xref: /freebsd/libexec/rtld-elf/rtld.c (revision 8a16b7a18f5d0b031f09832fd7752fba717e2a97)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * Copyright 2014-2017 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Dynamic linker for ELF.
35  *
36  * John Polstra <jdp@polstra.com>.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/mount.h>
44 #include <sys/mman.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 #include <sys/ktrace.h>
50 
51 #include <dlfcn.h>
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 
61 #include "debug.h"
62 #include "rtld.h"
63 #include "libmap.h"
64 #include "paths.h"
65 #include "rtld_tls.h"
66 #include "rtld_printf.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 
70 /* Types. */
71 typedef void (*func_ptr_type)();
72 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
73 
74 /*
75  * Function declarations.
76  */
77 static const char *basename(const char *);
78 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
79     const Elf_Dyn **, const Elf_Dyn **);
80 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
81     const Elf_Dyn *);
82 static void digest_dynamic(Obj_Entry *, int);
83 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
84 static Obj_Entry *dlcheck(void *);
85 static int dlclose_locked(void *, RtldLockState *);
86 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
87     int lo_flags, int mode, RtldLockState *lockstate);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *, int *);
95 static const char *gethints(bool);
96 static void hold_object(Obj_Entry *);
97 static void unhold_object(Obj_Entry *);
98 static void init_dag(Obj_Entry *);
99 static void init_marker(Obj_Entry *);
100 static void init_pagesizes(Elf_Auxinfo **aux_info);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *, RtldLockState *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static int obj_enforce_relro(Obj_Entry *);
113 static Obj_Entry *obj_from_addr(const void *);
114 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
115 static void objlist_call_init(Objlist *, RtldLockState *);
116 static void objlist_clear(Objlist *);
117 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
118 static void objlist_init(Objlist *);
119 static void objlist_push_head(Objlist *, Obj_Entry *);
120 static void objlist_push_tail(Objlist *, Obj_Entry *);
121 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
122 static void objlist_remove(Objlist *, Obj_Entry *);
123 static int open_binary_fd(const char *argv0, bool search_in_path);
124 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
125 static int parse_integer(const char *);
126 static void *path_enumerate(const char *, path_enum_proc, void *);
127 static void print_usage(const char *argv0);
128 static void release_object(Obj_Entry *);
129 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
130     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
131 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
132     int flags, RtldLockState *lockstate);
133 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
134     RtldLockState *);
135 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
136     int flags, RtldLockState *lockstate);
137 static int rtld_dirname(const char *, char *);
138 static int rtld_dirname_abs(const char *, char *);
139 static void *rtld_dlopen(const char *name, int fd, int mode);
140 static void rtld_exit(void);
141 static char *search_library_path(const char *, const char *, int *);
142 static char *search_library_pathfds(const char *, const char *, int *);
143 static const void **get_program_var_addr(const char *, RtldLockState *);
144 static void set_program_var(const char *, const void *);
145 static int symlook_default(SymLook *, const Obj_Entry *refobj);
146 static int symlook_global(SymLook *, DoneList *);
147 static void symlook_init_from_req(SymLook *, const SymLook *);
148 static int symlook_list(SymLook *, const Objlist *, DoneList *);
149 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
150 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
151 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
152 static void trace_loaded_objects(Obj_Entry *);
153 static void unlink_object(Obj_Entry *);
154 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
155 static void unref_dag(Obj_Entry *);
156 static void ref_dag(Obj_Entry *);
157 static char *origin_subst_one(Obj_Entry *, char *, const char *,
158     const char *, bool);
159 static char *origin_subst(Obj_Entry *, char *);
160 static bool obj_resolve_origin(Obj_Entry *obj);
161 static void preinit_main(void);
162 static int  rtld_verify_versions(const Objlist *);
163 static int  rtld_verify_object_versions(Obj_Entry *);
164 static void object_add_name(Obj_Entry *, const char *);
165 static int  object_match_name(const Obj_Entry *, const char *);
166 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
167 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
168     struct dl_phdr_info *phdr_info);
169 static uint32_t gnu_hash(const char *);
170 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
171     const unsigned long);
172 
173 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
174 void _r_debug_postinit(struct link_map *) __noinline __exported;
175 
176 int __sys_openat(int, const char *, int, ...);
177 
178 /*
179  * Data declarations.
180  */
181 static char *error_message;	/* Message for dlerror(), or NULL */
182 struct r_debug r_debug __exported;	/* for GDB; */
183 static bool libmap_disable;	/* Disable libmap */
184 static bool ld_loadfltr;	/* Immediate filters processing */
185 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
186 static bool trust;		/* False for setuid and setgid programs */
187 static bool dangerous_ld_env;	/* True if environment variables have been
188 				   used to affect the libraries loaded */
189 bool ld_bind_not;		/* Disable PLT update */
190 static char *ld_bind_now;	/* Environment variable for immediate binding */
191 static char *ld_debug;		/* Environment variable for debugging */
192 static char *ld_library_path;	/* Environment variable for search path */
193 static char *ld_library_dirs;	/* Environment variable for library descriptors */
194 static char *ld_preload;	/* Environment variable for libraries to
195 				   load first */
196 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
197 static char *ld_tracing;	/* Called from ldd to print libs */
198 static char *ld_utrace;		/* Use utrace() to log events. */
199 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
200 static Obj_Entry *obj_main;	/* The main program shared object */
201 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
202 static unsigned int obj_count;	/* Number of objects in obj_list */
203 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
204 
205 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
206   STAILQ_HEAD_INITIALIZER(list_global);
207 static Objlist list_main =	/* Objects loaded at program startup */
208   STAILQ_HEAD_INITIALIZER(list_main);
209 static Objlist list_fini =	/* Objects needing fini() calls */
210   STAILQ_HEAD_INITIALIZER(list_fini);
211 
212 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
213 
214 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
215 
216 extern Elf_Dyn _DYNAMIC;
217 #pragma weak _DYNAMIC
218 
219 int dlclose(void *) __exported;
220 char *dlerror(void) __exported;
221 void *dlopen(const char *, int) __exported;
222 void *fdlopen(int, int) __exported;
223 void *dlsym(void *, const char *) __exported;
224 dlfunc_t dlfunc(void *, const char *) __exported;
225 void *dlvsym(void *, const char *, const char *) __exported;
226 int dladdr(const void *, Dl_info *) __exported;
227 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
228     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
229 int dlinfo(void *, int , void *) __exported;
230 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
231 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
232 int _rtld_get_stack_prot(void) __exported;
233 int _rtld_is_dlopened(void *) __exported;
234 void _rtld_error(const char *, ...) __exported;
235 
236 int npagesizes, osreldate;
237 size_t *pagesizes;
238 
239 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
240 
241 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
242 static int max_stack_flags;
243 
244 /*
245  * Global declarations normally provided by crt1.  The dynamic linker is
246  * not built with crt1, so we have to provide them ourselves.
247  */
248 char *__progname;
249 char **environ;
250 
251 /*
252  * Used to pass argc, argv to init functions.
253  */
254 int main_argc;
255 char **main_argv;
256 
257 /*
258  * Globals to control TLS allocation.
259  */
260 size_t tls_last_offset;		/* Static TLS offset of last module */
261 size_t tls_last_size;		/* Static TLS size of last module */
262 size_t tls_static_space;	/* Static TLS space allocated */
263 size_t tls_static_max_align;
264 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
265 int tls_max_index = 1;		/* Largest module index allocated */
266 
267 bool ld_library_path_rpath = false;
268 
269 /*
270  * Globals for path names, and such
271  */
272 char *ld_elf_hints_default = _PATH_ELF_HINTS;
273 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
274 char *ld_path_rtld = _PATH_RTLD;
275 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
276 char *ld_env_prefix = LD_;
277 
278 /*
279  * Fill in a DoneList with an allocation large enough to hold all of
280  * the currently-loaded objects.  Keep this as a macro since it calls
281  * alloca and we want that to occur within the scope of the caller.
282  */
283 #define donelist_init(dlp)					\
284     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
285     assert((dlp)->objs != NULL),				\
286     (dlp)->num_alloc = obj_count,				\
287     (dlp)->num_used = 0)
288 
289 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
290 	if (ld_utrace != NULL)					\
291 		ld_utrace_log(e, h, mb, ms, r, n);		\
292 } while (0)
293 
294 static void
295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
296     int refcnt, const char *name)
297 {
298 	struct utrace_rtld ut;
299 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
300 
301 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
302 	ut.event = event;
303 	ut.handle = handle;
304 	ut.mapbase = mapbase;
305 	ut.mapsize = mapsize;
306 	ut.refcnt = refcnt;
307 	bzero(ut.name, sizeof(ut.name));
308 	if (name)
309 		strlcpy(ut.name, name, sizeof(ut.name));
310 	utrace(&ut, sizeof(ut));
311 }
312 
313 #ifdef RTLD_VARIANT_ENV_NAMES
314 /*
315  * construct the env variable based on the type of binary that's
316  * running.
317  */
318 static inline const char *
319 _LD(const char *var)
320 {
321 	static char buffer[128];
322 
323 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
324 	strlcat(buffer, var, sizeof(buffer));
325 	return (buffer);
326 }
327 #else
328 #define _LD(x)	LD_ x
329 #endif
330 
331 /*
332  * Main entry point for dynamic linking.  The first argument is the
333  * stack pointer.  The stack is expected to be laid out as described
334  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
335  * Specifically, the stack pointer points to a word containing
336  * ARGC.  Following that in the stack is a null-terminated sequence
337  * of pointers to argument strings.  Then comes a null-terminated
338  * sequence of pointers to environment strings.  Finally, there is a
339  * sequence of "auxiliary vector" entries.
340  *
341  * The second argument points to a place to store the dynamic linker's
342  * exit procedure pointer and the third to a place to store the main
343  * program's object.
344  *
345  * The return value is the main program's entry point.
346  */
347 func_ptr_type
348 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
349 {
350     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
351     Objlist_Entry *entry;
352     Obj_Entry *last_interposer, *obj, *preload_tail;
353     const Elf_Phdr *phdr;
354     Objlist initlist;
355     RtldLockState lockstate;
356     struct stat st;
357     Elf_Addr *argcp;
358     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
359     caddr_t imgentry;
360     char buf[MAXPATHLEN];
361     int argc, fd, i, mib[2], phnum, rtld_argc;
362     size_t len;
363     bool dir_enable, explicit_fd, search_in_path;
364 
365     /*
366      * On entry, the dynamic linker itself has not been relocated yet.
367      * Be very careful not to reference any global data until after
368      * init_rtld has returned.  It is OK to reference file-scope statics
369      * and string constants, and to call static and global functions.
370      */
371 
372     /* Find the auxiliary vector on the stack. */
373     argcp = sp;
374     argc = *sp++;
375     argv = (char **) sp;
376     sp += argc + 1;	/* Skip over arguments and NULL terminator */
377     env = (char **) sp;
378     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
379 	;
380     aux = (Elf_Auxinfo *) sp;
381 
382     /* Digest the auxiliary vector. */
383     for (i = 0;  i < AT_COUNT;  i++)
384 	aux_info[i] = NULL;
385     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
386 	if (auxp->a_type < AT_COUNT)
387 	    aux_info[auxp->a_type] = auxp;
388     }
389 
390     /* Initialize and relocate ourselves. */
391     assert(aux_info[AT_BASE] != NULL);
392     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
393 
394     __progname = obj_rtld.path;
395     argv0 = argv[0] != NULL ? argv[0] : "(null)";
396     environ = env;
397     main_argc = argc;
398     main_argv = argv;
399 
400     if (aux_info[AT_CANARY] != NULL &&
401 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
402 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
403 	    if (i > sizeof(__stack_chk_guard))
404 		    i = sizeof(__stack_chk_guard);
405 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
406     } else {
407 	mib[0] = CTL_KERN;
408 	mib[1] = KERN_ARND;
409 
410 	len = sizeof(__stack_chk_guard);
411 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
412 	    len != sizeof(__stack_chk_guard)) {
413 		/* If sysctl was unsuccessful, use the "terminator canary". */
414 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
415 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
416 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
417 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
418 	}
419     }
420 
421     trust = !issetugid();
422 
423     md_abi_variant_hook(aux_info);
424 
425     fd = -1;
426     if (aux_info[AT_EXECFD] != NULL) {
427 	fd = aux_info[AT_EXECFD]->a_un.a_val;
428     } else {
429 	assert(aux_info[AT_PHDR] != NULL);
430 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
431 	if (phdr == obj_rtld.phdr) {
432 	    if (!trust) {
433 		rtld_printf("Tainted process refusing to run binary %s\n",
434 		  argv0);
435 		rtld_die();
436 	    }
437 	    dbg("opening main program in direct exec mode");
438 	    if (argc >= 2) {
439 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
440 		argv0 = argv[rtld_argc];
441 		explicit_fd = (fd != -1);
442 		if (!explicit_fd)
443 		    fd = open_binary_fd(argv0, search_in_path);
444 		if (fstat(fd, &st) == -1) {
445 		    _rtld_error("failed to fstat FD %d (%s): %s", fd,
446 		      explicit_fd ? "user-provided descriptor" : argv0,
447 		      rtld_strerror(errno));
448 		    rtld_die();
449 		}
450 
451 		/*
452 		 * Rough emulation of the permission checks done by
453 		 * execve(2), only Unix DACs are checked, ACLs are
454 		 * ignored.  Preserve the semantic of disabling owner
455 		 * to execute if owner x bit is cleared, even if
456 		 * others x bit is enabled.
457 		 * mmap(2) does not allow to mmap with PROT_EXEC if
458 		 * binary' file comes from noexec mount.  We cannot
459 		 * set VV_TEXT on the binary.
460 		 */
461 		dir_enable = false;
462 		if (st.st_uid == geteuid()) {
463 		    if ((st.st_mode & S_IXUSR) != 0)
464 			dir_enable = true;
465 		} else if (st.st_gid == getegid()) {
466 		    if ((st.st_mode & S_IXGRP) != 0)
467 			dir_enable = true;
468 		} else if ((st.st_mode & S_IXOTH) != 0) {
469 		    dir_enable = true;
470 		}
471 		if (!dir_enable) {
472 		    rtld_printf("No execute permission for binary %s\n",
473 		      argv0);
474 		    rtld_die();
475 		}
476 
477 		/*
478 		 * For direct exec mode, argv[0] is the interpreter
479 		 * name, we must remove it and shift arguments left
480 		 * before invoking binary main.  Since stack layout
481 		 * places environment pointers and aux vectors right
482 		 * after the terminating NULL, we must shift
483 		 * environment and aux as well.
484 		 */
485 		main_argc = argc - rtld_argc;
486 		for (i = 0; i <= main_argc; i++)
487 		    argv[i] = argv[i + rtld_argc];
488 		*argcp -= rtld_argc;
489 		environ = env = envp = argv + main_argc + 1;
490 		do {
491 		    *envp = *(envp + rtld_argc);
492 		    envp++;
493 		} while (*envp != NULL);
494 		aux = auxp = (Elf_Auxinfo *)envp;
495 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
496 		for (;; auxp++, auxpf++) {
497 		    *auxp = *auxpf;
498 		    if (auxp->a_type == AT_NULL)
499 			    break;
500 		}
501 	    } else {
502 		rtld_printf("no binary\n");
503 		rtld_die();
504 	    }
505 	}
506     }
507 
508     ld_bind_now = getenv(_LD("BIND_NOW"));
509 
510     /*
511      * If the process is tainted, then we un-set the dangerous environment
512      * variables.  The process will be marked as tainted until setuid(2)
513      * is called.  If any child process calls setuid(2) we do not want any
514      * future processes to honor the potentially un-safe variables.
515      */
516     if (!trust) {
517 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
518 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
519 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
520 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
521 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
522 		_rtld_error("environment corrupt; aborting");
523 		rtld_die();
524 	}
525     }
526     ld_debug = getenv(_LD("DEBUG"));
527     if (ld_bind_now == NULL)
528 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
529     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
530     libmap_override = getenv(_LD("LIBMAP"));
531     ld_library_path = getenv(_LD("LIBRARY_PATH"));
532     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
533     ld_preload = getenv(_LD("PRELOAD"));
534     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
535     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
536     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
537     if (library_path_rpath != NULL) {
538 	    if (library_path_rpath[0] == 'y' ||
539 		library_path_rpath[0] == 'Y' ||
540 		library_path_rpath[0] == '1')
541 		    ld_library_path_rpath = true;
542 	    else
543 		    ld_library_path_rpath = false;
544     }
545     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
546 	(ld_library_path != NULL) || (ld_preload != NULL) ||
547 	(ld_elf_hints_path != NULL) || ld_loadfltr;
548     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
549     ld_utrace = getenv(_LD("UTRACE"));
550 
551     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
552 	ld_elf_hints_path = ld_elf_hints_default;
553 
554     if (ld_debug != NULL && *ld_debug != '\0')
555 	debug = 1;
556     dbg("%s is initialized, base address = %p", __progname,
557 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
558     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
559     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
560 
561     dbg("initializing thread locks");
562     lockdflt_init();
563 
564     /*
565      * Load the main program, or process its program header if it is
566      * already loaded.
567      */
568     if (fd != -1) {	/* Load the main program. */
569 	dbg("loading main program");
570 	obj_main = map_object(fd, argv0, NULL);
571 	close(fd);
572 	if (obj_main == NULL)
573 	    rtld_die();
574 	max_stack_flags = obj_main->stack_flags;
575     } else {				/* Main program already loaded. */
576 	dbg("processing main program's program header");
577 	assert(aux_info[AT_PHDR] != NULL);
578 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
579 	assert(aux_info[AT_PHNUM] != NULL);
580 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
581 	assert(aux_info[AT_PHENT] != NULL);
582 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
583 	assert(aux_info[AT_ENTRY] != NULL);
584 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
585 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
586 	    rtld_die();
587     }
588 
589     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
590 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
591 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
592 	    if (kexecpath[0] == '/')
593 		    obj_main->path = kexecpath;
594 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
595 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
596 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
597 		    obj_main->path = xstrdup(argv0);
598 	    else
599 		    obj_main->path = xstrdup(buf);
600     } else {
601 	    dbg("No AT_EXECPATH or direct exec");
602 	    obj_main->path = xstrdup(argv0);
603     }
604     dbg("obj_main path %s", obj_main->path);
605     obj_main->mainprog = true;
606 
607     if (aux_info[AT_STACKPROT] != NULL &&
608       aux_info[AT_STACKPROT]->a_un.a_val != 0)
609 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
610 
611 #ifndef COMPAT_32BIT
612     /*
613      * Get the actual dynamic linker pathname from the executable if
614      * possible.  (It should always be possible.)  That ensures that
615      * gdb will find the right dynamic linker even if a non-standard
616      * one is being used.
617      */
618     if (obj_main->interp != NULL &&
619       strcmp(obj_main->interp, obj_rtld.path) != 0) {
620 	free(obj_rtld.path);
621 	obj_rtld.path = xstrdup(obj_main->interp);
622         __progname = obj_rtld.path;
623     }
624 #endif
625 
626     digest_dynamic(obj_main, 0);
627     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
628 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
629 	obj_main->dynsymcount);
630 
631     linkmap_add(obj_main);
632     linkmap_add(&obj_rtld);
633 
634     /* Link the main program into the list of objects. */
635     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
636     obj_count++;
637     obj_loads++;
638 
639     /* Initialize a fake symbol for resolving undefined weak references. */
640     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
641     sym_zero.st_shndx = SHN_UNDEF;
642     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
643 
644     if (!libmap_disable)
645         libmap_disable = (bool)lm_init(libmap_override);
646 
647     dbg("loading LD_PRELOAD libraries");
648     if (load_preload_objects() == -1)
649 	rtld_die();
650     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
651 
652     dbg("loading needed objects");
653     if (load_needed_objects(obj_main, 0) == -1)
654 	rtld_die();
655 
656     /* Make a list of all objects loaded at startup. */
657     last_interposer = obj_main;
658     TAILQ_FOREACH(obj, &obj_list, next) {
659 	if (obj->marker)
660 	    continue;
661 	if (obj->z_interpose && obj != obj_main) {
662 	    objlist_put_after(&list_main, last_interposer, obj);
663 	    last_interposer = obj;
664 	} else {
665 	    objlist_push_tail(&list_main, obj);
666 	}
667     	obj->refcount++;
668     }
669 
670     dbg("checking for required versions");
671     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
672 	rtld_die();
673 
674     if (ld_tracing) {		/* We're done */
675 	trace_loaded_objects(obj_main);
676 	exit(0);
677     }
678 
679     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
680        dump_relocations(obj_main);
681        exit (0);
682     }
683 
684     /*
685      * Processing tls relocations requires having the tls offsets
686      * initialized.  Prepare offsets before starting initial
687      * relocation processing.
688      */
689     dbg("initializing initial thread local storage offsets");
690     STAILQ_FOREACH(entry, &list_main, link) {
691 	/*
692 	 * Allocate all the initial objects out of the static TLS
693 	 * block even if they didn't ask for it.
694 	 */
695 	allocate_tls_offset(entry->obj);
696     }
697 
698     if (relocate_objects(obj_main,
699       ld_bind_now != NULL && *ld_bind_now != '\0',
700       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
701 	rtld_die();
702 
703     dbg("doing copy relocations");
704     if (do_copy_relocations(obj_main) == -1)
705 	rtld_die();
706 
707     dbg("enforcing main obj relro");
708     if (obj_enforce_relro(obj_main) == -1)
709 	rtld_die();
710 
711     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
712        dump_relocations(obj_main);
713        exit (0);
714     }
715 
716     /*
717      * Setup TLS for main thread.  This must be done after the
718      * relocations are processed, since tls initialization section
719      * might be the subject for relocations.
720      */
721     dbg("initializing initial thread local storage");
722     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
723 
724     dbg("initializing key program variables");
725     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
726     set_program_var("environ", env);
727     set_program_var("__elf_aux_vector", aux);
728 
729     /* Make a list of init functions to call. */
730     objlist_init(&initlist);
731     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
732       preload_tail, &initlist);
733 
734     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
735 
736     map_stacks_exec(NULL);
737     ifunc_init(aux);
738 
739     dbg("resolving ifuncs");
740     if (resolve_objects_ifunc(obj_main,
741       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
742       NULL) == -1)
743 	rtld_die();
744 
745     if (!obj_main->crt_no_init) {
746 	/*
747 	 * Make sure we don't call the main program's init and fini
748 	 * functions for binaries linked with old crt1 which calls
749 	 * _init itself.
750 	 */
751 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
752 	obj_main->preinit_array = obj_main->init_array =
753 	    obj_main->fini_array = (Elf_Addr)NULL;
754     }
755 
756     wlock_acquire(rtld_bind_lock, &lockstate);
757     if (obj_main->crt_no_init)
758 	preinit_main();
759     objlist_call_init(&initlist, &lockstate);
760     _r_debug_postinit(&obj_main->linkmap);
761     objlist_clear(&initlist);
762     dbg("loading filtees");
763     TAILQ_FOREACH(obj, &obj_list, next) {
764 	if (obj->marker)
765 	    continue;
766 	if (ld_loadfltr || obj->z_loadfltr)
767 	    load_filtees(obj, 0, &lockstate);
768     }
769     lock_release(rtld_bind_lock, &lockstate);
770 
771     dbg("transferring control to program entry point = %p", obj_main->entry);
772 
773     /* Return the exit procedure and the program entry point. */
774     *exit_proc = rtld_exit;
775     *objp = obj_main;
776     return (func_ptr_type) obj_main->entry;
777 }
778 
779 void *
780 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
781 {
782 	void *ptr;
783 	Elf_Addr target;
784 
785 	ptr = (void *)make_function_pointer(def, obj);
786 	target = call_ifunc_resolver(ptr);
787 	return ((void *)target);
788 }
789 
790 /*
791  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
792  * Changes to this function should be applied there as well.
793  */
794 Elf_Addr
795 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
796 {
797     const Elf_Rel *rel;
798     const Elf_Sym *def;
799     const Obj_Entry *defobj;
800     Elf_Addr *where;
801     Elf_Addr target;
802     RtldLockState lockstate;
803 
804     rlock_acquire(rtld_bind_lock, &lockstate);
805     if (sigsetjmp(lockstate.env, 0) != 0)
806 	    lock_upgrade(rtld_bind_lock, &lockstate);
807     if (obj->pltrel)
808 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
809     else
810 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
811 
812     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
813     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
814 	NULL, &lockstate);
815     if (def == NULL)
816 	rtld_die();
817     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
818 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
819     else
820 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
821 
822     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
823       defobj->strtab + def->st_name, basename(obj->path),
824       (void *)target, basename(defobj->path));
825 
826     /*
827      * Write the new contents for the jmpslot. Note that depending on
828      * architecture, the value which we need to return back to the
829      * lazy binding trampoline may or may not be the target
830      * address. The value returned from reloc_jmpslot() is the value
831      * that the trampoline needs.
832      */
833     target = reloc_jmpslot(where, target, defobj, obj, rel);
834     lock_release(rtld_bind_lock, &lockstate);
835     return target;
836 }
837 
838 /*
839  * Error reporting function.  Use it like printf.  If formats the message
840  * into a buffer, and sets things up so that the next call to dlerror()
841  * will return the message.
842  */
843 void
844 _rtld_error(const char *fmt, ...)
845 {
846     static char buf[512];
847     va_list ap;
848 
849     va_start(ap, fmt);
850     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
851     error_message = buf;
852     va_end(ap);
853     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
854 }
855 
856 /*
857  * Return a dynamically-allocated copy of the current error message, if any.
858  */
859 static char *
860 errmsg_save(void)
861 {
862     return error_message == NULL ? NULL : xstrdup(error_message);
863 }
864 
865 /*
866  * Restore the current error message from a copy which was previously saved
867  * by errmsg_save().  The copy is freed.
868  */
869 static void
870 errmsg_restore(char *saved_msg)
871 {
872     if (saved_msg == NULL)
873 	error_message = NULL;
874     else {
875 	_rtld_error("%s", saved_msg);
876 	free(saved_msg);
877     }
878 }
879 
880 static const char *
881 basename(const char *name)
882 {
883     const char *p = strrchr(name, '/');
884     return p != NULL ? p + 1 : name;
885 }
886 
887 static struct utsname uts;
888 
889 static char *
890 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
891     const char *subst, bool may_free)
892 {
893 	char *p, *p1, *res, *resp;
894 	int subst_len, kw_len, subst_count, old_len, new_len;
895 
896 	kw_len = strlen(kw);
897 
898 	/*
899 	 * First, count the number of the keyword occurrences, to
900 	 * preallocate the final string.
901 	 */
902 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
903 		p1 = strstr(p, kw);
904 		if (p1 == NULL)
905 			break;
906 	}
907 
908 	/*
909 	 * If the keyword is not found, just return.
910 	 *
911 	 * Return non-substituted string if resolution failed.  We
912 	 * cannot do anything more reasonable, the failure mode of the
913 	 * caller is unresolved library anyway.
914 	 */
915 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
916 		return (may_free ? real : xstrdup(real));
917 	if (obj != NULL)
918 		subst = obj->origin_path;
919 
920 	/*
921 	 * There is indeed something to substitute.  Calculate the
922 	 * length of the resulting string, and allocate it.
923 	 */
924 	subst_len = strlen(subst);
925 	old_len = strlen(real);
926 	new_len = old_len + (subst_len - kw_len) * subst_count;
927 	res = xmalloc(new_len + 1);
928 
929 	/*
930 	 * Now, execute the substitution loop.
931 	 */
932 	for (p = real, resp = res, *resp = '\0';;) {
933 		p1 = strstr(p, kw);
934 		if (p1 != NULL) {
935 			/* Copy the prefix before keyword. */
936 			memcpy(resp, p, p1 - p);
937 			resp += p1 - p;
938 			/* Keyword replacement. */
939 			memcpy(resp, subst, subst_len);
940 			resp += subst_len;
941 			*resp = '\0';
942 			p = p1 + kw_len;
943 		} else
944 			break;
945 	}
946 
947 	/* Copy to the end of string and finish. */
948 	strcat(resp, p);
949 	if (may_free)
950 		free(real);
951 	return (res);
952 }
953 
954 static char *
955 origin_subst(Obj_Entry *obj, char *real)
956 {
957 	char *res1, *res2, *res3, *res4;
958 
959 	if (obj == NULL || !trust)
960 		return (xstrdup(real));
961 	if (uts.sysname[0] == '\0') {
962 		if (uname(&uts) != 0) {
963 			_rtld_error("utsname failed: %d", errno);
964 			return (NULL);
965 		}
966 	}
967 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
968 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
969 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
970 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
971 	return (res4);
972 }
973 
974 void
975 rtld_die(void)
976 {
977     const char *msg = dlerror();
978 
979     if (msg == NULL)
980 	msg = "Fatal error";
981     rtld_fdputstr(STDERR_FILENO, msg);
982     rtld_fdputchar(STDERR_FILENO, '\n');
983     _exit(1);
984 }
985 
986 /*
987  * Process a shared object's DYNAMIC section, and save the important
988  * information in its Obj_Entry structure.
989  */
990 static void
991 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
992     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
993 {
994     const Elf_Dyn *dynp;
995     Needed_Entry **needed_tail = &obj->needed;
996     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
997     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
998     const Elf_Hashelt *hashtab;
999     const Elf32_Word *hashval;
1000     Elf32_Word bkt, nmaskwords;
1001     int bloom_size32;
1002     int plttype = DT_REL;
1003 
1004     *dyn_rpath = NULL;
1005     *dyn_soname = NULL;
1006     *dyn_runpath = NULL;
1007 
1008     obj->bind_now = false;
1009     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1010 	switch (dynp->d_tag) {
1011 
1012 	case DT_REL:
1013 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1014 	    break;
1015 
1016 	case DT_RELSZ:
1017 	    obj->relsize = dynp->d_un.d_val;
1018 	    break;
1019 
1020 	case DT_RELENT:
1021 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1022 	    break;
1023 
1024 	case DT_JMPREL:
1025 	    obj->pltrel = (const Elf_Rel *)
1026 	      (obj->relocbase + dynp->d_un.d_ptr);
1027 	    break;
1028 
1029 	case DT_PLTRELSZ:
1030 	    obj->pltrelsize = dynp->d_un.d_val;
1031 	    break;
1032 
1033 	case DT_RELA:
1034 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1035 	    break;
1036 
1037 	case DT_RELASZ:
1038 	    obj->relasize = dynp->d_un.d_val;
1039 	    break;
1040 
1041 	case DT_RELAENT:
1042 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1043 	    break;
1044 
1045 	case DT_PLTREL:
1046 	    plttype = dynp->d_un.d_val;
1047 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1048 	    break;
1049 
1050 	case DT_SYMTAB:
1051 	    obj->symtab = (const Elf_Sym *)
1052 	      (obj->relocbase + dynp->d_un.d_ptr);
1053 	    break;
1054 
1055 	case DT_SYMENT:
1056 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1057 	    break;
1058 
1059 	case DT_STRTAB:
1060 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1061 	    break;
1062 
1063 	case DT_STRSZ:
1064 	    obj->strsize = dynp->d_un.d_val;
1065 	    break;
1066 
1067 	case DT_VERNEED:
1068 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1069 		dynp->d_un.d_val);
1070 	    break;
1071 
1072 	case DT_VERNEEDNUM:
1073 	    obj->verneednum = dynp->d_un.d_val;
1074 	    break;
1075 
1076 	case DT_VERDEF:
1077 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1078 		dynp->d_un.d_val);
1079 	    break;
1080 
1081 	case DT_VERDEFNUM:
1082 	    obj->verdefnum = dynp->d_un.d_val;
1083 	    break;
1084 
1085 	case DT_VERSYM:
1086 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1087 		dynp->d_un.d_val);
1088 	    break;
1089 
1090 	case DT_HASH:
1091 	    {
1092 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1093 		    dynp->d_un.d_ptr);
1094 		obj->nbuckets = hashtab[0];
1095 		obj->nchains = hashtab[1];
1096 		obj->buckets = hashtab + 2;
1097 		obj->chains = obj->buckets + obj->nbuckets;
1098 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1099 		  obj->buckets != NULL;
1100 	    }
1101 	    break;
1102 
1103 	case DT_GNU_HASH:
1104 	    {
1105 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1106 		    dynp->d_un.d_ptr);
1107 		obj->nbuckets_gnu = hashtab[0];
1108 		obj->symndx_gnu = hashtab[1];
1109 		nmaskwords = hashtab[2];
1110 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1111 		obj->maskwords_bm_gnu = nmaskwords - 1;
1112 		obj->shift2_gnu = hashtab[3];
1113 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1114 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1115 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1116 		  obj->symndx_gnu;
1117 		/* Number of bitmask words is required to be power of 2 */
1118 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1119 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1120 	    }
1121 	    break;
1122 
1123 	case DT_NEEDED:
1124 	    if (!obj->rtld) {
1125 		Needed_Entry *nep = NEW(Needed_Entry);
1126 		nep->name = dynp->d_un.d_val;
1127 		nep->obj = NULL;
1128 		nep->next = NULL;
1129 
1130 		*needed_tail = nep;
1131 		needed_tail = &nep->next;
1132 	    }
1133 	    break;
1134 
1135 	case DT_FILTER:
1136 	    if (!obj->rtld) {
1137 		Needed_Entry *nep = NEW(Needed_Entry);
1138 		nep->name = dynp->d_un.d_val;
1139 		nep->obj = NULL;
1140 		nep->next = NULL;
1141 
1142 		*needed_filtees_tail = nep;
1143 		needed_filtees_tail = &nep->next;
1144 	    }
1145 	    break;
1146 
1147 	case DT_AUXILIARY:
1148 	    if (!obj->rtld) {
1149 		Needed_Entry *nep = NEW(Needed_Entry);
1150 		nep->name = dynp->d_un.d_val;
1151 		nep->obj = NULL;
1152 		nep->next = NULL;
1153 
1154 		*needed_aux_filtees_tail = nep;
1155 		needed_aux_filtees_tail = &nep->next;
1156 	    }
1157 	    break;
1158 
1159 	case DT_PLTGOT:
1160 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1161 	    break;
1162 
1163 	case DT_TEXTREL:
1164 	    obj->textrel = true;
1165 	    break;
1166 
1167 	case DT_SYMBOLIC:
1168 	    obj->symbolic = true;
1169 	    break;
1170 
1171 	case DT_RPATH:
1172 	    /*
1173 	     * We have to wait until later to process this, because we
1174 	     * might not have gotten the address of the string table yet.
1175 	     */
1176 	    *dyn_rpath = dynp;
1177 	    break;
1178 
1179 	case DT_SONAME:
1180 	    *dyn_soname = dynp;
1181 	    break;
1182 
1183 	case DT_RUNPATH:
1184 	    *dyn_runpath = dynp;
1185 	    break;
1186 
1187 	case DT_INIT:
1188 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1189 	    break;
1190 
1191 	case DT_PREINIT_ARRAY:
1192 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1193 	    break;
1194 
1195 	case DT_PREINIT_ARRAYSZ:
1196 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1197 	    break;
1198 
1199 	case DT_INIT_ARRAY:
1200 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1201 	    break;
1202 
1203 	case DT_INIT_ARRAYSZ:
1204 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1205 	    break;
1206 
1207 	case DT_FINI:
1208 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1209 	    break;
1210 
1211 	case DT_FINI_ARRAY:
1212 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1213 	    break;
1214 
1215 	case DT_FINI_ARRAYSZ:
1216 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1217 	    break;
1218 
1219 	/*
1220 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1221 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1222 	 */
1223 
1224 #ifndef __mips__
1225 	case DT_DEBUG:
1226 	    if (!early)
1227 		dbg("Filling in DT_DEBUG entry");
1228 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1229 	    break;
1230 #endif
1231 
1232 	case DT_FLAGS:
1233 		if (dynp->d_un.d_val & DF_ORIGIN)
1234 		    obj->z_origin = true;
1235 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1236 		    obj->symbolic = true;
1237 		if (dynp->d_un.d_val & DF_TEXTREL)
1238 		    obj->textrel = true;
1239 		if (dynp->d_un.d_val & DF_BIND_NOW)
1240 		    obj->bind_now = true;
1241 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1242 		    ;*/
1243 	    break;
1244 #ifdef __mips__
1245 	case DT_MIPS_LOCAL_GOTNO:
1246 		obj->local_gotno = dynp->d_un.d_val;
1247 		break;
1248 
1249 	case DT_MIPS_SYMTABNO:
1250 		obj->symtabno = dynp->d_un.d_val;
1251 		break;
1252 
1253 	case DT_MIPS_GOTSYM:
1254 		obj->gotsym = dynp->d_un.d_val;
1255 		break;
1256 
1257 	case DT_MIPS_RLD_MAP:
1258 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1259 		break;
1260 
1261 	case DT_MIPS_PLTGOT:
1262 		obj->mips_pltgot = (Elf_Addr *) (obj->relocbase +
1263 		    dynp->d_un.d_ptr);
1264 		break;
1265 
1266 #endif
1267 
1268 #ifdef __powerpc64__
1269 	case DT_PPC64_GLINK:
1270 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1271 		break;
1272 #endif
1273 
1274 	case DT_FLAGS_1:
1275 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1276 		    obj->z_noopen = true;
1277 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1278 		    obj->z_origin = true;
1279 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1280 		    obj->z_global = true;
1281 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1282 		    obj->bind_now = true;
1283 		if (dynp->d_un.d_val & DF_1_NODELETE)
1284 		    obj->z_nodelete = true;
1285 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1286 		    obj->z_loadfltr = true;
1287 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1288 		    obj->z_interpose = true;
1289 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1290 		    obj->z_nodeflib = true;
1291 	    break;
1292 
1293 	default:
1294 	    if (!early) {
1295 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1296 		    (long)dynp->d_tag);
1297 	    }
1298 	    break;
1299 	}
1300     }
1301 
1302     obj->traced = false;
1303 
1304     if (plttype == DT_RELA) {
1305 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1306 	obj->pltrel = NULL;
1307 	obj->pltrelasize = obj->pltrelsize;
1308 	obj->pltrelsize = 0;
1309     }
1310 
1311     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1312     if (obj->valid_hash_sysv)
1313 	obj->dynsymcount = obj->nchains;
1314     else if (obj->valid_hash_gnu) {
1315 	obj->dynsymcount = 0;
1316 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1317 	    if (obj->buckets_gnu[bkt] == 0)
1318 		continue;
1319 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1320 	    do
1321 		obj->dynsymcount++;
1322 	    while ((*hashval++ & 1u) == 0);
1323 	}
1324 	obj->dynsymcount += obj->symndx_gnu;
1325     }
1326 }
1327 
1328 static bool
1329 obj_resolve_origin(Obj_Entry *obj)
1330 {
1331 
1332 	if (obj->origin_path != NULL)
1333 		return (true);
1334 	obj->origin_path = xmalloc(PATH_MAX);
1335 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1336 }
1337 
1338 static void
1339 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1340     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1341 {
1342 
1343 	if (obj->z_origin && !obj_resolve_origin(obj))
1344 		rtld_die();
1345 
1346 	if (dyn_runpath != NULL) {
1347 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1348 		obj->runpath = origin_subst(obj, obj->runpath);
1349 	} else if (dyn_rpath != NULL) {
1350 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1351 		obj->rpath = origin_subst(obj, obj->rpath);
1352 	}
1353 	if (dyn_soname != NULL)
1354 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1355 }
1356 
1357 static void
1358 digest_dynamic(Obj_Entry *obj, int early)
1359 {
1360 	const Elf_Dyn *dyn_rpath;
1361 	const Elf_Dyn *dyn_soname;
1362 	const Elf_Dyn *dyn_runpath;
1363 
1364 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1365 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1366 }
1367 
1368 /*
1369  * Process a shared object's program header.  This is used only for the
1370  * main program, when the kernel has already loaded the main program
1371  * into memory before calling the dynamic linker.  It creates and
1372  * returns an Obj_Entry structure.
1373  */
1374 static Obj_Entry *
1375 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1376 {
1377     Obj_Entry *obj;
1378     const Elf_Phdr *phlimit = phdr + phnum;
1379     const Elf_Phdr *ph;
1380     Elf_Addr note_start, note_end;
1381     int nsegs = 0;
1382 
1383     obj = obj_new();
1384     for (ph = phdr;  ph < phlimit;  ph++) {
1385 	if (ph->p_type != PT_PHDR)
1386 	    continue;
1387 
1388 	obj->phdr = phdr;
1389 	obj->phsize = ph->p_memsz;
1390 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1391 	break;
1392     }
1393 
1394     obj->stack_flags = PF_X | PF_R | PF_W;
1395 
1396     for (ph = phdr;  ph < phlimit;  ph++) {
1397 	switch (ph->p_type) {
1398 
1399 	case PT_INTERP:
1400 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1401 	    break;
1402 
1403 	case PT_LOAD:
1404 	    if (nsegs == 0) {	/* First load segment */
1405 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1406 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1407 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1408 		  obj->vaddrbase;
1409 	    } else {		/* Last load segment */
1410 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1411 		  obj->vaddrbase;
1412 	    }
1413 	    nsegs++;
1414 	    break;
1415 
1416 	case PT_DYNAMIC:
1417 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1418 	    break;
1419 
1420 	case PT_TLS:
1421 	    obj->tlsindex = 1;
1422 	    obj->tlssize = ph->p_memsz;
1423 	    obj->tlsalign = ph->p_align;
1424 	    obj->tlsinitsize = ph->p_filesz;
1425 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1426 	    break;
1427 
1428 	case PT_GNU_STACK:
1429 	    obj->stack_flags = ph->p_flags;
1430 	    break;
1431 
1432 	case PT_GNU_RELRO:
1433 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1434 	    obj->relro_size = round_page(ph->p_memsz);
1435 	    break;
1436 
1437 	case PT_NOTE:
1438 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1439 	    note_end = note_start + ph->p_filesz;
1440 	    digest_notes(obj, note_start, note_end);
1441 	    break;
1442 	}
1443     }
1444     if (nsegs < 1) {
1445 	_rtld_error("%s: too few PT_LOAD segments", path);
1446 	return NULL;
1447     }
1448 
1449     obj->entry = entry;
1450     return obj;
1451 }
1452 
1453 void
1454 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1455 {
1456 	const Elf_Note *note;
1457 	const char *note_name;
1458 	uintptr_t p;
1459 
1460 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1461 	    note = (const Elf_Note *)((const char *)(note + 1) +
1462 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1463 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1464 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1465 		    note->n_descsz != sizeof(int32_t))
1466 			continue;
1467 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1468 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1469 			continue;
1470 		note_name = (const char *)(note + 1);
1471 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1472 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1473 			continue;
1474 		switch (note->n_type) {
1475 		case NT_FREEBSD_ABI_TAG:
1476 			/* FreeBSD osrel note */
1477 			p = (uintptr_t)(note + 1);
1478 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1479 			obj->osrel = *(const int32_t *)(p);
1480 			dbg("note osrel %d", obj->osrel);
1481 			break;
1482 		case NT_FREEBSD_NOINIT_TAG:
1483 			/* FreeBSD 'crt does not call init' note */
1484 			obj->crt_no_init = true;
1485 			dbg("note crt_no_init");
1486 			break;
1487 		}
1488 	}
1489 }
1490 
1491 static Obj_Entry *
1492 dlcheck(void *handle)
1493 {
1494     Obj_Entry *obj;
1495 
1496     TAILQ_FOREACH(obj, &obj_list, next) {
1497 	if (obj == (Obj_Entry *) handle)
1498 	    break;
1499     }
1500 
1501     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1502 	_rtld_error("Invalid shared object handle %p", handle);
1503 	return NULL;
1504     }
1505     return obj;
1506 }
1507 
1508 /*
1509  * If the given object is already in the donelist, return true.  Otherwise
1510  * add the object to the list and return false.
1511  */
1512 static bool
1513 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1514 {
1515     unsigned int i;
1516 
1517     for (i = 0;  i < dlp->num_used;  i++)
1518 	if (dlp->objs[i] == obj)
1519 	    return true;
1520     /*
1521      * Our donelist allocation should always be sufficient.  But if
1522      * our threads locking isn't working properly, more shared objects
1523      * could have been loaded since we allocated the list.  That should
1524      * never happen, but we'll handle it properly just in case it does.
1525      */
1526     if (dlp->num_used < dlp->num_alloc)
1527 	dlp->objs[dlp->num_used++] = obj;
1528     return false;
1529 }
1530 
1531 /*
1532  * Hash function for symbol table lookup.  Don't even think about changing
1533  * this.  It is specified by the System V ABI.
1534  */
1535 unsigned long
1536 elf_hash(const char *name)
1537 {
1538     const unsigned char *p = (const unsigned char *) name;
1539     unsigned long h = 0;
1540     unsigned long g;
1541 
1542     while (*p != '\0') {
1543 	h = (h << 4) + *p++;
1544 	if ((g = h & 0xf0000000) != 0)
1545 	    h ^= g >> 24;
1546 	h &= ~g;
1547     }
1548     return h;
1549 }
1550 
1551 /*
1552  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1553  * unsigned in case it's implemented with a wider type.
1554  */
1555 static uint32_t
1556 gnu_hash(const char *s)
1557 {
1558 	uint32_t h;
1559 	unsigned char c;
1560 
1561 	h = 5381;
1562 	for (c = *s; c != '\0'; c = *++s)
1563 		h = h * 33 + c;
1564 	return (h & 0xffffffff);
1565 }
1566 
1567 
1568 /*
1569  * Find the library with the given name, and return its full pathname.
1570  * The returned string is dynamically allocated.  Generates an error
1571  * message and returns NULL if the library cannot be found.
1572  *
1573  * If the second argument is non-NULL, then it refers to an already-
1574  * loaded shared object, whose library search path will be searched.
1575  *
1576  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1577  * descriptor (which is close-on-exec) will be passed out via the third
1578  * argument.
1579  *
1580  * The search order is:
1581  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1582  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1583  *   LD_LIBRARY_PATH
1584  *   DT_RUNPATH in the referencing file
1585  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1586  *	 from list)
1587  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1588  *
1589  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1590  */
1591 static char *
1592 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1593 {
1594 	char *pathname;
1595 	char *name;
1596 	bool nodeflib, objgiven;
1597 
1598 	objgiven = refobj != NULL;
1599 
1600 	if (libmap_disable || !objgiven ||
1601 	    (name = lm_find(refobj->path, xname)) == NULL)
1602 		name = (char *)xname;
1603 
1604 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1605 		if (name[0] != '/' && !trust) {
1606 			_rtld_error("Absolute pathname required "
1607 			    "for shared object \"%s\"", name);
1608 			return (NULL);
1609 		}
1610 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1611 		    __DECONST(char *, name)));
1612 	}
1613 
1614 	dbg(" Searching for \"%s\"", name);
1615 
1616 	/*
1617 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1618 	 * back to pre-conforming behaviour if user requested so with
1619 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1620 	 * nodeflib.
1621 	 */
1622 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1623 		pathname = search_library_path(name, ld_library_path, fdp);
1624 		if (pathname != NULL)
1625 			return (pathname);
1626 		if (refobj != NULL) {
1627 			pathname = search_library_path(name, refobj->rpath, fdp);
1628 			if (pathname != NULL)
1629 				return (pathname);
1630 		}
1631 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1632 		if (pathname != NULL)
1633 			return (pathname);
1634 		pathname = search_library_path(name, gethints(false), fdp);
1635 		if (pathname != NULL)
1636 			return (pathname);
1637 		pathname = search_library_path(name, ld_standard_library_path, fdp);
1638 		if (pathname != NULL)
1639 			return (pathname);
1640 	} else {
1641 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1642 		if (objgiven) {
1643 			pathname = search_library_path(name, refobj->rpath, fdp);
1644 			if (pathname != NULL)
1645 				return (pathname);
1646 		}
1647 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1648 			pathname = search_library_path(name, obj_main->rpath, fdp);
1649 			if (pathname != NULL)
1650 				return (pathname);
1651 		}
1652 		pathname = search_library_path(name, ld_library_path, fdp);
1653 		if (pathname != NULL)
1654 			return (pathname);
1655 		if (objgiven) {
1656 			pathname = search_library_path(name, refobj->runpath, fdp);
1657 			if (pathname != NULL)
1658 				return (pathname);
1659 		}
1660 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1661 		if (pathname != NULL)
1662 			return (pathname);
1663 		pathname = search_library_path(name, gethints(nodeflib), fdp);
1664 		if (pathname != NULL)
1665 			return (pathname);
1666 		if (objgiven && !nodeflib) {
1667 			pathname = search_library_path(name,
1668 			    ld_standard_library_path, fdp);
1669 			if (pathname != NULL)
1670 				return (pathname);
1671 		}
1672 	}
1673 
1674 	if (objgiven && refobj->path != NULL) {
1675 		_rtld_error("Shared object \"%s\" not found, "
1676 		    "required by \"%s\"", name, basename(refobj->path));
1677 	} else {
1678 		_rtld_error("Shared object \"%s\" not found", name);
1679 	}
1680 	return (NULL);
1681 }
1682 
1683 /*
1684  * Given a symbol number in a referencing object, find the corresponding
1685  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1686  * no definition was found.  Returns a pointer to the Obj_Entry of the
1687  * defining object via the reference parameter DEFOBJ_OUT.
1688  */
1689 const Elf_Sym *
1690 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1691     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1692     RtldLockState *lockstate)
1693 {
1694     const Elf_Sym *ref;
1695     const Elf_Sym *def;
1696     const Obj_Entry *defobj;
1697     const Ver_Entry *ve;
1698     SymLook req;
1699     const char *name;
1700     int res;
1701 
1702     /*
1703      * If we have already found this symbol, get the information from
1704      * the cache.
1705      */
1706     if (symnum >= refobj->dynsymcount)
1707 	return NULL;	/* Bad object */
1708     if (cache != NULL && cache[symnum].sym != NULL) {
1709 	*defobj_out = cache[symnum].obj;
1710 	return cache[symnum].sym;
1711     }
1712 
1713     ref = refobj->symtab + symnum;
1714     name = refobj->strtab + ref->st_name;
1715     def = NULL;
1716     defobj = NULL;
1717     ve = NULL;
1718 
1719     /*
1720      * We don't have to do a full scale lookup if the symbol is local.
1721      * We know it will bind to the instance in this load module; to
1722      * which we already have a pointer (ie ref). By not doing a lookup,
1723      * we not only improve performance, but it also avoids unresolvable
1724      * symbols when local symbols are not in the hash table. This has
1725      * been seen with the ia64 toolchain.
1726      */
1727     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1728 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1729 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1730 		symnum);
1731 	}
1732 	symlook_init(&req, name);
1733 	req.flags = flags;
1734 	ve = req.ventry = fetch_ventry(refobj, symnum);
1735 	req.lockstate = lockstate;
1736 	res = symlook_default(&req, refobj);
1737 	if (res == 0) {
1738 	    def = req.sym_out;
1739 	    defobj = req.defobj_out;
1740 	}
1741     } else {
1742 	def = ref;
1743 	defobj = refobj;
1744     }
1745 
1746     /*
1747      * If we found no definition and the reference is weak, treat the
1748      * symbol as having the value zero.
1749      */
1750     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1751 	def = &sym_zero;
1752 	defobj = obj_main;
1753     }
1754 
1755     if (def != NULL) {
1756 	*defobj_out = defobj;
1757 	/* Record the information in the cache to avoid subsequent lookups. */
1758 	if (cache != NULL) {
1759 	    cache[symnum].sym = def;
1760 	    cache[symnum].obj = defobj;
1761 	}
1762     } else {
1763 	if (refobj != &obj_rtld)
1764 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1765 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1766     }
1767     return def;
1768 }
1769 
1770 /*
1771  * Return the search path from the ldconfig hints file, reading it if
1772  * necessary.  If nostdlib is true, then the default search paths are
1773  * not added to result.
1774  *
1775  * Returns NULL if there are problems with the hints file,
1776  * or if the search path there is empty.
1777  */
1778 static const char *
1779 gethints(bool nostdlib)
1780 {
1781 	static char *hints, *filtered_path;
1782 	static struct elfhints_hdr hdr;
1783 	struct fill_search_info_args sargs, hargs;
1784 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1785 	struct dl_serpath *SLPpath, *hintpath;
1786 	char *p;
1787 	struct stat hint_stat;
1788 	unsigned int SLPndx, hintndx, fndx, fcount;
1789 	int fd;
1790 	size_t flen;
1791 	uint32_t dl;
1792 	bool skip;
1793 
1794 	/* First call, read the hints file */
1795 	if (hints == NULL) {
1796 		/* Keep from trying again in case the hints file is bad. */
1797 		hints = "";
1798 
1799 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1800 			return (NULL);
1801 
1802 		/*
1803 		 * Check of hdr.dirlistlen value against type limit
1804 		 * intends to pacify static analyzers.  Further
1805 		 * paranoia leads to checks that dirlist is fully
1806 		 * contained in the file range.
1807 		 */
1808 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1809 		    hdr.magic != ELFHINTS_MAGIC ||
1810 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1811 		    fstat(fd, &hint_stat) == -1) {
1812 cleanup1:
1813 			close(fd);
1814 			hdr.dirlistlen = 0;
1815 			return (NULL);
1816 		}
1817 		dl = hdr.strtab;
1818 		if (dl + hdr.dirlist < dl)
1819 			goto cleanup1;
1820 		dl += hdr.dirlist;
1821 		if (dl + hdr.dirlistlen < dl)
1822 			goto cleanup1;
1823 		dl += hdr.dirlistlen;
1824 		if (dl > hint_stat.st_size)
1825 			goto cleanup1;
1826 		p = xmalloc(hdr.dirlistlen + 1);
1827 		if (pread(fd, p, hdr.dirlistlen + 1,
1828 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1829 		    p[hdr.dirlistlen] != '\0') {
1830 			free(p);
1831 			goto cleanup1;
1832 		}
1833 		hints = p;
1834 		close(fd);
1835 	}
1836 
1837 	/*
1838 	 * If caller agreed to receive list which includes the default
1839 	 * paths, we are done. Otherwise, if we still did not
1840 	 * calculated filtered result, do it now.
1841 	 */
1842 	if (!nostdlib)
1843 		return (hints[0] != '\0' ? hints : NULL);
1844 	if (filtered_path != NULL)
1845 		goto filt_ret;
1846 
1847 	/*
1848 	 * Obtain the list of all configured search paths, and the
1849 	 * list of the default paths.
1850 	 *
1851 	 * First estimate the size of the results.
1852 	 */
1853 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1854 	smeta.dls_cnt = 0;
1855 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1856 	hmeta.dls_cnt = 0;
1857 
1858 	sargs.request = RTLD_DI_SERINFOSIZE;
1859 	sargs.serinfo = &smeta;
1860 	hargs.request = RTLD_DI_SERINFOSIZE;
1861 	hargs.serinfo = &hmeta;
1862 
1863 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1864 	path_enumerate(hints, fill_search_info, &hargs);
1865 
1866 	SLPinfo = xmalloc(smeta.dls_size);
1867 	hintinfo = xmalloc(hmeta.dls_size);
1868 
1869 	/*
1870 	 * Next fetch both sets of paths.
1871 	 */
1872 	sargs.request = RTLD_DI_SERINFO;
1873 	sargs.serinfo = SLPinfo;
1874 	sargs.serpath = &SLPinfo->dls_serpath[0];
1875 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1876 
1877 	hargs.request = RTLD_DI_SERINFO;
1878 	hargs.serinfo = hintinfo;
1879 	hargs.serpath = &hintinfo->dls_serpath[0];
1880 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1881 
1882 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1883 	path_enumerate(hints, fill_search_info, &hargs);
1884 
1885 	/*
1886 	 * Now calculate the difference between two sets, by excluding
1887 	 * standard paths from the full set.
1888 	 */
1889 	fndx = 0;
1890 	fcount = 0;
1891 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1892 	hintpath = &hintinfo->dls_serpath[0];
1893 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1894 		skip = false;
1895 		SLPpath = &SLPinfo->dls_serpath[0];
1896 		/*
1897 		 * Check each standard path against current.
1898 		 */
1899 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1900 			/* matched, skip the path */
1901 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1902 				skip = true;
1903 				break;
1904 			}
1905 		}
1906 		if (skip)
1907 			continue;
1908 		/*
1909 		 * Not matched against any standard path, add the path
1910 		 * to result. Separate consequtive paths with ':'.
1911 		 */
1912 		if (fcount > 0) {
1913 			filtered_path[fndx] = ':';
1914 			fndx++;
1915 		}
1916 		fcount++;
1917 		flen = strlen(hintpath->dls_name);
1918 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1919 		fndx += flen;
1920 	}
1921 	filtered_path[fndx] = '\0';
1922 
1923 	free(SLPinfo);
1924 	free(hintinfo);
1925 
1926 filt_ret:
1927 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1928 }
1929 
1930 static void
1931 init_dag(Obj_Entry *root)
1932 {
1933     const Needed_Entry *needed;
1934     const Objlist_Entry *elm;
1935     DoneList donelist;
1936 
1937     if (root->dag_inited)
1938 	return;
1939     donelist_init(&donelist);
1940 
1941     /* Root object belongs to own DAG. */
1942     objlist_push_tail(&root->dldags, root);
1943     objlist_push_tail(&root->dagmembers, root);
1944     donelist_check(&donelist, root);
1945 
1946     /*
1947      * Add dependencies of root object to DAG in breadth order
1948      * by exploiting the fact that each new object get added
1949      * to the tail of the dagmembers list.
1950      */
1951     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1952 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1953 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1954 		continue;
1955 	    objlist_push_tail(&needed->obj->dldags, root);
1956 	    objlist_push_tail(&root->dagmembers, needed->obj);
1957 	}
1958     }
1959     root->dag_inited = true;
1960 }
1961 
1962 static void
1963 init_marker(Obj_Entry *marker)
1964 {
1965 
1966 	bzero(marker, sizeof(*marker));
1967 	marker->marker = true;
1968 }
1969 
1970 Obj_Entry *
1971 globallist_curr(const Obj_Entry *obj)
1972 {
1973 
1974 	for (;;) {
1975 		if (obj == NULL)
1976 			return (NULL);
1977 		if (!obj->marker)
1978 			return (__DECONST(Obj_Entry *, obj));
1979 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1980 	}
1981 }
1982 
1983 Obj_Entry *
1984 globallist_next(const Obj_Entry *obj)
1985 {
1986 
1987 	for (;;) {
1988 		obj = TAILQ_NEXT(obj, next);
1989 		if (obj == NULL)
1990 			return (NULL);
1991 		if (!obj->marker)
1992 			return (__DECONST(Obj_Entry *, obj));
1993 	}
1994 }
1995 
1996 /* Prevent the object from being unmapped while the bind lock is dropped. */
1997 static void
1998 hold_object(Obj_Entry *obj)
1999 {
2000 
2001 	obj->holdcount++;
2002 }
2003 
2004 static void
2005 unhold_object(Obj_Entry *obj)
2006 {
2007 
2008 	assert(obj->holdcount > 0);
2009 	if (--obj->holdcount == 0 && obj->unholdfree)
2010 		release_object(obj);
2011 }
2012 
2013 static void
2014 process_z(Obj_Entry *root)
2015 {
2016 	const Objlist_Entry *elm;
2017 	Obj_Entry *obj;
2018 
2019 	/*
2020 	 * Walk over object DAG and process every dependent object
2021 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2022 	 * to grow their own DAG.
2023 	 *
2024 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2025 	 * symlook_global() to work.
2026 	 *
2027 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2028 	 */
2029 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2030 		obj = elm->obj;
2031 		if (obj == NULL)
2032 			continue;
2033 		if (obj->z_nodelete && !obj->ref_nodel) {
2034 			dbg("obj %s -z nodelete", obj->path);
2035 			init_dag(obj);
2036 			ref_dag(obj);
2037 			obj->ref_nodel = true;
2038 		}
2039 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2040 			dbg("obj %s -z global", obj->path);
2041 			objlist_push_tail(&list_global, obj);
2042 			init_dag(obj);
2043 		}
2044 	}
2045 }
2046 /*
2047  * Initialize the dynamic linker.  The argument is the address at which
2048  * the dynamic linker has been mapped into memory.  The primary task of
2049  * this function is to relocate the dynamic linker.
2050  */
2051 static void
2052 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2053 {
2054     Obj_Entry objtmp;	/* Temporary rtld object */
2055     const Elf_Ehdr *ehdr;
2056     const Elf_Dyn *dyn_rpath;
2057     const Elf_Dyn *dyn_soname;
2058     const Elf_Dyn *dyn_runpath;
2059 
2060 #ifdef RTLD_INIT_PAGESIZES_EARLY
2061     /* The page size is required by the dynamic memory allocator. */
2062     init_pagesizes(aux_info);
2063 #endif
2064 
2065     /*
2066      * Conjure up an Obj_Entry structure for the dynamic linker.
2067      *
2068      * The "path" member can't be initialized yet because string constants
2069      * cannot yet be accessed. Below we will set it correctly.
2070      */
2071     memset(&objtmp, 0, sizeof(objtmp));
2072     objtmp.path = NULL;
2073     objtmp.rtld = true;
2074     objtmp.mapbase = mapbase;
2075 #ifdef PIC
2076     objtmp.relocbase = mapbase;
2077 #endif
2078 
2079     objtmp.dynamic = rtld_dynamic(&objtmp);
2080     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2081     assert(objtmp.needed == NULL);
2082 #if !defined(__mips__)
2083     /* MIPS has a bogus DT_TEXTREL. */
2084     assert(!objtmp.textrel);
2085 #endif
2086     /*
2087      * Temporarily put the dynamic linker entry into the object list, so
2088      * that symbols can be found.
2089      */
2090     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2091 
2092     ehdr = (Elf_Ehdr *)mapbase;
2093     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2094     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2095 
2096     /* Initialize the object list. */
2097     TAILQ_INIT(&obj_list);
2098 
2099     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2100     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2101 
2102 #ifndef RTLD_INIT_PAGESIZES_EARLY
2103     /* The page size is required by the dynamic memory allocator. */
2104     init_pagesizes(aux_info);
2105 #endif
2106 
2107     if (aux_info[AT_OSRELDATE] != NULL)
2108 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2109 
2110     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2111 
2112     /* Replace the path with a dynamically allocated copy. */
2113     obj_rtld.path = xstrdup(ld_path_rtld);
2114 
2115     r_debug.r_brk = r_debug_state;
2116     r_debug.r_state = RT_CONSISTENT;
2117 }
2118 
2119 /*
2120  * Retrieve the array of supported page sizes.  The kernel provides the page
2121  * sizes in increasing order.
2122  */
2123 static void
2124 init_pagesizes(Elf_Auxinfo **aux_info)
2125 {
2126 	static size_t psa[MAXPAGESIZES];
2127 	int mib[2];
2128 	size_t len, size;
2129 
2130 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2131 	    NULL) {
2132 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2133 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2134 	} else {
2135 		len = 2;
2136 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2137 			size = sizeof(psa);
2138 		else {
2139 			/* As a fallback, retrieve the base page size. */
2140 			size = sizeof(psa[0]);
2141 			if (aux_info[AT_PAGESZ] != NULL) {
2142 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2143 				goto psa_filled;
2144 			} else {
2145 				mib[0] = CTL_HW;
2146 				mib[1] = HW_PAGESIZE;
2147 				len = 2;
2148 			}
2149 		}
2150 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2151 			_rtld_error("sysctl for hw.pagesize(s) failed");
2152 			rtld_die();
2153 		}
2154 psa_filled:
2155 		pagesizes = psa;
2156 	}
2157 	npagesizes = size / sizeof(pagesizes[0]);
2158 	/* Discard any invalid entries at the end of the array. */
2159 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2160 		npagesizes--;
2161 }
2162 
2163 /*
2164  * Add the init functions from a needed object list (and its recursive
2165  * needed objects) to "list".  This is not used directly; it is a helper
2166  * function for initlist_add_objects().  The write lock must be held
2167  * when this function is called.
2168  */
2169 static void
2170 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2171 {
2172     /* Recursively process the successor needed objects. */
2173     if (needed->next != NULL)
2174 	initlist_add_neededs(needed->next, list);
2175 
2176     /* Process the current needed object. */
2177     if (needed->obj != NULL)
2178 	initlist_add_objects(needed->obj, needed->obj, list);
2179 }
2180 
2181 /*
2182  * Scan all of the DAGs rooted in the range of objects from "obj" to
2183  * "tail" and add their init functions to "list".  This recurses over
2184  * the DAGs and ensure the proper init ordering such that each object's
2185  * needed libraries are initialized before the object itself.  At the
2186  * same time, this function adds the objects to the global finalization
2187  * list "list_fini" in the opposite order.  The write lock must be
2188  * held when this function is called.
2189  */
2190 static void
2191 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2192 {
2193     Obj_Entry *nobj;
2194 
2195     if (obj->init_scanned || obj->init_done)
2196 	return;
2197     obj->init_scanned = true;
2198 
2199     /* Recursively process the successor objects. */
2200     nobj = globallist_next(obj);
2201     if (nobj != NULL && obj != tail)
2202 	initlist_add_objects(nobj, tail, list);
2203 
2204     /* Recursively process the needed objects. */
2205     if (obj->needed != NULL)
2206 	initlist_add_neededs(obj->needed, list);
2207     if (obj->needed_filtees != NULL)
2208 	initlist_add_neededs(obj->needed_filtees, list);
2209     if (obj->needed_aux_filtees != NULL)
2210 	initlist_add_neededs(obj->needed_aux_filtees, list);
2211 
2212     /* Add the object to the init list. */
2213     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2214       obj->init_array != (Elf_Addr)NULL)
2215 	objlist_push_tail(list, obj);
2216 
2217     /* Add the object to the global fini list in the reverse order. */
2218     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2219       && !obj->on_fini_list) {
2220 	objlist_push_head(&list_fini, obj);
2221 	obj->on_fini_list = true;
2222     }
2223 }
2224 
2225 #ifndef FPTR_TARGET
2226 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2227 #endif
2228 
2229 static void
2230 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2231 {
2232     Needed_Entry *needed, *needed1;
2233 
2234     for (needed = n; needed != NULL; needed = needed->next) {
2235 	if (needed->obj != NULL) {
2236 	    dlclose_locked(needed->obj, lockstate);
2237 	    needed->obj = NULL;
2238 	}
2239     }
2240     for (needed = n; needed != NULL; needed = needed1) {
2241 	needed1 = needed->next;
2242 	free(needed);
2243     }
2244 }
2245 
2246 static void
2247 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2248 {
2249 
2250 	free_needed_filtees(obj->needed_filtees, lockstate);
2251 	obj->needed_filtees = NULL;
2252 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2253 	obj->needed_aux_filtees = NULL;
2254 	obj->filtees_loaded = false;
2255 }
2256 
2257 static void
2258 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2259     RtldLockState *lockstate)
2260 {
2261 
2262     for (; needed != NULL; needed = needed->next) {
2263 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2264 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2265 	  RTLD_LOCAL, lockstate);
2266     }
2267 }
2268 
2269 static void
2270 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2271 {
2272 
2273     lock_restart_for_upgrade(lockstate);
2274     if (!obj->filtees_loaded) {
2275 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2276 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2277 	obj->filtees_loaded = true;
2278     }
2279 }
2280 
2281 static int
2282 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2283 {
2284     Obj_Entry *obj1;
2285 
2286     for (; needed != NULL; needed = needed->next) {
2287 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2288 	  flags & ~RTLD_LO_NOLOAD);
2289 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2290 	    return (-1);
2291     }
2292     return (0);
2293 }
2294 
2295 /*
2296  * Given a shared object, traverse its list of needed objects, and load
2297  * each of them.  Returns 0 on success.  Generates an error message and
2298  * returns -1 on failure.
2299  */
2300 static int
2301 load_needed_objects(Obj_Entry *first, int flags)
2302 {
2303     Obj_Entry *obj;
2304 
2305     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2306 	if (obj->marker)
2307 	    continue;
2308 	if (process_needed(obj, obj->needed, flags) == -1)
2309 	    return (-1);
2310     }
2311     return (0);
2312 }
2313 
2314 static int
2315 load_preload_objects(void)
2316 {
2317     char *p = ld_preload;
2318     Obj_Entry *obj;
2319     static const char delim[] = " \t:;";
2320 
2321     if (p == NULL)
2322 	return 0;
2323 
2324     p += strspn(p, delim);
2325     while (*p != '\0') {
2326 	size_t len = strcspn(p, delim);
2327 	char savech;
2328 
2329 	savech = p[len];
2330 	p[len] = '\0';
2331 	obj = load_object(p, -1, NULL, 0);
2332 	if (obj == NULL)
2333 	    return -1;	/* XXX - cleanup */
2334 	obj->z_interpose = true;
2335 	p[len] = savech;
2336 	p += len;
2337 	p += strspn(p, delim);
2338     }
2339     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2340     return 0;
2341 }
2342 
2343 static const char *
2344 printable_path(const char *path)
2345 {
2346 
2347 	return (path == NULL ? "<unknown>" : path);
2348 }
2349 
2350 /*
2351  * Load a shared object into memory, if it is not already loaded.  The
2352  * object may be specified by name or by user-supplied file descriptor
2353  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2354  * duplicate is.
2355  *
2356  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2357  * on failure.
2358  */
2359 static Obj_Entry *
2360 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2361 {
2362     Obj_Entry *obj;
2363     int fd;
2364     struct stat sb;
2365     char *path;
2366 
2367     fd = -1;
2368     if (name != NULL) {
2369 	TAILQ_FOREACH(obj, &obj_list, next) {
2370 	    if (obj->marker || obj->doomed)
2371 		continue;
2372 	    if (object_match_name(obj, name))
2373 		return (obj);
2374 	}
2375 
2376 	path = find_library(name, refobj, &fd);
2377 	if (path == NULL)
2378 	    return (NULL);
2379     } else
2380 	path = NULL;
2381 
2382     if (fd >= 0) {
2383 	/*
2384 	 * search_library_pathfds() opens a fresh file descriptor for the
2385 	 * library, so there is no need to dup().
2386 	 */
2387     } else if (fd_u == -1) {
2388 	/*
2389 	 * If we didn't find a match by pathname, or the name is not
2390 	 * supplied, open the file and check again by device and inode.
2391 	 * This avoids false mismatches caused by multiple links or ".."
2392 	 * in pathnames.
2393 	 *
2394 	 * To avoid a race, we open the file and use fstat() rather than
2395 	 * using stat().
2396 	 */
2397 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2398 	    _rtld_error("Cannot open \"%s\"", path);
2399 	    free(path);
2400 	    return (NULL);
2401 	}
2402     } else {
2403 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2404 	if (fd == -1) {
2405 	    _rtld_error("Cannot dup fd");
2406 	    free(path);
2407 	    return (NULL);
2408 	}
2409     }
2410     if (fstat(fd, &sb) == -1) {
2411 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2412 	close(fd);
2413 	free(path);
2414 	return NULL;
2415     }
2416     TAILQ_FOREACH(obj, &obj_list, next) {
2417 	if (obj->marker || obj->doomed)
2418 	    continue;
2419 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2420 	    break;
2421     }
2422     if (obj != NULL && name != NULL) {
2423 	object_add_name(obj, name);
2424 	free(path);
2425 	close(fd);
2426 	return obj;
2427     }
2428     if (flags & RTLD_LO_NOLOAD) {
2429 	free(path);
2430 	close(fd);
2431 	return (NULL);
2432     }
2433 
2434     /* First use of this object, so we must map it in */
2435     obj = do_load_object(fd, name, path, &sb, flags);
2436     if (obj == NULL)
2437 	free(path);
2438     close(fd);
2439 
2440     return obj;
2441 }
2442 
2443 static Obj_Entry *
2444 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2445   int flags)
2446 {
2447     Obj_Entry *obj;
2448     struct statfs fs;
2449 
2450     /*
2451      * but first, make sure that environment variables haven't been
2452      * used to circumvent the noexec flag on a filesystem.
2453      */
2454     if (dangerous_ld_env) {
2455 	if (fstatfs(fd, &fs) != 0) {
2456 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2457 	    return NULL;
2458 	}
2459 	if (fs.f_flags & MNT_NOEXEC) {
2460 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2461 	    return NULL;
2462 	}
2463     }
2464     dbg("loading \"%s\"", printable_path(path));
2465     obj = map_object(fd, printable_path(path), sbp);
2466     if (obj == NULL)
2467         return NULL;
2468 
2469     /*
2470      * If DT_SONAME is present in the object, digest_dynamic2 already
2471      * added it to the object names.
2472      */
2473     if (name != NULL)
2474 	object_add_name(obj, name);
2475     obj->path = path;
2476     digest_dynamic(obj, 0);
2477     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2478 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2479     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2480       RTLD_LO_DLOPEN) {
2481 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2482 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2483 	munmap(obj->mapbase, obj->mapsize);
2484 	obj_free(obj);
2485 	return (NULL);
2486     }
2487 
2488     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2489     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2490     obj_count++;
2491     obj_loads++;
2492     linkmap_add(obj);	/* for GDB & dlinfo() */
2493     max_stack_flags |= obj->stack_flags;
2494 
2495     dbg("  %p .. %p: %s", obj->mapbase,
2496          obj->mapbase + obj->mapsize - 1, obj->path);
2497     if (obj->textrel)
2498 	dbg("  WARNING: %s has impure text", obj->path);
2499     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2500 	obj->path);
2501 
2502     return obj;
2503 }
2504 
2505 static Obj_Entry *
2506 obj_from_addr(const void *addr)
2507 {
2508     Obj_Entry *obj;
2509 
2510     TAILQ_FOREACH(obj, &obj_list, next) {
2511 	if (obj->marker)
2512 	    continue;
2513 	if (addr < (void *) obj->mapbase)
2514 	    continue;
2515 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2516 	    return obj;
2517     }
2518     return NULL;
2519 }
2520 
2521 static void
2522 preinit_main(void)
2523 {
2524     Elf_Addr *preinit_addr;
2525     int index;
2526 
2527     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2528     if (preinit_addr == NULL)
2529 	return;
2530 
2531     for (index = 0; index < obj_main->preinit_array_num; index++) {
2532 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2533 	    dbg("calling preinit function for %s at %p", obj_main->path,
2534 	      (void *)preinit_addr[index]);
2535 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2536 	      0, 0, obj_main->path);
2537 	    call_init_pointer(obj_main, preinit_addr[index]);
2538 	}
2539     }
2540 }
2541 
2542 /*
2543  * Call the finalization functions for each of the objects in "list"
2544  * belonging to the DAG of "root" and referenced once. If NULL "root"
2545  * is specified, every finalization function will be called regardless
2546  * of the reference count and the list elements won't be freed. All of
2547  * the objects are expected to have non-NULL fini functions.
2548  */
2549 static void
2550 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2551 {
2552     Objlist_Entry *elm;
2553     char *saved_msg;
2554     Elf_Addr *fini_addr;
2555     int index;
2556 
2557     assert(root == NULL || root->refcount == 1);
2558 
2559     if (root != NULL)
2560 	root->doomed = true;
2561 
2562     /*
2563      * Preserve the current error message since a fini function might
2564      * call into the dynamic linker and overwrite it.
2565      */
2566     saved_msg = errmsg_save();
2567     do {
2568 	STAILQ_FOREACH(elm, list, link) {
2569 	    if (root != NULL && (elm->obj->refcount != 1 ||
2570 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2571 		continue;
2572 	    /* Remove object from fini list to prevent recursive invocation. */
2573 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2574 	    /* Ensure that new references cannot be acquired. */
2575 	    elm->obj->doomed = true;
2576 
2577 	    hold_object(elm->obj);
2578 	    lock_release(rtld_bind_lock, lockstate);
2579 	    /*
2580 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2581 	     * When this happens, DT_FINI_ARRAY is processed first.
2582 	     */
2583 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2584 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2585 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2586 		  index--) {
2587 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2588 			dbg("calling fini function for %s at %p",
2589 			    elm->obj->path, (void *)fini_addr[index]);
2590 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2591 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2592 			call_initfini_pointer(elm->obj, fini_addr[index]);
2593 		    }
2594 		}
2595 	    }
2596 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2597 		dbg("calling fini function for %s at %p", elm->obj->path,
2598 		    (void *)elm->obj->fini);
2599 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2600 		    0, 0, elm->obj->path);
2601 		call_initfini_pointer(elm->obj, elm->obj->fini);
2602 	    }
2603 	    wlock_acquire(rtld_bind_lock, lockstate);
2604 	    unhold_object(elm->obj);
2605 	    /* No need to free anything if process is going down. */
2606 	    if (root != NULL)
2607 	    	free(elm);
2608 	    /*
2609 	     * We must restart the list traversal after every fini call
2610 	     * because a dlclose() call from the fini function or from
2611 	     * another thread might have modified the reference counts.
2612 	     */
2613 	    break;
2614 	}
2615     } while (elm != NULL);
2616     errmsg_restore(saved_msg);
2617 }
2618 
2619 /*
2620  * Call the initialization functions for each of the objects in
2621  * "list".  All of the objects are expected to have non-NULL init
2622  * functions.
2623  */
2624 static void
2625 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2626 {
2627     Objlist_Entry *elm;
2628     Obj_Entry *obj;
2629     char *saved_msg;
2630     Elf_Addr *init_addr;
2631     int index;
2632 
2633     /*
2634      * Clean init_scanned flag so that objects can be rechecked and
2635      * possibly initialized earlier if any of vectors called below
2636      * cause the change by using dlopen.
2637      */
2638     TAILQ_FOREACH(obj, &obj_list, next) {
2639 	if (obj->marker)
2640 	    continue;
2641 	obj->init_scanned = false;
2642     }
2643 
2644     /*
2645      * Preserve the current error message since an init function might
2646      * call into the dynamic linker and overwrite it.
2647      */
2648     saved_msg = errmsg_save();
2649     STAILQ_FOREACH(elm, list, link) {
2650 	if (elm->obj->init_done) /* Initialized early. */
2651 	    continue;
2652 	/*
2653 	 * Race: other thread might try to use this object before current
2654 	 * one completes the initialization. Not much can be done here
2655 	 * without better locking.
2656 	 */
2657 	elm->obj->init_done = true;
2658 	hold_object(elm->obj);
2659 	lock_release(rtld_bind_lock, lockstate);
2660 
2661         /*
2662          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2663          * When this happens, DT_INIT is processed first.
2664          */
2665 	if (elm->obj->init != (Elf_Addr)NULL) {
2666 	    dbg("calling init function for %s at %p", elm->obj->path,
2667 	        (void *)elm->obj->init);
2668 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2669 	        0, 0, elm->obj->path);
2670 	    call_initfini_pointer(elm->obj, elm->obj->init);
2671 	}
2672 	init_addr = (Elf_Addr *)elm->obj->init_array;
2673 	if (init_addr != NULL) {
2674 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2675 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2676 		    dbg("calling init function for %s at %p", elm->obj->path,
2677 			(void *)init_addr[index]);
2678 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2679 			(void *)init_addr[index], 0, 0, elm->obj->path);
2680 		    call_init_pointer(elm->obj, init_addr[index]);
2681 		}
2682 	    }
2683 	}
2684 	wlock_acquire(rtld_bind_lock, lockstate);
2685 	unhold_object(elm->obj);
2686     }
2687     errmsg_restore(saved_msg);
2688 }
2689 
2690 static void
2691 objlist_clear(Objlist *list)
2692 {
2693     Objlist_Entry *elm;
2694 
2695     while (!STAILQ_EMPTY(list)) {
2696 	elm = STAILQ_FIRST(list);
2697 	STAILQ_REMOVE_HEAD(list, link);
2698 	free(elm);
2699     }
2700 }
2701 
2702 static Objlist_Entry *
2703 objlist_find(Objlist *list, const Obj_Entry *obj)
2704 {
2705     Objlist_Entry *elm;
2706 
2707     STAILQ_FOREACH(elm, list, link)
2708 	if (elm->obj == obj)
2709 	    return elm;
2710     return NULL;
2711 }
2712 
2713 static void
2714 objlist_init(Objlist *list)
2715 {
2716     STAILQ_INIT(list);
2717 }
2718 
2719 static void
2720 objlist_push_head(Objlist *list, Obj_Entry *obj)
2721 {
2722     Objlist_Entry *elm;
2723 
2724     elm = NEW(Objlist_Entry);
2725     elm->obj = obj;
2726     STAILQ_INSERT_HEAD(list, elm, link);
2727 }
2728 
2729 static void
2730 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2731 {
2732     Objlist_Entry *elm;
2733 
2734     elm = NEW(Objlist_Entry);
2735     elm->obj = obj;
2736     STAILQ_INSERT_TAIL(list, elm, link);
2737 }
2738 
2739 static void
2740 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2741 {
2742 	Objlist_Entry *elm, *listelm;
2743 
2744 	STAILQ_FOREACH(listelm, list, link) {
2745 		if (listelm->obj == listobj)
2746 			break;
2747 	}
2748 	elm = NEW(Objlist_Entry);
2749 	elm->obj = obj;
2750 	if (listelm != NULL)
2751 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2752 	else
2753 		STAILQ_INSERT_TAIL(list, elm, link);
2754 }
2755 
2756 static void
2757 objlist_remove(Objlist *list, Obj_Entry *obj)
2758 {
2759     Objlist_Entry *elm;
2760 
2761     if ((elm = objlist_find(list, obj)) != NULL) {
2762 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2763 	free(elm);
2764     }
2765 }
2766 
2767 /*
2768  * Relocate dag rooted in the specified object.
2769  * Returns 0 on success, or -1 on failure.
2770  */
2771 
2772 static int
2773 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2774     int flags, RtldLockState *lockstate)
2775 {
2776 	Objlist_Entry *elm;
2777 	int error;
2778 
2779 	error = 0;
2780 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2781 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2782 		    lockstate);
2783 		if (error == -1)
2784 			break;
2785 	}
2786 	return (error);
2787 }
2788 
2789 /*
2790  * Prepare for, or clean after, relocating an object marked with
2791  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2792  * segments are remapped read-write.  After relocations are done, the
2793  * segment's permissions are returned back to the modes specified in
2794  * the phdrs.  If any relocation happened, or always for wired
2795  * program, COW is triggered.
2796  */
2797 static int
2798 reloc_textrel_prot(Obj_Entry *obj, bool before)
2799 {
2800 	const Elf_Phdr *ph;
2801 	void *base;
2802 	size_t l, sz;
2803 	int prot;
2804 
2805 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2806 	    l--, ph++) {
2807 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2808 			continue;
2809 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2810 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2811 		    trunc_page(ph->p_vaddr);
2812 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2813 		if (mprotect(base, sz, prot) == -1) {
2814 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2815 			    obj->path, before ? "en" : "dis",
2816 			    rtld_strerror(errno));
2817 			return (-1);
2818 		}
2819 	}
2820 	return (0);
2821 }
2822 
2823 /*
2824  * Relocate single object.
2825  * Returns 0 on success, or -1 on failure.
2826  */
2827 static int
2828 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2829     int flags, RtldLockState *lockstate)
2830 {
2831 
2832 	if (obj->relocated)
2833 		return (0);
2834 	obj->relocated = true;
2835 	if (obj != rtldobj)
2836 		dbg("relocating \"%s\"", obj->path);
2837 
2838 	if (obj->symtab == NULL || obj->strtab == NULL ||
2839 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2840 		_rtld_error("%s: Shared object has no run-time symbol table",
2841 			    obj->path);
2842 		return (-1);
2843 	}
2844 
2845 	/* There are relocations to the write-protected text segment. */
2846 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2847 		return (-1);
2848 
2849 	/* Process the non-PLT non-IFUNC relocations. */
2850 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2851 		return (-1);
2852 
2853 	/* Re-protected the text segment. */
2854 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2855 		return (-1);
2856 
2857 	/* Set the special PLT or GOT entries. */
2858 	init_pltgot(obj);
2859 
2860 	/* Process the PLT relocations. */
2861 	if (reloc_plt(obj) == -1)
2862 		return (-1);
2863 	/* Relocate the jump slots if we are doing immediate binding. */
2864 	if (obj->bind_now || bind_now)
2865 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2866 			return (-1);
2867 
2868 	/*
2869 	 * Process the non-PLT IFUNC relocations.  The relocations are
2870 	 * processed in two phases, because IFUNC resolvers may
2871 	 * reference other symbols, which must be readily processed
2872 	 * before resolvers are called.
2873 	 */
2874 	if (obj->non_plt_gnu_ifunc &&
2875 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2876 		return (-1);
2877 
2878 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2879 		return (-1);
2880 
2881 	/*
2882 	 * Set up the magic number and version in the Obj_Entry.  These
2883 	 * were checked in the crt1.o from the original ElfKit, so we
2884 	 * set them for backward compatibility.
2885 	 */
2886 	obj->magic = RTLD_MAGIC;
2887 	obj->version = RTLD_VERSION;
2888 
2889 	return (0);
2890 }
2891 
2892 /*
2893  * Relocate newly-loaded shared objects.  The argument is a pointer to
2894  * the Obj_Entry for the first such object.  All objects from the first
2895  * to the end of the list of objects are relocated.  Returns 0 on success,
2896  * or -1 on failure.
2897  */
2898 static int
2899 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2900     int flags, RtldLockState *lockstate)
2901 {
2902 	Obj_Entry *obj;
2903 	int error;
2904 
2905 	for (error = 0, obj = first;  obj != NULL;
2906 	    obj = TAILQ_NEXT(obj, next)) {
2907 		if (obj->marker)
2908 			continue;
2909 		error = relocate_object(obj, bind_now, rtldobj, flags,
2910 		    lockstate);
2911 		if (error == -1)
2912 			break;
2913 	}
2914 	return (error);
2915 }
2916 
2917 /*
2918  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2919  * referencing STT_GNU_IFUNC symbols is postponed till the other
2920  * relocations are done.  The indirect functions specified as
2921  * ifunc are allowed to call other symbols, so we need to have
2922  * objects relocated before asking for resolution from indirects.
2923  *
2924  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2925  * instead of the usual lazy handling of PLT slots.  It is
2926  * consistent with how GNU does it.
2927  */
2928 static int
2929 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2930     RtldLockState *lockstate)
2931 {
2932 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2933 		return (-1);
2934 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2935 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2936 		return (-1);
2937 	return (0);
2938 }
2939 
2940 static int
2941 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2942     RtldLockState *lockstate)
2943 {
2944 	Obj_Entry *obj;
2945 
2946 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2947 		if (obj->marker)
2948 			continue;
2949 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2950 			return (-1);
2951 	}
2952 	return (0);
2953 }
2954 
2955 static int
2956 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2957     RtldLockState *lockstate)
2958 {
2959 	Objlist_Entry *elm;
2960 
2961 	STAILQ_FOREACH(elm, list, link) {
2962 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2963 		    lockstate) == -1)
2964 			return (-1);
2965 	}
2966 	return (0);
2967 }
2968 
2969 /*
2970  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2971  * before the process exits.
2972  */
2973 static void
2974 rtld_exit(void)
2975 {
2976     RtldLockState lockstate;
2977 
2978     wlock_acquire(rtld_bind_lock, &lockstate);
2979     dbg("rtld_exit()");
2980     objlist_call_fini(&list_fini, NULL, &lockstate);
2981     /* No need to remove the items from the list, since we are exiting. */
2982     if (!libmap_disable)
2983         lm_fini();
2984     lock_release(rtld_bind_lock, &lockstate);
2985 }
2986 
2987 /*
2988  * Iterate over a search path, translate each element, and invoke the
2989  * callback on the result.
2990  */
2991 static void *
2992 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2993 {
2994     const char *trans;
2995     if (path == NULL)
2996 	return (NULL);
2997 
2998     path += strspn(path, ":;");
2999     while (*path != '\0') {
3000 	size_t len;
3001 	char  *res;
3002 
3003 	len = strcspn(path, ":;");
3004 	trans = lm_findn(NULL, path, len);
3005 	if (trans)
3006 	    res = callback(trans, strlen(trans), arg);
3007 	else
3008 	    res = callback(path, len, arg);
3009 
3010 	if (res != NULL)
3011 	    return (res);
3012 
3013 	path += len;
3014 	path += strspn(path, ":;");
3015     }
3016 
3017     return (NULL);
3018 }
3019 
3020 struct try_library_args {
3021     const char	*name;
3022     size_t	 namelen;
3023     char	*buffer;
3024     size_t	 buflen;
3025     int		 fd;
3026 };
3027 
3028 static void *
3029 try_library_path(const char *dir, size_t dirlen, void *param)
3030 {
3031     struct try_library_args *arg;
3032     int fd;
3033 
3034     arg = param;
3035     if (*dir == '/' || trust) {
3036 	char *pathname;
3037 
3038 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3039 		return (NULL);
3040 
3041 	pathname = arg->buffer;
3042 	strncpy(pathname, dir, dirlen);
3043 	pathname[dirlen] = '/';
3044 	strcpy(pathname + dirlen + 1, arg->name);
3045 
3046 	dbg("  Trying \"%s\"", pathname);
3047 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3048 	if (fd >= 0) {
3049 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3050 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3051 	    strcpy(pathname, arg->buffer);
3052 	    arg->fd = fd;
3053 	    return (pathname);
3054 	} else {
3055 	    dbg("  Failed to open \"%s\": %s",
3056 		pathname, rtld_strerror(errno));
3057 	}
3058     }
3059     return (NULL);
3060 }
3061 
3062 static char *
3063 search_library_path(const char *name, const char *path, int *fdp)
3064 {
3065     char *p;
3066     struct try_library_args arg;
3067 
3068     if (path == NULL)
3069 	return NULL;
3070 
3071     arg.name = name;
3072     arg.namelen = strlen(name);
3073     arg.buffer = xmalloc(PATH_MAX);
3074     arg.buflen = PATH_MAX;
3075     arg.fd = -1;
3076 
3077     p = path_enumerate(path, try_library_path, &arg);
3078     *fdp = arg.fd;
3079 
3080     free(arg.buffer);
3081 
3082     return (p);
3083 }
3084 
3085 
3086 /*
3087  * Finds the library with the given name using the directory descriptors
3088  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3089  *
3090  * Returns a freshly-opened close-on-exec file descriptor for the library,
3091  * or -1 if the library cannot be found.
3092  */
3093 static char *
3094 search_library_pathfds(const char *name, const char *path, int *fdp)
3095 {
3096 	char *envcopy, *fdstr, *found, *last_token;
3097 	size_t len;
3098 	int dirfd, fd;
3099 
3100 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3101 
3102 	/* Don't load from user-specified libdirs into setuid binaries. */
3103 	if (!trust)
3104 		return (NULL);
3105 
3106 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3107 	if (path == NULL)
3108 		return (NULL);
3109 
3110 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3111 	if (name[0] == '/') {
3112 		dbg("Absolute path (%s) passed to %s", name, __func__);
3113 		return (NULL);
3114 	}
3115 
3116 	/*
3117 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3118 	 * copy of the path, as strtok_r rewrites separator tokens
3119 	 * with '\0'.
3120 	 */
3121 	found = NULL;
3122 	envcopy = xstrdup(path);
3123 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3124 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3125 		dirfd = parse_integer(fdstr);
3126 		if (dirfd < 0) {
3127 			_rtld_error("failed to parse directory FD: '%s'",
3128 				fdstr);
3129 			break;
3130 		}
3131 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3132 		if (fd >= 0) {
3133 			*fdp = fd;
3134 			len = strlen(fdstr) + strlen(name) + 3;
3135 			found = xmalloc(len);
3136 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3137 				_rtld_error("error generating '%d/%s'",
3138 				    dirfd, name);
3139 				rtld_die();
3140 			}
3141 			dbg("open('%s') => %d", found, fd);
3142 			break;
3143 		}
3144 	}
3145 	free(envcopy);
3146 
3147 	return (found);
3148 }
3149 
3150 
3151 int
3152 dlclose(void *handle)
3153 {
3154 	RtldLockState lockstate;
3155 	int error;
3156 
3157 	wlock_acquire(rtld_bind_lock, &lockstate);
3158 	error = dlclose_locked(handle, &lockstate);
3159 	lock_release(rtld_bind_lock, &lockstate);
3160 	return (error);
3161 }
3162 
3163 static int
3164 dlclose_locked(void *handle, RtldLockState *lockstate)
3165 {
3166     Obj_Entry *root;
3167 
3168     root = dlcheck(handle);
3169     if (root == NULL)
3170 	return -1;
3171     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3172 	root->path);
3173 
3174     /* Unreference the object and its dependencies. */
3175     root->dl_refcount--;
3176 
3177     if (root->refcount == 1) {
3178 	/*
3179 	 * The object will be no longer referenced, so we must unload it.
3180 	 * First, call the fini functions.
3181 	 */
3182 	objlist_call_fini(&list_fini, root, lockstate);
3183 
3184 	unref_dag(root);
3185 
3186 	/* Finish cleaning up the newly-unreferenced objects. */
3187 	GDB_STATE(RT_DELETE,&root->linkmap);
3188 	unload_object(root, lockstate);
3189 	GDB_STATE(RT_CONSISTENT,NULL);
3190     } else
3191 	unref_dag(root);
3192 
3193     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3194     return 0;
3195 }
3196 
3197 char *
3198 dlerror(void)
3199 {
3200     char *msg = error_message;
3201     error_message = NULL;
3202     return msg;
3203 }
3204 
3205 /*
3206  * This function is deprecated and has no effect.
3207  */
3208 void
3209 dllockinit(void *context,
3210 	   void *(*lock_create)(void *context),
3211            void (*rlock_acquire)(void *lock),
3212            void (*wlock_acquire)(void *lock),
3213            void (*lock_release)(void *lock),
3214            void (*lock_destroy)(void *lock),
3215 	   void (*context_destroy)(void *context))
3216 {
3217     static void *cur_context;
3218     static void (*cur_context_destroy)(void *);
3219 
3220     /* Just destroy the context from the previous call, if necessary. */
3221     if (cur_context_destroy != NULL)
3222 	cur_context_destroy(cur_context);
3223     cur_context = context;
3224     cur_context_destroy = context_destroy;
3225 }
3226 
3227 void *
3228 dlopen(const char *name, int mode)
3229 {
3230 
3231 	return (rtld_dlopen(name, -1, mode));
3232 }
3233 
3234 void *
3235 fdlopen(int fd, int mode)
3236 {
3237 
3238 	return (rtld_dlopen(NULL, fd, mode));
3239 }
3240 
3241 static void *
3242 rtld_dlopen(const char *name, int fd, int mode)
3243 {
3244     RtldLockState lockstate;
3245     int lo_flags;
3246 
3247     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3248     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3249     if (ld_tracing != NULL) {
3250 	rlock_acquire(rtld_bind_lock, &lockstate);
3251 	if (sigsetjmp(lockstate.env, 0) != 0)
3252 	    lock_upgrade(rtld_bind_lock, &lockstate);
3253 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3254 	lock_release(rtld_bind_lock, &lockstate);
3255     }
3256     lo_flags = RTLD_LO_DLOPEN;
3257     if (mode & RTLD_NODELETE)
3258 	    lo_flags |= RTLD_LO_NODELETE;
3259     if (mode & RTLD_NOLOAD)
3260 	    lo_flags |= RTLD_LO_NOLOAD;
3261     if (ld_tracing != NULL)
3262 	    lo_flags |= RTLD_LO_TRACE;
3263 
3264     return (dlopen_object(name, fd, obj_main, lo_flags,
3265       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3266 }
3267 
3268 static void
3269 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3270 {
3271 
3272 	obj->dl_refcount--;
3273 	unref_dag(obj);
3274 	if (obj->refcount == 0)
3275 		unload_object(obj, lockstate);
3276 }
3277 
3278 static Obj_Entry *
3279 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3280     int mode, RtldLockState *lockstate)
3281 {
3282     Obj_Entry *old_obj_tail;
3283     Obj_Entry *obj;
3284     Objlist initlist;
3285     RtldLockState mlockstate;
3286     int result;
3287 
3288     objlist_init(&initlist);
3289 
3290     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3291 	wlock_acquire(rtld_bind_lock, &mlockstate);
3292 	lockstate = &mlockstate;
3293     }
3294     GDB_STATE(RT_ADD,NULL);
3295 
3296     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3297     obj = NULL;
3298     if (name == NULL && fd == -1) {
3299 	obj = obj_main;
3300 	obj->refcount++;
3301     } else {
3302 	obj = load_object(name, fd, refobj, lo_flags);
3303     }
3304 
3305     if (obj) {
3306 	obj->dl_refcount++;
3307 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3308 	    objlist_push_tail(&list_global, obj);
3309 	if (globallist_next(old_obj_tail) != NULL) {
3310 	    /* We loaded something new. */
3311 	    assert(globallist_next(old_obj_tail) == obj);
3312 	    result = load_needed_objects(obj,
3313 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3314 	    init_dag(obj);
3315 	    ref_dag(obj);
3316 	    if (result != -1)
3317 		result = rtld_verify_versions(&obj->dagmembers);
3318 	    if (result != -1 && ld_tracing)
3319 		goto trace;
3320 	    if (result == -1 || relocate_object_dag(obj,
3321 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3322 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3323 	      lockstate) == -1) {
3324 		dlopen_cleanup(obj, lockstate);
3325 		obj = NULL;
3326 	    } else if (lo_flags & RTLD_LO_EARLY) {
3327 		/*
3328 		 * Do not call the init functions for early loaded
3329 		 * filtees.  The image is still not initialized enough
3330 		 * for them to work.
3331 		 *
3332 		 * Our object is found by the global object list and
3333 		 * will be ordered among all init calls done right
3334 		 * before transferring control to main.
3335 		 */
3336 	    } else {
3337 		/* Make list of init functions to call. */
3338 		initlist_add_objects(obj, obj, &initlist);
3339 	    }
3340 	    /*
3341 	     * Process all no_delete or global objects here, given
3342 	     * them own DAGs to prevent their dependencies from being
3343 	     * unloaded.  This has to be done after we have loaded all
3344 	     * of the dependencies, so that we do not miss any.
3345 	     */
3346 	    if (obj != NULL)
3347 		process_z(obj);
3348 	} else {
3349 	    /*
3350 	     * Bump the reference counts for objects on this DAG.  If
3351 	     * this is the first dlopen() call for the object that was
3352 	     * already loaded as a dependency, initialize the dag
3353 	     * starting at it.
3354 	     */
3355 	    init_dag(obj);
3356 	    ref_dag(obj);
3357 
3358 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3359 		goto trace;
3360 	}
3361 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3362 	  obj->z_nodelete) && !obj->ref_nodel) {
3363 	    dbg("obj %s nodelete", obj->path);
3364 	    ref_dag(obj);
3365 	    obj->z_nodelete = obj->ref_nodel = true;
3366 	}
3367     }
3368 
3369     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3370 	name);
3371     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3372 
3373     if (!(lo_flags & RTLD_LO_EARLY)) {
3374 	map_stacks_exec(lockstate);
3375     }
3376 
3377     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3378       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3379       lockstate) == -1) {
3380 	objlist_clear(&initlist);
3381 	dlopen_cleanup(obj, lockstate);
3382 	if (lockstate == &mlockstate)
3383 	    lock_release(rtld_bind_lock, lockstate);
3384 	return (NULL);
3385     }
3386 
3387     if (!(lo_flags & RTLD_LO_EARLY)) {
3388 	/* Call the init functions. */
3389 	objlist_call_init(&initlist, lockstate);
3390     }
3391     objlist_clear(&initlist);
3392     if (lockstate == &mlockstate)
3393 	lock_release(rtld_bind_lock, lockstate);
3394     return obj;
3395 trace:
3396     trace_loaded_objects(obj);
3397     if (lockstate == &mlockstate)
3398 	lock_release(rtld_bind_lock, lockstate);
3399     exit(0);
3400 }
3401 
3402 static void *
3403 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3404     int flags)
3405 {
3406     DoneList donelist;
3407     const Obj_Entry *obj, *defobj;
3408     const Elf_Sym *def;
3409     SymLook req;
3410     RtldLockState lockstate;
3411     tls_index ti;
3412     void *sym;
3413     int res;
3414 
3415     def = NULL;
3416     defobj = NULL;
3417     symlook_init(&req, name);
3418     req.ventry = ve;
3419     req.flags = flags | SYMLOOK_IN_PLT;
3420     req.lockstate = &lockstate;
3421 
3422     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3423     rlock_acquire(rtld_bind_lock, &lockstate);
3424     if (sigsetjmp(lockstate.env, 0) != 0)
3425 	    lock_upgrade(rtld_bind_lock, &lockstate);
3426     if (handle == NULL || handle == RTLD_NEXT ||
3427 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3428 
3429 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3430 	    _rtld_error("Cannot determine caller's shared object");
3431 	    lock_release(rtld_bind_lock, &lockstate);
3432 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3433 	    return NULL;
3434 	}
3435 	if (handle == NULL) {	/* Just the caller's shared object. */
3436 	    res = symlook_obj(&req, obj);
3437 	    if (res == 0) {
3438 		def = req.sym_out;
3439 		defobj = req.defobj_out;
3440 	    }
3441 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3442 		   handle == RTLD_SELF) { /* ... caller included */
3443 	    if (handle == RTLD_NEXT)
3444 		obj = globallist_next(obj);
3445 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3446 		if (obj->marker)
3447 		    continue;
3448 		res = symlook_obj(&req, obj);
3449 		if (res == 0) {
3450 		    if (def == NULL ||
3451 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3452 			def = req.sym_out;
3453 			defobj = req.defobj_out;
3454 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3455 			    break;
3456 		    }
3457 		}
3458 	    }
3459 	    /*
3460 	     * Search the dynamic linker itself, and possibly resolve the
3461 	     * symbol from there.  This is how the application links to
3462 	     * dynamic linker services such as dlopen.
3463 	     */
3464 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3465 		res = symlook_obj(&req, &obj_rtld);
3466 		if (res == 0) {
3467 		    def = req.sym_out;
3468 		    defobj = req.defobj_out;
3469 		}
3470 	    }
3471 	} else {
3472 	    assert(handle == RTLD_DEFAULT);
3473 	    res = symlook_default(&req, obj);
3474 	    if (res == 0) {
3475 		defobj = req.defobj_out;
3476 		def = req.sym_out;
3477 	    }
3478 	}
3479     } else {
3480 	if ((obj = dlcheck(handle)) == NULL) {
3481 	    lock_release(rtld_bind_lock, &lockstate);
3482 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3483 	    return NULL;
3484 	}
3485 
3486 	donelist_init(&donelist);
3487 	if (obj->mainprog) {
3488             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3489 	    res = symlook_global(&req, &donelist);
3490 	    if (res == 0) {
3491 		def = req.sym_out;
3492 		defobj = req.defobj_out;
3493 	    }
3494 	    /*
3495 	     * Search the dynamic linker itself, and possibly resolve the
3496 	     * symbol from there.  This is how the application links to
3497 	     * dynamic linker services such as dlopen.
3498 	     */
3499 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3500 		res = symlook_obj(&req, &obj_rtld);
3501 		if (res == 0) {
3502 		    def = req.sym_out;
3503 		    defobj = req.defobj_out;
3504 		}
3505 	    }
3506 	}
3507 	else {
3508 	    /* Search the whole DAG rooted at the given object. */
3509 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3510 	    if (res == 0) {
3511 		def = req.sym_out;
3512 		defobj = req.defobj_out;
3513 	    }
3514 	}
3515     }
3516 
3517     if (def != NULL) {
3518 	lock_release(rtld_bind_lock, &lockstate);
3519 
3520 	/*
3521 	 * The value required by the caller is derived from the value
3522 	 * of the symbol. this is simply the relocated value of the
3523 	 * symbol.
3524 	 */
3525 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3526 	    sym = make_function_pointer(def, defobj);
3527 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3528 	    sym = rtld_resolve_ifunc(defobj, def);
3529 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3530 	    ti.ti_module = defobj->tlsindex;
3531 	    ti.ti_offset = def->st_value;
3532 	    sym = __tls_get_addr(&ti);
3533 	} else
3534 	    sym = defobj->relocbase + def->st_value;
3535 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3536 	return (sym);
3537     }
3538 
3539     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3540       ve != NULL ? ve->name : "");
3541     lock_release(rtld_bind_lock, &lockstate);
3542     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3543     return NULL;
3544 }
3545 
3546 void *
3547 dlsym(void *handle, const char *name)
3548 {
3549 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3550 	    SYMLOOK_DLSYM);
3551 }
3552 
3553 dlfunc_t
3554 dlfunc(void *handle, const char *name)
3555 {
3556 	union {
3557 		void *d;
3558 		dlfunc_t f;
3559 	} rv;
3560 
3561 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3562 	    SYMLOOK_DLSYM);
3563 	return (rv.f);
3564 }
3565 
3566 void *
3567 dlvsym(void *handle, const char *name, const char *version)
3568 {
3569 	Ver_Entry ventry;
3570 
3571 	ventry.name = version;
3572 	ventry.file = NULL;
3573 	ventry.hash = elf_hash(version);
3574 	ventry.flags= 0;
3575 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3576 	    SYMLOOK_DLSYM);
3577 }
3578 
3579 int
3580 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3581 {
3582     const Obj_Entry *obj;
3583     RtldLockState lockstate;
3584 
3585     rlock_acquire(rtld_bind_lock, &lockstate);
3586     obj = obj_from_addr(addr);
3587     if (obj == NULL) {
3588         _rtld_error("No shared object contains address");
3589 	lock_release(rtld_bind_lock, &lockstate);
3590         return (0);
3591     }
3592     rtld_fill_dl_phdr_info(obj, phdr_info);
3593     lock_release(rtld_bind_lock, &lockstate);
3594     return (1);
3595 }
3596 
3597 int
3598 dladdr(const void *addr, Dl_info *info)
3599 {
3600     const Obj_Entry *obj;
3601     const Elf_Sym *def;
3602     void *symbol_addr;
3603     unsigned long symoffset;
3604     RtldLockState lockstate;
3605 
3606     rlock_acquire(rtld_bind_lock, &lockstate);
3607     obj = obj_from_addr(addr);
3608     if (obj == NULL) {
3609         _rtld_error("No shared object contains address");
3610 	lock_release(rtld_bind_lock, &lockstate);
3611         return 0;
3612     }
3613     info->dli_fname = obj->path;
3614     info->dli_fbase = obj->mapbase;
3615     info->dli_saddr = (void *)0;
3616     info->dli_sname = NULL;
3617 
3618     /*
3619      * Walk the symbol list looking for the symbol whose address is
3620      * closest to the address sent in.
3621      */
3622     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3623         def = obj->symtab + symoffset;
3624 
3625         /*
3626          * For skip the symbol if st_shndx is either SHN_UNDEF or
3627          * SHN_COMMON.
3628          */
3629         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3630             continue;
3631 
3632         /*
3633          * If the symbol is greater than the specified address, or if it
3634          * is further away from addr than the current nearest symbol,
3635          * then reject it.
3636          */
3637         symbol_addr = obj->relocbase + def->st_value;
3638         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3639             continue;
3640 
3641         /* Update our idea of the nearest symbol. */
3642         info->dli_sname = obj->strtab + def->st_name;
3643         info->dli_saddr = symbol_addr;
3644 
3645         /* Exact match? */
3646         if (info->dli_saddr == addr)
3647             break;
3648     }
3649     lock_release(rtld_bind_lock, &lockstate);
3650     return 1;
3651 }
3652 
3653 int
3654 dlinfo(void *handle, int request, void *p)
3655 {
3656     const Obj_Entry *obj;
3657     RtldLockState lockstate;
3658     int error;
3659 
3660     rlock_acquire(rtld_bind_lock, &lockstate);
3661 
3662     if (handle == NULL || handle == RTLD_SELF) {
3663 	void *retaddr;
3664 
3665 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3666 	if ((obj = obj_from_addr(retaddr)) == NULL)
3667 	    _rtld_error("Cannot determine caller's shared object");
3668     } else
3669 	obj = dlcheck(handle);
3670 
3671     if (obj == NULL) {
3672 	lock_release(rtld_bind_lock, &lockstate);
3673 	return (-1);
3674     }
3675 
3676     error = 0;
3677     switch (request) {
3678     case RTLD_DI_LINKMAP:
3679 	*((struct link_map const **)p) = &obj->linkmap;
3680 	break;
3681     case RTLD_DI_ORIGIN:
3682 	error = rtld_dirname(obj->path, p);
3683 	break;
3684 
3685     case RTLD_DI_SERINFOSIZE:
3686     case RTLD_DI_SERINFO:
3687 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3688 	break;
3689 
3690     default:
3691 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3692 	error = -1;
3693     }
3694 
3695     lock_release(rtld_bind_lock, &lockstate);
3696 
3697     return (error);
3698 }
3699 
3700 static void
3701 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3702 {
3703 
3704 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3705 	phdr_info->dlpi_name = obj->path;
3706 	phdr_info->dlpi_phdr = obj->phdr;
3707 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3708 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3709 	phdr_info->dlpi_tls_data = obj->tlsinit;
3710 	phdr_info->dlpi_adds = obj_loads;
3711 	phdr_info->dlpi_subs = obj_loads - obj_count;
3712 }
3713 
3714 int
3715 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3716 {
3717 	struct dl_phdr_info phdr_info;
3718 	Obj_Entry *obj, marker;
3719 	RtldLockState bind_lockstate, phdr_lockstate;
3720 	int error;
3721 
3722 	init_marker(&marker);
3723 	error = 0;
3724 
3725 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3726 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3727 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3728 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3729 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3730 		hold_object(obj);
3731 		lock_release(rtld_bind_lock, &bind_lockstate);
3732 
3733 		error = callback(&phdr_info, sizeof phdr_info, param);
3734 
3735 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3736 		unhold_object(obj);
3737 		obj = globallist_next(&marker);
3738 		TAILQ_REMOVE(&obj_list, &marker, next);
3739 		if (error != 0) {
3740 			lock_release(rtld_bind_lock, &bind_lockstate);
3741 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3742 			return (error);
3743 		}
3744 	}
3745 
3746 	if (error == 0) {
3747 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3748 		lock_release(rtld_bind_lock, &bind_lockstate);
3749 		error = callback(&phdr_info, sizeof(phdr_info), param);
3750 	}
3751 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3752 	return (error);
3753 }
3754 
3755 static void *
3756 fill_search_info(const char *dir, size_t dirlen, void *param)
3757 {
3758     struct fill_search_info_args *arg;
3759 
3760     arg = param;
3761 
3762     if (arg->request == RTLD_DI_SERINFOSIZE) {
3763 	arg->serinfo->dls_cnt ++;
3764 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3765     } else {
3766 	struct dl_serpath *s_entry;
3767 
3768 	s_entry = arg->serpath;
3769 	s_entry->dls_name  = arg->strspace;
3770 	s_entry->dls_flags = arg->flags;
3771 
3772 	strncpy(arg->strspace, dir, dirlen);
3773 	arg->strspace[dirlen] = '\0';
3774 
3775 	arg->strspace += dirlen + 1;
3776 	arg->serpath++;
3777     }
3778 
3779     return (NULL);
3780 }
3781 
3782 static int
3783 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3784 {
3785     struct dl_serinfo _info;
3786     struct fill_search_info_args args;
3787 
3788     args.request = RTLD_DI_SERINFOSIZE;
3789     args.serinfo = &_info;
3790 
3791     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3792     _info.dls_cnt  = 0;
3793 
3794     path_enumerate(obj->rpath, fill_search_info, &args);
3795     path_enumerate(ld_library_path, fill_search_info, &args);
3796     path_enumerate(obj->runpath, fill_search_info, &args);
3797     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3798     if (!obj->z_nodeflib)
3799       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3800 
3801 
3802     if (request == RTLD_DI_SERINFOSIZE) {
3803 	info->dls_size = _info.dls_size;
3804 	info->dls_cnt = _info.dls_cnt;
3805 	return (0);
3806     }
3807 
3808     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3809 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3810 	return (-1);
3811     }
3812 
3813     args.request  = RTLD_DI_SERINFO;
3814     args.serinfo  = info;
3815     args.serpath  = &info->dls_serpath[0];
3816     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3817 
3818     args.flags = LA_SER_RUNPATH;
3819     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3820 	return (-1);
3821 
3822     args.flags = LA_SER_LIBPATH;
3823     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3824 	return (-1);
3825 
3826     args.flags = LA_SER_RUNPATH;
3827     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3828 	return (-1);
3829 
3830     args.flags = LA_SER_CONFIG;
3831     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3832       != NULL)
3833 	return (-1);
3834 
3835     args.flags = LA_SER_DEFAULT;
3836     if (!obj->z_nodeflib &&
3837       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3838 	return (-1);
3839     return (0);
3840 }
3841 
3842 static int
3843 rtld_dirname(const char *path, char *bname)
3844 {
3845     const char *endp;
3846 
3847     /* Empty or NULL string gets treated as "." */
3848     if (path == NULL || *path == '\0') {
3849 	bname[0] = '.';
3850 	bname[1] = '\0';
3851 	return (0);
3852     }
3853 
3854     /* Strip trailing slashes */
3855     endp = path + strlen(path) - 1;
3856     while (endp > path && *endp == '/')
3857 	endp--;
3858 
3859     /* Find the start of the dir */
3860     while (endp > path && *endp != '/')
3861 	endp--;
3862 
3863     /* Either the dir is "/" or there are no slashes */
3864     if (endp == path) {
3865 	bname[0] = *endp == '/' ? '/' : '.';
3866 	bname[1] = '\0';
3867 	return (0);
3868     } else {
3869 	do {
3870 	    endp--;
3871 	} while (endp > path && *endp == '/');
3872     }
3873 
3874     if (endp - path + 2 > PATH_MAX)
3875     {
3876 	_rtld_error("Filename is too long: %s", path);
3877 	return(-1);
3878     }
3879 
3880     strncpy(bname, path, endp - path + 1);
3881     bname[endp - path + 1] = '\0';
3882     return (0);
3883 }
3884 
3885 static int
3886 rtld_dirname_abs(const char *path, char *base)
3887 {
3888 	char *last;
3889 
3890 	if (realpath(path, base) == NULL)
3891 		return (-1);
3892 	dbg("%s -> %s", path, base);
3893 	last = strrchr(base, '/');
3894 	if (last == NULL)
3895 		return (-1);
3896 	if (last != base)
3897 		*last = '\0';
3898 	return (0);
3899 }
3900 
3901 static void
3902 linkmap_add(Obj_Entry *obj)
3903 {
3904     struct link_map *l = &obj->linkmap;
3905     struct link_map *prev;
3906 
3907     obj->linkmap.l_name = obj->path;
3908     obj->linkmap.l_addr = obj->mapbase;
3909     obj->linkmap.l_ld = obj->dynamic;
3910 #ifdef __mips__
3911     /* GDB needs load offset on MIPS to use the symbols */
3912     obj->linkmap.l_offs = obj->relocbase;
3913 #endif
3914 
3915     if (r_debug.r_map == NULL) {
3916 	r_debug.r_map = l;
3917 	return;
3918     }
3919 
3920     /*
3921      * Scan to the end of the list, but not past the entry for the
3922      * dynamic linker, which we want to keep at the very end.
3923      */
3924     for (prev = r_debug.r_map;
3925       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3926       prev = prev->l_next)
3927 	;
3928 
3929     /* Link in the new entry. */
3930     l->l_prev = prev;
3931     l->l_next = prev->l_next;
3932     if (l->l_next != NULL)
3933 	l->l_next->l_prev = l;
3934     prev->l_next = l;
3935 }
3936 
3937 static void
3938 linkmap_delete(Obj_Entry *obj)
3939 {
3940     struct link_map *l = &obj->linkmap;
3941 
3942     if (l->l_prev == NULL) {
3943 	if ((r_debug.r_map = l->l_next) != NULL)
3944 	    l->l_next->l_prev = NULL;
3945 	return;
3946     }
3947 
3948     if ((l->l_prev->l_next = l->l_next) != NULL)
3949 	l->l_next->l_prev = l->l_prev;
3950 }
3951 
3952 /*
3953  * Function for the debugger to set a breakpoint on to gain control.
3954  *
3955  * The two parameters allow the debugger to easily find and determine
3956  * what the runtime loader is doing and to whom it is doing it.
3957  *
3958  * When the loadhook trap is hit (r_debug_state, set at program
3959  * initialization), the arguments can be found on the stack:
3960  *
3961  *  +8   struct link_map *m
3962  *  +4   struct r_debug  *rd
3963  *  +0   RetAddr
3964  */
3965 void
3966 r_debug_state(struct r_debug* rd, struct link_map *m)
3967 {
3968     /*
3969      * The following is a hack to force the compiler to emit calls to
3970      * this function, even when optimizing.  If the function is empty,
3971      * the compiler is not obliged to emit any code for calls to it,
3972      * even when marked __noinline.  However, gdb depends on those
3973      * calls being made.
3974      */
3975     __compiler_membar();
3976 }
3977 
3978 /*
3979  * A function called after init routines have completed. This can be used to
3980  * break before a program's entry routine is called, and can be used when
3981  * main is not available in the symbol table.
3982  */
3983 void
3984 _r_debug_postinit(struct link_map *m)
3985 {
3986 
3987 	/* See r_debug_state(). */
3988 	__compiler_membar();
3989 }
3990 
3991 static void
3992 release_object(Obj_Entry *obj)
3993 {
3994 
3995 	if (obj->holdcount > 0) {
3996 		obj->unholdfree = true;
3997 		return;
3998 	}
3999 	munmap(obj->mapbase, obj->mapsize);
4000 	linkmap_delete(obj);
4001 	obj_free(obj);
4002 }
4003 
4004 /*
4005  * Get address of the pointer variable in the main program.
4006  * Prefer non-weak symbol over the weak one.
4007  */
4008 static const void **
4009 get_program_var_addr(const char *name, RtldLockState *lockstate)
4010 {
4011     SymLook req;
4012     DoneList donelist;
4013 
4014     symlook_init(&req, name);
4015     req.lockstate = lockstate;
4016     donelist_init(&donelist);
4017     if (symlook_global(&req, &donelist) != 0)
4018 	return (NULL);
4019     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4020 	return ((const void **)make_function_pointer(req.sym_out,
4021 	  req.defobj_out));
4022     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4023 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4024     else
4025 	return ((const void **)(req.defobj_out->relocbase +
4026 	  req.sym_out->st_value));
4027 }
4028 
4029 /*
4030  * Set a pointer variable in the main program to the given value.  This
4031  * is used to set key variables such as "environ" before any of the
4032  * init functions are called.
4033  */
4034 static void
4035 set_program_var(const char *name, const void *value)
4036 {
4037     const void **addr;
4038 
4039     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4040 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4041 	*addr = value;
4042     }
4043 }
4044 
4045 /*
4046  * Search the global objects, including dependencies and main object,
4047  * for the given symbol.
4048  */
4049 static int
4050 symlook_global(SymLook *req, DoneList *donelist)
4051 {
4052     SymLook req1;
4053     const Objlist_Entry *elm;
4054     int res;
4055 
4056     symlook_init_from_req(&req1, req);
4057 
4058     /* Search all objects loaded at program start up. */
4059     if (req->defobj_out == NULL ||
4060       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4061 	res = symlook_list(&req1, &list_main, donelist);
4062 	if (res == 0 && (req->defobj_out == NULL ||
4063 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4064 	    req->sym_out = req1.sym_out;
4065 	    req->defobj_out = req1.defobj_out;
4066 	    assert(req->defobj_out != NULL);
4067 	}
4068     }
4069 
4070     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4071     STAILQ_FOREACH(elm, &list_global, link) {
4072 	if (req->defobj_out != NULL &&
4073 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4074 	    break;
4075 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4076 	if (res == 0 && (req->defobj_out == NULL ||
4077 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4078 	    req->sym_out = req1.sym_out;
4079 	    req->defobj_out = req1.defobj_out;
4080 	    assert(req->defobj_out != NULL);
4081 	}
4082     }
4083 
4084     return (req->sym_out != NULL ? 0 : ESRCH);
4085 }
4086 
4087 /*
4088  * Given a symbol name in a referencing object, find the corresponding
4089  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4090  * no definition was found.  Returns a pointer to the Obj_Entry of the
4091  * defining object via the reference parameter DEFOBJ_OUT.
4092  */
4093 static int
4094 symlook_default(SymLook *req, const Obj_Entry *refobj)
4095 {
4096     DoneList donelist;
4097     const Objlist_Entry *elm;
4098     SymLook req1;
4099     int res;
4100 
4101     donelist_init(&donelist);
4102     symlook_init_from_req(&req1, req);
4103 
4104     /*
4105      * Look first in the referencing object if linked symbolically,
4106      * and similarly handle protected symbols.
4107      */
4108     res = symlook_obj(&req1, refobj);
4109     if (res == 0 && (refobj->symbolic ||
4110       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4111 	req->sym_out = req1.sym_out;
4112 	req->defobj_out = req1.defobj_out;
4113 	assert(req->defobj_out != NULL);
4114     }
4115     if (refobj->symbolic || req->defobj_out != NULL)
4116 	donelist_check(&donelist, refobj);
4117 
4118     symlook_global(req, &donelist);
4119 
4120     /* Search all dlopened DAGs containing the referencing object. */
4121     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4122 	if (req->sym_out != NULL &&
4123 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4124 	    break;
4125 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4126 	if (res == 0 && (req->sym_out == NULL ||
4127 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4128 	    req->sym_out = req1.sym_out;
4129 	    req->defobj_out = req1.defobj_out;
4130 	    assert(req->defobj_out != NULL);
4131 	}
4132     }
4133 
4134     /*
4135      * Search the dynamic linker itself, and possibly resolve the
4136      * symbol from there.  This is how the application links to
4137      * dynamic linker services such as dlopen.
4138      */
4139     if (req->sym_out == NULL ||
4140       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4141 	res = symlook_obj(&req1, &obj_rtld);
4142 	if (res == 0) {
4143 	    req->sym_out = req1.sym_out;
4144 	    req->defobj_out = req1.defobj_out;
4145 	    assert(req->defobj_out != NULL);
4146 	}
4147     }
4148 
4149     return (req->sym_out != NULL ? 0 : ESRCH);
4150 }
4151 
4152 static int
4153 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4154 {
4155     const Elf_Sym *def;
4156     const Obj_Entry *defobj;
4157     const Objlist_Entry *elm;
4158     SymLook req1;
4159     int res;
4160 
4161     def = NULL;
4162     defobj = NULL;
4163     STAILQ_FOREACH(elm, objlist, link) {
4164 	if (donelist_check(dlp, elm->obj))
4165 	    continue;
4166 	symlook_init_from_req(&req1, req);
4167 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4168 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4169 		def = req1.sym_out;
4170 		defobj = req1.defobj_out;
4171 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4172 		    break;
4173 	    }
4174 	}
4175     }
4176     if (def != NULL) {
4177 	req->sym_out = def;
4178 	req->defobj_out = defobj;
4179 	return (0);
4180     }
4181     return (ESRCH);
4182 }
4183 
4184 /*
4185  * Search the chain of DAGS cointed to by the given Needed_Entry
4186  * for a symbol of the given name.  Each DAG is scanned completely
4187  * before advancing to the next one.  Returns a pointer to the symbol,
4188  * or NULL if no definition was found.
4189  */
4190 static int
4191 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4192 {
4193     const Elf_Sym *def;
4194     const Needed_Entry *n;
4195     const Obj_Entry *defobj;
4196     SymLook req1;
4197     int res;
4198 
4199     def = NULL;
4200     defobj = NULL;
4201     symlook_init_from_req(&req1, req);
4202     for (n = needed; n != NULL; n = n->next) {
4203 	if (n->obj == NULL ||
4204 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4205 	    continue;
4206 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4207 	    def = req1.sym_out;
4208 	    defobj = req1.defobj_out;
4209 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4210 		break;
4211 	}
4212     }
4213     if (def != NULL) {
4214 	req->sym_out = def;
4215 	req->defobj_out = defobj;
4216 	return (0);
4217     }
4218     return (ESRCH);
4219 }
4220 
4221 /*
4222  * Search the symbol table of a single shared object for a symbol of
4223  * the given name and version, if requested.  Returns a pointer to the
4224  * symbol, or NULL if no definition was found.  If the object is
4225  * filter, return filtered symbol from filtee.
4226  *
4227  * The symbol's hash value is passed in for efficiency reasons; that
4228  * eliminates many recomputations of the hash value.
4229  */
4230 int
4231 symlook_obj(SymLook *req, const Obj_Entry *obj)
4232 {
4233     DoneList donelist;
4234     SymLook req1;
4235     int flags, res, mres;
4236 
4237     /*
4238      * If there is at least one valid hash at this point, we prefer to
4239      * use the faster GNU version if available.
4240      */
4241     if (obj->valid_hash_gnu)
4242 	mres = symlook_obj1_gnu(req, obj);
4243     else if (obj->valid_hash_sysv)
4244 	mres = symlook_obj1_sysv(req, obj);
4245     else
4246 	return (EINVAL);
4247 
4248     if (mres == 0) {
4249 	if (obj->needed_filtees != NULL) {
4250 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4251 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4252 	    donelist_init(&donelist);
4253 	    symlook_init_from_req(&req1, req);
4254 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4255 	    if (res == 0) {
4256 		req->sym_out = req1.sym_out;
4257 		req->defobj_out = req1.defobj_out;
4258 	    }
4259 	    return (res);
4260 	}
4261 	if (obj->needed_aux_filtees != NULL) {
4262 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4263 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4264 	    donelist_init(&donelist);
4265 	    symlook_init_from_req(&req1, req);
4266 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4267 	    if (res == 0) {
4268 		req->sym_out = req1.sym_out;
4269 		req->defobj_out = req1.defobj_out;
4270 		return (res);
4271 	    }
4272 	}
4273     }
4274     return (mres);
4275 }
4276 
4277 /* Symbol match routine common to both hash functions */
4278 static bool
4279 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4280     const unsigned long symnum)
4281 {
4282 	Elf_Versym verndx;
4283 	const Elf_Sym *symp;
4284 	const char *strp;
4285 
4286 	symp = obj->symtab + symnum;
4287 	strp = obj->strtab + symp->st_name;
4288 
4289 	switch (ELF_ST_TYPE(symp->st_info)) {
4290 	case STT_FUNC:
4291 	case STT_NOTYPE:
4292 	case STT_OBJECT:
4293 	case STT_COMMON:
4294 	case STT_GNU_IFUNC:
4295 		if (symp->st_value == 0)
4296 			return (false);
4297 		/* fallthrough */
4298 	case STT_TLS:
4299 		if (symp->st_shndx != SHN_UNDEF)
4300 			break;
4301 #ifndef __mips__
4302 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4303 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4304 			break;
4305 		/* fallthrough */
4306 #endif
4307 	default:
4308 		return (false);
4309 	}
4310 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4311 		return (false);
4312 
4313 	if (req->ventry == NULL) {
4314 		if (obj->versyms != NULL) {
4315 			verndx = VER_NDX(obj->versyms[symnum]);
4316 			if (verndx > obj->vernum) {
4317 				_rtld_error(
4318 				    "%s: symbol %s references wrong version %d",
4319 				    obj->path, obj->strtab + symnum, verndx);
4320 				return (false);
4321 			}
4322 			/*
4323 			 * If we are not called from dlsym (i.e. this
4324 			 * is a normal relocation from unversioned
4325 			 * binary), accept the symbol immediately if
4326 			 * it happens to have first version after this
4327 			 * shared object became versioned.  Otherwise,
4328 			 * if symbol is versioned and not hidden,
4329 			 * remember it. If it is the only symbol with
4330 			 * this name exported by the shared object, it
4331 			 * will be returned as a match by the calling
4332 			 * function. If symbol is global (verndx < 2)
4333 			 * accept it unconditionally.
4334 			 */
4335 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4336 			    verndx == VER_NDX_GIVEN) {
4337 				result->sym_out = symp;
4338 				return (true);
4339 			}
4340 			else if (verndx >= VER_NDX_GIVEN) {
4341 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4342 				    == 0) {
4343 					if (result->vsymp == NULL)
4344 						result->vsymp = symp;
4345 					result->vcount++;
4346 				}
4347 				return (false);
4348 			}
4349 		}
4350 		result->sym_out = symp;
4351 		return (true);
4352 	}
4353 	if (obj->versyms == NULL) {
4354 		if (object_match_name(obj, req->ventry->name)) {
4355 			_rtld_error("%s: object %s should provide version %s "
4356 			    "for symbol %s", obj_rtld.path, obj->path,
4357 			    req->ventry->name, obj->strtab + symnum);
4358 			return (false);
4359 		}
4360 	} else {
4361 		verndx = VER_NDX(obj->versyms[symnum]);
4362 		if (verndx > obj->vernum) {
4363 			_rtld_error("%s: symbol %s references wrong version %d",
4364 			    obj->path, obj->strtab + symnum, verndx);
4365 			return (false);
4366 		}
4367 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4368 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4369 			/*
4370 			 * Version does not match. Look if this is a
4371 			 * global symbol and if it is not hidden. If
4372 			 * global symbol (verndx < 2) is available,
4373 			 * use it. Do not return symbol if we are
4374 			 * called by dlvsym, because dlvsym looks for
4375 			 * a specific version and default one is not
4376 			 * what dlvsym wants.
4377 			 */
4378 			if ((req->flags & SYMLOOK_DLSYM) ||
4379 			    (verndx >= VER_NDX_GIVEN) ||
4380 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4381 				return (false);
4382 		}
4383 	}
4384 	result->sym_out = symp;
4385 	return (true);
4386 }
4387 
4388 /*
4389  * Search for symbol using SysV hash function.
4390  * obj->buckets is known not to be NULL at this point; the test for this was
4391  * performed with the obj->valid_hash_sysv assignment.
4392  */
4393 static int
4394 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4395 {
4396 	unsigned long symnum;
4397 	Sym_Match_Result matchres;
4398 
4399 	matchres.sym_out = NULL;
4400 	matchres.vsymp = NULL;
4401 	matchres.vcount = 0;
4402 
4403 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4404 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4405 		if (symnum >= obj->nchains)
4406 			return (ESRCH);	/* Bad object */
4407 
4408 		if (matched_symbol(req, obj, &matchres, symnum)) {
4409 			req->sym_out = matchres.sym_out;
4410 			req->defobj_out = obj;
4411 			return (0);
4412 		}
4413 	}
4414 	if (matchres.vcount == 1) {
4415 		req->sym_out = matchres.vsymp;
4416 		req->defobj_out = obj;
4417 		return (0);
4418 	}
4419 	return (ESRCH);
4420 }
4421 
4422 /* Search for symbol using GNU hash function */
4423 static int
4424 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4425 {
4426 	Elf_Addr bloom_word;
4427 	const Elf32_Word *hashval;
4428 	Elf32_Word bucket;
4429 	Sym_Match_Result matchres;
4430 	unsigned int h1, h2;
4431 	unsigned long symnum;
4432 
4433 	matchres.sym_out = NULL;
4434 	matchres.vsymp = NULL;
4435 	matchres.vcount = 0;
4436 
4437 	/* Pick right bitmask word from Bloom filter array */
4438 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4439 	    obj->maskwords_bm_gnu];
4440 
4441 	/* Calculate modulus word size of gnu hash and its derivative */
4442 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4443 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4444 
4445 	/* Filter out the "definitely not in set" queries */
4446 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4447 		return (ESRCH);
4448 
4449 	/* Locate hash chain and corresponding value element*/
4450 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4451 	if (bucket == 0)
4452 		return (ESRCH);
4453 	hashval = &obj->chain_zero_gnu[bucket];
4454 	do {
4455 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4456 			symnum = hashval - obj->chain_zero_gnu;
4457 			if (matched_symbol(req, obj, &matchres, symnum)) {
4458 				req->sym_out = matchres.sym_out;
4459 				req->defobj_out = obj;
4460 				return (0);
4461 			}
4462 		}
4463 	} while ((*hashval++ & 1) == 0);
4464 	if (matchres.vcount == 1) {
4465 		req->sym_out = matchres.vsymp;
4466 		req->defobj_out = obj;
4467 		return (0);
4468 	}
4469 	return (ESRCH);
4470 }
4471 
4472 static void
4473 trace_loaded_objects(Obj_Entry *obj)
4474 {
4475     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4476     int		c;
4477 
4478     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4479 	main_local = "";
4480 
4481     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4482 	fmt1 = "\t%o => %p (%x)\n";
4483 
4484     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4485 	fmt2 = "\t%o (%x)\n";
4486 
4487     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4488 
4489     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4490 	Needed_Entry		*needed;
4491 	char			*name, *path;
4492 	bool			is_lib;
4493 
4494 	if (obj->marker)
4495 	    continue;
4496 	if (list_containers && obj->needed != NULL)
4497 	    rtld_printf("%s:\n", obj->path);
4498 	for (needed = obj->needed; needed; needed = needed->next) {
4499 	    if (needed->obj != NULL) {
4500 		if (needed->obj->traced && !list_containers)
4501 		    continue;
4502 		needed->obj->traced = true;
4503 		path = needed->obj->path;
4504 	    } else
4505 		path = "not found";
4506 
4507 	    name = (char *)obj->strtab + needed->name;
4508 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4509 
4510 	    fmt = is_lib ? fmt1 : fmt2;
4511 	    while ((c = *fmt++) != '\0') {
4512 		switch (c) {
4513 		default:
4514 		    rtld_putchar(c);
4515 		    continue;
4516 		case '\\':
4517 		    switch (c = *fmt) {
4518 		    case '\0':
4519 			continue;
4520 		    case 'n':
4521 			rtld_putchar('\n');
4522 			break;
4523 		    case 't':
4524 			rtld_putchar('\t');
4525 			break;
4526 		    }
4527 		    break;
4528 		case '%':
4529 		    switch (c = *fmt) {
4530 		    case '\0':
4531 			continue;
4532 		    case '%':
4533 		    default:
4534 			rtld_putchar(c);
4535 			break;
4536 		    case 'A':
4537 			rtld_putstr(main_local);
4538 			break;
4539 		    case 'a':
4540 			rtld_putstr(obj_main->path);
4541 			break;
4542 		    case 'o':
4543 			rtld_putstr(name);
4544 			break;
4545 #if 0
4546 		    case 'm':
4547 			rtld_printf("%d", sodp->sod_major);
4548 			break;
4549 		    case 'n':
4550 			rtld_printf("%d", sodp->sod_minor);
4551 			break;
4552 #endif
4553 		    case 'p':
4554 			rtld_putstr(path);
4555 			break;
4556 		    case 'x':
4557 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4558 			  0);
4559 			break;
4560 		    }
4561 		    break;
4562 		}
4563 		++fmt;
4564 	    }
4565 	}
4566     }
4567 }
4568 
4569 /*
4570  * Unload a dlopened object and its dependencies from memory and from
4571  * our data structures.  It is assumed that the DAG rooted in the
4572  * object has already been unreferenced, and that the object has a
4573  * reference count of 0.
4574  */
4575 static void
4576 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4577 {
4578 	Obj_Entry marker, *obj, *next;
4579 
4580 	assert(root->refcount == 0);
4581 
4582 	/*
4583 	 * Pass over the DAG removing unreferenced objects from
4584 	 * appropriate lists.
4585 	 */
4586 	unlink_object(root);
4587 
4588 	/* Unmap all objects that are no longer referenced. */
4589 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4590 		next = TAILQ_NEXT(obj, next);
4591 		if (obj->marker || obj->refcount != 0)
4592 			continue;
4593 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4594 		    obj->mapsize, 0, obj->path);
4595 		dbg("unloading \"%s\"", obj->path);
4596 		/*
4597 		 * Unlink the object now to prevent new references from
4598 		 * being acquired while the bind lock is dropped in
4599 		 * recursive dlclose() invocations.
4600 		 */
4601 		TAILQ_REMOVE(&obj_list, obj, next);
4602 		obj_count--;
4603 
4604 		if (obj->filtees_loaded) {
4605 			if (next != NULL) {
4606 				init_marker(&marker);
4607 				TAILQ_INSERT_BEFORE(next, &marker, next);
4608 				unload_filtees(obj, lockstate);
4609 				next = TAILQ_NEXT(&marker, next);
4610 				TAILQ_REMOVE(&obj_list, &marker, next);
4611 			} else
4612 				unload_filtees(obj, lockstate);
4613 		}
4614 		release_object(obj);
4615 	}
4616 }
4617 
4618 static void
4619 unlink_object(Obj_Entry *root)
4620 {
4621     Objlist_Entry *elm;
4622 
4623     if (root->refcount == 0) {
4624 	/* Remove the object from the RTLD_GLOBAL list. */
4625 	objlist_remove(&list_global, root);
4626 
4627     	/* Remove the object from all objects' DAG lists. */
4628     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4629 	    objlist_remove(&elm->obj->dldags, root);
4630 	    if (elm->obj != root)
4631 		unlink_object(elm->obj);
4632 	}
4633     }
4634 }
4635 
4636 static void
4637 ref_dag(Obj_Entry *root)
4638 {
4639     Objlist_Entry *elm;
4640 
4641     assert(root->dag_inited);
4642     STAILQ_FOREACH(elm, &root->dagmembers, link)
4643 	elm->obj->refcount++;
4644 }
4645 
4646 static void
4647 unref_dag(Obj_Entry *root)
4648 {
4649     Objlist_Entry *elm;
4650 
4651     assert(root->dag_inited);
4652     STAILQ_FOREACH(elm, &root->dagmembers, link)
4653 	elm->obj->refcount--;
4654 }
4655 
4656 /*
4657  * Common code for MD __tls_get_addr().
4658  */
4659 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4660 static void *
4661 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4662 {
4663     Elf_Addr *newdtv, *dtv;
4664     RtldLockState lockstate;
4665     int to_copy;
4666 
4667     dtv = *dtvp;
4668     /* Check dtv generation in case new modules have arrived */
4669     if (dtv[0] != tls_dtv_generation) {
4670 	wlock_acquire(rtld_bind_lock, &lockstate);
4671 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4672 	to_copy = dtv[1];
4673 	if (to_copy > tls_max_index)
4674 	    to_copy = tls_max_index;
4675 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4676 	newdtv[0] = tls_dtv_generation;
4677 	newdtv[1] = tls_max_index;
4678 	free(dtv);
4679 	lock_release(rtld_bind_lock, &lockstate);
4680 	dtv = *dtvp = newdtv;
4681     }
4682 
4683     /* Dynamically allocate module TLS if necessary */
4684     if (dtv[index + 1] == 0) {
4685 	/* Signal safe, wlock will block out signals. */
4686 	wlock_acquire(rtld_bind_lock, &lockstate);
4687 	if (!dtv[index + 1])
4688 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4689 	lock_release(rtld_bind_lock, &lockstate);
4690     }
4691     return ((void *)(dtv[index + 1] + offset));
4692 }
4693 
4694 void *
4695 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4696 {
4697 	Elf_Addr *dtv;
4698 
4699 	dtv = *dtvp;
4700 	/* Check dtv generation in case new modules have arrived */
4701 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4702 	    dtv[index + 1] != 0))
4703 		return ((void *)(dtv[index + 1] + offset));
4704 	return (tls_get_addr_slow(dtvp, index, offset));
4705 }
4706 
4707 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4708     defined(__powerpc__) || defined(__riscv)
4709 
4710 /*
4711  * Allocate Static TLS using the Variant I method.
4712  */
4713 void *
4714 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4715 {
4716     Obj_Entry *obj;
4717     char *tcb;
4718     Elf_Addr **tls;
4719     Elf_Addr *dtv;
4720     Elf_Addr addr;
4721     int i;
4722 
4723     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4724 	return (oldtcb);
4725 
4726     assert(tcbsize >= TLS_TCB_SIZE);
4727     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4728     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4729 
4730     if (oldtcb != NULL) {
4731 	memcpy(tls, oldtcb, tls_static_space);
4732 	free(oldtcb);
4733 
4734 	/* Adjust the DTV. */
4735 	dtv = tls[0];
4736 	for (i = 0; i < dtv[1]; i++) {
4737 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4738 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4739 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4740 	    }
4741 	}
4742     } else {
4743 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4744 	tls[0] = dtv;
4745 	dtv[0] = tls_dtv_generation;
4746 	dtv[1] = tls_max_index;
4747 
4748 	for (obj = globallist_curr(objs); obj != NULL;
4749 	  obj = globallist_next(obj)) {
4750 	    if (obj->tlsoffset > 0) {
4751 		addr = (Elf_Addr)tls + obj->tlsoffset;
4752 		if (obj->tlsinitsize > 0)
4753 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4754 		if (obj->tlssize > obj->tlsinitsize)
4755 		    memset((void*) (addr + obj->tlsinitsize), 0,
4756 			   obj->tlssize - obj->tlsinitsize);
4757 		dtv[obj->tlsindex + 1] = addr;
4758 	    }
4759 	}
4760     }
4761 
4762     return (tcb);
4763 }
4764 
4765 void
4766 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4767 {
4768     Elf_Addr *dtv;
4769     Elf_Addr tlsstart, tlsend;
4770     int dtvsize, i;
4771 
4772     assert(tcbsize >= TLS_TCB_SIZE);
4773 
4774     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4775     tlsend = tlsstart + tls_static_space;
4776 
4777     dtv = *(Elf_Addr **)tlsstart;
4778     dtvsize = dtv[1];
4779     for (i = 0; i < dtvsize; i++) {
4780 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4781 	    free((void*)dtv[i+2]);
4782 	}
4783     }
4784     free(dtv);
4785     free(tcb);
4786 }
4787 
4788 #endif
4789 
4790 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4791 
4792 /*
4793  * Allocate Static TLS using the Variant II method.
4794  */
4795 void *
4796 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4797 {
4798     Obj_Entry *obj;
4799     size_t size, ralign;
4800     char *tls;
4801     Elf_Addr *dtv, *olddtv;
4802     Elf_Addr segbase, oldsegbase, addr;
4803     int i;
4804 
4805     ralign = tcbalign;
4806     if (tls_static_max_align > ralign)
4807 	    ralign = tls_static_max_align;
4808     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4809 
4810     assert(tcbsize >= 2*sizeof(Elf_Addr));
4811     tls = malloc_aligned(size, ralign);
4812     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4813 
4814     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4815     ((Elf_Addr*)segbase)[0] = segbase;
4816     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4817 
4818     dtv[0] = tls_dtv_generation;
4819     dtv[1] = tls_max_index;
4820 
4821     if (oldtls) {
4822 	/*
4823 	 * Copy the static TLS block over whole.
4824 	 */
4825 	oldsegbase = (Elf_Addr) oldtls;
4826 	memcpy((void *)(segbase - tls_static_space),
4827 	       (const void *)(oldsegbase - tls_static_space),
4828 	       tls_static_space);
4829 
4830 	/*
4831 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4832 	 * move them over.
4833 	 */
4834 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4835 	for (i = 0; i < olddtv[1]; i++) {
4836 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4837 		dtv[i+2] = olddtv[i+2];
4838 		olddtv[i+2] = 0;
4839 	    }
4840 	}
4841 
4842 	/*
4843 	 * We assume that this block was the one we created with
4844 	 * allocate_initial_tls().
4845 	 */
4846 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4847     } else {
4848 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4849 		if (obj->marker || obj->tlsoffset == 0)
4850 			continue;
4851 		addr = segbase - obj->tlsoffset;
4852 		memset((void*) (addr + obj->tlsinitsize),
4853 		       0, obj->tlssize - obj->tlsinitsize);
4854 		if (obj->tlsinit)
4855 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4856 		dtv[obj->tlsindex + 1] = addr;
4857 	}
4858     }
4859 
4860     return (void*) segbase;
4861 }
4862 
4863 void
4864 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4865 {
4866     Elf_Addr* dtv;
4867     size_t size, ralign;
4868     int dtvsize, i;
4869     Elf_Addr tlsstart, tlsend;
4870 
4871     /*
4872      * Figure out the size of the initial TLS block so that we can
4873      * find stuff which ___tls_get_addr() allocated dynamically.
4874      */
4875     ralign = tcbalign;
4876     if (tls_static_max_align > ralign)
4877 	    ralign = tls_static_max_align;
4878     size = round(tls_static_space, ralign);
4879 
4880     dtv = ((Elf_Addr**)tls)[1];
4881     dtvsize = dtv[1];
4882     tlsend = (Elf_Addr) tls;
4883     tlsstart = tlsend - size;
4884     for (i = 0; i < dtvsize; i++) {
4885 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4886 		free_aligned((void *)dtv[i + 2]);
4887 	}
4888     }
4889 
4890     free_aligned((void *)tlsstart);
4891     free((void*) dtv);
4892 }
4893 
4894 #endif
4895 
4896 /*
4897  * Allocate TLS block for module with given index.
4898  */
4899 void *
4900 allocate_module_tls(int index)
4901 {
4902     Obj_Entry* obj;
4903     char* p;
4904 
4905     TAILQ_FOREACH(obj, &obj_list, next) {
4906 	if (obj->marker)
4907 	    continue;
4908 	if (obj->tlsindex == index)
4909 	    break;
4910     }
4911     if (!obj) {
4912 	_rtld_error("Can't find module with TLS index %d", index);
4913 	rtld_die();
4914     }
4915 
4916     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4917     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4918     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4919 
4920     return p;
4921 }
4922 
4923 bool
4924 allocate_tls_offset(Obj_Entry *obj)
4925 {
4926     size_t off;
4927 
4928     if (obj->tls_done)
4929 	return true;
4930 
4931     if (obj->tlssize == 0) {
4932 	obj->tls_done = true;
4933 	return true;
4934     }
4935 
4936     if (tls_last_offset == 0)
4937 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4938     else
4939 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4940 				   obj->tlssize, obj->tlsalign);
4941 
4942     /*
4943      * If we have already fixed the size of the static TLS block, we
4944      * must stay within that size. When allocating the static TLS, we
4945      * leave a small amount of space spare to be used for dynamically
4946      * loading modules which use static TLS.
4947      */
4948     if (tls_static_space != 0) {
4949 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4950 	    return false;
4951     } else if (obj->tlsalign > tls_static_max_align) {
4952 	    tls_static_max_align = obj->tlsalign;
4953     }
4954 
4955     tls_last_offset = obj->tlsoffset = off;
4956     tls_last_size = obj->tlssize;
4957     obj->tls_done = true;
4958 
4959     return true;
4960 }
4961 
4962 void
4963 free_tls_offset(Obj_Entry *obj)
4964 {
4965 
4966     /*
4967      * If we were the last thing to allocate out of the static TLS
4968      * block, we give our space back to the 'allocator'. This is a
4969      * simplistic workaround to allow libGL.so.1 to be loaded and
4970      * unloaded multiple times.
4971      */
4972     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4973 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4974 	tls_last_offset -= obj->tlssize;
4975 	tls_last_size = 0;
4976     }
4977 }
4978 
4979 void *
4980 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4981 {
4982     void *ret;
4983     RtldLockState lockstate;
4984 
4985     wlock_acquire(rtld_bind_lock, &lockstate);
4986     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4987       tcbsize, tcbalign);
4988     lock_release(rtld_bind_lock, &lockstate);
4989     return (ret);
4990 }
4991 
4992 void
4993 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4994 {
4995     RtldLockState lockstate;
4996 
4997     wlock_acquire(rtld_bind_lock, &lockstate);
4998     free_tls(tcb, tcbsize, tcbalign);
4999     lock_release(rtld_bind_lock, &lockstate);
5000 }
5001 
5002 static void
5003 object_add_name(Obj_Entry *obj, const char *name)
5004 {
5005     Name_Entry *entry;
5006     size_t len;
5007 
5008     len = strlen(name);
5009     entry = malloc(sizeof(Name_Entry) + len);
5010 
5011     if (entry != NULL) {
5012 	strcpy(entry->name, name);
5013 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5014     }
5015 }
5016 
5017 static int
5018 object_match_name(const Obj_Entry *obj, const char *name)
5019 {
5020     Name_Entry *entry;
5021 
5022     STAILQ_FOREACH(entry, &obj->names, link) {
5023 	if (strcmp(name, entry->name) == 0)
5024 	    return (1);
5025     }
5026     return (0);
5027 }
5028 
5029 static Obj_Entry *
5030 locate_dependency(const Obj_Entry *obj, const char *name)
5031 {
5032     const Objlist_Entry *entry;
5033     const Needed_Entry *needed;
5034 
5035     STAILQ_FOREACH(entry, &list_main, link) {
5036 	if (object_match_name(entry->obj, name))
5037 	    return entry->obj;
5038     }
5039 
5040     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5041 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5042 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5043 	    /*
5044 	     * If there is DT_NEEDED for the name we are looking for,
5045 	     * we are all set.  Note that object might not be found if
5046 	     * dependency was not loaded yet, so the function can
5047 	     * return NULL here.  This is expected and handled
5048 	     * properly by the caller.
5049 	     */
5050 	    return (needed->obj);
5051 	}
5052     }
5053     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5054 	obj->path, name);
5055     rtld_die();
5056 }
5057 
5058 static int
5059 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5060     const Elf_Vernaux *vna)
5061 {
5062     const Elf_Verdef *vd;
5063     const char *vername;
5064 
5065     vername = refobj->strtab + vna->vna_name;
5066     vd = depobj->verdef;
5067     if (vd == NULL) {
5068 	_rtld_error("%s: version %s required by %s not defined",
5069 	    depobj->path, vername, refobj->path);
5070 	return (-1);
5071     }
5072     for (;;) {
5073 	if (vd->vd_version != VER_DEF_CURRENT) {
5074 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5075 		depobj->path, vd->vd_version);
5076 	    return (-1);
5077 	}
5078 	if (vna->vna_hash == vd->vd_hash) {
5079 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5080 		((char *)vd + vd->vd_aux);
5081 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5082 		return (0);
5083 	}
5084 	if (vd->vd_next == 0)
5085 	    break;
5086 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5087     }
5088     if (vna->vna_flags & VER_FLG_WEAK)
5089 	return (0);
5090     _rtld_error("%s: version %s required by %s not found",
5091 	depobj->path, vername, refobj->path);
5092     return (-1);
5093 }
5094 
5095 static int
5096 rtld_verify_object_versions(Obj_Entry *obj)
5097 {
5098     const Elf_Verneed *vn;
5099     const Elf_Verdef  *vd;
5100     const Elf_Verdaux *vda;
5101     const Elf_Vernaux *vna;
5102     const Obj_Entry *depobj;
5103     int maxvernum, vernum;
5104 
5105     if (obj->ver_checked)
5106 	return (0);
5107     obj->ver_checked = true;
5108 
5109     maxvernum = 0;
5110     /*
5111      * Walk over defined and required version records and figure out
5112      * max index used by any of them. Do very basic sanity checking
5113      * while there.
5114      */
5115     vn = obj->verneed;
5116     while (vn != NULL) {
5117 	if (vn->vn_version != VER_NEED_CURRENT) {
5118 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5119 		obj->path, vn->vn_version);
5120 	    return (-1);
5121 	}
5122 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5123 	for (;;) {
5124 	    vernum = VER_NEED_IDX(vna->vna_other);
5125 	    if (vernum > maxvernum)
5126 		maxvernum = vernum;
5127 	    if (vna->vna_next == 0)
5128 		 break;
5129 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5130 	}
5131 	if (vn->vn_next == 0)
5132 	    break;
5133 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5134     }
5135 
5136     vd = obj->verdef;
5137     while (vd != NULL) {
5138 	if (vd->vd_version != VER_DEF_CURRENT) {
5139 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5140 		obj->path, vd->vd_version);
5141 	    return (-1);
5142 	}
5143 	vernum = VER_DEF_IDX(vd->vd_ndx);
5144 	if (vernum > maxvernum)
5145 		maxvernum = vernum;
5146 	if (vd->vd_next == 0)
5147 	    break;
5148 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5149     }
5150 
5151     if (maxvernum == 0)
5152 	return (0);
5153 
5154     /*
5155      * Store version information in array indexable by version index.
5156      * Verify that object version requirements are satisfied along the
5157      * way.
5158      */
5159     obj->vernum = maxvernum + 1;
5160     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5161 
5162     vd = obj->verdef;
5163     while (vd != NULL) {
5164 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5165 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5166 	    assert(vernum <= maxvernum);
5167 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5168 	    obj->vertab[vernum].hash = vd->vd_hash;
5169 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5170 	    obj->vertab[vernum].file = NULL;
5171 	    obj->vertab[vernum].flags = 0;
5172 	}
5173 	if (vd->vd_next == 0)
5174 	    break;
5175 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5176     }
5177 
5178     vn = obj->verneed;
5179     while (vn != NULL) {
5180 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5181 	if (depobj == NULL)
5182 	    return (-1);
5183 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5184 	for (;;) {
5185 	    if (check_object_provided_version(obj, depobj, vna))
5186 		return (-1);
5187 	    vernum = VER_NEED_IDX(vna->vna_other);
5188 	    assert(vernum <= maxvernum);
5189 	    obj->vertab[vernum].hash = vna->vna_hash;
5190 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5191 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5192 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5193 		VER_INFO_HIDDEN : 0;
5194 	    if (vna->vna_next == 0)
5195 		 break;
5196 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5197 	}
5198 	if (vn->vn_next == 0)
5199 	    break;
5200 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5201     }
5202     return 0;
5203 }
5204 
5205 static int
5206 rtld_verify_versions(const Objlist *objlist)
5207 {
5208     Objlist_Entry *entry;
5209     int rc;
5210 
5211     rc = 0;
5212     STAILQ_FOREACH(entry, objlist, link) {
5213 	/*
5214 	 * Skip dummy objects or objects that have their version requirements
5215 	 * already checked.
5216 	 */
5217 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5218 	    continue;
5219 	if (rtld_verify_object_versions(entry->obj) == -1) {
5220 	    rc = -1;
5221 	    if (ld_tracing == NULL)
5222 		break;
5223 	}
5224     }
5225     if (rc == 0 || ld_tracing != NULL)
5226     	rc = rtld_verify_object_versions(&obj_rtld);
5227     return rc;
5228 }
5229 
5230 const Ver_Entry *
5231 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5232 {
5233     Elf_Versym vernum;
5234 
5235     if (obj->vertab) {
5236 	vernum = VER_NDX(obj->versyms[symnum]);
5237 	if (vernum >= obj->vernum) {
5238 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5239 		obj->path, obj->strtab + symnum, vernum);
5240 	} else if (obj->vertab[vernum].hash != 0) {
5241 	    return &obj->vertab[vernum];
5242 	}
5243     }
5244     return NULL;
5245 }
5246 
5247 int
5248 _rtld_get_stack_prot(void)
5249 {
5250 
5251 	return (stack_prot);
5252 }
5253 
5254 int
5255 _rtld_is_dlopened(void *arg)
5256 {
5257 	Obj_Entry *obj;
5258 	RtldLockState lockstate;
5259 	int res;
5260 
5261 	rlock_acquire(rtld_bind_lock, &lockstate);
5262 	obj = dlcheck(arg);
5263 	if (obj == NULL)
5264 		obj = obj_from_addr(arg);
5265 	if (obj == NULL) {
5266 		_rtld_error("No shared object contains address");
5267 		lock_release(rtld_bind_lock, &lockstate);
5268 		return (-1);
5269 	}
5270 	res = obj->dlopened ? 1 : 0;
5271 	lock_release(rtld_bind_lock, &lockstate);
5272 	return (res);
5273 }
5274 
5275 int
5276 obj_enforce_relro(Obj_Entry *obj)
5277 {
5278 
5279 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5280 	    PROT_READ) == -1) {
5281 		_rtld_error("%s: Cannot enforce relro protection: %s",
5282 		    obj->path, rtld_strerror(errno));
5283 		return (-1);
5284 	}
5285 	return (0);
5286 }
5287 
5288 static void
5289 map_stacks_exec(RtldLockState *lockstate)
5290 {
5291 	void (*thr_map_stacks_exec)(void);
5292 
5293 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5294 		return;
5295 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5296 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5297 	if (thr_map_stacks_exec != NULL) {
5298 		stack_prot |= PROT_EXEC;
5299 		thr_map_stacks_exec();
5300 	}
5301 }
5302 
5303 void
5304 symlook_init(SymLook *dst, const char *name)
5305 {
5306 
5307 	bzero(dst, sizeof(*dst));
5308 	dst->name = name;
5309 	dst->hash = elf_hash(name);
5310 	dst->hash_gnu = gnu_hash(name);
5311 }
5312 
5313 static void
5314 symlook_init_from_req(SymLook *dst, const SymLook *src)
5315 {
5316 
5317 	dst->name = src->name;
5318 	dst->hash = src->hash;
5319 	dst->hash_gnu = src->hash_gnu;
5320 	dst->ventry = src->ventry;
5321 	dst->flags = src->flags;
5322 	dst->defobj_out = NULL;
5323 	dst->sym_out = NULL;
5324 	dst->lockstate = src->lockstate;
5325 }
5326 
5327 static int
5328 open_binary_fd(const char *argv0, bool search_in_path)
5329 {
5330 	char *pathenv, *pe, binpath[PATH_MAX];
5331 	int fd;
5332 
5333 	if (search_in_path && strchr(argv0, '/') == NULL) {
5334 		pathenv = getenv("PATH");
5335 		if (pathenv == NULL) {
5336 			rtld_printf("-p and no PATH environment variable\n");
5337 			rtld_die();
5338 		}
5339 		pathenv = strdup(pathenv);
5340 		if (pathenv == NULL) {
5341 			rtld_printf("Cannot allocate memory\n");
5342 			rtld_die();
5343 		}
5344 		fd = -1;
5345 		errno = ENOENT;
5346 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5347 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5348 			    sizeof(binpath))
5349 				continue;
5350 			if (binpath[0] != '\0' &&
5351 			    strlcat(binpath, "/", sizeof(binpath)) >=
5352 			    sizeof(binpath))
5353 				continue;
5354 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5355 			    sizeof(binpath))
5356 				continue;
5357 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5358 			if (fd != -1 || errno != ENOENT)
5359 				break;
5360 		}
5361 		free(pathenv);
5362 	} else {
5363 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5364 	}
5365 
5366 	if (fd == -1) {
5367 		rtld_printf("Opening %s: %s\n", argv0,
5368 		    rtld_strerror(errno));
5369 		rtld_die();
5370 	}
5371 	return (fd);
5372 }
5373 
5374 /*
5375  * Parse a set of command-line arguments.
5376  */
5377 static int
5378 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5379 {
5380 	const char *arg;
5381 	int fd, i, j, arglen;
5382 	char opt;
5383 
5384 	dbg("Parsing command-line arguments");
5385 	*use_pathp = false;
5386 	*fdp = -1;
5387 
5388 	for (i = 1; i < argc; i++ ) {
5389 		arg = argv[i];
5390 		dbg("argv[%d]: '%s'", i, arg);
5391 
5392 		/*
5393 		 * rtld arguments end with an explicit "--" or with the first
5394 		 * non-prefixed argument.
5395 		 */
5396 		if (strcmp(arg, "--") == 0) {
5397 			i++;
5398 			break;
5399 		}
5400 		if (arg[0] != '-')
5401 			break;
5402 
5403 		/*
5404 		 * All other arguments are single-character options that can
5405 		 * be combined, so we need to search through `arg` for them.
5406 		 */
5407 		arglen = strlen(arg);
5408 		for (j = 1; j < arglen; j++) {
5409 			opt = arg[j];
5410 			if (opt == 'h') {
5411 				print_usage(argv[0]);
5412 				rtld_die();
5413 			} else if (opt == 'f') {
5414 			/*
5415 			 * -f XX can be used to specify a descriptor for the
5416 			 * binary named at the command line (i.e., the later
5417 			 * argument will specify the process name but the
5418 			 * descriptor is what will actually be executed)
5419 			 */
5420 			if (j != arglen - 1) {
5421 				/* -f must be the last option in, e.g., -abcf */
5422 				_rtld_error("invalid options: %s", arg);
5423 				rtld_die();
5424 			}
5425 			i++;
5426 			fd = parse_integer(argv[i]);
5427 			if (fd == -1) {
5428 				_rtld_error("invalid file descriptor: '%s'",
5429 				    argv[i]);
5430 				rtld_die();
5431 			}
5432 			*fdp = fd;
5433 			break;
5434 			} else if (opt == 'p') {
5435 				*use_pathp = true;
5436 			} else {
5437 				rtld_printf("invalid argument: '%s'\n", arg);
5438 				print_usage(argv[0]);
5439 				rtld_die();
5440 			}
5441 		}
5442 	}
5443 
5444 	return (i);
5445 }
5446 
5447 /*
5448  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5449  */
5450 static int
5451 parse_integer(const char *str)
5452 {
5453 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5454 	const char *orig;
5455 	int n;
5456 	char c;
5457 
5458 	orig = str;
5459 	n = 0;
5460 	for (c = *str; c != '\0'; c = *++str) {
5461 		if (c < '0' || c > '9')
5462 			return (-1);
5463 
5464 		n *= RADIX;
5465 		n += c - '0';
5466 	}
5467 
5468 	/* Make sure we actually parsed something. */
5469 	if (str == orig)
5470 		return (-1);
5471 	return (n);
5472 }
5473 
5474 static void
5475 print_usage(const char *argv0)
5476 {
5477 
5478 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5479 		"\n"
5480 		"Options:\n"
5481 		"  -h        Display this help message\n"
5482 		"  -p        Search in PATH for named binary\n"
5483 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5484 		"  --        End of RTLD options\n"
5485 		"  <binary>  Name of process to execute\n"
5486 		"  <args>    Arguments to the executed process\n", argv0);
5487 }
5488 
5489 /*
5490  * Overrides for libc_pic-provided functions.
5491  */
5492 
5493 int
5494 __getosreldate(void)
5495 {
5496 	size_t len;
5497 	int oid[2];
5498 	int error, osrel;
5499 
5500 	if (osreldate != 0)
5501 		return (osreldate);
5502 
5503 	oid[0] = CTL_KERN;
5504 	oid[1] = KERN_OSRELDATE;
5505 	osrel = 0;
5506 	len = sizeof(osrel);
5507 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5508 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5509 		osreldate = osrel;
5510 	return (osreldate);
5511 }
5512 
5513 void
5514 exit(int status)
5515 {
5516 
5517 	_exit(status);
5518 }
5519 
5520 void (*__cleanup)(void);
5521 int __isthreaded = 0;
5522 int _thread_autoinit_dummy_decl = 1;
5523 
5524 /*
5525  * No unresolved symbols for rtld.
5526  */
5527 void
5528 __pthread_cxa_finalize(struct dl_phdr_info *a)
5529 {
5530 }
5531 
5532 void
5533 __stack_chk_fail(void)
5534 {
5535 
5536 	_rtld_error("stack overflow detected; terminated");
5537 	rtld_die();
5538 }
5539 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5540 
5541 void
5542 __chk_fail(void)
5543 {
5544 
5545 	_rtld_error("buffer overflow detected; terminated");
5546 	rtld_die();
5547 }
5548 
5549 const char *
5550 rtld_strerror(int errnum)
5551 {
5552 
5553 	if (errnum < 0 || errnum >= sys_nerr)
5554 		return ("Unknown error");
5555 	return (sys_errlist[errnum]);
5556 }
5557