 			return (pathname);
1776 		pathname = search_library_path(name, ld_standard_library_path,
1777 		    refobj_path, fdp);
1778 		if (pathname != NULL)
1779 			return (pathname);
1780 	} else {
1781 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1782 		if (objgiven) {
1783 			pathname = search_library_path(name, refobj->rpath,
1784 			    refobj->path, fdp);
1785 			if (pathname != NULL)
1786 				return (pathname);
1787 		}
1788 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1789 			pathname = search_library_path(name, obj_main->rpath,
1790 			    refobj_path, fdp);
1791 			if (pathname != NULL)
1792 				return (pathname);
1793 		}
1794 		pathname = search_library_path(name, ld_library_path,
1795 		    refobj_path, fdp);
1796 		if (pathname != NULL)
1797 			return (pathname);
1798 		if (objgiven) {
1799 			pathname = search_library_path(name, refobj->runpath,
1800 			    refobj_path, fdp);
1801 			if (pathname != NULL)
1802 				return (pathname);
1803 		}
1804 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1805 		if (pathname != NULL)
1806 			return (pathname);
1807 		pathname = search_library_path(name, gethints(nodeflib),
1808 		    refobj_path, fdp);
1809 		if (pathname != NULL)
1810 			return (pathname);
1811 		if (objgiven && !nodeflib) {
1812 			pathname = search_library_path(name,
1813 			    ld_standard_library_path, refobj_path, fdp);
1814 			if (pathname != NULL)
1815 				return (pathname);
1816 		}
1817 	}
1818 
1819 	if (objgiven && refobj->path != NULL) {
1820 		_rtld_error("Shared object \"%s\" not found, "
1821 		    "required by \"%s\"", name, basename(refobj->path));
1822 	} else {
1823 		_rtld_error("Shared object \"%s\" not found", name);
1824 	}
1825 	return (NULL);
1826 }
1827 
1828 /*
1829  * Given a symbol number in a referencing object, find the corresponding
1830  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1831  * no definition was found.  Returns a pointer to the Obj_Entry of the
1832  * defining object via the reference parameter DEFOBJ_OUT.
1833  */
1834 const Elf_Sym *
1835 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1836     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1837     RtldLockState *lockstate)
1838 {
1839     const Elf_Sym *ref;
1840     const Elf_Sym *def;
1841     const Obj_Entry *defobj;
1842     const Ver_Entry *ve;
1843     SymLook req;
1844     const char *name;
1845     int res;
1846 
1847     /*
1848      * If we have already found this symbol, get the information from
1849      * the cache.
1850      */
1851     if (symnum >= refobj->dynsymcount)
1852 	return NULL;	/* Bad object */
1853     if (cache != NULL && cache[symnum].sym != NULL) {
1854 	*defobj_out = cache[symnum].obj;
1855 	return cache[symnum].sym;
1856     }
1857 
1858     ref = refobj->symtab + symnum;
1859     name = refobj->strtab + ref->st_name;
1860     def = NULL;
1861     defobj = NULL;
1862     ve = NULL;
1863 
1864     /*
1865      * We don't have to do a full scale lookup if the symbol is local.
1866      * We know it will bind to the instance in this load module; to
1867      * which we already have a pointer (ie ref). By not doing a lookup,
1868      * we not only improve performance, but it also avoids unresolvable
1869      * symbols when local symbols are not in the hash table. This has
1870      * been seen with the ia64 toolchain.
1871      */
1872     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1873 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1874 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1875 		symnum);
1876 	}
1877 	symlook_init(&req, name);
1878 	req.flags = flags;
1879 	ve = req.ventry = fetch_ventry(refobj, symnum);
1880 	req.lockstate = lockstate;
1881 	res = symlook_default(&req, refobj);
1882 	if (res == 0) {
1883 	    def = req.sym_out;
1884 	    defobj = req.defobj_out;
1885 	}
1886     } else {
1887 	def = ref;
1888 	defobj = refobj;
1889     }
1890 
1891     /*
1892      * If we found no definition and the reference is weak, treat the
1893      * symbol as having the value zero.
1894      */
1895     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1896 	def = &sym_zero;
1897 	defobj = obj_main;
1898     }
1899 
1900     if (def != NULL) {
1901 	*defobj_out = defobj;
1902 	/* Record the information in the cache to avoid subsequent lookups. */
1903 	if (cache != NULL) {
1904 	    cache[symnum].sym = def;
1905 	    cache[symnum].obj = defobj;
1906 	}
1907     } else {
1908 	if (refobj != &obj_rtld)
1909 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1910 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1911     }
1912     return def;
1913 }
1914 
1915 /*
1916  * Return the search path from the ldconfig hints file, reading it if
1917  * necessary.  If nostdlib is true, then the default search paths are
1918  * not added to result.
1919  *
1920  * Returns NULL if there are problems with the hints file,
1921  * or if the search path there is empty.
1922  */
1923 static const char *
1924 gethints(bool nostdlib)
1925 {
1926 	static char *filtered_path;
1927 	static const char *hints;
1928 	static struct elfhints_hdr hdr;
1929 	struct fill_search_info_args sargs, hargs;
1930 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1931 	struct dl_serpath *SLPpath, *hintpath;
1932 	char *p;
1933 	struct stat hint_stat;
1934 	unsigned int SLPndx, hintndx, fndx, fcount;
1935 	int fd;
1936 	size_t flen;
1937 	uint32_t dl;
1938 	bool skip;
1939 
1940 	/* First call, read the hints file */
1941 	if (hints == NULL) {
1942 		/* Keep from trying again in case the hints file is bad. */
1943 		hints = "";
1944 
1945 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1946 			return (NULL);
1947 
1948 		/*
1949 		 * Check of hdr.dirlistlen value against type limit
1950 		 * intends to pacify static analyzers.  Further
1951 		 * paranoia leads to checks that dirlist is fully
1952 		 * contained in the file range.
1953 		 */
1954 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1955 		    hdr.magic != ELFHINTS_MAGIC ||
1956 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1957 		    fstat(fd, &hint_stat) == -1) {
1958 cleanup1:
1959 			close(fd);
1960 			hdr.dirlistlen = 0;
1961 			return (NULL);
1962 		}
1963 		dl = hdr.strtab;
1964 		if (dl + hdr.dirlist < dl)
1965 			goto cleanup1;
1966 		dl += hdr.dirlist;
1967 		if (dl + hdr.dirlistlen < dl)
1968 			goto cleanup1;
1969 		dl += hdr.dirlistlen;
1970 		if (dl > hint_stat.st_size)
1971 			goto cleanup1;
1972 		p = xmalloc(hdr.dirlistlen + 1);
1973 		if (pread(fd, p, hdr.dirlistlen + 1,
1974 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1975 		    p[hdr.dirlistlen] != '\0') {
1976 			free(p);
1977 			goto cleanup1;
1978 		}
1979 		hints = p;
1980 		close(fd);
1981 	}
1982 
1983 	/*
1984 	 * If caller agreed to receive list which includes the default
1985 	 * paths, we are done. Otherwise, if we still did not
1986 	 * calculated filtered result, do it now.
1987 	 */
1988 	if (!nostdlib)
1989 		return (hints[0] != '\0' ? hints : NULL);
1990 	if (filtered_path != NULL)
1991 		goto filt_ret;
1992 
1993 	/*
1994 	 * Obtain the list of all configured search paths, and the
1995 	 * list of the default paths.
1996 	 *
1997 	 * First estimate the size of the results.
1998 	 */
1999 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2000 	smeta.dls_cnt = 0;
2001 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2002 	hmeta.dls_cnt = 0;
2003 
2004 	sargs.request = RTLD_DI_SERINFOSIZE;
2005 	sargs.serinfo = &smeta;
2006 	hargs.request = RTLD_DI_SERINFOSIZE;
2007 	hargs.serinfo = &hmeta;
2008 
2009 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2010 	    &sargs);
2011 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2012 
2013 	SLPinfo = xmalloc(smeta.dls_size);
2014 	hintinfo = xmalloc(hmeta.dls_size);
2015 
2016 	/*
2017 	 * Next fetch both sets of paths.
2018 	 */
2019 	sargs.request = RTLD_DI_SERINFO;
2020 	sargs.serinfo = SLPinfo;
2021 	sargs.serpath = &SLPinfo->dls_serpath[0];
2022 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2023 
2024 	hargs.request = RTLD_DI_SERINFO;
2025 	hargs.serinfo = hintinfo;
2026 	hargs.serpath = &hintinfo->dls_serpath[0];
2027 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2028 
2029 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2030 	    &sargs);
2031 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2032 
2033 	/*
2034 	 * Now calculate the difference between two sets, by excluding
2035 	 * standard paths from the full set.
2036 	 */
2037 	fndx = 0;
2038 	fcount = 0;
2039 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2040 	hintpath = &hintinfo->dls_serpath[0];
2041 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2042 		skip = false;
2043 		SLPpath = &SLPinfo->dls_serpath[0];
2044 		/*
2045 		 * Check each standard path against current.
2046 		 */
2047 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2048 			/* matched, skip the path */
2049 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2050 				skip = true;
2051 				break;
2052 			}
2053 		}
2054 		if (skip)
2055 			continue;
2056 		/*
2057 		 * Not matched against any standard path, add the path
2058 		 * to result. Separate consequtive paths with ':'.
2059 		 */
2060 		if (fcount > 0) {
2061 			filtered_path[fndx] = ':';
2062 			fndx++;
2063 		}
2064 		fcount++;
2065 		flen = strlen(hintpath->dls_name);
2066 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2067 		fndx += flen;
2068 	}
2069 	filtered_path[fndx] = '\0';
2070 
2071 	free(SLPinfo);
2072 	free(hintinfo);
2073 
2074 filt_ret:
2075 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2076 }
2077 
2078 static void
2079 init_dag(Obj_Entry *root)
2080 {
2081     const Needed_Entry *needed;
2082     const Objlist_Entry *elm;
2083     DoneList donelist;
2084 
2085     if (root->dag_inited)
2086 	return;
2087     donelist_init(&donelist);
2088 
2089     /* Root object belongs to own DAG. */
2090     objlist_push_tail(&root->dldags, root);
2091     objlist_push_tail(&root->dagmembers, root);
2092     donelist_check(&donelist, root);
2093 
2094     /*
2095      * Add dependencies of root object to DAG in breadth order
2096      * by exploiting the fact that each new object get added
2097      * to the tail of the dagmembers list.
2098      */
2099     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2100 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2101 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2102 		continue;
2103 	    objlist_push_tail(&needed->obj->dldags, root);
2104 	    objlist_push_tail(&root->dagmembers, needed->obj);
2105 	}
2106     }
2107     root->dag_inited = true;
2108 }
2109 
2110 static void
2111 init_marker(Obj_Entry *marker)
2112 {
2113 
2114 	bzero(marker, sizeof(*marker));
2115 	marker->marker = true;
2116 }
2117 
2118 Obj_Entry *
2119 globallist_curr(const Obj_Entry *obj)
2120 {
2121 
2122 	for (;;) {
2123 		if (obj == NULL)
2124 			return (NULL);
2125 		if (!obj->marker)
2126 			return (__DECONST(Obj_Entry *, obj));
2127 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2128 	}
2129 }
2130 
2131 Obj_Entry *
2132 globallist_next(const Obj_Entry *obj)
2133 {
2134 
2135 	for (;;) {
2136 		obj = TAILQ_NEXT(obj, next);
2137 		if (obj == NULL)
2138 			return (NULL);
2139 		if (!obj->marker)
2140 			return (__DECONST(Obj_Entry *, obj));
2141 	}
2142 }
2143 
2144 /* Prevent the object from being unmapped while the bind lock is dropped. */
2145 static void
2146 hold_object(Obj_Entry *obj)
2147 {
2148 
2149 	obj->holdcount++;
2150 }
2151 
2152 static void
2153 unhold_object(Obj_Entry *obj)
2154 {
2155 
2156 	assert(obj->holdcount > 0);
2157 	if (--obj->holdcount == 0 && obj->unholdfree)
2158 		release_object(obj);
2159 }
2160 
2161 static void
2162 process_z(Obj_Entry *root)
2163 {
2164 	const Objlist_Entry *elm;
2165 	Obj_Entry *obj;
2166 
2167 	/*
2168 	 * Walk over object DAG and process every dependent object
2169 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2170 	 * to grow their own DAG.
2171 	 *
2172 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2173 	 * symlook_global() to work.
2174 	 *
2175 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2176 	 */
2177 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2178 		obj = elm->obj;
2179 		if (obj == NULL)
2180 			continue;
2181 		if (obj->z_nodelete && !obj->ref_nodel) {
2182 			dbg("obj %s -z nodelete", obj->path);
2183 			init_dag(obj);
2184 			ref_dag(obj);
2185 			obj->ref_nodel = true;
2186 		}
2187 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2188 			dbg("obj %s -z global", obj->path);
2189 			objlist_push_tail(&list_global, obj);
2190 			init_dag(obj);
2191 		}
2192 	}
2193 }
2194 
2195 static void
2196 parse_rtld_phdr(Obj_Entry *obj)
2197 {
2198 	const Elf_Phdr *ph;
2199 	Elf_Addr note_start, note_end;
2200 
2201 	obj->stack_flags = PF_X | PF_R | PF_W;
2202 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2203 	    obj->phsize; ph++) {
2204 		switch (ph->p_type) {
2205 		case PT_GNU_STACK:
2206 			obj->stack_flags = ph->p_flags;
2207 			break;
2208 		case PT_GNU_RELRO:
2209 			obj->relro_page = obj->relocbase +
2210 			    trunc_page(ph->p_vaddr);
2211 			obj->relro_size = round_page(ph->p_memsz);
2212 			break;
2213 		case PT_NOTE:
2214 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2215 			note_end = note_start + ph->p_filesz;
2216 			digest_notes(obj, note_start, note_end);
2217 			break;
2218 		}
2219 	}
2220 }
2221 
2222 /*
2223  * Initialize the dynamic linker.  The argument is the address at which
2224  * the dynamic linker has been mapped into memory.  The primary task of
2225  * this function is to relocate the dynamic linker.
2226  */
2227 static void
2228 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2229 {
2230     Obj_Entry objtmp;	/* Temporary rtld object */
2231     const Elf_Ehdr *ehdr;
2232     const Elf_Dyn *dyn_rpath;
2233     const Elf_Dyn *dyn_soname;
2234     const Elf_Dyn *dyn_runpath;
2235 
2236 #ifdef RTLD_INIT_PAGESIZES_EARLY
2237     /* The page size is required by the dynamic memory allocator. */
2238     init_pagesizes(aux_info);
2239 #endif
2240 
2241     /*
2242      * Conjure up an Obj_Entry structure for the dynamic linker.
2243      *
2244      * The "path" member can't be initialized yet because string constants
2245      * cannot yet be accessed. Below we will set it correctly.
2246      */
2247     memset(&objtmp, 0, sizeof(objtmp));
2248     objtmp.path = NULL;
2249     objtmp.rtld = true;
2250     objtmp.mapbase = mapbase;
2251 #ifdef PIC
2252     objtmp.relocbase = mapbase;
2253 #endif
2254 
2255     objtmp.dynamic = rtld_dynamic(&objtmp);
2256     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2257     assert(objtmp.needed == NULL);
2258 #if !defined(__mips__)
2259     /* MIPS has a bogus DT_TEXTREL. */
2260     assert(!objtmp.textrel);
2261 #endif
2262     /*
2263      * Temporarily put the dynamic linker entry into the object list, so
2264      * that symbols can be found.
2265      */
2266     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2267 
2268     ehdr = (Elf_Ehdr *)mapbase;
2269     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2270     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2271 
2272     /* Initialize the object list. */
2273     TAILQ_INIT(&obj_list);
2274 
2275     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2276     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2277 
2278 #ifndef RTLD_INIT_PAGESIZES_EARLY
2279     /* The page size is required by the dynamic memory allocator. */
2280     init_pagesizes(aux_info);
2281 #endif
2282 
2283     if (aux_info[AT_OSRELDATE] != NULL)
2284 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2285 
2286     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2287 
2288     /* Replace the path with a dynamically allocated copy. */
2289     obj_rtld.path = xstrdup(ld_path_rtld);
2290 
2291     parse_rtld_phdr(&obj_rtld);
2292     if (obj_enforce_relro(&obj_rtld) == -1)
2293 	rtld_die();
2294 
2295     r_debug.r_version = R_DEBUG_VERSION;
2296     r_debug.r_brk = r_debug_state;
2297     r_debug.r_state = RT_CONSISTENT;
2298     r_debug.r_ldbase = obj_rtld.relocbase;
2299 }
2300 
2301 /*
2302  * Retrieve the array of supported page sizes.  The kernel provides the page
2303  * sizes in increasing order.
2304  */
2305 static void
2306 init_pagesizes(Elf_Auxinfo **aux_info)
2307 {
2308 	static size_t psa[MAXPAGESIZES];
2309 	int mib[2];
2310 	size_t len, size;
2311 
2312 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2313 	    NULL) {
2314 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2315 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2316 	} else {
2317 		len = 2;
2318 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2319 			size = sizeof(psa);
2320 		else {
2321 			/* As a fallback, retrieve the base page size. */
2322 			size = sizeof(psa[0]);
2323 			if (aux_info[AT_PAGESZ] != NULL) {
2324 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2325 				goto psa_filled;
2326 			} else {
2327 				mib[0] = CTL_HW;
2328 				mib[1] = HW_PAGESIZE;
2329 				len = 2;
2330 			}
2331 		}
2332 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2333 			_rtld_error("sysctl for hw.pagesize(s) failed");
2334 			rtld_die();
2335 		}
2336 psa_filled:
2337 		pagesizes = psa;
2338 	}
2339 	npagesizes = size / sizeof(pagesizes[0]);
2340 	/* Discard any invalid entries at the end of the array. */
2341 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2342 		npagesizes--;
2343 }
2344 
2345 /*
2346  * Add the init functions from a needed object list (and its recursive
2347  * needed objects) to "list".  This is not used directly; it is a helper
2348  * function for initlist_add_objects().  The write lock must be held
2349  * when this function is called.
2350  */
2351 static void
2352 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2353 {
2354     /* Recursively process the successor needed objects. */
2355     if (needed->next != NULL)
2356 	initlist_add_neededs(needed->next, list);
2357 
2358     /* Process the current needed object. */
2359     if (needed->obj != NULL)
2360 	initlist_add_objects(needed->obj, needed->obj, list);
2361 }
2362 
2363 /*
2364  * Scan all of the DAGs rooted in the range of objects from "obj" to
2365  * "tail" and add their init functions to "list".  This recurses over
2366  * the DAGs and ensure the proper init ordering such that each object's
2367  * needed libraries are initialized before the object itself.  At the
2368  * same time, this function adds the objects to the global finalization
2369  * list "list_fini" in the opposite order.  The write lock must be
2370  * held when this function is called.
2371  */
2372 static void
2373 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2374 {
2375     Obj_Entry *nobj;
2376 
2377     if (obj->init_scanned || obj->init_done)
2378 	return;
2379     obj->init_scanned = true;
2380 
2381     /* Recursively process the successor objects. */
2382     nobj = globallist_next(obj);
2383     if (nobj != NULL && obj != tail)
2384 	initlist_add_objects(nobj, tail, list);
2385 
2386     /* Recursively process the needed objects. */
2387     if (obj->needed != NULL)
2388 	initlist_add_neededs(obj->needed, list);
2389     if (obj->needed_filtees != NULL)
2390 	initlist_add_neededs(obj->needed_filtees, list);
2391     if (obj->needed_aux_filtees != NULL)
2392 	initlist_add_neededs(obj->needed_aux_filtees, list);
2393 
2394     /* Add the object to the init list. */
2395     objlist_push_tail(list, obj);
2396 
2397     /* Add the object to the global fini list in the reverse order. */
2398     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2399       && !obj->on_fini_list) {
2400 	objlist_push_head(&list_fini, obj);
2401 	obj->on_fini_list = true;
2402     }
2403 }
2404 
2405 #ifndef FPTR_TARGET
2406 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2407 #endif
2408 
2409 static void
2410 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2411 {
2412     Needed_Entry *needed, *needed1;
2413 
2414     for (needed = n; needed != NULL; needed = needed->next) {
2415 	if (needed->obj != NULL) {
2416 	    dlclose_locked(needed->obj, lockstate);
2417 	    needed->obj = NULL;
2418 	}
2419     }
2420     for (needed = n; needed != NULL; needed = needed1) {
2421 	needed1 = needed->next;
2422 	free(needed);
2423     }
2424 }
2425 
2426 static void
2427 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2428 {
2429 
2430 	free_needed_filtees(obj->needed_filtees, lockstate);
2431 	obj->needed_filtees = NULL;
2432 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2433 	obj->needed_aux_filtees = NULL;
2434 	obj->filtees_loaded = false;
2435 }
2436 
2437 static void
2438 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2439     RtldLockState *lockstate)
2440 {
2441 
2442     for (; needed != NULL; needed = needed->next) {
2443 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2444 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2445 	  RTLD_LOCAL, lockstate);
2446     }
2447 }
2448 
2449 static void
2450 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2451 {
2452 
2453     lock_restart_for_upgrade(lockstate);
2454     if (!obj->filtees_loaded) {
2455 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2456 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2457 	obj->filtees_loaded = true;
2458     }
2459 }
2460 
2461 static int
2462 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2463 {
2464     Obj_Entry *obj1;
2465 
2466     for (; needed != NULL; needed = needed->next) {
2467 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2468 	  flags & ~RTLD_LO_NOLOAD);
2469 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2470 	    return (-1);
2471     }
2472     return (0);
2473 }
2474 
2475 /*
2476  * Given a shared object, traverse its list of needed objects, and load
2477  * each of them.  Returns 0 on success.  Generates an error message and
2478  * returns -1 on failure.
2479  */
2480 static int
2481 load_needed_objects(Obj_Entry *first, int flags)
2482 {
2483     Obj_Entry *obj;
2484 
2485     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2486 	if (obj->marker)
2487 	    continue;
2488 	if (process_needed(obj, obj->needed, flags) == -1)
2489 	    return (-1);
2490     }
2491     return (0);
2492 }
2493 
2494 static int
2495 load_preload_objects(char *p, bool isfd)
2496 {
2497 	Obj_Entry *obj;
2498 	static const char delim[] = " \t:;";
2499 
2500 	if (p == NULL)
2501 		return (0);
2502 
2503 	p += strspn(p, delim);
2504 	while (*p != '\0') {
2505 		const char *name;
2506 		size_t len = strcspn(p, delim);
2507 		char savech;
2508 		int fd;
2509 
2510 		savech = p[len];
2511 		p[len] = '\0';
2512 		if (isfd) {
2513 			name = NULL;
2514 			fd = parse_integer(p);
2515 			if (fd == -1)
2516 				return (-1);
2517 		} else {
2518 			name = p;
2519 			fd = -1;
2520 		}
2521 
2522 		obj = load_object(name, fd, NULL, 0);
2523 		if (obj == NULL)
2524 			return (-1);	/* XXX - cleanup */
2525 		obj->z_interpose = true;
2526 		p[len] = savech;
2527 		p += len;
2528 		p += strspn(p, delim);
2529 	}
2530 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2531 
2532 	return (0);
2533 }
2534 
2535 static const char *
2536 printable_path(const char *path)
2537 {
2538 
2539 	return (path == NULL ? "<unknown>" : path);
2540 }
2541 
2542 /*
2543  * Load a shared object into memory, if it is not already loaded.  The
2544  * object may be specified by name or by user-supplied file descriptor
2545  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2546  * duplicate is.
2547  *
2548  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2549  * on failure.
2550  */
2551 static Obj_Entry *
2552 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2553 {
2554     Obj_Entry *obj;
2555     int fd;
2556     struct stat sb;
2557     char *path;
2558 
2559     fd = -1;
2560     if (name != NULL) {
2561 	TAILQ_FOREACH(obj, &obj_list, next) {
2562 	    if (obj->marker || obj->doomed)
2563 		continue;
2564 	    if (object_match_name(obj, name))
2565 		return (obj);
2566 	}
2567 
2568 	path = find_library(name, refobj, &fd);
2569 	if (path == NULL)
2570 	    return (NULL);
2571     } else
2572 	path = NULL;
2573 
2574     if (fd >= 0) {
2575 	/*
2576 	 * search_library_pathfds() opens a fresh file descriptor for the
2577 	 * library, so there is no need to dup().
2578 	 */
2579     } else if (fd_u == -1) {
2580 	/*
2581 	 * If we didn't find a match by pathname, or the name is not
2582 	 * supplied, open the file and check again by device and inode.
2583 	 * This avoids false mismatches caused by multiple links or ".."
2584 	 * in pathnames.
2585 	 *
2586 	 * To avoid a race, we open the file and use fstat() rather than
2587 	 * using stat().
2588 	 */
2589 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2590 	    _rtld_error("Cannot open \"%s\"", path);
2591 	    free(path);
2592 	    return (NULL);
2593 	}
2594     } else {
2595 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2596 	if (fd == -1) {
2597 	    _rtld_error("Cannot dup fd");
2598 	    free(path);
2599 	    return (NULL);
2600 	}
2601     }
2602     if (fstat(fd, &sb) == -1) {
2603 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2604 	close(fd);
2605 	free(path);
2606 	return NULL;
2607     }
2608     TAILQ_FOREACH(obj, &obj_list, next) {
2609 	if (obj->marker || obj->doomed)
2610 	    continue;
2611 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2612 	    break;
2613     }
2614     if (obj != NULL && name != NULL) {
2615 	object_add_name(obj, name);
2616 	free(path);
2617 	close(fd);
2618 	return obj;
2619     }
2620     if (flags & RTLD_LO_NOLOAD) {
2621 	free(path);
2622 	close(fd);
2623 	return (NULL);
2624     }
2625 
2626     /* First use of this object, so we must map it in */
2627     obj = do_load_object(fd, name, path, &sb, flags);
2628     if (obj == NULL)
2629 	free(path);
2630     close(fd);
2631 
2632     return obj;
2633 }
2634 
2635 static Obj_Entry *
2636 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2637   int flags)
2638 {
2639     Obj_Entry *obj;
2640     struct statfs fs;
2641 
2642     /*
2643      * but first, make sure that environment variables haven't been
2644      * used to circumvent the noexec flag on a filesystem.
2645      */
2646     if (dangerous_ld_env) {
2647 	if (fstatfs(fd, &fs) != 0) {
2648 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2649 	    return NULL;
2650 	}
2651 	if (fs.f_flags & MNT_NOEXEC) {
2652 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2653 	    return NULL;
2654 	}
2655     }
2656     dbg("loading \"%s\"", printable_path(path));
2657     obj = map_object(fd, printable_path(path), sbp);
2658     if (obj == NULL)
2659         return NULL;
2660 
2661     /*
2662      * If DT_SONAME is present in the object, digest_dynamic2 already
2663      * added it to the object names.
2664      */
2665     if (name != NULL)
2666 	object_add_name(obj, name);
2667     obj->path = path;
2668     if (!digest_dynamic(obj, 0))
2669 	goto errp;
2670     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2671 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2672     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2673 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2674 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2675 	goto errp;
2676     }
2677     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2678       RTLD_LO_DLOPEN) {
2679 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2680 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2681 	goto errp;
2682     }
2683 
2684     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2685     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2686     obj_count++;
2687     obj_loads++;
2688     linkmap_add(obj);	/* for GDB & dlinfo() */
2689     max_stack_flags |= obj->stack_flags;
2690 
2691     dbg("  %p .. %p: %s", obj->mapbase,
2692          obj->mapbase + obj->mapsize - 1, obj->path);
2693     if (obj->textrel)
2694 	dbg("  WARNING: %s has impure text", obj->path);
2695     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2696 	obj->path);
2697 
2698     return (obj);
2699 
2700 errp:
2701     munmap(obj->mapbase, obj->mapsize);
2702     obj_free(obj);
2703     return (NULL);
2704 }
2705 
2706 Obj_Entry *
2707 obj_from_addr(const void *addr)
2708 {
2709     Obj_Entry *obj;
2710 
2711     TAILQ_FOREACH(obj, &obj_list, next) {
2712 	if (obj->marker)
2713 	    continue;
2714 	if (addr < (void *) obj->mapbase)
2715 	    continue;
2716 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2717 	    return obj;
2718     }
2719     return NULL;
2720 }
2721 
2722 static void
2723 preinit_main(void)
2724 {
2725     Elf_Addr *preinit_addr;
2726     int index;
2727 
2728     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2729     if (preinit_addr == NULL)
2730 	return;
2731 
2732     for (index = 0; index < obj_main->preinit_array_num; index++) {
2733 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2734 	    dbg("calling preinit function for %s at %p", obj_main->path,
2735 	      (void *)preinit_addr[index]);
2736 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2737 	      0, 0, obj_main->path);
2738 	    call_init_pointer(obj_main, preinit_addr[index]);
2739 	}
2740     }
2741 }
2742 
2743 /*
2744  * Call the finalization functions for each of the objects in "list"
2745  * belonging to the DAG of "root" and referenced once. If NULL "root"
2746  * is specified, every finalization function will be called regardless
2747  * of the reference count and the list elements won't be freed. All of
2748  * the objects are expected to have non-NULL fini functions.
2749  */
2750 static void
2751 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2752 {
2753     Objlist_Entry *elm;
2754     struct dlerror_save *saved_msg;
2755     Elf_Addr *fini_addr;
2756     int index;
2757 
2758     assert(root == NULL || root->refcount == 1);
2759 
2760     if (root != NULL)
2761 	root->doomed = true;
2762 
2763     /*
2764      * Preserve the current error message since a fini function might
2765      * call into the dynamic linker and overwrite it.
2766      */
2767     saved_msg = errmsg_save();
2768     do {
2769 	STAILQ_FOREACH(elm, list, link) {
2770 	    if (root != NULL && (elm->obj->refcount != 1 ||
2771 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2772 		continue;
2773 	    /* Remove object from fini list to prevent recursive invocation. */
2774 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2775 	    /* Ensure that new references cannot be acquired. */
2776 	    elm->obj->doomed = true;
2777 
2778 	    hold_object(elm->obj);
2779 	    lock_release(rtld_bind_lock, lockstate);
2780 	    /*
2781 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2782 	     * When this happens, DT_FINI_ARRAY is processed first.
2783 	     */
2784 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2785 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2786 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2787 		  index--) {
2788 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2789 			dbg("calling fini function for %s at %p",
2790 			    elm->obj->path, (void *)fini_addr[index]);
2791 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2792 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2793 			call_initfini_pointer(elm->obj, fini_addr[index]);
2794 		    }
2795 		}
2796 	    }
2797 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2798 		dbg("calling fini function for %s at %p", elm->obj->path,
2799 		    (void *)elm->obj->fini);
2800 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2801 		    0, 0, elm->obj->path);
2802 		call_initfini_pointer(elm->obj, elm->obj->fini);
2803 	    }
2804 	    wlock_acquire(rtld_bind_lock, lockstate);
2805 	    unhold_object(elm->obj);
2806 	    /* No need to free anything if process is going down. */
2807 	    if (root != NULL)
2808 	    	free(elm);
2809 	    /*
2810 	     * We must restart the list traversal after every fini call
2811 	     * because a dlclose() call from the fini function or from
2812 	     * another thread might have modified the reference counts.
2813 	     */
2814 	    break;
2815 	}
2816     } while (elm != NULL);
2817     errmsg_restore(saved_msg);
2818 }
2819 
2820 /*
2821  * Call the initialization functions for each of the objects in
2822  * "list".  All of the objects are expected to have non-NULL init
2823  * functions.
2824  */
2825 static void
2826 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2827 {
2828     Objlist_Entry *elm;
2829     Obj_Entry *obj;
2830     struct dlerror_save *saved_msg;
2831     Elf_Addr *init_addr;
2832     void (*reg)(void (*)(void));
2833     int index;
2834 
2835     /*
2836      * Clean init_scanned flag so that objects can be rechecked and
2837      * possibly initialized earlier if any of vectors called below
2838      * cause the change by using dlopen.
2839      */
2840     TAILQ_FOREACH(obj, &obj_list, next) {
2841 	if (obj->marker)
2842 	    continue;
2843 	obj->init_scanned = false;
2844     }
2845 
2846     /*
2847      * Preserve the current error message since an init function might
2848      * call into the dynamic linker and overwrite it.
2849      */
2850     saved_msg = errmsg_save();
2851     STAILQ_FOREACH(elm, list, link) {
2852 	if (elm->obj->init_done) /* Initialized early. */
2853 	    continue;
2854 	/*
2855 	 * Race: other thread might try to use this object before current
2856 	 * one completes the initialization. Not much can be done here
2857 	 * without better locking.
2858 	 */
2859 	elm->obj->init_done = true;
2860 	hold_object(elm->obj);
2861 	reg = NULL;
2862 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2863 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2864 		    "__libc_atexit", lockstate);
2865 	}
2866 	lock_release(rtld_bind_lock, lockstate);
2867 	if (reg != NULL) {
2868 		reg(rtld_exit);
2869 		rtld_exit_ptr = rtld_nop_exit;
2870 	}
2871 
2872         /*
2873          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2874          * When this happens, DT_INIT is processed first.
2875          */
2876 	if (elm->obj->init != (Elf_Addr)NULL) {
2877 	    dbg("calling init function for %s at %p", elm->obj->path,
2878 	        (void *)elm->obj->init);
2879 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2880 	        0, 0, elm->obj->path);
2881 	    call_init_pointer(elm->obj, elm->obj->init);
2882 	}
2883 	init_addr = (Elf_Addr *)elm->obj->init_array;
2884 	if (init_addr != NULL) {
2885 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2886 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2887 		    dbg("calling init function for %s at %p", elm->obj->path,
2888 			(void *)init_addr[index]);
2889 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2890 			(void *)init_addr[index], 0, 0, elm->obj->path);
2891 		    call_init_pointer(elm->obj, init_addr[index]);
2892 		}
2893 	    }
2894 	}
2895 	wlock_acquire(rtld_bind_lock, lockstate);
2896 	unhold_object(elm->obj);
2897     }
2898     errmsg_restore(saved_msg);
2899 }
2900 
2901 static void
2902 objlist_clear(Objlist *list)
2903 {
2904     Objlist_Entry *elm;
2905 
2906     while (!STAILQ_EMPTY(list)) {
2907 	elm = STAILQ_FIRST(list);
2908 	STAILQ_REMOVE_HEAD(list, link);
2909 	free(elm);
2910     }
2911 }
2912 
2913 static Objlist_Entry *
2914 objlist_find(Objlist *list, const Obj_Entry *obj)
2915 {
2916     Objlist_Entry *elm;
2917 
2918     STAILQ_FOREACH(elm, list, link)
2919 	if (elm->obj == obj)
2920 	    return elm;
2921     return NULL;
2922 }
2923 
2924 static void
2925 objlist_init(Objlist *list)
2926 {
2927     STAILQ_INIT(list);
2928 }
2929 
2930 static void
2931 objlist_push_head(Objlist *list, Obj_Entry *obj)
2932 {
2933     Objlist_Entry *elm;
2934 
2935     elm = NEW(Objlist_Entry);
2936     elm->obj = obj;
2937     STAILQ_INSERT_HEAD(list, elm, link);
2938 }
2939 
2940 static void
2941 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2942 {
2943     Objlist_Entry *elm;
2944 
2945     elm = NEW(Objlist_Entry);
2946     elm->obj = obj;
2947     STAILQ_INSERT_TAIL(list, elm, link);
2948 }
2949 
2950 static void
2951 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2952 {
2953 	Objlist_Entry *elm, *listelm;
2954 
2955 	STAILQ_FOREACH(listelm, list, link) {
2956 		if (listelm->obj == listobj)
2957 			break;
2958 	}
2959 	elm = NEW(Objlist_Entry);
2960 	elm->obj = obj;
2961 	if (listelm != NULL)
2962 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2963 	else
2964 		STAILQ_INSERT_TAIL(list, elm, link);
2965 }
2966 
2967 static void
2968 objlist_remove(Objlist *list, Obj_Entry *obj)
2969 {
2970     Objlist_Entry *elm;
2971 
2972     if ((elm = objlist_find(list, obj)) != NULL) {
2973 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2974 	free(elm);
2975     }
2976 }
2977 
2978 /*
2979  * Relocate dag rooted in the specified object.
2980  * Returns 0 on success, or -1 on failure.
2981  */
2982 
2983 static int
2984 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2985     int flags, RtldLockState *lockstate)
2986 {
2987 	Objlist_Entry *elm;
2988 	int error;
2989 
2990 	error = 0;
2991 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2992 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2993 		    lockstate);
2994 		if (error == -1)
2995 			break;
2996 	}
2997 	return (error);
2998 }
2999 
3000 /*
3001  * Prepare for, or clean after, relocating an object marked with
3002  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3003  * segments are remapped read-write.  After relocations are done, the
3004  * segment's permissions are returned back to the modes specified in
3005  * the phdrs.  If any relocation happened, or always for wired
3006  * program, COW is triggered.
3007  */
3008 static int
3009 reloc_textrel_prot(Obj_Entry *obj, bool before)
3010 {
3011 	const Elf_Phdr *ph;
3012 	void *base;
3013 	size_t l, sz;
3014 	int prot;
3015 
3016 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3017 	    l--, ph++) {
3018 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3019 			continue;
3020 		base = obj->relocbase + trunc_page(ph->p_vaddr);
3021 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
3022 		    trunc_page(ph->p_vaddr);
3023 		prot = before ? (PROT_READ | PROT_WRITE) :
3024 		    convert_prot(ph->p_flags);
3025 		if (mprotect(base, sz, prot) == -1) {
3026 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3027 			    obj->path, before ? "en" : "dis",
3028 			    rtld_strerror(errno));
3029 			return (-1);
3030 		}
3031 	}
3032 	return (0);
3033 }
3034 
3035 /*
3036  * Relocate single object.
3037  * Returns 0 on success, or -1 on failure.
3038  */
3039 static int
3040 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3041     int flags, RtldLockState *lockstate)
3042 {
3043 
3044 	if (obj->relocated)
3045 		return (0);
3046 	obj->relocated = true;
3047 	if (obj != rtldobj)
3048 		dbg("relocating \"%s\"", obj->path);
3049 
3050 	if (obj->symtab == NULL || obj->strtab == NULL ||
3051 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3052 		dbg("object %s has no run-time symbol table", obj->path);
3053 
3054 	/* There are relocations to the write-protected text segment. */
3055 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3056 		return (-1);
3057 
3058 	/* Process the non-PLT non-IFUNC relocations. */
3059 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3060 		return (-1);
3061 
3062 	/* Re-protected the text segment. */
3063 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3064 		return (-1);
3065 
3066 	/* Set the special PLT or GOT entries. */
3067 	init_pltgot(obj);
3068 
3069 	/* Process the PLT relocations. */
3070 	if (reloc_plt(obj, flags, lockstate) == -1)
3071 		return (-1);
3072 	/* Relocate the jump slots if we are doing immediate binding. */
3073 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3074 	    lockstate) == -1)
3075 		return (-1);
3076 
3077 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3078 		return (-1);
3079 
3080 	/*
3081 	 * Set up the magic number and version in the Obj_Entry.  These
3082 	 * were checked in the crt1.o from the original ElfKit, so we
3083 	 * set them for backward compatibility.
3084 	 */
3085 	obj->magic = RTLD_MAGIC;
3086 	obj->version = RTLD_VERSION;
3087 
3088 	return (0);
3089 }
3090 
3091 /*
3092  * Relocate newly-loaded shared objects.  The argument is a pointer to
3093  * the Obj_Entry for the first such object.  All objects from the first
3094  * to the end of the list of objects are relocated.  Returns 0 on success,
3095  * or -1 on failure.
3096  */
3097 static int
3098 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3099     int flags, RtldLockState *lockstate)
3100 {
3101 	Obj_Entry *obj;
3102 	int error;
3103 
3104 	for (error = 0, obj = first;  obj != NULL;
3105 	    obj = TAILQ_NEXT(obj, next)) {
3106 		if (obj->marker)
3107 			continue;
3108 		error = relocate_object(obj, bind_now, rtldobj, flags,
3109 		    lockstate);
3110 		if (error == -1)
3111 			break;
3112 	}
3113 	return (error);
3114 }
3115 
3116 /*
3117  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3118  * referencing STT_GNU_IFUNC symbols is postponed till the other
3119  * relocations are done.  The indirect functions specified as
3120  * ifunc are allowed to call other symbols, so we need to have
3121  * objects relocated before asking for resolution from indirects.
3122  *
3123  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3124  * instead of the usual lazy handling of PLT slots.  It is
3125  * consistent with how GNU does it.
3126  */
3127 static int
3128 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3129     RtldLockState *lockstate)
3130 {
3131 
3132 	if (obj->ifuncs_resolved)
3133 		return (0);
3134 	obj->ifuncs_resolved = true;
3135 	if (!obj->irelative && !obj->irelative_nonplt &&
3136 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3137 	    !obj->non_plt_gnu_ifunc)
3138 		return (0);
3139 	if (obj_disable_relro(obj) == -1 ||
3140 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3141 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3142 	    lockstate) == -1) ||
3143 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3144 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3145 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3146 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3147 	    obj_enforce_relro(obj) == -1)
3148 		return (-1);
3149 	return (0);
3150 }
3151 
3152 static int
3153 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3154     RtldLockState *lockstate)
3155 {
3156 	Objlist_Entry *elm;
3157 	Obj_Entry *obj;
3158 
3159 	STAILQ_FOREACH(elm, list, link) {
3160 		obj = elm->obj;
3161 		if (obj->marker)
3162 			continue;
3163 		if (resolve_object_ifunc(obj, bind_now, flags,
3164 		    lockstate) == -1)
3165 			return (-1);
3166 	}
3167 	return (0);
3168 }
3169 
3170 /*
3171  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3172  * before the process exits.
3173  */
3174 static void
3175 rtld_exit(void)
3176 {
3177     RtldLockState lockstate;
3178 
3179     wlock_acquire(rtld_bind_lock, &lockstate);
3180     dbg("rtld_exit()");
3181     objlist_call_fini(&list_fini, NULL, &lockstate);
3182     /* No need to remove the items from the list, since we are exiting. */
3183     if (!libmap_disable)
3184         lm_fini();
3185     lock_release(rtld_bind_lock, &lockstate);
3186 }
3187 
3188 static void
3189 rtld_nop_exit(void)
3190 {
3191 }
3192 
3193 /*
3194  * Iterate over a search path, translate each element, and invoke the
3195  * callback on the result.
3196  */
3197 static void *
3198 path_enumerate(const char *path, path_enum_proc callback,
3199     const char *refobj_path, void *arg)
3200 {
3201     const char *trans;
3202     if (path == NULL)
3203 	return (NULL);
3204 
3205     path += strspn(path, ":;");
3206     while (*path != '\0') {
3207 	size_t len;
3208 	char  *res;
3209 
3210 	len = strcspn(path, ":;");
3211 	trans = lm_findn(refobj_path, path, len);
3212 	if (trans)
3213 	    res = callback(trans, strlen(trans), arg);
3214 	else
3215 	    res = callback(path, len, arg);
3216 
3217 	if (res != NULL)
3218 	    return (res);
3219 
3220 	path += len;
3221 	path += strspn(path, ":;");
3222     }
3223 
3224     return (NULL);
3225 }
3226 
3227 struct try_library_args {
3228     const char	*name;
3229     size_t	 namelen;
3230     char	*buffer;
3231     size_t	 buflen;
3232     int		 fd;
3233 };
3234 
3235 static void *
3236 try_library_path(const char *dir, size_t dirlen, void *param)
3237 {
3238     struct try_library_args *arg;
3239     int fd;
3240 
3241     arg = param;
3242     if (*dir == '/' || trust) {
3243 	char *pathname;
3244 
3245 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3246 		return (NULL);
3247 
3248 	pathname = arg->buffer;
3249 	strncpy(pathname, dir, dirlen);
3250 	pathname[dirlen] = '/';
3251 	strcpy(pathname + dirlen + 1, arg->name);
3252 
3253 	dbg("  Trying \"%s\"", pathname);
3254 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3255 	if (fd >= 0) {
3256 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3257 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3258 	    strcpy(pathname, arg->buffer);
3259 	    arg->fd = fd;
3260 	    return (pathname);
3261 	} else {
3262 	    dbg("  Failed to open \"%s\": %s",
3263 		pathname, rtld_strerror(errno));
3264 	}
3265     }
3266     return (NULL);
3267 }
3268 
3269 static char *
3270 search_library_path(const char *name, const char *path,
3271     const char *refobj_path, int *fdp)
3272 {
3273     char *p;
3274     struct try_library_args arg;
3275 
3276     if (path == NULL)
3277 	return NULL;
3278 
3279     arg.name = name;
3280     arg.namelen = strlen(name);
3281     arg.buffer = xmalloc(PATH_MAX);
3282     arg.buflen = PATH_MAX;
3283     arg.fd = -1;
3284 
3285     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3286     *fdp = arg.fd;
3287 
3288     free(arg.buffer);
3289 
3290     return (p);
3291 }
3292 
3293 
3294 /*
3295  * Finds the library with the given name using the directory descriptors
3296  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3297  *
3298  * Returns a freshly-opened close-on-exec file descriptor for the library,
3299  * or -1 if the library cannot be found.
3300  */
3301 static char *
3302 search_library_pathfds(const char *name, const char *path, int *fdp)
3303 {
3304 	char *envcopy, *fdstr, *found, *last_token;
3305 	size_t len;
3306 	int dirfd, fd;
3307 
3308 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3309 
3310 	/* Don't load from user-specified libdirs into setuid binaries. */
3311 	if (!trust)
3312 		return (NULL);
3313 
3314 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3315 	if (path == NULL)
3316 		return (NULL);
3317 
3318 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3319 	if (name[0] == '/') {
3320 		dbg("Absolute path (%s) passed to %s", name, __func__);
3321 		return (NULL);
3322 	}
3323 
3324 	/*
3325 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3326 	 * copy of the path, as strtok_r rewrites separator tokens
3327 	 * with '\0'.
3328 	 */
3329 	found = NULL;
3330 	envcopy = xstrdup(path);
3331 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3332 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3333 		dirfd = parse_integer(fdstr);
3334 		if (dirfd < 0) {
3335 			_rtld_error("failed to parse directory FD: '%s'",
3336 				fdstr);
3337 			break;
3338 		}
3339 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3340 		if (fd >= 0) {
3341 			*fdp = fd;
3342 			len = strlen(fdstr) + strlen(name) + 3;
3343 			found = xmalloc(len);
3344 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3345 				_rtld_error("error generating '%d/%s'",
3346 				    dirfd, name);
3347 				rtld_die();
3348 			}
3349 			dbg("open('%s') => %d", found, fd);
3350 			break;
3351 		}
3352 	}
3353 	free(envcopy);
3354 
3355 	return (found);
3356 }
3357 
3358 
3359 int
3360 dlclose(void *handle)
3361 {
3362 	RtldLockState lockstate;
3363 	int error;
3364 
3365 	wlock_acquire(rtld_bind_lock, &lockstate);
3366 	error = dlclose_locked(handle, &lockstate);
3367 	lock_release(rtld_bind_lock, &lockstate);
3368 	return (error);
3369 }
3370 
3371 static int
3372 dlclose_locked(void *handle, RtldLockState *lockstate)
3373 {
3374     Obj_Entry *root;
3375 
3376     root = dlcheck(handle);
3377     if (root == NULL)
3378 	return -1;
3379     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3380 	root->path);
3381 
3382     /* Unreference the object and its dependencies. */
3383     root->dl_refcount--;
3384 
3385     if (root->refcount == 1) {
3386 	/*
3387 	 * The object will be no longer referenced, so we must unload it.
3388 	 * First, call the fini functions.
3389 	 */
3390 	objlist_call_fini(&list_fini, root, lockstate);
3391 
3392 	unref_dag(root);
3393 
3394 	/* Finish cleaning up the newly-unreferenced objects. */
3395 	GDB_STATE(RT_DELETE,&root->linkmap);
3396 	unload_object(root, lockstate);
3397 	GDB_STATE(RT_CONSISTENT,NULL);
3398     } else
3399 	unref_dag(root);
3400 
3401     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3402     return 0;
3403 }
3404 
3405 char *
3406 dlerror(void)
3407 {
3408 	if (*(lockinfo.dlerror_seen()) != 0)
3409 		return (NULL);
3410 	*lockinfo.dlerror_seen() = 1;
3411 	return (lockinfo.dlerror_loc());
3412 }
3413 
3414 /*
3415  * This function is deprecated and has no effect.
3416  */
3417 void
3418 dllockinit(void *context,
3419     void *(*_lock_create)(void *context) __unused,
3420     void (*_rlock_acquire)(void *lock) __unused,
3421     void (*_wlock_acquire)(void *lock)  __unused,
3422     void (*_lock_release)(void *lock) __unused,
3423     void (*_lock_destroy)(void *lock) __unused,
3424     void (*context_destroy)(void *context))
3425 {
3426     static void *cur_context;
3427     static void (*cur_context_destroy)(void *);
3428 
3429     /* Just destroy the context from the previous call, if necessary. */
3430     if (cur_context_destroy != NULL)
3431 	cur_context_destroy(cur_context);
3432     cur_context = context;
3433     cur_context_destroy = context_destroy;
3434 }
3435 
3436 void *
3437 dlopen(const char *name, int mode)
3438 {
3439 
3440 	return (rtld_dlopen(name, -1, mode));
3441 }
3442 
3443 void *
3444 fdlopen(int fd, int mode)
3445 {
3446 
3447 	return (rtld_dlopen(NULL, fd, mode));
3448 }
3449 
3450 static void *
3451 rtld_dlopen(const char *name, int fd, int mode)
3452 {
3453     RtldLockState lockstate;
3454     int lo_flags;
3455 
3456     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3457     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3458     if (ld_tracing != NULL) {
3459 	rlock_acquire(rtld_bind_lock, &lockstate);
3460 	if (sigsetjmp(lockstate.env, 0) != 0)
3461 	    lock_upgrade(rtld_bind_lock, &lockstate);
3462 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3463 	lock_release(rtld_bind_lock, &lockstate);
3464     }
3465     lo_flags = RTLD_LO_DLOPEN;
3466     if (mode & RTLD_NODELETE)
3467 	    lo_flags |= RTLD_LO_NODELETE;
3468     if (mode & RTLD_NOLOAD)
3469 	    lo_flags |= RTLD_LO_NOLOAD;
3470     if (mode & RTLD_DEEPBIND)
3471 	    lo_flags |= RTLD_LO_DEEPBIND;
3472     if (ld_tracing != NULL)
3473 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3474 
3475     return (dlopen_object(name, fd, obj_main, lo_flags,
3476       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3477 }
3478 
3479 static void
3480 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3481 {
3482 
3483 	obj->dl_refcount--;
3484 	unref_dag(obj);
3485 	if (obj->refcount == 0)
3486 		unload_object(obj, lockstate);
3487 }
3488 
3489 static Obj_Entry *
3490 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3491     int mode, RtldLockState *lockstate)
3492 {
3493     Obj_Entry *old_obj_tail;
3494     Obj_Entry *obj;
3495     Objlist initlist;
3496     RtldLockState mlockstate;
3497     int result;
3498 
3499     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3500       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3501       refobj->path, lo_flags, mode);
3502     objlist_init(&initlist);
3503 
3504     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3505 	wlock_acquire(rtld_bind_lock, &mlockstate);
3506 	lockstate = &mlockstate;
3507     }
3508     GDB_STATE(RT_ADD,NULL);
3509 
3510     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3511     obj = NULL;
3512     if (name == NULL && fd == -1) {
3513 	obj = obj_main;
3514 	obj->refcount++;
3515     } else {
3516 	obj = load_object(name, fd, refobj, lo_flags);
3517     }
3518 
3519     if (obj) {
3520 	obj->dl_refcount++;
3521 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3522 	    objlist_push_tail(&list_global, obj);
3523 	if (globallist_next(old_obj_tail) != NULL) {
3524 	    /* We loaded something new. */
3525 	    assert(globallist_next(old_obj_tail) == obj);
3526 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3527 		obj->symbolic = true;
3528 	    result = 0;
3529 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3530 	      obj->static_tls && !allocate_tls_offset(obj)) {
3531 		_rtld_error("%s: No space available "
3532 		  "for static Thread Local Storage", obj->path);
3533 		result = -1;
3534 	    }
3535 	    if (result != -1)
3536 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3537 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3538 	    init_dag(obj);
3539 	    ref_dag(obj);
3540 	    if (result != -1)
3541 		result = rtld_verify_versions(&obj->dagmembers);
3542 	    if (result != -1 && ld_tracing)
3543 		goto trace;
3544 	    if (result == -1 || relocate_object_dag(obj,
3545 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3546 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3547 	      lockstate) == -1) {
3548 		dlopen_cleanup(obj, lockstate);
3549 		obj = NULL;
3550 	    } else if (lo_flags & RTLD_LO_EARLY) {
3551 		/*
3552 		 * Do not call the init functions for early loaded
3553 		 * filtees.  The image is still not initialized enough
3554 		 * for them to work.
3555 		 *
3556 		 * Our object is found by the global object list and
3557 		 * will be ordered among all init calls done right
3558 		 * before transferring control to main.
3559 		 */
3560 	    } else {
3561 		/* Make list of init functions to call. */
3562 		initlist_add_objects(obj, obj, &initlist);
3563 	    }
3564 	    /*
3565 	     * Process all no_delete or global objects here, given
3566 	     * them own DAGs to prevent their dependencies from being
3567 	     * unloaded.  This has to be done after we have loaded all
3568 	     * of the dependencies, so that we do not miss any.
3569 	     */
3570 	    if (obj != NULL)
3571 		process_z(obj);
3572 	} else {
3573 	    /*
3574 	     * Bump the reference counts for objects on this DAG.  If
3575 	     * this is the first dlopen() call for the object that was
3576 	     * already loaded as a dependency, initialize the dag
3577 	     * starting at it.
3578 	     */
3579 	    init_dag(obj);
3580 	    ref_dag(obj);
3581 
3582 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3583 		goto trace;
3584 	}
3585 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3586 	  obj->z_nodelete) && !obj->ref_nodel) {
3587 	    dbg("obj %s nodelete", obj->path);
3588 	    ref_dag(obj);
3589 	    obj->z_nodelete = obj->ref_nodel = true;
3590 	}
3591     }
3592 
3593     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3594 	name);
3595     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3596 
3597     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3598 	map_stacks_exec(lockstate);
3599 	if (obj != NULL)
3600 	    distribute_static_tls(&initlist, lockstate);
3601     }
3602 
3603     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3604       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3605       lockstate) == -1) {
3606 	objlist_clear(&initlist);
3607 	dlopen_cleanup(obj, lockstate);
3608 	if (lockstate == &mlockstate)
3609 	    lock_release(rtld_bind_lock, lockstate);
3610 	return (NULL);
3611     }
3612 
3613     if (!(lo_flags & RTLD_LO_EARLY)) {
3614 	/* Call the init functions. */
3615 	objlist_call_init(&initlist, lockstate);
3616     }
3617     objlist_clear(&initlist);
3618     if (lockstate == &mlockstate)
3619 	lock_release(rtld_bind_lock, lockstate);
3620     return obj;
3621 trace:
3622     trace_loaded_objects(obj);
3623     if (lockstate == &mlockstate)
3624 	lock_release(rtld_bind_lock, lockstate);
3625     exit(0);
3626 }
3627 
3628 static void *
3629 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3630     int flags)
3631 {
3632     DoneList donelist;
3633     const Obj_Entry *obj, *defobj;
3634     const Elf_Sym *def;
3635     SymLook req;
3636     RtldLockState lockstate;
3637     tls_index ti;
3638     void *sym;
3639     int res;
3640 
3641     def = NULL;
3642     defobj = NULL;
3643     symlook_init(&req, name);
3644     req.ventry = ve;
3645     req.flags = flags | SYMLOOK_IN_PLT;
3646     req.lockstate = &lockstate;
3647 
3648     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3649     rlock_acquire(rtld_bind_lock, &lockstate);
3650     if (sigsetjmp(lockstate.env, 0) != 0)
3651 	    lock_upgrade(rtld_bind_lock, &lockstate);
3652     if (handle == NULL || handle == RTLD_NEXT ||
3653 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3654 
3655 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3656 	    _rtld_error("Cannot determine caller's shared object");
3657 	    lock_release(rtld_bind_lock, &lockstate);
3658 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3659 	    return NULL;
3660 	}
3661 	if (handle == NULL) {	/* Just the caller's shared object. */
3662 	    res = symlook_obj(&req, obj);
3663 	    if (res == 0) {
3664 		def = req.sym_out;
3665 		defobj = req.defobj_out;
3666 	    }
3667 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3668 		   handle == RTLD_SELF) { /* ... caller included */
3669 	    if (handle == RTLD_NEXT)
3670 		obj = globallist_next(obj);
3671 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3672 		if (obj->marker)
3673 		    continue;
3674 		res = symlook_obj(&req, obj);
3675 		if (res == 0) {
3676 		    if (def == NULL ||
3677 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3678 			def = req.sym_out;
3679 			defobj = req.defobj_out;
3680 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3681 			    break;
3682 		    }
3683 		}
3684 	    }
3685 	    /*
3686 	     * Search the dynamic linker itself, and possibly resolve the
3687 	     * symbol from there.  This is how the application links to
3688 	     * dynamic linker services such as dlopen.
3689 	     */
3690 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3691 		res = symlook_obj(&req, &obj_rtld);
3692 		if (res == 0) {
3693 		    def = req.sym_out;
3694 		    defobj = req.defobj_out;
3695 		}
3696 	    }
3697 	} else {
3698 	    assert(handle == RTLD_DEFAULT);
3699 	    res = symlook_default(&req, obj);
3700 	    if (res == 0) {
3701 		defobj = req.defobj_out;
3702 		def = req.sym_out;
3703 	    }
3704 	}
3705     } else {
3706 	if ((obj = dlcheck(handle)) == NULL) {
3707 	    lock_release(rtld_bind_lock, &lockstate);
3708 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3709 	    return NULL;
3710 	}
3711 
3712 	donelist_init(&donelist);
3713 	if (obj->mainprog) {
3714             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3715 	    res = symlook_global(&req, &donelist);
3716 	    if (res == 0) {
3717 		def = req.sym_out;
3718 		defobj = req.defobj_out;
3719 	    }
3720 	    /*
3721 	     * Search the dynamic linker itself, and possibly resolve the
3722 	     * symbol from there.  This is how the application links to
3723 	     * dynamic linker services such as dlopen.
3724 	     */
3725 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3726 		res = symlook_obj(&req, &obj_rtld);
3727 		if (res == 0) {
3728 		    def = req.sym_out;
3729 		    defobj = req.defobj_out;
3730 		}
3731 	    }
3732 	}
3733 	else {
3734 	    /* Search the whole DAG rooted at the given object. */
3735 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3736 	    if (res == 0) {
3737 		def = req.sym_out;
3738 		defobj = req.defobj_out;
3739 	    }
3740 	}
3741     }
3742 
3743     if (def != NULL) {
3744 	lock_release(rtld_bind_lock, &lockstate);
3745 
3746 	/*
3747 	 * The value required by the caller is derived from the value
3748 	 * of the symbol. this is simply the relocated value of the
3749 	 * symbol.
3750 	 */
3751 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3752 	    sym = make_function_pointer(def, defobj);
3753 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3754 	    sym = rtld_resolve_ifunc(defobj, def);
3755 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3756 	    ti.ti_module = defobj->tlsindex;
3757 	    ti.ti_offset = def->st_value;
3758 	    sym = __tls_get_addr(&ti);
3759 	} else
3760 	    sym = defobj->relocbase + def->st_value;
3761 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3762 	return (sym);
3763     }
3764 
3765     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3766       ve != NULL ? ve->name : "");
3767     lock_release(rtld_bind_lock, &lockstate);
3768     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3769     return NULL;
3770 }
3771 
3772 void *
3773 dlsym(void *handle, const char *name)
3774 {
3775 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3776 	    SYMLOOK_DLSYM);
3777 }
3778 
3779 dlfunc_t
3780 dlfunc(void *handle, const char *name)
3781 {
3782 	union {
3783 		void *d;
3784 		dlfunc_t f;
3785 	} rv;
3786 
3787 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3788 	    SYMLOOK_DLSYM);
3789 	return (rv.f);
3790 }
3791 
3792 void *
3793 dlvsym(void *handle, const char *name, const char *version)
3794 {
3795 	Ver_Entry ventry;
3796 
3797 	ventry.name = version;
3798 	ventry.file = NULL;
3799 	ventry.hash = elf_hash(version);
3800 	ventry.flags= 0;
3801 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3802 	    SYMLOOK_DLSYM);
3803 }
3804 
3805 int
3806 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3807 {
3808     const Obj_Entry *obj;
3809     RtldLockState lockstate;
3810 
3811     rlock_acquire(rtld_bind_lock, &lockstate);
3812     obj = obj_from_addr(addr);
3813     if (obj == NULL) {
3814         _rtld_error("No shared object contains address");
3815 	lock_release(rtld_bind_lock, &lockstate);
3816         return (0);
3817     }
3818     rtld_fill_dl_phdr_info(obj, phdr_info);
3819     lock_release(rtld_bind_lock, &lockstate);
3820     return (1);
3821 }
3822 
3823 int
3824 dladdr(const void *addr, Dl_info *info)
3825 {
3826     const Obj_Entry *obj;
3827     const Elf_Sym *def;
3828     void *symbol_addr;
3829     unsigned long symoffset;
3830     RtldLockState lockstate;
3831 
3832     rlock_acquire(rtld_bind_lock, &lockstate);
3833     obj = obj_from_addr(addr);
3834     if (obj == NULL) {
3835         _rtld_error("No shared object contains address");
3836 	lock_release(rtld_bind_lock, &lockstate);
3837         return 0;
3838     }
3839     info->dli_fname = obj->path;
3840     info->dli_fbase = obj->mapbase;
3841     info->dli_saddr = (void *)0;
3842     info->dli_sname = NULL;
3843 
3844     /*
3845      * Walk the symbol list looking for the symbol whose address is
3846      * closest to the address sent in.
3847      */
3848     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3849         def = obj->symtab + symoffset;
3850 
3851         /*
3852          * For skip the symbol if st_shndx is either SHN_UNDEF or
3853          * SHN_COMMON.
3854          */
3855         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3856             continue;
3857 
3858         /*
3859          * If the symbol is greater than the specified address, or if it
3860          * is further away from addr than the current nearest symbol,
3861          * then reject it.
3862          */
3863         symbol_addr = obj->relocbase + def->st_value;
3864         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3865             continue;
3866 
3867         /* Update our idea of the nearest symbol. */
3868         info->dli_sname = obj->strtab + def->st_name;
3869         info->dli_saddr = symbol_addr;
3870 
3871         /* Exact match? */
3872         if (info->dli_saddr == addr)
3873             break;
3874     }
3875     lock_release(rtld_bind_lock, &lockstate);
3876     return 1;
3877 }
3878 
3879 int
3880 dlinfo(void *handle, int request, void *p)
3881 {
3882     const Obj_Entry *obj;
3883     RtldLockState lockstate;
3884     int error;
3885 
3886     rlock_acquire(rtld_bind_lock, &lockstate);
3887 
3888     if (handle == NULL || handle == RTLD_SELF) {
3889 	void *retaddr;
3890 
3891 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3892 	if ((obj = obj_from_addr(retaddr)) == NULL)
3893 	    _rtld_error("Cannot determine caller's shared object");
3894     } else
3895 	obj = dlcheck(handle);
3896 
3897     if (obj == NULL) {
3898 	lock_release(rtld_bind_lock, &lockstate);
3899 	return (-1);
3900     }
3901 
3902     error = 0;
3903     switch (request) {
3904     case RTLD_DI_LINKMAP:
3905 	*((struct link_map const **)p) = &obj->linkmap;
3906 	break;
3907     case RTLD_DI_ORIGIN:
3908 	error = rtld_dirname(obj->path, p);
3909 	break;
3910 
3911     case RTLD_DI_SERINFOSIZE:
3912     case RTLD_DI_SERINFO:
3913 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3914 	break;
3915 
3916     default:
3917 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3918 	error = -1;
3919     }
3920 
3921     lock_release(rtld_bind_lock, &lockstate);
3922 
3923     return (error);
3924 }
3925 
3926 static void
3927 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3928 {
3929 	Elf_Addr **dtvp;
3930 
3931 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3932 	phdr_info->dlpi_name = obj->path;
3933 	phdr_info->dlpi_phdr = obj->phdr;
3934 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3935 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3936 	dtvp = _get_tp();
3937 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
3938 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
3939 	phdr_info->dlpi_adds = obj_loads;
3940 	phdr_info->dlpi_subs = obj_loads - obj_count;
3941 }
3942 
3943 int
3944 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3945 {
3946 	struct dl_phdr_info phdr_info;
3947 	Obj_Entry *obj, marker;
3948 	RtldLockState bind_lockstate, phdr_lockstate;
3949 	int error;
3950 
3951 	init_marker(&marker);
3952 	error = 0;
3953 
3954 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3955 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3956 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3957 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3958 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3959 		hold_object(obj);
3960 		lock_release(rtld_bind_lock, &bind_lockstate);
3961 
3962 		error = callback(&phdr_info, sizeof phdr_info, param);
3963 
3964 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3965 		unhold_object(obj);
3966 		obj = globallist_next(&marker);
3967 		TAILQ_REMOVE(&obj_list, &marker, next);
3968 		if (error != 0) {
3969 			lock_release(rtld_bind_lock, &bind_lockstate);
3970 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3971 			return (error);
3972 		}
3973 	}
3974 
3975 	if (error == 0) {
3976 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3977 		lock_release(rtld_bind_lock, &bind_lockstate);
3978 		error = callback(&phdr_info, sizeof(phdr_info), param);
3979 	}
3980 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3981 	return (error);
3982 }
3983 
3984 static void *
3985 fill_search_info(const char *dir, size_t dirlen, void *param)
3986 {
3987     struct fill_search_info_args *arg;
3988 
3989     arg = param;
3990 
3991     if (arg->request == RTLD_DI_SERINFOSIZE) {
3992 	arg->serinfo->dls_cnt ++;
3993 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3994     } else {
3995 	struct dl_serpath *s_entry;
3996 
3997 	s_entry = arg->serpath;
3998 	s_entry->dls_name  = arg->strspace;
3999 	s_entry->dls_flags = arg->flags;
4000 
4001 	strncpy(arg->strspace, dir, dirlen);
4002 	arg->strspace[dirlen] = '\0';
4003 
4004 	arg->strspace += dirlen + 1;
4005 	arg->serpath++;
4006     }
4007 
4008     return (NULL);
4009 }
4010 
4011 static int
4012 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4013 {
4014     struct dl_serinfo _info;
4015     struct fill_search_info_args args;
4016 
4017     args.request = RTLD_DI_SERINFOSIZE;
4018     args.serinfo = &_info;
4019 
4020     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4021     _info.dls_cnt  = 0;
4022 
4023     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4024     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4025     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4026     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4027     if (!obj->z_nodeflib)
4028       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4029 
4030 
4031     if (request == RTLD_DI_SERINFOSIZE) {
4032 	info->dls_size = _info.dls_size;
4033 	info->dls_cnt = _info.dls_cnt;
4034 	return (0);
4035     }
4036 
4037     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4038 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4039 	return (-1);
4040     }
4041 
4042     args.request  = RTLD_DI_SERINFO;
4043     args.serinfo  = info;
4044     args.serpath  = &info->dls_serpath[0];
4045     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4046 
4047     args.flags = LA_SER_RUNPATH;
4048     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4049 	return (-1);
4050 
4051     args.flags = LA_SER_LIBPATH;
4052     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4053 	return (-1);
4054 
4055     args.flags = LA_SER_RUNPATH;
4056     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4057 	return (-1);
4058 
4059     args.flags = LA_SER_CONFIG;
4060     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4061       != NULL)
4062 	return (-1);
4063 
4064     args.flags = LA_SER_DEFAULT;
4065     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4066       fill_search_info, NULL, &args) != NULL)
4067 	return (-1);
4068     return (0);
4069 }
4070 
4071 static int
4072 rtld_dirname(const char *path, char *bname)
4073 {
4074     const char *endp;
4075 
4076     /* Empty or NULL string gets treated as "." */
4077     if (path == NULL || *path == '\0') {
4078 	bname[0] = '.';
4079 	bname[1] = '\0';
4080 	return (0);
4081     }
4082 
4083     /* Strip trailing slashes */
4084     endp = path + strlen(path) - 1;
4085     while (endp > path && *endp == '/')
4086 	endp--;
4087 
4088     /* Find the start of the dir */
4089     while (endp > path && *endp != '/')
4090 	endp--;
4091 
4092     /* Either the dir is "/" or there are no slashes */
4093     if (endp == path) {
4094 	bname[0] = *endp == '/' ? '/' : '.';
4095 	bname[1] = '\0';
4096 	return (0);
4097     } else {
4098 	do {
4099 	    endp--;
4100 	} while (endp > path && *endp == '/');
4101     }
4102 
4103     if (endp - path + 2 > PATH_MAX)
4104     {
4105 	_rtld_error("Filename is too long: %s", path);
4106 	return(-1);
4107     }
4108 
4109     strncpy(bname, path, endp - path + 1);
4110     bname[endp - path + 1] = '\0';
4111     return (0);
4112 }
4113 
4114 static int
4115 rtld_dirname_abs(const char *path, char *base)
4116 {
4117 	char *last;
4118 
4119 	if (realpath(path, base) == NULL) {
4120 		_rtld_error("realpath \"%s\" failed (%s)", path,
4121 		    rtld_strerror(errno));
4122 		return (-1);
4123 	}
4124 	dbg("%s -> %s", path, base);
4125 	last = strrchr(base, '/');
4126 	if (last == NULL) {
4127 		_rtld_error("non-abs result from realpath \"%s\"", path);
4128 		return (-1);
4129 	}
4130 	if (last != base)
4131 		*last = '\0';
4132 	return (0);
4133 }
4134 
4135 static void
4136 linkmap_add(Obj_Entry *obj)
4137 {
4138 	struct link_map *l, *prev;
4139 
4140 	l = &obj->linkmap;
4141 	l->l_name = obj->path;
4142 	l->l_base = obj->mapbase;
4143 	l->l_ld = obj->dynamic;
4144 	l->l_addr = obj->relocbase;
4145 
4146 	if (r_debug.r_map == NULL) {
4147 		r_debug.r_map = l;
4148 		return;
4149 	}
4150 
4151 	/*
4152 	 * Scan to the end of the list, but not past the entry for the
4153 	 * dynamic linker, which we want to keep at the very end.
4154 	 */
4155 	for (prev = r_debug.r_map;
4156 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4157 	     prev = prev->l_next)
4158 		;
4159 
4160 	/* Link in the new entry. */
4161 	l->l_prev = prev;
4162 	l->l_next = prev->l_next;
4163 	if (l->l_next != NULL)
4164 		l->l_next->l_prev = l;
4165 	prev->l_next = l;
4166 }
4167 
4168 static void
4169 linkmap_delete(Obj_Entry *obj)
4170 {
4171 	struct link_map *l;
4172 
4173 	l = &obj->linkmap;
4174 	if (l->l_prev == NULL) {
4175 		if ((r_debug.r_map = l->l_next) != NULL)
4176 			l->l_next->l_prev = NULL;
4177 		return;
4178 	}
4179 
4180 	if ((l->l_prev->l_next = l->l_next) != NULL)
4181 		l->l_next->l_prev = l->l_prev;
4182 }
4183 
4184 /*
4185  * Function for the debugger to set a breakpoint on to gain control.
4186  *
4187  * The two parameters allow the debugger to easily find and determine
4188  * what the runtime loader is doing and to whom it is doing it.
4189  *
4190  * When the loadhook trap is hit (r_debug_state, set at program
4191  * initialization), the arguments can be found on the stack:
4192  *
4193  *  +8   struct link_map *m
4194  *  +4   struct r_debug  *rd
4195  *  +0   RetAddr
4196  */
4197 void
4198 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4199 {
4200     /*
4201      * The following is a hack to force the compiler to emit calls to
4202      * this function, even when optimizing.  If the function is empty,
4203      * the compiler is not obliged to emit any code for calls to it,
4204      * even when marked __noinline.  However, gdb depends on those
4205      * calls being made.
4206      */
4207     __compiler_membar();
4208 }
4209 
4210 /*
4211  * A function called after init routines have completed. This can be used to
4212  * break before a program's entry routine is called, and can be used when
4213  * main is not available in the symbol table.
4214  */
4215 void
4216 _r_debug_postinit(struct link_map *m __unused)
4217 {
4218 
4219 	/* See r_debug_state(). */
4220 	__compiler_membar();
4221 }
4222 
4223 static void
4224 release_object(Obj_Entry *obj)
4225 {
4226 
4227 	if (obj->holdcount > 0) {
4228 		obj->unholdfree = true;
4229 		return;
4230 	}
4231 	munmap(obj->mapbase, obj->mapsize);
4232 	linkmap_delete(obj);
4233 	obj_free(obj);
4234 }
4235 
4236 /*
4237  * Get address of the pointer variable in the main program.
4238  * Prefer non-weak symbol over the weak one.
4239  */
4240 static const void **
4241 get_program_var_addr(const char *name, RtldLockState *lockstate)
4242 {
4243     SymLook req;
4244     DoneList donelist;
4245 
4246     symlook_init(&req, name);
4247     req.lockstate = lockstate;
4248     donelist_init(&donelist);
4249     if (symlook_global(&req, &donelist) != 0)
4250 	return (NULL);
4251     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4252 	return ((const void **)make_function_pointer(req.sym_out,
4253 	  req.defobj_out));
4254     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4255 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4256     else
4257 	return ((const void **)(req.defobj_out->relocbase +
4258 	  req.sym_out->st_value));
4259 }
4260 
4261 /*
4262  * Set a pointer variable in the main program to the given value.  This
4263  * is used to set key variables such as "environ" before any of the
4264  * init functions are called.
4265  */
4266 static void
4267 set_program_var(const char *name, const void *value)
4268 {
4269     const void **addr;
4270 
4271     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4272 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4273 	*addr = value;
4274     }
4275 }
4276 
4277 /*
4278  * Search the global objects, including dependencies and main object,
4279  * for the given symbol.
4280  */
4281 static int
4282 symlook_global(SymLook *req, DoneList *donelist)
4283 {
4284     SymLook req1;
4285     const Objlist_Entry *elm;
4286     int res;
4287 
4288     symlook_init_from_req(&req1, req);
4289 
4290     /* Search all objects loaded at program start up. */
4291     if (req->defobj_out == NULL ||
4292       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4293 	res = symlook_list(&req1, &list_main, donelist);
4294 	if (res == 0 && (req->defobj_out == NULL ||
4295 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4296 	    req->sym_out = req1.sym_out;
4297 	    req->defobj_out = req1.defobj_out;
4298 	    assert(req->defobj_out != NULL);
4299 	}
4300     }
4301 
4302     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4303     STAILQ_FOREACH(elm, &list_global, link) {
4304 	if (req->defobj_out != NULL &&
4305 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4306 	    break;
4307 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4308 	if (res == 0 && (req->defobj_out == NULL ||
4309 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4310 	    req->sym_out = req1.sym_out;
4311 	    req->defobj_out = req1.defobj_out;
4312 	    assert(req->defobj_out != NULL);
4313 	}
4314     }
4315 
4316     return (req->sym_out != NULL ? 0 : ESRCH);
4317 }
4318 
4319 /*
4320  * Given a symbol name in a referencing object, find the corresponding
4321  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4322  * no definition was found.  Returns a pointer to the Obj_Entry of the
4323  * defining object via the reference parameter DEFOBJ_OUT.
4324  */
4325 static int
4326 symlook_default(SymLook *req, const Obj_Entry *refobj)
4327 {
4328     DoneList donelist;
4329     const Objlist_Entry *elm;
4330     SymLook req1;
4331     int res;
4332 
4333     donelist_init(&donelist);
4334     symlook_init_from_req(&req1, req);
4335 
4336     /*
4337      * Look first in the referencing object if linked symbolically,
4338      * and similarly handle protected symbols.
4339      */
4340     res = symlook_obj(&req1, refobj);
4341     if (res == 0 && (refobj->symbolic ||
4342       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4343 	req->sym_out = req1.sym_out;
4344 	req->defobj_out = req1.defobj_out;
4345 	assert(req->defobj_out != NULL);
4346     }
4347     if (refobj->symbolic || req->defobj_out != NULL)
4348 	donelist_check(&donelist, refobj);
4349 
4350     symlook_global(req, &donelist);
4351 
4352     /* Search all dlopened DAGs containing the referencing object. */
4353     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4354 	if (req->sym_out != NULL &&
4355 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4356 	    break;
4357 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4358 	if (res == 0 && (req->sym_out == NULL ||
4359 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4360 	    req->sym_out = req1.sym_out;
4361 	    req->defobj_out = req1.defobj_out;
4362 	    assert(req->defobj_out != NULL);
4363 	}
4364     }
4365 
4366     /*
4367      * Search the dynamic linker itself, and possibly resolve the
4368      * symbol from there.  This is how the application links to
4369      * dynamic linker services such as dlopen.
4370      */
4371     if (req->sym_out == NULL ||
4372       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4373 	res = symlook_obj(&req1, &obj_rtld);
4374 	if (res == 0) {
4375 	    req->sym_out = req1.sym_out;
4376 	    req->defobj_out = req1.defobj_out;
4377 	    assert(req->defobj_out != NULL);
4378 	}
4379     }
4380 
4381     return (req->sym_out != NULL ? 0 : ESRCH);
4382 }
4383 
4384 static int
4385 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4386 {
4387     const Elf_Sym *def;
4388     const Obj_Entry *defobj;
4389     const Objlist_Entry *elm;
4390     SymLook req1;
4391     int res;
4392 
4393     def = NULL;
4394     defobj = NULL;
4395     STAILQ_FOREACH(elm, objlist, link) {
4396 	if (donelist_check(dlp, elm->obj))
4397 	    continue;
4398 	symlook_init_from_req(&req1, req);
4399 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4400 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4401 		def = req1.sym_out;
4402 		defobj = req1.defobj_out;
4403 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4404 		    break;
4405 	    }
4406 	}
4407     }
4408     if (def != NULL) {
4409 	req->sym_out = def;
4410 	req->defobj_out = defobj;
4411 	return (0);
4412     }
4413     return (ESRCH);
4414 }
4415 
4416 /*
4417  * Search the chain of DAGS cointed to by the given Needed_Entry
4418  * for a symbol of the given name.  Each DAG is scanned completely
4419  * before advancing to the next one.  Returns a pointer to the symbol,
4420  * or NULL if no definition was found.
4421  */
4422 static int
4423 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4424 {
4425     const Elf_Sym *def;
4426     const Needed_Entry *n;
4427     const Obj_Entry *defobj;
4428     SymLook req1;
4429     int res;
4430 
4431     def = NULL;
4432     defobj = NULL;
4433     symlook_init_from_req(&req1, req);
4434     for (n = needed; n != NULL; n = n->next) {
4435 	if (n->obj == NULL ||
4436 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4437 	    continue;
4438 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4439 	    def = req1.sym_out;
4440 	    defobj = req1.defobj_out;
4441 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4442 		break;
4443 	}
4444     }
4445     if (def != NULL) {
4446 	req->sym_out = def;
4447 	req->defobj_out = defobj;
4448 	return (0);
4449     }
4450     return (ESRCH);
4451 }
4452 
4453 /*
4454  * Search the symbol table of a single shared object for a symbol of
4455  * the given name and version, if requested.  Returns a pointer to the
4456  * symbol, or NULL if no definition was found.  If the object is
4457  * filter, return filtered symbol from filtee.
4458  *
4459  * The symbol's hash value is passed in for efficiency reasons; that
4460  * eliminates many recomputations of the hash value.
4461  */
4462 int
4463 symlook_obj(SymLook *req, const Obj_Entry *obj)
4464 {
4465     DoneList donelist;
4466     SymLook req1;
4467     int flags, res, mres;
4468 
4469     /*
4470      * If there is at least one valid hash at this point, we prefer to
4471      * use the faster GNU version if available.
4472      */
4473     if (obj->valid_hash_gnu)
4474 	mres = symlook_obj1_gnu(req, obj);
4475     else if (obj->valid_hash_sysv)
4476 	mres = symlook_obj1_sysv(req, obj);
4477     else
4478 	return (EINVAL);
4479 
4480     if (mres == 0) {
4481 	if (obj->needed_filtees != NULL) {
4482 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4483 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4484 	    donelist_init(&donelist);
4485 	    symlook_init_from_req(&req1, req);
4486 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4487 	    if (res == 0) {
4488 		req->sym_out = req1.sym_out;
4489 		req->defobj_out = req1.defobj_out;
4490 	    }
4491 	    return (res);
4492 	}
4493 	if (obj->needed_aux_filtees != NULL) {
4494 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4495 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4496 	    donelist_init(&donelist);
4497 	    symlook_init_from_req(&req1, req);
4498 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4499 	    if (res == 0) {
4500 		req->sym_out = req1.sym_out;
4501 		req->defobj_out = req1.defobj_out;
4502 		return (res);
4503 	    }
4504 	}
4505     }
4506     return (mres);
4507 }
4508 
4509 /* Symbol match routine common to both hash functions */
4510 static bool
4511 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4512     const unsigned long symnum)
4513 {
4514 	Elf_Versym verndx;
4515 	const Elf_Sym *symp;
4516 	const char *strp;
4517 
4518 	symp = obj->symtab + symnum;
4519 	strp = obj->strtab + symp->st_name;
4520 
4521 	switch (ELF_ST_TYPE(symp->st_info)) {
4522 	case STT_FUNC:
4523 	case STT_NOTYPE:
4524 	case STT_OBJECT:
4525 	case STT_COMMON:
4526 	case STT_GNU_IFUNC:
4527 		if (symp->st_value == 0)
4528 			return (false);
4529 		/* fallthrough */
4530 	case STT_TLS:
4531 		if (symp->st_shndx != SHN_UNDEF)
4532 			break;
4533 #ifndef __mips__
4534 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4535 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4536 			break;
4537 #endif
4538 		/* fallthrough */
4539 	default:
4540 		return (false);
4541 	}
4542 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4543 		return (false);
4544 
4545 	if (req->ventry == NULL) {
4546 		if (obj->versyms != NULL) {
4547 			verndx = VER_NDX(obj->versyms[symnum]);
4548 			if (verndx > obj->vernum) {
4549 				_rtld_error(
4550 				    "%s: symbol %s references wrong version %d",
4551 				    obj->path, obj->strtab + symnum, verndx);
4552 				return (false);
4553 			}
4554 			/*
4555 			 * If we are not called from dlsym (i.e. this
4556 			 * is a normal relocation from unversioned
4557 			 * binary), accept the symbol immediately if
4558 			 * it happens to have first version after this
4559 			 * shared object became versioned.  Otherwise,
4560 			 * if symbol is versioned and not hidden,
4561 			 * remember it. If it is the only symbol with
4562 			 * this name exported by the shared object, it
4563 			 * will be returned as a match by the calling
4564 			 * function. If symbol is global (verndx < 2)
4565 			 * accept it unconditionally.
4566 			 */
4567 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4568 			    verndx == VER_NDX_GIVEN) {
4569 				result->sym_out = symp;
4570 				return (true);
4571 			}
4572 			else if (verndx >= VER_NDX_GIVEN) {
4573 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4574 				    == 0) {
4575 					if (result->vsymp == NULL)
4576 						result->vsymp = symp;
4577 					result->vcount++;
4578 				}
4579 				return (false);
4580 			}
4581 		}
4582 		result->sym_out = symp;
4583 		return (true);
4584 	}
4585 	if (obj->versyms == NULL) {
4586 		if (object_match_name(obj, req->ventry->name)) {
4587 			_rtld_error("%s: object %s should provide version %s "
4588 			    "for symbol %s", obj_rtld.path, obj->path,
4589 			    req->ventry->name, obj->strtab + symnum);
4590 			return (false);
4591 		}
4592 	} else {
4593 		verndx = VER_NDX(obj->versyms[symnum]);
4594 		if (verndx > obj->vernum) {
4595 			_rtld_error("%s: symbol %s references wrong version %d",
4596 			    obj->path, obj->strtab + symnum, verndx);
4597 			return (false);
4598 		}
4599 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4600 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4601 			/*
4602 			 * Version does not match. Look if this is a
4603 			 * global symbol and if it is not hidden. If
4604 			 * global symbol (verndx < 2) is available,
4605 			 * use it. Do not return symbol if we are
4606 			 * called by dlvsym, because dlvsym looks for
4607 			 * a specific version and default one is not
4608 			 * what dlvsym wants.
4609 			 */
4610 			if ((req->flags & SYMLOOK_DLSYM) ||
4611 			    (verndx >= VER_NDX_GIVEN) ||
4612 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4613 				return (false);
4614 		}
4615 	}
4616 	result->sym_out = symp;
4617 	return (true);
4618 }
4619 
4620 /*
4621  * Search for symbol using SysV hash function.
4622  * obj->buckets is known not to be NULL at this point; the test for this was
4623  * performed with the obj->valid_hash_sysv assignment.
4624  */
4625 static int
4626 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4627 {
4628 	unsigned long symnum;
4629 	Sym_Match_Result matchres;
4630 
4631 	matchres.sym_out = NULL;
4632 	matchres.vsymp = NULL;
4633 	matchres.vcount = 0;
4634 
4635 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4636 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4637 		if (symnum >= obj->nchains)
4638 			return (ESRCH);	/* Bad object */
4639 
4640 		if (matched_symbol(req, obj, &matchres, symnum)) {
4641 			req->sym_out = matchres.sym_out;
4642 			req->defobj_out = obj;
4643 			return (0);
4644 		}
4645 	}
4646 	if (matchres.vcount == 1) {
4647 		req->sym_out = matchres.vsymp;
4648 		req->defobj_out = obj;
4649 		return (0);
4650 	}
4651 	return (ESRCH);
4652 }
4653 
4654 /* Search for symbol using GNU hash function */
4655 static int
4656 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4657 {
4658 	Elf_Addr bloom_word;
4659 	const Elf32_Word *hashval;
4660 	Elf32_Word bucket;
4661 	Sym_Match_Result matchres;
4662 	unsigned int h1, h2;
4663 	unsigned long symnum;
4664 
4665 	matchres.sym_out = NULL;
4666 	matchres.vsymp = NULL;
4667 	matchres.vcount = 0;
4668 
4669 	/* Pick right bitmask word from Bloom filter array */
4670 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4671 	    obj->maskwords_bm_gnu];
4672 
4673 	/* Calculate modulus word size of gnu hash and its derivative */
4674 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4675 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4676 
4677 	/* Filter out the "definitely not in set" queries */
4678 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4679 		return (ESRCH);
4680 
4681 	/* Locate hash chain and corresponding value element*/
4682 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4683 	if (bucket == 0)
4684 		return (ESRCH);
4685 	hashval = &obj->chain_zero_gnu[bucket];
4686 	do {
4687 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4688 			symnum = hashval - obj->chain_zero_gnu;
4689 			if (matched_symbol(req, obj, &matchres, symnum)) {
4690 				req->sym_out = matchres.sym_out;
4691 				req->defobj_out = obj;
4692 				return (0);
4693 			}
4694 		}
4695 	} while ((*hashval++ & 1) == 0);
4696 	if (matchres.vcount == 1) {
4697 		req->sym_out = matchres.vsymp;
4698 		req->defobj_out = obj;
4699 		return (0);
4700 	}
4701 	return (ESRCH);
4702 }
4703 
4704 static void
4705 trace_loaded_objects(Obj_Entry *obj)
4706 {
4707     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4708     int c;
4709 
4710     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4711 	main_local = "";
4712 
4713     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4714 	fmt1 = "\t%o => %p (%x)\n";
4715 
4716     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4717 	fmt2 = "\t%o (%x)\n";
4718 
4719     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4720 
4721     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4722 	Needed_Entry *needed;
4723 	const char *name, *path;
4724 	bool is_lib;
4725 
4726 	if (obj->marker)
4727 	    continue;
4728 	if (list_containers && obj->needed != NULL)
4729 	    rtld_printf("%s:\n", obj->path);
4730 	for (needed = obj->needed; needed; needed = needed->next) {
4731 	    if (needed->obj != NULL) {
4732 		if (needed->obj->traced && !list_containers)
4733 		    continue;
4734 		needed->obj->traced = true;
4735 		path = needed->obj->path;
4736 	    } else
4737 		path = "not found";
4738 
4739 	    name = obj->strtab + needed->name;
4740 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4741 
4742 	    fmt = is_lib ? fmt1 : fmt2;
4743 	    while ((c = *fmt++) != '\0') {
4744 		switch (c) {
4745 		default:
4746 		    rtld_putchar(c);
4747 		    continue;
4748 		case '\\':
4749 		    switch (c = *fmt) {
4750 		    case '\0':
4751 			continue;
4752 		    case 'n':
4753 			rtld_putchar('\n');
4754 			break;
4755 		    case 't':
4756 			rtld_putchar('\t');
4757 			break;
4758 		    }
4759 		    break;
4760 		case '%':
4761 		    switch (c = *fmt) {
4762 		    case '\0':
4763 			continue;
4764 		    case '%':
4765 		    default:
4766 			rtld_putchar(c);
4767 			break;
4768 		    case 'A':
4769 			rtld_putstr(main_local);
4770 			break;
4771 		    case 'a':
4772 			rtld_putstr(obj_main->path);
4773 			break;
4774 		    case 'o':
4775 			rtld_putstr(name);
4776 			break;
4777 #if 0
4778 		    case 'm':
4779 			rtld_printf("%d", sodp->sod_major);
4780 			break;
4781 		    case 'n':
4782 			rtld_printf("%d", sodp->sod_minor);
4783 			break;
4784 #endif
4785 		    case 'p':
4786 			rtld_putstr(path);
4787 			break;
4788 		    case 'x':
4789 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4790 			  0);
4791 			break;
4792 		    }
4793 		    break;
4794 		}
4795 		++fmt;
4796 	    }
4797 	}
4798     }
4799 }
4800 
4801 /*
4802  * Unload a dlopened object and its dependencies from memory and from
4803  * our data structures.  It is assumed that the DAG rooted in the
4804  * object has already been unreferenced, and that the object has a
4805  * reference count of 0.
4806  */
4807 static void
4808 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4809 {
4810 	Obj_Entry marker, *obj, *next;
4811 
4812 	assert(root->refcount == 0);
4813 
4814 	/*
4815 	 * Pass over the DAG removing unreferenced objects from
4816 	 * appropriate lists.
4817 	 */
4818 	unlink_object(root);
4819 
4820 	/* Unmap all objects that are no longer referenced. */
4821 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4822 		next = TAILQ_NEXT(obj, next);
4823 		if (obj->marker || obj->refcount != 0)
4824 			continue;
4825 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4826 		    obj->mapsize, 0, obj->path);
4827 		dbg("unloading \"%s\"", obj->path);
4828 		/*
4829 		 * Unlink the object now to prevent new references from
4830 		 * being acquired while the bind lock is dropped in
4831 		 * recursive dlclose() invocations.
4832 		 */
4833 		TAILQ_REMOVE(&obj_list, obj, next);
4834 		obj_count--;
4835 
4836 		if (obj->filtees_loaded) {
4837 			if (next != NULL) {
4838 				init_marker(&marker);
4839 				TAILQ_INSERT_BEFORE(next, &marker, next);
4840 				unload_filtees(obj, lockstate);
4841 				next = TAILQ_NEXT(&marker, next);
4842 				TAILQ_REMOVE(&obj_list, &marker, next);
4843 			} else
4844 				unload_filtees(obj, lockstate);
4845 		}
4846 		release_object(obj);
4847 	}
4848 }
4849 
4850 static void
4851 unlink_object(Obj_Entry *root)
4852 {
4853     Objlist_Entry *elm;
4854 
4855     if (root->refcount == 0) {
4856 	/* Remove the object from the RTLD_GLOBAL list. */
4857 	objlist_remove(&list_global, root);
4858 
4859     	/* Remove the object from all objects' DAG lists. */
4860     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4861 	    objlist_remove(&elm->obj->dldags, root);
4862 	    if (elm->obj != root)
4863 		unlink_object(elm->obj);
4864 	}
4865     }
4866 }
4867 
4868 static void
4869 ref_dag(Obj_Entry *root)
4870 {
4871     Objlist_Entry *elm;
4872 
4873     assert(root->dag_inited);
4874     STAILQ_FOREACH(elm, &root->dagmembers, link)
4875 	elm->obj->refcount++;
4876 }
4877 
4878 static void
4879 unref_dag(Obj_Entry *root)
4880 {
4881     Objlist_Entry *elm;
4882 
4883     assert(root->dag_inited);
4884     STAILQ_FOREACH(elm, &root->dagmembers, link)
4885 	elm->obj->refcount--;
4886 }
4887 
4888 /*
4889  * Common code for MD __tls_get_addr().
4890  */
4891 static void *
4892 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
4893 {
4894 	Elf_Addr *newdtv, *dtv;
4895 	RtldLockState lockstate;
4896 	int to_copy;
4897 
4898 	dtv = *dtvp;
4899 	/* Check dtv generation in case new modules have arrived */
4900 	if (dtv[0] != tls_dtv_generation) {
4901 		if (!locked)
4902 			wlock_acquire(rtld_bind_lock, &lockstate);
4903 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4904 		to_copy = dtv[1];
4905 		if (to_copy > tls_max_index)
4906 			to_copy = tls_max_index;
4907 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4908 		newdtv[0] = tls_dtv_generation;
4909 		newdtv[1] = tls_max_index;
4910 		free(dtv);
4911 		if (!locked)
4912 			lock_release(rtld_bind_lock, &lockstate);
4913 		dtv = *dtvp = newdtv;
4914 	}
4915 
4916 	/* Dynamically allocate module TLS if necessary */
4917 	if (dtv[index + 1] == 0) {
4918 		/* Signal safe, wlock will block out signals. */
4919 		if (!locked)
4920 			wlock_acquire(rtld_bind_lock, &lockstate);
4921 		if (!dtv[index + 1])
4922 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4923 		if (!locked)
4924 			lock_release(rtld_bind_lock, &lockstate);
4925 	}
4926 	return ((void *)(dtv[index + 1] + offset));
4927 }
4928 
4929 void *
4930 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4931 {
4932 	Elf_Addr *dtv;
4933 
4934 	dtv = *dtvp;
4935 	/* Check dtv generation in case new modules have arrived */
4936 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4937 	    dtv[index + 1] != 0))
4938 		return ((void *)(dtv[index + 1] + offset));
4939 	return (tls_get_addr_slow(dtvp, index, offset, false));
4940 }
4941 
4942 #ifdef TLS_VARIANT_I
4943 
4944 /*
4945  * Return pointer to allocated TLS block
4946  */
4947 static void *
4948 get_tls_block_ptr(void *tcb, size_t tcbsize)
4949 {
4950     size_t extra_size, post_size, pre_size, tls_block_size;
4951     size_t tls_init_align;
4952 
4953     tls_init_align = MAX(obj_main->tlsalign, 1);
4954 
4955     /* Compute fragments sizes. */
4956     extra_size = tcbsize - TLS_TCB_SIZE;
4957     post_size = calculate_tls_post_size(tls_init_align);
4958     tls_block_size = tcbsize + post_size;
4959     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4960 
4961     return ((char *)tcb - pre_size - extra_size);
4962 }
4963 
4964 /*
4965  * Allocate Static TLS using the Variant I method.
4966  *
4967  * For details on the layout, see lib/libc/gen/tls.c.
4968  *
4969  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
4970  *     it is based on tls_last_offset, and TLS offsets here are really TCB
4971  *     offsets, whereas libc's tls_static_space is just the executable's static
4972  *     TLS segment.
4973  */
4974 void *
4975 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4976 {
4977     Obj_Entry *obj;
4978     char *tls_block;
4979     Elf_Addr *dtv, **tcb;
4980     Elf_Addr addr;
4981     Elf_Addr i;
4982     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
4983     size_t tls_init_align, tls_init_offset;
4984 
4985     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4986 	return (oldtcb);
4987 
4988     assert(tcbsize >= TLS_TCB_SIZE);
4989     maxalign = MAX(tcbalign, tls_static_max_align);
4990     tls_init_align = MAX(obj_main->tlsalign, 1);
4991 
4992     /* Compute fragmets sizes. */
4993     extra_size = tcbsize - TLS_TCB_SIZE;
4994     post_size = calculate_tls_post_size(tls_init_align);
4995     tls_block_size = tcbsize + post_size;
4996     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
4997     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
4998 
4999     /* Allocate whole TLS block */
5000     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5001     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5002 
5003     if (oldtcb != NULL) {
5004 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5005 	    tls_static_space);
5006 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5007 
5008 	/* Adjust the DTV. */
5009 	dtv = tcb[0];
5010 	for (i = 0; i < dtv[1]; i++) {
5011 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5012 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5013 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5014 	    }
5015 	}
5016     } else {
5017 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5018 	tcb[0] = dtv;
5019 	dtv[0] = tls_dtv_generation;
5020 	dtv[1] = tls_max_index;
5021 
5022 	for (obj = globallist_curr(objs); obj != NULL;
5023 	  obj = globallist_next(obj)) {
5024 	    if (obj->tlsoffset == 0)
5025 		continue;
5026 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5027 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5028 	    if (tls_init_offset > 0)
5029 		memset((void *)addr, 0, tls_init_offset);
5030 	    if (obj->tlsinitsize > 0) {
5031 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5032 		    obj->tlsinitsize);
5033 	    }
5034 	    if (obj->tlssize > obj->tlsinitsize) {
5035 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5036 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5037 	    }
5038 	    dtv[obj->tlsindex + 1] = addr;
5039 	}
5040     }
5041 
5042     return (tcb);
5043 }
5044 
5045 void
5046 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5047 {
5048     Elf_Addr *dtv;
5049     Elf_Addr tlsstart, tlsend;
5050     size_t post_size;
5051     size_t dtvsize, i, tls_init_align;
5052 
5053     assert(tcbsize >= TLS_TCB_SIZE);
5054     tls_init_align = MAX(obj_main->tlsalign, 1);
5055 
5056     /* Compute fragments sizes. */
5057     post_size = calculate_tls_post_size(tls_init_align);
5058 
5059     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5060     tlsend = (Elf_Addr)tcb + tls_static_space;
5061 
5062     dtv = *(Elf_Addr **)tcb;
5063     dtvsize = dtv[1];
5064     for (i = 0; i < dtvsize; i++) {
5065 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5066 	    free((void*)dtv[i+2]);
5067 	}
5068     }
5069     free(dtv);
5070     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5071 }
5072 
5073 #endif	/* TLS_VARIANT_I */
5074 
5075 #ifdef TLS_VARIANT_II
5076 
5077 /*
5078  * Allocate Static TLS using the Variant II method.
5079  */
5080 void *
5081 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5082 {
5083     Obj_Entry *obj;
5084     size_t size, ralign;
5085     char *tls;
5086     Elf_Addr *dtv, *olddtv;
5087     Elf_Addr segbase, oldsegbase, addr;
5088     size_t i;
5089 
5090     ralign = tcbalign;
5091     if (tls_static_max_align > ralign)
5092 	    ralign = tls_static_max_align;
5093     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5094 
5095     assert(tcbsize >= 2*sizeof(Elf_Addr));
5096     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5097     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5098 
5099     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5100     ((Elf_Addr*)segbase)[0] = segbase;
5101     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5102 
5103     dtv[0] = tls_dtv_generation;
5104     dtv[1] = tls_max_index;
5105 
5106     if (oldtls) {
5107 	/*
5108 	 * Copy the static TLS block over whole.
5109 	 */
5110 	oldsegbase = (Elf_Addr) oldtls;
5111 	memcpy((void *)(segbase - tls_static_space),
5112 	       (const void *)(oldsegbase - tls_static_space),
5113 	       tls_static_space);
5114 
5115 	/*
5116 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5117 	 * move them over.
5118 	 */
5119 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5120 	for (i = 0; i < olddtv[1]; i++) {
5121 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5122 		dtv[i+2] = olddtv[i+2];
5123 		olddtv[i+2] = 0;
5124 	    }
5125 	}
5126 
5127 	/*
5128 	 * We assume that this block was the one we created with
5129 	 * allocate_initial_tls().
5130 	 */
5131 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5132     } else {
5133 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5134 		if (obj->marker || obj->tlsoffset == 0)
5135 			continue;
5136 		addr = segbase - obj->tlsoffset;
5137 		memset((void*)(addr + obj->tlsinitsize),
5138 		       0, obj->tlssize - obj->tlsinitsize);
5139 		if (obj->tlsinit) {
5140 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5141 		    obj->static_tls_copied = true;
5142 		}
5143 		dtv[obj->tlsindex + 1] = addr;
5144 	}
5145     }
5146 
5147     return (void*) segbase;
5148 }
5149 
5150 void
5151 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5152 {
5153     Elf_Addr* dtv;
5154     size_t size, ralign;
5155     int dtvsize, i;
5156     Elf_Addr tlsstart, tlsend;
5157 
5158     /*
5159      * Figure out the size of the initial TLS block so that we can
5160      * find stuff which ___tls_get_addr() allocated dynamically.
5161      */
5162     ralign = tcbalign;
5163     if (tls_static_max_align > ralign)
5164 	    ralign = tls_static_max_align;
5165     size = roundup(tls_static_space, ralign);
5166 
5167     dtv = ((Elf_Addr**)tls)[1];
5168     dtvsize = dtv[1];
5169     tlsend = (Elf_Addr) tls;
5170     tlsstart = tlsend - size;
5171     for (i = 0; i < dtvsize; i++) {
5172 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5173 		free_aligned((void *)dtv[i + 2]);
5174 	}
5175     }
5176 
5177     free_aligned((void *)tlsstart);
5178     free((void*) dtv);
5179 }
5180 
5181 #endif	/* TLS_VARIANT_II */
5182 
5183 /*
5184  * Allocate TLS block for module with given index.
5185  */
5186 void *
5187 allocate_module_tls(int index)
5188 {
5189 	Obj_Entry *obj;
5190 	char *p;
5191 
5192 	TAILQ_FOREACH(obj, &obj_list, next) {
5193 		if (obj->marker)
5194 			continue;
5195 		if (obj->tlsindex == index)
5196 			break;
5197 	}
5198 	if (obj == NULL) {
5199 		_rtld_error("Can't find module with TLS index %d", index);
5200 		rtld_die();
5201 	}
5202 
5203 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5204 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5205 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5206 	return (p);
5207 }
5208 
5209 bool
5210 allocate_tls_offset(Obj_Entry *obj)
5211 {
5212     size_t off;
5213 
5214     if (obj->tls_done)
5215 	return true;
5216 
5217     if (obj->tlssize == 0) {
5218 	obj->tls_done = true;
5219 	return true;
5220     }
5221 
5222     if (tls_last_offset == 0)
5223 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5224 	  obj->tlspoffset);
5225     else
5226 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5227 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5228 
5229     obj->tlsoffset = off;
5230 #ifdef TLS_VARIANT_I
5231     off += obj->tlssize;
5232 #endif
5233 
5234     /*
5235      * If we have already fixed the size of the static TLS block, we
5236      * must stay within that size. When allocating the static TLS, we
5237      * leave a small amount of space spare to be used for dynamically
5238      * loading modules which use static TLS.
5239      */
5240     if (tls_static_space != 0) {
5241 	if (off > tls_static_space)
5242 	    return false;
5243     } else if (obj->tlsalign > tls_static_max_align) {
5244 	    tls_static_max_align = obj->tlsalign;
5245     }
5246 
5247     tls_last_offset = off;
5248     tls_last_size = obj->tlssize;
5249     obj->tls_done = true;
5250 
5251     return true;
5252 }
5253 
5254 void
5255 free_tls_offset(Obj_Entry *obj)
5256 {
5257 
5258     /*
5259      * If we were the last thing to allocate out of the static TLS
5260      * block, we give our space back to the 'allocator'. This is a
5261      * simplistic workaround to allow libGL.so.1 to be loaded and
5262      * unloaded multiple times.
5263      */
5264     size_t off = obj->tlsoffset;
5265 #ifdef TLS_VARIANT_I
5266     off += obj->tlssize;
5267 #endif
5268     if (off == tls_last_offset) {
5269 	tls_last_offset -= obj->tlssize;
5270 	tls_last_size = 0;
5271     }
5272 }
5273 
5274 void *
5275 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5276 {
5277     void *ret;
5278     RtldLockState lockstate;
5279 
5280     wlock_acquire(rtld_bind_lock, &lockstate);
5281     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5282       tcbsize, tcbalign);
5283     lock_release(rtld_bind_lock, &lockstate);
5284     return (ret);
5285 }
5286 
5287 void
5288 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5289 {
5290     RtldLockState lockstate;
5291 
5292     wlock_acquire(rtld_bind_lock, &lockstate);
5293     free_tls(tcb, tcbsize, tcbalign);
5294     lock_release(rtld_bind_lock, &lockstate);
5295 }
5296 
5297 static void
5298 object_add_name(Obj_Entry *obj, const char *name)
5299 {
5300     Name_Entry *entry;
5301     size_t len;
5302 
5303     len = strlen(name);
5304     entry = malloc(sizeof(Name_Entry) + len);
5305 
5306     if (entry != NULL) {
5307 	strcpy(entry->name, name);
5308 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5309     }
5310 }
5311 
5312 static int
5313 object_match_name(const Obj_Entry *obj, const char *name)
5314 {
5315     Name_Entry *entry;
5316 
5317     STAILQ_FOREACH(entry, &obj->names, link) {
5318 	if (strcmp(name, entry->name) == 0)
5319 	    return (1);
5320     }
5321     return (0);
5322 }
5323 
5324 static Obj_Entry *
5325 locate_dependency(const Obj_Entry *obj, const char *name)
5326 {
5327     const Objlist_Entry *entry;
5328     const Needed_Entry *needed;
5329 
5330     STAILQ_FOREACH(entry, &list_main, link) {
5331 	if (object_match_name(entry->obj, name))
5332 	    return entry->obj;
5333     }
5334 
5335     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5336 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5337 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5338 	    /*
5339 	     * If there is DT_NEEDED for the name we are looking for,
5340 	     * we are all set.  Note that object might not be found if
5341 	     * dependency was not loaded yet, so the function can
5342 	     * return NULL here.  This is expected and handled
5343 	     * properly by the caller.
5344 	     */
5345 	    return (needed->obj);
5346 	}
5347     }
5348     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5349 	obj->path, name);
5350     rtld_die();
5351 }
5352 
5353 static int
5354 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5355     const Elf_Vernaux *vna)
5356 {
5357     const Elf_Verdef *vd;
5358     const char *vername;
5359 
5360     vername = refobj->strtab + vna->vna_name;
5361     vd = depobj->verdef;
5362     if (vd == NULL) {
5363 	_rtld_error("%s: version %s required by %s not defined",
5364 	    depobj->path, vername, refobj->path);
5365 	return (-1);
5366     }
5367     for (;;) {
5368 	if (vd->vd_version != VER_DEF_CURRENT) {
5369 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5370 		depobj->path, vd->vd_version);
5371 	    return (-1);
5372 	}
5373 	if (vna->vna_hash == vd->vd_hash) {
5374 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5375 		((const char *)vd + vd->vd_aux);
5376 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5377 		return (0);
5378 	}
5379 	if (vd->vd_next == 0)
5380 	    break;
5381 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5382     }
5383     if (vna->vna_flags & VER_FLG_WEAK)
5384 	return (0);
5385     _rtld_error("%s: version %s required by %s not found",
5386 	depobj->path, vername, refobj->path);
5387     return (-1);
5388 }
5389 
5390 static int
5391 rtld_verify_object_versions(Obj_Entry *obj)
5392 {
5393     const Elf_Verneed *vn;
5394     const Elf_Verdef  *vd;
5395     const Elf_Verdaux *vda;
5396     const Elf_Vernaux *vna;
5397     const Obj_Entry *depobj;
5398     int maxvernum, vernum;
5399 
5400     if (obj->ver_checked)
5401 	return (0);
5402     obj->ver_checked = true;
5403 
5404     maxvernum = 0;
5405     /*
5406      * Walk over defined and required version records and figure out
5407      * max index used by any of them. Do very basic sanity checking
5408      * while there.
5409      */
5410     vn = obj->verneed;
5411     while (vn != NULL) {
5412 	if (vn->vn_version != VER_NEED_CURRENT) {
5413 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5414 		obj->path, vn->vn_version);
5415 	    return (-1);
5416 	}
5417 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5418 	for (;;) {
5419 	    vernum = VER_NEED_IDX(vna->vna_other);
5420 	    if (vernum > maxvernum)
5421 		maxvernum = vernum;
5422 	    if (vna->vna_next == 0)
5423 		 break;
5424 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5425 	}
5426 	if (vn->vn_next == 0)
5427 	    break;
5428 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5429     }
5430 
5431     vd = obj->verdef;
5432     while (vd != NULL) {
5433 	if (vd->vd_version != VER_DEF_CURRENT) {
5434 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5435 		obj->path, vd->vd_version);
5436 	    return (-1);
5437 	}
5438 	vernum = VER_DEF_IDX(vd->vd_ndx);
5439 	if (vernum > maxvernum)
5440 		maxvernum = vernum;
5441 	if (vd->vd_next == 0)
5442 	    break;
5443 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5444     }
5445 
5446     if (maxvernum == 0)
5447 	return (0);
5448 
5449     /*
5450      * Store version information in array indexable by version index.
5451      * Verify that object version requirements are satisfied along the
5452      * way.
5453      */
5454     obj->vernum = maxvernum + 1;
5455     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5456 
5457     vd = obj->verdef;
5458     while (vd != NULL) {
5459 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5460 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5461 	    assert(vernum <= maxvernum);
5462 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5463 	    obj->vertab[vernum].hash = vd->vd_hash;
5464 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5465 	    obj->vertab[vernum].file = NULL;
5466 	    obj->vertab[vernum].flags = 0;
5467 	}
5468 	if (vd->vd_next == 0)
5469 	    break;
5470 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5471     }
5472 
5473     vn = obj->verneed;
5474     while (vn != NULL) {
5475 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5476 	if (depobj == NULL)
5477 	    return (-1);
5478 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5479 	for (;;) {
5480 	    if (check_object_provided_version(obj, depobj, vna))
5481 		return (-1);
5482 	    vernum = VER_NEED_IDX(vna->vna_other);
5483 	    assert(vernum <= maxvernum);
5484 	    obj->vertab[vernum].hash = vna->vna_hash;
5485 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5486 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5487 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5488 		VER_INFO_HIDDEN : 0;
5489 	    if (vna->vna_next == 0)
5490 		 break;
5491 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5492 	}
5493 	if (vn->vn_next == 0)
5494 	    break;
5495 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5496     }
5497     return 0;
5498 }
5499 
5500 static int
5501 rtld_verify_versions(const Objlist *objlist)
5502 {
5503     Objlist_Entry *entry;
5504     int rc;
5505 
5506     rc = 0;
5507     STAILQ_FOREACH(entry, objlist, link) {
5508 	/*
5509 	 * Skip dummy objects or objects that have their version requirements
5510 	 * already checked.
5511 	 */
5512 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5513 	    continue;
5514 	if (rtld_verify_object_versions(entry->obj) == -1) {
5515 	    rc = -1;
5516 	    if (ld_tracing == NULL)
5517 		break;
5518 	}
5519     }
5520     if (rc == 0 || ld_tracing != NULL)
5521     	rc = rtld_verify_object_versions(&obj_rtld);
5522     return rc;
5523 }
5524 
5525 const Ver_Entry *
5526 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5527 {
5528     Elf_Versym vernum;
5529 
5530     if (obj->vertab) {
5531 	vernum = VER_NDX(obj->versyms[symnum]);
5532 	if (vernum >= obj->vernum) {
5533 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5534 		obj->path, obj->strtab + symnum, vernum);
5535 	} else if (obj->vertab[vernum].hash != 0) {
5536 	    return &obj->vertab[vernum];
5537 	}
5538     }
5539     return NULL;
5540 }
5541 
5542 int
5543 _rtld_get_stack_prot(void)
5544 {
5545 
5546 	return (stack_prot);
5547 }
5548 
5549 int
5550 _rtld_is_dlopened(void *arg)
5551 {
5552 	Obj_Entry *obj;
5553 	RtldLockState lockstate;
5554 	int res;
5555 
5556 	rlock_acquire(rtld_bind_lock, &lockstate);
5557 	obj = dlcheck(arg);
5558 	if (obj == NULL)
5559 		obj = obj_from_addr(arg);
5560 	if (obj == NULL) {
5561 		_rtld_error("No shared object contains address");
5562 		lock_release(rtld_bind_lock, &lockstate);
5563 		return (-1);
5564 	}
5565 	res = obj->dlopened ? 1 : 0;
5566 	lock_release(rtld_bind_lock, &lockstate);
5567 	return (res);
5568 }
5569 
5570 static int
5571 obj_remap_relro(Obj_Entry *obj, int prot)
5572 {
5573 
5574 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5575 	    prot) == -1) {
5576 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5577 		    obj->path, prot, rtld_strerror(errno));
5578 		return (-1);
5579 	}
5580 	return (0);
5581 }
5582 
5583 static int
5584 obj_disable_relro(Obj_Entry *obj)
5585 {
5586 
5587 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5588 }
5589 
5590 static int
5591 obj_enforce_relro(Obj_Entry *obj)
5592 {
5593 
5594 	return (obj_remap_relro(obj, PROT_READ));
5595 }
5596 
5597 static void
5598 map_stacks_exec(RtldLockState *lockstate)
5599 {
5600 	void (*thr_map_stacks_exec)(void);
5601 
5602 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5603 		return;
5604 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5605 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5606 	if (thr_map_stacks_exec != NULL) {
5607 		stack_prot |= PROT_EXEC;
5608 		thr_map_stacks_exec();
5609 	}
5610 }
5611 
5612 static void
5613 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5614 {
5615 	Objlist_Entry *elm;
5616 	Obj_Entry *obj;
5617 	void (*distrib)(size_t, void *, size_t, size_t);
5618 
5619 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5620 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5621 	if (distrib == NULL)
5622 		return;
5623 	STAILQ_FOREACH(elm, list, link) {
5624 		obj = elm->obj;
5625 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5626 			continue;
5627 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5628 		    obj->tlssize);
5629 		obj->static_tls_copied = true;
5630 	}
5631 }
5632 
5633 void
5634 symlook_init(SymLook *dst, const char *name)
5635 {
5636 
5637 	bzero(dst, sizeof(*dst));
5638 	dst->name = name;
5639 	dst->hash = elf_hash(name);
5640 	dst->hash_gnu = gnu_hash(name);
5641 }
5642 
5643 static void
5644 symlook_init_from_req(SymLook *dst, const SymLook *src)
5645 {
5646 
5647 	dst->name = src->name;
5648 	dst->hash = src->hash;
5649 	dst->hash_gnu = src->hash_gnu;
5650 	dst->ventry = src->ventry;
5651 	dst->flags = src->flags;
5652 	dst->defobj_out = NULL;
5653 	dst->sym_out = NULL;
5654 	dst->lockstate = src->lockstate;
5655 }
5656 
5657 static int
5658 open_binary_fd(const char *argv0, bool search_in_path,
5659     const char **binpath_res)
5660 {
5661 	char *binpath, *pathenv, *pe, *res1;
5662 	const char *res;
5663 	int fd;
5664 
5665 	binpath = NULL;
5666 	res = NULL;
5667 	if (search_in_path && strchr(argv0, '/') == NULL) {
5668 		binpath = xmalloc(PATH_MAX);
5669 		pathenv = getenv("PATH");
5670 		if (pathenv == NULL) {
5671 			_rtld_error("-p and no PATH environment variable");
5672 			rtld_die();
5673 		}
5674 		pathenv = strdup(pathenv);
5675 		if (pathenv == NULL) {
5676 			_rtld_error("Cannot allocate memory");
5677 			rtld_die();
5678 		}
5679 		fd = -1;
5680 		errno = ENOENT;
5681 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5682 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5683 				continue;
5684 			if (binpath[0] != '\0' &&
5685 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5686 				continue;
5687 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5688 				continue;
5689 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5690 			if (fd != -1 || errno != ENOENT) {
5691 				res = binpath;
5692 				break;
5693 			}
5694 		}
5695 		free(pathenv);
5696 	} else {
5697 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5698 		res = argv0;
5699 	}
5700 
5701 	if (fd == -1) {
5702 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5703 		rtld_die();
5704 	}
5705 	if (res != NULL && res[0] != '/') {
5706 		res1 = xmalloc(PATH_MAX);
5707 		if (realpath(res, res1) != NULL) {
5708 			if (res != argv0)
5709 				free(__DECONST(char *, res));
5710 			res = res1;
5711 		} else {
5712 			free(res1);
5713 		}
5714 	}
5715 	*binpath_res = res;
5716 	return (fd);
5717 }
5718 
5719 /*
5720  * Parse a set of command-line arguments.
5721  */
5722 static int
5723 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5724     const char **argv0)
5725 {
5726 	const char *arg;
5727 	char machine[64];
5728 	size_t sz;
5729 	int arglen, fd, i, j, mib[2];
5730 	char opt;
5731 	bool seen_b, seen_f;
5732 
5733 	dbg("Parsing command-line arguments");
5734 	*use_pathp = false;
5735 	*fdp = -1;
5736 	seen_b = seen_f = false;
5737 
5738 	for (i = 1; i < argc; i++ ) {
5739 		arg = argv[i];
5740 		dbg("argv[%d]: '%s'", i, arg);
5741 
5742 		/*
5743 		 * rtld arguments end with an explicit "--" or with the first
5744 		 * non-prefixed argument.
5745 		 */
5746 		if (strcmp(arg, "--") == 0) {
5747 			i++;
5748 			break;
5749 		}
5750 		if (arg[0] != '-')
5751 			break;
5752 
5753 		/*
5754 		 * All other arguments are single-character options that can
5755 		 * be combined, so we need to search through `arg` for them.
5756 		 */
5757 		arglen = strlen(arg);
5758 		for (j = 1; j < arglen; j++) {
5759 			opt = arg[j];
5760 			if (opt == 'h') {
5761 				print_usage(argv[0]);
5762 				_exit(0);
5763 			} else if (opt == 'b') {
5764 				if (seen_f) {
5765 					_rtld_error("Both -b and -f specified");
5766 					rtld_die();
5767 				}
5768 				i++;
5769 				*argv0 = argv[i];
5770 				seen_b = true;
5771 				break;
5772 			} else if (opt == 'f') {
5773 				if (seen_b) {
5774 					_rtld_error("Both -b and -f specified");
5775 					rtld_die();
5776 				}
5777 
5778 				/*
5779 				 * -f XX can be used to specify a
5780 				 * descriptor for the binary named at
5781 				 * the command line (i.e., the later
5782 				 * argument will specify the process
5783 				 * name but the descriptor is what
5784 				 * will actually be executed).
5785 				 *
5786 				 * -f must be the last option in, e.g., -abcf.
5787 				 */
5788 				if (j != arglen - 1) {
5789 					_rtld_error("Invalid options: %s", arg);
5790 					rtld_die();
5791 				}
5792 				i++;
5793 				fd = parse_integer(argv[i]);
5794 				if (fd == -1) {
5795 					_rtld_error(
5796 					    "Invalid file descriptor: '%s'",
5797 					    argv[i]);
5798 					rtld_die();
5799 				}
5800 				*fdp = fd;
5801 				seen_f = true;
5802 				break;
5803 			} else if (opt == 'p') {
5804 				*use_pathp = true;
5805 			} else if (opt == 'u') {
5806 				trust = false;
5807 			} else if (opt == 'v') {
5808 				machine[0] = '\0';
5809 				mib[0] = CTL_HW;
5810 				mib[1] = HW_MACHINE;
5811 				sz = sizeof(machine);
5812 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5813 				rtld_printf(
5814 				    "FreeBSD ld-elf.so.1 %s\n"
5815 				    "FreeBSD_version %d\n"
5816 				    "Default lib path %s\n"
5817 				    "Env prefix %s\n"
5818 				    "Hint file %s\n"
5819 				    "libmap file %s\n",
5820 				    machine,
5821 				    __FreeBSD_version, ld_standard_library_path,
5822 				    ld_env_prefix, ld_elf_hints_default,
5823 				    ld_path_libmap_conf);
5824 				_exit(0);
5825 			} else {
5826 				_rtld_error("Invalid argument: '%s'", arg);
5827 				print_usage(argv[0]);
5828 				rtld_die();
5829 			}
5830 		}
5831 	}
5832 
5833 	if (!seen_b)
5834 		*argv0 = argv[i];
5835 	return (i);
5836 }
5837 
5838 /*
5839  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5840  */
5841 static int
5842 parse_integer(const char *str)
5843 {
5844 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5845 	const char *orig;
5846 	int n;
5847 	char c;
5848 
5849 	orig = str;
5850 	n = 0;
5851 	for (c = *str; c != '\0'; c = *++str) {
5852 		if (c < '0' || c > '9')
5853 			return (-1);
5854 
5855 		n *= RADIX;
5856 		n += c - '0';
5857 	}
5858 
5859 	/* Make sure we actually parsed something. */
5860 	if (str == orig)
5861 		return (-1);
5862 	return (n);
5863 }
5864 
5865 static void
5866 print_usage(const char *argv0)
5867 {
5868 
5869 	rtld_printf(
5870 	    "Usage: %s [-h] [-b <exe>] [-f <FD>] [-p] [--] <binary> [<args>]\n"
5871 	    "\n"
5872 	    "Options:\n"
5873 	    "  -h        Display this help message\n"
5874 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
5875 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5876 	    "  -p        Search in PATH for named binary\n"
5877 	    "  -u        Ignore LD_ environment variables\n"
5878 	    "  -v        Display identification information\n"
5879 	    "  --        End of RTLD options\n"
5880 	    "  <binary>  Name of process to execute\n"
5881 	    "  <args>    Arguments to the executed process\n", argv0);
5882 }
5883 
5884 /*
5885  * Overrides for libc_pic-provided functions.
5886  */
5887 
5888 int
5889 __getosreldate(void)
5890 {
5891 	size_t len;
5892 	int oid[2];
5893 	int error, osrel;
5894 
5895 	if (osreldate != 0)
5896 		return (osreldate);
5897 
5898 	oid[0] = CTL_KERN;
5899 	oid[1] = KERN_OSRELDATE;
5900 	osrel = 0;
5901 	len = sizeof(osrel);
5902 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5903 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5904 		osreldate = osrel;
5905 	return (osreldate);
5906 }
5907 const char *
5908 rtld_strerror(int errnum)
5909 {
5910 
5911 	if (errnum < 0 || errnum >= sys_nerr)
5912 		return ("Unknown error");
5913 	return (sys_errlist[errnum]);
5914 }
5915 
5916 /* malloc */
5917 void *
5918 malloc(size_t nbytes)
5919 {
5920 
5921 	return (__crt_malloc(nbytes));
5922 }
5923 
5924 void *
5925 calloc(size_t num, size_t size)
5926 {
5927 
5928 	return (__crt_calloc(num, size));
5929 }
5930 
5931 void
5932 free(void *cp)
5933 {
5934 
5935 	__crt_free(cp);
5936 }
5937 
5938 void *
5939 realloc(void *cp, size_t nbytes)
5940 {
5941 
5942 	return (__crt_realloc(cp, nbytes));
5943 }
5944 
5945 extern int _rtld_version__FreeBSD_version __exported;
5946 int _rtld_version__FreeBSD_version = __FreeBSD_version;
5947 
5948 extern char _rtld_version_laddr_offset __exported;
5949 char _rtld_version_laddr_offset;
5950 
5951 extern char _rtld_version_dlpi_tls_data __exported;
5952 char _rtld_version_dlpi_tls_data;
5953