xref: /freebsd/libexec/rtld-elf/rtld.c (revision 84eacaf728a102612d83861d73c3aaa353ca3dc2)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/mount.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/sysctl.h>
42 #include <sys/uio.h>
43 #include <sys/utsname.h>
44 #include <sys/ktrace.h>
45 
46 #include <dlfcn.h>
47 #include <err.h>
48 #include <errno.h>
49 #include <fcntl.h>
50 #include <stdarg.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include "debug.h"
57 #include "rtld.h"
58 #include "libmap.h"
59 #include "paths.h"
60 #include "rtld_tls.h"
61 #include "rtld_printf.h"
62 #include "notes.h"
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * Function declarations.
70  */
71 static const char *basename(const char *);
72 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
73     const Elf_Dyn **, const Elf_Dyn **);
74 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
75     const Elf_Dyn *);
76 static void digest_dynamic(Obj_Entry *, int);
77 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
78 static Obj_Entry *dlcheck(void *);
79 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
80     int lo_flags, int mode, RtldLockState *lockstate);
81 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
82 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
83 static bool donelist_check(DoneList *, const Obj_Entry *);
84 static void errmsg_restore(char *);
85 static char *errmsg_save(void);
86 static void *fill_search_info(const char *, size_t, void *);
87 static char *find_library(const char *, const Obj_Entry *, int *);
88 static const char *gethints(bool);
89 static void init_dag(Obj_Entry *);
90 static void init_pagesizes(Elf_Auxinfo **aux_info);
91 static void init_rtld(caddr_t, Elf_Auxinfo **);
92 static void initlist_add_neededs(Needed_Entry *, Objlist *);
93 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
94 static void linkmap_add(Obj_Entry *);
95 static void linkmap_delete(Obj_Entry *);
96 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
97 static void unload_filtees(Obj_Entry *);
98 static int load_needed_objects(Obj_Entry *, int);
99 static int load_preload_objects(void);
100 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
101 static void map_stacks_exec(RtldLockState *);
102 static Obj_Entry *obj_from_addr(const void *);
103 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
104 static void objlist_call_init(Objlist *, RtldLockState *);
105 static void objlist_clear(Objlist *);
106 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
107 static void objlist_init(Objlist *);
108 static void objlist_push_head(Objlist *, Obj_Entry *);
109 static void objlist_push_tail(Objlist *, Obj_Entry *);
110 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
111 static void objlist_remove(Objlist *, Obj_Entry *);
112 static int parse_libdir(const char *);
113 static void *path_enumerate(const char *, path_enum_proc, void *);
114 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
115     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
116 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
117     int flags, RtldLockState *lockstate);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
119     RtldLockState *);
120 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
121     int flags, RtldLockState *lockstate);
122 static int rtld_dirname(const char *, char *);
123 static int rtld_dirname_abs(const char *, char *);
124 static void *rtld_dlopen(const char *name, int fd, int mode);
125 static void rtld_exit(void);
126 static char *search_library_path(const char *, const char *);
127 static char *search_library_pathfds(const char *, const char *, int *);
128 static const void **get_program_var_addr(const char *, RtldLockState *);
129 static void set_program_var(const char *, const void *);
130 static int symlook_default(SymLook *, const Obj_Entry *refobj);
131 static int symlook_global(SymLook *, DoneList *);
132 static void symlook_init_from_req(SymLook *, const SymLook *);
133 static int symlook_list(SymLook *, const Objlist *, DoneList *);
134 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
135 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
136 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
137 static void trace_loaded_objects(Obj_Entry *);
138 static void unlink_object(Obj_Entry *);
139 static void unload_object(Obj_Entry *);
140 static void unref_dag(Obj_Entry *);
141 static void ref_dag(Obj_Entry *);
142 static char *origin_subst_one(Obj_Entry *, char *, const char *,
143     const char *, bool);
144 static char *origin_subst(Obj_Entry *, char *);
145 static bool obj_resolve_origin(Obj_Entry *obj);
146 static void preinit_main(void);
147 static int  rtld_verify_versions(const Objlist *);
148 static int  rtld_verify_object_versions(Obj_Entry *);
149 static void object_add_name(Obj_Entry *, const char *);
150 static int  object_match_name(const Obj_Entry *, const char *);
151 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
152 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
153     struct dl_phdr_info *phdr_info);
154 static uint32_t gnu_hash(const char *);
155 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
156     const unsigned long);
157 
158 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
159 void _r_debug_postinit(struct link_map *) __noinline __exported;
160 
161 int __sys_openat(int, const char *, int, ...);
162 
163 /*
164  * Data declarations.
165  */
166 static char *error_message;	/* Message for dlerror(), or NULL */
167 struct r_debug r_debug __exported;	/* for GDB; */
168 static bool libmap_disable;	/* Disable libmap */
169 static bool ld_loadfltr;	/* Immediate filters processing */
170 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
171 static bool trust;		/* False for setuid and setgid programs */
172 static bool dangerous_ld_env;	/* True if environment variables have been
173 				   used to affect the libraries loaded */
174 static char *ld_bind_now;	/* Environment variable for immediate binding */
175 static char *ld_debug;		/* Environment variable for debugging */
176 static char *ld_library_path;	/* Environment variable for search path */
177 static char *ld_library_dirs;	/* Environment variable for library descriptors */
178 static char *ld_preload;	/* Environment variable for libraries to
179 				   load first */
180 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
181 static char *ld_tracing;	/* Called from ldd to print libs */
182 static char *ld_utrace;		/* Use utrace() to log events. */
183 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
184 static Obj_Entry **obj_tail;	/* Link field of last object in list */
185 static Obj_Entry *obj_main;	/* The main program shared object */
186 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
187 static unsigned int obj_count;	/* Number of objects in obj_list */
188 static unsigned int obj_loads;	/* Number of objects in obj_list */
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 int dlclose(void *) __exported;
208 char *dlerror(void) __exported;
209 void *dlopen(const char *, int) __exported;
210 void *fdlopen(int, int) __exported;
211 void *dlsym(void *, const char *) __exported;
212 dlfunc_t dlfunc(void *, const char *) __exported;
213 void *dlvsym(void *, const char *, const char *) __exported;
214 int dladdr(const void *, Dl_info *) __exported;
215 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
216     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
217 int dlinfo(void *, int , void *) __exported;
218 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
219 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
220 int _rtld_get_stack_prot(void) __exported;
221 int _rtld_is_dlopened(void *) __exported;
222 void _rtld_error(const char *, ...) __exported;
223 
224 int npagesizes, osreldate;
225 size_t *pagesizes;
226 
227 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
228 
229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230 static int max_stack_flags;
231 
232 /*
233  * Global declarations normally provided by crt1.  The dynamic linker is
234  * not built with crt1, so we have to provide them ourselves.
235  */
236 char *__progname;
237 char **environ;
238 
239 /*
240  * Used to pass argc, argv to init functions.
241  */
242 int main_argc;
243 char **main_argv;
244 
245 /*
246  * Globals to control TLS allocation.
247  */
248 size_t tls_last_offset;		/* Static TLS offset of last module */
249 size_t tls_last_size;		/* Static TLS size of last module */
250 size_t tls_static_space;	/* Static TLS space allocated */
251 size_t tls_static_max_align;
252 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
253 int tls_max_index = 1;		/* Largest module index allocated */
254 
255 bool ld_library_path_rpath = false;
256 
257 /*
258  * Globals for path names, and such
259  */
260 char *ld_elf_hints_default = _PATH_ELF_HINTS;
261 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
262 char *ld_path_rtld = _PATH_RTLD;
263 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
264 char *ld_env_prefix = LD_;
265 
266 /*
267  * Fill in a DoneList with an allocation large enough to hold all of
268  * the currently-loaded objects.  Keep this as a macro since it calls
269  * alloca and we want that to occur within the scope of the caller.
270  */
271 #define donelist_init(dlp)					\
272     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
273     assert((dlp)->objs != NULL),				\
274     (dlp)->num_alloc = obj_count,				\
275     (dlp)->num_used = 0)
276 
277 #define	UTRACE_DLOPEN_START		1
278 #define	UTRACE_DLOPEN_STOP		2
279 #define	UTRACE_DLCLOSE_START		3
280 #define	UTRACE_DLCLOSE_STOP		4
281 #define	UTRACE_LOAD_OBJECT		5
282 #define	UTRACE_UNLOAD_OBJECT		6
283 #define	UTRACE_ADD_RUNDEP		7
284 #define	UTRACE_PRELOAD_FINISHED		8
285 #define	UTRACE_INIT_CALL		9
286 #define	UTRACE_FINI_CALL		10
287 #define	UTRACE_DLSYM_START		11
288 #define	UTRACE_DLSYM_STOP		12
289 
290 struct utrace_rtld {
291 	char sig[4];			/* 'RTLD' */
292 	int event;
293 	void *handle;
294 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
295 	size_t mapsize;
296 	int refcnt;			/* Used for 'mode' */
297 	char name[MAXPATHLEN];
298 };
299 
300 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
301 	if (ld_utrace != NULL)					\
302 		ld_utrace_log(e, h, mb, ms, r, n);		\
303 } while (0)
304 
305 static void
306 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
307     int refcnt, const char *name)
308 {
309 	struct utrace_rtld ut;
310 
311 	ut.sig[0] = 'R';
312 	ut.sig[1] = 'T';
313 	ut.sig[2] = 'L';
314 	ut.sig[3] = 'D';
315 	ut.event = event;
316 	ut.handle = handle;
317 	ut.mapbase = mapbase;
318 	ut.mapsize = mapsize;
319 	ut.refcnt = refcnt;
320 	bzero(ut.name, sizeof(ut.name));
321 	if (name)
322 		strlcpy(ut.name, name, sizeof(ut.name));
323 	utrace(&ut, sizeof(ut));
324 }
325 
326 #ifdef RTLD_VARIANT_ENV_NAMES
327 /*
328  * construct the env variable based on the type of binary that's
329  * running.
330  */
331 static inline const char *
332 _LD(const char *var)
333 {
334 	static char buffer[128];
335 
336 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
337 	strlcat(buffer, var, sizeof(buffer));
338 	return (buffer);
339 }
340 #else
341 #define _LD(x)	LD_ x
342 #endif
343 
344 /*
345  * Main entry point for dynamic linking.  The first argument is the
346  * stack pointer.  The stack is expected to be laid out as described
347  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
348  * Specifically, the stack pointer points to a word containing
349  * ARGC.  Following that in the stack is a null-terminated sequence
350  * of pointers to argument strings.  Then comes a null-terminated
351  * sequence of pointers to environment strings.  Finally, there is a
352  * sequence of "auxiliary vector" entries.
353  *
354  * The second argument points to a place to store the dynamic linker's
355  * exit procedure pointer and the third to a place to store the main
356  * program's object.
357  *
358  * The return value is the main program's entry point.
359  */
360 func_ptr_type
361 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
362 {
363     Elf_Auxinfo *aux_info[AT_COUNT];
364     int i;
365     int argc;
366     char **argv;
367     char **env;
368     Elf_Auxinfo *aux;
369     Elf_Auxinfo *auxp;
370     const char *argv0;
371     Objlist_Entry *entry;
372     Obj_Entry *obj;
373     Obj_Entry **preload_tail;
374     Obj_Entry *last_interposer;
375     Objlist initlist;
376     RtldLockState lockstate;
377     char *library_path_rpath;
378     int mib[2];
379     size_t len;
380 
381     /*
382      * On entry, the dynamic linker itself has not been relocated yet.
383      * Be very careful not to reference any global data until after
384      * init_rtld has returned.  It is OK to reference file-scope statics
385      * and string constants, and to call static and global functions.
386      */
387 
388     /* Find the auxiliary vector on the stack. */
389     argc = *sp++;
390     argv = (char **) sp;
391     sp += argc + 1;	/* Skip over arguments and NULL terminator */
392     env = (char **) sp;
393     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
394 	;
395     aux = (Elf_Auxinfo *) sp;
396 
397     /* Digest the auxiliary vector. */
398     for (i = 0;  i < AT_COUNT;  i++)
399 	aux_info[i] = NULL;
400     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
401 	if (auxp->a_type < AT_COUNT)
402 	    aux_info[auxp->a_type] = auxp;
403     }
404 
405     /* Initialize and relocate ourselves. */
406     assert(aux_info[AT_BASE] != NULL);
407     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
408 
409     __progname = obj_rtld.path;
410     argv0 = argv[0] != NULL ? argv[0] : "(null)";
411     environ = env;
412     main_argc = argc;
413     main_argv = argv;
414 
415     if (aux_info[AT_CANARY] != NULL &&
416 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
417 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
418 	    if (i > sizeof(__stack_chk_guard))
419 		    i = sizeof(__stack_chk_guard);
420 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
421     } else {
422 	mib[0] = CTL_KERN;
423 	mib[1] = KERN_ARND;
424 
425 	len = sizeof(__stack_chk_guard);
426 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
427 	    len != sizeof(__stack_chk_guard)) {
428 		/* If sysctl was unsuccessful, use the "terminator canary". */
429 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
430 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
431 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
432 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
433 	}
434     }
435 
436     trust = !issetugid();
437 
438 /*  md_abi_variant_hook(aux_info); */
439 
440     ld_bind_now = getenv(_LD("BIND_NOW"));
441     /*
442      * If the process is tainted, then we un-set the dangerous environment
443      * variables.  The process will be marked as tainted until setuid(2)
444      * is called.  If any child process calls setuid(2) we do not want any
445      * future processes to honor the potentially un-safe variables.
446      */
447     if (!trust) {
448 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
449 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
450 	    unsetenv(_LD("LIBMAP_DISABLE")) ||
451 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
452 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
453 		_rtld_error("environment corrupt; aborting");
454 		rtld_die();
455 	}
456     }
457     ld_debug = getenv(_LD("DEBUG"));
458     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
459     libmap_override = getenv(_LD("LIBMAP"));
460     ld_library_path = getenv(_LD("LIBRARY_PATH"));
461     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
462     ld_preload = getenv(_LD("PRELOAD"));
463     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
464     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
465     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
466     if (library_path_rpath != NULL) {
467 	    if (library_path_rpath[0] == 'y' ||
468 		library_path_rpath[0] == 'Y' ||
469 		library_path_rpath[0] == '1')
470 		    ld_library_path_rpath = true;
471 	    else
472 		    ld_library_path_rpath = false;
473     }
474     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
475 	(ld_library_path != NULL) || (ld_preload != NULL) ||
476 	(ld_elf_hints_path != NULL) || ld_loadfltr;
477     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
478     ld_utrace = getenv(_LD("UTRACE"));
479 
480     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
481 	ld_elf_hints_path = ld_elf_hints_default;
482 
483     if (ld_debug != NULL && *ld_debug != '\0')
484 	debug = 1;
485     dbg("%s is initialized, base address = %p", __progname,
486 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
487     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
488     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
489 
490     dbg("initializing thread locks");
491     lockdflt_init();
492 
493     /*
494      * Load the main program, or process its program header if it is
495      * already loaded.
496      */
497     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
498 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
499 	dbg("loading main program");
500 	obj_main = map_object(fd, argv0, NULL);
501 	close(fd);
502 	if (obj_main == NULL)
503 	    rtld_die();
504 	max_stack_flags = obj->stack_flags;
505     } else {				/* Main program already loaded. */
506 	const Elf_Phdr *phdr;
507 	int phnum;
508 	caddr_t entry;
509 
510 	dbg("processing main program's program header");
511 	assert(aux_info[AT_PHDR] != NULL);
512 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
513 	assert(aux_info[AT_PHNUM] != NULL);
514 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
515 	assert(aux_info[AT_PHENT] != NULL);
516 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
517 	assert(aux_info[AT_ENTRY] != NULL);
518 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
519 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
520 	    rtld_die();
521     }
522 
523     if (aux_info[AT_EXECPATH] != 0) {
524 	    char *kexecpath;
525 	    char buf[MAXPATHLEN];
526 
527 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
528 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
529 	    if (kexecpath[0] == '/')
530 		    obj_main->path = kexecpath;
531 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
532 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
533 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
534 		    obj_main->path = xstrdup(argv0);
535 	    else
536 		    obj_main->path = xstrdup(buf);
537     } else {
538 	    dbg("No AT_EXECPATH");
539 	    obj_main->path = xstrdup(argv0);
540     }
541     dbg("obj_main path %s", obj_main->path);
542     obj_main->mainprog = true;
543 
544     if (aux_info[AT_STACKPROT] != NULL &&
545       aux_info[AT_STACKPROT]->a_un.a_val != 0)
546 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
547 
548 #ifndef COMPAT_32BIT
549     /*
550      * Get the actual dynamic linker pathname from the executable if
551      * possible.  (It should always be possible.)  That ensures that
552      * gdb will find the right dynamic linker even if a non-standard
553      * one is being used.
554      */
555     if (obj_main->interp != NULL &&
556       strcmp(obj_main->interp, obj_rtld.path) != 0) {
557 	free(obj_rtld.path);
558 	obj_rtld.path = xstrdup(obj_main->interp);
559         __progname = obj_rtld.path;
560     }
561 #endif
562 
563     digest_dynamic(obj_main, 0);
564     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
565 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
566 	obj_main->dynsymcount);
567 
568     linkmap_add(obj_main);
569     linkmap_add(&obj_rtld);
570 
571     /* Link the main program into the list of objects. */
572     *obj_tail = obj_main;
573     obj_tail = &obj_main->next;
574     obj_count++;
575     obj_loads++;
576 
577     /* Initialize a fake symbol for resolving undefined weak references. */
578     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
579     sym_zero.st_shndx = SHN_UNDEF;
580     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
581 
582     if (!libmap_disable)
583         libmap_disable = (bool)lm_init(libmap_override);
584 
585     dbg("loading LD_PRELOAD libraries");
586     if (load_preload_objects() == -1)
587 	rtld_die();
588     preload_tail = obj_tail;
589 
590     dbg("loading needed objects");
591     if (load_needed_objects(obj_main, 0) == -1)
592 	rtld_die();
593 
594     /* Make a list of all objects loaded at startup. */
595     last_interposer = obj_main;
596     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
597 	if (obj->z_interpose && obj != obj_main) {
598 	    objlist_put_after(&list_main, last_interposer, obj);
599 	    last_interposer = obj;
600 	} else {
601 	    objlist_push_tail(&list_main, obj);
602 	}
603     	obj->refcount++;
604     }
605 
606     dbg("checking for required versions");
607     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
608 	rtld_die();
609 
610     if (ld_tracing) {		/* We're done */
611 	trace_loaded_objects(obj_main);
612 	exit(0);
613     }
614 
615     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
616        dump_relocations(obj_main);
617        exit (0);
618     }
619 
620     /*
621      * Processing tls relocations requires having the tls offsets
622      * initialized.  Prepare offsets before starting initial
623      * relocation processing.
624      */
625     dbg("initializing initial thread local storage offsets");
626     STAILQ_FOREACH(entry, &list_main, link) {
627 	/*
628 	 * Allocate all the initial objects out of the static TLS
629 	 * block even if they didn't ask for it.
630 	 */
631 	allocate_tls_offset(entry->obj);
632     }
633 
634     if (relocate_objects(obj_main,
635       ld_bind_now != NULL && *ld_bind_now != '\0',
636       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
637 	rtld_die();
638 
639     dbg("doing copy relocations");
640     if (do_copy_relocations(obj_main) == -1)
641 	rtld_die();
642 
643     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
644        dump_relocations(obj_main);
645        exit (0);
646     }
647 
648     /*
649      * Setup TLS for main thread.  This must be done after the
650      * relocations are processed, since tls initialization section
651      * might be the subject for relocations.
652      */
653     dbg("initializing initial thread local storage");
654     allocate_initial_tls(obj_list);
655 
656     dbg("initializing key program variables");
657     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
658     set_program_var("environ", env);
659     set_program_var("__elf_aux_vector", aux);
660 
661     /* Make a list of init functions to call. */
662     objlist_init(&initlist);
663     initlist_add_objects(obj_list, preload_tail, &initlist);
664 
665     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
666 
667     map_stacks_exec(NULL);
668 
669     dbg("resolving ifuncs");
670     if (resolve_objects_ifunc(obj_main,
671       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
672       NULL) == -1)
673 	rtld_die();
674 
675     if (!obj_main->crt_no_init) {
676 	/*
677 	 * Make sure we don't call the main program's init and fini
678 	 * functions for binaries linked with old crt1 which calls
679 	 * _init itself.
680 	 */
681 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
682 	obj_main->preinit_array = obj_main->init_array =
683 	    obj_main->fini_array = (Elf_Addr)NULL;
684     }
685 
686     wlock_acquire(rtld_bind_lock, &lockstate);
687     if (obj_main->crt_no_init)
688 	preinit_main();
689     objlist_call_init(&initlist, &lockstate);
690     _r_debug_postinit(&obj_main->linkmap);
691     objlist_clear(&initlist);
692     dbg("loading filtees");
693     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
694 	if (ld_loadfltr || obj->z_loadfltr)
695 	    load_filtees(obj, 0, &lockstate);
696     }
697     lock_release(rtld_bind_lock, &lockstate);
698 
699     dbg("transferring control to program entry point = %p", obj_main->entry);
700 
701     /* Return the exit procedure and the program entry point. */
702     *exit_proc = rtld_exit;
703     *objp = obj_main;
704     return (func_ptr_type) obj_main->entry;
705 }
706 
707 void *
708 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
709 {
710 	void *ptr;
711 	Elf_Addr target;
712 
713 	ptr = (void *)make_function_pointer(def, obj);
714 	target = ((Elf_Addr (*)(void))ptr)();
715 	return ((void *)target);
716 }
717 
718 Elf_Addr
719 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
720 {
721     const Elf_Rel *rel;
722     const Elf_Sym *def;
723     const Obj_Entry *defobj;
724     Elf_Addr *where;
725     Elf_Addr target;
726     RtldLockState lockstate;
727 
728     rlock_acquire(rtld_bind_lock, &lockstate);
729     if (sigsetjmp(lockstate.env, 0) != 0)
730 	    lock_upgrade(rtld_bind_lock, &lockstate);
731     if (obj->pltrel)
732 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
733     else
734 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
735 
736     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
737     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
738 	&lockstate);
739     if (def == NULL)
740 	rtld_die();
741     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
742 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
743     else
744 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
745 
746     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
747       defobj->strtab + def->st_name, basename(obj->path),
748       (void *)target, basename(defobj->path));
749 
750     /*
751      * Write the new contents for the jmpslot. Note that depending on
752      * architecture, the value which we need to return back to the
753      * lazy binding trampoline may or may not be the target
754      * address. The value returned from reloc_jmpslot() is the value
755      * that the trampoline needs.
756      */
757     target = reloc_jmpslot(where, target, defobj, obj, rel);
758     lock_release(rtld_bind_lock, &lockstate);
759     return target;
760 }
761 
762 /*
763  * Error reporting function.  Use it like printf.  If formats the message
764  * into a buffer, and sets things up so that the next call to dlerror()
765  * will return the message.
766  */
767 void
768 _rtld_error(const char *fmt, ...)
769 {
770     static char buf[512];
771     va_list ap;
772 
773     va_start(ap, fmt);
774     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
775     error_message = buf;
776     va_end(ap);
777 }
778 
779 /*
780  * Return a dynamically-allocated copy of the current error message, if any.
781  */
782 static char *
783 errmsg_save(void)
784 {
785     return error_message == NULL ? NULL : xstrdup(error_message);
786 }
787 
788 /*
789  * Restore the current error message from a copy which was previously saved
790  * by errmsg_save().  The copy is freed.
791  */
792 static void
793 errmsg_restore(char *saved_msg)
794 {
795     if (saved_msg == NULL)
796 	error_message = NULL;
797     else {
798 	_rtld_error("%s", saved_msg);
799 	free(saved_msg);
800     }
801 }
802 
803 static const char *
804 basename(const char *name)
805 {
806     const char *p = strrchr(name, '/');
807     return p != NULL ? p + 1 : name;
808 }
809 
810 static struct utsname uts;
811 
812 static char *
813 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
814     const char *subst, bool may_free)
815 {
816 	char *p, *p1, *res, *resp;
817 	int subst_len, kw_len, subst_count, old_len, new_len;
818 
819 	kw_len = strlen(kw);
820 
821 	/*
822 	 * First, count the number of the keyword occurences, to
823 	 * preallocate the final string.
824 	 */
825 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
826 		p1 = strstr(p, kw);
827 		if (p1 == NULL)
828 			break;
829 	}
830 
831 	/*
832 	 * If the keyword is not found, just return.
833 	 *
834 	 * Return non-substituted string if resolution failed.  We
835 	 * cannot do anything more reasonable, the failure mode of the
836 	 * caller is unresolved library anyway.
837 	 */
838 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
839 		return (may_free ? real : xstrdup(real));
840 	if (obj != NULL)
841 		subst = obj->origin_path;
842 
843 	/*
844 	 * There is indeed something to substitute.  Calculate the
845 	 * length of the resulting string, and allocate it.
846 	 */
847 	subst_len = strlen(subst);
848 	old_len = strlen(real);
849 	new_len = old_len + (subst_len - kw_len) * subst_count;
850 	res = xmalloc(new_len + 1);
851 
852 	/*
853 	 * Now, execute the substitution loop.
854 	 */
855 	for (p = real, resp = res, *resp = '\0';;) {
856 		p1 = strstr(p, kw);
857 		if (p1 != NULL) {
858 			/* Copy the prefix before keyword. */
859 			memcpy(resp, p, p1 - p);
860 			resp += p1 - p;
861 			/* Keyword replacement. */
862 			memcpy(resp, subst, subst_len);
863 			resp += subst_len;
864 			*resp = '\0';
865 			p = p1 + kw_len;
866 		} else
867 			break;
868 	}
869 
870 	/* Copy to the end of string and finish. */
871 	strcat(resp, p);
872 	if (may_free)
873 		free(real);
874 	return (res);
875 }
876 
877 static char *
878 origin_subst(Obj_Entry *obj, char *real)
879 {
880 	char *res1, *res2, *res3, *res4;
881 
882 	if (obj == NULL || !trust)
883 		return (xstrdup(real));
884 	if (uts.sysname[0] == '\0') {
885 		if (uname(&uts) != 0) {
886 			_rtld_error("utsname failed: %d", errno);
887 			return (NULL);
888 		}
889 	}
890 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
891 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
892 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
893 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
894 	return (res4);
895 }
896 
897 void
898 rtld_die(void)
899 {
900     const char *msg = dlerror();
901 
902     if (msg == NULL)
903 	msg = "Fatal error";
904     rtld_fdputstr(STDERR_FILENO, msg);
905     rtld_fdputchar(STDERR_FILENO, '\n');
906     _exit(1);
907 }
908 
909 /*
910  * Process a shared object's DYNAMIC section, and save the important
911  * information in its Obj_Entry structure.
912  */
913 static void
914 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
915     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
916 {
917     const Elf_Dyn *dynp;
918     Needed_Entry **needed_tail = &obj->needed;
919     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
920     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
921     const Elf_Hashelt *hashtab;
922     const Elf32_Word *hashval;
923     Elf32_Word bkt, nmaskwords;
924     int bloom_size32;
925     int plttype = DT_REL;
926 
927     *dyn_rpath = NULL;
928     *dyn_soname = NULL;
929     *dyn_runpath = NULL;
930 
931     obj->bind_now = false;
932     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
933 	switch (dynp->d_tag) {
934 
935 	case DT_REL:
936 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
937 	    break;
938 
939 	case DT_RELSZ:
940 	    obj->relsize = dynp->d_un.d_val;
941 	    break;
942 
943 	case DT_RELENT:
944 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
945 	    break;
946 
947 	case DT_JMPREL:
948 	    obj->pltrel = (const Elf_Rel *)
949 	      (obj->relocbase + dynp->d_un.d_ptr);
950 	    break;
951 
952 	case DT_PLTRELSZ:
953 	    obj->pltrelsize = dynp->d_un.d_val;
954 	    break;
955 
956 	case DT_RELA:
957 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
958 	    break;
959 
960 	case DT_RELASZ:
961 	    obj->relasize = dynp->d_un.d_val;
962 	    break;
963 
964 	case DT_RELAENT:
965 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
966 	    break;
967 
968 	case DT_PLTREL:
969 	    plttype = dynp->d_un.d_val;
970 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
971 	    break;
972 
973 	case DT_SYMTAB:
974 	    obj->symtab = (const Elf_Sym *)
975 	      (obj->relocbase + dynp->d_un.d_ptr);
976 	    break;
977 
978 	case DT_SYMENT:
979 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
980 	    break;
981 
982 	case DT_STRTAB:
983 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
984 	    break;
985 
986 	case DT_STRSZ:
987 	    obj->strsize = dynp->d_un.d_val;
988 	    break;
989 
990 	case DT_VERNEED:
991 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
992 		dynp->d_un.d_val);
993 	    break;
994 
995 	case DT_VERNEEDNUM:
996 	    obj->verneednum = dynp->d_un.d_val;
997 	    break;
998 
999 	case DT_VERDEF:
1000 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1001 		dynp->d_un.d_val);
1002 	    break;
1003 
1004 	case DT_VERDEFNUM:
1005 	    obj->verdefnum = dynp->d_un.d_val;
1006 	    break;
1007 
1008 	case DT_VERSYM:
1009 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1010 		dynp->d_un.d_val);
1011 	    break;
1012 
1013 	case DT_HASH:
1014 	    {
1015 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1016 		    dynp->d_un.d_ptr);
1017 		obj->nbuckets = hashtab[0];
1018 		obj->nchains = hashtab[1];
1019 		obj->buckets = hashtab + 2;
1020 		obj->chains = obj->buckets + obj->nbuckets;
1021 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1022 		  obj->buckets != NULL;
1023 	    }
1024 	    break;
1025 
1026 	case DT_GNU_HASH:
1027 	    {
1028 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1029 		    dynp->d_un.d_ptr);
1030 		obj->nbuckets_gnu = hashtab[0];
1031 		obj->symndx_gnu = hashtab[1];
1032 		nmaskwords = hashtab[2];
1033 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1034 		obj->maskwords_bm_gnu = nmaskwords - 1;
1035 		obj->shift2_gnu = hashtab[3];
1036 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1037 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1038 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1039 		  obj->symndx_gnu;
1040 		/* Number of bitmask words is required to be power of 2 */
1041 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1042 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1043 	    }
1044 	    break;
1045 
1046 	case DT_NEEDED:
1047 	    if (!obj->rtld) {
1048 		Needed_Entry *nep = NEW(Needed_Entry);
1049 		nep->name = dynp->d_un.d_val;
1050 		nep->obj = NULL;
1051 		nep->next = NULL;
1052 
1053 		*needed_tail = nep;
1054 		needed_tail = &nep->next;
1055 	    }
1056 	    break;
1057 
1058 	case DT_FILTER:
1059 	    if (!obj->rtld) {
1060 		Needed_Entry *nep = NEW(Needed_Entry);
1061 		nep->name = dynp->d_un.d_val;
1062 		nep->obj = NULL;
1063 		nep->next = NULL;
1064 
1065 		*needed_filtees_tail = nep;
1066 		needed_filtees_tail = &nep->next;
1067 	    }
1068 	    break;
1069 
1070 	case DT_AUXILIARY:
1071 	    if (!obj->rtld) {
1072 		Needed_Entry *nep = NEW(Needed_Entry);
1073 		nep->name = dynp->d_un.d_val;
1074 		nep->obj = NULL;
1075 		nep->next = NULL;
1076 
1077 		*needed_aux_filtees_tail = nep;
1078 		needed_aux_filtees_tail = &nep->next;
1079 	    }
1080 	    break;
1081 
1082 	case DT_PLTGOT:
1083 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1084 	    break;
1085 
1086 	case DT_TEXTREL:
1087 	    obj->textrel = true;
1088 	    break;
1089 
1090 	case DT_SYMBOLIC:
1091 	    obj->symbolic = true;
1092 	    break;
1093 
1094 	case DT_RPATH:
1095 	    /*
1096 	     * We have to wait until later to process this, because we
1097 	     * might not have gotten the address of the string table yet.
1098 	     */
1099 	    *dyn_rpath = dynp;
1100 	    break;
1101 
1102 	case DT_SONAME:
1103 	    *dyn_soname = dynp;
1104 	    break;
1105 
1106 	case DT_RUNPATH:
1107 	    *dyn_runpath = dynp;
1108 	    break;
1109 
1110 	case DT_INIT:
1111 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1112 	    break;
1113 
1114 	case DT_PREINIT_ARRAY:
1115 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1116 	    break;
1117 
1118 	case DT_PREINIT_ARRAYSZ:
1119 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1120 	    break;
1121 
1122 	case DT_INIT_ARRAY:
1123 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1124 	    break;
1125 
1126 	case DT_INIT_ARRAYSZ:
1127 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1128 	    break;
1129 
1130 	case DT_FINI:
1131 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1132 	    break;
1133 
1134 	case DT_FINI_ARRAY:
1135 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1136 	    break;
1137 
1138 	case DT_FINI_ARRAYSZ:
1139 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1140 	    break;
1141 
1142 	/*
1143 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1144 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1145 	 */
1146 
1147 #ifndef __mips__
1148 	case DT_DEBUG:
1149 	    if (!early)
1150 		dbg("Filling in DT_DEBUG entry");
1151 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1152 	    break;
1153 #endif
1154 
1155 	case DT_FLAGS:
1156 		if (dynp->d_un.d_val & DF_ORIGIN)
1157 		    obj->z_origin = true;
1158 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1159 		    obj->symbolic = true;
1160 		if (dynp->d_un.d_val & DF_TEXTREL)
1161 		    obj->textrel = true;
1162 		if (dynp->d_un.d_val & DF_BIND_NOW)
1163 		    obj->bind_now = true;
1164 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1165 		    ;*/
1166 	    break;
1167 #ifdef __mips__
1168 	case DT_MIPS_LOCAL_GOTNO:
1169 		obj->local_gotno = dynp->d_un.d_val;
1170 		break;
1171 
1172 	case DT_MIPS_SYMTABNO:
1173 		obj->symtabno = dynp->d_un.d_val;
1174 		break;
1175 
1176 	case DT_MIPS_GOTSYM:
1177 		obj->gotsym = dynp->d_un.d_val;
1178 		break;
1179 
1180 	case DT_MIPS_RLD_MAP:
1181 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1182 		break;
1183 #endif
1184 
1185 #ifdef __powerpc64__
1186 	case DT_PPC64_GLINK:
1187 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1188 		break;
1189 #endif
1190 
1191 	case DT_FLAGS_1:
1192 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1193 		    obj->z_noopen = true;
1194 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1195 		    obj->z_origin = true;
1196 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1197 		    obj->z_global = true;
1198 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1199 		    obj->bind_now = true;
1200 		if (dynp->d_un.d_val & DF_1_NODELETE)
1201 		    obj->z_nodelete = true;
1202 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1203 		    obj->z_loadfltr = true;
1204 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1205 		    obj->z_interpose = true;
1206 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1207 		    obj->z_nodeflib = true;
1208 	    break;
1209 
1210 	default:
1211 	    if (!early) {
1212 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1213 		    (long)dynp->d_tag);
1214 	    }
1215 	    break;
1216 	}
1217     }
1218 
1219     obj->traced = false;
1220 
1221     if (plttype == DT_RELA) {
1222 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1223 	obj->pltrel = NULL;
1224 	obj->pltrelasize = obj->pltrelsize;
1225 	obj->pltrelsize = 0;
1226     }
1227 
1228     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1229     if (obj->valid_hash_sysv)
1230 	obj->dynsymcount = obj->nchains;
1231     else if (obj->valid_hash_gnu) {
1232 	obj->dynsymcount = 0;
1233 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1234 	    if (obj->buckets_gnu[bkt] == 0)
1235 		continue;
1236 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1237 	    do
1238 		obj->dynsymcount++;
1239 	    while ((*hashval++ & 1u) == 0);
1240 	}
1241 	obj->dynsymcount += obj->symndx_gnu;
1242     }
1243 }
1244 
1245 static bool
1246 obj_resolve_origin(Obj_Entry *obj)
1247 {
1248 
1249 	if (obj->origin_path != NULL)
1250 		return (true);
1251 	obj->origin_path = xmalloc(PATH_MAX);
1252 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1253 }
1254 
1255 static void
1256 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1257     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1258 {
1259 
1260 	if (obj->z_origin && !obj_resolve_origin(obj))
1261 		rtld_die();
1262 
1263 	if (dyn_runpath != NULL) {
1264 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1265 		obj->runpath = origin_subst(obj, obj->runpath);
1266 	} else if (dyn_rpath != NULL) {
1267 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1268 		obj->rpath = origin_subst(obj, obj->rpath);
1269 	}
1270 	if (dyn_soname != NULL)
1271 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1272 }
1273 
1274 static void
1275 digest_dynamic(Obj_Entry *obj, int early)
1276 {
1277 	const Elf_Dyn *dyn_rpath;
1278 	const Elf_Dyn *dyn_soname;
1279 	const Elf_Dyn *dyn_runpath;
1280 
1281 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1282 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1283 }
1284 
1285 /*
1286  * Process a shared object's program header.  This is used only for the
1287  * main program, when the kernel has already loaded the main program
1288  * into memory before calling the dynamic linker.  It creates and
1289  * returns an Obj_Entry structure.
1290  */
1291 static Obj_Entry *
1292 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1293 {
1294     Obj_Entry *obj;
1295     const Elf_Phdr *phlimit = phdr + phnum;
1296     const Elf_Phdr *ph;
1297     Elf_Addr note_start, note_end;
1298     int nsegs = 0;
1299 
1300     obj = obj_new();
1301     for (ph = phdr;  ph < phlimit;  ph++) {
1302 	if (ph->p_type != PT_PHDR)
1303 	    continue;
1304 
1305 	obj->phdr = phdr;
1306 	obj->phsize = ph->p_memsz;
1307 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1308 	break;
1309     }
1310 
1311     obj->stack_flags = PF_X | PF_R | PF_W;
1312 
1313     for (ph = phdr;  ph < phlimit;  ph++) {
1314 	switch (ph->p_type) {
1315 
1316 	case PT_INTERP:
1317 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1318 	    break;
1319 
1320 	case PT_LOAD:
1321 	    if (nsegs == 0) {	/* First load segment */
1322 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1323 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1324 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1325 		  obj->vaddrbase;
1326 	    } else {		/* Last load segment */
1327 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1328 		  obj->vaddrbase;
1329 	    }
1330 	    nsegs++;
1331 	    break;
1332 
1333 	case PT_DYNAMIC:
1334 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1335 	    break;
1336 
1337 	case PT_TLS:
1338 	    obj->tlsindex = 1;
1339 	    obj->tlssize = ph->p_memsz;
1340 	    obj->tlsalign = ph->p_align;
1341 	    obj->tlsinitsize = ph->p_filesz;
1342 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1343 	    break;
1344 
1345 	case PT_GNU_STACK:
1346 	    obj->stack_flags = ph->p_flags;
1347 	    break;
1348 
1349 	case PT_GNU_RELRO:
1350 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1351 	    obj->relro_size = round_page(ph->p_memsz);
1352 	    break;
1353 
1354 	case PT_NOTE:
1355 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1356 	    note_end = note_start + ph->p_filesz;
1357 	    digest_notes(obj, note_start, note_end);
1358 	    break;
1359 	}
1360     }
1361     if (nsegs < 1) {
1362 	_rtld_error("%s: too few PT_LOAD segments", path);
1363 	return NULL;
1364     }
1365 
1366     obj->entry = entry;
1367     return obj;
1368 }
1369 
1370 void
1371 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1372 {
1373 	const Elf_Note *note;
1374 	const char *note_name;
1375 	uintptr_t p;
1376 
1377 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1378 	    note = (const Elf_Note *)((const char *)(note + 1) +
1379 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1380 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1381 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1382 		    note->n_descsz != sizeof(int32_t))
1383 			continue;
1384 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1385 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1386 			continue;
1387 		note_name = (const char *)(note + 1);
1388 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1389 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1390 			continue;
1391 		switch (note->n_type) {
1392 		case NT_FREEBSD_ABI_TAG:
1393 			/* FreeBSD osrel note */
1394 			p = (uintptr_t)(note + 1);
1395 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1396 			obj->osrel = *(const int32_t *)(p);
1397 			dbg("note osrel %d", obj->osrel);
1398 			break;
1399 		case NT_FREEBSD_NOINIT_TAG:
1400 			/* FreeBSD 'crt does not call init' note */
1401 			obj->crt_no_init = true;
1402 			dbg("note crt_no_init");
1403 			break;
1404 		}
1405 	}
1406 }
1407 
1408 static Obj_Entry *
1409 dlcheck(void *handle)
1410 {
1411     Obj_Entry *obj;
1412 
1413     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1414 	if (obj == (Obj_Entry *) handle)
1415 	    break;
1416 
1417     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1418 	_rtld_error("Invalid shared object handle %p", handle);
1419 	return NULL;
1420     }
1421     return obj;
1422 }
1423 
1424 /*
1425  * If the given object is already in the donelist, return true.  Otherwise
1426  * add the object to the list and return false.
1427  */
1428 static bool
1429 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1430 {
1431     unsigned int i;
1432 
1433     for (i = 0;  i < dlp->num_used;  i++)
1434 	if (dlp->objs[i] == obj)
1435 	    return true;
1436     /*
1437      * Our donelist allocation should always be sufficient.  But if
1438      * our threads locking isn't working properly, more shared objects
1439      * could have been loaded since we allocated the list.  That should
1440      * never happen, but we'll handle it properly just in case it does.
1441      */
1442     if (dlp->num_used < dlp->num_alloc)
1443 	dlp->objs[dlp->num_used++] = obj;
1444     return false;
1445 }
1446 
1447 /*
1448  * Hash function for symbol table lookup.  Don't even think about changing
1449  * this.  It is specified by the System V ABI.
1450  */
1451 unsigned long
1452 elf_hash(const char *name)
1453 {
1454     const unsigned char *p = (const unsigned char *) name;
1455     unsigned long h = 0;
1456     unsigned long g;
1457 
1458     while (*p != '\0') {
1459 	h = (h << 4) + *p++;
1460 	if ((g = h & 0xf0000000) != 0)
1461 	    h ^= g >> 24;
1462 	h &= ~g;
1463     }
1464     return h;
1465 }
1466 
1467 /*
1468  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1469  * unsigned in case it's implemented with a wider type.
1470  */
1471 static uint32_t
1472 gnu_hash(const char *s)
1473 {
1474 	uint32_t h;
1475 	unsigned char c;
1476 
1477 	h = 5381;
1478 	for (c = *s; c != '\0'; c = *++s)
1479 		h = h * 33 + c;
1480 	return (h & 0xffffffff);
1481 }
1482 
1483 
1484 /*
1485  * Find the library with the given name, and return its full pathname.
1486  * The returned string is dynamically allocated.  Generates an error
1487  * message and returns NULL if the library cannot be found.
1488  *
1489  * If the second argument is non-NULL, then it refers to an already-
1490  * loaded shared object, whose library search path will be searched.
1491  *
1492  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1493  * descriptor (which is close-on-exec) will be passed out via the third
1494  * argument.
1495  *
1496  * The search order is:
1497  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1498  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1499  *   LD_LIBRARY_PATH
1500  *   DT_RUNPATH in the referencing file
1501  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1502  *	 from list)
1503  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1504  *
1505  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1506  */
1507 static char *
1508 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1509 {
1510     char *pathname;
1511     char *name;
1512     bool nodeflib, objgiven;
1513 
1514     objgiven = refobj != NULL;
1515     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1516 	if (xname[0] != '/' && !trust) {
1517 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1518 	      xname);
1519 	    return NULL;
1520 	}
1521 	return (origin_subst(__DECONST(Obj_Entry *, refobj),
1522 	  __DECONST(char *, xname)));
1523     }
1524 
1525     if (libmap_disable || !objgiven ||
1526 	(name = lm_find(refobj->path, xname)) == NULL)
1527 	name = (char *)xname;
1528 
1529     dbg(" Searching for \"%s\"", name);
1530 
1531     /*
1532      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1533      * back to pre-conforming behaviour if user requested so with
1534      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1535      * nodeflib.
1536      */
1537     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1538 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1539 	  (refobj != NULL &&
1540 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1541 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1542           (pathname = search_library_path(name, gethints(false))) != NULL ||
1543 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL)
1544 	    return (pathname);
1545     } else {
1546 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1547 	if ((objgiven &&
1548 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1549 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1550 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1551 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1552 	  (objgiven &&
1553 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1554 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1555 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1556 	  (objgiven && !nodeflib &&
1557 	  (pathname = search_library_path(name, ld_standard_library_path)) != NULL))
1558 	    return (pathname);
1559     }
1560 
1561     if (objgiven && refobj->path != NULL) {
1562 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1563 	  name, basename(refobj->path));
1564     } else {
1565 	_rtld_error("Shared object \"%s\" not found", name);
1566     }
1567     return NULL;
1568 }
1569 
1570 /*
1571  * Given a symbol number in a referencing object, find the corresponding
1572  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1573  * no definition was found.  Returns a pointer to the Obj_Entry of the
1574  * defining object via the reference parameter DEFOBJ_OUT.
1575  */
1576 const Elf_Sym *
1577 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1578     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1579     RtldLockState *lockstate)
1580 {
1581     const Elf_Sym *ref;
1582     const Elf_Sym *def;
1583     const Obj_Entry *defobj;
1584     SymLook req;
1585     const char *name;
1586     int res;
1587 
1588     /*
1589      * If we have already found this symbol, get the information from
1590      * the cache.
1591      */
1592     if (symnum >= refobj->dynsymcount)
1593 	return NULL;	/* Bad object */
1594     if (cache != NULL && cache[symnum].sym != NULL) {
1595 	*defobj_out = cache[symnum].obj;
1596 	return cache[symnum].sym;
1597     }
1598 
1599     ref = refobj->symtab + symnum;
1600     name = refobj->strtab + ref->st_name;
1601     def = NULL;
1602     defobj = NULL;
1603 
1604     /*
1605      * We don't have to do a full scale lookup if the symbol is local.
1606      * We know it will bind to the instance in this load module; to
1607      * which we already have a pointer (ie ref). By not doing a lookup,
1608      * we not only improve performance, but it also avoids unresolvable
1609      * symbols when local symbols are not in the hash table. This has
1610      * been seen with the ia64 toolchain.
1611      */
1612     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1613 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1614 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1615 		symnum);
1616 	}
1617 	symlook_init(&req, name);
1618 	req.flags = flags;
1619 	req.ventry = fetch_ventry(refobj, symnum);
1620 	req.lockstate = lockstate;
1621 	res = symlook_default(&req, refobj);
1622 	if (res == 0) {
1623 	    def = req.sym_out;
1624 	    defobj = req.defobj_out;
1625 	}
1626     } else {
1627 	def = ref;
1628 	defobj = refobj;
1629     }
1630 
1631     /*
1632      * If we found no definition and the reference is weak, treat the
1633      * symbol as having the value zero.
1634      */
1635     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1636 	def = &sym_zero;
1637 	defobj = obj_main;
1638     }
1639 
1640     if (def != NULL) {
1641 	*defobj_out = defobj;
1642 	/* Record the information in the cache to avoid subsequent lookups. */
1643 	if (cache != NULL) {
1644 	    cache[symnum].sym = def;
1645 	    cache[symnum].obj = defobj;
1646 	}
1647     } else {
1648 	if (refobj != &obj_rtld)
1649 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1650     }
1651     return def;
1652 }
1653 
1654 /*
1655  * Return the search path from the ldconfig hints file, reading it if
1656  * necessary.  If nostdlib is true, then the default search paths are
1657  * not added to result.
1658  *
1659  * Returns NULL if there are problems with the hints file,
1660  * or if the search path there is empty.
1661  */
1662 static const char *
1663 gethints(bool nostdlib)
1664 {
1665 	static char *hints, *filtered_path;
1666 	struct elfhints_hdr hdr;
1667 	struct fill_search_info_args sargs, hargs;
1668 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1669 	struct dl_serpath *SLPpath, *hintpath;
1670 	char *p;
1671 	unsigned int SLPndx, hintndx, fndx, fcount;
1672 	int fd;
1673 	size_t flen;
1674 	bool skip;
1675 
1676 	/* First call, read the hints file */
1677 	if (hints == NULL) {
1678 		/* Keep from trying again in case the hints file is bad. */
1679 		hints = "";
1680 
1681 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1682 			return (NULL);
1683 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1684 		    hdr.magic != ELFHINTS_MAGIC ||
1685 		    hdr.version != 1) {
1686 			close(fd);
1687 			return (NULL);
1688 		}
1689 		p = xmalloc(hdr.dirlistlen + 1);
1690 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1691 		    read(fd, p, hdr.dirlistlen + 1) !=
1692 		    (ssize_t)hdr.dirlistlen + 1) {
1693 			free(p);
1694 			close(fd);
1695 			return (NULL);
1696 		}
1697 		hints = p;
1698 		close(fd);
1699 	}
1700 
1701 	/*
1702 	 * If caller agreed to receive list which includes the default
1703 	 * paths, we are done. Otherwise, if we still did not
1704 	 * calculated filtered result, do it now.
1705 	 */
1706 	if (!nostdlib)
1707 		return (hints[0] != '\0' ? hints : NULL);
1708 	if (filtered_path != NULL)
1709 		goto filt_ret;
1710 
1711 	/*
1712 	 * Obtain the list of all configured search paths, and the
1713 	 * list of the default paths.
1714 	 *
1715 	 * First estimate the size of the results.
1716 	 */
1717 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1718 	smeta.dls_cnt = 0;
1719 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1720 	hmeta.dls_cnt = 0;
1721 
1722 	sargs.request = RTLD_DI_SERINFOSIZE;
1723 	sargs.serinfo = &smeta;
1724 	hargs.request = RTLD_DI_SERINFOSIZE;
1725 	hargs.serinfo = &hmeta;
1726 
1727 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1728 	path_enumerate(p, fill_search_info, &hargs);
1729 
1730 	SLPinfo = xmalloc(smeta.dls_size);
1731 	hintinfo = xmalloc(hmeta.dls_size);
1732 
1733 	/*
1734 	 * Next fetch both sets of paths.
1735 	 */
1736 	sargs.request = RTLD_DI_SERINFO;
1737 	sargs.serinfo = SLPinfo;
1738 	sargs.serpath = &SLPinfo->dls_serpath[0];
1739 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1740 
1741 	hargs.request = RTLD_DI_SERINFO;
1742 	hargs.serinfo = hintinfo;
1743 	hargs.serpath = &hintinfo->dls_serpath[0];
1744 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1745 
1746 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1747 	path_enumerate(p, fill_search_info, &hargs);
1748 
1749 	/*
1750 	 * Now calculate the difference between two sets, by excluding
1751 	 * standard paths from the full set.
1752 	 */
1753 	fndx = 0;
1754 	fcount = 0;
1755 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1756 	hintpath = &hintinfo->dls_serpath[0];
1757 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1758 		skip = false;
1759 		SLPpath = &SLPinfo->dls_serpath[0];
1760 		/*
1761 		 * Check each standard path against current.
1762 		 */
1763 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1764 			/* matched, skip the path */
1765 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1766 				skip = true;
1767 				break;
1768 			}
1769 		}
1770 		if (skip)
1771 			continue;
1772 		/*
1773 		 * Not matched against any standard path, add the path
1774 		 * to result. Separate consequtive paths with ':'.
1775 		 */
1776 		if (fcount > 0) {
1777 			filtered_path[fndx] = ':';
1778 			fndx++;
1779 		}
1780 		fcount++;
1781 		flen = strlen(hintpath->dls_name);
1782 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1783 		fndx += flen;
1784 	}
1785 	filtered_path[fndx] = '\0';
1786 
1787 	free(SLPinfo);
1788 	free(hintinfo);
1789 
1790 filt_ret:
1791 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1792 }
1793 
1794 static void
1795 init_dag(Obj_Entry *root)
1796 {
1797     const Needed_Entry *needed;
1798     const Objlist_Entry *elm;
1799     DoneList donelist;
1800 
1801     if (root->dag_inited)
1802 	return;
1803     donelist_init(&donelist);
1804 
1805     /* Root object belongs to own DAG. */
1806     objlist_push_tail(&root->dldags, root);
1807     objlist_push_tail(&root->dagmembers, root);
1808     donelist_check(&donelist, root);
1809 
1810     /*
1811      * Add dependencies of root object to DAG in breadth order
1812      * by exploiting the fact that each new object get added
1813      * to the tail of the dagmembers list.
1814      */
1815     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1816 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1817 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1818 		continue;
1819 	    objlist_push_tail(&needed->obj->dldags, root);
1820 	    objlist_push_tail(&root->dagmembers, needed->obj);
1821 	}
1822     }
1823     root->dag_inited = true;
1824 }
1825 
1826 static void
1827 process_z(Obj_Entry *root)
1828 {
1829 	const Objlist_Entry *elm;
1830 	Obj_Entry *obj;
1831 
1832 	/*
1833 	 * Walk over object DAG and process every dependent object
1834 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1835 	 * to grow their own DAG.
1836 	 *
1837 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1838 	 * symlook_global() to work.
1839 	 *
1840 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1841 	 */
1842 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1843 		obj = elm->obj;
1844 		if (obj == NULL)
1845 			continue;
1846 		if (obj->z_nodelete && !obj->ref_nodel) {
1847 			dbg("obj %s -z nodelete", obj->path);
1848 			init_dag(obj);
1849 			ref_dag(obj);
1850 			obj->ref_nodel = true;
1851 		}
1852 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1853 			dbg("obj %s -z global", obj->path);
1854 			objlist_push_tail(&list_global, obj);
1855 			init_dag(obj);
1856 		}
1857 	}
1858 }
1859 /*
1860  * Initialize the dynamic linker.  The argument is the address at which
1861  * the dynamic linker has been mapped into memory.  The primary task of
1862  * this function is to relocate the dynamic linker.
1863  */
1864 static void
1865 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1866 {
1867     Obj_Entry objtmp;	/* Temporary rtld object */
1868     const Elf_Dyn *dyn_rpath;
1869     const Elf_Dyn *dyn_soname;
1870     const Elf_Dyn *dyn_runpath;
1871 
1872 #ifdef RTLD_INIT_PAGESIZES_EARLY
1873     /* The page size is required by the dynamic memory allocator. */
1874     init_pagesizes(aux_info);
1875 #endif
1876 
1877     /*
1878      * Conjure up an Obj_Entry structure for the dynamic linker.
1879      *
1880      * The "path" member can't be initialized yet because string constants
1881      * cannot yet be accessed. Below we will set it correctly.
1882      */
1883     memset(&objtmp, 0, sizeof(objtmp));
1884     objtmp.path = NULL;
1885     objtmp.rtld = true;
1886     objtmp.mapbase = mapbase;
1887 #ifdef PIC
1888     objtmp.relocbase = mapbase;
1889 #endif
1890     if (RTLD_IS_DYNAMIC()) {
1891 	objtmp.dynamic = rtld_dynamic(&objtmp);
1892 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1893 	assert(objtmp.needed == NULL);
1894 #if !defined(__mips__)
1895 	/* MIPS has a bogus DT_TEXTREL. */
1896 	assert(!objtmp.textrel);
1897 #endif
1898 
1899 	/*
1900 	 * Temporarily put the dynamic linker entry into the object list, so
1901 	 * that symbols can be found.
1902 	 */
1903 
1904 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1905     }
1906 
1907     /* Initialize the object list. */
1908     obj_tail = &obj_list;
1909 
1910     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1911     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1912 
1913 #ifndef RTLD_INIT_PAGESIZES_EARLY
1914     /* The page size is required by the dynamic memory allocator. */
1915     init_pagesizes(aux_info);
1916 #endif
1917 
1918     if (aux_info[AT_OSRELDATE] != NULL)
1919 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1920 
1921     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1922 
1923     /* Replace the path with a dynamically allocated copy. */
1924     obj_rtld.path = xstrdup(ld_path_rtld);
1925 
1926     r_debug.r_brk = r_debug_state;
1927     r_debug.r_state = RT_CONSISTENT;
1928 }
1929 
1930 /*
1931  * Retrieve the array of supported page sizes.  The kernel provides the page
1932  * sizes in increasing order.
1933  */
1934 static void
1935 init_pagesizes(Elf_Auxinfo **aux_info)
1936 {
1937 	static size_t psa[MAXPAGESIZES];
1938 	int mib[2];
1939 	size_t len, size;
1940 
1941 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1942 	    NULL) {
1943 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1944 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1945 	} else {
1946 		len = 2;
1947 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1948 			size = sizeof(psa);
1949 		else {
1950 			/* As a fallback, retrieve the base page size. */
1951 			size = sizeof(psa[0]);
1952 			if (aux_info[AT_PAGESZ] != NULL) {
1953 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1954 				goto psa_filled;
1955 			} else {
1956 				mib[0] = CTL_HW;
1957 				mib[1] = HW_PAGESIZE;
1958 				len = 2;
1959 			}
1960 		}
1961 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1962 			_rtld_error("sysctl for hw.pagesize(s) failed");
1963 			rtld_die();
1964 		}
1965 psa_filled:
1966 		pagesizes = psa;
1967 	}
1968 	npagesizes = size / sizeof(pagesizes[0]);
1969 	/* Discard any invalid entries at the end of the array. */
1970 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1971 		npagesizes--;
1972 }
1973 
1974 /*
1975  * Add the init functions from a needed object list (and its recursive
1976  * needed objects) to "list".  This is not used directly; it is a helper
1977  * function for initlist_add_objects().  The write lock must be held
1978  * when this function is called.
1979  */
1980 static void
1981 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1982 {
1983     /* Recursively process the successor needed objects. */
1984     if (needed->next != NULL)
1985 	initlist_add_neededs(needed->next, list);
1986 
1987     /* Process the current needed object. */
1988     if (needed->obj != NULL)
1989 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1990 }
1991 
1992 /*
1993  * Scan all of the DAGs rooted in the range of objects from "obj" to
1994  * "tail" and add their init functions to "list".  This recurses over
1995  * the DAGs and ensure the proper init ordering such that each object's
1996  * needed libraries are initialized before the object itself.  At the
1997  * same time, this function adds the objects to the global finalization
1998  * list "list_fini" in the opposite order.  The write lock must be
1999  * held when this function is called.
2000  */
2001 static void
2002 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
2003 {
2004 
2005     if (obj->init_scanned || obj->init_done)
2006 	return;
2007     obj->init_scanned = true;
2008 
2009     /* Recursively process the successor objects. */
2010     if (&obj->next != tail)
2011 	initlist_add_objects(obj->next, tail, list);
2012 
2013     /* Recursively process the needed objects. */
2014     if (obj->needed != NULL)
2015 	initlist_add_neededs(obj->needed, list);
2016     if (obj->needed_filtees != NULL)
2017 	initlist_add_neededs(obj->needed_filtees, list);
2018     if (obj->needed_aux_filtees != NULL)
2019 	initlist_add_neededs(obj->needed_aux_filtees, list);
2020 
2021     /* Add the object to the init list. */
2022     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2023       obj->init_array != (Elf_Addr)NULL)
2024 	objlist_push_tail(list, obj);
2025 
2026     /* Add the object to the global fini list in the reverse order. */
2027     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2028       && !obj->on_fini_list) {
2029 	objlist_push_head(&list_fini, obj);
2030 	obj->on_fini_list = true;
2031     }
2032 }
2033 
2034 #ifndef FPTR_TARGET
2035 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2036 #endif
2037 
2038 static void
2039 free_needed_filtees(Needed_Entry *n)
2040 {
2041     Needed_Entry *needed, *needed1;
2042 
2043     for (needed = n; needed != NULL; needed = needed->next) {
2044 	if (needed->obj != NULL) {
2045 	    dlclose(needed->obj);
2046 	    needed->obj = NULL;
2047 	}
2048     }
2049     for (needed = n; needed != NULL; needed = needed1) {
2050 	needed1 = needed->next;
2051 	free(needed);
2052     }
2053 }
2054 
2055 static void
2056 unload_filtees(Obj_Entry *obj)
2057 {
2058 
2059     free_needed_filtees(obj->needed_filtees);
2060     obj->needed_filtees = NULL;
2061     free_needed_filtees(obj->needed_aux_filtees);
2062     obj->needed_aux_filtees = NULL;
2063     obj->filtees_loaded = false;
2064 }
2065 
2066 static void
2067 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2068     RtldLockState *lockstate)
2069 {
2070 
2071     for (; needed != NULL; needed = needed->next) {
2072 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2073 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2074 	  RTLD_LOCAL, lockstate);
2075     }
2076 }
2077 
2078 static void
2079 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2080 {
2081 
2082     lock_restart_for_upgrade(lockstate);
2083     if (!obj->filtees_loaded) {
2084 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2085 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2086 	obj->filtees_loaded = true;
2087     }
2088 }
2089 
2090 static int
2091 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2092 {
2093     Obj_Entry *obj1;
2094 
2095     for (; needed != NULL; needed = needed->next) {
2096 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2097 	  flags & ~RTLD_LO_NOLOAD);
2098 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2099 	    return (-1);
2100     }
2101     return (0);
2102 }
2103 
2104 /*
2105  * Given a shared object, traverse its list of needed objects, and load
2106  * each of them.  Returns 0 on success.  Generates an error message and
2107  * returns -1 on failure.
2108  */
2109 static int
2110 load_needed_objects(Obj_Entry *first, int flags)
2111 {
2112     Obj_Entry *obj;
2113 
2114     for (obj = first;  obj != NULL;  obj = obj->next) {
2115 	if (process_needed(obj, obj->needed, flags) == -1)
2116 	    return (-1);
2117     }
2118     return (0);
2119 }
2120 
2121 static int
2122 load_preload_objects(void)
2123 {
2124     char *p = ld_preload;
2125     Obj_Entry *obj;
2126     static const char delim[] = " \t:;";
2127 
2128     if (p == NULL)
2129 	return 0;
2130 
2131     p += strspn(p, delim);
2132     while (*p != '\0') {
2133 	size_t len = strcspn(p, delim);
2134 	char savech;
2135 
2136 	savech = p[len];
2137 	p[len] = '\0';
2138 	obj = load_object(p, -1, NULL, 0);
2139 	if (obj == NULL)
2140 	    return -1;	/* XXX - cleanup */
2141 	obj->z_interpose = true;
2142 	p[len] = savech;
2143 	p += len;
2144 	p += strspn(p, delim);
2145     }
2146     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2147     return 0;
2148 }
2149 
2150 static const char *
2151 printable_path(const char *path)
2152 {
2153 
2154 	return (path == NULL ? "<unknown>" : path);
2155 }
2156 
2157 /*
2158  * Load a shared object into memory, if it is not already loaded.  The
2159  * object may be specified by name or by user-supplied file descriptor
2160  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2161  * duplicate is.
2162  *
2163  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2164  * on failure.
2165  */
2166 static Obj_Entry *
2167 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2168 {
2169     Obj_Entry *obj;
2170     int fd;
2171     struct stat sb;
2172     char *path;
2173 
2174     fd = -1;
2175     if (name != NULL) {
2176 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2177 	    if (object_match_name(obj, name))
2178 		return (obj);
2179 	}
2180 
2181 	path = find_library(name, refobj, &fd);
2182 	if (path == NULL)
2183 	    return (NULL);
2184     } else
2185 	path = NULL;
2186 
2187     if (fd >= 0) {
2188 	/*
2189 	 * search_library_pathfds() opens a fresh file descriptor for the
2190 	 * library, so there is no need to dup().
2191 	 */
2192     } else if (fd_u == -1) {
2193 	/*
2194 	 * If we didn't find a match by pathname, or the name is not
2195 	 * supplied, open the file and check again by device and inode.
2196 	 * This avoids false mismatches caused by multiple links or ".."
2197 	 * in pathnames.
2198 	 *
2199 	 * To avoid a race, we open the file and use fstat() rather than
2200 	 * using stat().
2201 	 */
2202 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2203 	    _rtld_error("Cannot open \"%s\"", path);
2204 	    free(path);
2205 	    return (NULL);
2206 	}
2207     } else {
2208 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2209 	if (fd == -1) {
2210 	    _rtld_error("Cannot dup fd");
2211 	    free(path);
2212 	    return (NULL);
2213 	}
2214     }
2215     if (fstat(fd, &sb) == -1) {
2216 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2217 	close(fd);
2218 	free(path);
2219 	return NULL;
2220     }
2221     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2222 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2223 	    break;
2224     if (obj != NULL && name != NULL) {
2225 	object_add_name(obj, name);
2226 	free(path);
2227 	close(fd);
2228 	return obj;
2229     }
2230     if (flags & RTLD_LO_NOLOAD) {
2231 	free(path);
2232 	close(fd);
2233 	return (NULL);
2234     }
2235 
2236     /* First use of this object, so we must map it in */
2237     obj = do_load_object(fd, name, path, &sb, flags);
2238     if (obj == NULL)
2239 	free(path);
2240     close(fd);
2241 
2242     return obj;
2243 }
2244 
2245 static Obj_Entry *
2246 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2247   int flags)
2248 {
2249     Obj_Entry *obj;
2250     struct statfs fs;
2251 
2252     /*
2253      * but first, make sure that environment variables haven't been
2254      * used to circumvent the noexec flag on a filesystem.
2255      */
2256     if (dangerous_ld_env) {
2257 	if (fstatfs(fd, &fs) != 0) {
2258 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2259 	    return NULL;
2260 	}
2261 	if (fs.f_flags & MNT_NOEXEC) {
2262 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2263 	    return NULL;
2264 	}
2265     }
2266     dbg("loading \"%s\"", printable_path(path));
2267     obj = map_object(fd, printable_path(path), sbp);
2268     if (obj == NULL)
2269         return NULL;
2270 
2271     /*
2272      * If DT_SONAME is present in the object, digest_dynamic2 already
2273      * added it to the object names.
2274      */
2275     if (name != NULL)
2276 	object_add_name(obj, name);
2277     obj->path = path;
2278     digest_dynamic(obj, 0);
2279     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2280 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2281     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2282       RTLD_LO_DLOPEN) {
2283 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2284 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2285 	munmap(obj->mapbase, obj->mapsize);
2286 	obj_free(obj);
2287 	return (NULL);
2288     }
2289 
2290     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2291     *obj_tail = obj;
2292     obj_tail = &obj->next;
2293     obj_count++;
2294     obj_loads++;
2295     linkmap_add(obj);	/* for GDB & dlinfo() */
2296     max_stack_flags |= obj->stack_flags;
2297 
2298     dbg("  %p .. %p: %s", obj->mapbase,
2299          obj->mapbase + obj->mapsize - 1, obj->path);
2300     if (obj->textrel)
2301 	dbg("  WARNING: %s has impure text", obj->path);
2302     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2303 	obj->path);
2304 
2305     return obj;
2306 }
2307 
2308 static Obj_Entry *
2309 obj_from_addr(const void *addr)
2310 {
2311     Obj_Entry *obj;
2312 
2313     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2314 	if (addr < (void *) obj->mapbase)
2315 	    continue;
2316 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2317 	    return obj;
2318     }
2319     return NULL;
2320 }
2321 
2322 static void
2323 preinit_main(void)
2324 {
2325     Elf_Addr *preinit_addr;
2326     int index;
2327 
2328     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2329     if (preinit_addr == NULL)
2330 	return;
2331 
2332     for (index = 0; index < obj_main->preinit_array_num; index++) {
2333 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2334 	    dbg("calling preinit function for %s at %p", obj_main->path,
2335 	      (void *)preinit_addr[index]);
2336 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2337 	      0, 0, obj_main->path);
2338 	    call_init_pointer(obj_main, preinit_addr[index]);
2339 	}
2340     }
2341 }
2342 
2343 /*
2344  * Call the finalization functions for each of the objects in "list"
2345  * belonging to the DAG of "root" and referenced once. If NULL "root"
2346  * is specified, every finalization function will be called regardless
2347  * of the reference count and the list elements won't be freed. All of
2348  * the objects are expected to have non-NULL fini functions.
2349  */
2350 static void
2351 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2352 {
2353     Objlist_Entry *elm;
2354     char *saved_msg;
2355     Elf_Addr *fini_addr;
2356     int index;
2357 
2358     assert(root == NULL || root->refcount == 1);
2359 
2360     /*
2361      * Preserve the current error message since a fini function might
2362      * call into the dynamic linker and overwrite it.
2363      */
2364     saved_msg = errmsg_save();
2365     do {
2366 	STAILQ_FOREACH(elm, list, link) {
2367 	    if (root != NULL && (elm->obj->refcount != 1 ||
2368 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2369 		continue;
2370 	    /* Remove object from fini list to prevent recursive invocation. */
2371 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2372 	    /*
2373 	     * XXX: If a dlopen() call references an object while the
2374 	     * fini function is in progress, we might end up trying to
2375 	     * unload the referenced object in dlclose() or the object
2376 	     * won't be unloaded although its fini function has been
2377 	     * called.
2378 	     */
2379 	    lock_release(rtld_bind_lock, lockstate);
2380 
2381 	    /*
2382 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2383 	     * When this happens, DT_FINI_ARRAY is processed first.
2384 	     */
2385 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2386 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2387 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2388 		  index--) {
2389 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2390 			dbg("calling fini function for %s at %p",
2391 			    elm->obj->path, (void *)fini_addr[index]);
2392 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2393 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2394 			call_initfini_pointer(elm->obj, fini_addr[index]);
2395 		    }
2396 		}
2397 	    }
2398 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2399 		dbg("calling fini function for %s at %p", elm->obj->path,
2400 		    (void *)elm->obj->fini);
2401 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2402 		    0, 0, elm->obj->path);
2403 		call_initfini_pointer(elm->obj, elm->obj->fini);
2404 	    }
2405 	    wlock_acquire(rtld_bind_lock, lockstate);
2406 	    /* No need to free anything if process is going down. */
2407 	    if (root != NULL)
2408 	    	free(elm);
2409 	    /*
2410 	     * We must restart the list traversal after every fini call
2411 	     * because a dlclose() call from the fini function or from
2412 	     * another thread might have modified the reference counts.
2413 	     */
2414 	    break;
2415 	}
2416     } while (elm != NULL);
2417     errmsg_restore(saved_msg);
2418 }
2419 
2420 /*
2421  * Call the initialization functions for each of the objects in
2422  * "list".  All of the objects are expected to have non-NULL init
2423  * functions.
2424  */
2425 static void
2426 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2427 {
2428     Objlist_Entry *elm;
2429     Obj_Entry *obj;
2430     char *saved_msg;
2431     Elf_Addr *init_addr;
2432     int index;
2433 
2434     /*
2435      * Clean init_scanned flag so that objects can be rechecked and
2436      * possibly initialized earlier if any of vectors called below
2437      * cause the change by using dlopen.
2438      */
2439     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2440 	obj->init_scanned = false;
2441 
2442     /*
2443      * Preserve the current error message since an init function might
2444      * call into the dynamic linker and overwrite it.
2445      */
2446     saved_msg = errmsg_save();
2447     STAILQ_FOREACH(elm, list, link) {
2448 	if (elm->obj->init_done) /* Initialized early. */
2449 	    continue;
2450 	/*
2451 	 * Race: other thread might try to use this object before current
2452 	 * one completes the initilization. Not much can be done here
2453 	 * without better locking.
2454 	 */
2455 	elm->obj->init_done = true;
2456 	lock_release(rtld_bind_lock, lockstate);
2457 
2458         /*
2459          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2460          * When this happens, DT_INIT is processed first.
2461          */
2462 	if (elm->obj->init != (Elf_Addr)NULL) {
2463 	    dbg("calling init function for %s at %p", elm->obj->path,
2464 	        (void *)elm->obj->init);
2465 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2466 	        0, 0, elm->obj->path);
2467 	    call_initfini_pointer(elm->obj, elm->obj->init);
2468 	}
2469 	init_addr = (Elf_Addr *)elm->obj->init_array;
2470 	if (init_addr != NULL) {
2471 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2472 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2473 		    dbg("calling init function for %s at %p", elm->obj->path,
2474 			(void *)init_addr[index]);
2475 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2476 			(void *)init_addr[index], 0, 0, elm->obj->path);
2477 		    call_init_pointer(elm->obj, init_addr[index]);
2478 		}
2479 	    }
2480 	}
2481 	wlock_acquire(rtld_bind_lock, lockstate);
2482     }
2483     errmsg_restore(saved_msg);
2484 }
2485 
2486 static void
2487 objlist_clear(Objlist *list)
2488 {
2489     Objlist_Entry *elm;
2490 
2491     while (!STAILQ_EMPTY(list)) {
2492 	elm = STAILQ_FIRST(list);
2493 	STAILQ_REMOVE_HEAD(list, link);
2494 	free(elm);
2495     }
2496 }
2497 
2498 static Objlist_Entry *
2499 objlist_find(Objlist *list, const Obj_Entry *obj)
2500 {
2501     Objlist_Entry *elm;
2502 
2503     STAILQ_FOREACH(elm, list, link)
2504 	if (elm->obj == obj)
2505 	    return elm;
2506     return NULL;
2507 }
2508 
2509 static void
2510 objlist_init(Objlist *list)
2511 {
2512     STAILQ_INIT(list);
2513 }
2514 
2515 static void
2516 objlist_push_head(Objlist *list, Obj_Entry *obj)
2517 {
2518     Objlist_Entry *elm;
2519 
2520     elm = NEW(Objlist_Entry);
2521     elm->obj = obj;
2522     STAILQ_INSERT_HEAD(list, elm, link);
2523 }
2524 
2525 static void
2526 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2527 {
2528     Objlist_Entry *elm;
2529 
2530     elm = NEW(Objlist_Entry);
2531     elm->obj = obj;
2532     STAILQ_INSERT_TAIL(list, elm, link);
2533 }
2534 
2535 static void
2536 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2537 {
2538 	Objlist_Entry *elm, *listelm;
2539 
2540 	STAILQ_FOREACH(listelm, list, link) {
2541 		if (listelm->obj == listobj)
2542 			break;
2543 	}
2544 	elm = NEW(Objlist_Entry);
2545 	elm->obj = obj;
2546 	if (listelm != NULL)
2547 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2548 	else
2549 		STAILQ_INSERT_TAIL(list, elm, link);
2550 }
2551 
2552 static void
2553 objlist_remove(Objlist *list, Obj_Entry *obj)
2554 {
2555     Objlist_Entry *elm;
2556 
2557     if ((elm = objlist_find(list, obj)) != NULL) {
2558 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2559 	free(elm);
2560     }
2561 }
2562 
2563 /*
2564  * Relocate dag rooted in the specified object.
2565  * Returns 0 on success, or -1 on failure.
2566  */
2567 
2568 static int
2569 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2570     int flags, RtldLockState *lockstate)
2571 {
2572 	Objlist_Entry *elm;
2573 	int error;
2574 
2575 	error = 0;
2576 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2577 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2578 		    lockstate);
2579 		if (error == -1)
2580 			break;
2581 	}
2582 	return (error);
2583 }
2584 
2585 /*
2586  * Relocate single object.
2587  * Returns 0 on success, or -1 on failure.
2588  */
2589 static int
2590 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2591     int flags, RtldLockState *lockstate)
2592 {
2593 
2594 	if (obj->relocated)
2595 		return (0);
2596 	obj->relocated = true;
2597 	if (obj != rtldobj)
2598 		dbg("relocating \"%s\"", obj->path);
2599 
2600 	if (obj->symtab == NULL || obj->strtab == NULL ||
2601 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2602 		_rtld_error("%s: Shared object has no run-time symbol table",
2603 			    obj->path);
2604 		return (-1);
2605 	}
2606 
2607 	if (obj->textrel) {
2608 		/* There are relocations to the write-protected text segment. */
2609 		if (mprotect(obj->mapbase, obj->textsize,
2610 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2611 			_rtld_error("%s: Cannot write-enable text segment: %s",
2612 			    obj->path, rtld_strerror(errno));
2613 			return (-1);
2614 		}
2615 	}
2616 
2617 	/* Process the non-PLT non-IFUNC relocations. */
2618 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2619 		return (-1);
2620 
2621 	if (obj->textrel) {	/* Re-protected the text segment. */
2622 		if (mprotect(obj->mapbase, obj->textsize,
2623 		    PROT_READ|PROT_EXEC) == -1) {
2624 			_rtld_error("%s: Cannot write-protect text segment: %s",
2625 			    obj->path, rtld_strerror(errno));
2626 			return (-1);
2627 		}
2628 	}
2629 
2630 	/* Set the special PLT or GOT entries. */
2631 	init_pltgot(obj);
2632 
2633 	/* Process the PLT relocations. */
2634 	if (reloc_plt(obj) == -1)
2635 		return (-1);
2636 	/* Relocate the jump slots if we are doing immediate binding. */
2637 	if (obj->bind_now || bind_now)
2638 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2639 			return (-1);
2640 
2641 	/*
2642 	 * Process the non-PLT IFUNC relocations.  The relocations are
2643 	 * processed in two phases, because IFUNC resolvers may
2644 	 * reference other symbols, which must be readily processed
2645 	 * before resolvers are called.
2646 	 */
2647 	if (obj->non_plt_gnu_ifunc &&
2648 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2649 		return (-1);
2650 
2651 	if (obj->relro_size > 0) {
2652 		if (mprotect(obj->relro_page, obj->relro_size,
2653 		    PROT_READ) == -1) {
2654 			_rtld_error("%s: Cannot enforce relro protection: %s",
2655 			    obj->path, rtld_strerror(errno));
2656 			return (-1);
2657 		}
2658 	}
2659 
2660 	/*
2661 	 * Set up the magic number and version in the Obj_Entry.  These
2662 	 * were checked in the crt1.o from the original ElfKit, so we
2663 	 * set them for backward compatibility.
2664 	 */
2665 	obj->magic = RTLD_MAGIC;
2666 	obj->version = RTLD_VERSION;
2667 
2668 	return (0);
2669 }
2670 
2671 /*
2672  * Relocate newly-loaded shared objects.  The argument is a pointer to
2673  * the Obj_Entry for the first such object.  All objects from the first
2674  * to the end of the list of objects are relocated.  Returns 0 on success,
2675  * or -1 on failure.
2676  */
2677 static int
2678 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2679     int flags, RtldLockState *lockstate)
2680 {
2681 	Obj_Entry *obj;
2682 	int error;
2683 
2684 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2685 		error = relocate_object(obj, bind_now, rtldobj, flags,
2686 		    lockstate);
2687 		if (error == -1)
2688 			break;
2689 	}
2690 	return (error);
2691 }
2692 
2693 /*
2694  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2695  * referencing STT_GNU_IFUNC symbols is postponed till the other
2696  * relocations are done.  The indirect functions specified as
2697  * ifunc are allowed to call other symbols, so we need to have
2698  * objects relocated before asking for resolution from indirects.
2699  *
2700  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2701  * instead of the usual lazy handling of PLT slots.  It is
2702  * consistent with how GNU does it.
2703  */
2704 static int
2705 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2706     RtldLockState *lockstate)
2707 {
2708 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2709 		return (-1);
2710 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2711 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2712 		return (-1);
2713 	return (0);
2714 }
2715 
2716 static int
2717 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2718     RtldLockState *lockstate)
2719 {
2720 	Obj_Entry *obj;
2721 
2722 	for (obj = first;  obj != NULL;  obj = obj->next) {
2723 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2724 			return (-1);
2725 	}
2726 	return (0);
2727 }
2728 
2729 static int
2730 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2731     RtldLockState *lockstate)
2732 {
2733 	Objlist_Entry *elm;
2734 
2735 	STAILQ_FOREACH(elm, list, link) {
2736 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2737 		    lockstate) == -1)
2738 			return (-1);
2739 	}
2740 	return (0);
2741 }
2742 
2743 /*
2744  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2745  * before the process exits.
2746  */
2747 static void
2748 rtld_exit(void)
2749 {
2750     RtldLockState lockstate;
2751 
2752     wlock_acquire(rtld_bind_lock, &lockstate);
2753     dbg("rtld_exit()");
2754     objlist_call_fini(&list_fini, NULL, &lockstate);
2755     /* No need to remove the items from the list, since we are exiting. */
2756     if (!libmap_disable)
2757         lm_fini();
2758     lock_release(rtld_bind_lock, &lockstate);
2759 }
2760 
2761 /*
2762  * Iterate over a search path, translate each element, and invoke the
2763  * callback on the result.
2764  */
2765 static void *
2766 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2767 {
2768     const char *trans;
2769     if (path == NULL)
2770 	return (NULL);
2771 
2772     path += strspn(path, ":;");
2773     while (*path != '\0') {
2774 	size_t len;
2775 	char  *res;
2776 
2777 	len = strcspn(path, ":;");
2778 	trans = lm_findn(NULL, path, len);
2779 	if (trans)
2780 	    res = callback(trans, strlen(trans), arg);
2781 	else
2782 	    res = callback(path, len, arg);
2783 
2784 	if (res != NULL)
2785 	    return (res);
2786 
2787 	path += len;
2788 	path += strspn(path, ":;");
2789     }
2790 
2791     return (NULL);
2792 }
2793 
2794 struct try_library_args {
2795     const char	*name;
2796     size_t	 namelen;
2797     char	*buffer;
2798     size_t	 buflen;
2799 };
2800 
2801 static void *
2802 try_library_path(const char *dir, size_t dirlen, void *param)
2803 {
2804     struct try_library_args *arg;
2805 
2806     arg = param;
2807     if (*dir == '/' || trust) {
2808 	char *pathname;
2809 
2810 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2811 		return (NULL);
2812 
2813 	pathname = arg->buffer;
2814 	strncpy(pathname, dir, dirlen);
2815 	pathname[dirlen] = '/';
2816 	strcpy(pathname + dirlen + 1, arg->name);
2817 
2818 	dbg("  Trying \"%s\"", pathname);
2819 	if (access(pathname, F_OK) == 0) {		/* We found it */
2820 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2821 	    strcpy(pathname, arg->buffer);
2822 	    return (pathname);
2823 	}
2824     }
2825     return (NULL);
2826 }
2827 
2828 static char *
2829 search_library_path(const char *name, const char *path)
2830 {
2831     char *p;
2832     struct try_library_args arg;
2833 
2834     if (path == NULL)
2835 	return NULL;
2836 
2837     arg.name = name;
2838     arg.namelen = strlen(name);
2839     arg.buffer = xmalloc(PATH_MAX);
2840     arg.buflen = PATH_MAX;
2841 
2842     p = path_enumerate(path, try_library_path, &arg);
2843 
2844     free(arg.buffer);
2845 
2846     return (p);
2847 }
2848 
2849 
2850 /*
2851  * Finds the library with the given name using the directory descriptors
2852  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2853  *
2854  * Returns a freshly-opened close-on-exec file descriptor for the library,
2855  * or -1 if the library cannot be found.
2856  */
2857 static char *
2858 search_library_pathfds(const char *name, const char *path, int *fdp)
2859 {
2860 	char *envcopy, *fdstr, *found, *last_token;
2861 	size_t len;
2862 	int dirfd, fd;
2863 
2864 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2865 
2866 	/* Don't load from user-specified libdirs into setuid binaries. */
2867 	if (!trust)
2868 		return (NULL);
2869 
2870 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2871 	if (path == NULL)
2872 		return (NULL);
2873 
2874 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2875 	if (name[0] == '/') {
2876 		dbg("Absolute path (%s) passed to %s", name, __func__);
2877 		return (NULL);
2878 	}
2879 
2880 	/*
2881 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2882 	 * copy of the path, as strtok_r rewrites separator tokens
2883 	 * with '\0'.
2884 	 */
2885 	found = NULL;
2886 	envcopy = xstrdup(path);
2887 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2888 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2889 		dirfd = parse_libdir(fdstr);
2890 		if (dirfd < 0)
2891 			break;
2892 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2893 		if (fd >= 0) {
2894 			*fdp = fd;
2895 			len = strlen(fdstr) + strlen(name) + 3;
2896 			found = xmalloc(len);
2897 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2898 				_rtld_error("error generating '%d/%s'",
2899 				    dirfd, name);
2900 				rtld_die();
2901 			}
2902 			dbg("open('%s') => %d", found, fd);
2903 			break;
2904 		}
2905 	}
2906 	free(envcopy);
2907 
2908 	return (found);
2909 }
2910 
2911 
2912 int
2913 dlclose(void *handle)
2914 {
2915     Obj_Entry *root;
2916     RtldLockState lockstate;
2917 
2918     wlock_acquire(rtld_bind_lock, &lockstate);
2919     root = dlcheck(handle);
2920     if (root == NULL) {
2921 	lock_release(rtld_bind_lock, &lockstate);
2922 	return -1;
2923     }
2924     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2925 	root->path);
2926 
2927     /* Unreference the object and its dependencies. */
2928     root->dl_refcount--;
2929 
2930     if (root->refcount == 1) {
2931 	/*
2932 	 * The object will be no longer referenced, so we must unload it.
2933 	 * First, call the fini functions.
2934 	 */
2935 	objlist_call_fini(&list_fini, root, &lockstate);
2936 
2937 	unref_dag(root);
2938 
2939 	/* Finish cleaning up the newly-unreferenced objects. */
2940 	GDB_STATE(RT_DELETE,&root->linkmap);
2941 	unload_object(root);
2942 	GDB_STATE(RT_CONSISTENT,NULL);
2943     } else
2944 	unref_dag(root);
2945 
2946     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2947     lock_release(rtld_bind_lock, &lockstate);
2948     return 0;
2949 }
2950 
2951 char *
2952 dlerror(void)
2953 {
2954     char *msg = error_message;
2955     error_message = NULL;
2956     return msg;
2957 }
2958 
2959 /*
2960  * This function is deprecated and has no effect.
2961  */
2962 void
2963 dllockinit(void *context,
2964 	   void *(*lock_create)(void *context),
2965            void (*rlock_acquire)(void *lock),
2966            void (*wlock_acquire)(void *lock),
2967            void (*lock_release)(void *lock),
2968            void (*lock_destroy)(void *lock),
2969 	   void (*context_destroy)(void *context))
2970 {
2971     static void *cur_context;
2972     static void (*cur_context_destroy)(void *);
2973 
2974     /* Just destroy the context from the previous call, if necessary. */
2975     if (cur_context_destroy != NULL)
2976 	cur_context_destroy(cur_context);
2977     cur_context = context;
2978     cur_context_destroy = context_destroy;
2979 }
2980 
2981 void *
2982 dlopen(const char *name, int mode)
2983 {
2984 
2985 	return (rtld_dlopen(name, -1, mode));
2986 }
2987 
2988 void *
2989 fdlopen(int fd, int mode)
2990 {
2991 
2992 	return (rtld_dlopen(NULL, fd, mode));
2993 }
2994 
2995 static void *
2996 rtld_dlopen(const char *name, int fd, int mode)
2997 {
2998     RtldLockState lockstate;
2999     int lo_flags;
3000 
3001     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3002     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3003     if (ld_tracing != NULL) {
3004 	rlock_acquire(rtld_bind_lock, &lockstate);
3005 	if (sigsetjmp(lockstate.env, 0) != 0)
3006 	    lock_upgrade(rtld_bind_lock, &lockstate);
3007 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3008 	lock_release(rtld_bind_lock, &lockstate);
3009     }
3010     lo_flags = RTLD_LO_DLOPEN;
3011     if (mode & RTLD_NODELETE)
3012 	    lo_flags |= RTLD_LO_NODELETE;
3013     if (mode & RTLD_NOLOAD)
3014 	    lo_flags |= RTLD_LO_NOLOAD;
3015     if (ld_tracing != NULL)
3016 	    lo_flags |= RTLD_LO_TRACE;
3017 
3018     return (dlopen_object(name, fd, obj_main, lo_flags,
3019       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3020 }
3021 
3022 static void
3023 dlopen_cleanup(Obj_Entry *obj)
3024 {
3025 
3026 	obj->dl_refcount--;
3027 	unref_dag(obj);
3028 	if (obj->refcount == 0)
3029 		unload_object(obj);
3030 }
3031 
3032 static Obj_Entry *
3033 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3034     int mode, RtldLockState *lockstate)
3035 {
3036     Obj_Entry **old_obj_tail;
3037     Obj_Entry *obj;
3038     Objlist initlist;
3039     RtldLockState mlockstate;
3040     int result;
3041 
3042     objlist_init(&initlist);
3043 
3044     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3045 	wlock_acquire(rtld_bind_lock, &mlockstate);
3046 	lockstate = &mlockstate;
3047     }
3048     GDB_STATE(RT_ADD,NULL);
3049 
3050     old_obj_tail = obj_tail;
3051     obj = NULL;
3052     if (name == NULL && fd == -1) {
3053 	obj = obj_main;
3054 	obj->refcount++;
3055     } else {
3056 	obj = load_object(name, fd, refobj, lo_flags);
3057     }
3058 
3059     if (obj) {
3060 	obj->dl_refcount++;
3061 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3062 	    objlist_push_tail(&list_global, obj);
3063 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3064 	    assert(*old_obj_tail == obj);
3065 	    result = load_needed_objects(obj,
3066 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3067 	    init_dag(obj);
3068 	    ref_dag(obj);
3069 	    if (result != -1)
3070 		result = rtld_verify_versions(&obj->dagmembers);
3071 	    if (result != -1 && ld_tracing)
3072 		goto trace;
3073 	    if (result == -1 || relocate_object_dag(obj,
3074 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3075 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3076 	      lockstate) == -1) {
3077 		dlopen_cleanup(obj);
3078 		obj = NULL;
3079 	    } else if (lo_flags & RTLD_LO_EARLY) {
3080 		/*
3081 		 * Do not call the init functions for early loaded
3082 		 * filtees.  The image is still not initialized enough
3083 		 * for them to work.
3084 		 *
3085 		 * Our object is found by the global object list and
3086 		 * will be ordered among all init calls done right
3087 		 * before transferring control to main.
3088 		 */
3089 	    } else {
3090 		/* Make list of init functions to call. */
3091 		initlist_add_objects(obj, &obj->next, &initlist);
3092 	    }
3093 	    /*
3094 	     * Process all no_delete or global objects here, given
3095 	     * them own DAGs to prevent their dependencies from being
3096 	     * unloaded.  This has to be done after we have loaded all
3097 	     * of the dependencies, so that we do not miss any.
3098 	     */
3099 	    if (obj != NULL)
3100 		process_z(obj);
3101 	} else {
3102 	    /*
3103 	     * Bump the reference counts for objects on this DAG.  If
3104 	     * this is the first dlopen() call for the object that was
3105 	     * already loaded as a dependency, initialize the dag
3106 	     * starting at it.
3107 	     */
3108 	    init_dag(obj);
3109 	    ref_dag(obj);
3110 
3111 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3112 		goto trace;
3113 	}
3114 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3115 	  obj->z_nodelete) && !obj->ref_nodel) {
3116 	    dbg("obj %s nodelete", obj->path);
3117 	    ref_dag(obj);
3118 	    obj->z_nodelete = obj->ref_nodel = true;
3119 	}
3120     }
3121 
3122     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3123 	name);
3124     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3125 
3126     if (!(lo_flags & RTLD_LO_EARLY)) {
3127 	map_stacks_exec(lockstate);
3128     }
3129 
3130     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3131       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3132       lockstate) == -1) {
3133 	objlist_clear(&initlist);
3134 	dlopen_cleanup(obj);
3135 	if (lockstate == &mlockstate)
3136 	    lock_release(rtld_bind_lock, lockstate);
3137 	return (NULL);
3138     }
3139 
3140     if (!(lo_flags & RTLD_LO_EARLY)) {
3141 	/* Call the init functions. */
3142 	objlist_call_init(&initlist, lockstate);
3143     }
3144     objlist_clear(&initlist);
3145     if (lockstate == &mlockstate)
3146 	lock_release(rtld_bind_lock, lockstate);
3147     return obj;
3148 trace:
3149     trace_loaded_objects(obj);
3150     if (lockstate == &mlockstate)
3151 	lock_release(rtld_bind_lock, lockstate);
3152     exit(0);
3153 }
3154 
3155 static void *
3156 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3157     int flags)
3158 {
3159     DoneList donelist;
3160     const Obj_Entry *obj, *defobj;
3161     const Elf_Sym *def;
3162     SymLook req;
3163     RtldLockState lockstate;
3164     tls_index ti;
3165     void *sym;
3166     int res;
3167 
3168     def = NULL;
3169     defobj = NULL;
3170     symlook_init(&req, name);
3171     req.ventry = ve;
3172     req.flags = flags | SYMLOOK_IN_PLT;
3173     req.lockstate = &lockstate;
3174 
3175     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3176     rlock_acquire(rtld_bind_lock, &lockstate);
3177     if (sigsetjmp(lockstate.env, 0) != 0)
3178 	    lock_upgrade(rtld_bind_lock, &lockstate);
3179     if (handle == NULL || handle == RTLD_NEXT ||
3180 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3181 
3182 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3183 	    _rtld_error("Cannot determine caller's shared object");
3184 	    lock_release(rtld_bind_lock, &lockstate);
3185 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3186 	    return NULL;
3187 	}
3188 	if (handle == NULL) {	/* Just the caller's shared object. */
3189 	    res = symlook_obj(&req, obj);
3190 	    if (res == 0) {
3191 		def = req.sym_out;
3192 		defobj = req.defobj_out;
3193 	    }
3194 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3195 		   handle == RTLD_SELF) { /* ... caller included */
3196 	    if (handle == RTLD_NEXT)
3197 		obj = obj->next;
3198 	    for (; obj != NULL; obj = obj->next) {
3199 		res = symlook_obj(&req, obj);
3200 		if (res == 0) {
3201 		    if (def == NULL ||
3202 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3203 			def = req.sym_out;
3204 			defobj = req.defobj_out;
3205 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3206 			    break;
3207 		    }
3208 		}
3209 	    }
3210 	    /*
3211 	     * Search the dynamic linker itself, and possibly resolve the
3212 	     * symbol from there.  This is how the application links to
3213 	     * dynamic linker services such as dlopen.
3214 	     */
3215 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3216 		res = symlook_obj(&req, &obj_rtld);
3217 		if (res == 0) {
3218 		    def = req.sym_out;
3219 		    defobj = req.defobj_out;
3220 		}
3221 	    }
3222 	} else {
3223 	    assert(handle == RTLD_DEFAULT);
3224 	    res = symlook_default(&req, obj);
3225 	    if (res == 0) {
3226 		defobj = req.defobj_out;
3227 		def = req.sym_out;
3228 	    }
3229 	}
3230     } else {
3231 	if ((obj = dlcheck(handle)) == NULL) {
3232 	    lock_release(rtld_bind_lock, &lockstate);
3233 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3234 	    return NULL;
3235 	}
3236 
3237 	donelist_init(&donelist);
3238 	if (obj->mainprog) {
3239             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3240 	    res = symlook_global(&req, &donelist);
3241 	    if (res == 0) {
3242 		def = req.sym_out;
3243 		defobj = req.defobj_out;
3244 	    }
3245 	    /*
3246 	     * Search the dynamic linker itself, and possibly resolve the
3247 	     * symbol from there.  This is how the application links to
3248 	     * dynamic linker services such as dlopen.
3249 	     */
3250 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3251 		res = symlook_obj(&req, &obj_rtld);
3252 		if (res == 0) {
3253 		    def = req.sym_out;
3254 		    defobj = req.defobj_out;
3255 		}
3256 	    }
3257 	}
3258 	else {
3259 	    /* Search the whole DAG rooted at the given object. */
3260 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3261 	    if (res == 0) {
3262 		def = req.sym_out;
3263 		defobj = req.defobj_out;
3264 	    }
3265 	}
3266     }
3267 
3268     if (def != NULL) {
3269 	lock_release(rtld_bind_lock, &lockstate);
3270 
3271 	/*
3272 	 * The value required by the caller is derived from the value
3273 	 * of the symbol. this is simply the relocated value of the
3274 	 * symbol.
3275 	 */
3276 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3277 	    sym = make_function_pointer(def, defobj);
3278 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3279 	    sym = rtld_resolve_ifunc(defobj, def);
3280 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3281 	    ti.ti_module = defobj->tlsindex;
3282 	    ti.ti_offset = def->st_value;
3283 	    sym = __tls_get_addr(&ti);
3284 	} else
3285 	    sym = defobj->relocbase + def->st_value;
3286 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3287 	return (sym);
3288     }
3289 
3290     _rtld_error("Undefined symbol \"%s\"", name);
3291     lock_release(rtld_bind_lock, &lockstate);
3292     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3293     return NULL;
3294 }
3295 
3296 void *
3297 dlsym(void *handle, const char *name)
3298 {
3299 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3300 	    SYMLOOK_DLSYM);
3301 }
3302 
3303 dlfunc_t
3304 dlfunc(void *handle, const char *name)
3305 {
3306 	union {
3307 		void *d;
3308 		dlfunc_t f;
3309 	} rv;
3310 
3311 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3312 	    SYMLOOK_DLSYM);
3313 	return (rv.f);
3314 }
3315 
3316 void *
3317 dlvsym(void *handle, const char *name, const char *version)
3318 {
3319 	Ver_Entry ventry;
3320 
3321 	ventry.name = version;
3322 	ventry.file = NULL;
3323 	ventry.hash = elf_hash(version);
3324 	ventry.flags= 0;
3325 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3326 	    SYMLOOK_DLSYM);
3327 }
3328 
3329 int
3330 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3331 {
3332     const Obj_Entry *obj;
3333     RtldLockState lockstate;
3334 
3335     rlock_acquire(rtld_bind_lock, &lockstate);
3336     obj = obj_from_addr(addr);
3337     if (obj == NULL) {
3338         _rtld_error("No shared object contains address");
3339 	lock_release(rtld_bind_lock, &lockstate);
3340         return (0);
3341     }
3342     rtld_fill_dl_phdr_info(obj, phdr_info);
3343     lock_release(rtld_bind_lock, &lockstate);
3344     return (1);
3345 }
3346 
3347 int
3348 dladdr(const void *addr, Dl_info *info)
3349 {
3350     const Obj_Entry *obj;
3351     const Elf_Sym *def;
3352     void *symbol_addr;
3353     unsigned long symoffset;
3354     RtldLockState lockstate;
3355 
3356     rlock_acquire(rtld_bind_lock, &lockstate);
3357     obj = obj_from_addr(addr);
3358     if (obj == NULL) {
3359         _rtld_error("No shared object contains address");
3360 	lock_release(rtld_bind_lock, &lockstate);
3361         return 0;
3362     }
3363     info->dli_fname = obj->path;
3364     info->dli_fbase = obj->mapbase;
3365     info->dli_saddr = (void *)0;
3366     info->dli_sname = NULL;
3367 
3368     /*
3369      * Walk the symbol list looking for the symbol whose address is
3370      * closest to the address sent in.
3371      */
3372     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3373         def = obj->symtab + symoffset;
3374 
3375         /*
3376          * For skip the symbol if st_shndx is either SHN_UNDEF or
3377          * SHN_COMMON.
3378          */
3379         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3380             continue;
3381 
3382         /*
3383          * If the symbol is greater than the specified address, or if it
3384          * is further away from addr than the current nearest symbol,
3385          * then reject it.
3386          */
3387         symbol_addr = obj->relocbase + def->st_value;
3388         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3389             continue;
3390 
3391         /* Update our idea of the nearest symbol. */
3392         info->dli_sname = obj->strtab + def->st_name;
3393         info->dli_saddr = symbol_addr;
3394 
3395         /* Exact match? */
3396         if (info->dli_saddr == addr)
3397             break;
3398     }
3399     lock_release(rtld_bind_lock, &lockstate);
3400     return 1;
3401 }
3402 
3403 int
3404 dlinfo(void *handle, int request, void *p)
3405 {
3406     const Obj_Entry *obj;
3407     RtldLockState lockstate;
3408     int error;
3409 
3410     rlock_acquire(rtld_bind_lock, &lockstate);
3411 
3412     if (handle == NULL || handle == RTLD_SELF) {
3413 	void *retaddr;
3414 
3415 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3416 	if ((obj = obj_from_addr(retaddr)) == NULL)
3417 	    _rtld_error("Cannot determine caller's shared object");
3418     } else
3419 	obj = dlcheck(handle);
3420 
3421     if (obj == NULL) {
3422 	lock_release(rtld_bind_lock, &lockstate);
3423 	return (-1);
3424     }
3425 
3426     error = 0;
3427     switch (request) {
3428     case RTLD_DI_LINKMAP:
3429 	*((struct link_map const **)p) = &obj->linkmap;
3430 	break;
3431     case RTLD_DI_ORIGIN:
3432 	error = rtld_dirname(obj->path, p);
3433 	break;
3434 
3435     case RTLD_DI_SERINFOSIZE:
3436     case RTLD_DI_SERINFO:
3437 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3438 	break;
3439 
3440     default:
3441 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3442 	error = -1;
3443     }
3444 
3445     lock_release(rtld_bind_lock, &lockstate);
3446 
3447     return (error);
3448 }
3449 
3450 static void
3451 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3452 {
3453 
3454 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3455 	phdr_info->dlpi_name = obj->path;
3456 	phdr_info->dlpi_phdr = obj->phdr;
3457 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3458 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3459 	phdr_info->dlpi_tls_data = obj->tlsinit;
3460 	phdr_info->dlpi_adds = obj_loads;
3461 	phdr_info->dlpi_subs = obj_loads - obj_count;
3462 }
3463 
3464 int
3465 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3466 {
3467     struct dl_phdr_info phdr_info;
3468     const Obj_Entry *obj;
3469     RtldLockState bind_lockstate, phdr_lockstate;
3470     int error;
3471 
3472     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3473     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3474 
3475     error = 0;
3476 
3477     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3478 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3479 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3480 		break;
3481 
3482     }
3483     if (error == 0) {
3484 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3485 	error = callback(&phdr_info, sizeof(phdr_info), param);
3486     }
3487 
3488     lock_release(rtld_bind_lock, &bind_lockstate);
3489     lock_release(rtld_phdr_lock, &phdr_lockstate);
3490 
3491     return (error);
3492 }
3493 
3494 static void *
3495 fill_search_info(const char *dir, size_t dirlen, void *param)
3496 {
3497     struct fill_search_info_args *arg;
3498 
3499     arg = param;
3500 
3501     if (arg->request == RTLD_DI_SERINFOSIZE) {
3502 	arg->serinfo->dls_cnt ++;
3503 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3504     } else {
3505 	struct dl_serpath *s_entry;
3506 
3507 	s_entry = arg->serpath;
3508 	s_entry->dls_name  = arg->strspace;
3509 	s_entry->dls_flags = arg->flags;
3510 
3511 	strncpy(arg->strspace, dir, dirlen);
3512 	arg->strspace[dirlen] = '\0';
3513 
3514 	arg->strspace += dirlen + 1;
3515 	arg->serpath++;
3516     }
3517 
3518     return (NULL);
3519 }
3520 
3521 static int
3522 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3523 {
3524     struct dl_serinfo _info;
3525     struct fill_search_info_args args;
3526 
3527     args.request = RTLD_DI_SERINFOSIZE;
3528     args.serinfo = &_info;
3529 
3530     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3531     _info.dls_cnt  = 0;
3532 
3533     path_enumerate(obj->rpath, fill_search_info, &args);
3534     path_enumerate(ld_library_path, fill_search_info, &args);
3535     path_enumerate(obj->runpath, fill_search_info, &args);
3536     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3537     if (!obj->z_nodeflib)
3538       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3539 
3540 
3541     if (request == RTLD_DI_SERINFOSIZE) {
3542 	info->dls_size = _info.dls_size;
3543 	info->dls_cnt = _info.dls_cnt;
3544 	return (0);
3545     }
3546 
3547     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3548 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3549 	return (-1);
3550     }
3551 
3552     args.request  = RTLD_DI_SERINFO;
3553     args.serinfo  = info;
3554     args.serpath  = &info->dls_serpath[0];
3555     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3556 
3557     args.flags = LA_SER_RUNPATH;
3558     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3559 	return (-1);
3560 
3561     args.flags = LA_SER_LIBPATH;
3562     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3563 	return (-1);
3564 
3565     args.flags = LA_SER_RUNPATH;
3566     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3567 	return (-1);
3568 
3569     args.flags = LA_SER_CONFIG;
3570     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3571       != NULL)
3572 	return (-1);
3573 
3574     args.flags = LA_SER_DEFAULT;
3575     if (!obj->z_nodeflib &&
3576       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3577 	return (-1);
3578     return (0);
3579 }
3580 
3581 static int
3582 rtld_dirname(const char *path, char *bname)
3583 {
3584     const char *endp;
3585 
3586     /* Empty or NULL string gets treated as "." */
3587     if (path == NULL || *path == '\0') {
3588 	bname[0] = '.';
3589 	bname[1] = '\0';
3590 	return (0);
3591     }
3592 
3593     /* Strip trailing slashes */
3594     endp = path + strlen(path) - 1;
3595     while (endp > path && *endp == '/')
3596 	endp--;
3597 
3598     /* Find the start of the dir */
3599     while (endp > path && *endp != '/')
3600 	endp--;
3601 
3602     /* Either the dir is "/" or there are no slashes */
3603     if (endp == path) {
3604 	bname[0] = *endp == '/' ? '/' : '.';
3605 	bname[1] = '\0';
3606 	return (0);
3607     } else {
3608 	do {
3609 	    endp--;
3610 	} while (endp > path && *endp == '/');
3611     }
3612 
3613     if (endp - path + 2 > PATH_MAX)
3614     {
3615 	_rtld_error("Filename is too long: %s", path);
3616 	return(-1);
3617     }
3618 
3619     strncpy(bname, path, endp - path + 1);
3620     bname[endp - path + 1] = '\0';
3621     return (0);
3622 }
3623 
3624 static int
3625 rtld_dirname_abs(const char *path, char *base)
3626 {
3627 	char *last;
3628 
3629 	if (realpath(path, base) == NULL)
3630 		return (-1);
3631 	dbg("%s -> %s", path, base);
3632 	last = strrchr(base, '/');
3633 	if (last == NULL)
3634 		return (-1);
3635 	if (last != base)
3636 		*last = '\0';
3637 	return (0);
3638 }
3639 
3640 static void
3641 linkmap_add(Obj_Entry *obj)
3642 {
3643     struct link_map *l = &obj->linkmap;
3644     struct link_map *prev;
3645 
3646     obj->linkmap.l_name = obj->path;
3647     obj->linkmap.l_addr = obj->mapbase;
3648     obj->linkmap.l_ld = obj->dynamic;
3649 #ifdef __mips__
3650     /* GDB needs load offset on MIPS to use the symbols */
3651     obj->linkmap.l_offs = obj->relocbase;
3652 #endif
3653 
3654     if (r_debug.r_map == NULL) {
3655 	r_debug.r_map = l;
3656 	return;
3657     }
3658 
3659     /*
3660      * Scan to the end of the list, but not past the entry for the
3661      * dynamic linker, which we want to keep at the very end.
3662      */
3663     for (prev = r_debug.r_map;
3664       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3665       prev = prev->l_next)
3666 	;
3667 
3668     /* Link in the new entry. */
3669     l->l_prev = prev;
3670     l->l_next = prev->l_next;
3671     if (l->l_next != NULL)
3672 	l->l_next->l_prev = l;
3673     prev->l_next = l;
3674 }
3675 
3676 static void
3677 linkmap_delete(Obj_Entry *obj)
3678 {
3679     struct link_map *l = &obj->linkmap;
3680 
3681     if (l->l_prev == NULL) {
3682 	if ((r_debug.r_map = l->l_next) != NULL)
3683 	    l->l_next->l_prev = NULL;
3684 	return;
3685     }
3686 
3687     if ((l->l_prev->l_next = l->l_next) != NULL)
3688 	l->l_next->l_prev = l->l_prev;
3689 }
3690 
3691 /*
3692  * Function for the debugger to set a breakpoint on to gain control.
3693  *
3694  * The two parameters allow the debugger to easily find and determine
3695  * what the runtime loader is doing and to whom it is doing it.
3696  *
3697  * When the loadhook trap is hit (r_debug_state, set at program
3698  * initialization), the arguments can be found on the stack:
3699  *
3700  *  +8   struct link_map *m
3701  *  +4   struct r_debug  *rd
3702  *  +0   RetAddr
3703  */
3704 void
3705 r_debug_state(struct r_debug* rd, struct link_map *m)
3706 {
3707     /*
3708      * The following is a hack to force the compiler to emit calls to
3709      * this function, even when optimizing.  If the function is empty,
3710      * the compiler is not obliged to emit any code for calls to it,
3711      * even when marked __noinline.  However, gdb depends on those
3712      * calls being made.
3713      */
3714     __compiler_membar();
3715 }
3716 
3717 /*
3718  * A function called after init routines have completed. This can be used to
3719  * break before a program's entry routine is called, and can be used when
3720  * main is not available in the symbol table.
3721  */
3722 void
3723 _r_debug_postinit(struct link_map *m)
3724 {
3725 
3726 	/* See r_debug_state(). */
3727 	__compiler_membar();
3728 }
3729 
3730 /*
3731  * Get address of the pointer variable in the main program.
3732  * Prefer non-weak symbol over the weak one.
3733  */
3734 static const void **
3735 get_program_var_addr(const char *name, RtldLockState *lockstate)
3736 {
3737     SymLook req;
3738     DoneList donelist;
3739 
3740     symlook_init(&req, name);
3741     req.lockstate = lockstate;
3742     donelist_init(&donelist);
3743     if (symlook_global(&req, &donelist) != 0)
3744 	return (NULL);
3745     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3746 	return ((const void **)make_function_pointer(req.sym_out,
3747 	  req.defobj_out));
3748     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3749 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3750     else
3751 	return ((const void **)(req.defobj_out->relocbase +
3752 	  req.sym_out->st_value));
3753 }
3754 
3755 /*
3756  * Set a pointer variable in the main program to the given value.  This
3757  * is used to set key variables such as "environ" before any of the
3758  * init functions are called.
3759  */
3760 static void
3761 set_program_var(const char *name, const void *value)
3762 {
3763     const void **addr;
3764 
3765     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3766 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3767 	*addr = value;
3768     }
3769 }
3770 
3771 /*
3772  * Search the global objects, including dependencies and main object,
3773  * for the given symbol.
3774  */
3775 static int
3776 symlook_global(SymLook *req, DoneList *donelist)
3777 {
3778     SymLook req1;
3779     const Objlist_Entry *elm;
3780     int res;
3781 
3782     symlook_init_from_req(&req1, req);
3783 
3784     /* Search all objects loaded at program start up. */
3785     if (req->defobj_out == NULL ||
3786       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3787 	res = symlook_list(&req1, &list_main, donelist);
3788 	if (res == 0 && (req->defobj_out == NULL ||
3789 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3790 	    req->sym_out = req1.sym_out;
3791 	    req->defobj_out = req1.defobj_out;
3792 	    assert(req->defobj_out != NULL);
3793 	}
3794     }
3795 
3796     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3797     STAILQ_FOREACH(elm, &list_global, link) {
3798 	if (req->defobj_out != NULL &&
3799 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3800 	    break;
3801 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3802 	if (res == 0 && (req->defobj_out == NULL ||
3803 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3804 	    req->sym_out = req1.sym_out;
3805 	    req->defobj_out = req1.defobj_out;
3806 	    assert(req->defobj_out != NULL);
3807 	}
3808     }
3809 
3810     return (req->sym_out != NULL ? 0 : ESRCH);
3811 }
3812 
3813 /*
3814  * Given a symbol name in a referencing object, find the corresponding
3815  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3816  * no definition was found.  Returns a pointer to the Obj_Entry of the
3817  * defining object via the reference parameter DEFOBJ_OUT.
3818  */
3819 static int
3820 symlook_default(SymLook *req, const Obj_Entry *refobj)
3821 {
3822     DoneList donelist;
3823     const Objlist_Entry *elm;
3824     SymLook req1;
3825     int res;
3826 
3827     donelist_init(&donelist);
3828     symlook_init_from_req(&req1, req);
3829 
3830     /* Look first in the referencing object if linked symbolically. */
3831     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3832 	res = symlook_obj(&req1, refobj);
3833 	if (res == 0) {
3834 	    req->sym_out = req1.sym_out;
3835 	    req->defobj_out = req1.defobj_out;
3836 	    assert(req->defobj_out != NULL);
3837 	}
3838     }
3839 
3840     symlook_global(req, &donelist);
3841 
3842     /* Search all dlopened DAGs containing the referencing object. */
3843     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3844 	if (req->sym_out != NULL &&
3845 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3846 	    break;
3847 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3848 	if (res == 0 && (req->sym_out == NULL ||
3849 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3850 	    req->sym_out = req1.sym_out;
3851 	    req->defobj_out = req1.defobj_out;
3852 	    assert(req->defobj_out != NULL);
3853 	}
3854     }
3855 
3856     /*
3857      * Search the dynamic linker itself, and possibly resolve the
3858      * symbol from there.  This is how the application links to
3859      * dynamic linker services such as dlopen.
3860      */
3861     if (req->sym_out == NULL ||
3862       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3863 	res = symlook_obj(&req1, &obj_rtld);
3864 	if (res == 0) {
3865 	    req->sym_out = req1.sym_out;
3866 	    req->defobj_out = req1.defobj_out;
3867 	    assert(req->defobj_out != NULL);
3868 	}
3869     }
3870 
3871     return (req->sym_out != NULL ? 0 : ESRCH);
3872 }
3873 
3874 static int
3875 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3876 {
3877     const Elf_Sym *def;
3878     const Obj_Entry *defobj;
3879     const Objlist_Entry *elm;
3880     SymLook req1;
3881     int res;
3882 
3883     def = NULL;
3884     defobj = NULL;
3885     STAILQ_FOREACH(elm, objlist, link) {
3886 	if (donelist_check(dlp, elm->obj))
3887 	    continue;
3888 	symlook_init_from_req(&req1, req);
3889 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3890 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3891 		def = req1.sym_out;
3892 		defobj = req1.defobj_out;
3893 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3894 		    break;
3895 	    }
3896 	}
3897     }
3898     if (def != NULL) {
3899 	req->sym_out = def;
3900 	req->defobj_out = defobj;
3901 	return (0);
3902     }
3903     return (ESRCH);
3904 }
3905 
3906 /*
3907  * Search the chain of DAGS cointed to by the given Needed_Entry
3908  * for a symbol of the given name.  Each DAG is scanned completely
3909  * before advancing to the next one.  Returns a pointer to the symbol,
3910  * or NULL if no definition was found.
3911  */
3912 static int
3913 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3914 {
3915     const Elf_Sym *def;
3916     const Needed_Entry *n;
3917     const Obj_Entry *defobj;
3918     SymLook req1;
3919     int res;
3920 
3921     def = NULL;
3922     defobj = NULL;
3923     symlook_init_from_req(&req1, req);
3924     for (n = needed; n != NULL; n = n->next) {
3925 	if (n->obj == NULL ||
3926 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3927 	    continue;
3928 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3929 	    def = req1.sym_out;
3930 	    defobj = req1.defobj_out;
3931 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3932 		break;
3933 	}
3934     }
3935     if (def != NULL) {
3936 	req->sym_out = def;
3937 	req->defobj_out = defobj;
3938 	return (0);
3939     }
3940     return (ESRCH);
3941 }
3942 
3943 /*
3944  * Search the symbol table of a single shared object for a symbol of
3945  * the given name and version, if requested.  Returns a pointer to the
3946  * symbol, or NULL if no definition was found.  If the object is
3947  * filter, return filtered symbol from filtee.
3948  *
3949  * The symbol's hash value is passed in for efficiency reasons; that
3950  * eliminates many recomputations of the hash value.
3951  */
3952 int
3953 symlook_obj(SymLook *req, const Obj_Entry *obj)
3954 {
3955     DoneList donelist;
3956     SymLook req1;
3957     int flags, res, mres;
3958 
3959     /*
3960      * If there is at least one valid hash at this point, we prefer to
3961      * use the faster GNU version if available.
3962      */
3963     if (obj->valid_hash_gnu)
3964 	mres = symlook_obj1_gnu(req, obj);
3965     else if (obj->valid_hash_sysv)
3966 	mres = symlook_obj1_sysv(req, obj);
3967     else
3968 	return (EINVAL);
3969 
3970     if (mres == 0) {
3971 	if (obj->needed_filtees != NULL) {
3972 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3973 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3974 	    donelist_init(&donelist);
3975 	    symlook_init_from_req(&req1, req);
3976 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3977 	    if (res == 0) {
3978 		req->sym_out = req1.sym_out;
3979 		req->defobj_out = req1.defobj_out;
3980 	    }
3981 	    return (res);
3982 	}
3983 	if (obj->needed_aux_filtees != NULL) {
3984 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3985 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3986 	    donelist_init(&donelist);
3987 	    symlook_init_from_req(&req1, req);
3988 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3989 	    if (res == 0) {
3990 		req->sym_out = req1.sym_out;
3991 		req->defobj_out = req1.defobj_out;
3992 		return (res);
3993 	    }
3994 	}
3995     }
3996     return (mres);
3997 }
3998 
3999 /* Symbol match routine common to both hash functions */
4000 static bool
4001 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4002     const unsigned long symnum)
4003 {
4004 	Elf_Versym verndx;
4005 	const Elf_Sym *symp;
4006 	const char *strp;
4007 
4008 	symp = obj->symtab + symnum;
4009 	strp = obj->strtab + symp->st_name;
4010 
4011 	switch (ELF_ST_TYPE(symp->st_info)) {
4012 	case STT_FUNC:
4013 	case STT_NOTYPE:
4014 	case STT_OBJECT:
4015 	case STT_COMMON:
4016 	case STT_GNU_IFUNC:
4017 		if (symp->st_value == 0)
4018 			return (false);
4019 		/* fallthrough */
4020 	case STT_TLS:
4021 		if (symp->st_shndx != SHN_UNDEF)
4022 			break;
4023 #ifndef __mips__
4024 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4025 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4026 			break;
4027 		/* fallthrough */
4028 #endif
4029 	default:
4030 		return (false);
4031 	}
4032 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4033 		return (false);
4034 
4035 	if (req->ventry == NULL) {
4036 		if (obj->versyms != NULL) {
4037 			verndx = VER_NDX(obj->versyms[symnum]);
4038 			if (verndx > obj->vernum) {
4039 				_rtld_error(
4040 				    "%s: symbol %s references wrong version %d",
4041 				    obj->path, obj->strtab + symnum, verndx);
4042 				return (false);
4043 			}
4044 			/*
4045 			 * If we are not called from dlsym (i.e. this
4046 			 * is a normal relocation from unversioned
4047 			 * binary), accept the symbol immediately if
4048 			 * it happens to have first version after this
4049 			 * shared object became versioned.  Otherwise,
4050 			 * if symbol is versioned and not hidden,
4051 			 * remember it. If it is the only symbol with
4052 			 * this name exported by the shared object, it
4053 			 * will be returned as a match by the calling
4054 			 * function. If symbol is global (verndx < 2)
4055 			 * accept it unconditionally.
4056 			 */
4057 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4058 			    verndx == VER_NDX_GIVEN) {
4059 				result->sym_out = symp;
4060 				return (true);
4061 			}
4062 			else if (verndx >= VER_NDX_GIVEN) {
4063 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4064 				    == 0) {
4065 					if (result->vsymp == NULL)
4066 						result->vsymp = symp;
4067 					result->vcount++;
4068 				}
4069 				return (false);
4070 			}
4071 		}
4072 		result->sym_out = symp;
4073 		return (true);
4074 	}
4075 	if (obj->versyms == NULL) {
4076 		if (object_match_name(obj, req->ventry->name)) {
4077 			_rtld_error("%s: object %s should provide version %s "
4078 			    "for symbol %s", obj_rtld.path, obj->path,
4079 			    req->ventry->name, obj->strtab + symnum);
4080 			return (false);
4081 		}
4082 	} else {
4083 		verndx = VER_NDX(obj->versyms[symnum]);
4084 		if (verndx > obj->vernum) {
4085 			_rtld_error("%s: symbol %s references wrong version %d",
4086 			    obj->path, obj->strtab + symnum, verndx);
4087 			return (false);
4088 		}
4089 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4090 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4091 			/*
4092 			 * Version does not match. Look if this is a
4093 			 * global symbol and if it is not hidden. If
4094 			 * global symbol (verndx < 2) is available,
4095 			 * use it. Do not return symbol if we are
4096 			 * called by dlvsym, because dlvsym looks for
4097 			 * a specific version and default one is not
4098 			 * what dlvsym wants.
4099 			 */
4100 			if ((req->flags & SYMLOOK_DLSYM) ||
4101 			    (verndx >= VER_NDX_GIVEN) ||
4102 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4103 				return (false);
4104 		}
4105 	}
4106 	result->sym_out = symp;
4107 	return (true);
4108 }
4109 
4110 /*
4111  * Search for symbol using SysV hash function.
4112  * obj->buckets is known not to be NULL at this point; the test for this was
4113  * performed with the obj->valid_hash_sysv assignment.
4114  */
4115 static int
4116 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4117 {
4118 	unsigned long symnum;
4119 	Sym_Match_Result matchres;
4120 
4121 	matchres.sym_out = NULL;
4122 	matchres.vsymp = NULL;
4123 	matchres.vcount = 0;
4124 
4125 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4126 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4127 		if (symnum >= obj->nchains)
4128 			return (ESRCH);	/* Bad object */
4129 
4130 		if (matched_symbol(req, obj, &matchres, symnum)) {
4131 			req->sym_out = matchres.sym_out;
4132 			req->defobj_out = obj;
4133 			return (0);
4134 		}
4135 	}
4136 	if (matchres.vcount == 1) {
4137 		req->sym_out = matchres.vsymp;
4138 		req->defobj_out = obj;
4139 		return (0);
4140 	}
4141 	return (ESRCH);
4142 }
4143 
4144 /* Search for symbol using GNU hash function */
4145 static int
4146 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4147 {
4148 	Elf_Addr bloom_word;
4149 	const Elf32_Word *hashval;
4150 	Elf32_Word bucket;
4151 	Sym_Match_Result matchres;
4152 	unsigned int h1, h2;
4153 	unsigned long symnum;
4154 
4155 	matchres.sym_out = NULL;
4156 	matchres.vsymp = NULL;
4157 	matchres.vcount = 0;
4158 
4159 	/* Pick right bitmask word from Bloom filter array */
4160 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4161 	    obj->maskwords_bm_gnu];
4162 
4163 	/* Calculate modulus word size of gnu hash and its derivative */
4164 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4165 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4166 
4167 	/* Filter out the "definitely not in set" queries */
4168 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4169 		return (ESRCH);
4170 
4171 	/* Locate hash chain and corresponding value element*/
4172 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4173 	if (bucket == 0)
4174 		return (ESRCH);
4175 	hashval = &obj->chain_zero_gnu[bucket];
4176 	do {
4177 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4178 			symnum = hashval - obj->chain_zero_gnu;
4179 			if (matched_symbol(req, obj, &matchres, symnum)) {
4180 				req->sym_out = matchres.sym_out;
4181 				req->defobj_out = obj;
4182 				return (0);
4183 			}
4184 		}
4185 	} while ((*hashval++ & 1) == 0);
4186 	if (matchres.vcount == 1) {
4187 		req->sym_out = matchres.vsymp;
4188 		req->defobj_out = obj;
4189 		return (0);
4190 	}
4191 	return (ESRCH);
4192 }
4193 
4194 static void
4195 trace_loaded_objects(Obj_Entry *obj)
4196 {
4197     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4198     int		c;
4199 
4200     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4201 	main_local = "";
4202 
4203     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4204 	fmt1 = "\t%o => %p (%x)\n";
4205 
4206     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4207 	fmt2 = "\t%o (%x)\n";
4208 
4209     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4210 
4211     for (; obj; obj = obj->next) {
4212 	Needed_Entry		*needed;
4213 	char			*name, *path;
4214 	bool			is_lib;
4215 
4216 	if (list_containers && obj->needed != NULL)
4217 	    rtld_printf("%s:\n", obj->path);
4218 	for (needed = obj->needed; needed; needed = needed->next) {
4219 	    if (needed->obj != NULL) {
4220 		if (needed->obj->traced && !list_containers)
4221 		    continue;
4222 		needed->obj->traced = true;
4223 		path = needed->obj->path;
4224 	    } else
4225 		path = "not found";
4226 
4227 	    name = (char *)obj->strtab + needed->name;
4228 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4229 
4230 	    fmt = is_lib ? fmt1 : fmt2;
4231 	    while ((c = *fmt++) != '\0') {
4232 		switch (c) {
4233 		default:
4234 		    rtld_putchar(c);
4235 		    continue;
4236 		case '\\':
4237 		    switch (c = *fmt) {
4238 		    case '\0':
4239 			continue;
4240 		    case 'n':
4241 			rtld_putchar('\n');
4242 			break;
4243 		    case 't':
4244 			rtld_putchar('\t');
4245 			break;
4246 		    }
4247 		    break;
4248 		case '%':
4249 		    switch (c = *fmt) {
4250 		    case '\0':
4251 			continue;
4252 		    case '%':
4253 		    default:
4254 			rtld_putchar(c);
4255 			break;
4256 		    case 'A':
4257 			rtld_putstr(main_local);
4258 			break;
4259 		    case 'a':
4260 			rtld_putstr(obj_main->path);
4261 			break;
4262 		    case 'o':
4263 			rtld_putstr(name);
4264 			break;
4265 #if 0
4266 		    case 'm':
4267 			rtld_printf("%d", sodp->sod_major);
4268 			break;
4269 		    case 'n':
4270 			rtld_printf("%d", sodp->sod_minor);
4271 			break;
4272 #endif
4273 		    case 'p':
4274 			rtld_putstr(path);
4275 			break;
4276 		    case 'x':
4277 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4278 			  0);
4279 			break;
4280 		    }
4281 		    break;
4282 		}
4283 		++fmt;
4284 	    }
4285 	}
4286     }
4287 }
4288 
4289 /*
4290  * Unload a dlopened object and its dependencies from memory and from
4291  * our data structures.  It is assumed that the DAG rooted in the
4292  * object has already been unreferenced, and that the object has a
4293  * reference count of 0.
4294  */
4295 static void
4296 unload_object(Obj_Entry *root)
4297 {
4298     Obj_Entry *obj;
4299     Obj_Entry **linkp;
4300 
4301     assert(root->refcount == 0);
4302 
4303     /*
4304      * Pass over the DAG removing unreferenced objects from
4305      * appropriate lists.
4306      */
4307     unlink_object(root);
4308 
4309     /* Unmap all objects that are no longer referenced. */
4310     linkp = &obj_list->next;
4311     while ((obj = *linkp) != NULL) {
4312 	if (obj->refcount == 0) {
4313 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4314 		obj->path);
4315 	    dbg("unloading \"%s\"", obj->path);
4316 	    unload_filtees(root);
4317 	    munmap(obj->mapbase, obj->mapsize);
4318 	    linkmap_delete(obj);
4319 	    *linkp = obj->next;
4320 	    obj_count--;
4321 	    obj_free(obj);
4322 	} else
4323 	    linkp = &obj->next;
4324     }
4325     obj_tail = linkp;
4326 }
4327 
4328 static void
4329 unlink_object(Obj_Entry *root)
4330 {
4331     Objlist_Entry *elm;
4332 
4333     if (root->refcount == 0) {
4334 	/* Remove the object from the RTLD_GLOBAL list. */
4335 	objlist_remove(&list_global, root);
4336 
4337     	/* Remove the object from all objects' DAG lists. */
4338     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4339 	    objlist_remove(&elm->obj->dldags, root);
4340 	    if (elm->obj != root)
4341 		unlink_object(elm->obj);
4342 	}
4343     }
4344 }
4345 
4346 static void
4347 ref_dag(Obj_Entry *root)
4348 {
4349     Objlist_Entry *elm;
4350 
4351     assert(root->dag_inited);
4352     STAILQ_FOREACH(elm, &root->dagmembers, link)
4353 	elm->obj->refcount++;
4354 }
4355 
4356 static void
4357 unref_dag(Obj_Entry *root)
4358 {
4359     Objlist_Entry *elm;
4360 
4361     assert(root->dag_inited);
4362     STAILQ_FOREACH(elm, &root->dagmembers, link)
4363 	elm->obj->refcount--;
4364 }
4365 
4366 /*
4367  * Common code for MD __tls_get_addr().
4368  */
4369 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4370 static void *
4371 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4372 {
4373     Elf_Addr *newdtv, *dtv;
4374     RtldLockState lockstate;
4375     int to_copy;
4376 
4377     dtv = *dtvp;
4378     /* Check dtv generation in case new modules have arrived */
4379     if (dtv[0] != tls_dtv_generation) {
4380 	wlock_acquire(rtld_bind_lock, &lockstate);
4381 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4382 	to_copy = dtv[1];
4383 	if (to_copy > tls_max_index)
4384 	    to_copy = tls_max_index;
4385 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4386 	newdtv[0] = tls_dtv_generation;
4387 	newdtv[1] = tls_max_index;
4388 	free(dtv);
4389 	lock_release(rtld_bind_lock, &lockstate);
4390 	dtv = *dtvp = newdtv;
4391     }
4392 
4393     /* Dynamically allocate module TLS if necessary */
4394     if (dtv[index + 1] == 0) {
4395 	/* Signal safe, wlock will block out signals. */
4396 	wlock_acquire(rtld_bind_lock, &lockstate);
4397 	if (!dtv[index + 1])
4398 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4399 	lock_release(rtld_bind_lock, &lockstate);
4400     }
4401     return ((void *)(dtv[index + 1] + offset));
4402 }
4403 
4404 void *
4405 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4406 {
4407 	Elf_Addr *dtv;
4408 
4409 	dtv = *dtvp;
4410 	/* Check dtv generation in case new modules have arrived */
4411 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4412 	    dtv[index + 1] != 0))
4413 		return ((void *)(dtv[index + 1] + offset));
4414 	return (tls_get_addr_slow(dtvp, index, offset));
4415 }
4416 
4417 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4418     defined(__powerpc__) || defined(__riscv__)
4419 
4420 /*
4421  * Allocate Static TLS using the Variant I method.
4422  */
4423 void *
4424 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4425 {
4426     Obj_Entry *obj;
4427     char *tcb;
4428     Elf_Addr **tls;
4429     Elf_Addr *dtv;
4430     Elf_Addr addr;
4431     int i;
4432 
4433     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4434 	return (oldtcb);
4435 
4436     assert(tcbsize >= TLS_TCB_SIZE);
4437     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4438     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4439 
4440     if (oldtcb != NULL) {
4441 	memcpy(tls, oldtcb, tls_static_space);
4442 	free(oldtcb);
4443 
4444 	/* Adjust the DTV. */
4445 	dtv = tls[0];
4446 	for (i = 0; i < dtv[1]; i++) {
4447 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4448 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4449 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4450 	    }
4451 	}
4452     } else {
4453 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4454 	tls[0] = dtv;
4455 	dtv[0] = tls_dtv_generation;
4456 	dtv[1] = tls_max_index;
4457 
4458 	for (obj = objs; obj; obj = obj->next) {
4459 	    if (obj->tlsoffset > 0) {
4460 		addr = (Elf_Addr)tls + obj->tlsoffset;
4461 		if (obj->tlsinitsize > 0)
4462 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4463 		if (obj->tlssize > obj->tlsinitsize)
4464 		    memset((void*) (addr + obj->tlsinitsize), 0,
4465 			   obj->tlssize - obj->tlsinitsize);
4466 		dtv[obj->tlsindex + 1] = addr;
4467 	    }
4468 	}
4469     }
4470 
4471     return (tcb);
4472 }
4473 
4474 void
4475 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4476 {
4477     Elf_Addr *dtv;
4478     Elf_Addr tlsstart, tlsend;
4479     int dtvsize, i;
4480 
4481     assert(tcbsize >= TLS_TCB_SIZE);
4482 
4483     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4484     tlsend = tlsstart + tls_static_space;
4485 
4486     dtv = *(Elf_Addr **)tlsstart;
4487     dtvsize = dtv[1];
4488     for (i = 0; i < dtvsize; i++) {
4489 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4490 	    free((void*)dtv[i+2]);
4491 	}
4492     }
4493     free(dtv);
4494     free(tcb);
4495 }
4496 
4497 #endif
4498 
4499 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4500 
4501 /*
4502  * Allocate Static TLS using the Variant II method.
4503  */
4504 void *
4505 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4506 {
4507     Obj_Entry *obj;
4508     size_t size, ralign;
4509     char *tls;
4510     Elf_Addr *dtv, *olddtv;
4511     Elf_Addr segbase, oldsegbase, addr;
4512     int i;
4513 
4514     ralign = tcbalign;
4515     if (tls_static_max_align > ralign)
4516 	    ralign = tls_static_max_align;
4517     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4518 
4519     assert(tcbsize >= 2*sizeof(Elf_Addr));
4520     tls = malloc_aligned(size, ralign);
4521     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4522 
4523     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4524     ((Elf_Addr*)segbase)[0] = segbase;
4525     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4526 
4527     dtv[0] = tls_dtv_generation;
4528     dtv[1] = tls_max_index;
4529 
4530     if (oldtls) {
4531 	/*
4532 	 * Copy the static TLS block over whole.
4533 	 */
4534 	oldsegbase = (Elf_Addr) oldtls;
4535 	memcpy((void *)(segbase - tls_static_space),
4536 	       (const void *)(oldsegbase - tls_static_space),
4537 	       tls_static_space);
4538 
4539 	/*
4540 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4541 	 * move them over.
4542 	 */
4543 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4544 	for (i = 0; i < olddtv[1]; i++) {
4545 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4546 		dtv[i+2] = olddtv[i+2];
4547 		olddtv[i+2] = 0;
4548 	    }
4549 	}
4550 
4551 	/*
4552 	 * We assume that this block was the one we created with
4553 	 * allocate_initial_tls().
4554 	 */
4555 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4556     } else {
4557 	for (obj = objs; obj; obj = obj->next) {
4558 	    if (obj->tlsoffset) {
4559 		addr = segbase - obj->tlsoffset;
4560 		memset((void*) (addr + obj->tlsinitsize),
4561 		       0, obj->tlssize - obj->tlsinitsize);
4562 		if (obj->tlsinit)
4563 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4564 		dtv[obj->tlsindex + 1] = addr;
4565 	    }
4566 	}
4567     }
4568 
4569     return (void*) segbase;
4570 }
4571 
4572 void
4573 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4574 {
4575     Elf_Addr* dtv;
4576     size_t size, ralign;
4577     int dtvsize, i;
4578     Elf_Addr tlsstart, tlsend;
4579 
4580     /*
4581      * Figure out the size of the initial TLS block so that we can
4582      * find stuff which ___tls_get_addr() allocated dynamically.
4583      */
4584     ralign = tcbalign;
4585     if (tls_static_max_align > ralign)
4586 	    ralign = tls_static_max_align;
4587     size = round(tls_static_space, ralign);
4588 
4589     dtv = ((Elf_Addr**)tls)[1];
4590     dtvsize = dtv[1];
4591     tlsend = (Elf_Addr) tls;
4592     tlsstart = tlsend - size;
4593     for (i = 0; i < dtvsize; i++) {
4594 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4595 		free_aligned((void *)dtv[i + 2]);
4596 	}
4597     }
4598 
4599     free_aligned((void *)tlsstart);
4600     free((void*) dtv);
4601 }
4602 
4603 #endif
4604 
4605 /*
4606  * Allocate TLS block for module with given index.
4607  */
4608 void *
4609 allocate_module_tls(int index)
4610 {
4611     Obj_Entry* obj;
4612     char* p;
4613 
4614     for (obj = obj_list; obj; obj = obj->next) {
4615 	if (obj->tlsindex == index)
4616 	    break;
4617     }
4618     if (!obj) {
4619 	_rtld_error("Can't find module with TLS index %d", index);
4620 	rtld_die();
4621     }
4622 
4623     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4624     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4625     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4626 
4627     return p;
4628 }
4629 
4630 bool
4631 allocate_tls_offset(Obj_Entry *obj)
4632 {
4633     size_t off;
4634 
4635     if (obj->tls_done)
4636 	return true;
4637 
4638     if (obj->tlssize == 0) {
4639 	obj->tls_done = true;
4640 	return true;
4641     }
4642 
4643     if (tls_last_offset == 0)
4644 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4645     else
4646 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4647 				   obj->tlssize, obj->tlsalign);
4648 
4649     /*
4650      * If we have already fixed the size of the static TLS block, we
4651      * must stay within that size. When allocating the static TLS, we
4652      * leave a small amount of space spare to be used for dynamically
4653      * loading modules which use static TLS.
4654      */
4655     if (tls_static_space != 0) {
4656 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4657 	    return false;
4658     } else if (obj->tlsalign > tls_static_max_align) {
4659 	    tls_static_max_align = obj->tlsalign;
4660     }
4661 
4662     tls_last_offset = obj->tlsoffset = off;
4663     tls_last_size = obj->tlssize;
4664     obj->tls_done = true;
4665 
4666     return true;
4667 }
4668 
4669 void
4670 free_tls_offset(Obj_Entry *obj)
4671 {
4672 
4673     /*
4674      * If we were the last thing to allocate out of the static TLS
4675      * block, we give our space back to the 'allocator'. This is a
4676      * simplistic workaround to allow libGL.so.1 to be loaded and
4677      * unloaded multiple times.
4678      */
4679     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4680 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4681 	tls_last_offset -= obj->tlssize;
4682 	tls_last_size = 0;
4683     }
4684 }
4685 
4686 void *
4687 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4688 {
4689     void *ret;
4690     RtldLockState lockstate;
4691 
4692     wlock_acquire(rtld_bind_lock, &lockstate);
4693     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4694     lock_release(rtld_bind_lock, &lockstate);
4695     return (ret);
4696 }
4697 
4698 void
4699 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4700 {
4701     RtldLockState lockstate;
4702 
4703     wlock_acquire(rtld_bind_lock, &lockstate);
4704     free_tls(tcb, tcbsize, tcbalign);
4705     lock_release(rtld_bind_lock, &lockstate);
4706 }
4707 
4708 static void
4709 object_add_name(Obj_Entry *obj, const char *name)
4710 {
4711     Name_Entry *entry;
4712     size_t len;
4713 
4714     len = strlen(name);
4715     entry = malloc(sizeof(Name_Entry) + len);
4716 
4717     if (entry != NULL) {
4718 	strcpy(entry->name, name);
4719 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4720     }
4721 }
4722 
4723 static int
4724 object_match_name(const Obj_Entry *obj, const char *name)
4725 {
4726     Name_Entry *entry;
4727 
4728     STAILQ_FOREACH(entry, &obj->names, link) {
4729 	if (strcmp(name, entry->name) == 0)
4730 	    return (1);
4731     }
4732     return (0);
4733 }
4734 
4735 static Obj_Entry *
4736 locate_dependency(const Obj_Entry *obj, const char *name)
4737 {
4738     const Objlist_Entry *entry;
4739     const Needed_Entry *needed;
4740 
4741     STAILQ_FOREACH(entry, &list_main, link) {
4742 	if (object_match_name(entry->obj, name))
4743 	    return entry->obj;
4744     }
4745 
4746     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4747 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4748 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4749 	    /*
4750 	     * If there is DT_NEEDED for the name we are looking for,
4751 	     * we are all set.  Note that object might not be found if
4752 	     * dependency was not loaded yet, so the function can
4753 	     * return NULL here.  This is expected and handled
4754 	     * properly by the caller.
4755 	     */
4756 	    return (needed->obj);
4757 	}
4758     }
4759     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4760 	obj->path, name);
4761     rtld_die();
4762 }
4763 
4764 static int
4765 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4766     const Elf_Vernaux *vna)
4767 {
4768     const Elf_Verdef *vd;
4769     const char *vername;
4770 
4771     vername = refobj->strtab + vna->vna_name;
4772     vd = depobj->verdef;
4773     if (vd == NULL) {
4774 	_rtld_error("%s: version %s required by %s not defined",
4775 	    depobj->path, vername, refobj->path);
4776 	return (-1);
4777     }
4778     for (;;) {
4779 	if (vd->vd_version != VER_DEF_CURRENT) {
4780 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4781 		depobj->path, vd->vd_version);
4782 	    return (-1);
4783 	}
4784 	if (vna->vna_hash == vd->vd_hash) {
4785 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4786 		((char *)vd + vd->vd_aux);
4787 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4788 		return (0);
4789 	}
4790 	if (vd->vd_next == 0)
4791 	    break;
4792 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4793     }
4794     if (vna->vna_flags & VER_FLG_WEAK)
4795 	return (0);
4796     _rtld_error("%s: version %s required by %s not found",
4797 	depobj->path, vername, refobj->path);
4798     return (-1);
4799 }
4800 
4801 static int
4802 rtld_verify_object_versions(Obj_Entry *obj)
4803 {
4804     const Elf_Verneed *vn;
4805     const Elf_Verdef  *vd;
4806     const Elf_Verdaux *vda;
4807     const Elf_Vernaux *vna;
4808     const Obj_Entry *depobj;
4809     int maxvernum, vernum;
4810 
4811     if (obj->ver_checked)
4812 	return (0);
4813     obj->ver_checked = true;
4814 
4815     maxvernum = 0;
4816     /*
4817      * Walk over defined and required version records and figure out
4818      * max index used by any of them. Do very basic sanity checking
4819      * while there.
4820      */
4821     vn = obj->verneed;
4822     while (vn != NULL) {
4823 	if (vn->vn_version != VER_NEED_CURRENT) {
4824 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4825 		obj->path, vn->vn_version);
4826 	    return (-1);
4827 	}
4828 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4829 	for (;;) {
4830 	    vernum = VER_NEED_IDX(vna->vna_other);
4831 	    if (vernum > maxvernum)
4832 		maxvernum = vernum;
4833 	    if (vna->vna_next == 0)
4834 		 break;
4835 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4836 	}
4837 	if (vn->vn_next == 0)
4838 	    break;
4839 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4840     }
4841 
4842     vd = obj->verdef;
4843     while (vd != NULL) {
4844 	if (vd->vd_version != VER_DEF_CURRENT) {
4845 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4846 		obj->path, vd->vd_version);
4847 	    return (-1);
4848 	}
4849 	vernum = VER_DEF_IDX(vd->vd_ndx);
4850 	if (vernum > maxvernum)
4851 		maxvernum = vernum;
4852 	if (vd->vd_next == 0)
4853 	    break;
4854 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4855     }
4856 
4857     if (maxvernum == 0)
4858 	return (0);
4859 
4860     /*
4861      * Store version information in array indexable by version index.
4862      * Verify that object version requirements are satisfied along the
4863      * way.
4864      */
4865     obj->vernum = maxvernum + 1;
4866     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4867 
4868     vd = obj->verdef;
4869     while (vd != NULL) {
4870 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4871 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4872 	    assert(vernum <= maxvernum);
4873 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4874 	    obj->vertab[vernum].hash = vd->vd_hash;
4875 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4876 	    obj->vertab[vernum].file = NULL;
4877 	    obj->vertab[vernum].flags = 0;
4878 	}
4879 	if (vd->vd_next == 0)
4880 	    break;
4881 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4882     }
4883 
4884     vn = obj->verneed;
4885     while (vn != NULL) {
4886 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4887 	if (depobj == NULL)
4888 	    return (-1);
4889 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4890 	for (;;) {
4891 	    if (check_object_provided_version(obj, depobj, vna))
4892 		return (-1);
4893 	    vernum = VER_NEED_IDX(vna->vna_other);
4894 	    assert(vernum <= maxvernum);
4895 	    obj->vertab[vernum].hash = vna->vna_hash;
4896 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4897 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4898 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4899 		VER_INFO_HIDDEN : 0;
4900 	    if (vna->vna_next == 0)
4901 		 break;
4902 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4903 	}
4904 	if (vn->vn_next == 0)
4905 	    break;
4906 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4907     }
4908     return 0;
4909 }
4910 
4911 static int
4912 rtld_verify_versions(const Objlist *objlist)
4913 {
4914     Objlist_Entry *entry;
4915     int rc;
4916 
4917     rc = 0;
4918     STAILQ_FOREACH(entry, objlist, link) {
4919 	/*
4920 	 * Skip dummy objects or objects that have their version requirements
4921 	 * already checked.
4922 	 */
4923 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4924 	    continue;
4925 	if (rtld_verify_object_versions(entry->obj) == -1) {
4926 	    rc = -1;
4927 	    if (ld_tracing == NULL)
4928 		break;
4929 	}
4930     }
4931     if (rc == 0 || ld_tracing != NULL)
4932     	rc = rtld_verify_object_versions(&obj_rtld);
4933     return rc;
4934 }
4935 
4936 const Ver_Entry *
4937 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4938 {
4939     Elf_Versym vernum;
4940 
4941     if (obj->vertab) {
4942 	vernum = VER_NDX(obj->versyms[symnum]);
4943 	if (vernum >= obj->vernum) {
4944 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4945 		obj->path, obj->strtab + symnum, vernum);
4946 	} else if (obj->vertab[vernum].hash != 0) {
4947 	    return &obj->vertab[vernum];
4948 	}
4949     }
4950     return NULL;
4951 }
4952 
4953 int
4954 _rtld_get_stack_prot(void)
4955 {
4956 
4957 	return (stack_prot);
4958 }
4959 
4960 int
4961 _rtld_is_dlopened(void *arg)
4962 {
4963 	Obj_Entry *obj;
4964 	RtldLockState lockstate;
4965 	int res;
4966 
4967 	rlock_acquire(rtld_bind_lock, &lockstate);
4968 	obj = dlcheck(arg);
4969 	if (obj == NULL)
4970 		obj = obj_from_addr(arg);
4971 	if (obj == NULL) {
4972 		_rtld_error("No shared object contains address");
4973 		lock_release(rtld_bind_lock, &lockstate);
4974 		return (-1);
4975 	}
4976 	res = obj->dlopened ? 1 : 0;
4977 	lock_release(rtld_bind_lock, &lockstate);
4978 	return (res);
4979 }
4980 
4981 static void
4982 map_stacks_exec(RtldLockState *lockstate)
4983 {
4984 	void (*thr_map_stacks_exec)(void);
4985 
4986 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4987 		return;
4988 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4989 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4990 	if (thr_map_stacks_exec != NULL) {
4991 		stack_prot |= PROT_EXEC;
4992 		thr_map_stacks_exec();
4993 	}
4994 }
4995 
4996 void
4997 symlook_init(SymLook *dst, const char *name)
4998 {
4999 
5000 	bzero(dst, sizeof(*dst));
5001 	dst->name = name;
5002 	dst->hash = elf_hash(name);
5003 	dst->hash_gnu = gnu_hash(name);
5004 }
5005 
5006 static void
5007 symlook_init_from_req(SymLook *dst, const SymLook *src)
5008 {
5009 
5010 	dst->name = src->name;
5011 	dst->hash = src->hash;
5012 	dst->hash_gnu = src->hash_gnu;
5013 	dst->ventry = src->ventry;
5014 	dst->flags = src->flags;
5015 	dst->defobj_out = NULL;
5016 	dst->sym_out = NULL;
5017 	dst->lockstate = src->lockstate;
5018 }
5019 
5020 
5021 /*
5022  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5023  */
5024 static int
5025 parse_libdir(const char *str)
5026 {
5027 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5028 	const char *orig;
5029 	int fd;
5030 	char c;
5031 
5032 	orig = str;
5033 	fd = 0;
5034 	for (c = *str; c != '\0'; c = *++str) {
5035 		if (c < '0' || c > '9')
5036 			return (-1);
5037 
5038 		fd *= RADIX;
5039 		fd += c - '0';
5040 	}
5041 
5042 	/* Make sure we actually parsed something. */
5043 	if (str == orig) {
5044 		_rtld_error("failed to parse directory FD from '%s'", str);
5045 		return (-1);
5046 	}
5047 	return (fd);
5048 }
5049 
5050 /*
5051  * Overrides for libc_pic-provided functions.
5052  */
5053 
5054 int
5055 __getosreldate(void)
5056 {
5057 	size_t len;
5058 	int oid[2];
5059 	int error, osrel;
5060 
5061 	if (osreldate != 0)
5062 		return (osreldate);
5063 
5064 	oid[0] = CTL_KERN;
5065 	oid[1] = KERN_OSRELDATE;
5066 	osrel = 0;
5067 	len = sizeof(osrel);
5068 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5069 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5070 		osreldate = osrel;
5071 	return (osreldate);
5072 }
5073 
5074 void
5075 exit(int status)
5076 {
5077 
5078 	_exit(status);
5079 }
5080 
5081 void (*__cleanup)(void);
5082 int __isthreaded = 0;
5083 int _thread_autoinit_dummy_decl = 1;
5084 
5085 /*
5086  * No unresolved symbols for rtld.
5087  */
5088 void
5089 __pthread_cxa_finalize(struct dl_phdr_info *a)
5090 {
5091 }
5092 
5093 void
5094 __stack_chk_fail(void)
5095 {
5096 
5097 	_rtld_error("stack overflow detected; terminated");
5098 	rtld_die();
5099 }
5100 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5101 
5102 void
5103 __chk_fail(void)
5104 {
5105 
5106 	_rtld_error("buffer overflow detected; terminated");
5107 	rtld_die();
5108 }
5109 
5110 const char *
5111 rtld_strerror(int errnum)
5112 {
5113 
5114 	if (errnum < 0 || errnum >= sys_nerr)
5115 		return ("Unknown error");
5116 	return (sys_errlist[errnum]);
5117 }
5118