xref: /freebsd/libexec/rtld-elf/rtld.c (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_paths.h"
64 #include "rtld_tls.h"
65 #include "rtld_printf.h"
66 #include "rtld_malloc.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 #include "rtld_libc.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 
76 /* Variables that cannot be static: */
77 extern struct r_debug r_debug; /* For GDB */
78 extern int _thread_autoinit_dummy_decl;
79 extern void (*__cleanup)(void);
80 
81 struct dlerror_save {
82 	int seen;
83 	char *msg;
84 };
85 
86 /*
87  * Function declarations.
88  */
89 static const char *basename(const char *);
90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
91     const Elf_Dyn **, const Elf_Dyn **);
92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
93     const Elf_Dyn *);
94 static bool digest_dynamic(Obj_Entry *, int);
95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
96 static void distribute_static_tls(Objlist *, RtldLockState *);
97 static Obj_Entry *dlcheck(void *);
98 static int dlclose_locked(void *, RtldLockState *);
99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
100     int lo_flags, int mode, RtldLockState *lockstate);
101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
103 static bool donelist_check(DoneList *, const Obj_Entry *);
104 static void dump_auxv(Elf_Auxinfo **aux_info);
105 static void errmsg_restore(struct dlerror_save *);
106 static struct dlerror_save *errmsg_save(void);
107 static void *fill_search_info(const char *, size_t, void *);
108 static char *find_library(const char *, const Obj_Entry *, int *);
109 static const char *gethints(bool);
110 static void hold_object(Obj_Entry *);
111 static void unhold_object(Obj_Entry *);
112 static void init_dag(Obj_Entry *);
113 static void init_marker(Obj_Entry *);
114 static void init_pagesizes(Elf_Auxinfo **aux_info);
115 static void init_rtld(caddr_t, Elf_Auxinfo **);
116 static void initlist_add_neededs(Needed_Entry *, Objlist *);
117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
119 static void linkmap_add(Obj_Entry *);
120 static void linkmap_delete(Obj_Entry *);
121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
122 static void unload_filtees(Obj_Entry *, RtldLockState *);
123 static int load_needed_objects(Obj_Entry *, int);
124 static int load_preload_objects(const char *, bool);
125 static int load_kpreload(const void *addr);
126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
127 static void map_stacks_exec(RtldLockState *);
128 static int obj_disable_relro(Obj_Entry *);
129 static int obj_enforce_relro(Obj_Entry *);
130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
131 static void objlist_call_init(Objlist *, RtldLockState *);
132 static void objlist_clear(Objlist *);
133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
134 static void objlist_init(Objlist *);
135 static void objlist_push_head(Objlist *, Obj_Entry *);
136 static void objlist_push_tail(Objlist *, Obj_Entry *);
137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
138 static void objlist_remove(Objlist *, Obj_Entry *);
139 static int open_binary_fd(const char *argv0, bool search_in_path,
140     const char **binpath_res);
141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
142     const char **argv0, bool *dir_ignore);
143 static int parse_integer(const char *);
144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
145 static void print_usage(const char *argv0);
146 static void release_object(Obj_Entry *);
147 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
148     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
150     int flags, RtldLockState *lockstate);
151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
152     RtldLockState *);
153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
154 static int rtld_dirname(const char *, char *);
155 static int rtld_dirname_abs(const char *, char *);
156 static void *rtld_dlopen(const char *name, int fd, int mode);
157 static void rtld_exit(void);
158 static void rtld_nop_exit(void);
159 static char *search_library_path(const char *, const char *, const char *,
160     int *);
161 static char *search_library_pathfds(const char *, const char *, int *);
162 static const void **get_program_var_addr(const char *, RtldLockState *);
163 static void set_program_var(const char *, const void *);
164 static int symlook_default(SymLook *, const Obj_Entry *refobj);
165 static int symlook_global(SymLook *, DoneList *);
166 static void symlook_init_from_req(SymLook *, const SymLook *);
167 static int symlook_list(SymLook *, const Objlist *, DoneList *);
168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
172 static void trace_loaded_objects(Obj_Entry *, bool);
173 static void unlink_object(Obj_Entry *);
174 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
175 static void unref_dag(Obj_Entry *);
176 static void ref_dag(Obj_Entry *);
177 static char *origin_subst_one(Obj_Entry *, char *, const char *,
178     const char *, bool);
179 static char *origin_subst(Obj_Entry *, const char *);
180 static bool obj_resolve_origin(Obj_Entry *obj);
181 static void preinit_main(void);
182 static int  rtld_verify_versions(const Objlist *);
183 static int  rtld_verify_object_versions(Obj_Entry *);
184 static void object_add_name(Obj_Entry *, const char *);
185 static int  object_match_name(const Obj_Entry *, const char *);
186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
188     struct dl_phdr_info *phdr_info);
189 static uint32_t gnu_hash(const char *);
190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
191     const unsigned long);
192 
193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
194 void _r_debug_postinit(struct link_map *) __noinline __exported;
195 
196 int __sys_openat(int, const char *, int, ...);
197 
198 /*
199  * Data declarations.
200  */
201 struct r_debug r_debug __exported;	/* for GDB; */
202 static bool libmap_disable;	/* Disable libmap */
203 static bool ld_loadfltr;	/* Immediate filters processing */
204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
205 static bool trust;		/* False for setuid and setgid programs */
206 static bool dangerous_ld_env;	/* True if environment variables have been
207 				   used to affect the libraries loaded */
208 bool ld_bind_not;		/* Disable PLT update */
209 static const char *ld_bind_now;	/* Environment variable for immediate binding */
210 static const char *ld_debug;	/* Environment variable for debugging */
211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
212 				       weak definition */
213 static const char *ld_library_path;/* Environment variable for search path */
214 static const char *ld_library_dirs;/* Environment variable for library descriptors */
215 static const char *ld_preload;	/* Environment variable for libraries to
216 				   load first */
217 static const char *ld_preload_fds;/* Environment variable for libraries represented by
218 				   descriptors */
219 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
220 static const char *ld_tracing;	/* Called from ldd to print libs */
221 static const char *ld_utrace;	/* Use utrace() to log events. */
222 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
223 static Obj_Entry *obj_main;	/* The main program shared object */
224 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
225 static unsigned int obj_count;	/* Number of objects in obj_list */
226 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
227 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
228   RTLD_STATIC_TLS_EXTRA;
229 
230 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
231   STAILQ_HEAD_INITIALIZER(list_global);
232 static Objlist list_main =	/* Objects loaded at program startup */
233   STAILQ_HEAD_INITIALIZER(list_main);
234 static Objlist list_fini =	/* Objects needing fini() calls */
235   STAILQ_HEAD_INITIALIZER(list_fini);
236 
237 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
238 
239 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
240 
241 extern Elf_Dyn _DYNAMIC;
242 #pragma weak _DYNAMIC
243 
244 int dlclose(void *) __exported;
245 char *dlerror(void) __exported;
246 void *dlopen(const char *, int) __exported;
247 void *fdlopen(int, int) __exported;
248 void *dlsym(void *, const char *) __exported;
249 dlfunc_t dlfunc(void *, const char *) __exported;
250 void *dlvsym(void *, const char *, const char *) __exported;
251 int dladdr(const void *, Dl_info *) __exported;
252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
253     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
254 int dlinfo(void *, int , void *) __exported;
255 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 const char *rtld_get_var(const char *name) __exported;
262 int rtld_set_var(const char *name, const char *val) __exported;
263 
264 /* Only here to fix -Wmissing-prototypes warnings */
265 int __getosreldate(void);
266 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
267 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
268 
269 int npagesizes;
270 static int osreldate;
271 size_t *pagesizes;
272 size_t page_size;
273 
274 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
275 static int max_stack_flags;
276 
277 /*
278  * Global declarations normally provided by crt1.  The dynamic linker is
279  * not built with crt1, so we have to provide them ourselves.
280  */
281 char *__progname;
282 char **environ;
283 
284 /*
285  * Used to pass argc, argv to init functions.
286  */
287 int main_argc;
288 char **main_argv;
289 
290 /*
291  * Globals to control TLS allocation.
292  */
293 size_t tls_last_offset;		/* Static TLS offset of last module */
294 size_t tls_last_size;		/* Static TLS size of last module */
295 size_t tls_static_space;	/* Static TLS space allocated */
296 static size_t tls_static_max_align;
297 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
298 int tls_max_index = 1;		/* Largest module index allocated */
299 
300 static bool ld_library_path_rpath = false;
301 bool ld_fast_sigblock = false;
302 
303 /*
304  * Globals for path names, and such
305  */
306 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
307 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
308 const char *ld_path_rtld = _PATH_RTLD;
309 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
310 const char *ld_env_prefix = LD_;
311 
312 static void (*rtld_exit_ptr)(void);
313 
314 /*
315  * Fill in a DoneList with an allocation large enough to hold all of
316  * the currently-loaded objects.  Keep this as a macro since it calls
317  * alloca and we want that to occur within the scope of the caller.
318  */
319 #define donelist_init(dlp)					\
320     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
321     assert((dlp)->objs != NULL),				\
322     (dlp)->num_alloc = obj_count,				\
323     (dlp)->num_used = 0)
324 
325 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
326 	if (ld_utrace != NULL)					\
327 		ld_utrace_log(e, h, mb, ms, r, n);		\
328 } while (0)
329 
330 static void
331 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
332     int refcnt, const char *name)
333 {
334 	struct utrace_rtld ut;
335 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
336 
337 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
338 	ut.event = event;
339 	ut.handle = handle;
340 	ut.mapbase = mapbase;
341 	ut.mapsize = mapsize;
342 	ut.refcnt = refcnt;
343 	bzero(ut.name, sizeof(ut.name));
344 	if (name)
345 		strlcpy(ut.name, name, sizeof(ut.name));
346 	utrace(&ut, sizeof(ut));
347 }
348 
349 struct ld_env_var_desc {
350 	const char * const n;
351 	const char *val;
352 	const bool unsecure:1;
353 	const bool can_update:1;
354 	const bool debug:1;
355 	bool owned:1;
356 };
357 #define LD_ENV_DESC(var, unsec, ...)		\
358 	[LD_##var] = {				\
359 	    .n = #var,				\
360 	    .unsecure = unsec,			\
361 	    __VA_ARGS__				\
362 	}
363 
364 static struct ld_env_var_desc ld_env_vars[] = {
365 	LD_ENV_DESC(BIND_NOW, false),
366 	LD_ENV_DESC(PRELOAD, true),
367 	LD_ENV_DESC(LIBMAP, true),
368 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
369 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
370 	LD_ENV_DESC(LIBMAP_DISABLE, true),
371 	LD_ENV_DESC(BIND_NOT, true),
372 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
373 	LD_ENV_DESC(ELF_HINTS_PATH, true),
374 	LD_ENV_DESC(LOADFLTR, true),
375 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
376 	LD_ENV_DESC(PRELOAD_FDS, true),
377 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
378 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
379 	LD_ENV_DESC(UTRACE, false, .can_update = true),
380 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
381 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
382 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
383 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
384 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
385 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
386 	LD_ENV_DESC(SHOW_AUXV, false),
387 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
388 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
389 };
390 
391 const char *
392 ld_get_env_var(int idx)
393 {
394 	return (ld_env_vars[idx].val);
395 }
396 
397 static const char *
398 rtld_get_env_val(char **env, const char *name, size_t name_len)
399 {
400 	char **m, *n, *v;
401 
402 	for (m = env; *m != NULL; m++) {
403 		n = *m;
404 		v = strchr(n, '=');
405 		if (v == NULL) {
406 			/* corrupt environment? */
407 			continue;
408 		}
409 		if (v - n == (ptrdiff_t)name_len &&
410 		    strncmp(name, n, name_len) == 0)
411 			return (v + 1);
412 	}
413 	return (NULL);
414 }
415 
416 static void
417 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
418 {
419 	struct ld_env_var_desc *lvd;
420 	size_t prefix_len, nlen;
421 	char **m, *n, *v;
422 	int i;
423 
424 	prefix_len = strlen(env_prefix);
425 	for (m = env; *m != NULL; m++) {
426 		n = *m;
427 		if (strncmp(env_prefix, n, prefix_len) != 0) {
428 			/* Not a rtld environment variable. */
429 			continue;
430 		}
431 		n += prefix_len;
432 		v = strchr(n, '=');
433 		if (v == NULL) {
434 			/* corrupt environment? */
435 			continue;
436 		}
437 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
438 			lvd = &ld_env_vars[i];
439 			if (lvd->val != NULL) {
440 				/* Saw higher-priority variable name already. */
441 				continue;
442 			}
443 			nlen = strlen(lvd->n);
444 			if (v - n == (ptrdiff_t)nlen &&
445 			    strncmp(lvd->n, n, nlen) == 0) {
446 				lvd->val = v + 1;
447 				break;
448 			}
449 		}
450 	}
451 }
452 
453 static void
454 rtld_init_env_vars(char **env)
455 {
456 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
457 }
458 
459 static void
460 set_ld_elf_hints_path(void)
461 {
462 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
463 		ld_elf_hints_path = ld_elf_hints_default;
464 }
465 
466 uintptr_t
467 rtld_round_page(uintptr_t x)
468 {
469 	return (roundup2(x, page_size));
470 }
471 
472 uintptr_t
473 rtld_trunc_page(uintptr_t x)
474 {
475 	return (rounddown2(x, page_size));
476 }
477 
478 /*
479  * Main entry point for dynamic linking.  The first argument is the
480  * stack pointer.  The stack is expected to be laid out as described
481  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
482  * Specifically, the stack pointer points to a word containing
483  * ARGC.  Following that in the stack is a null-terminated sequence
484  * of pointers to argument strings.  Then comes a null-terminated
485  * sequence of pointers to environment strings.  Finally, there is a
486  * sequence of "auxiliary vector" entries.
487  *
488  * The second argument points to a place to store the dynamic linker's
489  * exit procedure pointer and the third to a place to store the main
490  * program's object.
491  *
492  * The return value is the main program's entry point.
493  */
494 func_ptr_type
495 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
496 {
497     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
498     Objlist_Entry *entry;
499     Obj_Entry *last_interposer, *obj, *preload_tail;
500     const Elf_Phdr *phdr;
501     Objlist initlist;
502     RtldLockState lockstate;
503     struct stat st;
504     Elf_Addr *argcp;
505     char **argv, **env, **envp, *kexecpath;
506     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
507     struct ld_env_var_desc *lvd;
508     caddr_t imgentry;
509     char buf[MAXPATHLEN];
510     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
511     size_t sz;
512 #ifdef __powerpc__
513     int old_auxv_format = 1;
514 #endif
515     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
516 
517     /*
518      * On entry, the dynamic linker itself has not been relocated yet.
519      * Be very careful not to reference any global data until after
520      * init_rtld has returned.  It is OK to reference file-scope statics
521      * and string constants, and to call static and global functions.
522      */
523 
524     /* Find the auxiliary vector on the stack. */
525     argcp = sp;
526     argc = *sp++;
527     argv = (char **) sp;
528     sp += argc + 1;	/* Skip over arguments and NULL terminator */
529     env = (char **) sp;
530     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
531 	;
532     aux = (Elf_Auxinfo *) sp;
533 
534     /* Digest the auxiliary vector. */
535     for (i = 0;  i < AT_COUNT;  i++)
536 	aux_info[i] = NULL;
537     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
538 	if (auxp->a_type < AT_COUNT)
539 	    aux_info[auxp->a_type] = auxp;
540 #ifdef __powerpc__
541 	if (auxp->a_type == 23) /* AT_STACKPROT */
542 	    old_auxv_format = 0;
543 #endif
544     }
545 
546 #ifdef __powerpc__
547     if (old_auxv_format) {
548 	/* Remap from old-style auxv numbers. */
549 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
550 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
551 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
552 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
553 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
554 	aux_info[13] = NULL;		/* AT_GID */
555 
556 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
557 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
558 	aux_info[16] = aux_info[14];	/* AT_CANARY */
559 	aux_info[14] = NULL;		/* AT_EGID */
560     }
561 #endif
562 
563     /* Initialize and relocate ourselves. */
564     assert(aux_info[AT_BASE] != NULL);
565     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
566 
567     dlerror_dflt_init();
568 
569     __progname = obj_rtld.path;
570     argv0 = argv[0] != NULL ? argv[0] : "(null)";
571     environ = env;
572     main_argc = argc;
573     main_argv = argv;
574 
575     if (aux_info[AT_BSDFLAGS] != NULL &&
576 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
577 	    ld_fast_sigblock = true;
578 
579     trust = !issetugid();
580     direct_exec = false;
581 
582     md_abi_variant_hook(aux_info);
583     rtld_init_env_vars(env);
584 
585     fd = -1;
586     if (aux_info[AT_EXECFD] != NULL) {
587 	fd = aux_info[AT_EXECFD]->a_un.a_val;
588     } else {
589 	assert(aux_info[AT_PHDR] != NULL);
590 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
591 	if (phdr == obj_rtld.phdr) {
592 	    if (!trust) {
593 		_rtld_error("Tainted process refusing to run binary %s",
594 		    argv0);
595 		rtld_die();
596 	    }
597 	    direct_exec = true;
598 
599 	    dbg("opening main program in direct exec mode");
600 	    if (argc >= 2) {
601 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
602 		  &argv0, &dir_ignore);
603 		explicit_fd = (fd != -1);
604 		binpath = NULL;
605 		if (!explicit_fd)
606 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
607 		if (fstat(fd, &st) == -1) {
608 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
609 		      explicit_fd ? "user-provided descriptor" : argv0,
610 		      rtld_strerror(errno));
611 		    rtld_die();
612 		}
613 
614 		/*
615 		 * Rough emulation of the permission checks done by
616 		 * execve(2), only Unix DACs are checked, ACLs are
617 		 * ignored.  Preserve the semantic of disabling owner
618 		 * to execute if owner x bit is cleared, even if
619 		 * others x bit is enabled.
620 		 * mmap(2) does not allow to mmap with PROT_EXEC if
621 		 * binary' file comes from noexec mount.  We cannot
622 		 * set a text reference on the binary.
623 		 */
624 		dir_enable = false;
625 		if (st.st_uid == geteuid()) {
626 		    if ((st.st_mode & S_IXUSR) != 0)
627 			dir_enable = true;
628 		} else if (st.st_gid == getegid()) {
629 		    if ((st.st_mode & S_IXGRP) != 0)
630 			dir_enable = true;
631 		} else if ((st.st_mode & S_IXOTH) != 0) {
632 		    dir_enable = true;
633 		}
634 		if (!dir_enable && !dir_ignore) {
635 		    _rtld_error("No execute permission for binary %s",
636 		        argv0);
637 		    rtld_die();
638 		}
639 
640 		/*
641 		 * For direct exec mode, argv[0] is the interpreter
642 		 * name, we must remove it and shift arguments left
643 		 * before invoking binary main.  Since stack layout
644 		 * places environment pointers and aux vectors right
645 		 * after the terminating NULL, we must shift
646 		 * environment and aux as well.
647 		 */
648 		main_argc = argc - rtld_argc;
649 		for (i = 0; i <= main_argc; i++)
650 		    argv[i] = argv[i + rtld_argc];
651 		*argcp -= rtld_argc;
652 		environ = env = envp = argv + main_argc + 1;
653 		dbg("move env from %p to %p", envp + rtld_argc, envp);
654 		do {
655 		    *envp = *(envp + rtld_argc);
656 		}  while (*envp++ != NULL);
657 		aux = auxp = (Elf_Auxinfo *)envp;
658 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
659 		dbg("move aux from %p to %p", auxpf, aux);
660 		/* XXXKIB insert place for AT_EXECPATH if not present */
661 		for (;; auxp++, auxpf++) {
662 		    *auxp = *auxpf;
663 		    if (auxp->a_type == AT_NULL)
664 			    break;
665 		}
666 		/* Since the auxiliary vector has moved, redigest it. */
667 		for (i = 0;  i < AT_COUNT;  i++)
668 		    aux_info[i] = NULL;
669 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
670 		    if (auxp->a_type < AT_COUNT)
671 			aux_info[auxp->a_type] = auxp;
672 		}
673 
674 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
675 		if (binpath == NULL) {
676 		    aux_info[AT_EXECPATH] = NULL;
677 		} else {
678 		    if (aux_info[AT_EXECPATH] == NULL) {
679 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
680 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
681 		    }
682 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
683 		      binpath);
684 		}
685 	    } else {
686 		_rtld_error("No binary");
687 		rtld_die();
688 	    }
689 	}
690     }
691 
692     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
693 
694     /*
695      * If the process is tainted, then we un-set the dangerous environment
696      * variables.  The process will be marked as tainted until setuid(2)
697      * is called.  If any child process calls setuid(2) we do not want any
698      * future processes to honor the potentially un-safe variables.
699      */
700     if (!trust) {
701 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
702 		    lvd = &ld_env_vars[i];
703 		    if (lvd->unsecure)
704 			    lvd->val = NULL;
705 	    }
706     }
707 
708     ld_debug = ld_get_env_var(LD_DEBUG);
709     if (ld_bind_now == NULL)
710 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
711     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
712     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
713     libmap_override = ld_get_env_var(LD_LIBMAP);
714     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
715     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
716     ld_preload = ld_get_env_var(LD_PRELOAD);
717     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
718     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
719     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
720     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
721     if (library_path_rpath != NULL) {
722 	    if (library_path_rpath[0] == 'y' ||
723 		library_path_rpath[0] == 'Y' ||
724 		library_path_rpath[0] == '1')
725 		    ld_library_path_rpath = true;
726 	    else
727 		    ld_library_path_rpath = false;
728     }
729     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
730     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
731 	sz = parse_integer(static_tls_extra);
732 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
733 	    ld_static_tls_extra = sz;
734     }
735     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
736 	ld_library_path != NULL || ld_preload != NULL ||
737 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
738 	static_tls_extra != NULL;
739     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
740     ld_utrace = ld_get_env_var(LD_UTRACE);
741 
742     set_ld_elf_hints_path();
743     if (ld_debug != NULL && *ld_debug != '\0')
744 	debug = 1;
745     dbg("%s is initialized, base address = %p", __progname,
746 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
747     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
748     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
749 
750     dbg("initializing thread locks");
751     lockdflt_init();
752 
753     /*
754      * Load the main program, or process its program header if it is
755      * already loaded.
756      */
757     if (fd != -1) {	/* Load the main program. */
758 	dbg("loading main program");
759 	obj_main = map_object(fd, argv0, NULL);
760 	close(fd);
761 	if (obj_main == NULL)
762 	    rtld_die();
763 	max_stack_flags = obj_main->stack_flags;
764     } else {				/* Main program already loaded. */
765 	dbg("processing main program's program header");
766 	assert(aux_info[AT_PHDR] != NULL);
767 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
768 	assert(aux_info[AT_PHNUM] != NULL);
769 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
770 	assert(aux_info[AT_PHENT] != NULL);
771 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
772 	assert(aux_info[AT_ENTRY] != NULL);
773 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
774 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
775 	    rtld_die();
776     }
777 
778     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
779 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
780 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
781 	    if (kexecpath[0] == '/')
782 		    obj_main->path = kexecpath;
783 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
784 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
785 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
786 		    obj_main->path = xstrdup(argv0);
787 	    else
788 		    obj_main->path = xstrdup(buf);
789     } else {
790 	    dbg("No AT_EXECPATH or direct exec");
791 	    obj_main->path = xstrdup(argv0);
792     }
793     dbg("obj_main path %s", obj_main->path);
794     obj_main->mainprog = true;
795 
796     if (aux_info[AT_STACKPROT] != NULL &&
797       aux_info[AT_STACKPROT]->a_un.a_val != 0)
798 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
799 
800 #ifndef COMPAT_libcompat
801     /*
802      * Get the actual dynamic linker pathname from the executable if
803      * possible.  (It should always be possible.)  That ensures that
804      * gdb will find the right dynamic linker even if a non-standard
805      * one is being used.
806      */
807     if (obj_main->interp != NULL &&
808       strcmp(obj_main->interp, obj_rtld.path) != 0) {
809 	free(obj_rtld.path);
810 	obj_rtld.path = xstrdup(obj_main->interp);
811         __progname = obj_rtld.path;
812     }
813 #endif
814 
815     if (!digest_dynamic(obj_main, 0))
816 	rtld_die();
817     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
818 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
819 	obj_main->dynsymcount);
820 
821     linkmap_add(obj_main);
822     linkmap_add(&obj_rtld);
823 
824     /* Link the main program into the list of objects. */
825     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
826     obj_count++;
827     obj_loads++;
828 
829     /* Initialize a fake symbol for resolving undefined weak references. */
830     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
831     sym_zero.st_shndx = SHN_UNDEF;
832     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
833 
834     if (!libmap_disable)
835         libmap_disable = (bool)lm_init(libmap_override);
836 
837     if (aux_info[AT_KPRELOAD] != NULL &&
838       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
839 	dbg("loading kernel vdso");
840 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
841 	    rtld_die();
842     }
843 
844     dbg("loading LD_PRELOAD_FDS libraries");
845     if (load_preload_objects(ld_preload_fds, true) == -1)
846 	rtld_die();
847 
848     dbg("loading LD_PRELOAD libraries");
849     if (load_preload_objects(ld_preload, false) == -1)
850 	rtld_die();
851     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
852 
853     dbg("loading needed objects");
854     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
855       0) == -1)
856 	rtld_die();
857 
858     /* Make a list of all objects loaded at startup. */
859     last_interposer = obj_main;
860     TAILQ_FOREACH(obj, &obj_list, next) {
861 	if (obj->marker)
862 	    continue;
863 	if (obj->z_interpose && obj != obj_main) {
864 	    objlist_put_after(&list_main, last_interposer, obj);
865 	    last_interposer = obj;
866 	} else {
867 	    objlist_push_tail(&list_main, obj);
868 	}
869     	obj->refcount++;
870     }
871 
872     dbg("checking for required versions");
873     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
874 	rtld_die();
875 
876     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
877        dump_auxv(aux_info);
878 
879     if (ld_tracing) {		/* We're done */
880 	trace_loaded_objects(obj_main, true);
881 	exit(0);
882     }
883 
884     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
885        dump_relocations(obj_main);
886        exit (0);
887     }
888 
889     /*
890      * Processing tls relocations requires having the tls offsets
891      * initialized.  Prepare offsets before starting initial
892      * relocation processing.
893      */
894     dbg("initializing initial thread local storage offsets");
895     STAILQ_FOREACH(entry, &list_main, link) {
896 	/*
897 	 * Allocate all the initial objects out of the static TLS
898 	 * block even if they didn't ask for it.
899 	 */
900 	allocate_tls_offset(entry->obj);
901     }
902 
903     if (relocate_objects(obj_main,
904       ld_bind_now != NULL && *ld_bind_now != '\0',
905       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
906 	rtld_die();
907 
908     dbg("doing copy relocations");
909     if (do_copy_relocations(obj_main) == -1)
910 	rtld_die();
911 
912     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
913        dump_relocations(obj_main);
914        exit (0);
915     }
916 
917     ifunc_init(aux_info);
918 
919     /*
920      * Setup TLS for main thread.  This must be done after the
921      * relocations are processed, since tls initialization section
922      * might be the subject for relocations.
923      */
924     dbg("initializing initial thread local storage");
925     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
926 
927     dbg("initializing key program variables");
928     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
929     set_program_var("environ", env);
930     set_program_var("__elf_aux_vector", aux);
931 
932     /* Make a list of init functions to call. */
933     objlist_init(&initlist);
934     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
935       preload_tail, &initlist);
936 
937     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
938 
939     map_stacks_exec(NULL);
940 
941     if (!obj_main->crt_no_init) {
942 	/*
943 	 * Make sure we don't call the main program's init and fini
944 	 * functions for binaries linked with old crt1 which calls
945 	 * _init itself.
946 	 */
947 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
948 	obj_main->preinit_array = obj_main->init_array =
949 	    obj_main->fini_array = (Elf_Addr)NULL;
950     }
951 
952     if (direct_exec) {
953 	/* Set osrel for direct-execed binary */
954 	mib[0] = CTL_KERN;
955 	mib[1] = KERN_PROC;
956 	mib[2] = KERN_PROC_OSREL;
957 	mib[3] = getpid();
958 	osrel = obj_main->osrel;
959 	sz = sizeof(old_osrel);
960 	dbg("setting osrel to %d", osrel);
961 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
962     }
963 
964     wlock_acquire(rtld_bind_lock, &lockstate);
965 
966     dbg("resolving ifuncs");
967     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
968       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
969 	rtld_die();
970 
971     rtld_exit_ptr = rtld_exit;
972     if (obj_main->crt_no_init)
973 	preinit_main();
974     objlist_call_init(&initlist, &lockstate);
975     _r_debug_postinit(&obj_main->linkmap);
976     objlist_clear(&initlist);
977     dbg("loading filtees");
978     TAILQ_FOREACH(obj, &obj_list, next) {
979 	if (obj->marker)
980 	    continue;
981 	if (ld_loadfltr || obj->z_loadfltr)
982 	    load_filtees(obj, 0, &lockstate);
983     }
984 
985     dbg("enforcing main obj relro");
986     if (obj_enforce_relro(obj_main) == -1)
987 	rtld_die();
988 
989     lock_release(rtld_bind_lock, &lockstate);
990 
991     dbg("transferring control to program entry point = %p", obj_main->entry);
992 
993     /* Return the exit procedure and the program entry point. */
994     *exit_proc = rtld_exit_ptr;
995     *objp = obj_main;
996     return ((func_ptr_type)obj_main->entry);
997 }
998 
999 void *
1000 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1001 {
1002 	void *ptr;
1003 	Elf_Addr target;
1004 
1005 	ptr = (void *)make_function_pointer(def, obj);
1006 	target = call_ifunc_resolver(ptr);
1007 	return ((void *)target);
1008 }
1009 
1010 Elf_Addr
1011 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1012 {
1013     const Elf_Rel *rel;
1014     const Elf_Sym *def;
1015     const Obj_Entry *defobj;
1016     Elf_Addr *where;
1017     Elf_Addr target;
1018     RtldLockState lockstate;
1019 
1020     rlock_acquire(rtld_bind_lock, &lockstate);
1021     if (sigsetjmp(lockstate.env, 0) != 0)
1022 	    lock_upgrade(rtld_bind_lock, &lockstate);
1023     if (obj->pltrel)
1024 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1025     else
1026 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1027 
1028     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1029     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1030 	NULL, &lockstate);
1031     if (def == NULL)
1032 	rtld_die();
1033     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1034 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1035     else
1036 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1037 
1038     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1039       defobj->strtab + def->st_name,
1040       obj->path == NULL ? NULL : basename(obj->path),
1041       (void *)target,
1042       defobj->path == NULL ? NULL : basename(defobj->path));
1043 
1044     /*
1045      * Write the new contents for the jmpslot. Note that depending on
1046      * architecture, the value which we need to return back to the
1047      * lazy binding trampoline may or may not be the target
1048      * address. The value returned from reloc_jmpslot() is the value
1049      * that the trampoline needs.
1050      */
1051     target = reloc_jmpslot(where, target, defobj, obj, rel);
1052     lock_release(rtld_bind_lock, &lockstate);
1053     return (target);
1054 }
1055 
1056 /*
1057  * Error reporting function.  Use it like printf.  If formats the message
1058  * into a buffer, and sets things up so that the next call to dlerror()
1059  * will return the message.
1060  */
1061 void
1062 _rtld_error(const char *fmt, ...)
1063 {
1064 	va_list ap;
1065 
1066 	va_start(ap, fmt);
1067 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1068 	    fmt, ap);
1069 	va_end(ap);
1070 	*lockinfo.dlerror_seen() = 0;
1071 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1072 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1073 }
1074 
1075 /*
1076  * Return a dynamically-allocated copy of the current error message, if any.
1077  */
1078 static struct dlerror_save *
1079 errmsg_save(void)
1080 {
1081 	struct dlerror_save *res;
1082 
1083 	res = xmalloc(sizeof(*res));
1084 	res->seen = *lockinfo.dlerror_seen();
1085 	if (res->seen == 0)
1086 		res->msg = xstrdup(lockinfo.dlerror_loc());
1087 	return (res);
1088 }
1089 
1090 /*
1091  * Restore the current error message from a copy which was previously saved
1092  * by errmsg_save().  The copy is freed.
1093  */
1094 static void
1095 errmsg_restore(struct dlerror_save *saved_msg)
1096 {
1097 	if (saved_msg == NULL || saved_msg->seen == 1) {
1098 		*lockinfo.dlerror_seen() = 1;
1099 	} else {
1100 		*lockinfo.dlerror_seen() = 0;
1101 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1102 		    lockinfo.dlerror_loc_sz);
1103 		free(saved_msg->msg);
1104 	}
1105 	free(saved_msg);
1106 }
1107 
1108 static const char *
1109 basename(const char *name)
1110 {
1111 	const char *p;
1112 
1113 	p = strrchr(name, '/');
1114 	return (p != NULL ? p + 1 : name);
1115 }
1116 
1117 static struct utsname uts;
1118 
1119 static char *
1120 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1121     const char *subst, bool may_free)
1122 {
1123 	char *p, *p1, *res, *resp;
1124 	int subst_len, kw_len, subst_count, old_len, new_len;
1125 
1126 	kw_len = strlen(kw);
1127 
1128 	/*
1129 	 * First, count the number of the keyword occurrences, to
1130 	 * preallocate the final string.
1131 	 */
1132 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1133 		p1 = strstr(p, kw);
1134 		if (p1 == NULL)
1135 			break;
1136 	}
1137 
1138 	/*
1139 	 * If the keyword is not found, just return.
1140 	 *
1141 	 * Return non-substituted string if resolution failed.  We
1142 	 * cannot do anything more reasonable, the failure mode of the
1143 	 * caller is unresolved library anyway.
1144 	 */
1145 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1146 		return (may_free ? real : xstrdup(real));
1147 	if (obj != NULL)
1148 		subst = obj->origin_path;
1149 
1150 	/*
1151 	 * There is indeed something to substitute.  Calculate the
1152 	 * length of the resulting string, and allocate it.
1153 	 */
1154 	subst_len = strlen(subst);
1155 	old_len = strlen(real);
1156 	new_len = old_len + (subst_len - kw_len) * subst_count;
1157 	res = xmalloc(new_len + 1);
1158 
1159 	/*
1160 	 * Now, execute the substitution loop.
1161 	 */
1162 	for (p = real, resp = res, *resp = '\0';;) {
1163 		p1 = strstr(p, kw);
1164 		if (p1 != NULL) {
1165 			/* Copy the prefix before keyword. */
1166 			memcpy(resp, p, p1 - p);
1167 			resp += p1 - p;
1168 			/* Keyword replacement. */
1169 			memcpy(resp, subst, subst_len);
1170 			resp += subst_len;
1171 			*resp = '\0';
1172 			p = p1 + kw_len;
1173 		} else
1174 			break;
1175 	}
1176 
1177 	/* Copy to the end of string and finish. */
1178 	strcat(resp, p);
1179 	if (may_free)
1180 		free(real);
1181 	return (res);
1182 }
1183 
1184 static const struct {
1185 	const char *kw;
1186 	bool pass_obj;
1187 	const char *subst;
1188 } tokens[] = {
1189 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1190 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1191 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1192 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1193 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1194 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1195 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1196 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1197 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1198 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1199 };
1200 
1201 static char *
1202 origin_subst(Obj_Entry *obj, const char *real)
1203 {
1204 	char *res;
1205 	int i;
1206 
1207 	if (obj == NULL || !trust)
1208 		return (xstrdup(real));
1209 	if (uts.sysname[0] == '\0') {
1210 		if (uname(&uts) != 0) {
1211 			_rtld_error("utsname failed: %d", errno);
1212 			return (NULL);
1213 		}
1214 	}
1215 
1216 	/* __DECONST is safe here since without may_free real is unchanged */
1217 	res = __DECONST(char *, real);
1218 	for (i = 0; i < (int)nitems(tokens); i++) {
1219 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1220 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1221 	}
1222 	return (res);
1223 }
1224 
1225 void
1226 rtld_die(void)
1227 {
1228     const char *msg = dlerror();
1229 
1230     if (msg == NULL)
1231 	msg = "Fatal error";
1232     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1233     rtld_fdputstr(STDERR_FILENO, msg);
1234     rtld_fdputchar(STDERR_FILENO, '\n');
1235     _exit(1);
1236 }
1237 
1238 /*
1239  * Process a shared object's DYNAMIC section, and save the important
1240  * information in its Obj_Entry structure.
1241  */
1242 static void
1243 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1244     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1245 {
1246     const Elf_Dyn *dynp;
1247     Needed_Entry **needed_tail = &obj->needed;
1248     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1249     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1250     const Elf_Hashelt *hashtab;
1251     const Elf32_Word *hashval;
1252     Elf32_Word bkt, nmaskwords;
1253     int bloom_size32;
1254     int plttype = DT_REL;
1255 
1256     *dyn_rpath = NULL;
1257     *dyn_soname = NULL;
1258     *dyn_runpath = NULL;
1259 
1260     obj->bind_now = false;
1261     dynp = obj->dynamic;
1262     if (dynp == NULL)
1263 	return;
1264     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1265 	switch (dynp->d_tag) {
1266 
1267 	case DT_REL:
1268 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1269 	    break;
1270 
1271 	case DT_RELSZ:
1272 	    obj->relsize = dynp->d_un.d_val;
1273 	    break;
1274 
1275 	case DT_RELENT:
1276 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1277 	    break;
1278 
1279 	case DT_JMPREL:
1280 	    obj->pltrel = (const Elf_Rel *)
1281 	      (obj->relocbase + dynp->d_un.d_ptr);
1282 	    break;
1283 
1284 	case DT_PLTRELSZ:
1285 	    obj->pltrelsize = dynp->d_un.d_val;
1286 	    break;
1287 
1288 	case DT_RELA:
1289 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1290 	    break;
1291 
1292 	case DT_RELASZ:
1293 	    obj->relasize = dynp->d_un.d_val;
1294 	    break;
1295 
1296 	case DT_RELAENT:
1297 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1298 	    break;
1299 
1300 	case DT_RELR:
1301 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1302 	    break;
1303 
1304 	case DT_RELRSZ:
1305 	    obj->relrsize = dynp->d_un.d_val;
1306 	    break;
1307 
1308 	case DT_RELRENT:
1309 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1310 	    break;
1311 
1312 	case DT_PLTREL:
1313 	    plttype = dynp->d_un.d_val;
1314 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1315 	    break;
1316 
1317 	case DT_SYMTAB:
1318 	    obj->symtab = (const Elf_Sym *)
1319 	      (obj->relocbase + dynp->d_un.d_ptr);
1320 	    break;
1321 
1322 	case DT_SYMENT:
1323 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1324 	    break;
1325 
1326 	case DT_STRTAB:
1327 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1328 	    break;
1329 
1330 	case DT_STRSZ:
1331 	    obj->strsize = dynp->d_un.d_val;
1332 	    break;
1333 
1334 	case DT_VERNEED:
1335 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1336 		dynp->d_un.d_val);
1337 	    break;
1338 
1339 	case DT_VERNEEDNUM:
1340 	    obj->verneednum = dynp->d_un.d_val;
1341 	    break;
1342 
1343 	case DT_VERDEF:
1344 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1345 		dynp->d_un.d_val);
1346 	    break;
1347 
1348 	case DT_VERDEFNUM:
1349 	    obj->verdefnum = dynp->d_un.d_val;
1350 	    break;
1351 
1352 	case DT_VERSYM:
1353 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1354 		dynp->d_un.d_val);
1355 	    break;
1356 
1357 	case DT_HASH:
1358 	    {
1359 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1360 		    dynp->d_un.d_ptr);
1361 		obj->nbuckets = hashtab[0];
1362 		obj->nchains = hashtab[1];
1363 		obj->buckets = hashtab + 2;
1364 		obj->chains = obj->buckets + obj->nbuckets;
1365 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1366 		  obj->buckets != NULL;
1367 	    }
1368 	    break;
1369 
1370 	case DT_GNU_HASH:
1371 	    {
1372 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1373 		    dynp->d_un.d_ptr);
1374 		obj->nbuckets_gnu = hashtab[0];
1375 		obj->symndx_gnu = hashtab[1];
1376 		nmaskwords = hashtab[2];
1377 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1378 		obj->maskwords_bm_gnu = nmaskwords - 1;
1379 		obj->shift2_gnu = hashtab[3];
1380 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1381 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1382 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1383 		  obj->symndx_gnu;
1384 		/* Number of bitmask words is required to be power of 2 */
1385 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1386 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1387 	    }
1388 	    break;
1389 
1390 	case DT_NEEDED:
1391 	    if (!obj->rtld) {
1392 		Needed_Entry *nep = NEW(Needed_Entry);
1393 		nep->name = dynp->d_un.d_val;
1394 		nep->obj = NULL;
1395 		nep->next = NULL;
1396 
1397 		*needed_tail = nep;
1398 		needed_tail = &nep->next;
1399 	    }
1400 	    break;
1401 
1402 	case DT_FILTER:
1403 	    if (!obj->rtld) {
1404 		Needed_Entry *nep = NEW(Needed_Entry);
1405 		nep->name = dynp->d_un.d_val;
1406 		nep->obj = NULL;
1407 		nep->next = NULL;
1408 
1409 		*needed_filtees_tail = nep;
1410 		needed_filtees_tail = &nep->next;
1411 
1412 		if (obj->linkmap.l_refname == NULL)
1413 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1414 	    }
1415 	    break;
1416 
1417 	case DT_AUXILIARY:
1418 	    if (!obj->rtld) {
1419 		Needed_Entry *nep = NEW(Needed_Entry);
1420 		nep->name = dynp->d_un.d_val;
1421 		nep->obj = NULL;
1422 		nep->next = NULL;
1423 
1424 		*needed_aux_filtees_tail = nep;
1425 		needed_aux_filtees_tail = &nep->next;
1426 	    }
1427 	    break;
1428 
1429 	case DT_PLTGOT:
1430 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1431 	    break;
1432 
1433 	case DT_TEXTREL:
1434 	    obj->textrel = true;
1435 	    break;
1436 
1437 	case DT_SYMBOLIC:
1438 	    obj->symbolic = true;
1439 	    break;
1440 
1441 	case DT_RPATH:
1442 	    /*
1443 	     * We have to wait until later to process this, because we
1444 	     * might not have gotten the address of the string table yet.
1445 	     */
1446 	    *dyn_rpath = dynp;
1447 	    break;
1448 
1449 	case DT_SONAME:
1450 	    *dyn_soname = dynp;
1451 	    break;
1452 
1453 	case DT_RUNPATH:
1454 	    *dyn_runpath = dynp;
1455 	    break;
1456 
1457 	case DT_INIT:
1458 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1459 	    break;
1460 
1461 	case DT_PREINIT_ARRAY:
1462 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1463 	    break;
1464 
1465 	case DT_PREINIT_ARRAYSZ:
1466 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1467 	    break;
1468 
1469 	case DT_INIT_ARRAY:
1470 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1471 	    break;
1472 
1473 	case DT_INIT_ARRAYSZ:
1474 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1475 	    break;
1476 
1477 	case DT_FINI:
1478 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1479 	    break;
1480 
1481 	case DT_FINI_ARRAY:
1482 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1483 	    break;
1484 
1485 	case DT_FINI_ARRAYSZ:
1486 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1487 	    break;
1488 
1489 	case DT_DEBUG:
1490 	    if (!early)
1491 		dbg("Filling in DT_DEBUG entry");
1492 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1493 	    break;
1494 
1495 	case DT_FLAGS:
1496 		if (dynp->d_un.d_val & DF_ORIGIN)
1497 		    obj->z_origin = true;
1498 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1499 		    obj->symbolic = true;
1500 		if (dynp->d_un.d_val & DF_TEXTREL)
1501 		    obj->textrel = true;
1502 		if (dynp->d_un.d_val & DF_BIND_NOW)
1503 		    obj->bind_now = true;
1504 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1505 		    obj->static_tls = true;
1506 	    break;
1507 
1508 	case DT_FLAGS_1:
1509 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1510 		    obj->z_noopen = true;
1511 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1512 		    obj->z_origin = true;
1513 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1514 		    obj->z_global = true;
1515 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1516 		    obj->bind_now = true;
1517 		if (dynp->d_un.d_val & DF_1_NODELETE)
1518 		    obj->z_nodelete = true;
1519 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1520 		    obj->z_loadfltr = true;
1521 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1522 		    obj->z_interpose = true;
1523 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1524 		    obj->z_nodeflib = true;
1525 		if (dynp->d_un.d_val & DF_1_PIE)
1526 		    obj->z_pie = true;
1527 	    break;
1528 
1529 	default:
1530 	    if (arch_digest_dynamic(obj, dynp))
1531 		break;
1532 
1533 	    if (!early) {
1534 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1535 		    (long)dynp->d_tag);
1536 	    }
1537 	    break;
1538 	}
1539     }
1540 
1541     obj->traced = false;
1542 
1543     if (plttype == DT_RELA) {
1544 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1545 	obj->pltrel = NULL;
1546 	obj->pltrelasize = obj->pltrelsize;
1547 	obj->pltrelsize = 0;
1548     }
1549 
1550     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1551     if (obj->valid_hash_sysv)
1552 	obj->dynsymcount = obj->nchains;
1553     else if (obj->valid_hash_gnu) {
1554 	obj->dynsymcount = 0;
1555 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1556 	    if (obj->buckets_gnu[bkt] == 0)
1557 		continue;
1558 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1559 	    do
1560 		obj->dynsymcount++;
1561 	    while ((*hashval++ & 1u) == 0);
1562 	}
1563 	obj->dynsymcount += obj->symndx_gnu;
1564     }
1565 
1566     if (obj->linkmap.l_refname != NULL)
1567 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1568 	  linkmap.l_refname;
1569 }
1570 
1571 static bool
1572 obj_resolve_origin(Obj_Entry *obj)
1573 {
1574 
1575 	if (obj->origin_path != NULL)
1576 		return (true);
1577 	obj->origin_path = xmalloc(PATH_MAX);
1578 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1579 }
1580 
1581 static bool
1582 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1583     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1584 {
1585 
1586 	if (obj->z_origin && !obj_resolve_origin(obj))
1587 		return (false);
1588 
1589 	if (dyn_runpath != NULL) {
1590 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1591 		obj->runpath = origin_subst(obj, obj->runpath);
1592 	} else if (dyn_rpath != NULL) {
1593 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1594 		obj->rpath = origin_subst(obj, obj->rpath);
1595 	}
1596 	if (dyn_soname != NULL)
1597 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1598 	return (true);
1599 }
1600 
1601 static bool
1602 digest_dynamic(Obj_Entry *obj, int early)
1603 {
1604 	const Elf_Dyn *dyn_rpath;
1605 	const Elf_Dyn *dyn_soname;
1606 	const Elf_Dyn *dyn_runpath;
1607 
1608 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1609 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1610 }
1611 
1612 /*
1613  * Process a shared object's program header.  This is used only for the
1614  * main program, when the kernel has already loaded the main program
1615  * into memory before calling the dynamic linker.  It creates and
1616  * returns an Obj_Entry structure.
1617  */
1618 static Obj_Entry *
1619 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1620 {
1621     Obj_Entry *obj;
1622     const Elf_Phdr *phlimit = phdr + phnum;
1623     const Elf_Phdr *ph;
1624     Elf_Addr note_start, note_end;
1625     int nsegs = 0;
1626 
1627     obj = obj_new();
1628     for (ph = phdr;  ph < phlimit;  ph++) {
1629 	if (ph->p_type != PT_PHDR)
1630 	    continue;
1631 
1632 	obj->phdr = phdr;
1633 	obj->phsize = ph->p_memsz;
1634 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1635 	break;
1636     }
1637 
1638     obj->stack_flags = PF_X | PF_R | PF_W;
1639 
1640     for (ph = phdr;  ph < phlimit;  ph++) {
1641 	switch (ph->p_type) {
1642 
1643 	case PT_INTERP:
1644 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1645 	    break;
1646 
1647 	case PT_LOAD:
1648 	    if (nsegs == 0) {	/* First load segment */
1649 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1650 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1651 	    } else {		/* Last load segment */
1652 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1653 		  obj->vaddrbase;
1654 	    }
1655 	    nsegs++;
1656 	    break;
1657 
1658 	case PT_DYNAMIC:
1659 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1660 	    break;
1661 
1662 	case PT_TLS:
1663 	    obj->tlsindex = 1;
1664 	    obj->tlssize = ph->p_memsz;
1665 	    obj->tlsalign = ph->p_align;
1666 	    obj->tlsinitsize = ph->p_filesz;
1667 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1668 	    obj->tlspoffset = ph->p_offset;
1669 	    break;
1670 
1671 	case PT_GNU_STACK:
1672 	    obj->stack_flags = ph->p_flags;
1673 	    break;
1674 
1675 	case PT_NOTE:
1676 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1677 	    note_end = note_start + ph->p_filesz;
1678 	    digest_notes(obj, note_start, note_end);
1679 	    break;
1680 	}
1681     }
1682     if (nsegs < 1) {
1683 	_rtld_error("%s: too few PT_LOAD segments", path);
1684 	return (NULL);
1685     }
1686 
1687     obj->entry = entry;
1688     return (obj);
1689 }
1690 
1691 void
1692 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1693 {
1694 	const Elf_Note *note;
1695 	const char *note_name;
1696 	uintptr_t p;
1697 
1698 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1699 	    note = (const Elf_Note *)((const char *)(note + 1) +
1700 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1701 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1702 		if (arch_digest_note(obj, note))
1703 			continue;
1704 
1705 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1706 		    note->n_descsz != sizeof(int32_t))
1707 			continue;
1708 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1709 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1710 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1711 			continue;
1712 		note_name = (const char *)(note + 1);
1713 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1714 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1715 			continue;
1716 		switch (note->n_type) {
1717 		case NT_FREEBSD_ABI_TAG:
1718 			/* FreeBSD osrel note */
1719 			p = (uintptr_t)(note + 1);
1720 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1721 			obj->osrel = *(const int32_t *)(p);
1722 			dbg("note osrel %d", obj->osrel);
1723 			break;
1724 		case NT_FREEBSD_FEATURE_CTL:
1725 			/* FreeBSD ABI feature control note */
1726 			p = (uintptr_t)(note + 1);
1727 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1728 			obj->fctl0 = *(const uint32_t *)(p);
1729 			dbg("note fctl0 %#x", obj->fctl0);
1730 			break;
1731 		case NT_FREEBSD_NOINIT_TAG:
1732 			/* FreeBSD 'crt does not call init' note */
1733 			obj->crt_no_init = true;
1734 			dbg("note crt_no_init");
1735 			break;
1736 		}
1737 	}
1738 }
1739 
1740 static Obj_Entry *
1741 dlcheck(void *handle)
1742 {
1743     Obj_Entry *obj;
1744 
1745     TAILQ_FOREACH(obj, &obj_list, next) {
1746 	if (obj == (Obj_Entry *) handle)
1747 	    break;
1748     }
1749 
1750     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1751 	_rtld_error("Invalid shared object handle %p", handle);
1752 	return (NULL);
1753     }
1754     return (obj);
1755 }
1756 
1757 /*
1758  * If the given object is already in the donelist, return true.  Otherwise
1759  * add the object to the list and return false.
1760  */
1761 static bool
1762 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1763 {
1764     unsigned int i;
1765 
1766     for (i = 0;  i < dlp->num_used;  i++)
1767 	if (dlp->objs[i] == obj)
1768 	    return (true);
1769     /*
1770      * Our donelist allocation should always be sufficient.  But if
1771      * our threads locking isn't working properly, more shared objects
1772      * could have been loaded since we allocated the list.  That should
1773      * never happen, but we'll handle it properly just in case it does.
1774      */
1775     if (dlp->num_used < dlp->num_alloc)
1776 	dlp->objs[dlp->num_used++] = obj;
1777     return (false);
1778 }
1779 
1780 /*
1781  * SysV hash function for symbol table lookup.  It is a slightly optimized
1782  * version of the hash specified by the System V ABI.
1783  */
1784 Elf32_Word
1785 elf_hash(const char *name)
1786 {
1787 	const unsigned char *p = (const unsigned char *)name;
1788 	Elf32_Word h = 0;
1789 
1790 	while (*p != '\0') {
1791 		h = (h << 4) + *p++;
1792 		h ^= (h >> 24) & 0xf0;
1793 	}
1794 	return (h & 0x0fffffff);
1795 }
1796 
1797 /*
1798  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1799  * unsigned in case it's implemented with a wider type.
1800  */
1801 static uint32_t
1802 gnu_hash(const char *s)
1803 {
1804 	uint32_t h;
1805 	unsigned char c;
1806 
1807 	h = 5381;
1808 	for (c = *s; c != '\0'; c = *++s)
1809 		h = h * 33 + c;
1810 	return (h & 0xffffffff);
1811 }
1812 
1813 
1814 /*
1815  * Find the library with the given name, and return its full pathname.
1816  * The returned string is dynamically allocated.  Generates an error
1817  * message and returns NULL if the library cannot be found.
1818  *
1819  * If the second argument is non-NULL, then it refers to an already-
1820  * loaded shared object, whose library search path will be searched.
1821  *
1822  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1823  * descriptor (which is close-on-exec) will be passed out via the third
1824  * argument.
1825  *
1826  * The search order is:
1827  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1828  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1829  *   LD_LIBRARY_PATH
1830  *   DT_RUNPATH in the referencing file
1831  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1832  *	 from list)
1833  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1834  *
1835  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1836  */
1837 static char *
1838 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1839 {
1840 	char *pathname, *refobj_path;
1841 	const char *name;
1842 	bool nodeflib, objgiven;
1843 
1844 	objgiven = refobj != NULL;
1845 
1846 	if (libmap_disable || !objgiven ||
1847 	    (name = lm_find(refobj->path, xname)) == NULL)
1848 		name = xname;
1849 
1850 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1851 		if (name[0] != '/' && !trust) {
1852 			_rtld_error("Absolute pathname required "
1853 			    "for shared object \"%s\"", name);
1854 			return (NULL);
1855 		}
1856 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1857 		    __DECONST(char *, name)));
1858 	}
1859 
1860 	dbg(" Searching for \"%s\"", name);
1861 	refobj_path = objgiven ? refobj->path : NULL;
1862 
1863 	/*
1864 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1865 	 * back to pre-conforming behaviour if user requested so with
1866 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1867 	 * nodeflib.
1868 	 */
1869 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1870 		pathname = search_library_path(name, ld_library_path,
1871 		    refobj_path, fdp);
1872 		if (pathname != NULL)
1873 			return (pathname);
1874 		if (refobj != NULL) {
1875 			pathname = search_library_path(name, refobj->rpath,
1876 			    refobj_path, fdp);
1877 			if (pathname != NULL)
1878 				return (pathname);
1879 		}
1880 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1881 		if (pathname != NULL)
1882 			return (pathname);
1883 		pathname = search_library_path(name, gethints(false),
1884 		    refobj_path, fdp);
1885 		if (pathname != NULL)
1886 			return (pathname);
1887 		pathname = search_library_path(name, ld_standard_library_path,
1888 		    refobj_path, fdp);
1889 		if (pathname != NULL)
1890 			return (pathname);
1891 	} else {
1892 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1893 		if (objgiven) {
1894 			pathname = search_library_path(name, refobj->rpath,
1895 			    refobj->path, fdp);
1896 			if (pathname != NULL)
1897 				return (pathname);
1898 		}
1899 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1900 			pathname = search_library_path(name, obj_main->rpath,
1901 			    refobj_path, fdp);
1902 			if (pathname != NULL)
1903 				return (pathname);
1904 		}
1905 		pathname = search_library_path(name, ld_library_path,
1906 		    refobj_path, fdp);
1907 		if (pathname != NULL)
1908 			return (pathname);
1909 		if (objgiven) {
1910 			pathname = search_library_path(name, refobj->runpath,
1911 			    refobj_path, fdp);
1912 			if (pathname != NULL)
1913 				return (pathname);
1914 		}
1915 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1916 		if (pathname != NULL)
1917 			return (pathname);
1918 		pathname = search_library_path(name, gethints(nodeflib),
1919 		    refobj_path, fdp);
1920 		if (pathname != NULL)
1921 			return (pathname);
1922 		if (objgiven && !nodeflib) {
1923 			pathname = search_library_path(name,
1924 			    ld_standard_library_path, refobj_path, fdp);
1925 			if (pathname != NULL)
1926 				return (pathname);
1927 		}
1928 	}
1929 
1930 	if (objgiven && refobj->path != NULL) {
1931 		_rtld_error("Shared object \"%s\" not found, "
1932 		    "required by \"%s\"", name, basename(refobj->path));
1933 	} else {
1934 		_rtld_error("Shared object \"%s\" not found", name);
1935 	}
1936 	return (NULL);
1937 }
1938 
1939 /*
1940  * Given a symbol number in a referencing object, find the corresponding
1941  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1942  * no definition was found.  Returns a pointer to the Obj_Entry of the
1943  * defining object via the reference parameter DEFOBJ_OUT.
1944  */
1945 const Elf_Sym *
1946 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1947     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1948     RtldLockState *lockstate)
1949 {
1950     const Elf_Sym *ref;
1951     const Elf_Sym *def;
1952     const Obj_Entry *defobj;
1953     const Ver_Entry *ve;
1954     SymLook req;
1955     const char *name;
1956     int res;
1957 
1958     /*
1959      * If we have already found this symbol, get the information from
1960      * the cache.
1961      */
1962     if (symnum >= refobj->dynsymcount)
1963 	return (NULL);	/* Bad object */
1964     if (cache != NULL && cache[symnum].sym != NULL) {
1965 	*defobj_out = cache[symnum].obj;
1966 	return (cache[symnum].sym);
1967     }
1968 
1969     ref = refobj->symtab + symnum;
1970     name = refobj->strtab + ref->st_name;
1971     def = NULL;
1972     defobj = NULL;
1973     ve = NULL;
1974 
1975     /*
1976      * We don't have to do a full scale lookup if the symbol is local.
1977      * We know it will bind to the instance in this load module; to
1978      * which we already have a pointer (ie ref). By not doing a lookup,
1979      * we not only improve performance, but it also avoids unresolvable
1980      * symbols when local symbols are not in the hash table. This has
1981      * been seen with the ia64 toolchain.
1982      */
1983     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1984 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1985 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1986 		symnum);
1987 	}
1988 	symlook_init(&req, name);
1989 	req.flags = flags;
1990 	ve = req.ventry = fetch_ventry(refobj, symnum);
1991 	req.lockstate = lockstate;
1992 	res = symlook_default(&req, refobj);
1993 	if (res == 0) {
1994 	    def = req.sym_out;
1995 	    defobj = req.defobj_out;
1996 	}
1997     } else {
1998 	def = ref;
1999 	defobj = refobj;
2000     }
2001 
2002     /*
2003      * If we found no definition and the reference is weak, treat the
2004      * symbol as having the value zero.
2005      */
2006     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2007 	def = &sym_zero;
2008 	defobj = obj_main;
2009     }
2010 
2011     if (def != NULL) {
2012 	*defobj_out = defobj;
2013 	/* Record the information in the cache to avoid subsequent lookups. */
2014 	if (cache != NULL) {
2015 	    cache[symnum].sym = def;
2016 	    cache[symnum].obj = defobj;
2017 	}
2018     } else {
2019 	if (refobj != &obj_rtld)
2020 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2021 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2022     }
2023     return (def);
2024 }
2025 
2026 /* Convert between native byte order and forced little resp. big endian. */
2027 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2028 
2029 /*
2030  * Return the search path from the ldconfig hints file, reading it if
2031  * necessary.  If nostdlib is true, then the default search paths are
2032  * not added to result.
2033  *
2034  * Returns NULL if there are problems with the hints file,
2035  * or if the search path there is empty.
2036  */
2037 static const char *
2038 gethints(bool nostdlib)
2039 {
2040 	static char *filtered_path;
2041 	static const char *hints;
2042 	static struct elfhints_hdr hdr;
2043 	struct fill_search_info_args sargs, hargs;
2044 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2045 	struct dl_serpath *SLPpath, *hintpath;
2046 	char *p;
2047 	struct stat hint_stat;
2048 	unsigned int SLPndx, hintndx, fndx, fcount;
2049 	int fd;
2050 	size_t flen;
2051 	uint32_t dl;
2052 	uint32_t magic;		/* Magic number */
2053 	uint32_t version;	/* File version (1) */
2054 	uint32_t strtab;	/* Offset of string table in file */
2055 	uint32_t dirlist;	/* Offset of directory list in string table */
2056 	uint32_t dirlistlen;	/* strlen(dirlist) */
2057 	bool is_le;		/* Does the hints file use little endian */
2058 	bool skip;
2059 
2060 	/* First call, read the hints file */
2061 	if (hints == NULL) {
2062 		/* Keep from trying again in case the hints file is bad. */
2063 		hints = "";
2064 
2065 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2066 			dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2067 			return (NULL);
2068 		}
2069 
2070 		/*
2071 		 * Check of hdr.dirlistlen value against type limit
2072 		 * intends to pacify static analyzers.  Further
2073 		 * paranoia leads to checks that dirlist is fully
2074 		 * contained in the file range.
2075 		 */
2076 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2077 			dbg("failed to read %lu bytes from hints file \"%s\"",
2078 			    (u_long)sizeof hdr, ld_elf_hints_path);
2079 cleanup1:
2080 			close(fd);
2081 			hdr.dirlistlen = 0;
2082 			return (NULL);
2083 		}
2084 		dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2085 		dbg("hints file byte-order: %s-endian",
2086 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2087 		is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2088 		magic = COND_SWAP(hdr.magic);
2089 		version = COND_SWAP(hdr.version);
2090 		strtab = COND_SWAP(hdr.strtab);
2091 		dirlist = COND_SWAP(hdr.dirlist);
2092 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2093 		if (magic != ELFHINTS_MAGIC) {
2094 			dbg("invalid magic number %#08x (expected: %#08x)",
2095 			    magic, ELFHINTS_MAGIC);
2096 			goto cleanup1;
2097 		}
2098 		if (version != 1) {
2099 			dbg("hints file version %d (expected: 1)", version);
2100 			goto cleanup1;
2101 		}
2102 		if (dirlistlen > UINT_MAX / 2) {
2103 			dbg("directory list is to long: %d > %d",
2104 			    dirlistlen, UINT_MAX / 2);
2105 			goto cleanup1;
2106 		}
2107 		if (fstat(fd, &hint_stat) == -1) {
2108 			dbg("failed to find length of hints file \"%s\"",
2109 			    ld_elf_hints_path);
2110 			goto cleanup1;
2111 		}
2112 		dl = strtab;
2113 		if (dl + dirlist < dl) {
2114 			dbg("invalid string table position %d", dl);
2115 			goto cleanup1;
2116 		}
2117 		dl += dirlist;
2118 		if (dl + dirlistlen < dl) {
2119 			dbg("invalid directory list offset %d", dirlist);
2120 			goto cleanup1;
2121 		}
2122 		dl += dirlistlen;
2123 		if (dl > hint_stat.st_size) {
2124 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2125 			    ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2126 			goto cleanup1;
2127 		}
2128 		p = xmalloc(dirlistlen + 1);
2129 		if (pread(fd, p, dirlistlen + 1,
2130 		    strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2131 		    p[dirlistlen] != '\0') {
2132 			free(p);
2133 			dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2134 			    dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2135 			goto cleanup1;
2136 		}
2137 		hints = p;
2138 		close(fd);
2139 	}
2140 
2141 	/*
2142 	 * If caller agreed to receive list which includes the default
2143 	 * paths, we are done. Otherwise, if we still did not
2144 	 * calculated filtered result, do it now.
2145 	 */
2146 	if (!nostdlib)
2147 		return (hints[0] != '\0' ? hints : NULL);
2148 	if (filtered_path != NULL)
2149 		goto filt_ret;
2150 
2151 	/*
2152 	 * Obtain the list of all configured search paths, and the
2153 	 * list of the default paths.
2154 	 *
2155 	 * First estimate the size of the results.
2156 	 */
2157 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2158 	smeta.dls_cnt = 0;
2159 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2160 	hmeta.dls_cnt = 0;
2161 
2162 	sargs.request = RTLD_DI_SERINFOSIZE;
2163 	sargs.serinfo = &smeta;
2164 	hargs.request = RTLD_DI_SERINFOSIZE;
2165 	hargs.serinfo = &hmeta;
2166 
2167 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2168 	    &sargs);
2169 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2170 
2171 	SLPinfo = xmalloc(smeta.dls_size);
2172 	hintinfo = xmalloc(hmeta.dls_size);
2173 
2174 	/*
2175 	 * Next fetch both sets of paths.
2176 	 */
2177 	sargs.request = RTLD_DI_SERINFO;
2178 	sargs.serinfo = SLPinfo;
2179 	sargs.serpath = &SLPinfo->dls_serpath[0];
2180 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2181 
2182 	hargs.request = RTLD_DI_SERINFO;
2183 	hargs.serinfo = hintinfo;
2184 	hargs.serpath = &hintinfo->dls_serpath[0];
2185 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2186 
2187 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2188 	    &sargs);
2189 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2190 
2191 	/*
2192 	 * Now calculate the difference between two sets, by excluding
2193 	 * standard paths from the full set.
2194 	 */
2195 	fndx = 0;
2196 	fcount = 0;
2197 	filtered_path = xmalloc(dirlistlen + 1);
2198 	hintpath = &hintinfo->dls_serpath[0];
2199 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2200 		skip = false;
2201 		SLPpath = &SLPinfo->dls_serpath[0];
2202 		/*
2203 		 * Check each standard path against current.
2204 		 */
2205 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2206 			/* matched, skip the path */
2207 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2208 				skip = true;
2209 				break;
2210 			}
2211 		}
2212 		if (skip)
2213 			continue;
2214 		/*
2215 		 * Not matched against any standard path, add the path
2216 		 * to result. Separate consequtive paths with ':'.
2217 		 */
2218 		if (fcount > 0) {
2219 			filtered_path[fndx] = ':';
2220 			fndx++;
2221 		}
2222 		fcount++;
2223 		flen = strlen(hintpath->dls_name);
2224 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2225 		fndx += flen;
2226 	}
2227 	filtered_path[fndx] = '\0';
2228 
2229 	free(SLPinfo);
2230 	free(hintinfo);
2231 
2232 filt_ret:
2233 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2234 }
2235 
2236 static void
2237 init_dag(Obj_Entry *root)
2238 {
2239     const Needed_Entry *needed;
2240     const Objlist_Entry *elm;
2241     DoneList donelist;
2242 
2243     if (root->dag_inited)
2244 	return;
2245     donelist_init(&donelist);
2246 
2247     /* Root object belongs to own DAG. */
2248     objlist_push_tail(&root->dldags, root);
2249     objlist_push_tail(&root->dagmembers, root);
2250     donelist_check(&donelist, root);
2251 
2252     /*
2253      * Add dependencies of root object to DAG in breadth order
2254      * by exploiting the fact that each new object get added
2255      * to the tail of the dagmembers list.
2256      */
2257     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2258 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2259 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2260 		continue;
2261 	    objlist_push_tail(&needed->obj->dldags, root);
2262 	    objlist_push_tail(&root->dagmembers, needed->obj);
2263 	}
2264     }
2265     root->dag_inited = true;
2266 }
2267 
2268 static void
2269 init_marker(Obj_Entry *marker)
2270 {
2271 
2272 	bzero(marker, sizeof(*marker));
2273 	marker->marker = true;
2274 }
2275 
2276 Obj_Entry *
2277 globallist_curr(const Obj_Entry *obj)
2278 {
2279 
2280 	for (;;) {
2281 		if (obj == NULL)
2282 			return (NULL);
2283 		if (!obj->marker)
2284 			return (__DECONST(Obj_Entry *, obj));
2285 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2286 	}
2287 }
2288 
2289 Obj_Entry *
2290 globallist_next(const Obj_Entry *obj)
2291 {
2292 
2293 	for (;;) {
2294 		obj = TAILQ_NEXT(obj, next);
2295 		if (obj == NULL)
2296 			return (NULL);
2297 		if (!obj->marker)
2298 			return (__DECONST(Obj_Entry *, obj));
2299 	}
2300 }
2301 
2302 /* Prevent the object from being unmapped while the bind lock is dropped. */
2303 static void
2304 hold_object(Obj_Entry *obj)
2305 {
2306 
2307 	obj->holdcount++;
2308 }
2309 
2310 static void
2311 unhold_object(Obj_Entry *obj)
2312 {
2313 
2314 	assert(obj->holdcount > 0);
2315 	if (--obj->holdcount == 0 && obj->unholdfree)
2316 		release_object(obj);
2317 }
2318 
2319 static void
2320 process_z(Obj_Entry *root)
2321 {
2322 	const Objlist_Entry *elm;
2323 	Obj_Entry *obj;
2324 
2325 	/*
2326 	 * Walk over object DAG and process every dependent object
2327 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2328 	 * to grow their own DAG.
2329 	 *
2330 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2331 	 * symlook_global() to work.
2332 	 *
2333 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2334 	 */
2335 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2336 		obj = elm->obj;
2337 		if (obj == NULL)
2338 			continue;
2339 		if (obj->z_nodelete && !obj->ref_nodel) {
2340 			dbg("obj %s -z nodelete", obj->path);
2341 			init_dag(obj);
2342 			ref_dag(obj);
2343 			obj->ref_nodel = true;
2344 		}
2345 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2346 			dbg("obj %s -z global", obj->path);
2347 			objlist_push_tail(&list_global, obj);
2348 			init_dag(obj);
2349 		}
2350 	}
2351 }
2352 
2353 static void
2354 parse_rtld_phdr(Obj_Entry *obj)
2355 {
2356 	const Elf_Phdr *ph;
2357 	Elf_Addr note_start, note_end;
2358 
2359 	obj->stack_flags = PF_X | PF_R | PF_W;
2360 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2361 	    obj->phsize; ph++) {
2362 		switch (ph->p_type) {
2363 		case PT_GNU_STACK:
2364 			obj->stack_flags = ph->p_flags;
2365 			break;
2366 		case PT_NOTE:
2367 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2368 			note_end = note_start + ph->p_filesz;
2369 			digest_notes(obj, note_start, note_end);
2370 			break;
2371 		}
2372 	}
2373 }
2374 
2375 /*
2376  * Initialize the dynamic linker.  The argument is the address at which
2377  * the dynamic linker has been mapped into memory.  The primary task of
2378  * this function is to relocate the dynamic linker.
2379  */
2380 static void
2381 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2382 {
2383     Obj_Entry objtmp;	/* Temporary rtld object */
2384     const Elf_Ehdr *ehdr;
2385     const Elf_Dyn *dyn_rpath;
2386     const Elf_Dyn *dyn_soname;
2387     const Elf_Dyn *dyn_runpath;
2388 
2389     /*
2390      * Conjure up an Obj_Entry structure for the dynamic linker.
2391      *
2392      * The "path" member can't be initialized yet because string constants
2393      * cannot yet be accessed. Below we will set it correctly.
2394      */
2395     memset(&objtmp, 0, sizeof(objtmp));
2396     objtmp.path = NULL;
2397     objtmp.rtld = true;
2398     objtmp.mapbase = mapbase;
2399 #ifdef PIC
2400     objtmp.relocbase = mapbase;
2401 #endif
2402 
2403     objtmp.dynamic = rtld_dynamic(&objtmp);
2404     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2405     assert(objtmp.needed == NULL);
2406     assert(!objtmp.textrel);
2407     /*
2408      * Temporarily put the dynamic linker entry into the object list, so
2409      * that symbols can be found.
2410      */
2411     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2412 
2413     ehdr = (Elf_Ehdr *)mapbase;
2414     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2415     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2416 
2417     /* Initialize the object list. */
2418     TAILQ_INIT(&obj_list);
2419 
2420     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2421     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2422 
2423     /* The page size is required by the dynamic memory allocator. */
2424     init_pagesizes(aux_info);
2425 
2426     if (aux_info[AT_OSRELDATE] != NULL)
2427 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2428 
2429     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2430 
2431     /* Replace the path with a dynamically allocated copy. */
2432     obj_rtld.path = xstrdup(ld_path_rtld);
2433 
2434     parse_rtld_phdr(&obj_rtld);
2435     if (obj_enforce_relro(&obj_rtld) == -1)
2436 	rtld_die();
2437 
2438     r_debug.r_version = R_DEBUG_VERSION;
2439     r_debug.r_brk = r_debug_state;
2440     r_debug.r_state = RT_CONSISTENT;
2441     r_debug.r_ldbase = obj_rtld.relocbase;
2442 }
2443 
2444 /*
2445  * Retrieve the array of supported page sizes.  The kernel provides the page
2446  * sizes in increasing order.
2447  */
2448 static void
2449 init_pagesizes(Elf_Auxinfo **aux_info)
2450 {
2451 	static size_t psa[MAXPAGESIZES];
2452 	int mib[2];
2453 	size_t len, size;
2454 
2455 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2456 	    NULL) {
2457 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2458 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2459 	} else {
2460 		len = 2;
2461 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2462 			size = sizeof(psa);
2463 		else {
2464 			/* As a fallback, retrieve the base page size. */
2465 			size = sizeof(psa[0]);
2466 			if (aux_info[AT_PAGESZ] != NULL) {
2467 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2468 				goto psa_filled;
2469 			} else {
2470 				mib[0] = CTL_HW;
2471 				mib[1] = HW_PAGESIZE;
2472 				len = 2;
2473 			}
2474 		}
2475 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2476 			_rtld_error("sysctl for hw.pagesize(s) failed");
2477 			rtld_die();
2478 		}
2479 psa_filled:
2480 		pagesizes = psa;
2481 	}
2482 	npagesizes = size / sizeof(pagesizes[0]);
2483 	/* Discard any invalid entries at the end of the array. */
2484 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2485 		npagesizes--;
2486 
2487 	page_size = pagesizes[0];
2488 }
2489 
2490 /*
2491  * Add the init functions from a needed object list (and its recursive
2492  * needed objects) to "list".  This is not used directly; it is a helper
2493  * function for initlist_add_objects().  The write lock must be held
2494  * when this function is called.
2495  */
2496 static void
2497 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2498 {
2499     /* Recursively process the successor needed objects. */
2500     if (needed->next != NULL)
2501 	initlist_add_neededs(needed->next, list);
2502 
2503     /* Process the current needed object. */
2504     if (needed->obj != NULL)
2505 	initlist_add_objects(needed->obj, needed->obj, list);
2506 }
2507 
2508 /*
2509  * Scan all of the DAGs rooted in the range of objects from "obj" to
2510  * "tail" and add their init functions to "list".  This recurses over
2511  * the DAGs and ensure the proper init ordering such that each object's
2512  * needed libraries are initialized before the object itself.  At the
2513  * same time, this function adds the objects to the global finalization
2514  * list "list_fini" in the opposite order.  The write lock must be
2515  * held when this function is called.
2516  */
2517 static void
2518 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2519 {
2520     Obj_Entry *nobj;
2521 
2522     if (obj->init_scanned || obj->init_done)
2523 	return;
2524     obj->init_scanned = true;
2525 
2526     /* Recursively process the successor objects. */
2527     nobj = globallist_next(obj);
2528     if (nobj != NULL && obj != tail)
2529 	initlist_add_objects(nobj, tail, list);
2530 
2531     /* Recursively process the needed objects. */
2532     if (obj->needed != NULL)
2533 	initlist_add_neededs(obj->needed, list);
2534     if (obj->needed_filtees != NULL)
2535 	initlist_add_neededs(obj->needed_filtees, list);
2536     if (obj->needed_aux_filtees != NULL)
2537 	initlist_add_neededs(obj->needed_aux_filtees, list);
2538 
2539     /* Add the object to the init list. */
2540     objlist_push_tail(list, obj);
2541 
2542     /* Add the object to the global fini list in the reverse order. */
2543     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2544       && !obj->on_fini_list) {
2545 	objlist_push_head(&list_fini, obj);
2546 	obj->on_fini_list = true;
2547     }
2548 }
2549 
2550 static void
2551 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2552 {
2553     Needed_Entry *needed, *needed1;
2554 
2555     for (needed = n; needed != NULL; needed = needed->next) {
2556 	if (needed->obj != NULL) {
2557 	    dlclose_locked(needed->obj, lockstate);
2558 	    needed->obj = NULL;
2559 	}
2560     }
2561     for (needed = n; needed != NULL; needed = needed1) {
2562 	needed1 = needed->next;
2563 	free(needed);
2564     }
2565 }
2566 
2567 static void
2568 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2569 {
2570 
2571 	free_needed_filtees(obj->needed_filtees, lockstate);
2572 	obj->needed_filtees = NULL;
2573 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2574 	obj->needed_aux_filtees = NULL;
2575 	obj->filtees_loaded = false;
2576 }
2577 
2578 static void
2579 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2580     RtldLockState *lockstate)
2581 {
2582 
2583     for (; needed != NULL; needed = needed->next) {
2584 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2585 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2586 	  RTLD_LOCAL, lockstate);
2587     }
2588 }
2589 
2590 static void
2591 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2592 {
2593 	if (obj->filtees_loaded || obj->filtees_loading)
2594 		return;
2595 	lock_restart_for_upgrade(lockstate);
2596 	obj->filtees_loading = true;
2597 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2598 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2599 	obj->filtees_loaded = true;
2600 	obj->filtees_loading = false;
2601 }
2602 
2603 static int
2604 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2605 {
2606     Obj_Entry *obj1;
2607 
2608     for (; needed != NULL; needed = needed->next) {
2609 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2610 	  flags & ~RTLD_LO_NOLOAD);
2611 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2612 	    return (-1);
2613     }
2614     return (0);
2615 }
2616 
2617 /*
2618  * Given a shared object, traverse its list of needed objects, and load
2619  * each of them.  Returns 0 on success.  Generates an error message and
2620  * returns -1 on failure.
2621  */
2622 static int
2623 load_needed_objects(Obj_Entry *first, int flags)
2624 {
2625     Obj_Entry *obj;
2626 
2627     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2628 	if (obj->marker)
2629 	    continue;
2630 	if (process_needed(obj, obj->needed, flags) == -1)
2631 	    return (-1);
2632     }
2633     return (0);
2634 }
2635 
2636 static int
2637 load_preload_objects(const char *penv, bool isfd)
2638 {
2639 	Obj_Entry *obj;
2640 	const char *name;
2641 	size_t len;
2642 	char savech, *p, *psave;
2643 	int fd;
2644 	static const char delim[] = " \t:;";
2645 
2646 	if (penv == NULL)
2647 		return (0);
2648 
2649 	p = psave = xstrdup(penv);
2650 	p += strspn(p, delim);
2651 	while (*p != '\0') {
2652 		len = strcspn(p, delim);
2653 
2654 		savech = p[len];
2655 		p[len] = '\0';
2656 		if (isfd) {
2657 			name = NULL;
2658 			fd = parse_integer(p);
2659 			if (fd == -1) {
2660 				free(psave);
2661 				return (-1);
2662 			}
2663 		} else {
2664 			name = p;
2665 			fd = -1;
2666 		}
2667 
2668 		obj = load_object(name, fd, NULL, 0);
2669 		if (obj == NULL) {
2670 			free(psave);
2671 			return (-1);	/* XXX - cleanup */
2672 		}
2673 		obj->z_interpose = true;
2674 		p[len] = savech;
2675 		p += len;
2676 		p += strspn(p, delim);
2677 	}
2678 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2679 
2680 	free(psave);
2681 	return (0);
2682 }
2683 
2684 static const char *
2685 printable_path(const char *path)
2686 {
2687 
2688 	return (path == NULL ? "<unknown>" : path);
2689 }
2690 
2691 /*
2692  * Load a shared object into memory, if it is not already loaded.  The
2693  * object may be specified by name or by user-supplied file descriptor
2694  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2695  * duplicate is.
2696  *
2697  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2698  * on failure.
2699  */
2700 static Obj_Entry *
2701 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2702 {
2703     Obj_Entry *obj;
2704     int fd;
2705     struct stat sb;
2706     char *path;
2707 
2708     fd = -1;
2709     if (name != NULL) {
2710 	TAILQ_FOREACH(obj, &obj_list, next) {
2711 	    if (obj->marker || obj->doomed)
2712 		continue;
2713 	    if (object_match_name(obj, name))
2714 		return (obj);
2715 	}
2716 
2717 	path = find_library(name, refobj, &fd);
2718 	if (path == NULL)
2719 	    return (NULL);
2720     } else
2721 	path = NULL;
2722 
2723     if (fd >= 0) {
2724 	/*
2725 	 * search_library_pathfds() opens a fresh file descriptor for the
2726 	 * library, so there is no need to dup().
2727 	 */
2728     } else if (fd_u == -1) {
2729 	/*
2730 	 * If we didn't find a match by pathname, or the name is not
2731 	 * supplied, open the file and check again by device and inode.
2732 	 * This avoids false mismatches caused by multiple links or ".."
2733 	 * in pathnames.
2734 	 *
2735 	 * To avoid a race, we open the file and use fstat() rather than
2736 	 * using stat().
2737 	 */
2738 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2739 	    _rtld_error("Cannot open \"%s\"", path);
2740 	    free(path);
2741 	    return (NULL);
2742 	}
2743     } else {
2744 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2745 	if (fd == -1) {
2746 	    _rtld_error("Cannot dup fd");
2747 	    free(path);
2748 	    return (NULL);
2749 	}
2750     }
2751     if (fstat(fd, &sb) == -1) {
2752 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2753 	close(fd);
2754 	free(path);
2755 	return (NULL);
2756     }
2757     TAILQ_FOREACH(obj, &obj_list, next) {
2758 	if (obj->marker || obj->doomed)
2759 	    continue;
2760 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2761 	    break;
2762     }
2763     if (obj != NULL) {
2764 	if (name != NULL)
2765 	    object_add_name(obj, name);
2766 	free(path);
2767 	close(fd);
2768 	return (obj);
2769     }
2770     if (flags & RTLD_LO_NOLOAD) {
2771 	free(path);
2772 	close(fd);
2773 	return (NULL);
2774     }
2775 
2776     /* First use of this object, so we must map it in */
2777     obj = do_load_object(fd, name, path, &sb, flags);
2778     if (obj == NULL)
2779 	free(path);
2780     close(fd);
2781 
2782     return (obj);
2783 }
2784 
2785 static Obj_Entry *
2786 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2787   int flags)
2788 {
2789     Obj_Entry *obj;
2790     struct statfs fs;
2791 
2792     /*
2793      * First, make sure that environment variables haven't been
2794      * used to circumvent the noexec flag on a filesystem.
2795      * We ignore fstatfs(2) failures, since fd might reference
2796      * not a file, e.g. shmfd.
2797      */
2798     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2799 	(fs.f_flags & MNT_NOEXEC) != 0) {
2800 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2801 	    return (NULL);
2802     }
2803 
2804     dbg("loading \"%s\"", printable_path(path));
2805     obj = map_object(fd, printable_path(path), sbp);
2806     if (obj == NULL)
2807         return (NULL);
2808 
2809     /*
2810      * If DT_SONAME is present in the object, digest_dynamic2 already
2811      * added it to the object names.
2812      */
2813     if (name != NULL)
2814 	object_add_name(obj, name);
2815     obj->path = path;
2816     if (!digest_dynamic(obj, 0))
2817 	goto errp;
2818     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2819 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2820     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2821 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2822 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2823 	goto errp;
2824     }
2825     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2826       RTLD_LO_DLOPEN) {
2827 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2828 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2829 	goto errp;
2830     }
2831 
2832     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2833     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2834     obj_count++;
2835     obj_loads++;
2836     linkmap_add(obj);	/* for GDB & dlinfo() */
2837     max_stack_flags |= obj->stack_flags;
2838 
2839     dbg("  %p .. %p: %s", obj->mapbase,
2840          obj->mapbase + obj->mapsize - 1, obj->path);
2841     if (obj->textrel)
2842 	dbg("  WARNING: %s has impure text", obj->path);
2843     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2844 	obj->path);
2845 
2846     return (obj);
2847 
2848 errp:
2849     munmap(obj->mapbase, obj->mapsize);
2850     obj_free(obj);
2851     return (NULL);
2852 }
2853 
2854 static int
2855 load_kpreload(const void *addr)
2856 {
2857 	Obj_Entry *obj;
2858 	const Elf_Ehdr *ehdr;
2859 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2860 	static const char kname[] = "[vdso]";
2861 
2862 	ehdr = addr;
2863 	if (!check_elf_headers(ehdr, "kpreload"))
2864 		return (-1);
2865 	obj = obj_new();
2866 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2867 	obj->phdr = phdr;
2868 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2869 	phlimit = phdr + ehdr->e_phnum;
2870 	seg0 = segn = NULL;
2871 
2872 	for (; phdr < phlimit; phdr++) {
2873 		switch (phdr->p_type) {
2874 		case PT_DYNAMIC:
2875 			phdyn = phdr;
2876 			break;
2877 		case PT_GNU_STACK:
2878 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2879 			obj->stack_flags = phdr->p_flags;
2880 			break;
2881 		case PT_LOAD:
2882 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2883 				seg0 = phdr;
2884 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2885 			    phdr->p_vaddr + phdr->p_memsz)
2886 				segn = phdr;
2887 			break;
2888 		}
2889 	}
2890 
2891 	obj->mapbase = __DECONST(caddr_t, addr);
2892 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2893 	obj->vaddrbase = 0;
2894 	obj->relocbase = obj->mapbase;
2895 
2896 	object_add_name(obj, kname);
2897 	obj->path = xstrdup(kname);
2898 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2899 
2900 	if (!digest_dynamic(obj, 0)) {
2901 		obj_free(obj);
2902 		return (-1);
2903 	}
2904 
2905 	/*
2906 	 * We assume that kernel-preloaded object does not need
2907 	 * relocation.  It is currently written into read-only page,
2908 	 * handling relocations would mean we need to allocate at
2909 	 * least one additional page per AS.
2910 	 */
2911 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2912 	    obj->path, obj->mapbase, obj->phdr, seg0,
2913 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2914 
2915 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2916 	obj_count++;
2917 	obj_loads++;
2918 	linkmap_add(obj);	/* for GDB & dlinfo() */
2919 	max_stack_flags |= obj->stack_flags;
2920 
2921 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2922 	return (0);
2923 }
2924 
2925 Obj_Entry *
2926 obj_from_addr(const void *addr)
2927 {
2928     Obj_Entry *obj;
2929 
2930     TAILQ_FOREACH(obj, &obj_list, next) {
2931 	if (obj->marker)
2932 	    continue;
2933 	if (addr < (void *) obj->mapbase)
2934 	    continue;
2935 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2936 	    return obj;
2937     }
2938     return (NULL);
2939 }
2940 
2941 static void
2942 preinit_main(void)
2943 {
2944     Elf_Addr *preinit_addr;
2945     int index;
2946 
2947     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2948     if (preinit_addr == NULL)
2949 	return;
2950 
2951     for (index = 0; index < obj_main->preinit_array_num; index++) {
2952 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2953 	    dbg("calling preinit function for %s at %p", obj_main->path,
2954 	      (void *)preinit_addr[index]);
2955 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2956 	      0, 0, obj_main->path);
2957 	    call_init_pointer(obj_main, preinit_addr[index]);
2958 	}
2959     }
2960 }
2961 
2962 /*
2963  * Call the finalization functions for each of the objects in "list"
2964  * belonging to the DAG of "root" and referenced once. If NULL "root"
2965  * is specified, every finalization function will be called regardless
2966  * of the reference count and the list elements won't be freed. All of
2967  * the objects are expected to have non-NULL fini functions.
2968  */
2969 static void
2970 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2971 {
2972     Objlist_Entry *elm;
2973     struct dlerror_save *saved_msg;
2974     Elf_Addr *fini_addr;
2975     int index;
2976 
2977     assert(root == NULL || root->refcount == 1);
2978 
2979     if (root != NULL)
2980 	root->doomed = true;
2981 
2982     /*
2983      * Preserve the current error message since a fini function might
2984      * call into the dynamic linker and overwrite it.
2985      */
2986     saved_msg = errmsg_save();
2987     do {
2988 	STAILQ_FOREACH(elm, list, link) {
2989 	    if (root != NULL && (elm->obj->refcount != 1 ||
2990 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2991 		continue;
2992 	    /* Remove object from fini list to prevent recursive invocation. */
2993 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2994 	    /* Ensure that new references cannot be acquired. */
2995 	    elm->obj->doomed = true;
2996 
2997 	    hold_object(elm->obj);
2998 	    lock_release(rtld_bind_lock, lockstate);
2999 	    /*
3000 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3001 	     * When this happens, DT_FINI_ARRAY is processed first.
3002 	     */
3003 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3004 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3005 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3006 		  index--) {
3007 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3008 			dbg("calling fini function for %s at %p",
3009 			    elm->obj->path, (void *)fini_addr[index]);
3010 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3011 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3012 			call_initfini_pointer(elm->obj, fini_addr[index]);
3013 		    }
3014 		}
3015 	    }
3016 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3017 		dbg("calling fini function for %s at %p", elm->obj->path,
3018 		    (void *)elm->obj->fini);
3019 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3020 		    0, 0, elm->obj->path);
3021 		call_initfini_pointer(elm->obj, elm->obj->fini);
3022 	    }
3023 	    wlock_acquire(rtld_bind_lock, lockstate);
3024 	    unhold_object(elm->obj);
3025 	    /* No need to free anything if process is going down. */
3026 	    if (root != NULL)
3027 	    	free(elm);
3028 	    /*
3029 	     * We must restart the list traversal after every fini call
3030 	     * because a dlclose() call from the fini function or from
3031 	     * another thread might have modified the reference counts.
3032 	     */
3033 	    break;
3034 	}
3035     } while (elm != NULL);
3036     errmsg_restore(saved_msg);
3037 }
3038 
3039 /*
3040  * Call the initialization functions for each of the objects in
3041  * "list".  All of the objects are expected to have non-NULL init
3042  * functions.
3043  */
3044 static void
3045 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3046 {
3047     Objlist_Entry *elm;
3048     Obj_Entry *obj;
3049     struct dlerror_save *saved_msg;
3050     Elf_Addr *init_addr;
3051     void (*reg)(void (*)(void));
3052     int index;
3053 
3054     /*
3055      * Clean init_scanned flag so that objects can be rechecked and
3056      * possibly initialized earlier if any of vectors called below
3057      * cause the change by using dlopen.
3058      */
3059     TAILQ_FOREACH(obj, &obj_list, next) {
3060 	if (obj->marker)
3061 	    continue;
3062 	obj->init_scanned = false;
3063     }
3064 
3065     /*
3066      * Preserve the current error message since an init function might
3067      * call into the dynamic linker and overwrite it.
3068      */
3069     saved_msg = errmsg_save();
3070     STAILQ_FOREACH(elm, list, link) {
3071 	if (elm->obj->init_done) /* Initialized early. */
3072 	    continue;
3073 	/*
3074 	 * Race: other thread might try to use this object before current
3075 	 * one completes the initialization. Not much can be done here
3076 	 * without better locking.
3077 	 */
3078 	elm->obj->init_done = true;
3079 	hold_object(elm->obj);
3080 	reg = NULL;
3081 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3082 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3083 		    "__libc_atexit", lockstate);
3084 	}
3085 	lock_release(rtld_bind_lock, lockstate);
3086 	if (reg != NULL) {
3087 		reg(rtld_exit);
3088 		rtld_exit_ptr = rtld_nop_exit;
3089 	}
3090 
3091         /*
3092          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3093          * When this happens, DT_INIT is processed first.
3094          */
3095 	if (elm->obj->init != (Elf_Addr)NULL) {
3096 	    dbg("calling init function for %s at %p", elm->obj->path,
3097 	        (void *)elm->obj->init);
3098 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3099 	        0, 0, elm->obj->path);
3100 	    call_init_pointer(elm->obj, elm->obj->init);
3101 	}
3102 	init_addr = (Elf_Addr *)elm->obj->init_array;
3103 	if (init_addr != NULL) {
3104 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3105 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3106 		    dbg("calling init function for %s at %p", elm->obj->path,
3107 			(void *)init_addr[index]);
3108 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3109 			(void *)init_addr[index], 0, 0, elm->obj->path);
3110 		    call_init_pointer(elm->obj, init_addr[index]);
3111 		}
3112 	    }
3113 	}
3114 	wlock_acquire(rtld_bind_lock, lockstate);
3115 	unhold_object(elm->obj);
3116     }
3117     errmsg_restore(saved_msg);
3118 }
3119 
3120 static void
3121 objlist_clear(Objlist *list)
3122 {
3123     Objlist_Entry *elm;
3124 
3125     while (!STAILQ_EMPTY(list)) {
3126 	elm = STAILQ_FIRST(list);
3127 	STAILQ_REMOVE_HEAD(list, link);
3128 	free(elm);
3129     }
3130 }
3131 
3132 static Objlist_Entry *
3133 objlist_find(Objlist *list, const Obj_Entry *obj)
3134 {
3135     Objlist_Entry *elm;
3136 
3137     STAILQ_FOREACH(elm, list, link)
3138 	if (elm->obj == obj)
3139 	    return elm;
3140     return (NULL);
3141 }
3142 
3143 static void
3144 objlist_init(Objlist *list)
3145 {
3146     STAILQ_INIT(list);
3147 }
3148 
3149 static void
3150 objlist_push_head(Objlist *list, Obj_Entry *obj)
3151 {
3152     Objlist_Entry *elm;
3153 
3154     elm = NEW(Objlist_Entry);
3155     elm->obj = obj;
3156     STAILQ_INSERT_HEAD(list, elm, link);
3157 }
3158 
3159 static void
3160 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3161 {
3162     Objlist_Entry *elm;
3163 
3164     elm = NEW(Objlist_Entry);
3165     elm->obj = obj;
3166     STAILQ_INSERT_TAIL(list, elm, link);
3167 }
3168 
3169 static void
3170 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3171 {
3172 	Objlist_Entry *elm, *listelm;
3173 
3174 	STAILQ_FOREACH(listelm, list, link) {
3175 		if (listelm->obj == listobj)
3176 			break;
3177 	}
3178 	elm = NEW(Objlist_Entry);
3179 	elm->obj = obj;
3180 	if (listelm != NULL)
3181 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3182 	else
3183 		STAILQ_INSERT_TAIL(list, elm, link);
3184 }
3185 
3186 static void
3187 objlist_remove(Objlist *list, Obj_Entry *obj)
3188 {
3189     Objlist_Entry *elm;
3190 
3191     if ((elm = objlist_find(list, obj)) != NULL) {
3192 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3193 	free(elm);
3194     }
3195 }
3196 
3197 /*
3198  * Relocate dag rooted in the specified object.
3199  * Returns 0 on success, or -1 on failure.
3200  */
3201 
3202 static int
3203 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3204     int flags, RtldLockState *lockstate)
3205 {
3206 	Objlist_Entry *elm;
3207 	int error;
3208 
3209 	error = 0;
3210 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3211 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3212 		    lockstate);
3213 		if (error == -1)
3214 			break;
3215 	}
3216 	return (error);
3217 }
3218 
3219 /*
3220  * Prepare for, or clean after, relocating an object marked with
3221  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3222  * segments are remapped read-write.  After relocations are done, the
3223  * segment's permissions are returned back to the modes specified in
3224  * the phdrs.  If any relocation happened, or always for wired
3225  * program, COW is triggered.
3226  */
3227 static int
3228 reloc_textrel_prot(Obj_Entry *obj, bool before)
3229 {
3230 	const Elf_Phdr *ph;
3231 	void *base;
3232 	size_t l, sz;
3233 	int prot;
3234 
3235 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3236 	    l--, ph++) {
3237 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3238 			continue;
3239 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3240 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3241 		    rtld_trunc_page(ph->p_vaddr);
3242 		prot = before ? (PROT_READ | PROT_WRITE) :
3243 		    convert_prot(ph->p_flags);
3244 		if (mprotect(base, sz, prot) == -1) {
3245 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3246 			    obj->path, before ? "en" : "dis",
3247 			    rtld_strerror(errno));
3248 			return (-1);
3249 		}
3250 	}
3251 	return (0);
3252 }
3253 
3254 /* Process RELR relative relocations. */
3255 static void
3256 reloc_relr(Obj_Entry *obj)
3257 {
3258 	const Elf_Relr *relr, *relrlim;
3259 	Elf_Addr *where;
3260 
3261 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3262 	for (relr = obj->relr; relr < relrlim; relr++) {
3263 	    Elf_Relr entry = *relr;
3264 
3265 	    if ((entry & 1) == 0) {
3266 		where = (Elf_Addr *)(obj->relocbase + entry);
3267 		*where++ += (Elf_Addr)obj->relocbase;
3268 	    } else {
3269 		for (long i = 0; (entry >>= 1) != 0; i++)
3270 		    if ((entry & 1) != 0)
3271 			where[i] += (Elf_Addr)obj->relocbase;
3272 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3273 	    }
3274 	}
3275 }
3276 
3277 /*
3278  * Relocate single object.
3279  * Returns 0 on success, or -1 on failure.
3280  */
3281 static int
3282 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3283     int flags, RtldLockState *lockstate)
3284 {
3285 
3286 	if (obj->relocated)
3287 		return (0);
3288 	obj->relocated = true;
3289 	if (obj != rtldobj)
3290 		dbg("relocating \"%s\"", obj->path);
3291 
3292 	if (obj->symtab == NULL || obj->strtab == NULL ||
3293 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3294 		dbg("object %s has no run-time symbol table", obj->path);
3295 
3296 	/* There are relocations to the write-protected text segment. */
3297 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3298 		return (-1);
3299 
3300 	/* Process the non-PLT non-IFUNC relocations. */
3301 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3302 		return (-1);
3303 	reloc_relr(obj);
3304 
3305 	/* Re-protected the text segment. */
3306 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3307 		return (-1);
3308 
3309 	/* Set the special PLT or GOT entries. */
3310 	init_pltgot(obj);
3311 
3312 	/* Process the PLT relocations. */
3313 	if (reloc_plt(obj, flags, lockstate) == -1)
3314 		return (-1);
3315 	/* Relocate the jump slots if we are doing immediate binding. */
3316 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3317 	    lockstate) == -1)
3318 		return (-1);
3319 
3320 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3321 		return (-1);
3322 
3323 	/*
3324 	 * Set up the magic number and version in the Obj_Entry.  These
3325 	 * were checked in the crt1.o from the original ElfKit, so we
3326 	 * set them for backward compatibility.
3327 	 */
3328 	obj->magic = RTLD_MAGIC;
3329 	obj->version = RTLD_VERSION;
3330 
3331 	return (0);
3332 }
3333 
3334 /*
3335  * Relocate newly-loaded shared objects.  The argument is a pointer to
3336  * the Obj_Entry for the first such object.  All objects from the first
3337  * to the end of the list of objects are relocated.  Returns 0 on success,
3338  * or -1 on failure.
3339  */
3340 static int
3341 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3342     int flags, RtldLockState *lockstate)
3343 {
3344 	Obj_Entry *obj;
3345 	int error;
3346 
3347 	for (error = 0, obj = first;  obj != NULL;
3348 	    obj = TAILQ_NEXT(obj, next)) {
3349 		if (obj->marker)
3350 			continue;
3351 		error = relocate_object(obj, bind_now, rtldobj, flags,
3352 		    lockstate);
3353 		if (error == -1)
3354 			break;
3355 	}
3356 	return (error);
3357 }
3358 
3359 /*
3360  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3361  * referencing STT_GNU_IFUNC symbols is postponed till the other
3362  * relocations are done.  The indirect functions specified as
3363  * ifunc are allowed to call other symbols, so we need to have
3364  * objects relocated before asking for resolution from indirects.
3365  *
3366  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3367  * instead of the usual lazy handling of PLT slots.  It is
3368  * consistent with how GNU does it.
3369  */
3370 static int
3371 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3372     RtldLockState *lockstate)
3373 {
3374 
3375 	if (obj->ifuncs_resolved)
3376 		return (0);
3377 	obj->ifuncs_resolved = true;
3378 	if (!obj->irelative && !obj->irelative_nonplt &&
3379 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3380 	    !obj->non_plt_gnu_ifunc)
3381 		return (0);
3382 	if (obj_disable_relro(obj) == -1 ||
3383 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3384 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3385 	    lockstate) == -1) ||
3386 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3387 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3388 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3389 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3390 	    obj_enforce_relro(obj) == -1)
3391 		return (-1);
3392 	return (0);
3393 }
3394 
3395 static int
3396 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3397     RtldLockState *lockstate)
3398 {
3399 	Objlist_Entry *elm;
3400 	Obj_Entry *obj;
3401 
3402 	STAILQ_FOREACH(elm, list, link) {
3403 		obj = elm->obj;
3404 		if (obj->marker)
3405 			continue;
3406 		if (resolve_object_ifunc(obj, bind_now, flags,
3407 		    lockstate) == -1)
3408 			return (-1);
3409 	}
3410 	return (0);
3411 }
3412 
3413 /*
3414  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3415  * before the process exits.
3416  */
3417 static void
3418 rtld_exit(void)
3419 {
3420     RtldLockState lockstate;
3421 
3422     wlock_acquire(rtld_bind_lock, &lockstate);
3423     dbg("rtld_exit()");
3424     objlist_call_fini(&list_fini, NULL, &lockstate);
3425     /* No need to remove the items from the list, since we are exiting. */
3426     if (!libmap_disable)
3427         lm_fini();
3428     lock_release(rtld_bind_lock, &lockstate);
3429 }
3430 
3431 static void
3432 rtld_nop_exit(void)
3433 {
3434 }
3435 
3436 /*
3437  * Iterate over a search path, translate each element, and invoke the
3438  * callback on the result.
3439  */
3440 static void *
3441 path_enumerate(const char *path, path_enum_proc callback,
3442     const char *refobj_path, void *arg)
3443 {
3444     const char *trans;
3445     if (path == NULL)
3446 	return (NULL);
3447 
3448     path += strspn(path, ":;");
3449     while (*path != '\0') {
3450 	size_t len;
3451 	char  *res;
3452 
3453 	len = strcspn(path, ":;");
3454 	trans = lm_findn(refobj_path, path, len);
3455 	if (trans)
3456 	    res = callback(trans, strlen(trans), arg);
3457 	else
3458 	    res = callback(path, len, arg);
3459 
3460 	if (res != NULL)
3461 	    return (res);
3462 
3463 	path += len;
3464 	path += strspn(path, ":;");
3465     }
3466 
3467     return (NULL);
3468 }
3469 
3470 struct try_library_args {
3471     const char	*name;
3472     size_t	 namelen;
3473     char	*buffer;
3474     size_t	 buflen;
3475     int		 fd;
3476 };
3477 
3478 static void *
3479 try_library_path(const char *dir, size_t dirlen, void *param)
3480 {
3481     struct try_library_args *arg;
3482     int fd;
3483 
3484     arg = param;
3485     if (*dir == '/' || trust) {
3486 	char *pathname;
3487 
3488 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3489 		return (NULL);
3490 
3491 	pathname = arg->buffer;
3492 	strncpy(pathname, dir, dirlen);
3493 	pathname[dirlen] = '/';
3494 	strcpy(pathname + dirlen + 1, arg->name);
3495 
3496 	dbg("  Trying \"%s\"", pathname);
3497 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3498 	if (fd >= 0) {
3499 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3500 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3501 	    strcpy(pathname, arg->buffer);
3502 	    arg->fd = fd;
3503 	    return (pathname);
3504 	} else {
3505 	    dbg("  Failed to open \"%s\": %s",
3506 		pathname, rtld_strerror(errno));
3507 	}
3508     }
3509     return (NULL);
3510 }
3511 
3512 static char *
3513 search_library_path(const char *name, const char *path,
3514     const char *refobj_path, int *fdp)
3515 {
3516     char *p;
3517     struct try_library_args arg;
3518 
3519     if (path == NULL)
3520 	return (NULL);
3521 
3522     arg.name = name;
3523     arg.namelen = strlen(name);
3524     arg.buffer = xmalloc(PATH_MAX);
3525     arg.buflen = PATH_MAX;
3526     arg.fd = -1;
3527 
3528     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3529     *fdp = arg.fd;
3530 
3531     free(arg.buffer);
3532 
3533     return (p);
3534 }
3535 
3536 
3537 /*
3538  * Finds the library with the given name using the directory descriptors
3539  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3540  *
3541  * Returns a freshly-opened close-on-exec file descriptor for the library,
3542  * or -1 if the library cannot be found.
3543  */
3544 static char *
3545 search_library_pathfds(const char *name, const char *path, int *fdp)
3546 {
3547 	char *envcopy, *fdstr, *found, *last_token;
3548 	size_t len;
3549 	int dirfd, fd;
3550 
3551 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3552 
3553 	/* Don't load from user-specified libdirs into setuid binaries. */
3554 	if (!trust)
3555 		return (NULL);
3556 
3557 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3558 	if (path == NULL)
3559 		return (NULL);
3560 
3561 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3562 	if (name[0] == '/') {
3563 		dbg("Absolute path (%s) passed to %s", name, __func__);
3564 		return (NULL);
3565 	}
3566 
3567 	/*
3568 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3569 	 * copy of the path, as strtok_r rewrites separator tokens
3570 	 * with '\0'.
3571 	 */
3572 	found = NULL;
3573 	envcopy = xstrdup(path);
3574 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3575 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3576 		dirfd = parse_integer(fdstr);
3577 		if (dirfd < 0) {
3578 			_rtld_error("failed to parse directory FD: '%s'",
3579 				fdstr);
3580 			break;
3581 		}
3582 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3583 		if (fd >= 0) {
3584 			*fdp = fd;
3585 			len = strlen(fdstr) + strlen(name) + 3;
3586 			found = xmalloc(len);
3587 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3588 				_rtld_error("error generating '%d/%s'",
3589 				    dirfd, name);
3590 				rtld_die();
3591 			}
3592 			dbg("open('%s') => %d", found, fd);
3593 			break;
3594 		}
3595 	}
3596 	free(envcopy);
3597 
3598 	return (found);
3599 }
3600 
3601 
3602 int
3603 dlclose(void *handle)
3604 {
3605 	RtldLockState lockstate;
3606 	int error;
3607 
3608 	wlock_acquire(rtld_bind_lock, &lockstate);
3609 	error = dlclose_locked(handle, &lockstate);
3610 	lock_release(rtld_bind_lock, &lockstate);
3611 	return (error);
3612 }
3613 
3614 static int
3615 dlclose_locked(void *handle, RtldLockState *lockstate)
3616 {
3617     Obj_Entry *root;
3618 
3619     root = dlcheck(handle);
3620     if (root == NULL)
3621 	return (-1);
3622     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3623 	root->path);
3624 
3625     /* Unreference the object and its dependencies. */
3626     root->dl_refcount--;
3627 
3628     if (root->refcount == 1) {
3629 	/*
3630 	 * The object will be no longer referenced, so we must unload it.
3631 	 * First, call the fini functions.
3632 	 */
3633 	objlist_call_fini(&list_fini, root, lockstate);
3634 
3635 	unref_dag(root);
3636 
3637 	/* Finish cleaning up the newly-unreferenced objects. */
3638 	GDB_STATE(RT_DELETE,&root->linkmap);
3639 	unload_object(root, lockstate);
3640 	GDB_STATE(RT_CONSISTENT,NULL);
3641     } else
3642 	unref_dag(root);
3643 
3644     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3645     return (0);
3646 }
3647 
3648 char *
3649 dlerror(void)
3650 {
3651 	if (*(lockinfo.dlerror_seen()) != 0)
3652 		return (NULL);
3653 	*lockinfo.dlerror_seen() = 1;
3654 	return (lockinfo.dlerror_loc());
3655 }
3656 
3657 /*
3658  * This function is deprecated and has no effect.
3659  */
3660 void
3661 dllockinit(void *context,
3662     void *(*_lock_create)(void *context) __unused,
3663     void (*_rlock_acquire)(void *lock) __unused,
3664     void (*_wlock_acquire)(void *lock)  __unused,
3665     void (*_lock_release)(void *lock) __unused,
3666     void (*_lock_destroy)(void *lock) __unused,
3667     void (*context_destroy)(void *context))
3668 {
3669     static void *cur_context;
3670     static void (*cur_context_destroy)(void *);
3671 
3672     /* Just destroy the context from the previous call, if necessary. */
3673     if (cur_context_destroy != NULL)
3674 	cur_context_destroy(cur_context);
3675     cur_context = context;
3676     cur_context_destroy = context_destroy;
3677 }
3678 
3679 void *
3680 dlopen(const char *name, int mode)
3681 {
3682 
3683 	return (rtld_dlopen(name, -1, mode));
3684 }
3685 
3686 void *
3687 fdlopen(int fd, int mode)
3688 {
3689 
3690 	return (rtld_dlopen(NULL, fd, mode));
3691 }
3692 
3693 static void *
3694 rtld_dlopen(const char *name, int fd, int mode)
3695 {
3696     RtldLockState lockstate;
3697     int lo_flags;
3698 
3699     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3700     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3701     if (ld_tracing != NULL) {
3702 	rlock_acquire(rtld_bind_lock, &lockstate);
3703 	if (sigsetjmp(lockstate.env, 0) != 0)
3704 	    lock_upgrade(rtld_bind_lock, &lockstate);
3705 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3706 	lock_release(rtld_bind_lock, &lockstate);
3707     }
3708     lo_flags = RTLD_LO_DLOPEN;
3709     if (mode & RTLD_NODELETE)
3710 	    lo_flags |= RTLD_LO_NODELETE;
3711     if (mode & RTLD_NOLOAD)
3712 	    lo_flags |= RTLD_LO_NOLOAD;
3713     if (mode & RTLD_DEEPBIND)
3714 	    lo_flags |= RTLD_LO_DEEPBIND;
3715     if (ld_tracing != NULL)
3716 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3717 
3718     return (dlopen_object(name, fd, obj_main, lo_flags,
3719       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3720 }
3721 
3722 static void
3723 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3724 {
3725 
3726 	obj->dl_refcount--;
3727 	unref_dag(obj);
3728 	if (obj->refcount == 0)
3729 		unload_object(obj, lockstate);
3730 }
3731 
3732 static Obj_Entry *
3733 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3734     int mode, RtldLockState *lockstate)
3735 {
3736     Obj_Entry *obj;
3737     Objlist initlist;
3738     RtldLockState mlockstate;
3739     int result;
3740 
3741     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3742       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3743       refobj->path, lo_flags, mode);
3744     objlist_init(&initlist);
3745 
3746     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3747 	wlock_acquire(rtld_bind_lock, &mlockstate);
3748 	lockstate = &mlockstate;
3749     }
3750     GDB_STATE(RT_ADD,NULL);
3751 
3752     obj = NULL;
3753     if (name == NULL && fd == -1) {
3754 	obj = obj_main;
3755 	obj->refcount++;
3756     } else {
3757 	obj = load_object(name, fd, refobj, lo_flags);
3758     }
3759 
3760     if (obj) {
3761 	obj->dl_refcount++;
3762 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3763 	    objlist_push_tail(&list_global, obj);
3764 
3765 	if (!obj->init_done) {
3766 	    /* We loaded something new and have to init something. */
3767 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3768 		obj->deepbind = true;
3769 	    result = 0;
3770 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3771 	      obj->static_tls && !allocate_tls_offset(obj)) {
3772 		_rtld_error("%s: No space available "
3773 		  "for static Thread Local Storage", obj->path);
3774 		result = -1;
3775 	    }
3776 	    if (result != -1)
3777 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3778 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3779 	    init_dag(obj);
3780 	    ref_dag(obj);
3781 	    if (result != -1)
3782 		result = rtld_verify_versions(&obj->dagmembers);
3783 	    if (result != -1 && ld_tracing)
3784 		goto trace;
3785 	    if (result == -1 || relocate_object_dag(obj,
3786 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3787 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3788 	      lockstate) == -1) {
3789 		dlopen_cleanup(obj, lockstate);
3790 		obj = NULL;
3791 	    } else if (lo_flags & RTLD_LO_EARLY) {
3792 		/*
3793 		 * Do not call the init functions for early loaded
3794 		 * filtees.  The image is still not initialized enough
3795 		 * for them to work.
3796 		 *
3797 		 * Our object is found by the global object list and
3798 		 * will be ordered among all init calls done right
3799 		 * before transferring control to main.
3800 		 */
3801 	    } else {
3802 		/* Make list of init functions to call. */
3803 		initlist_add_objects(obj, obj, &initlist);
3804 	    }
3805 	    /*
3806 	     * Process all no_delete or global objects here, given
3807 	     * them own DAGs to prevent their dependencies from being
3808 	     * unloaded.  This has to be done after we have loaded all
3809 	     * of the dependencies, so that we do not miss any.
3810 	     */
3811 	    if (obj != NULL)
3812 		process_z(obj);
3813 	} else {
3814 	    /*
3815 	     * Bump the reference counts for objects on this DAG.  If
3816 	     * this is the first dlopen() call for the object that was
3817 	     * already loaded as a dependency, initialize the dag
3818 	     * starting at it.
3819 	     */
3820 	    init_dag(obj);
3821 	    ref_dag(obj);
3822 
3823 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3824 		goto trace;
3825 	}
3826 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3827 	  obj->z_nodelete) && !obj->ref_nodel) {
3828 	    dbg("obj %s nodelete", obj->path);
3829 	    ref_dag(obj);
3830 	    obj->z_nodelete = obj->ref_nodel = true;
3831 	}
3832     }
3833 
3834     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3835 	name);
3836     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3837 
3838     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3839 	map_stacks_exec(lockstate);
3840 	if (obj != NULL)
3841 	    distribute_static_tls(&initlist, lockstate);
3842     }
3843 
3844     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3845       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3846       lockstate) == -1) {
3847 	objlist_clear(&initlist);
3848 	dlopen_cleanup(obj, lockstate);
3849 	if (lockstate == &mlockstate)
3850 	    lock_release(rtld_bind_lock, lockstate);
3851 	return (NULL);
3852     }
3853 
3854     if (!(lo_flags & RTLD_LO_EARLY)) {
3855 	/* Call the init functions. */
3856 	objlist_call_init(&initlist, lockstate);
3857     }
3858     objlist_clear(&initlist);
3859     if (lockstate == &mlockstate)
3860 	lock_release(rtld_bind_lock, lockstate);
3861     return (obj);
3862 trace:
3863     trace_loaded_objects(obj, false);
3864     if (lockstate == &mlockstate)
3865 	lock_release(rtld_bind_lock, lockstate);
3866     exit(0);
3867 }
3868 
3869 static void *
3870 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3871     int flags)
3872 {
3873     DoneList donelist;
3874     const Obj_Entry *obj, *defobj;
3875     const Elf_Sym *def;
3876     SymLook req;
3877     RtldLockState lockstate;
3878     tls_index ti;
3879     void *sym;
3880     int res;
3881 
3882     def = NULL;
3883     defobj = NULL;
3884     symlook_init(&req, name);
3885     req.ventry = ve;
3886     req.flags = flags | SYMLOOK_IN_PLT;
3887     req.lockstate = &lockstate;
3888 
3889     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3890     rlock_acquire(rtld_bind_lock, &lockstate);
3891     if (sigsetjmp(lockstate.env, 0) != 0)
3892 	    lock_upgrade(rtld_bind_lock, &lockstate);
3893     if (handle == NULL || handle == RTLD_NEXT ||
3894 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3895 
3896 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3897 	    _rtld_error("Cannot determine caller's shared object");
3898 	    lock_release(rtld_bind_lock, &lockstate);
3899 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3900 	    return (NULL);
3901 	}
3902 	if (handle == NULL) {	/* Just the caller's shared object. */
3903 	    res = symlook_obj(&req, obj);
3904 	    if (res == 0) {
3905 		def = req.sym_out;
3906 		defobj = req.defobj_out;
3907 	    }
3908 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3909 		   handle == RTLD_SELF) { /* ... caller included */
3910 	    if (handle == RTLD_NEXT)
3911 		obj = globallist_next(obj);
3912 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3913 		if (obj->marker)
3914 		    continue;
3915 		res = symlook_obj(&req, obj);
3916 		if (res == 0) {
3917 		    if (def == NULL || (ld_dynamic_weak &&
3918                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3919 			def = req.sym_out;
3920 			defobj = req.defobj_out;
3921 			if (!ld_dynamic_weak ||
3922 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3923 			    break;
3924 		    }
3925 		}
3926 	    }
3927 	    /*
3928 	     * Search the dynamic linker itself, and possibly resolve the
3929 	     * symbol from there.  This is how the application links to
3930 	     * dynamic linker services such as dlopen.
3931 	     * Note that we ignore ld_dynamic_weak == false case,
3932 	     * always overriding weak symbols by rtld definitions.
3933 	     */
3934 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3935 		res = symlook_obj(&req, &obj_rtld);
3936 		if (res == 0) {
3937 		    def = req.sym_out;
3938 		    defobj = req.defobj_out;
3939 		}
3940 	    }
3941 	} else {
3942 	    assert(handle == RTLD_DEFAULT);
3943 	    res = symlook_default(&req, obj);
3944 	    if (res == 0) {
3945 		defobj = req.defobj_out;
3946 		def = req.sym_out;
3947 	    }
3948 	}
3949     } else {
3950 	if ((obj = dlcheck(handle)) == NULL) {
3951 	    lock_release(rtld_bind_lock, &lockstate);
3952 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3953 	    return (NULL);
3954 	}
3955 
3956 	donelist_init(&donelist);
3957 	if (obj->mainprog) {
3958             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3959 	    res = symlook_global(&req, &donelist);
3960 	    if (res == 0) {
3961 		def = req.sym_out;
3962 		defobj = req.defobj_out;
3963 	    }
3964 	    /*
3965 	     * Search the dynamic linker itself, and possibly resolve the
3966 	     * symbol from there.  This is how the application links to
3967 	     * dynamic linker services such as dlopen.
3968 	     */
3969 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3970 		res = symlook_obj(&req, &obj_rtld);
3971 		if (res == 0) {
3972 		    def = req.sym_out;
3973 		    defobj = req.defobj_out;
3974 		}
3975 	    }
3976 	}
3977 	else {
3978 	    /* Search the whole DAG rooted at the given object. */
3979 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3980 	    if (res == 0) {
3981 		def = req.sym_out;
3982 		defobj = req.defobj_out;
3983 	    }
3984 	}
3985     }
3986 
3987     if (def != NULL) {
3988 	lock_release(rtld_bind_lock, &lockstate);
3989 
3990 	/*
3991 	 * The value required by the caller is derived from the value
3992 	 * of the symbol. this is simply the relocated value of the
3993 	 * symbol.
3994 	 */
3995 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3996 	    sym = make_function_pointer(def, defobj);
3997 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3998 	    sym = rtld_resolve_ifunc(defobj, def);
3999 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4000 	    ti.ti_module = defobj->tlsindex;
4001 	    ti.ti_offset = def->st_value;
4002 	    sym = __tls_get_addr(&ti);
4003 	} else
4004 	    sym = defobj->relocbase + def->st_value;
4005 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4006 	return (sym);
4007     }
4008 
4009     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4010       ve != NULL ? ve->name : "");
4011     lock_release(rtld_bind_lock, &lockstate);
4012     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4013     return (NULL);
4014 }
4015 
4016 void *
4017 dlsym(void *handle, const char *name)
4018 {
4019 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4020 	    SYMLOOK_DLSYM));
4021 }
4022 
4023 dlfunc_t
4024 dlfunc(void *handle, const char *name)
4025 {
4026 	union {
4027 		void *d;
4028 		dlfunc_t f;
4029 	} rv;
4030 
4031 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4032 	    SYMLOOK_DLSYM);
4033 	return (rv.f);
4034 }
4035 
4036 void *
4037 dlvsym(void *handle, const char *name, const char *version)
4038 {
4039 	Ver_Entry ventry;
4040 
4041 	ventry.name = version;
4042 	ventry.file = NULL;
4043 	ventry.hash = elf_hash(version);
4044 	ventry.flags= 0;
4045 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4046 	    SYMLOOK_DLSYM));
4047 }
4048 
4049 int
4050 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4051 {
4052     const Obj_Entry *obj;
4053     RtldLockState lockstate;
4054 
4055     rlock_acquire(rtld_bind_lock, &lockstate);
4056     obj = obj_from_addr(addr);
4057     if (obj == NULL) {
4058         _rtld_error("No shared object contains address");
4059 	lock_release(rtld_bind_lock, &lockstate);
4060         return (0);
4061     }
4062     rtld_fill_dl_phdr_info(obj, phdr_info);
4063     lock_release(rtld_bind_lock, &lockstate);
4064     return (1);
4065 }
4066 
4067 int
4068 dladdr(const void *addr, Dl_info *info)
4069 {
4070     const Obj_Entry *obj;
4071     const Elf_Sym *def;
4072     void *symbol_addr;
4073     unsigned long symoffset;
4074     RtldLockState lockstate;
4075 
4076     rlock_acquire(rtld_bind_lock, &lockstate);
4077     obj = obj_from_addr(addr);
4078     if (obj == NULL) {
4079         _rtld_error("No shared object contains address");
4080 	lock_release(rtld_bind_lock, &lockstate);
4081         return (0);
4082     }
4083     info->dli_fname = obj->path;
4084     info->dli_fbase = obj->mapbase;
4085     info->dli_saddr = (void *)0;
4086     info->dli_sname = NULL;
4087 
4088     /*
4089      * Walk the symbol list looking for the symbol whose address is
4090      * closest to the address sent in.
4091      */
4092     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4093         def = obj->symtab + symoffset;
4094 
4095         /*
4096          * For skip the symbol if st_shndx is either SHN_UNDEF or
4097          * SHN_COMMON.
4098          */
4099         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4100             continue;
4101 
4102         /*
4103          * If the symbol is greater than the specified address, or if it
4104          * is further away from addr than the current nearest symbol,
4105          * then reject it.
4106          */
4107         symbol_addr = obj->relocbase + def->st_value;
4108         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4109             continue;
4110 
4111         /* Update our idea of the nearest symbol. */
4112         info->dli_sname = obj->strtab + def->st_name;
4113         info->dli_saddr = symbol_addr;
4114 
4115         /* Exact match? */
4116         if (info->dli_saddr == addr)
4117             break;
4118     }
4119     lock_release(rtld_bind_lock, &lockstate);
4120     return (1);
4121 }
4122 
4123 int
4124 dlinfo(void *handle, int request, void *p)
4125 {
4126     const Obj_Entry *obj;
4127     RtldLockState lockstate;
4128     int error;
4129 
4130     rlock_acquire(rtld_bind_lock, &lockstate);
4131 
4132     if (handle == NULL || handle == RTLD_SELF) {
4133 	void *retaddr;
4134 
4135 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4136 	if ((obj = obj_from_addr(retaddr)) == NULL)
4137 	    _rtld_error("Cannot determine caller's shared object");
4138     } else
4139 	obj = dlcheck(handle);
4140 
4141     if (obj == NULL) {
4142 	lock_release(rtld_bind_lock, &lockstate);
4143 	return (-1);
4144     }
4145 
4146     error = 0;
4147     switch (request) {
4148     case RTLD_DI_LINKMAP:
4149 	*((struct link_map const **)p) = &obj->linkmap;
4150 	break;
4151     case RTLD_DI_ORIGIN:
4152 	error = rtld_dirname(obj->path, p);
4153 	break;
4154 
4155     case RTLD_DI_SERINFOSIZE:
4156     case RTLD_DI_SERINFO:
4157 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4158 	break;
4159 
4160     default:
4161 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4162 	error = -1;
4163     }
4164 
4165     lock_release(rtld_bind_lock, &lockstate);
4166 
4167     return (error);
4168 }
4169 
4170 static void
4171 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4172 {
4173 	uintptr_t **dtvp;
4174 
4175 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4176 	phdr_info->dlpi_name = obj->path;
4177 	phdr_info->dlpi_phdr = obj->phdr;
4178 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4179 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4180 	dtvp = &_tcb_get()->tcb_dtv;
4181 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4182 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4183 	phdr_info->dlpi_adds = obj_loads;
4184 	phdr_info->dlpi_subs = obj_loads - obj_count;
4185 }
4186 
4187 /*
4188  * It's completely UB to actually use this, so extreme caution is advised.  It's
4189  * probably not what you want.
4190  */
4191 int
4192 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4193 {
4194 	struct dl_phdr_info phdr_info;
4195 	Obj_Entry *obj;
4196 	int error;
4197 
4198 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4199 	    obj = globallist_next(obj)) {
4200 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4201 		error = callback(&phdr_info, sizeof(phdr_info), param);
4202 		if (error != 0)
4203 			return (error);
4204 	}
4205 
4206 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4207 	return (callback(&phdr_info, sizeof(phdr_info), param));
4208 }
4209 
4210 int
4211 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4212 {
4213 	struct dl_phdr_info phdr_info;
4214 	Obj_Entry *obj, marker;
4215 	RtldLockState bind_lockstate, phdr_lockstate;
4216 	int error;
4217 
4218 	init_marker(&marker);
4219 	error = 0;
4220 
4221 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4222 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4223 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4224 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4225 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4226 		hold_object(obj);
4227 		lock_release(rtld_bind_lock, &bind_lockstate);
4228 
4229 		error = callback(&phdr_info, sizeof phdr_info, param);
4230 
4231 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4232 		unhold_object(obj);
4233 		obj = globallist_next(&marker);
4234 		TAILQ_REMOVE(&obj_list, &marker, next);
4235 		if (error != 0) {
4236 			lock_release(rtld_bind_lock, &bind_lockstate);
4237 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4238 			return (error);
4239 		}
4240 	}
4241 
4242 	if (error == 0) {
4243 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4244 		lock_release(rtld_bind_lock, &bind_lockstate);
4245 		error = callback(&phdr_info, sizeof(phdr_info), param);
4246 	}
4247 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4248 	return (error);
4249 }
4250 
4251 static void *
4252 fill_search_info(const char *dir, size_t dirlen, void *param)
4253 {
4254     struct fill_search_info_args *arg;
4255 
4256     arg = param;
4257 
4258     if (arg->request == RTLD_DI_SERINFOSIZE) {
4259 	arg->serinfo->dls_cnt ++;
4260 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4261     } else {
4262 	struct dl_serpath *s_entry;
4263 
4264 	s_entry = arg->serpath;
4265 	s_entry->dls_name  = arg->strspace;
4266 	s_entry->dls_flags = arg->flags;
4267 
4268 	strncpy(arg->strspace, dir, dirlen);
4269 	arg->strspace[dirlen] = '\0';
4270 
4271 	arg->strspace += dirlen + 1;
4272 	arg->serpath++;
4273     }
4274 
4275     return (NULL);
4276 }
4277 
4278 static int
4279 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4280 {
4281     struct dl_serinfo _info;
4282     struct fill_search_info_args args;
4283 
4284     args.request = RTLD_DI_SERINFOSIZE;
4285     args.serinfo = &_info;
4286 
4287     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4288     _info.dls_cnt  = 0;
4289 
4290     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4291     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4292     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4293     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4294     if (!obj->z_nodeflib)
4295       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4296 
4297 
4298     if (request == RTLD_DI_SERINFOSIZE) {
4299 	info->dls_size = _info.dls_size;
4300 	info->dls_cnt = _info.dls_cnt;
4301 	return (0);
4302     }
4303 
4304     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4305 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4306 	return (-1);
4307     }
4308 
4309     args.request  = RTLD_DI_SERINFO;
4310     args.serinfo  = info;
4311     args.serpath  = &info->dls_serpath[0];
4312     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4313 
4314     args.flags = LA_SER_RUNPATH;
4315     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4316 	return (-1);
4317 
4318     args.flags = LA_SER_LIBPATH;
4319     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4320 	return (-1);
4321 
4322     args.flags = LA_SER_RUNPATH;
4323     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4324 	return (-1);
4325 
4326     args.flags = LA_SER_CONFIG;
4327     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4328       != NULL)
4329 	return (-1);
4330 
4331     args.flags = LA_SER_DEFAULT;
4332     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4333       fill_search_info, NULL, &args) != NULL)
4334 	return (-1);
4335     return (0);
4336 }
4337 
4338 static int
4339 rtld_dirname(const char *path, char *bname)
4340 {
4341     const char *endp;
4342 
4343     /* Empty or NULL string gets treated as "." */
4344     if (path == NULL || *path == '\0') {
4345 	bname[0] = '.';
4346 	bname[1] = '\0';
4347 	return (0);
4348     }
4349 
4350     /* Strip trailing slashes */
4351     endp = path + strlen(path) - 1;
4352     while (endp > path && *endp == '/')
4353 	endp--;
4354 
4355     /* Find the start of the dir */
4356     while (endp > path && *endp != '/')
4357 	endp--;
4358 
4359     /* Either the dir is "/" or there are no slashes */
4360     if (endp == path) {
4361 	bname[0] = *endp == '/' ? '/' : '.';
4362 	bname[1] = '\0';
4363 	return (0);
4364     } else {
4365 	do {
4366 	    endp--;
4367 	} while (endp > path && *endp == '/');
4368     }
4369 
4370     if (endp - path + 2 > PATH_MAX)
4371     {
4372 	_rtld_error("Filename is too long: %s", path);
4373 	return(-1);
4374     }
4375 
4376     strncpy(bname, path, endp - path + 1);
4377     bname[endp - path + 1] = '\0';
4378     return (0);
4379 }
4380 
4381 static int
4382 rtld_dirname_abs(const char *path, char *base)
4383 {
4384 	char *last;
4385 
4386 	if (realpath(path, base) == NULL) {
4387 		_rtld_error("realpath \"%s\" failed (%s)", path,
4388 		    rtld_strerror(errno));
4389 		return (-1);
4390 	}
4391 	dbg("%s -> %s", path, base);
4392 	last = strrchr(base, '/');
4393 	if (last == NULL) {
4394 		_rtld_error("non-abs result from realpath \"%s\"", path);
4395 		return (-1);
4396 	}
4397 	if (last != base)
4398 		*last = '\0';
4399 	return (0);
4400 }
4401 
4402 static void
4403 linkmap_add(Obj_Entry *obj)
4404 {
4405 	struct link_map *l, *prev;
4406 
4407 	l = &obj->linkmap;
4408 	l->l_name = obj->path;
4409 	l->l_base = obj->mapbase;
4410 	l->l_ld = obj->dynamic;
4411 	l->l_addr = obj->relocbase;
4412 
4413 	if (r_debug.r_map == NULL) {
4414 		r_debug.r_map = l;
4415 		return;
4416 	}
4417 
4418 	/*
4419 	 * Scan to the end of the list, but not past the entry for the
4420 	 * dynamic linker, which we want to keep at the very end.
4421 	 */
4422 	for (prev = r_debug.r_map;
4423 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4424 	     prev = prev->l_next)
4425 		;
4426 
4427 	/* Link in the new entry. */
4428 	l->l_prev = prev;
4429 	l->l_next = prev->l_next;
4430 	if (l->l_next != NULL)
4431 		l->l_next->l_prev = l;
4432 	prev->l_next = l;
4433 }
4434 
4435 static void
4436 linkmap_delete(Obj_Entry *obj)
4437 {
4438 	struct link_map *l;
4439 
4440 	l = &obj->linkmap;
4441 	if (l->l_prev == NULL) {
4442 		if ((r_debug.r_map = l->l_next) != NULL)
4443 			l->l_next->l_prev = NULL;
4444 		return;
4445 	}
4446 
4447 	if ((l->l_prev->l_next = l->l_next) != NULL)
4448 		l->l_next->l_prev = l->l_prev;
4449 }
4450 
4451 /*
4452  * Function for the debugger to set a breakpoint on to gain control.
4453  *
4454  * The two parameters allow the debugger to easily find and determine
4455  * what the runtime loader is doing and to whom it is doing it.
4456  *
4457  * When the loadhook trap is hit (r_debug_state, set at program
4458  * initialization), the arguments can be found on the stack:
4459  *
4460  *  +8   struct link_map *m
4461  *  +4   struct r_debug  *rd
4462  *  +0   RetAddr
4463  */
4464 void
4465 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4466 {
4467     /*
4468      * The following is a hack to force the compiler to emit calls to
4469      * this function, even when optimizing.  If the function is empty,
4470      * the compiler is not obliged to emit any code for calls to it,
4471      * even when marked __noinline.  However, gdb depends on those
4472      * calls being made.
4473      */
4474     __compiler_membar();
4475 }
4476 
4477 /*
4478  * A function called after init routines have completed. This can be used to
4479  * break before a program's entry routine is called, and can be used when
4480  * main is not available in the symbol table.
4481  */
4482 void
4483 _r_debug_postinit(struct link_map *m __unused)
4484 {
4485 
4486 	/* See r_debug_state(). */
4487 	__compiler_membar();
4488 }
4489 
4490 static void
4491 release_object(Obj_Entry *obj)
4492 {
4493 
4494 	if (obj->holdcount > 0) {
4495 		obj->unholdfree = true;
4496 		return;
4497 	}
4498 	munmap(obj->mapbase, obj->mapsize);
4499 	linkmap_delete(obj);
4500 	obj_free(obj);
4501 }
4502 
4503 /*
4504  * Get address of the pointer variable in the main program.
4505  * Prefer non-weak symbol over the weak one.
4506  */
4507 static const void **
4508 get_program_var_addr(const char *name, RtldLockState *lockstate)
4509 {
4510     SymLook req;
4511     DoneList donelist;
4512 
4513     symlook_init(&req, name);
4514     req.lockstate = lockstate;
4515     donelist_init(&donelist);
4516     if (symlook_global(&req, &donelist) != 0)
4517 	return (NULL);
4518     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4519 	return ((const void **)make_function_pointer(req.sym_out,
4520 	  req.defobj_out));
4521     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4522 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4523     else
4524 	return ((const void **)(req.defobj_out->relocbase +
4525 	  req.sym_out->st_value));
4526 }
4527 
4528 /*
4529  * Set a pointer variable in the main program to the given value.  This
4530  * is used to set key variables such as "environ" before any of the
4531  * init functions are called.
4532  */
4533 static void
4534 set_program_var(const char *name, const void *value)
4535 {
4536     const void **addr;
4537 
4538     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4539 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4540 	*addr = value;
4541     }
4542 }
4543 
4544 /*
4545  * Search the global objects, including dependencies and main object,
4546  * for the given symbol.
4547  */
4548 static int
4549 symlook_global(SymLook *req, DoneList *donelist)
4550 {
4551     SymLook req1;
4552     const Objlist_Entry *elm;
4553     int res;
4554 
4555     symlook_init_from_req(&req1, req);
4556 
4557     /* Search all objects loaded at program start up. */
4558     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4559       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4560 	res = symlook_list(&req1, &list_main, donelist);
4561 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4562 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4563 	    req->sym_out = req1.sym_out;
4564 	    req->defobj_out = req1.defobj_out;
4565 	    assert(req->defobj_out != NULL);
4566 	}
4567     }
4568 
4569     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4570     STAILQ_FOREACH(elm, &list_global, link) {
4571 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4572           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4573 	    break;
4574 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4575 	if (res == 0 && (req->defobj_out == NULL ||
4576 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4577 	    req->sym_out = req1.sym_out;
4578 	    req->defobj_out = req1.defobj_out;
4579 	    assert(req->defobj_out != NULL);
4580 	}
4581     }
4582 
4583     return (req->sym_out != NULL ? 0 : ESRCH);
4584 }
4585 
4586 /*
4587  * Given a symbol name in a referencing object, find the corresponding
4588  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4589  * no definition was found.  Returns a pointer to the Obj_Entry of the
4590  * defining object via the reference parameter DEFOBJ_OUT.
4591  */
4592 static int
4593 symlook_default(SymLook *req, const Obj_Entry *refobj)
4594 {
4595     DoneList donelist;
4596     const Objlist_Entry *elm;
4597     SymLook req1;
4598     int res;
4599 
4600     donelist_init(&donelist);
4601     symlook_init_from_req(&req1, req);
4602 
4603     /*
4604      * Look first in the referencing object if linked symbolically,
4605      * and similarly handle protected symbols.
4606      */
4607     res = symlook_obj(&req1, refobj);
4608     if (res == 0 && (refobj->symbolic ||
4609       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4610 	req->sym_out = req1.sym_out;
4611 	req->defobj_out = req1.defobj_out;
4612 	assert(req->defobj_out != NULL);
4613     }
4614     if (refobj->symbolic || req->defobj_out != NULL)
4615 	donelist_check(&donelist, refobj);
4616 
4617     if (!refobj->deepbind)
4618         symlook_global(req, &donelist);
4619 
4620     /* Search all dlopened DAGs containing the referencing object. */
4621     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4622 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4623           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4624 	    break;
4625 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4626 	if (res == 0 && (req->sym_out == NULL ||
4627 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4628 	    req->sym_out = req1.sym_out;
4629 	    req->defobj_out = req1.defobj_out;
4630 	    assert(req->defobj_out != NULL);
4631 	}
4632     }
4633 
4634     if (refobj->deepbind)
4635         symlook_global(req, &donelist);
4636 
4637     /*
4638      * Search the dynamic linker itself, and possibly resolve the
4639      * symbol from there.  This is how the application links to
4640      * dynamic linker services such as dlopen.
4641      */
4642     if (req->sym_out == NULL ||
4643       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4644 	res = symlook_obj(&req1, &obj_rtld);
4645 	if (res == 0) {
4646 	    req->sym_out = req1.sym_out;
4647 	    req->defobj_out = req1.defobj_out;
4648 	    assert(req->defobj_out != NULL);
4649 	}
4650     }
4651 
4652     return (req->sym_out != NULL ? 0 : ESRCH);
4653 }
4654 
4655 static int
4656 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4657 {
4658     const Elf_Sym *def;
4659     const Obj_Entry *defobj;
4660     const Objlist_Entry *elm;
4661     SymLook req1;
4662     int res;
4663 
4664     def = NULL;
4665     defobj = NULL;
4666     STAILQ_FOREACH(elm, objlist, link) {
4667 	if (donelist_check(dlp, elm->obj))
4668 	    continue;
4669 	symlook_init_from_req(&req1, req);
4670 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4671 	    if (def == NULL || (ld_dynamic_weak &&
4672               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4673 		def = req1.sym_out;
4674 		defobj = req1.defobj_out;
4675 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4676 		    break;
4677 	    }
4678 	}
4679     }
4680     if (def != NULL) {
4681 	req->sym_out = def;
4682 	req->defobj_out = defobj;
4683 	return (0);
4684     }
4685     return (ESRCH);
4686 }
4687 
4688 /*
4689  * Search the chain of DAGS cointed to by the given Needed_Entry
4690  * for a symbol of the given name.  Each DAG is scanned completely
4691  * before advancing to the next one.  Returns a pointer to the symbol,
4692  * or NULL if no definition was found.
4693  */
4694 static int
4695 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4696 {
4697     const Elf_Sym *def;
4698     const Needed_Entry *n;
4699     const Obj_Entry *defobj;
4700     SymLook req1;
4701     int res;
4702 
4703     def = NULL;
4704     defobj = NULL;
4705     symlook_init_from_req(&req1, req);
4706     for (n = needed; n != NULL; n = n->next) {
4707 	if (n->obj == NULL ||
4708 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4709 	    continue;
4710 	if (def == NULL || (ld_dynamic_weak &&
4711           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4712 	    def = req1.sym_out;
4713 	    defobj = req1.defobj_out;
4714 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4715 		break;
4716 	}
4717     }
4718     if (def != NULL) {
4719 	req->sym_out = def;
4720 	req->defobj_out = defobj;
4721 	return (0);
4722     }
4723     return (ESRCH);
4724 }
4725 
4726 static int
4727 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4728     Needed_Entry *needed)
4729 {
4730 	DoneList donelist;
4731 	int flags;
4732 
4733 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4734 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4735 	donelist_init(&donelist);
4736 	symlook_init_from_req(req1, req);
4737 	return (symlook_needed(req1, needed, &donelist));
4738 }
4739 
4740 /*
4741  * Search the symbol table of a single shared object for a symbol of
4742  * the given name and version, if requested.  Returns a pointer to the
4743  * symbol, or NULL if no definition was found.  If the object is
4744  * filter, return filtered symbol from filtee.
4745  *
4746  * The symbol's hash value is passed in for efficiency reasons; that
4747  * eliminates many recomputations of the hash value.
4748  */
4749 int
4750 symlook_obj(SymLook *req, const Obj_Entry *obj)
4751 {
4752     SymLook req1;
4753     int res, mres;
4754 
4755     /*
4756      * If there is at least one valid hash at this point, we prefer to
4757      * use the faster GNU version if available.
4758      */
4759     if (obj->valid_hash_gnu)
4760 	mres = symlook_obj1_gnu(req, obj);
4761     else if (obj->valid_hash_sysv)
4762 	mres = symlook_obj1_sysv(req, obj);
4763     else
4764 	return (EINVAL);
4765 
4766     if (mres == 0) {
4767 	if (obj->needed_filtees != NULL) {
4768 	    res = symlook_obj_load_filtees(req, &req1, obj,
4769 		obj->needed_filtees);
4770 	    if (res == 0) {
4771 		req->sym_out = req1.sym_out;
4772 		req->defobj_out = req1.defobj_out;
4773 	    }
4774 	    return (res);
4775 	}
4776 	if (obj->needed_aux_filtees != NULL) {
4777 	    res = symlook_obj_load_filtees(req, &req1, obj,
4778 		obj->needed_aux_filtees);
4779 	    if (res == 0) {
4780 		req->sym_out = req1.sym_out;
4781 		req->defobj_out = req1.defobj_out;
4782 		return (res);
4783 	    }
4784 	}
4785     }
4786     return (mres);
4787 }
4788 
4789 /* Symbol match routine common to both hash functions */
4790 static bool
4791 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4792     const unsigned long symnum)
4793 {
4794 	Elf_Versym verndx;
4795 	const Elf_Sym *symp;
4796 	const char *strp;
4797 
4798 	symp = obj->symtab + symnum;
4799 	strp = obj->strtab + symp->st_name;
4800 
4801 	switch (ELF_ST_TYPE(symp->st_info)) {
4802 	case STT_FUNC:
4803 	case STT_NOTYPE:
4804 	case STT_OBJECT:
4805 	case STT_COMMON:
4806 	case STT_GNU_IFUNC:
4807 		if (symp->st_value == 0)
4808 			return (false);
4809 		/* fallthrough */
4810 	case STT_TLS:
4811 		if (symp->st_shndx != SHN_UNDEF)
4812 			break;
4813 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4814 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4815 			break;
4816 		/* fallthrough */
4817 	default:
4818 		return (false);
4819 	}
4820 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4821 		return (false);
4822 
4823 	if (req->ventry == NULL) {
4824 		if (obj->versyms != NULL) {
4825 			verndx = VER_NDX(obj->versyms[symnum]);
4826 			if (verndx > obj->vernum) {
4827 				_rtld_error(
4828 				    "%s: symbol %s references wrong version %d",
4829 				    obj->path, obj->strtab + symnum, verndx);
4830 				return (false);
4831 			}
4832 			/*
4833 			 * If we are not called from dlsym (i.e. this
4834 			 * is a normal relocation from unversioned
4835 			 * binary), accept the symbol immediately if
4836 			 * it happens to have first version after this
4837 			 * shared object became versioned.  Otherwise,
4838 			 * if symbol is versioned and not hidden,
4839 			 * remember it. If it is the only symbol with
4840 			 * this name exported by the shared object, it
4841 			 * will be returned as a match by the calling
4842 			 * function. If symbol is global (verndx < 2)
4843 			 * accept it unconditionally.
4844 			 */
4845 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4846 			    verndx == VER_NDX_GIVEN) {
4847 				result->sym_out = symp;
4848 				return (true);
4849 			}
4850 			else if (verndx >= VER_NDX_GIVEN) {
4851 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4852 				    == 0) {
4853 					if (result->vsymp == NULL)
4854 						result->vsymp = symp;
4855 					result->vcount++;
4856 				}
4857 				return (false);
4858 			}
4859 		}
4860 		result->sym_out = symp;
4861 		return (true);
4862 	}
4863 	if (obj->versyms == NULL) {
4864 		if (object_match_name(obj, req->ventry->name)) {
4865 			_rtld_error("%s: object %s should provide version %s "
4866 			    "for symbol %s", obj_rtld.path, obj->path,
4867 			    req->ventry->name, obj->strtab + symnum);
4868 			return (false);
4869 		}
4870 	} else {
4871 		verndx = VER_NDX(obj->versyms[symnum]);
4872 		if (verndx > obj->vernum) {
4873 			_rtld_error("%s: symbol %s references wrong version %d",
4874 			    obj->path, obj->strtab + symnum, verndx);
4875 			return (false);
4876 		}
4877 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4878 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4879 			/*
4880 			 * Version does not match. Look if this is a
4881 			 * global symbol and if it is not hidden. If
4882 			 * global symbol (verndx < 2) is available,
4883 			 * use it. Do not return symbol if we are
4884 			 * called by dlvsym, because dlvsym looks for
4885 			 * a specific version and default one is not
4886 			 * what dlvsym wants.
4887 			 */
4888 			if ((req->flags & SYMLOOK_DLSYM) ||
4889 			    (verndx >= VER_NDX_GIVEN) ||
4890 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4891 				return (false);
4892 		}
4893 	}
4894 	result->sym_out = symp;
4895 	return (true);
4896 }
4897 
4898 /*
4899  * Search for symbol using SysV hash function.
4900  * obj->buckets is known not to be NULL at this point; the test for this was
4901  * performed with the obj->valid_hash_sysv assignment.
4902  */
4903 static int
4904 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4905 {
4906 	unsigned long symnum;
4907 	Sym_Match_Result matchres;
4908 
4909 	matchres.sym_out = NULL;
4910 	matchres.vsymp = NULL;
4911 	matchres.vcount = 0;
4912 
4913 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4914 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4915 		if (symnum >= obj->nchains)
4916 			return (ESRCH);	/* Bad object */
4917 
4918 		if (matched_symbol(req, obj, &matchres, symnum)) {
4919 			req->sym_out = matchres.sym_out;
4920 			req->defobj_out = obj;
4921 			return (0);
4922 		}
4923 	}
4924 	if (matchres.vcount == 1) {
4925 		req->sym_out = matchres.vsymp;
4926 		req->defobj_out = obj;
4927 		return (0);
4928 	}
4929 	return (ESRCH);
4930 }
4931 
4932 /* Search for symbol using GNU hash function */
4933 static int
4934 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4935 {
4936 	Elf_Addr bloom_word;
4937 	const Elf32_Word *hashval;
4938 	Elf32_Word bucket;
4939 	Sym_Match_Result matchres;
4940 	unsigned int h1, h2;
4941 	unsigned long symnum;
4942 
4943 	matchres.sym_out = NULL;
4944 	matchres.vsymp = NULL;
4945 	matchres.vcount = 0;
4946 
4947 	/* Pick right bitmask word from Bloom filter array */
4948 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4949 	    obj->maskwords_bm_gnu];
4950 
4951 	/* Calculate modulus word size of gnu hash and its derivative */
4952 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4953 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4954 
4955 	/* Filter out the "definitely not in set" queries */
4956 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4957 		return (ESRCH);
4958 
4959 	/* Locate hash chain and corresponding value element*/
4960 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4961 	if (bucket == 0)
4962 		return (ESRCH);
4963 	hashval = &obj->chain_zero_gnu[bucket];
4964 	do {
4965 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4966 			symnum = hashval - obj->chain_zero_gnu;
4967 			if (matched_symbol(req, obj, &matchres, symnum)) {
4968 				req->sym_out = matchres.sym_out;
4969 				req->defobj_out = obj;
4970 				return (0);
4971 			}
4972 		}
4973 	} while ((*hashval++ & 1) == 0);
4974 	if (matchres.vcount == 1) {
4975 		req->sym_out = matchres.vsymp;
4976 		req->defobj_out = obj;
4977 		return (0);
4978 	}
4979 	return (ESRCH);
4980 }
4981 
4982 static void
4983 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4984 {
4985 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4986 	if (*main_local == NULL)
4987 		*main_local = "";
4988 
4989 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4990 	if (*fmt1 == NULL)
4991 		*fmt1 = "\t%o => %p (%x)\n";
4992 
4993 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4994 	if (*fmt2 == NULL)
4995 		*fmt2 = "\t%o (%x)\n";
4996 }
4997 
4998 static void
4999 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5000     const char *main_local, const char *fmt1, const char *fmt2)
5001 {
5002 	const char *fmt;
5003 	int c;
5004 
5005 	if (fmt1 == NULL)
5006 		fmt = fmt2;
5007 	else
5008 		/* XXX bogus */
5009 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5010 
5011 	while ((c = *fmt++) != '\0') {
5012 		switch (c) {
5013 		default:
5014 			rtld_putchar(c);
5015 			continue;
5016 		case '\\':
5017 			switch (c = *fmt) {
5018 			case '\0':
5019 				continue;
5020 			case 'n':
5021 				rtld_putchar('\n');
5022 				break;
5023 			case 't':
5024 				rtld_putchar('\t');
5025 				break;
5026 			}
5027 			break;
5028 		case '%':
5029 			switch (c = *fmt) {
5030 			case '\0':
5031 				continue;
5032 			case '%':
5033 			default:
5034 				rtld_putchar(c);
5035 				break;
5036 			case 'A':
5037 				rtld_putstr(main_local);
5038 				break;
5039 			case 'a':
5040 				rtld_putstr(obj_main->path);
5041 				break;
5042 			case 'o':
5043 				rtld_putstr(name);
5044 				break;
5045 			case 'p':
5046 				rtld_putstr(path);
5047 				break;
5048 			case 'x':
5049 				rtld_printf("%p", obj != NULL ?
5050 				    obj->mapbase : NULL);
5051 				break;
5052 			}
5053 			break;
5054 		}
5055 		++fmt;
5056 	}
5057 }
5058 
5059 static void
5060 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5061 {
5062 	const char *fmt1, *fmt2, *main_local;
5063 	const char *name, *path;
5064 	bool first_spurious, list_containers;
5065 
5066 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5067 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5068 
5069 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5070 		Needed_Entry *needed;
5071 
5072 		if (obj->marker)
5073 			continue;
5074 		if (list_containers && obj->needed != NULL)
5075 			rtld_printf("%s:\n", obj->path);
5076 		for (needed = obj->needed; needed; needed = needed->next) {
5077 			if (needed->obj != NULL) {
5078 				if (needed->obj->traced && !list_containers)
5079 					continue;
5080 				needed->obj->traced = true;
5081 				path = needed->obj->path;
5082 			} else
5083 				path = "not found";
5084 
5085 			name = obj->strtab + needed->name;
5086 			trace_print_obj(needed->obj, name, path, main_local,
5087 			    fmt1, fmt2);
5088 		}
5089 	}
5090 
5091 	if (show_preload) {
5092 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5093 			fmt2 = "\t%p (%x)\n";
5094 		first_spurious = true;
5095 
5096 		TAILQ_FOREACH(obj, &obj_list, next) {
5097 			if (obj->marker || obj == obj_main || obj->traced)
5098 				continue;
5099 
5100 			if (list_containers && first_spurious) {
5101 				rtld_printf("[preloaded]\n");
5102 				first_spurious = false;
5103 			}
5104 
5105 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5106 			name = fname == NULL ? "<unknown>" : fname->name;
5107 			trace_print_obj(obj, name, obj->path, main_local,
5108 			    NULL, fmt2);
5109 		}
5110 	}
5111 }
5112 
5113 /*
5114  * Unload a dlopened object and its dependencies from memory and from
5115  * our data structures.  It is assumed that the DAG rooted in the
5116  * object has already been unreferenced, and that the object has a
5117  * reference count of 0.
5118  */
5119 static void
5120 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5121 {
5122 	Obj_Entry marker, *obj, *next;
5123 
5124 	assert(root->refcount == 0);
5125 
5126 	/*
5127 	 * Pass over the DAG removing unreferenced objects from
5128 	 * appropriate lists.
5129 	 */
5130 	unlink_object(root);
5131 
5132 	/* Unmap all objects that are no longer referenced. */
5133 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5134 		next = TAILQ_NEXT(obj, next);
5135 		if (obj->marker || obj->refcount != 0)
5136 			continue;
5137 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5138 		    obj->mapsize, 0, obj->path);
5139 		dbg("unloading \"%s\"", obj->path);
5140 		/*
5141 		 * Unlink the object now to prevent new references from
5142 		 * being acquired while the bind lock is dropped in
5143 		 * recursive dlclose() invocations.
5144 		 */
5145 		TAILQ_REMOVE(&obj_list, obj, next);
5146 		obj_count--;
5147 
5148 		if (obj->filtees_loaded) {
5149 			if (next != NULL) {
5150 				init_marker(&marker);
5151 				TAILQ_INSERT_BEFORE(next, &marker, next);
5152 				unload_filtees(obj, lockstate);
5153 				next = TAILQ_NEXT(&marker, next);
5154 				TAILQ_REMOVE(&obj_list, &marker, next);
5155 			} else
5156 				unload_filtees(obj, lockstate);
5157 		}
5158 		release_object(obj);
5159 	}
5160 }
5161 
5162 static void
5163 unlink_object(Obj_Entry *root)
5164 {
5165     Objlist_Entry *elm;
5166 
5167     if (root->refcount == 0) {
5168 	/* Remove the object from the RTLD_GLOBAL list. */
5169 	objlist_remove(&list_global, root);
5170 
5171     	/* Remove the object from all objects' DAG lists. */
5172     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5173 	    objlist_remove(&elm->obj->dldags, root);
5174 	    if (elm->obj != root)
5175 		unlink_object(elm->obj);
5176 	}
5177     }
5178 }
5179 
5180 static void
5181 ref_dag(Obj_Entry *root)
5182 {
5183     Objlist_Entry *elm;
5184 
5185     assert(root->dag_inited);
5186     STAILQ_FOREACH(elm, &root->dagmembers, link)
5187 	elm->obj->refcount++;
5188 }
5189 
5190 static void
5191 unref_dag(Obj_Entry *root)
5192 {
5193     Objlist_Entry *elm;
5194 
5195     assert(root->dag_inited);
5196     STAILQ_FOREACH(elm, &root->dagmembers, link)
5197 	elm->obj->refcount--;
5198 }
5199 
5200 /*
5201  * Common code for MD __tls_get_addr().
5202  */
5203 static void *
5204 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5205 {
5206 	Elf_Addr *newdtv, *dtv;
5207 	RtldLockState lockstate;
5208 	int to_copy;
5209 
5210 	dtv = *dtvp;
5211 	/* Check dtv generation in case new modules have arrived */
5212 	if (dtv[0] != tls_dtv_generation) {
5213 		if (!locked)
5214 			wlock_acquire(rtld_bind_lock, &lockstate);
5215 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5216 		to_copy = dtv[1];
5217 		if (to_copy > tls_max_index)
5218 			to_copy = tls_max_index;
5219 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5220 		newdtv[0] = tls_dtv_generation;
5221 		newdtv[1] = tls_max_index;
5222 		free(dtv);
5223 		if (!locked)
5224 			lock_release(rtld_bind_lock, &lockstate);
5225 		dtv = *dtvp = newdtv;
5226 	}
5227 
5228 	/* Dynamically allocate module TLS if necessary */
5229 	if (dtv[index + 1] == 0) {
5230 		/* Signal safe, wlock will block out signals. */
5231 		if (!locked)
5232 			wlock_acquire(rtld_bind_lock, &lockstate);
5233 		if (!dtv[index + 1])
5234 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5235 		if (!locked)
5236 			lock_release(rtld_bind_lock, &lockstate);
5237 	}
5238 	return ((void *)(dtv[index + 1] + offset));
5239 }
5240 
5241 void *
5242 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5243 {
5244 	uintptr_t *dtv;
5245 
5246 	dtv = *dtvp;
5247 	/* Check dtv generation in case new modules have arrived */
5248 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5249 	    dtv[index + 1] != 0))
5250 		return ((void *)(dtv[index + 1] + offset));
5251 	return (tls_get_addr_slow(dtvp, index, offset, false));
5252 }
5253 
5254 #ifdef TLS_VARIANT_I
5255 
5256 /*
5257  * Return pointer to allocated TLS block
5258  */
5259 static void *
5260 get_tls_block_ptr(void *tcb, size_t tcbsize)
5261 {
5262     size_t extra_size, post_size, pre_size, tls_block_size;
5263     size_t tls_init_align;
5264 
5265     tls_init_align = MAX(obj_main->tlsalign, 1);
5266 
5267     /* Compute fragments sizes. */
5268     extra_size = tcbsize - TLS_TCB_SIZE;
5269     post_size = calculate_tls_post_size(tls_init_align);
5270     tls_block_size = tcbsize + post_size;
5271     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5272 
5273     return ((char *)tcb - pre_size - extra_size);
5274 }
5275 
5276 /*
5277  * Allocate Static TLS using the Variant I method.
5278  *
5279  * For details on the layout, see lib/libc/gen/tls.c.
5280  *
5281  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5282  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5283  *     offsets, whereas libc's tls_static_space is just the executable's static
5284  *     TLS segment.
5285  */
5286 void *
5287 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5288 {
5289     Obj_Entry *obj;
5290     char *tls_block;
5291     Elf_Addr *dtv, **tcb;
5292     Elf_Addr addr;
5293     Elf_Addr i;
5294     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5295     size_t tls_init_align, tls_init_offset;
5296 
5297     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5298 	return (oldtcb);
5299 
5300     assert(tcbsize >= TLS_TCB_SIZE);
5301     maxalign = MAX(tcbalign, tls_static_max_align);
5302     tls_init_align = MAX(obj_main->tlsalign, 1);
5303 
5304     /* Compute fragmets sizes. */
5305     extra_size = tcbsize - TLS_TCB_SIZE;
5306     post_size = calculate_tls_post_size(tls_init_align);
5307     tls_block_size = tcbsize + post_size;
5308     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5309     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5310 
5311     /* Allocate whole TLS block */
5312     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5313     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5314 
5315     if (oldtcb != NULL) {
5316 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5317 	    tls_static_space);
5318 	free(get_tls_block_ptr(oldtcb, tcbsize));
5319 
5320 	/* Adjust the DTV. */
5321 	dtv = tcb[0];
5322 	for (i = 0; i < dtv[1]; i++) {
5323 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5324 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5325 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5326 	    }
5327 	}
5328     } else {
5329 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5330 	tcb[0] = dtv;
5331 	dtv[0] = tls_dtv_generation;
5332 	dtv[1] = tls_max_index;
5333 
5334 	for (obj = globallist_curr(objs); obj != NULL;
5335 	  obj = globallist_next(obj)) {
5336 	    if (obj->tlsoffset == 0)
5337 		continue;
5338 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5339 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5340 	    if (tls_init_offset > 0)
5341 		memset((void *)addr, 0, tls_init_offset);
5342 	    if (obj->tlsinitsize > 0) {
5343 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5344 		    obj->tlsinitsize);
5345 	    }
5346 	    if (obj->tlssize > obj->tlsinitsize) {
5347 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5348 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5349 	    }
5350 	    dtv[obj->tlsindex + 1] = addr;
5351 	}
5352     }
5353 
5354     return (tcb);
5355 }
5356 
5357 void
5358 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5359 {
5360     Elf_Addr *dtv;
5361     Elf_Addr tlsstart, tlsend;
5362     size_t post_size;
5363     size_t dtvsize, i, tls_init_align __unused;
5364 
5365     assert(tcbsize >= TLS_TCB_SIZE);
5366     tls_init_align = MAX(obj_main->tlsalign, 1);
5367 
5368     /* Compute fragments sizes. */
5369     post_size = calculate_tls_post_size(tls_init_align);
5370 
5371     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5372     tlsend = (Elf_Addr)tcb + tls_static_space;
5373 
5374     dtv = *(Elf_Addr **)tcb;
5375     dtvsize = dtv[1];
5376     for (i = 0; i < dtvsize; i++) {
5377 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5378 	    free((void*)dtv[i+2]);
5379 	}
5380     }
5381     free(dtv);
5382     free(get_tls_block_ptr(tcb, tcbsize));
5383 }
5384 
5385 #endif	/* TLS_VARIANT_I */
5386 
5387 #ifdef TLS_VARIANT_II
5388 
5389 /*
5390  * Allocate Static TLS using the Variant II method.
5391  */
5392 void *
5393 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5394 {
5395     Obj_Entry *obj;
5396     size_t size, ralign;
5397     char *tls;
5398     Elf_Addr *dtv, *olddtv;
5399     Elf_Addr segbase, oldsegbase, addr;
5400     size_t i;
5401 
5402     ralign = tcbalign;
5403     if (tls_static_max_align > ralign)
5404 	    ralign = tls_static_max_align;
5405     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5406 
5407     assert(tcbsize >= 2*sizeof(Elf_Addr));
5408     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5409     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5410 
5411     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5412     ((Elf_Addr *)segbase)[0] = segbase;
5413     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5414 
5415     dtv[0] = tls_dtv_generation;
5416     dtv[1] = tls_max_index;
5417 
5418     if (oldtls) {
5419 	/*
5420 	 * Copy the static TLS block over whole.
5421 	 */
5422 	oldsegbase = (Elf_Addr) oldtls;
5423 	memcpy((void *)(segbase - tls_static_space),
5424 	   (const void *)(oldsegbase - tls_static_space),
5425 	   tls_static_space);
5426 
5427 	/*
5428 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5429 	 * move them over.
5430 	 */
5431 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5432 	for (i = 0; i < olddtv[1]; i++) {
5433 	    if (olddtv[i + 2] < oldsegbase - size ||
5434 		olddtv[i + 2] > oldsegbase) {
5435 		    dtv[i + 2] = olddtv[i + 2];
5436 		    olddtv[i + 2] = 0;
5437 	    }
5438 	}
5439 
5440 	/*
5441 	 * We assume that this block was the one we created with
5442 	 * allocate_initial_tls().
5443 	 */
5444 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5445     } else {
5446 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5447 		if (obj->marker || obj->tlsoffset == 0)
5448 			continue;
5449 		addr = segbase - obj->tlsoffset;
5450 		memset((void *)(addr + obj->tlsinitsize),
5451 		    0, obj->tlssize - obj->tlsinitsize);
5452 		if (obj->tlsinit) {
5453 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5454 			obj->static_tls_copied = true;
5455 		}
5456 		dtv[obj->tlsindex + 1] = addr;
5457 	}
5458     }
5459 
5460     return ((void *)segbase);
5461 }
5462 
5463 void
5464 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5465 {
5466     Elf_Addr* dtv;
5467     size_t size, ralign;
5468     int dtvsize, i;
5469     Elf_Addr tlsstart, tlsend;
5470 
5471     /*
5472      * Figure out the size of the initial TLS block so that we can
5473      * find stuff which ___tls_get_addr() allocated dynamically.
5474      */
5475     ralign = tcbalign;
5476     if (tls_static_max_align > ralign)
5477 	    ralign = tls_static_max_align;
5478     size = roundup(tls_static_space, ralign);
5479 
5480     dtv = ((Elf_Addr **)tls)[1];
5481     dtvsize = dtv[1];
5482     tlsend = (Elf_Addr)tls;
5483     tlsstart = tlsend - size;
5484     for (i = 0; i < dtvsize; i++) {
5485 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5486 	        dtv[i + 2] > tlsend)) {
5487 		    free((void *)dtv[i + 2]);
5488 	}
5489     }
5490 
5491     free((void *)tlsstart);
5492     free((void *)dtv);
5493 }
5494 
5495 #endif	/* TLS_VARIANT_II */
5496 
5497 /*
5498  * Allocate TLS block for module with given index.
5499  */
5500 void *
5501 allocate_module_tls(int index)
5502 {
5503 	Obj_Entry *obj;
5504 	char *p;
5505 
5506 	TAILQ_FOREACH(obj, &obj_list, next) {
5507 		if (obj->marker)
5508 			continue;
5509 		if (obj->tlsindex == index)
5510 			break;
5511 	}
5512 	if (obj == NULL) {
5513 		_rtld_error("Can't find module with TLS index %d", index);
5514 		rtld_die();
5515 	}
5516 
5517 	if (obj->tls_static) {
5518 #ifdef TLS_VARIANT_I
5519 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5520 #else
5521 		p = (char *)_tcb_get() - obj->tlsoffset;
5522 #endif
5523 		return (p);
5524 	}
5525 
5526 	obj->tls_dynamic = true;
5527 
5528 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5529 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5530 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5531 	return (p);
5532 }
5533 
5534 bool
5535 allocate_tls_offset(Obj_Entry *obj)
5536 {
5537     size_t off;
5538 
5539     if (obj->tls_dynamic)
5540 	return (false);
5541 
5542     if (obj->tls_static)
5543 	return (true);
5544 
5545     if (obj->tlssize == 0) {
5546 	obj->tls_static = true;
5547 	return (true);
5548     }
5549 
5550     if (tls_last_offset == 0)
5551 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5552 	  obj->tlspoffset);
5553     else
5554 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5555 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5556 
5557     obj->tlsoffset = off;
5558 #ifdef TLS_VARIANT_I
5559     off += obj->tlssize;
5560 #endif
5561 
5562     /*
5563      * If we have already fixed the size of the static TLS block, we
5564      * must stay within that size. When allocating the static TLS, we
5565      * leave a small amount of space spare to be used for dynamically
5566      * loading modules which use static TLS.
5567      */
5568     if (tls_static_space != 0) {
5569 	if (off > tls_static_space)
5570 	    return (false);
5571     } else if (obj->tlsalign > tls_static_max_align) {
5572 	    tls_static_max_align = obj->tlsalign;
5573     }
5574 
5575     tls_last_offset = off;
5576     tls_last_size = obj->tlssize;
5577     obj->tls_static = true;
5578 
5579     return (true);
5580 }
5581 
5582 void
5583 free_tls_offset(Obj_Entry *obj)
5584 {
5585 
5586     /*
5587      * If we were the last thing to allocate out of the static TLS
5588      * block, we give our space back to the 'allocator'. This is a
5589      * simplistic workaround to allow libGL.so.1 to be loaded and
5590      * unloaded multiple times.
5591      */
5592     size_t off = obj->tlsoffset;
5593 #ifdef TLS_VARIANT_I
5594     off += obj->tlssize;
5595 #endif
5596     if (off == tls_last_offset) {
5597 	tls_last_offset -= obj->tlssize;
5598 	tls_last_size = 0;
5599     }
5600 }
5601 
5602 void *
5603 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5604 {
5605     void *ret;
5606     RtldLockState lockstate;
5607 
5608     wlock_acquire(rtld_bind_lock, &lockstate);
5609     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5610       tcbsize, tcbalign);
5611     lock_release(rtld_bind_lock, &lockstate);
5612     return (ret);
5613 }
5614 
5615 void
5616 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5617 {
5618     RtldLockState lockstate;
5619 
5620     wlock_acquire(rtld_bind_lock, &lockstate);
5621     free_tls(tcb, tcbsize, tcbalign);
5622     lock_release(rtld_bind_lock, &lockstate);
5623 }
5624 
5625 static void
5626 object_add_name(Obj_Entry *obj, const char *name)
5627 {
5628     Name_Entry *entry;
5629     size_t len;
5630 
5631     len = strlen(name);
5632     entry = malloc(sizeof(Name_Entry) + len);
5633 
5634     if (entry != NULL) {
5635 	strcpy(entry->name, name);
5636 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5637     }
5638 }
5639 
5640 static int
5641 object_match_name(const Obj_Entry *obj, const char *name)
5642 {
5643     Name_Entry *entry;
5644 
5645     STAILQ_FOREACH(entry, &obj->names, link) {
5646 	if (strcmp(name, entry->name) == 0)
5647 	    return (1);
5648     }
5649     return (0);
5650 }
5651 
5652 static Obj_Entry *
5653 locate_dependency(const Obj_Entry *obj, const char *name)
5654 {
5655     const Objlist_Entry *entry;
5656     const Needed_Entry *needed;
5657 
5658     STAILQ_FOREACH(entry, &list_main, link) {
5659 	if (object_match_name(entry->obj, name))
5660 	    return (entry->obj);
5661     }
5662 
5663     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5664 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5665 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5666 	    /*
5667 	     * If there is DT_NEEDED for the name we are looking for,
5668 	     * we are all set.  Note that object might not be found if
5669 	     * dependency was not loaded yet, so the function can
5670 	     * return NULL here.  This is expected and handled
5671 	     * properly by the caller.
5672 	     */
5673 	    return (needed->obj);
5674 	}
5675     }
5676     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5677 	obj->path, name);
5678     rtld_die();
5679 }
5680 
5681 static int
5682 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5683     const Elf_Vernaux *vna)
5684 {
5685     const Elf_Verdef *vd;
5686     const char *vername;
5687 
5688     vername = refobj->strtab + vna->vna_name;
5689     vd = depobj->verdef;
5690     if (vd == NULL) {
5691 	_rtld_error("%s: version %s required by %s not defined",
5692 	    depobj->path, vername, refobj->path);
5693 	return (-1);
5694     }
5695     for (;;) {
5696 	if (vd->vd_version != VER_DEF_CURRENT) {
5697 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5698 		depobj->path, vd->vd_version);
5699 	    return (-1);
5700 	}
5701 	if (vna->vna_hash == vd->vd_hash) {
5702 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5703 		((const char *)vd + vd->vd_aux);
5704 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5705 		return (0);
5706 	}
5707 	if (vd->vd_next == 0)
5708 	    break;
5709 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5710     }
5711     if (vna->vna_flags & VER_FLG_WEAK)
5712 	return (0);
5713     _rtld_error("%s: version %s required by %s not found",
5714 	depobj->path, vername, refobj->path);
5715     return (-1);
5716 }
5717 
5718 static int
5719 rtld_verify_object_versions(Obj_Entry *obj)
5720 {
5721     const Elf_Verneed *vn;
5722     const Elf_Verdef  *vd;
5723     const Elf_Verdaux *vda;
5724     const Elf_Vernaux *vna;
5725     const Obj_Entry *depobj;
5726     int maxvernum, vernum;
5727 
5728     if (obj->ver_checked)
5729 	return (0);
5730     obj->ver_checked = true;
5731 
5732     maxvernum = 0;
5733     /*
5734      * Walk over defined and required version records and figure out
5735      * max index used by any of them. Do very basic sanity checking
5736      * while there.
5737      */
5738     vn = obj->verneed;
5739     while (vn != NULL) {
5740 	if (vn->vn_version != VER_NEED_CURRENT) {
5741 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5742 		obj->path, vn->vn_version);
5743 	    return (-1);
5744 	}
5745 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5746 	for (;;) {
5747 	    vernum = VER_NEED_IDX(vna->vna_other);
5748 	    if (vernum > maxvernum)
5749 		maxvernum = vernum;
5750 	    if (vna->vna_next == 0)
5751 		 break;
5752 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5753 	}
5754 	if (vn->vn_next == 0)
5755 	    break;
5756 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5757     }
5758 
5759     vd = obj->verdef;
5760     while (vd != NULL) {
5761 	if (vd->vd_version != VER_DEF_CURRENT) {
5762 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5763 		obj->path, vd->vd_version);
5764 	    return (-1);
5765 	}
5766 	vernum = VER_DEF_IDX(vd->vd_ndx);
5767 	if (vernum > maxvernum)
5768 		maxvernum = vernum;
5769 	if (vd->vd_next == 0)
5770 	    break;
5771 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5772     }
5773 
5774     if (maxvernum == 0)
5775 	return (0);
5776 
5777     /*
5778      * Store version information in array indexable by version index.
5779      * Verify that object version requirements are satisfied along the
5780      * way.
5781      */
5782     obj->vernum = maxvernum + 1;
5783     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5784 
5785     vd = obj->verdef;
5786     while (vd != NULL) {
5787 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5788 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5789 	    assert(vernum <= maxvernum);
5790 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5791 	    obj->vertab[vernum].hash = vd->vd_hash;
5792 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5793 	    obj->vertab[vernum].file = NULL;
5794 	    obj->vertab[vernum].flags = 0;
5795 	}
5796 	if (vd->vd_next == 0)
5797 	    break;
5798 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5799     }
5800 
5801     vn = obj->verneed;
5802     while (vn != NULL) {
5803 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5804 	if (depobj == NULL)
5805 	    return (-1);
5806 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5807 	for (;;) {
5808 	    if (check_object_provided_version(obj, depobj, vna))
5809 		return (-1);
5810 	    vernum = VER_NEED_IDX(vna->vna_other);
5811 	    assert(vernum <= maxvernum);
5812 	    obj->vertab[vernum].hash = vna->vna_hash;
5813 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5814 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5815 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5816 		VER_INFO_HIDDEN : 0;
5817 	    if (vna->vna_next == 0)
5818 		 break;
5819 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5820 	}
5821 	if (vn->vn_next == 0)
5822 	    break;
5823 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5824     }
5825     return (0);
5826 }
5827 
5828 static int
5829 rtld_verify_versions(const Objlist *objlist)
5830 {
5831     Objlist_Entry *entry;
5832     int rc;
5833 
5834     rc = 0;
5835     STAILQ_FOREACH(entry, objlist, link) {
5836 	/*
5837 	 * Skip dummy objects or objects that have their version requirements
5838 	 * already checked.
5839 	 */
5840 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5841 	    continue;
5842 	if (rtld_verify_object_versions(entry->obj) == -1) {
5843 	    rc = -1;
5844 	    if (ld_tracing == NULL)
5845 		break;
5846 	}
5847     }
5848     if (rc == 0 || ld_tracing != NULL)
5849     	rc = rtld_verify_object_versions(&obj_rtld);
5850     return (rc);
5851 }
5852 
5853 const Ver_Entry *
5854 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5855 {
5856     Elf_Versym vernum;
5857 
5858     if (obj->vertab) {
5859 	vernum = VER_NDX(obj->versyms[symnum]);
5860 	if (vernum >= obj->vernum) {
5861 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5862 		obj->path, obj->strtab + symnum, vernum);
5863 	} else if (obj->vertab[vernum].hash != 0) {
5864 	    return (&obj->vertab[vernum]);
5865 	}
5866     }
5867     return (NULL);
5868 }
5869 
5870 int
5871 _rtld_get_stack_prot(void)
5872 {
5873 
5874 	return (stack_prot);
5875 }
5876 
5877 int
5878 _rtld_is_dlopened(void *arg)
5879 {
5880 	Obj_Entry *obj;
5881 	RtldLockState lockstate;
5882 	int res;
5883 
5884 	rlock_acquire(rtld_bind_lock, &lockstate);
5885 	obj = dlcheck(arg);
5886 	if (obj == NULL)
5887 		obj = obj_from_addr(arg);
5888 	if (obj == NULL) {
5889 		_rtld_error("No shared object contains address");
5890 		lock_release(rtld_bind_lock, &lockstate);
5891 		return (-1);
5892 	}
5893 	res = obj->dlopened ? 1 : 0;
5894 	lock_release(rtld_bind_lock, &lockstate);
5895 	return (res);
5896 }
5897 
5898 static int
5899 obj_remap_relro(Obj_Entry *obj, int prot)
5900 {
5901 	const Elf_Phdr *ph;
5902 	caddr_t relro_page;
5903 	size_t relro_size;
5904 
5905 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
5906 	    obj->phsize; ph++) {
5907 		switch (ph->p_type) {
5908 		case PT_GNU_RELRO:
5909 			relro_page = obj->relocbase +
5910 			    rtld_trunc_page(ph->p_vaddr);
5911 			relro_size =
5912 			    rtld_round_page(ph->p_vaddr + ph->p_memsz) -
5913 			    rtld_trunc_page(ph->p_vaddr);
5914 			if (mprotect(relro_page, relro_size, prot) == -1) {
5915 				_rtld_error("%s: Cannot set relro protection to %#x: %s",
5916 				    obj->path, prot, rtld_strerror(errno));
5917 				return (-1);
5918 			}
5919 			break;
5920 		}
5921 	}
5922 	return (0);
5923 }
5924 
5925 static int
5926 obj_disable_relro(Obj_Entry *obj)
5927 {
5928 
5929 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5930 }
5931 
5932 static int
5933 obj_enforce_relro(Obj_Entry *obj)
5934 {
5935 
5936 	return (obj_remap_relro(obj, PROT_READ));
5937 }
5938 
5939 static void
5940 map_stacks_exec(RtldLockState *lockstate)
5941 {
5942 	void (*thr_map_stacks_exec)(void);
5943 
5944 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5945 		return;
5946 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5947 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5948 	if (thr_map_stacks_exec != NULL) {
5949 		stack_prot |= PROT_EXEC;
5950 		thr_map_stacks_exec();
5951 	}
5952 }
5953 
5954 static void
5955 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5956 {
5957 	Objlist_Entry *elm;
5958 	Obj_Entry *obj;
5959 	void (*distrib)(size_t, void *, size_t, size_t);
5960 
5961 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5962 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5963 	if (distrib == NULL)
5964 		return;
5965 	STAILQ_FOREACH(elm, list, link) {
5966 		obj = elm->obj;
5967 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5968 			continue;
5969 		lock_release(rtld_bind_lock, lockstate);
5970 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5971 		    obj->tlssize);
5972 		wlock_acquire(rtld_bind_lock, lockstate);
5973 		obj->static_tls_copied = true;
5974 	}
5975 }
5976 
5977 void
5978 symlook_init(SymLook *dst, const char *name)
5979 {
5980 
5981 	bzero(dst, sizeof(*dst));
5982 	dst->name = name;
5983 	dst->hash = elf_hash(name);
5984 	dst->hash_gnu = gnu_hash(name);
5985 }
5986 
5987 static void
5988 symlook_init_from_req(SymLook *dst, const SymLook *src)
5989 {
5990 
5991 	dst->name = src->name;
5992 	dst->hash = src->hash;
5993 	dst->hash_gnu = src->hash_gnu;
5994 	dst->ventry = src->ventry;
5995 	dst->flags = src->flags;
5996 	dst->defobj_out = NULL;
5997 	dst->sym_out = NULL;
5998 	dst->lockstate = src->lockstate;
5999 }
6000 
6001 static int
6002 open_binary_fd(const char *argv0, bool search_in_path,
6003     const char **binpath_res)
6004 {
6005 	char *binpath, *pathenv, *pe, *res1;
6006 	const char *res;
6007 	int fd;
6008 
6009 	binpath = NULL;
6010 	res = NULL;
6011 	if (search_in_path && strchr(argv0, '/') == NULL) {
6012 		binpath = xmalloc(PATH_MAX);
6013 		pathenv = getenv("PATH");
6014 		if (pathenv == NULL) {
6015 			_rtld_error("-p and no PATH environment variable");
6016 			rtld_die();
6017 		}
6018 		pathenv = strdup(pathenv);
6019 		if (pathenv == NULL) {
6020 			_rtld_error("Cannot allocate memory");
6021 			rtld_die();
6022 		}
6023 		fd = -1;
6024 		errno = ENOENT;
6025 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6026 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6027 				continue;
6028 			if (binpath[0] != '\0' &&
6029 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6030 				continue;
6031 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6032 				continue;
6033 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6034 			if (fd != -1 || errno != ENOENT) {
6035 				res = binpath;
6036 				break;
6037 			}
6038 		}
6039 		free(pathenv);
6040 	} else {
6041 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6042 		res = argv0;
6043 	}
6044 
6045 	if (fd == -1) {
6046 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6047 		rtld_die();
6048 	}
6049 	if (res != NULL && res[0] != '/') {
6050 		res1 = xmalloc(PATH_MAX);
6051 		if (realpath(res, res1) != NULL) {
6052 			if (res != argv0)
6053 				free(__DECONST(char *, res));
6054 			res = res1;
6055 		} else {
6056 			free(res1);
6057 		}
6058 	}
6059 	*binpath_res = res;
6060 	return (fd);
6061 }
6062 
6063 /*
6064  * Parse a set of command-line arguments.
6065  */
6066 static int
6067 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6068     const char **argv0, bool *dir_ignore)
6069 {
6070 	const char *arg;
6071 	char machine[64];
6072 	size_t sz;
6073 	int arglen, fd, i, j, mib[2];
6074 	char opt;
6075 	bool seen_b, seen_f;
6076 
6077 	dbg("Parsing command-line arguments");
6078 	*use_pathp = false;
6079 	*fdp = -1;
6080 	*dir_ignore = false;
6081 	seen_b = seen_f = false;
6082 
6083 	for (i = 1; i < argc; i++ ) {
6084 		arg = argv[i];
6085 		dbg("argv[%d]: '%s'", i, arg);
6086 
6087 		/*
6088 		 * rtld arguments end with an explicit "--" or with the first
6089 		 * non-prefixed argument.
6090 		 */
6091 		if (strcmp(arg, "--") == 0) {
6092 			i++;
6093 			break;
6094 		}
6095 		if (arg[0] != '-')
6096 			break;
6097 
6098 		/*
6099 		 * All other arguments are single-character options that can
6100 		 * be combined, so we need to search through `arg` for them.
6101 		 */
6102 		arglen = strlen(arg);
6103 		for (j = 1; j < arglen; j++) {
6104 			opt = arg[j];
6105 			if (opt == 'h') {
6106 				print_usage(argv[0]);
6107 				_exit(0);
6108 			} else if (opt == 'b') {
6109 				if (seen_f) {
6110 					_rtld_error("Both -b and -f specified");
6111 					rtld_die();
6112 				}
6113 				if (j != arglen - 1) {
6114 					_rtld_error("Invalid options: %s", arg);
6115 					rtld_die();
6116 				}
6117 				i++;
6118 				*argv0 = argv[i];
6119 				seen_b = true;
6120 				break;
6121 			} else if (opt == 'd') {
6122 				*dir_ignore = true;
6123 			} else if (opt == 'f') {
6124 				if (seen_b) {
6125 					_rtld_error("Both -b and -f specified");
6126 					rtld_die();
6127 				}
6128 
6129 				/*
6130 				 * -f XX can be used to specify a
6131 				 * descriptor for the binary named at
6132 				 * the command line (i.e., the later
6133 				 * argument will specify the process
6134 				 * name but the descriptor is what
6135 				 * will actually be executed).
6136 				 *
6137 				 * -f must be the last option in the
6138 				 * group, e.g., -abcf <fd>.
6139 				 */
6140 				if (j != arglen - 1) {
6141 					_rtld_error("Invalid options: %s", arg);
6142 					rtld_die();
6143 				}
6144 				i++;
6145 				fd = parse_integer(argv[i]);
6146 				if (fd == -1) {
6147 					_rtld_error(
6148 					    "Invalid file descriptor: '%s'",
6149 					    argv[i]);
6150 					rtld_die();
6151 				}
6152 				*fdp = fd;
6153 				seen_f = true;
6154 				break;
6155 			} else if (opt == 'o') {
6156 				struct ld_env_var_desc *l;
6157 				char *n, *v;
6158 				u_int ll;
6159 
6160 				if (j != arglen - 1) {
6161 					_rtld_error("Invalid options: %s", arg);
6162 					rtld_die();
6163 				}
6164 				i++;
6165 				n = argv[i];
6166 				v = strchr(n, '=');
6167 				if (v == NULL) {
6168 					_rtld_error("No '=' in -o parameter");
6169 					rtld_die();
6170 				}
6171 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6172 					l = &ld_env_vars[ll];
6173 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6174 					    strncmp(n, l->n, v - n) == 0) {
6175 						l->val = v + 1;
6176 						break;
6177 					}
6178 				}
6179 				if (ll == nitems(ld_env_vars)) {
6180 					_rtld_error("Unknown LD_ option %s",
6181 					    n);
6182 					rtld_die();
6183 				}
6184 			} else if (opt == 'p') {
6185 				*use_pathp = true;
6186 			} else if (opt == 'u') {
6187 				u_int ll;
6188 
6189 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6190 					ld_env_vars[ll].val = NULL;
6191 			} else if (opt == 'v') {
6192 				machine[0] = '\0';
6193 				mib[0] = CTL_HW;
6194 				mib[1] = HW_MACHINE;
6195 				sz = sizeof(machine);
6196 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6197 				ld_elf_hints_path = ld_get_env_var(
6198 				    LD_ELF_HINTS_PATH);
6199 				set_ld_elf_hints_path();
6200 				rtld_printf(
6201 				    "FreeBSD ld-elf.so.1 %s\n"
6202 				    "FreeBSD_version %d\n"
6203 				    "Default lib path %s\n"
6204 				    "Hints lib path %s\n"
6205 				    "Env prefix %s\n"
6206 				    "Default hint file %s\n"
6207 				    "Hint file %s\n"
6208 				    "libmap file %s\n"
6209 				    "Optional static TLS size %zd bytes\n",
6210 				    machine,
6211 				    __FreeBSD_version, ld_standard_library_path,
6212 				    gethints(false),
6213 				    ld_env_prefix, ld_elf_hints_default,
6214 				    ld_elf_hints_path,
6215 				    ld_path_libmap_conf,
6216 				    ld_static_tls_extra);
6217 				_exit(0);
6218 			} else {
6219 				_rtld_error("Invalid argument: '%s'", arg);
6220 				print_usage(argv[0]);
6221 				rtld_die();
6222 			}
6223 		}
6224 	}
6225 
6226 	if (!seen_b)
6227 		*argv0 = argv[i];
6228 	return (i);
6229 }
6230 
6231 /*
6232  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6233  */
6234 static int
6235 parse_integer(const char *str)
6236 {
6237 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6238 	const char *orig;
6239 	int n;
6240 	char c;
6241 
6242 	orig = str;
6243 	n = 0;
6244 	for (c = *str; c != '\0'; c = *++str) {
6245 		if (c < '0' || c > '9')
6246 			return (-1);
6247 
6248 		n *= RADIX;
6249 		n += c - '0';
6250 	}
6251 
6252 	/* Make sure we actually parsed something. */
6253 	if (str == orig)
6254 		return (-1);
6255 	return (n);
6256 }
6257 
6258 static void
6259 print_usage(const char *argv0)
6260 {
6261 
6262 	rtld_printf(
6263 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6264 	    "\n"
6265 	    "Options:\n"
6266 	    "  -h        Display this help message\n"
6267 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6268 	    "  -d        Ignore lack of exec permissions for the binary\n"
6269 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6270 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6271 	    "  -p        Search in PATH for named binary\n"
6272 	    "  -u        Ignore LD_ environment variables\n"
6273 	    "  -v        Display identification information\n"
6274 	    "  --        End of RTLD options\n"
6275 	    "  <binary>  Name of process to execute\n"
6276 	    "  <args>    Arguments to the executed process\n", argv0);
6277 }
6278 
6279 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6280 static const struct auxfmt {
6281 	const char *name;
6282 	const char *fmt;
6283 } auxfmts[] = {
6284 	AUXFMT(AT_NULL, NULL),
6285 	AUXFMT(AT_IGNORE, NULL),
6286 	AUXFMT(AT_EXECFD, "%ld"),
6287 	AUXFMT(AT_PHDR, "%p"),
6288 	AUXFMT(AT_PHENT, "%lu"),
6289 	AUXFMT(AT_PHNUM, "%lu"),
6290 	AUXFMT(AT_PAGESZ, "%lu"),
6291 	AUXFMT(AT_BASE, "%#lx"),
6292 	AUXFMT(AT_FLAGS, "%#lx"),
6293 	AUXFMT(AT_ENTRY, "%p"),
6294 	AUXFMT(AT_NOTELF, NULL),
6295 	AUXFMT(AT_UID, "%ld"),
6296 	AUXFMT(AT_EUID, "%ld"),
6297 	AUXFMT(AT_GID, "%ld"),
6298 	AUXFMT(AT_EGID, "%ld"),
6299 	AUXFMT(AT_EXECPATH, "%s"),
6300 	AUXFMT(AT_CANARY, "%p"),
6301 	AUXFMT(AT_CANARYLEN, "%lu"),
6302 	AUXFMT(AT_OSRELDATE, "%lu"),
6303 	AUXFMT(AT_NCPUS, "%lu"),
6304 	AUXFMT(AT_PAGESIZES, "%p"),
6305 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6306 	AUXFMT(AT_TIMEKEEP, "%p"),
6307 	AUXFMT(AT_STACKPROT, "%#lx"),
6308 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6309 	AUXFMT(AT_HWCAP, "%#lx"),
6310 	AUXFMT(AT_HWCAP2, "%#lx"),
6311 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6312 	AUXFMT(AT_ARGC, "%lu"),
6313 	AUXFMT(AT_ARGV, "%p"),
6314 	AUXFMT(AT_ENVC, "%p"),
6315 	AUXFMT(AT_ENVV, "%p"),
6316 	AUXFMT(AT_PS_STRINGS, "%p"),
6317 	AUXFMT(AT_FXRNG, "%p"),
6318 	AUXFMT(AT_KPRELOAD, "%p"),
6319 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6320 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6321 };
6322 
6323 static bool
6324 is_ptr_fmt(const char *fmt)
6325 {
6326 	char last;
6327 
6328 	last = fmt[strlen(fmt) - 1];
6329 	return (last == 'p' || last == 's');
6330 }
6331 
6332 static void
6333 dump_auxv(Elf_Auxinfo **aux_info)
6334 {
6335 	Elf_Auxinfo *auxp;
6336 	const struct auxfmt *fmt;
6337 	int i;
6338 
6339 	for (i = 0; i < AT_COUNT; i++) {
6340 		auxp = aux_info[i];
6341 		if (auxp == NULL)
6342 			continue;
6343 		fmt = &auxfmts[i];
6344 		if (fmt->fmt == NULL)
6345 			continue;
6346 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6347 		if (is_ptr_fmt(fmt->fmt)) {
6348 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6349 			    auxp->a_un.a_ptr);
6350 		} else {
6351 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6352 			    auxp->a_un.a_val);
6353 		}
6354 		rtld_fdprintf(STDOUT_FILENO, "\n");
6355 	}
6356 }
6357 
6358 const char *
6359 rtld_get_var(const char *name)
6360 {
6361 	const struct ld_env_var_desc *lvd;
6362 	u_int i;
6363 
6364 	for (i = 0; i < nitems(ld_env_vars); i++) {
6365 		lvd = &ld_env_vars[i];
6366 		if (strcmp(lvd->n, name) == 0)
6367 			return (lvd->val);
6368 	}
6369 	return (NULL);
6370 }
6371 
6372 int
6373 rtld_set_var(const char *name, const char *val)
6374 {
6375 	struct ld_env_var_desc *lvd;
6376 	u_int i;
6377 
6378 	for (i = 0; i < nitems(ld_env_vars); i++) {
6379 		lvd = &ld_env_vars[i];
6380 		if (strcmp(lvd->n, name) != 0)
6381 			continue;
6382 		if (!lvd->can_update || (lvd->unsecure && !trust))
6383 			return (EPERM);
6384 		if (lvd->owned)
6385 			free(__DECONST(char *, lvd->val));
6386 		if (val != NULL)
6387 			lvd->val = xstrdup(val);
6388 		else
6389 			lvd->val = NULL;
6390 		lvd->owned = true;
6391 		if (lvd->debug)
6392 			debug = lvd->val != NULL && *lvd->val != '\0';
6393 		return (0);
6394 	}
6395 	return (ENOENT);
6396 }
6397 
6398 /*
6399  * Overrides for libc_pic-provided functions.
6400  */
6401 
6402 int
6403 __getosreldate(void)
6404 {
6405 	size_t len;
6406 	int oid[2];
6407 	int error, osrel;
6408 
6409 	if (osreldate != 0)
6410 		return (osreldate);
6411 
6412 	oid[0] = CTL_KERN;
6413 	oid[1] = KERN_OSRELDATE;
6414 	osrel = 0;
6415 	len = sizeof(osrel);
6416 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6417 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6418 		osreldate = osrel;
6419 	return (osreldate);
6420 }
6421 const char *
6422 rtld_strerror(int errnum)
6423 {
6424 
6425 	if (errnum < 0 || errnum >= sys_nerr)
6426 		return ("Unknown error");
6427 	return (sys_errlist[errnum]);
6428 }
6429 
6430 char *
6431 getenv(const char *name)
6432 {
6433 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6434 	    strlen(name))));
6435 }
6436 
6437 /* malloc */
6438 void *
6439 malloc(size_t nbytes)
6440 {
6441 
6442 	return (__crt_malloc(nbytes));
6443 }
6444 
6445 void *
6446 calloc(size_t num, size_t size)
6447 {
6448 
6449 	return (__crt_calloc(num, size));
6450 }
6451 
6452 void
6453 free(void *cp)
6454 {
6455 
6456 	__crt_free(cp);
6457 }
6458 
6459 void *
6460 realloc(void *cp, size_t nbytes)
6461 {
6462 
6463 	return (__crt_realloc(cp, nbytes));
6464 }
6465 
6466 extern int _rtld_version__FreeBSD_version __exported;
6467 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6468 
6469 extern char _rtld_version_laddr_offset __exported;
6470 char _rtld_version_laddr_offset;
6471 
6472 extern char _rtld_version_dlpi_tls_data __exported;
6473 char _rtld_version_dlpi_tls_data;
6474