xref: /freebsd/libexec/rtld-elf/rtld.c (revision 790b5264886e581e995fc3b8fa45ca4ab4ffd31c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void errmsg_restore(struct dlerror_save *);
108 static struct dlerror_save *errmsg_save(void);
109 static void *fill_search_info(const char *, size_t, void *);
110 static char *find_library(const char *, const Obj_Entry *, int *);
111 static const char *gethints(bool);
112 static void hold_object(Obj_Entry *);
113 static void unhold_object(Obj_Entry *);
114 static void init_dag(Obj_Entry *);
115 static void init_marker(Obj_Entry *);
116 static void init_pagesizes(Elf_Auxinfo **aux_info);
117 static void init_rtld(caddr_t, Elf_Auxinfo **);
118 static void initlist_add_neededs(Needed_Entry *, Objlist *);
119 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
120 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
121 static void linkmap_add(Obj_Entry *);
122 static void linkmap_delete(Obj_Entry *);
123 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
124 static void unload_filtees(Obj_Entry *, RtldLockState *);
125 static int load_needed_objects(Obj_Entry *, int);
126 static int load_preload_objects(const char *, bool);
127 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
128 static void map_stacks_exec(RtldLockState *);
129 static int obj_disable_relro(Obj_Entry *);
130 static int obj_enforce_relro(Obj_Entry *);
131 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
132 static void objlist_call_init(Objlist *, RtldLockState *);
133 static void objlist_clear(Objlist *);
134 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
135 static void objlist_init(Objlist *);
136 static void objlist_push_head(Objlist *, Obj_Entry *);
137 static void objlist_push_tail(Objlist *, Obj_Entry *);
138 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
139 static void objlist_remove(Objlist *, Obj_Entry *);
140 static int open_binary_fd(const char *argv0, bool search_in_path,
141     const char **binpath_res);
142 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
143     const char **argv0, bool *dir_ignore);
144 static int parse_integer(const char *);
145 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
146 static void print_usage(const char *argv0);
147 static void release_object(Obj_Entry *);
148 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
149     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
150 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
151     int flags, RtldLockState *lockstate);
152 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
153     RtldLockState *);
154 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
155 static int rtld_dirname(const char *, char *);
156 static int rtld_dirname_abs(const char *, char *);
157 static void *rtld_dlopen(const char *name, int fd, int mode);
158 static void rtld_exit(void);
159 static void rtld_nop_exit(void);
160 static char *search_library_path(const char *, const char *, const char *,
161     int *);
162 static char *search_library_pathfds(const char *, const char *, int *);
163 static const void **get_program_var_addr(const char *, RtldLockState *);
164 static void set_program_var(const char *, const void *);
165 static int symlook_default(SymLook *, const Obj_Entry *refobj);
166 static int symlook_global(SymLook *, DoneList *);
167 static void symlook_init_from_req(SymLook *, const SymLook *);
168 static int symlook_list(SymLook *, const Objlist *, DoneList *);
169 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
170 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
171 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
172 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
173 static void trace_loaded_objects(Obj_Entry *);
174 static void unlink_object(Obj_Entry *);
175 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
176 static void unref_dag(Obj_Entry *);
177 static void ref_dag(Obj_Entry *);
178 static char *origin_subst_one(Obj_Entry *, char *, const char *,
179     const char *, bool);
180 static char *origin_subst(Obj_Entry *, const char *);
181 static bool obj_resolve_origin(Obj_Entry *obj);
182 static void preinit_main(void);
183 static int  rtld_verify_versions(const Objlist *);
184 static int  rtld_verify_object_versions(Obj_Entry *);
185 static void object_add_name(Obj_Entry *, const char *);
186 static int  object_match_name(const Obj_Entry *, const char *);
187 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
188 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
189     struct dl_phdr_info *phdr_info);
190 static uint32_t gnu_hash(const char *);
191 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
192     const unsigned long);
193 
194 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
195 void _r_debug_postinit(struct link_map *) __noinline __exported;
196 
197 int __sys_openat(int, const char *, int, ...);
198 
199 /*
200  * Data declarations.
201  */
202 struct r_debug r_debug __exported;	/* for GDB; */
203 static bool libmap_disable;	/* Disable libmap */
204 static bool ld_loadfltr;	/* Immediate filters processing */
205 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
206 static bool trust;		/* False for setuid and setgid programs */
207 static bool dangerous_ld_env;	/* True if environment variables have been
208 				   used to affect the libraries loaded */
209 bool ld_bind_not;		/* Disable PLT update */
210 static const char *ld_bind_now;	/* Environment variable for immediate binding */
211 static const char *ld_debug;	/* Environment variable for debugging */
212 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
213 				       weak definition */
214 static const char *ld_library_path;/* Environment variable for search path */
215 static const char *ld_library_dirs;/* Environment variable for library descriptors */
216 static const char *ld_preload;	/* Environment variable for libraries to
217 				   load first */
218 static const char *ld_preload_fds;/* Environment variable for libraries represented by
219 				   descriptors */
220 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
221 static const char *ld_tracing;	/* Called from ldd to print libs */
222 static const char *ld_utrace;	/* Use utrace() to log events. */
223 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
224 static Obj_Entry *obj_main;	/* The main program shared object */
225 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
226 static unsigned int obj_count;	/* Number of objects in obj_list */
227 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
228 
229 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
230   STAILQ_HEAD_INITIALIZER(list_global);
231 static Objlist list_main =	/* Objects loaded at program startup */
232   STAILQ_HEAD_INITIALIZER(list_main);
233 static Objlist list_fini =	/* Objects needing fini() calls */
234   STAILQ_HEAD_INITIALIZER(list_fini);
235 
236 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
237 
238 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
239 
240 extern Elf_Dyn _DYNAMIC;
241 #pragma weak _DYNAMIC
242 
243 int dlclose(void *) __exported;
244 char *dlerror(void) __exported;
245 void *dlopen(const char *, int) __exported;
246 void *fdlopen(int, int) __exported;
247 void *dlsym(void *, const char *) __exported;
248 dlfunc_t dlfunc(void *, const char *) __exported;
249 void *dlvsym(void *, const char *, const char *) __exported;
250 int dladdr(const void *, Dl_info *) __exported;
251 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
252     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
253 int dlinfo(void *, int , void *) __exported;
254 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
255 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
256 int _rtld_get_stack_prot(void) __exported;
257 int _rtld_is_dlopened(void *) __exported;
258 void _rtld_error(const char *, ...) __exported;
259 
260 /* Only here to fix -Wmissing-prototypes warnings */
261 int __getosreldate(void);
262 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
263 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
264 
265 
266 int npagesizes;
267 static int osreldate;
268 size_t *pagesizes;
269 
270 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
271 static int max_stack_flags;
272 
273 /*
274  * Global declarations normally provided by crt1.  The dynamic linker is
275  * not built with crt1, so we have to provide them ourselves.
276  */
277 char *__progname;
278 char **environ;
279 
280 /*
281  * Used to pass argc, argv to init functions.
282  */
283 int main_argc;
284 char **main_argv;
285 
286 /*
287  * Globals to control TLS allocation.
288  */
289 size_t tls_last_offset;		/* Static TLS offset of last module */
290 size_t tls_last_size;		/* Static TLS size of last module */
291 size_t tls_static_space;	/* Static TLS space allocated */
292 static size_t tls_static_max_align;
293 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
294 int tls_max_index = 1;		/* Largest module index allocated */
295 
296 static bool ld_library_path_rpath = false;
297 bool ld_fast_sigblock = false;
298 
299 /*
300  * Globals for path names, and such
301  */
302 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
303 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
304 const char *ld_path_rtld = _PATH_RTLD;
305 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
306 const char *ld_env_prefix = LD_;
307 
308 static void (*rtld_exit_ptr)(void);
309 
310 /*
311  * Fill in a DoneList with an allocation large enough to hold all of
312  * the currently-loaded objects.  Keep this as a macro since it calls
313  * alloca and we want that to occur within the scope of the caller.
314  */
315 #define donelist_init(dlp)					\
316     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
317     assert((dlp)->objs != NULL),				\
318     (dlp)->num_alloc = obj_count,				\
319     (dlp)->num_used = 0)
320 
321 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
322 	if (ld_utrace != NULL)					\
323 		ld_utrace_log(e, h, mb, ms, r, n);		\
324 } while (0)
325 
326 static void
327 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
328     int refcnt, const char *name)
329 {
330 	struct utrace_rtld ut;
331 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
332 
333 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
334 	ut.event = event;
335 	ut.handle = handle;
336 	ut.mapbase = mapbase;
337 	ut.mapsize = mapsize;
338 	ut.refcnt = refcnt;
339 	bzero(ut.name, sizeof(ut.name));
340 	if (name)
341 		strlcpy(ut.name, name, sizeof(ut.name));
342 	utrace(&ut, sizeof(ut));
343 }
344 
345 enum {
346 	LD_BIND_NOW = 0,
347 	LD_PRELOAD,
348 	LD_LIBMAP,
349 	LD_LIBRARY_PATH,
350 	LD_LIBRARY_PATH_FDS,
351 	LD_LIBMAP_DISABLE,
352 	LD_BIND_NOT,
353 	LD_DEBUG,
354 	LD_ELF_HINTS_PATH,
355 	LD_LOADFLTR,
356 	LD_LIBRARY_PATH_RPATH,
357 	LD_PRELOAD_FDS,
358 	LD_DYNAMIC_WEAK,
359 	LD_TRACE_LOADED_OBJECTS,
360 	LD_UTRACE,
361 	LD_DUMP_REL_PRE,
362 	LD_DUMP_REL_POST,
363 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
364 	LD_TRACE_LOADED_OBJECTS_FMT1,
365 	LD_TRACE_LOADED_OBJECTS_FMT2,
366 	LD_TRACE_LOADED_OBJECTS_ALL,
367 };
368 
369 struct ld_env_var_desc {
370 	const char * const n;
371 	const char *val;
372 	const bool unsecure;
373 };
374 #define LD_ENV_DESC(var, unsec) \
375     [LD_##var] = { .n = #var, .unsecure = unsec }
376 
377 static struct ld_env_var_desc ld_env_vars[] = {
378 	LD_ENV_DESC(BIND_NOW, false),
379 	LD_ENV_DESC(PRELOAD, true),
380 	LD_ENV_DESC(LIBMAP, true),
381 	LD_ENV_DESC(LIBRARY_PATH, true),
382 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
383 	LD_ENV_DESC(LIBMAP_DISABLE, true),
384 	LD_ENV_DESC(BIND_NOT, true),
385 	LD_ENV_DESC(DEBUG, true),
386 	LD_ENV_DESC(ELF_HINTS_PATH, true),
387 	LD_ENV_DESC(LOADFLTR, true),
388 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
389 	LD_ENV_DESC(PRELOAD_FDS, true),
390 	LD_ENV_DESC(DYNAMIC_WEAK, true),
391 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
392 	LD_ENV_DESC(UTRACE, false),
393 	LD_ENV_DESC(DUMP_REL_PRE, false),
394 	LD_ENV_DESC(DUMP_REL_POST, false),
395 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
396 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
397 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
399 };
400 
401 static const char *
402 ld_get_env_var(int idx)
403 {
404 	return (ld_env_vars[idx].val);
405 }
406 
407 static const char *
408 rtld_get_env_val(char **env, const char *name, size_t name_len)
409 {
410 	char **m, *n, *v;
411 
412 	for (m = env; *m != NULL; m++) {
413 		n = *m;
414 		v = strchr(n, '=');
415 		if (v == NULL) {
416 			/* corrupt environment? */
417 			continue;
418 		}
419 		if (v - n == (ptrdiff_t)name_len &&
420 		    strncmp(name, n, name_len) == 0)
421 			return (v + 1);
422 	}
423 	return (NULL);
424 }
425 
426 static void
427 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
428 {
429 	struct ld_env_var_desc *lvd;
430 	size_t prefix_len, nlen;
431 	char **m, *n, *v;
432 	int i;
433 
434 	prefix_len = strlen(env_prefix);
435 	for (m = env; *m != NULL; m++) {
436 		n = *m;
437 		if (strncmp(env_prefix, n, prefix_len) != 0) {
438 			/* Not a rtld environment variable. */
439 			continue;
440 		}
441 		n += prefix_len;
442 		v = strchr(n, '=');
443 		if (v == NULL) {
444 			/* corrupt environment? */
445 			continue;
446 		}
447 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
448 			lvd = &ld_env_vars[i];
449 			if (lvd->val != NULL) {
450 				/* Saw higher-priority variable name already. */
451 				continue;
452 			}
453 			nlen = strlen(lvd->n);
454 			if (v - n == (ptrdiff_t)nlen &&
455 			    strncmp(lvd->n, n, nlen) == 0) {
456 				lvd->val = v + 1;
457 				break;
458 			}
459 		}
460 	}
461 }
462 
463 static void
464 rtld_init_env_vars(char **env)
465 {
466 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
467 }
468 
469 /*
470  * Main entry point for dynamic linking.  The first argument is the
471  * stack pointer.  The stack is expected to be laid out as described
472  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
473  * Specifically, the stack pointer points to a word containing
474  * ARGC.  Following that in the stack is a null-terminated sequence
475  * of pointers to argument strings.  Then comes a null-terminated
476  * sequence of pointers to environment strings.  Finally, there is a
477  * sequence of "auxiliary vector" entries.
478  *
479  * The second argument points to a place to store the dynamic linker's
480  * exit procedure pointer and the third to a place to store the main
481  * program's object.
482  *
483  * The return value is the main program's entry point.
484  */
485 func_ptr_type
486 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
487 {
488     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
489     Objlist_Entry *entry;
490     Obj_Entry *last_interposer, *obj, *preload_tail;
491     const Elf_Phdr *phdr;
492     Objlist initlist;
493     RtldLockState lockstate;
494     struct stat st;
495     Elf_Addr *argcp;
496     char **argv, **env, **envp, *kexecpath;
497     const char *argv0, *binpath, *library_path_rpath;
498     struct ld_env_var_desc *lvd;
499     caddr_t imgentry;
500     char buf[MAXPATHLEN];
501     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
502     size_t sz;
503 #ifdef __powerpc__
504     int old_auxv_format = 1;
505 #endif
506     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
507 
508     /*
509      * On entry, the dynamic linker itself has not been relocated yet.
510      * Be very careful not to reference any global data until after
511      * init_rtld has returned.  It is OK to reference file-scope statics
512      * and string constants, and to call static and global functions.
513      */
514 
515     /* Find the auxiliary vector on the stack. */
516     argcp = sp;
517     argc = *sp++;
518     argv = (char **) sp;
519     sp += argc + 1;	/* Skip over arguments and NULL terminator */
520     env = (char **) sp;
521     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
522 	;
523     aux = (Elf_Auxinfo *) sp;
524 
525     /* Digest the auxiliary vector. */
526     for (i = 0;  i < AT_COUNT;  i++)
527 	aux_info[i] = NULL;
528     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
529 	if (auxp->a_type < AT_COUNT)
530 	    aux_info[auxp->a_type] = auxp;
531 #ifdef __powerpc__
532 	if (auxp->a_type == 23) /* AT_STACKPROT */
533 	    old_auxv_format = 0;
534 #endif
535     }
536 
537 #ifdef __powerpc__
538     if (old_auxv_format) {
539 	/* Remap from old-style auxv numbers. */
540 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
541 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
542 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
543 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
544 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
545 	aux_info[13] = NULL;		/* AT_GID */
546 
547 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
548 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
549 	aux_info[16] = aux_info[14];	/* AT_CANARY */
550 	aux_info[14] = NULL;		/* AT_EGID */
551     }
552 #endif
553 
554     /* Initialize and relocate ourselves. */
555     assert(aux_info[AT_BASE] != NULL);
556     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
557 
558     dlerror_dflt_init();
559 
560     __progname = obj_rtld.path;
561     argv0 = argv[0] != NULL ? argv[0] : "(null)";
562     environ = env;
563     main_argc = argc;
564     main_argv = argv;
565 
566     if (aux_info[AT_BSDFLAGS] != NULL &&
567 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
568 	    ld_fast_sigblock = true;
569 
570     trust = !issetugid();
571     direct_exec = false;
572 
573     md_abi_variant_hook(aux_info);
574     rtld_init_env_vars(env);
575 
576     fd = -1;
577     if (aux_info[AT_EXECFD] != NULL) {
578 	fd = aux_info[AT_EXECFD]->a_un.a_val;
579     } else {
580 	assert(aux_info[AT_PHDR] != NULL);
581 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
582 	if (phdr == obj_rtld.phdr) {
583 	    if (!trust) {
584 		_rtld_error("Tainted process refusing to run binary %s",
585 		    argv0);
586 		rtld_die();
587 	    }
588 	    direct_exec = true;
589 
590 	    dbg("opening main program in direct exec mode");
591 	    if (argc >= 2) {
592 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
593 		  &argv0, &dir_ignore);
594 		explicit_fd = (fd != -1);
595 		binpath = NULL;
596 		if (!explicit_fd)
597 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
598 		if (fstat(fd, &st) == -1) {
599 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
600 		      explicit_fd ? "user-provided descriptor" : argv0,
601 		      rtld_strerror(errno));
602 		    rtld_die();
603 		}
604 
605 		/*
606 		 * Rough emulation of the permission checks done by
607 		 * execve(2), only Unix DACs are checked, ACLs are
608 		 * ignored.  Preserve the semantic of disabling owner
609 		 * to execute if owner x bit is cleared, even if
610 		 * others x bit is enabled.
611 		 * mmap(2) does not allow to mmap with PROT_EXEC if
612 		 * binary' file comes from noexec mount.  We cannot
613 		 * set a text reference on the binary.
614 		 */
615 		dir_enable = false;
616 		if (st.st_uid == geteuid()) {
617 		    if ((st.st_mode & S_IXUSR) != 0)
618 			dir_enable = true;
619 		} else if (st.st_gid == getegid()) {
620 		    if ((st.st_mode & S_IXGRP) != 0)
621 			dir_enable = true;
622 		} else if ((st.st_mode & S_IXOTH) != 0) {
623 		    dir_enable = true;
624 		}
625 		if (!dir_enable && !dir_ignore) {
626 		    _rtld_error("No execute permission for binary %s",
627 		        argv0);
628 		    rtld_die();
629 		}
630 
631 		/*
632 		 * For direct exec mode, argv[0] is the interpreter
633 		 * name, we must remove it and shift arguments left
634 		 * before invoking binary main.  Since stack layout
635 		 * places environment pointers and aux vectors right
636 		 * after the terminating NULL, we must shift
637 		 * environment and aux as well.
638 		 */
639 		main_argc = argc - rtld_argc;
640 		for (i = 0; i <= main_argc; i++)
641 		    argv[i] = argv[i + rtld_argc];
642 		*argcp -= rtld_argc;
643 		environ = env = envp = argv + main_argc + 1;
644 		dbg("move env from %p to %p", envp + rtld_argc, envp);
645 		do {
646 		    *envp = *(envp + rtld_argc);
647 		}  while (*envp++ != NULL);
648 		aux = auxp = (Elf_Auxinfo *)envp;
649 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
650 		dbg("move aux from %p to %p", auxpf, aux);
651 		/* XXXKIB insert place for AT_EXECPATH if not present */
652 		for (;; auxp++, auxpf++) {
653 		    *auxp = *auxpf;
654 		    if (auxp->a_type == AT_NULL)
655 			    break;
656 		}
657 		/* Since the auxiliary vector has moved, redigest it. */
658 		for (i = 0;  i < AT_COUNT;  i++)
659 		    aux_info[i] = NULL;
660 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
661 		    if (auxp->a_type < AT_COUNT)
662 			aux_info[auxp->a_type] = auxp;
663 		}
664 
665 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
666 		if (binpath == NULL) {
667 		    aux_info[AT_EXECPATH] = NULL;
668 		} else {
669 		    if (aux_info[AT_EXECPATH] == NULL) {
670 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
671 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
672 		    }
673 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
674 		      binpath);
675 		}
676 	    } else {
677 		_rtld_error("No binary");
678 		rtld_die();
679 	    }
680 	}
681     }
682 
683     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
684 
685     /*
686      * If the process is tainted, then we un-set the dangerous environment
687      * variables.  The process will be marked as tainted until setuid(2)
688      * is called.  If any child process calls setuid(2) we do not want any
689      * future processes to honor the potentially un-safe variables.
690      */
691     if (!trust) {
692 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
693 		    lvd = &ld_env_vars[i];
694 		    if (lvd->unsecure)
695 			    lvd->val = NULL;
696 	    }
697     }
698 
699     ld_debug = ld_get_env_var(LD_DEBUG);
700     if (ld_bind_now == NULL)
701 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
702     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
703     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
704     libmap_override = ld_get_env_var(LD_LIBMAP);
705     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
706     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
707     ld_preload = ld_get_env_var(LD_PRELOAD);
708     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
709     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
710     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
711     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
712     if (library_path_rpath != NULL) {
713 	    if (library_path_rpath[0] == 'y' ||
714 		library_path_rpath[0] == 'Y' ||
715 		library_path_rpath[0] == '1')
716 		    ld_library_path_rpath = true;
717 	    else
718 		    ld_library_path_rpath = false;
719     }
720     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
721 	ld_library_path != NULL || ld_preload != NULL ||
722 	ld_elf_hints_path != NULL || ld_loadfltr || ld_dynamic_weak;
723     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
724     ld_utrace = ld_get_env_var(LD_UTRACE);
725 
726     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
727 	ld_elf_hints_path = ld_elf_hints_default;
728 
729     if (ld_debug != NULL && *ld_debug != '\0')
730 	debug = 1;
731     dbg("%s is initialized, base address = %p", __progname,
732 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
733     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
734     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
735 
736     dbg("initializing thread locks");
737     lockdflt_init();
738 
739     /*
740      * Load the main program, or process its program header if it is
741      * already loaded.
742      */
743     if (fd != -1) {	/* Load the main program. */
744 	dbg("loading main program");
745 	obj_main = map_object(fd, argv0, NULL);
746 	close(fd);
747 	if (obj_main == NULL)
748 	    rtld_die();
749 	max_stack_flags = obj_main->stack_flags;
750     } else {				/* Main program already loaded. */
751 	dbg("processing main program's program header");
752 	assert(aux_info[AT_PHDR] != NULL);
753 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
754 	assert(aux_info[AT_PHNUM] != NULL);
755 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
756 	assert(aux_info[AT_PHENT] != NULL);
757 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
758 	assert(aux_info[AT_ENTRY] != NULL);
759 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
760 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
761 	    rtld_die();
762     }
763 
764     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
765 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
766 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
767 	    if (kexecpath[0] == '/')
768 		    obj_main->path = kexecpath;
769 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
770 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
771 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
772 		    obj_main->path = xstrdup(argv0);
773 	    else
774 		    obj_main->path = xstrdup(buf);
775     } else {
776 	    dbg("No AT_EXECPATH or direct exec");
777 	    obj_main->path = xstrdup(argv0);
778     }
779     dbg("obj_main path %s", obj_main->path);
780     obj_main->mainprog = true;
781 
782     if (aux_info[AT_STACKPROT] != NULL &&
783       aux_info[AT_STACKPROT]->a_un.a_val != 0)
784 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
785 
786 #ifndef COMPAT_32BIT
787     /*
788      * Get the actual dynamic linker pathname from the executable if
789      * possible.  (It should always be possible.)  That ensures that
790      * gdb will find the right dynamic linker even if a non-standard
791      * one is being used.
792      */
793     if (obj_main->interp != NULL &&
794       strcmp(obj_main->interp, obj_rtld.path) != 0) {
795 	free(obj_rtld.path);
796 	obj_rtld.path = xstrdup(obj_main->interp);
797         __progname = obj_rtld.path;
798     }
799 #endif
800 
801     if (!digest_dynamic(obj_main, 0))
802 	rtld_die();
803     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
804 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
805 	obj_main->dynsymcount);
806 
807     linkmap_add(obj_main);
808     linkmap_add(&obj_rtld);
809 
810     /* Link the main program into the list of objects. */
811     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
812     obj_count++;
813     obj_loads++;
814 
815     /* Initialize a fake symbol for resolving undefined weak references. */
816     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
817     sym_zero.st_shndx = SHN_UNDEF;
818     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
819 
820     if (!libmap_disable)
821         libmap_disable = (bool)lm_init(libmap_override);
822 
823     dbg("loading LD_PRELOAD_FDS libraries");
824     if (load_preload_objects(ld_preload_fds, true) == -1)
825 	rtld_die();
826 
827     dbg("loading LD_PRELOAD libraries");
828     if (load_preload_objects(ld_preload, false) == -1)
829 	rtld_die();
830     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
831 
832     dbg("loading needed objects");
833     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
834       0) == -1)
835 	rtld_die();
836 
837     /* Make a list of all objects loaded at startup. */
838     last_interposer = obj_main;
839     TAILQ_FOREACH(obj, &obj_list, next) {
840 	if (obj->marker)
841 	    continue;
842 	if (obj->z_interpose && obj != obj_main) {
843 	    objlist_put_after(&list_main, last_interposer, obj);
844 	    last_interposer = obj;
845 	} else {
846 	    objlist_push_tail(&list_main, obj);
847 	}
848     	obj->refcount++;
849     }
850 
851     dbg("checking for required versions");
852     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
853 	rtld_die();
854 
855     if (ld_tracing) {		/* We're done */
856 	trace_loaded_objects(obj_main);
857 	exit(0);
858     }
859 
860     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
861        dump_relocations(obj_main);
862        exit (0);
863     }
864 
865     /*
866      * Processing tls relocations requires having the tls offsets
867      * initialized.  Prepare offsets before starting initial
868      * relocation processing.
869      */
870     dbg("initializing initial thread local storage offsets");
871     STAILQ_FOREACH(entry, &list_main, link) {
872 	/*
873 	 * Allocate all the initial objects out of the static TLS
874 	 * block even if they didn't ask for it.
875 	 */
876 	allocate_tls_offset(entry->obj);
877     }
878 
879     if (relocate_objects(obj_main,
880       ld_bind_now != NULL && *ld_bind_now != '\0',
881       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
882 	rtld_die();
883 
884     dbg("doing copy relocations");
885     if (do_copy_relocations(obj_main) == -1)
886 	rtld_die();
887 
888     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
889        dump_relocations(obj_main);
890        exit (0);
891     }
892 
893     ifunc_init(aux);
894 
895     /*
896      * Setup TLS for main thread.  This must be done after the
897      * relocations are processed, since tls initialization section
898      * might be the subject for relocations.
899      */
900     dbg("initializing initial thread local storage");
901     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
902 
903     dbg("initializing key program variables");
904     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
905     set_program_var("environ", env);
906     set_program_var("__elf_aux_vector", aux);
907 
908     /* Make a list of init functions to call. */
909     objlist_init(&initlist);
910     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
911       preload_tail, &initlist);
912 
913     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
914 
915     map_stacks_exec(NULL);
916 
917     if (!obj_main->crt_no_init) {
918 	/*
919 	 * Make sure we don't call the main program's init and fini
920 	 * functions for binaries linked with old crt1 which calls
921 	 * _init itself.
922 	 */
923 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
924 	obj_main->preinit_array = obj_main->init_array =
925 	    obj_main->fini_array = (Elf_Addr)NULL;
926     }
927 
928     if (direct_exec) {
929 	/* Set osrel for direct-execed binary */
930 	mib[0] = CTL_KERN;
931 	mib[1] = KERN_PROC;
932 	mib[2] = KERN_PROC_OSREL;
933 	mib[3] = getpid();
934 	osrel = obj_main->osrel;
935 	sz = sizeof(old_osrel);
936 	dbg("setting osrel to %d", osrel);
937 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
938     }
939 
940     wlock_acquire(rtld_bind_lock, &lockstate);
941 
942     dbg("resolving ifuncs");
943     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
944       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
945 	rtld_die();
946 
947     rtld_exit_ptr = rtld_exit;
948     if (obj_main->crt_no_init)
949 	preinit_main();
950     objlist_call_init(&initlist, &lockstate);
951     _r_debug_postinit(&obj_main->linkmap);
952     objlist_clear(&initlist);
953     dbg("loading filtees");
954     TAILQ_FOREACH(obj, &obj_list, next) {
955 	if (obj->marker)
956 	    continue;
957 	if (ld_loadfltr || obj->z_loadfltr)
958 	    load_filtees(obj, 0, &lockstate);
959     }
960 
961     dbg("enforcing main obj relro");
962     if (obj_enforce_relro(obj_main) == -1)
963 	rtld_die();
964 
965     lock_release(rtld_bind_lock, &lockstate);
966 
967     dbg("transferring control to program entry point = %p", obj_main->entry);
968 
969     /* Return the exit procedure and the program entry point. */
970     *exit_proc = rtld_exit_ptr;
971     *objp = obj_main;
972     return (func_ptr_type) obj_main->entry;
973 }
974 
975 void *
976 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
977 {
978 	void *ptr;
979 	Elf_Addr target;
980 
981 	ptr = (void *)make_function_pointer(def, obj);
982 	target = call_ifunc_resolver(ptr);
983 	return ((void *)target);
984 }
985 
986 /*
987  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
988  * Changes to this function should be applied there as well.
989  */
990 Elf_Addr
991 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
992 {
993     const Elf_Rel *rel;
994     const Elf_Sym *def;
995     const Obj_Entry *defobj;
996     Elf_Addr *where;
997     Elf_Addr target;
998     RtldLockState lockstate;
999 
1000     rlock_acquire(rtld_bind_lock, &lockstate);
1001     if (sigsetjmp(lockstate.env, 0) != 0)
1002 	    lock_upgrade(rtld_bind_lock, &lockstate);
1003     if (obj->pltrel)
1004 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1005     else
1006 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1007 
1008     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1009     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1010 	NULL, &lockstate);
1011     if (def == NULL)
1012 	rtld_die();
1013     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1014 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1015     else
1016 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1017 
1018     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1019       defobj->strtab + def->st_name,
1020       obj->path == NULL ? NULL : basename(obj->path),
1021       (void *)target,
1022       defobj->path == NULL ? NULL : basename(defobj->path));
1023 
1024     /*
1025      * Write the new contents for the jmpslot. Note that depending on
1026      * architecture, the value which we need to return back to the
1027      * lazy binding trampoline may or may not be the target
1028      * address. The value returned from reloc_jmpslot() is the value
1029      * that the trampoline needs.
1030      */
1031     target = reloc_jmpslot(where, target, defobj, obj, rel);
1032     lock_release(rtld_bind_lock, &lockstate);
1033     return target;
1034 }
1035 
1036 /*
1037  * Error reporting function.  Use it like printf.  If formats the message
1038  * into a buffer, and sets things up so that the next call to dlerror()
1039  * will return the message.
1040  */
1041 void
1042 _rtld_error(const char *fmt, ...)
1043 {
1044 	va_list ap;
1045 
1046 	va_start(ap, fmt);
1047 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1048 	    fmt, ap);
1049 	va_end(ap);
1050 	*lockinfo.dlerror_seen() = 0;
1051 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1052 }
1053 
1054 /*
1055  * Return a dynamically-allocated copy of the current error message, if any.
1056  */
1057 static struct dlerror_save *
1058 errmsg_save(void)
1059 {
1060 	struct dlerror_save *res;
1061 
1062 	res = xmalloc(sizeof(*res));
1063 	res->seen = *lockinfo.dlerror_seen();
1064 	if (res->seen == 0)
1065 		res->msg = xstrdup(lockinfo.dlerror_loc());
1066 	return (res);
1067 }
1068 
1069 /*
1070  * Restore the current error message from a copy which was previously saved
1071  * by errmsg_save().  The copy is freed.
1072  */
1073 static void
1074 errmsg_restore(struct dlerror_save *saved_msg)
1075 {
1076 	if (saved_msg == NULL || saved_msg->seen == 1) {
1077 		*lockinfo.dlerror_seen() = 1;
1078 	} else {
1079 		*lockinfo.dlerror_seen() = 0;
1080 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1081 		    lockinfo.dlerror_loc_sz);
1082 		free(saved_msg->msg);
1083 	}
1084 	free(saved_msg);
1085 }
1086 
1087 static const char *
1088 basename(const char *name)
1089 {
1090     const char *p = strrchr(name, '/');
1091     return p != NULL ? p + 1 : name;
1092 }
1093 
1094 static struct utsname uts;
1095 
1096 static char *
1097 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1098     const char *subst, bool may_free)
1099 {
1100 	char *p, *p1, *res, *resp;
1101 	int subst_len, kw_len, subst_count, old_len, new_len;
1102 
1103 	kw_len = strlen(kw);
1104 
1105 	/*
1106 	 * First, count the number of the keyword occurrences, to
1107 	 * preallocate the final string.
1108 	 */
1109 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1110 		p1 = strstr(p, kw);
1111 		if (p1 == NULL)
1112 			break;
1113 	}
1114 
1115 	/*
1116 	 * If the keyword is not found, just return.
1117 	 *
1118 	 * Return non-substituted string if resolution failed.  We
1119 	 * cannot do anything more reasonable, the failure mode of the
1120 	 * caller is unresolved library anyway.
1121 	 */
1122 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1123 		return (may_free ? real : xstrdup(real));
1124 	if (obj != NULL)
1125 		subst = obj->origin_path;
1126 
1127 	/*
1128 	 * There is indeed something to substitute.  Calculate the
1129 	 * length of the resulting string, and allocate it.
1130 	 */
1131 	subst_len = strlen(subst);
1132 	old_len = strlen(real);
1133 	new_len = old_len + (subst_len - kw_len) * subst_count;
1134 	res = xmalloc(new_len + 1);
1135 
1136 	/*
1137 	 * Now, execute the substitution loop.
1138 	 */
1139 	for (p = real, resp = res, *resp = '\0';;) {
1140 		p1 = strstr(p, kw);
1141 		if (p1 != NULL) {
1142 			/* Copy the prefix before keyword. */
1143 			memcpy(resp, p, p1 - p);
1144 			resp += p1 - p;
1145 			/* Keyword replacement. */
1146 			memcpy(resp, subst, subst_len);
1147 			resp += subst_len;
1148 			*resp = '\0';
1149 			p = p1 + kw_len;
1150 		} else
1151 			break;
1152 	}
1153 
1154 	/* Copy to the end of string and finish. */
1155 	strcat(resp, p);
1156 	if (may_free)
1157 		free(real);
1158 	return (res);
1159 }
1160 
1161 static char *
1162 origin_subst(Obj_Entry *obj, const char *real)
1163 {
1164 	char *res1, *res2, *res3, *res4;
1165 
1166 	if (obj == NULL || !trust)
1167 		return (xstrdup(real));
1168 	if (uts.sysname[0] == '\0') {
1169 		if (uname(&uts) != 0) {
1170 			_rtld_error("utsname failed: %d", errno);
1171 			return (NULL);
1172 		}
1173 	}
1174 	/* __DECONST is safe here since without may_free real is unchanged */
1175 	res1 = origin_subst_one(obj, __DECONST(char *, real), "$ORIGIN", NULL,
1176 	    false);
1177 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
1178 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
1179 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
1180 	return (res4);
1181 }
1182 
1183 void
1184 rtld_die(void)
1185 {
1186     const char *msg = dlerror();
1187 
1188     if (msg == NULL)
1189 	msg = "Fatal error";
1190     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1191     rtld_fdputstr(STDERR_FILENO, msg);
1192     rtld_fdputchar(STDERR_FILENO, '\n');
1193     _exit(1);
1194 }
1195 
1196 /*
1197  * Process a shared object's DYNAMIC section, and save the important
1198  * information in its Obj_Entry structure.
1199  */
1200 static void
1201 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1202     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1203 {
1204     const Elf_Dyn *dynp;
1205     Needed_Entry **needed_tail = &obj->needed;
1206     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1207     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1208     const Elf_Hashelt *hashtab;
1209     const Elf32_Word *hashval;
1210     Elf32_Word bkt, nmaskwords;
1211     int bloom_size32;
1212     int plttype = DT_REL;
1213 
1214     *dyn_rpath = NULL;
1215     *dyn_soname = NULL;
1216     *dyn_runpath = NULL;
1217 
1218     obj->bind_now = false;
1219     dynp = obj->dynamic;
1220     if (dynp == NULL)
1221 	return;
1222     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1223 	switch (dynp->d_tag) {
1224 
1225 	case DT_REL:
1226 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1227 	    break;
1228 
1229 	case DT_RELSZ:
1230 	    obj->relsize = dynp->d_un.d_val;
1231 	    break;
1232 
1233 	case DT_RELENT:
1234 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1235 	    break;
1236 
1237 	case DT_JMPREL:
1238 	    obj->pltrel = (const Elf_Rel *)
1239 	      (obj->relocbase + dynp->d_un.d_ptr);
1240 	    break;
1241 
1242 	case DT_PLTRELSZ:
1243 	    obj->pltrelsize = dynp->d_un.d_val;
1244 	    break;
1245 
1246 	case DT_RELA:
1247 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1248 	    break;
1249 
1250 	case DT_RELASZ:
1251 	    obj->relasize = dynp->d_un.d_val;
1252 	    break;
1253 
1254 	case DT_RELAENT:
1255 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1256 	    break;
1257 
1258 	case DT_RELR:
1259 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1260 	    break;
1261 
1262 	case DT_RELRSZ:
1263 	    obj->relrsize = dynp->d_un.d_val;
1264 	    break;
1265 
1266 	case DT_RELRENT:
1267 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1268 	    break;
1269 
1270 	case DT_PLTREL:
1271 	    plttype = dynp->d_un.d_val;
1272 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1273 	    break;
1274 
1275 	case DT_SYMTAB:
1276 	    obj->symtab = (const Elf_Sym *)
1277 	      (obj->relocbase + dynp->d_un.d_ptr);
1278 	    break;
1279 
1280 	case DT_SYMENT:
1281 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1282 	    break;
1283 
1284 	case DT_STRTAB:
1285 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1286 	    break;
1287 
1288 	case DT_STRSZ:
1289 	    obj->strsize = dynp->d_un.d_val;
1290 	    break;
1291 
1292 	case DT_VERNEED:
1293 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1294 		dynp->d_un.d_val);
1295 	    break;
1296 
1297 	case DT_VERNEEDNUM:
1298 	    obj->verneednum = dynp->d_un.d_val;
1299 	    break;
1300 
1301 	case DT_VERDEF:
1302 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1303 		dynp->d_un.d_val);
1304 	    break;
1305 
1306 	case DT_VERDEFNUM:
1307 	    obj->verdefnum = dynp->d_un.d_val;
1308 	    break;
1309 
1310 	case DT_VERSYM:
1311 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1312 		dynp->d_un.d_val);
1313 	    break;
1314 
1315 	case DT_HASH:
1316 	    {
1317 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1318 		    dynp->d_un.d_ptr);
1319 		obj->nbuckets = hashtab[0];
1320 		obj->nchains = hashtab[1];
1321 		obj->buckets = hashtab + 2;
1322 		obj->chains = obj->buckets + obj->nbuckets;
1323 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1324 		  obj->buckets != NULL;
1325 	    }
1326 	    break;
1327 
1328 	case DT_GNU_HASH:
1329 	    {
1330 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1331 		    dynp->d_un.d_ptr);
1332 		obj->nbuckets_gnu = hashtab[0];
1333 		obj->symndx_gnu = hashtab[1];
1334 		nmaskwords = hashtab[2];
1335 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1336 		obj->maskwords_bm_gnu = nmaskwords - 1;
1337 		obj->shift2_gnu = hashtab[3];
1338 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1339 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1340 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1341 		  obj->symndx_gnu;
1342 		/* Number of bitmask words is required to be power of 2 */
1343 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1344 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1345 	    }
1346 	    break;
1347 
1348 	case DT_NEEDED:
1349 	    if (!obj->rtld) {
1350 		Needed_Entry *nep = NEW(Needed_Entry);
1351 		nep->name = dynp->d_un.d_val;
1352 		nep->obj = NULL;
1353 		nep->next = NULL;
1354 
1355 		*needed_tail = nep;
1356 		needed_tail = &nep->next;
1357 	    }
1358 	    break;
1359 
1360 	case DT_FILTER:
1361 	    if (!obj->rtld) {
1362 		Needed_Entry *nep = NEW(Needed_Entry);
1363 		nep->name = dynp->d_un.d_val;
1364 		nep->obj = NULL;
1365 		nep->next = NULL;
1366 
1367 		*needed_filtees_tail = nep;
1368 		needed_filtees_tail = &nep->next;
1369 
1370 		if (obj->linkmap.l_refname == NULL)
1371 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1372 	    }
1373 	    break;
1374 
1375 	case DT_AUXILIARY:
1376 	    if (!obj->rtld) {
1377 		Needed_Entry *nep = NEW(Needed_Entry);
1378 		nep->name = dynp->d_un.d_val;
1379 		nep->obj = NULL;
1380 		nep->next = NULL;
1381 
1382 		*needed_aux_filtees_tail = nep;
1383 		needed_aux_filtees_tail = &nep->next;
1384 	    }
1385 	    break;
1386 
1387 	case DT_PLTGOT:
1388 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1389 	    break;
1390 
1391 	case DT_TEXTREL:
1392 	    obj->textrel = true;
1393 	    break;
1394 
1395 	case DT_SYMBOLIC:
1396 	    obj->symbolic = true;
1397 	    break;
1398 
1399 	case DT_RPATH:
1400 	    /*
1401 	     * We have to wait until later to process this, because we
1402 	     * might not have gotten the address of the string table yet.
1403 	     */
1404 	    *dyn_rpath = dynp;
1405 	    break;
1406 
1407 	case DT_SONAME:
1408 	    *dyn_soname = dynp;
1409 	    break;
1410 
1411 	case DT_RUNPATH:
1412 	    *dyn_runpath = dynp;
1413 	    break;
1414 
1415 	case DT_INIT:
1416 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1417 	    break;
1418 
1419 	case DT_PREINIT_ARRAY:
1420 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1421 	    break;
1422 
1423 	case DT_PREINIT_ARRAYSZ:
1424 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1425 	    break;
1426 
1427 	case DT_INIT_ARRAY:
1428 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1429 	    break;
1430 
1431 	case DT_INIT_ARRAYSZ:
1432 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1433 	    break;
1434 
1435 	case DT_FINI:
1436 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1437 	    break;
1438 
1439 	case DT_FINI_ARRAY:
1440 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1441 	    break;
1442 
1443 	case DT_FINI_ARRAYSZ:
1444 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1445 	    break;
1446 
1447 	/*
1448 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1449 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1450 	 */
1451 
1452 #ifndef __mips__
1453 	case DT_DEBUG:
1454 	    if (!early)
1455 		dbg("Filling in DT_DEBUG entry");
1456 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1457 	    break;
1458 #endif
1459 
1460 	case DT_FLAGS:
1461 		if (dynp->d_un.d_val & DF_ORIGIN)
1462 		    obj->z_origin = true;
1463 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1464 		    obj->symbolic = true;
1465 		if (dynp->d_un.d_val & DF_TEXTREL)
1466 		    obj->textrel = true;
1467 		if (dynp->d_un.d_val & DF_BIND_NOW)
1468 		    obj->bind_now = true;
1469 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1470 		    obj->static_tls = true;
1471 	    break;
1472 #ifdef __mips__
1473 	case DT_MIPS_LOCAL_GOTNO:
1474 		obj->local_gotno = dynp->d_un.d_val;
1475 		break;
1476 
1477 	case DT_MIPS_SYMTABNO:
1478 		obj->symtabno = dynp->d_un.d_val;
1479 		break;
1480 
1481 	case DT_MIPS_GOTSYM:
1482 		obj->gotsym = dynp->d_un.d_val;
1483 		break;
1484 
1485 	case DT_MIPS_RLD_MAP:
1486 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1487 		break;
1488 
1489 	case DT_MIPS_RLD_MAP_REL:
1490 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1491 		// section relative to the address of the tag itself.
1492 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1493 		    (Elf_Addr) &r_debug;
1494 		break;
1495 
1496 	case DT_MIPS_PLTGOT:
1497 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1498 		    dynp->d_un.d_ptr);
1499 		break;
1500 
1501 #endif
1502 
1503 #ifdef __powerpc__
1504 #ifdef __powerpc64__
1505 	case DT_PPC64_GLINK:
1506 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1507 		break;
1508 #else
1509 	case DT_PPC_GOT:
1510 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1511 		break;
1512 #endif
1513 #endif
1514 
1515 	case DT_FLAGS_1:
1516 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1517 		    obj->z_noopen = true;
1518 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1519 		    obj->z_origin = true;
1520 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1521 		    obj->z_global = true;
1522 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1523 		    obj->bind_now = true;
1524 		if (dynp->d_un.d_val & DF_1_NODELETE)
1525 		    obj->z_nodelete = true;
1526 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1527 		    obj->z_loadfltr = true;
1528 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1529 		    obj->z_interpose = true;
1530 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1531 		    obj->z_nodeflib = true;
1532 		if (dynp->d_un.d_val & DF_1_PIE)
1533 		    obj->z_pie = true;
1534 	    break;
1535 
1536 	default:
1537 	    if (!early) {
1538 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1539 		    (long)dynp->d_tag);
1540 	    }
1541 	    break;
1542 	}
1543     }
1544 
1545     obj->traced = false;
1546 
1547     if (plttype == DT_RELA) {
1548 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1549 	obj->pltrel = NULL;
1550 	obj->pltrelasize = obj->pltrelsize;
1551 	obj->pltrelsize = 0;
1552     }
1553 
1554     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1555     if (obj->valid_hash_sysv)
1556 	obj->dynsymcount = obj->nchains;
1557     else if (obj->valid_hash_gnu) {
1558 	obj->dynsymcount = 0;
1559 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1560 	    if (obj->buckets_gnu[bkt] == 0)
1561 		continue;
1562 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1563 	    do
1564 		obj->dynsymcount++;
1565 	    while ((*hashval++ & 1u) == 0);
1566 	}
1567 	obj->dynsymcount += obj->symndx_gnu;
1568     }
1569 
1570     if (obj->linkmap.l_refname != NULL)
1571 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1572 	  linkmap.l_refname;
1573 }
1574 
1575 static bool
1576 obj_resolve_origin(Obj_Entry *obj)
1577 {
1578 
1579 	if (obj->origin_path != NULL)
1580 		return (true);
1581 	obj->origin_path = xmalloc(PATH_MAX);
1582 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1583 }
1584 
1585 static bool
1586 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1587     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1588 {
1589 
1590 	if (obj->z_origin && !obj_resolve_origin(obj))
1591 		return (false);
1592 
1593 	if (dyn_runpath != NULL) {
1594 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1595 		obj->runpath = origin_subst(obj, obj->runpath);
1596 	} else if (dyn_rpath != NULL) {
1597 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1598 		obj->rpath = origin_subst(obj, obj->rpath);
1599 	}
1600 	if (dyn_soname != NULL)
1601 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1602 	return (true);
1603 }
1604 
1605 static bool
1606 digest_dynamic(Obj_Entry *obj, int early)
1607 {
1608 	const Elf_Dyn *dyn_rpath;
1609 	const Elf_Dyn *dyn_soname;
1610 	const Elf_Dyn *dyn_runpath;
1611 
1612 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1613 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1614 }
1615 
1616 /*
1617  * Process a shared object's program header.  This is used only for the
1618  * main program, when the kernel has already loaded the main program
1619  * into memory before calling the dynamic linker.  It creates and
1620  * returns an Obj_Entry structure.
1621  */
1622 static Obj_Entry *
1623 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1624 {
1625     Obj_Entry *obj;
1626     const Elf_Phdr *phlimit = phdr + phnum;
1627     const Elf_Phdr *ph;
1628     Elf_Addr note_start, note_end;
1629     int nsegs = 0;
1630 
1631     obj = obj_new();
1632     for (ph = phdr;  ph < phlimit;  ph++) {
1633 	if (ph->p_type != PT_PHDR)
1634 	    continue;
1635 
1636 	obj->phdr = phdr;
1637 	obj->phsize = ph->p_memsz;
1638 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1639 	break;
1640     }
1641 
1642     obj->stack_flags = PF_X | PF_R | PF_W;
1643 
1644     for (ph = phdr;  ph < phlimit;  ph++) {
1645 	switch (ph->p_type) {
1646 
1647 	case PT_INTERP:
1648 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1649 	    break;
1650 
1651 	case PT_LOAD:
1652 	    if (nsegs == 0) {	/* First load segment */
1653 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1654 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1655 	    } else {		/* Last load segment */
1656 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1657 		  obj->vaddrbase;
1658 	    }
1659 	    nsegs++;
1660 	    break;
1661 
1662 	case PT_DYNAMIC:
1663 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1664 	    break;
1665 
1666 	case PT_TLS:
1667 	    obj->tlsindex = 1;
1668 	    obj->tlssize = ph->p_memsz;
1669 	    obj->tlsalign = ph->p_align;
1670 	    obj->tlsinitsize = ph->p_filesz;
1671 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1672 	    obj->tlspoffset = ph->p_offset;
1673 	    break;
1674 
1675 	case PT_GNU_STACK:
1676 	    obj->stack_flags = ph->p_flags;
1677 	    break;
1678 
1679 	case PT_GNU_RELRO:
1680 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1681 	    obj->relro_size = trunc_page(ph->p_vaddr + ph->p_memsz) -
1682 	      trunc_page(ph->p_vaddr);
1683 	    break;
1684 
1685 	case PT_NOTE:
1686 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1687 	    note_end = note_start + ph->p_filesz;
1688 	    digest_notes(obj, note_start, note_end);
1689 	    break;
1690 	}
1691     }
1692     if (nsegs < 1) {
1693 	_rtld_error("%s: too few PT_LOAD segments", path);
1694 	return NULL;
1695     }
1696 
1697     obj->entry = entry;
1698     return obj;
1699 }
1700 
1701 void
1702 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1703 {
1704 	const Elf_Note *note;
1705 	const char *note_name;
1706 	uintptr_t p;
1707 
1708 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1709 	    note = (const Elf_Note *)((const char *)(note + 1) +
1710 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1711 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1712 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1713 		    note->n_descsz != sizeof(int32_t))
1714 			continue;
1715 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1716 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1717 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1718 			continue;
1719 		note_name = (const char *)(note + 1);
1720 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1721 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1722 			continue;
1723 		switch (note->n_type) {
1724 		case NT_FREEBSD_ABI_TAG:
1725 			/* FreeBSD osrel note */
1726 			p = (uintptr_t)(note + 1);
1727 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1728 			obj->osrel = *(const int32_t *)(p);
1729 			dbg("note osrel %d", obj->osrel);
1730 			break;
1731 		case NT_FREEBSD_FEATURE_CTL:
1732 			/* FreeBSD ABI feature control note */
1733 			p = (uintptr_t)(note + 1);
1734 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1735 			obj->fctl0 = *(const uint32_t *)(p);
1736 			dbg("note fctl0 %#x", obj->fctl0);
1737 			break;
1738 		case NT_FREEBSD_NOINIT_TAG:
1739 			/* FreeBSD 'crt does not call init' note */
1740 			obj->crt_no_init = true;
1741 			dbg("note crt_no_init");
1742 			break;
1743 		}
1744 	}
1745 }
1746 
1747 static Obj_Entry *
1748 dlcheck(void *handle)
1749 {
1750     Obj_Entry *obj;
1751 
1752     TAILQ_FOREACH(obj, &obj_list, next) {
1753 	if (obj == (Obj_Entry *) handle)
1754 	    break;
1755     }
1756 
1757     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1758 	_rtld_error("Invalid shared object handle %p", handle);
1759 	return NULL;
1760     }
1761     return obj;
1762 }
1763 
1764 /*
1765  * If the given object is already in the donelist, return true.  Otherwise
1766  * add the object to the list and return false.
1767  */
1768 static bool
1769 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1770 {
1771     unsigned int i;
1772 
1773     for (i = 0;  i < dlp->num_used;  i++)
1774 	if (dlp->objs[i] == obj)
1775 	    return true;
1776     /*
1777      * Our donelist allocation should always be sufficient.  But if
1778      * our threads locking isn't working properly, more shared objects
1779      * could have been loaded since we allocated the list.  That should
1780      * never happen, but we'll handle it properly just in case it does.
1781      */
1782     if (dlp->num_used < dlp->num_alloc)
1783 	dlp->objs[dlp->num_used++] = obj;
1784     return false;
1785 }
1786 
1787 /*
1788  * Hash function for symbol table lookup.  Don't even think about changing
1789  * this.  It is specified by the System V ABI.
1790  */
1791 unsigned long
1792 elf_hash(const char *name)
1793 {
1794     const unsigned char *p = (const unsigned char *) name;
1795     unsigned long h = 0;
1796     unsigned long g;
1797 
1798     while (*p != '\0') {
1799 	h = (h << 4) + *p++;
1800 	if ((g = h & 0xf0000000) != 0)
1801 	    h ^= g >> 24;
1802 	h &= ~g;
1803     }
1804     return h;
1805 }
1806 
1807 /*
1808  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1809  * unsigned in case it's implemented with a wider type.
1810  */
1811 static uint32_t
1812 gnu_hash(const char *s)
1813 {
1814 	uint32_t h;
1815 	unsigned char c;
1816 
1817 	h = 5381;
1818 	for (c = *s; c != '\0'; c = *++s)
1819 		h = h * 33 + c;
1820 	return (h & 0xffffffff);
1821 }
1822 
1823 
1824 /*
1825  * Find the library with the given name, and return its full pathname.
1826  * The returned string is dynamically allocated.  Generates an error
1827  * message and returns NULL if the library cannot be found.
1828  *
1829  * If the second argument is non-NULL, then it refers to an already-
1830  * loaded shared object, whose library search path will be searched.
1831  *
1832  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1833  * descriptor (which is close-on-exec) will be passed out via the third
1834  * argument.
1835  *
1836  * The search order is:
1837  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1838  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1839  *   LD_LIBRARY_PATH
1840  *   DT_RUNPATH in the referencing file
1841  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1842  *	 from list)
1843  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1844  *
1845  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1846  */
1847 static char *
1848 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1849 {
1850 	char *pathname, *refobj_path;
1851 	const char *name;
1852 	bool nodeflib, objgiven;
1853 
1854 	objgiven = refobj != NULL;
1855 
1856 	if (libmap_disable || !objgiven ||
1857 	    (name = lm_find(refobj->path, xname)) == NULL)
1858 		name = xname;
1859 
1860 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1861 		if (name[0] != '/' && !trust) {
1862 			_rtld_error("Absolute pathname required "
1863 			    "for shared object \"%s\"", name);
1864 			return (NULL);
1865 		}
1866 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1867 		    __DECONST(char *, name)));
1868 	}
1869 
1870 	dbg(" Searching for \"%s\"", name);
1871 	refobj_path = objgiven ? refobj->path : NULL;
1872 
1873 	/*
1874 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1875 	 * back to pre-conforming behaviour if user requested so with
1876 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1877 	 * nodeflib.
1878 	 */
1879 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1880 		pathname = search_library_path(name, ld_library_path,
1881 		    refobj_path, fdp);
1882 		if (pathname != NULL)
1883 			return (pathname);
1884 		if (refobj != NULL) {
1885 			pathname = search_library_path(name, refobj->rpath,
1886 			    refobj_path, fdp);
1887 			if (pathname != NULL)
1888 				return (pathname);
1889 		}
1890 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1891 		if (pathname != NULL)
1892 			return (pathname);
1893 		pathname = search_library_path(name, gethints(false),
1894 		    refobj_path, fdp);
1895 		if (pathname != NULL)
1896 			return (pathname);
1897 		pathname = search_library_path(name, ld_standard_library_path,
1898 		    refobj_path, fdp);
1899 		if (pathname != NULL)
1900 			return (pathname);
1901 	} else {
1902 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1903 		if (objgiven) {
1904 			pathname = search_library_path(name, refobj->rpath,
1905 			    refobj->path, fdp);
1906 			if (pathname != NULL)
1907 				return (pathname);
1908 		}
1909 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1910 			pathname = search_library_path(name, obj_main->rpath,
1911 			    refobj_path, fdp);
1912 			if (pathname != NULL)
1913 				return (pathname);
1914 		}
1915 		pathname = search_library_path(name, ld_library_path,
1916 		    refobj_path, fdp);
1917 		if (pathname != NULL)
1918 			return (pathname);
1919 		if (objgiven) {
1920 			pathname = search_library_path(name, refobj->runpath,
1921 			    refobj_path, fdp);
1922 			if (pathname != NULL)
1923 				return (pathname);
1924 		}
1925 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1926 		if (pathname != NULL)
1927 			return (pathname);
1928 		pathname = search_library_path(name, gethints(nodeflib),
1929 		    refobj_path, fdp);
1930 		if (pathname != NULL)
1931 			return (pathname);
1932 		if (objgiven && !nodeflib) {
1933 			pathname = search_library_path(name,
1934 			    ld_standard_library_path, refobj_path, fdp);
1935 			if (pathname != NULL)
1936 				return (pathname);
1937 		}
1938 	}
1939 
1940 	if (objgiven && refobj->path != NULL) {
1941 		_rtld_error("Shared object \"%s\" not found, "
1942 		    "required by \"%s\"", name, basename(refobj->path));
1943 	} else {
1944 		_rtld_error("Shared object \"%s\" not found", name);
1945 	}
1946 	return (NULL);
1947 }
1948 
1949 /*
1950  * Given a symbol number in a referencing object, find the corresponding
1951  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1952  * no definition was found.  Returns a pointer to the Obj_Entry of the
1953  * defining object via the reference parameter DEFOBJ_OUT.
1954  */
1955 const Elf_Sym *
1956 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1957     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1958     RtldLockState *lockstate)
1959 {
1960     const Elf_Sym *ref;
1961     const Elf_Sym *def;
1962     const Obj_Entry *defobj;
1963     const Ver_Entry *ve;
1964     SymLook req;
1965     const char *name;
1966     int res;
1967 
1968     /*
1969      * If we have already found this symbol, get the information from
1970      * the cache.
1971      */
1972     if (symnum >= refobj->dynsymcount)
1973 	return NULL;	/* Bad object */
1974     if (cache != NULL && cache[symnum].sym != NULL) {
1975 	*defobj_out = cache[symnum].obj;
1976 	return cache[symnum].sym;
1977     }
1978 
1979     ref = refobj->symtab + symnum;
1980     name = refobj->strtab + ref->st_name;
1981     def = NULL;
1982     defobj = NULL;
1983     ve = NULL;
1984 
1985     /*
1986      * We don't have to do a full scale lookup if the symbol is local.
1987      * We know it will bind to the instance in this load module; to
1988      * which we already have a pointer (ie ref). By not doing a lookup,
1989      * we not only improve performance, but it also avoids unresolvable
1990      * symbols when local symbols are not in the hash table. This has
1991      * been seen with the ia64 toolchain.
1992      */
1993     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1994 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1995 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1996 		symnum);
1997 	}
1998 	symlook_init(&req, name);
1999 	req.flags = flags;
2000 	ve = req.ventry = fetch_ventry(refobj, symnum);
2001 	req.lockstate = lockstate;
2002 	res = symlook_default(&req, refobj);
2003 	if (res == 0) {
2004 	    def = req.sym_out;
2005 	    defobj = req.defobj_out;
2006 	}
2007     } else {
2008 	def = ref;
2009 	defobj = refobj;
2010     }
2011 
2012     /*
2013      * If we found no definition and the reference is weak, treat the
2014      * symbol as having the value zero.
2015      */
2016     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2017 	def = &sym_zero;
2018 	defobj = obj_main;
2019     }
2020 
2021     if (def != NULL) {
2022 	*defobj_out = defobj;
2023 	/* Record the information in the cache to avoid subsequent lookups. */
2024 	if (cache != NULL) {
2025 	    cache[symnum].sym = def;
2026 	    cache[symnum].obj = defobj;
2027 	}
2028     } else {
2029 	if (refobj != &obj_rtld)
2030 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2031 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2032     }
2033     return def;
2034 }
2035 
2036 /*
2037  * Return the search path from the ldconfig hints file, reading it if
2038  * necessary.  If nostdlib is true, then the default search paths are
2039  * not added to result.
2040  *
2041  * Returns NULL if there are problems with the hints file,
2042  * or if the search path there is empty.
2043  */
2044 static const char *
2045 gethints(bool nostdlib)
2046 {
2047 	static char *filtered_path;
2048 	static const char *hints;
2049 	static struct elfhints_hdr hdr;
2050 	struct fill_search_info_args sargs, hargs;
2051 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2052 	struct dl_serpath *SLPpath, *hintpath;
2053 	char *p;
2054 	struct stat hint_stat;
2055 	unsigned int SLPndx, hintndx, fndx, fcount;
2056 	int fd;
2057 	size_t flen;
2058 	uint32_t dl;
2059 	bool skip;
2060 
2061 	/* First call, read the hints file */
2062 	if (hints == NULL) {
2063 		/* Keep from trying again in case the hints file is bad. */
2064 		hints = "";
2065 
2066 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2067 			return (NULL);
2068 
2069 		/*
2070 		 * Check of hdr.dirlistlen value against type limit
2071 		 * intends to pacify static analyzers.  Further
2072 		 * paranoia leads to checks that dirlist is fully
2073 		 * contained in the file range.
2074 		 */
2075 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2076 		    hdr.magic != ELFHINTS_MAGIC ||
2077 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2078 		    fstat(fd, &hint_stat) == -1) {
2079 cleanup1:
2080 			close(fd);
2081 			hdr.dirlistlen = 0;
2082 			return (NULL);
2083 		}
2084 		dl = hdr.strtab;
2085 		if (dl + hdr.dirlist < dl)
2086 			goto cleanup1;
2087 		dl += hdr.dirlist;
2088 		if (dl + hdr.dirlistlen < dl)
2089 			goto cleanup1;
2090 		dl += hdr.dirlistlen;
2091 		if (dl > hint_stat.st_size)
2092 			goto cleanup1;
2093 		p = xmalloc(hdr.dirlistlen + 1);
2094 		if (pread(fd, p, hdr.dirlistlen + 1,
2095 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2096 		    p[hdr.dirlistlen] != '\0') {
2097 			free(p);
2098 			goto cleanup1;
2099 		}
2100 		hints = p;
2101 		close(fd);
2102 	}
2103 
2104 	/*
2105 	 * If caller agreed to receive list which includes the default
2106 	 * paths, we are done. Otherwise, if we still did not
2107 	 * calculated filtered result, do it now.
2108 	 */
2109 	if (!nostdlib)
2110 		return (hints[0] != '\0' ? hints : NULL);
2111 	if (filtered_path != NULL)
2112 		goto filt_ret;
2113 
2114 	/*
2115 	 * Obtain the list of all configured search paths, and the
2116 	 * list of the default paths.
2117 	 *
2118 	 * First estimate the size of the results.
2119 	 */
2120 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2121 	smeta.dls_cnt = 0;
2122 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2123 	hmeta.dls_cnt = 0;
2124 
2125 	sargs.request = RTLD_DI_SERINFOSIZE;
2126 	sargs.serinfo = &smeta;
2127 	hargs.request = RTLD_DI_SERINFOSIZE;
2128 	hargs.serinfo = &hmeta;
2129 
2130 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2131 	    &sargs);
2132 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2133 
2134 	SLPinfo = xmalloc(smeta.dls_size);
2135 	hintinfo = xmalloc(hmeta.dls_size);
2136 
2137 	/*
2138 	 * Next fetch both sets of paths.
2139 	 */
2140 	sargs.request = RTLD_DI_SERINFO;
2141 	sargs.serinfo = SLPinfo;
2142 	sargs.serpath = &SLPinfo->dls_serpath[0];
2143 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2144 
2145 	hargs.request = RTLD_DI_SERINFO;
2146 	hargs.serinfo = hintinfo;
2147 	hargs.serpath = &hintinfo->dls_serpath[0];
2148 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2149 
2150 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2151 	    &sargs);
2152 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2153 
2154 	/*
2155 	 * Now calculate the difference between two sets, by excluding
2156 	 * standard paths from the full set.
2157 	 */
2158 	fndx = 0;
2159 	fcount = 0;
2160 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2161 	hintpath = &hintinfo->dls_serpath[0];
2162 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2163 		skip = false;
2164 		SLPpath = &SLPinfo->dls_serpath[0];
2165 		/*
2166 		 * Check each standard path against current.
2167 		 */
2168 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2169 			/* matched, skip the path */
2170 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2171 				skip = true;
2172 				break;
2173 			}
2174 		}
2175 		if (skip)
2176 			continue;
2177 		/*
2178 		 * Not matched against any standard path, add the path
2179 		 * to result. Separate consequtive paths with ':'.
2180 		 */
2181 		if (fcount > 0) {
2182 			filtered_path[fndx] = ':';
2183 			fndx++;
2184 		}
2185 		fcount++;
2186 		flen = strlen(hintpath->dls_name);
2187 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2188 		fndx += flen;
2189 	}
2190 	filtered_path[fndx] = '\0';
2191 
2192 	free(SLPinfo);
2193 	free(hintinfo);
2194 
2195 filt_ret:
2196 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2197 }
2198 
2199 static void
2200 init_dag(Obj_Entry *root)
2201 {
2202     const Needed_Entry *needed;
2203     const Objlist_Entry *elm;
2204     DoneList donelist;
2205 
2206     if (root->dag_inited)
2207 	return;
2208     donelist_init(&donelist);
2209 
2210     /* Root object belongs to own DAG. */
2211     objlist_push_tail(&root->dldags, root);
2212     objlist_push_tail(&root->dagmembers, root);
2213     donelist_check(&donelist, root);
2214 
2215     /*
2216      * Add dependencies of root object to DAG in breadth order
2217      * by exploiting the fact that each new object get added
2218      * to the tail of the dagmembers list.
2219      */
2220     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2221 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2222 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2223 		continue;
2224 	    objlist_push_tail(&needed->obj->dldags, root);
2225 	    objlist_push_tail(&root->dagmembers, needed->obj);
2226 	}
2227     }
2228     root->dag_inited = true;
2229 }
2230 
2231 static void
2232 init_marker(Obj_Entry *marker)
2233 {
2234 
2235 	bzero(marker, sizeof(*marker));
2236 	marker->marker = true;
2237 }
2238 
2239 Obj_Entry *
2240 globallist_curr(const Obj_Entry *obj)
2241 {
2242 
2243 	for (;;) {
2244 		if (obj == NULL)
2245 			return (NULL);
2246 		if (!obj->marker)
2247 			return (__DECONST(Obj_Entry *, obj));
2248 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2249 	}
2250 }
2251 
2252 Obj_Entry *
2253 globallist_next(const Obj_Entry *obj)
2254 {
2255 
2256 	for (;;) {
2257 		obj = TAILQ_NEXT(obj, next);
2258 		if (obj == NULL)
2259 			return (NULL);
2260 		if (!obj->marker)
2261 			return (__DECONST(Obj_Entry *, obj));
2262 	}
2263 }
2264 
2265 /* Prevent the object from being unmapped while the bind lock is dropped. */
2266 static void
2267 hold_object(Obj_Entry *obj)
2268 {
2269 
2270 	obj->holdcount++;
2271 }
2272 
2273 static void
2274 unhold_object(Obj_Entry *obj)
2275 {
2276 
2277 	assert(obj->holdcount > 0);
2278 	if (--obj->holdcount == 0 && obj->unholdfree)
2279 		release_object(obj);
2280 }
2281 
2282 static void
2283 process_z(Obj_Entry *root)
2284 {
2285 	const Objlist_Entry *elm;
2286 	Obj_Entry *obj;
2287 
2288 	/*
2289 	 * Walk over object DAG and process every dependent object
2290 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2291 	 * to grow their own DAG.
2292 	 *
2293 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2294 	 * symlook_global() to work.
2295 	 *
2296 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2297 	 */
2298 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2299 		obj = elm->obj;
2300 		if (obj == NULL)
2301 			continue;
2302 		if (obj->z_nodelete && !obj->ref_nodel) {
2303 			dbg("obj %s -z nodelete", obj->path);
2304 			init_dag(obj);
2305 			ref_dag(obj);
2306 			obj->ref_nodel = true;
2307 		}
2308 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2309 			dbg("obj %s -z global", obj->path);
2310 			objlist_push_tail(&list_global, obj);
2311 			init_dag(obj);
2312 		}
2313 	}
2314 }
2315 
2316 static void
2317 parse_rtld_phdr(Obj_Entry *obj)
2318 {
2319 	const Elf_Phdr *ph;
2320 	Elf_Addr note_start, note_end;
2321 
2322 	obj->stack_flags = PF_X | PF_R | PF_W;
2323 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2324 	    obj->phsize; ph++) {
2325 		switch (ph->p_type) {
2326 		case PT_GNU_STACK:
2327 			obj->stack_flags = ph->p_flags;
2328 			break;
2329 		case PT_GNU_RELRO:
2330 			obj->relro_page = obj->relocbase +
2331 			    trunc_page(ph->p_vaddr);
2332 			obj->relro_size = round_page(ph->p_memsz);
2333 			break;
2334 		case PT_NOTE:
2335 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2336 			note_end = note_start + ph->p_filesz;
2337 			digest_notes(obj, note_start, note_end);
2338 			break;
2339 		}
2340 	}
2341 }
2342 
2343 /*
2344  * Initialize the dynamic linker.  The argument is the address at which
2345  * the dynamic linker has been mapped into memory.  The primary task of
2346  * this function is to relocate the dynamic linker.
2347  */
2348 static void
2349 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2350 {
2351     Obj_Entry objtmp;	/* Temporary rtld object */
2352     const Elf_Ehdr *ehdr;
2353     const Elf_Dyn *dyn_rpath;
2354     const Elf_Dyn *dyn_soname;
2355     const Elf_Dyn *dyn_runpath;
2356 
2357 #ifdef RTLD_INIT_PAGESIZES_EARLY
2358     /* The page size is required by the dynamic memory allocator. */
2359     init_pagesizes(aux_info);
2360 #endif
2361 
2362     /*
2363      * Conjure up an Obj_Entry structure for the dynamic linker.
2364      *
2365      * The "path" member can't be initialized yet because string constants
2366      * cannot yet be accessed. Below we will set it correctly.
2367      */
2368     memset(&objtmp, 0, sizeof(objtmp));
2369     objtmp.path = NULL;
2370     objtmp.rtld = true;
2371     objtmp.mapbase = mapbase;
2372 #ifdef PIC
2373     objtmp.relocbase = mapbase;
2374 #endif
2375 
2376     objtmp.dynamic = rtld_dynamic(&objtmp);
2377     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2378     assert(objtmp.needed == NULL);
2379 #if !defined(__mips__)
2380     /* MIPS has a bogus DT_TEXTREL. */
2381     assert(!objtmp.textrel);
2382 #endif
2383     /*
2384      * Temporarily put the dynamic linker entry into the object list, so
2385      * that symbols can be found.
2386      */
2387     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2388 
2389     ehdr = (Elf_Ehdr *)mapbase;
2390     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2391     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2392 
2393     /* Initialize the object list. */
2394     TAILQ_INIT(&obj_list);
2395 
2396     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2397     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2398 
2399 #ifndef RTLD_INIT_PAGESIZES_EARLY
2400     /* The page size is required by the dynamic memory allocator. */
2401     init_pagesizes(aux_info);
2402 #endif
2403 
2404     if (aux_info[AT_OSRELDATE] != NULL)
2405 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2406 
2407     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2408 
2409     /* Replace the path with a dynamically allocated copy. */
2410     obj_rtld.path = xstrdup(ld_path_rtld);
2411 
2412     parse_rtld_phdr(&obj_rtld);
2413     if (obj_enforce_relro(&obj_rtld) == -1)
2414 	rtld_die();
2415 
2416     r_debug.r_version = R_DEBUG_VERSION;
2417     r_debug.r_brk = r_debug_state;
2418     r_debug.r_state = RT_CONSISTENT;
2419     r_debug.r_ldbase = obj_rtld.relocbase;
2420 }
2421 
2422 /*
2423  * Retrieve the array of supported page sizes.  The kernel provides the page
2424  * sizes in increasing order.
2425  */
2426 static void
2427 init_pagesizes(Elf_Auxinfo **aux_info)
2428 {
2429 	static size_t psa[MAXPAGESIZES];
2430 	int mib[2];
2431 	size_t len, size;
2432 
2433 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2434 	    NULL) {
2435 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2436 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2437 	} else {
2438 		len = 2;
2439 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2440 			size = sizeof(psa);
2441 		else {
2442 			/* As a fallback, retrieve the base page size. */
2443 			size = sizeof(psa[0]);
2444 			if (aux_info[AT_PAGESZ] != NULL) {
2445 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2446 				goto psa_filled;
2447 			} else {
2448 				mib[0] = CTL_HW;
2449 				mib[1] = HW_PAGESIZE;
2450 				len = 2;
2451 			}
2452 		}
2453 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2454 			_rtld_error("sysctl for hw.pagesize(s) failed");
2455 			rtld_die();
2456 		}
2457 psa_filled:
2458 		pagesizes = psa;
2459 	}
2460 	npagesizes = size / sizeof(pagesizes[0]);
2461 	/* Discard any invalid entries at the end of the array. */
2462 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2463 		npagesizes--;
2464 }
2465 
2466 /*
2467  * Add the init functions from a needed object list (and its recursive
2468  * needed objects) to "list".  This is not used directly; it is a helper
2469  * function for initlist_add_objects().  The write lock must be held
2470  * when this function is called.
2471  */
2472 static void
2473 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2474 {
2475     /* Recursively process the successor needed objects. */
2476     if (needed->next != NULL)
2477 	initlist_add_neededs(needed->next, list);
2478 
2479     /* Process the current needed object. */
2480     if (needed->obj != NULL)
2481 	initlist_add_objects(needed->obj, needed->obj, list);
2482 }
2483 
2484 /*
2485  * Scan all of the DAGs rooted in the range of objects from "obj" to
2486  * "tail" and add their init functions to "list".  This recurses over
2487  * the DAGs and ensure the proper init ordering such that each object's
2488  * needed libraries are initialized before the object itself.  At the
2489  * same time, this function adds the objects to the global finalization
2490  * list "list_fini" in the opposite order.  The write lock must be
2491  * held when this function is called.
2492  */
2493 static void
2494 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2495 {
2496     Obj_Entry *nobj;
2497 
2498     if (obj->init_scanned || obj->init_done)
2499 	return;
2500     obj->init_scanned = true;
2501 
2502     /* Recursively process the successor objects. */
2503     nobj = globallist_next(obj);
2504     if (nobj != NULL && obj != tail)
2505 	initlist_add_objects(nobj, tail, list);
2506 
2507     /* Recursively process the needed objects. */
2508     if (obj->needed != NULL)
2509 	initlist_add_neededs(obj->needed, list);
2510     if (obj->needed_filtees != NULL)
2511 	initlist_add_neededs(obj->needed_filtees, list);
2512     if (obj->needed_aux_filtees != NULL)
2513 	initlist_add_neededs(obj->needed_aux_filtees, list);
2514 
2515     /* Add the object to the init list. */
2516     objlist_push_tail(list, obj);
2517 
2518     /* Add the object to the global fini list in the reverse order. */
2519     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2520       && !obj->on_fini_list) {
2521 	objlist_push_head(&list_fini, obj);
2522 	obj->on_fini_list = true;
2523     }
2524 }
2525 
2526 #ifndef FPTR_TARGET
2527 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2528 #endif
2529 
2530 static void
2531 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2532 {
2533     Needed_Entry *needed, *needed1;
2534 
2535     for (needed = n; needed != NULL; needed = needed->next) {
2536 	if (needed->obj != NULL) {
2537 	    dlclose_locked(needed->obj, lockstate);
2538 	    needed->obj = NULL;
2539 	}
2540     }
2541     for (needed = n; needed != NULL; needed = needed1) {
2542 	needed1 = needed->next;
2543 	free(needed);
2544     }
2545 }
2546 
2547 static void
2548 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2549 {
2550 
2551 	free_needed_filtees(obj->needed_filtees, lockstate);
2552 	obj->needed_filtees = NULL;
2553 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2554 	obj->needed_aux_filtees = NULL;
2555 	obj->filtees_loaded = false;
2556 }
2557 
2558 static void
2559 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2560     RtldLockState *lockstate)
2561 {
2562 
2563     for (; needed != NULL; needed = needed->next) {
2564 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2565 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2566 	  RTLD_LOCAL, lockstate);
2567     }
2568 }
2569 
2570 static void
2571 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2572 {
2573 
2574     lock_restart_for_upgrade(lockstate);
2575     if (!obj->filtees_loaded) {
2576 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2577 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2578 	obj->filtees_loaded = true;
2579     }
2580 }
2581 
2582 static int
2583 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2584 {
2585     Obj_Entry *obj1;
2586 
2587     for (; needed != NULL; needed = needed->next) {
2588 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2589 	  flags & ~RTLD_LO_NOLOAD);
2590 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2591 	    return (-1);
2592     }
2593     return (0);
2594 }
2595 
2596 /*
2597  * Given a shared object, traverse its list of needed objects, and load
2598  * each of them.  Returns 0 on success.  Generates an error message and
2599  * returns -1 on failure.
2600  */
2601 static int
2602 load_needed_objects(Obj_Entry *first, int flags)
2603 {
2604     Obj_Entry *obj;
2605 
2606     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2607 	if (obj->marker)
2608 	    continue;
2609 	if (process_needed(obj, obj->needed, flags) == -1)
2610 	    return (-1);
2611     }
2612     return (0);
2613 }
2614 
2615 static int
2616 load_preload_objects(const char *penv, bool isfd)
2617 {
2618 	Obj_Entry *obj;
2619 	const char *name;
2620 	size_t len;
2621 	char savech, *p, *psave;
2622 	int fd;
2623 	static const char delim[] = " \t:;";
2624 
2625 	if (penv == NULL)
2626 		return (0);
2627 
2628 	p = psave = xstrdup(penv);
2629 	p += strspn(p, delim);
2630 	while (*p != '\0') {
2631 		len = strcspn(p, delim);
2632 
2633 		savech = p[len];
2634 		p[len] = '\0';
2635 		if (isfd) {
2636 			name = NULL;
2637 			fd = parse_integer(p);
2638 			if (fd == -1) {
2639 				free(psave);
2640 				return (-1);
2641 			}
2642 		} else {
2643 			name = p;
2644 			fd = -1;
2645 		}
2646 
2647 		obj = load_object(name, fd, NULL, 0);
2648 		if (obj == NULL) {
2649 			free(psave);
2650 			return (-1);	/* XXX - cleanup */
2651 		}
2652 		obj->z_interpose = true;
2653 		p[len] = savech;
2654 		p += len;
2655 		p += strspn(p, delim);
2656 	}
2657 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2658 
2659 	free(psave);
2660 	return (0);
2661 }
2662 
2663 static const char *
2664 printable_path(const char *path)
2665 {
2666 
2667 	return (path == NULL ? "<unknown>" : path);
2668 }
2669 
2670 /*
2671  * Load a shared object into memory, if it is not already loaded.  The
2672  * object may be specified by name or by user-supplied file descriptor
2673  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2674  * duplicate is.
2675  *
2676  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2677  * on failure.
2678  */
2679 static Obj_Entry *
2680 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2681 {
2682     Obj_Entry *obj;
2683     int fd;
2684     struct stat sb;
2685     char *path;
2686 
2687     fd = -1;
2688     if (name != NULL) {
2689 	TAILQ_FOREACH(obj, &obj_list, next) {
2690 	    if (obj->marker || obj->doomed)
2691 		continue;
2692 	    if (object_match_name(obj, name))
2693 		return (obj);
2694 	}
2695 
2696 	path = find_library(name, refobj, &fd);
2697 	if (path == NULL)
2698 	    return (NULL);
2699     } else
2700 	path = NULL;
2701 
2702     if (fd >= 0) {
2703 	/*
2704 	 * search_library_pathfds() opens a fresh file descriptor for the
2705 	 * library, so there is no need to dup().
2706 	 */
2707     } else if (fd_u == -1) {
2708 	/*
2709 	 * If we didn't find a match by pathname, or the name is not
2710 	 * supplied, open the file and check again by device and inode.
2711 	 * This avoids false mismatches caused by multiple links or ".."
2712 	 * in pathnames.
2713 	 *
2714 	 * To avoid a race, we open the file and use fstat() rather than
2715 	 * using stat().
2716 	 */
2717 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2718 	    _rtld_error("Cannot open \"%s\"", path);
2719 	    free(path);
2720 	    return (NULL);
2721 	}
2722     } else {
2723 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2724 	if (fd == -1) {
2725 	    _rtld_error("Cannot dup fd");
2726 	    free(path);
2727 	    return (NULL);
2728 	}
2729     }
2730     if (fstat(fd, &sb) == -1) {
2731 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2732 	close(fd);
2733 	free(path);
2734 	return NULL;
2735     }
2736     TAILQ_FOREACH(obj, &obj_list, next) {
2737 	if (obj->marker || obj->doomed)
2738 	    continue;
2739 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2740 	    break;
2741     }
2742     if (obj != NULL && name != NULL) {
2743 	object_add_name(obj, name);
2744 	free(path);
2745 	close(fd);
2746 	return obj;
2747     }
2748     if (flags & RTLD_LO_NOLOAD) {
2749 	free(path);
2750 	close(fd);
2751 	return (NULL);
2752     }
2753 
2754     /* First use of this object, so we must map it in */
2755     obj = do_load_object(fd, name, path, &sb, flags);
2756     if (obj == NULL)
2757 	free(path);
2758     close(fd);
2759 
2760     return obj;
2761 }
2762 
2763 static Obj_Entry *
2764 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2765   int flags)
2766 {
2767     Obj_Entry *obj;
2768     struct statfs fs;
2769 
2770     /*
2771      * but first, make sure that environment variables haven't been
2772      * used to circumvent the noexec flag on a filesystem.
2773      */
2774     if (dangerous_ld_env) {
2775 	if (fstatfs(fd, &fs) != 0) {
2776 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2777 	    return NULL;
2778 	}
2779 	if (fs.f_flags & MNT_NOEXEC) {
2780 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2781 	    return NULL;
2782 	}
2783     }
2784     dbg("loading \"%s\"", printable_path(path));
2785     obj = map_object(fd, printable_path(path), sbp);
2786     if (obj == NULL)
2787         return NULL;
2788 
2789     /*
2790      * If DT_SONAME is present in the object, digest_dynamic2 already
2791      * added it to the object names.
2792      */
2793     if (name != NULL)
2794 	object_add_name(obj, name);
2795     obj->path = path;
2796     if (!digest_dynamic(obj, 0))
2797 	goto errp;
2798     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2799 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2800     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2801 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2802 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2803 	goto errp;
2804     }
2805     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2806       RTLD_LO_DLOPEN) {
2807 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2808 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2809 	goto errp;
2810     }
2811 
2812     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2813     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2814     obj_count++;
2815     obj_loads++;
2816     linkmap_add(obj);	/* for GDB & dlinfo() */
2817     max_stack_flags |= obj->stack_flags;
2818 
2819     dbg("  %p .. %p: %s", obj->mapbase,
2820          obj->mapbase + obj->mapsize - 1, obj->path);
2821     if (obj->textrel)
2822 	dbg("  WARNING: %s has impure text", obj->path);
2823     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2824 	obj->path);
2825 
2826     return (obj);
2827 
2828 errp:
2829     munmap(obj->mapbase, obj->mapsize);
2830     obj_free(obj);
2831     return (NULL);
2832 }
2833 
2834 Obj_Entry *
2835 obj_from_addr(const void *addr)
2836 {
2837     Obj_Entry *obj;
2838 
2839     TAILQ_FOREACH(obj, &obj_list, next) {
2840 	if (obj->marker)
2841 	    continue;
2842 	if (addr < (void *) obj->mapbase)
2843 	    continue;
2844 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2845 	    return obj;
2846     }
2847     return NULL;
2848 }
2849 
2850 static void
2851 preinit_main(void)
2852 {
2853     Elf_Addr *preinit_addr;
2854     int index;
2855 
2856     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2857     if (preinit_addr == NULL)
2858 	return;
2859 
2860     for (index = 0; index < obj_main->preinit_array_num; index++) {
2861 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2862 	    dbg("calling preinit function for %s at %p", obj_main->path,
2863 	      (void *)preinit_addr[index]);
2864 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2865 	      0, 0, obj_main->path);
2866 	    call_init_pointer(obj_main, preinit_addr[index]);
2867 	}
2868     }
2869 }
2870 
2871 /*
2872  * Call the finalization functions for each of the objects in "list"
2873  * belonging to the DAG of "root" and referenced once. If NULL "root"
2874  * is specified, every finalization function will be called regardless
2875  * of the reference count and the list elements won't be freed. All of
2876  * the objects are expected to have non-NULL fini functions.
2877  */
2878 static void
2879 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2880 {
2881     Objlist_Entry *elm;
2882     struct dlerror_save *saved_msg;
2883     Elf_Addr *fini_addr;
2884     int index;
2885 
2886     assert(root == NULL || root->refcount == 1);
2887 
2888     if (root != NULL)
2889 	root->doomed = true;
2890 
2891     /*
2892      * Preserve the current error message since a fini function might
2893      * call into the dynamic linker and overwrite it.
2894      */
2895     saved_msg = errmsg_save();
2896     do {
2897 	STAILQ_FOREACH(elm, list, link) {
2898 	    if (root != NULL && (elm->obj->refcount != 1 ||
2899 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2900 		continue;
2901 	    /* Remove object from fini list to prevent recursive invocation. */
2902 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2903 	    /* Ensure that new references cannot be acquired. */
2904 	    elm->obj->doomed = true;
2905 
2906 	    hold_object(elm->obj);
2907 	    lock_release(rtld_bind_lock, lockstate);
2908 	    /*
2909 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2910 	     * When this happens, DT_FINI_ARRAY is processed first.
2911 	     */
2912 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2913 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2914 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2915 		  index--) {
2916 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2917 			dbg("calling fini function for %s at %p",
2918 			    elm->obj->path, (void *)fini_addr[index]);
2919 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2920 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2921 			call_initfini_pointer(elm->obj, fini_addr[index]);
2922 		    }
2923 		}
2924 	    }
2925 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2926 		dbg("calling fini function for %s at %p", elm->obj->path,
2927 		    (void *)elm->obj->fini);
2928 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2929 		    0, 0, elm->obj->path);
2930 		call_initfini_pointer(elm->obj, elm->obj->fini);
2931 	    }
2932 	    wlock_acquire(rtld_bind_lock, lockstate);
2933 	    unhold_object(elm->obj);
2934 	    /* No need to free anything if process is going down. */
2935 	    if (root != NULL)
2936 	    	free(elm);
2937 	    /*
2938 	     * We must restart the list traversal after every fini call
2939 	     * because a dlclose() call from the fini function or from
2940 	     * another thread might have modified the reference counts.
2941 	     */
2942 	    break;
2943 	}
2944     } while (elm != NULL);
2945     errmsg_restore(saved_msg);
2946 }
2947 
2948 /*
2949  * Call the initialization functions for each of the objects in
2950  * "list".  All of the objects are expected to have non-NULL init
2951  * functions.
2952  */
2953 static void
2954 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2955 {
2956     Objlist_Entry *elm;
2957     Obj_Entry *obj;
2958     struct dlerror_save *saved_msg;
2959     Elf_Addr *init_addr;
2960     void (*reg)(void (*)(void));
2961     int index;
2962 
2963     /*
2964      * Clean init_scanned flag so that objects can be rechecked and
2965      * possibly initialized earlier if any of vectors called below
2966      * cause the change by using dlopen.
2967      */
2968     TAILQ_FOREACH(obj, &obj_list, next) {
2969 	if (obj->marker)
2970 	    continue;
2971 	obj->init_scanned = false;
2972     }
2973 
2974     /*
2975      * Preserve the current error message since an init function might
2976      * call into the dynamic linker and overwrite it.
2977      */
2978     saved_msg = errmsg_save();
2979     STAILQ_FOREACH(elm, list, link) {
2980 	if (elm->obj->init_done) /* Initialized early. */
2981 	    continue;
2982 	/*
2983 	 * Race: other thread might try to use this object before current
2984 	 * one completes the initialization. Not much can be done here
2985 	 * without better locking.
2986 	 */
2987 	elm->obj->init_done = true;
2988 	hold_object(elm->obj);
2989 	reg = NULL;
2990 	if (elm->obj == obj_main && obj_main->crt_no_init) {
2991 		reg = (void (*)(void (*)(void)))get_program_var_addr(
2992 		    "__libc_atexit", lockstate);
2993 	}
2994 	lock_release(rtld_bind_lock, lockstate);
2995 	if (reg != NULL) {
2996 		reg(rtld_exit);
2997 		rtld_exit_ptr = rtld_nop_exit;
2998 	}
2999 
3000         /*
3001          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3002          * When this happens, DT_INIT is processed first.
3003          */
3004 	if (elm->obj->init != (Elf_Addr)NULL) {
3005 	    dbg("calling init function for %s at %p", elm->obj->path,
3006 	        (void *)elm->obj->init);
3007 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3008 	        0, 0, elm->obj->path);
3009 	    call_init_pointer(elm->obj, elm->obj->init);
3010 	}
3011 	init_addr = (Elf_Addr *)elm->obj->init_array;
3012 	if (init_addr != NULL) {
3013 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3014 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3015 		    dbg("calling init function for %s at %p", elm->obj->path,
3016 			(void *)init_addr[index]);
3017 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3018 			(void *)init_addr[index], 0, 0, elm->obj->path);
3019 		    call_init_pointer(elm->obj, init_addr[index]);
3020 		}
3021 	    }
3022 	}
3023 	wlock_acquire(rtld_bind_lock, lockstate);
3024 	unhold_object(elm->obj);
3025     }
3026     errmsg_restore(saved_msg);
3027 }
3028 
3029 static void
3030 objlist_clear(Objlist *list)
3031 {
3032     Objlist_Entry *elm;
3033 
3034     while (!STAILQ_EMPTY(list)) {
3035 	elm = STAILQ_FIRST(list);
3036 	STAILQ_REMOVE_HEAD(list, link);
3037 	free(elm);
3038     }
3039 }
3040 
3041 static Objlist_Entry *
3042 objlist_find(Objlist *list, const Obj_Entry *obj)
3043 {
3044     Objlist_Entry *elm;
3045 
3046     STAILQ_FOREACH(elm, list, link)
3047 	if (elm->obj == obj)
3048 	    return elm;
3049     return NULL;
3050 }
3051 
3052 static void
3053 objlist_init(Objlist *list)
3054 {
3055     STAILQ_INIT(list);
3056 }
3057 
3058 static void
3059 objlist_push_head(Objlist *list, Obj_Entry *obj)
3060 {
3061     Objlist_Entry *elm;
3062 
3063     elm = NEW(Objlist_Entry);
3064     elm->obj = obj;
3065     STAILQ_INSERT_HEAD(list, elm, link);
3066 }
3067 
3068 static void
3069 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3070 {
3071     Objlist_Entry *elm;
3072 
3073     elm = NEW(Objlist_Entry);
3074     elm->obj = obj;
3075     STAILQ_INSERT_TAIL(list, elm, link);
3076 }
3077 
3078 static void
3079 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3080 {
3081 	Objlist_Entry *elm, *listelm;
3082 
3083 	STAILQ_FOREACH(listelm, list, link) {
3084 		if (listelm->obj == listobj)
3085 			break;
3086 	}
3087 	elm = NEW(Objlist_Entry);
3088 	elm->obj = obj;
3089 	if (listelm != NULL)
3090 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3091 	else
3092 		STAILQ_INSERT_TAIL(list, elm, link);
3093 }
3094 
3095 static void
3096 objlist_remove(Objlist *list, Obj_Entry *obj)
3097 {
3098     Objlist_Entry *elm;
3099 
3100     if ((elm = objlist_find(list, obj)) != NULL) {
3101 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3102 	free(elm);
3103     }
3104 }
3105 
3106 /*
3107  * Relocate dag rooted in the specified object.
3108  * Returns 0 on success, or -1 on failure.
3109  */
3110 
3111 static int
3112 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3113     int flags, RtldLockState *lockstate)
3114 {
3115 	Objlist_Entry *elm;
3116 	int error;
3117 
3118 	error = 0;
3119 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3120 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3121 		    lockstate);
3122 		if (error == -1)
3123 			break;
3124 	}
3125 	return (error);
3126 }
3127 
3128 /*
3129  * Prepare for, or clean after, relocating an object marked with
3130  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3131  * segments are remapped read-write.  After relocations are done, the
3132  * segment's permissions are returned back to the modes specified in
3133  * the phdrs.  If any relocation happened, or always for wired
3134  * program, COW is triggered.
3135  */
3136 static int
3137 reloc_textrel_prot(Obj_Entry *obj, bool before)
3138 {
3139 	const Elf_Phdr *ph;
3140 	void *base;
3141 	size_t l, sz;
3142 	int prot;
3143 
3144 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3145 	    l--, ph++) {
3146 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3147 			continue;
3148 		base = obj->relocbase + trunc_page(ph->p_vaddr);
3149 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
3150 		    trunc_page(ph->p_vaddr);
3151 		prot = before ? (PROT_READ | PROT_WRITE) :
3152 		    convert_prot(ph->p_flags);
3153 		if (mprotect(base, sz, prot) == -1) {
3154 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3155 			    obj->path, before ? "en" : "dis",
3156 			    rtld_strerror(errno));
3157 			return (-1);
3158 		}
3159 	}
3160 	return (0);
3161 }
3162 
3163 /* Process RELR relative relocations. */
3164 static void
3165 reloc_relr(Obj_Entry *obj)
3166 {
3167 	const Elf_Relr *relr, *relrlim;
3168 	Elf_Addr *where;
3169 
3170 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3171 	for (relr = obj->relr; relr < relrlim; relr++) {
3172 	    Elf_Relr entry = *relr;
3173 
3174 	    if ((entry & 1) == 0) {
3175 		where = (Elf_Addr *)(obj->relocbase + entry);
3176 		*where++ += (Elf_Addr)obj->relocbase;
3177 	    } else {
3178 		for (long i = 0; (entry >>= 1) != 0; i++)
3179 		    if ((entry & 1) != 0)
3180 			where[i] += (Elf_Addr)obj->relocbase;
3181 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3182 	    }
3183 	}
3184 }
3185 
3186 /*
3187  * Relocate single object.
3188  * Returns 0 on success, or -1 on failure.
3189  */
3190 static int
3191 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3192     int flags, RtldLockState *lockstate)
3193 {
3194 
3195 	if (obj->relocated)
3196 		return (0);
3197 	obj->relocated = true;
3198 	if (obj != rtldobj)
3199 		dbg("relocating \"%s\"", obj->path);
3200 
3201 	if (obj->symtab == NULL || obj->strtab == NULL ||
3202 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3203 		dbg("object %s has no run-time symbol table", obj->path);
3204 
3205 	/* There are relocations to the write-protected text segment. */
3206 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3207 		return (-1);
3208 
3209 	/* Process the non-PLT non-IFUNC relocations. */
3210 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3211 		return (-1);
3212 	reloc_relr(obj);
3213 
3214 	/* Re-protected the text segment. */
3215 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3216 		return (-1);
3217 
3218 	/* Set the special PLT or GOT entries. */
3219 	init_pltgot(obj);
3220 
3221 	/* Process the PLT relocations. */
3222 	if (reloc_plt(obj, flags, lockstate) == -1)
3223 		return (-1);
3224 	/* Relocate the jump slots if we are doing immediate binding. */
3225 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3226 	    lockstate) == -1)
3227 		return (-1);
3228 
3229 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3230 		return (-1);
3231 
3232 	/*
3233 	 * Set up the magic number and version in the Obj_Entry.  These
3234 	 * were checked in the crt1.o from the original ElfKit, so we
3235 	 * set them for backward compatibility.
3236 	 */
3237 	obj->magic = RTLD_MAGIC;
3238 	obj->version = RTLD_VERSION;
3239 
3240 	return (0);
3241 }
3242 
3243 /*
3244  * Relocate newly-loaded shared objects.  The argument is a pointer to
3245  * the Obj_Entry for the first such object.  All objects from the first
3246  * to the end of the list of objects are relocated.  Returns 0 on success,
3247  * or -1 on failure.
3248  */
3249 static int
3250 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3251     int flags, RtldLockState *lockstate)
3252 {
3253 	Obj_Entry *obj;
3254 	int error;
3255 
3256 	for (error = 0, obj = first;  obj != NULL;
3257 	    obj = TAILQ_NEXT(obj, next)) {
3258 		if (obj->marker)
3259 			continue;
3260 		error = relocate_object(obj, bind_now, rtldobj, flags,
3261 		    lockstate);
3262 		if (error == -1)
3263 			break;
3264 	}
3265 	return (error);
3266 }
3267 
3268 /*
3269  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3270  * referencing STT_GNU_IFUNC symbols is postponed till the other
3271  * relocations are done.  The indirect functions specified as
3272  * ifunc are allowed to call other symbols, so we need to have
3273  * objects relocated before asking for resolution from indirects.
3274  *
3275  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3276  * instead of the usual lazy handling of PLT slots.  It is
3277  * consistent with how GNU does it.
3278  */
3279 static int
3280 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3281     RtldLockState *lockstate)
3282 {
3283 
3284 	if (obj->ifuncs_resolved)
3285 		return (0);
3286 	obj->ifuncs_resolved = true;
3287 	if (!obj->irelative && !obj->irelative_nonplt &&
3288 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3289 	    !obj->non_plt_gnu_ifunc)
3290 		return (0);
3291 	if (obj_disable_relro(obj) == -1 ||
3292 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3293 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3294 	    lockstate) == -1) ||
3295 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3296 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3297 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3298 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3299 	    obj_enforce_relro(obj) == -1)
3300 		return (-1);
3301 	return (0);
3302 }
3303 
3304 static int
3305 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3306     RtldLockState *lockstate)
3307 {
3308 	Objlist_Entry *elm;
3309 	Obj_Entry *obj;
3310 
3311 	STAILQ_FOREACH(elm, list, link) {
3312 		obj = elm->obj;
3313 		if (obj->marker)
3314 			continue;
3315 		if (resolve_object_ifunc(obj, bind_now, flags,
3316 		    lockstate) == -1)
3317 			return (-1);
3318 	}
3319 	return (0);
3320 }
3321 
3322 /*
3323  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3324  * before the process exits.
3325  */
3326 static void
3327 rtld_exit(void)
3328 {
3329     RtldLockState lockstate;
3330 
3331     wlock_acquire(rtld_bind_lock, &lockstate);
3332     dbg("rtld_exit()");
3333     objlist_call_fini(&list_fini, NULL, &lockstate);
3334     /* No need to remove the items from the list, since we are exiting. */
3335     if (!libmap_disable)
3336         lm_fini();
3337     lock_release(rtld_bind_lock, &lockstate);
3338 }
3339 
3340 static void
3341 rtld_nop_exit(void)
3342 {
3343 }
3344 
3345 /*
3346  * Iterate over a search path, translate each element, and invoke the
3347  * callback on the result.
3348  */
3349 static void *
3350 path_enumerate(const char *path, path_enum_proc callback,
3351     const char *refobj_path, void *arg)
3352 {
3353     const char *trans;
3354     if (path == NULL)
3355 	return (NULL);
3356 
3357     path += strspn(path, ":;");
3358     while (*path != '\0') {
3359 	size_t len;
3360 	char  *res;
3361 
3362 	len = strcspn(path, ":;");
3363 	trans = lm_findn(refobj_path, path, len);
3364 	if (trans)
3365 	    res = callback(trans, strlen(trans), arg);
3366 	else
3367 	    res = callback(path, len, arg);
3368 
3369 	if (res != NULL)
3370 	    return (res);
3371 
3372 	path += len;
3373 	path += strspn(path, ":;");
3374     }
3375 
3376     return (NULL);
3377 }
3378 
3379 struct try_library_args {
3380     const char	*name;
3381     size_t	 namelen;
3382     char	*buffer;
3383     size_t	 buflen;
3384     int		 fd;
3385 };
3386 
3387 static void *
3388 try_library_path(const char *dir, size_t dirlen, void *param)
3389 {
3390     struct try_library_args *arg;
3391     int fd;
3392 
3393     arg = param;
3394     if (*dir == '/' || trust) {
3395 	char *pathname;
3396 
3397 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3398 		return (NULL);
3399 
3400 	pathname = arg->buffer;
3401 	strncpy(pathname, dir, dirlen);
3402 	pathname[dirlen] = '/';
3403 	strcpy(pathname + dirlen + 1, arg->name);
3404 
3405 	dbg("  Trying \"%s\"", pathname);
3406 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3407 	if (fd >= 0) {
3408 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3409 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3410 	    strcpy(pathname, arg->buffer);
3411 	    arg->fd = fd;
3412 	    return (pathname);
3413 	} else {
3414 	    dbg("  Failed to open \"%s\": %s",
3415 		pathname, rtld_strerror(errno));
3416 	}
3417     }
3418     return (NULL);
3419 }
3420 
3421 static char *
3422 search_library_path(const char *name, const char *path,
3423     const char *refobj_path, int *fdp)
3424 {
3425     char *p;
3426     struct try_library_args arg;
3427 
3428     if (path == NULL)
3429 	return NULL;
3430 
3431     arg.name = name;
3432     arg.namelen = strlen(name);
3433     arg.buffer = xmalloc(PATH_MAX);
3434     arg.buflen = PATH_MAX;
3435     arg.fd = -1;
3436 
3437     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3438     *fdp = arg.fd;
3439 
3440     free(arg.buffer);
3441 
3442     return (p);
3443 }
3444 
3445 
3446 /*
3447  * Finds the library with the given name using the directory descriptors
3448  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3449  *
3450  * Returns a freshly-opened close-on-exec file descriptor for the library,
3451  * or -1 if the library cannot be found.
3452  */
3453 static char *
3454 search_library_pathfds(const char *name, const char *path, int *fdp)
3455 {
3456 	char *envcopy, *fdstr, *found, *last_token;
3457 	size_t len;
3458 	int dirfd, fd;
3459 
3460 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3461 
3462 	/* Don't load from user-specified libdirs into setuid binaries. */
3463 	if (!trust)
3464 		return (NULL);
3465 
3466 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3467 	if (path == NULL)
3468 		return (NULL);
3469 
3470 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3471 	if (name[0] == '/') {
3472 		dbg("Absolute path (%s) passed to %s", name, __func__);
3473 		return (NULL);
3474 	}
3475 
3476 	/*
3477 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3478 	 * copy of the path, as strtok_r rewrites separator tokens
3479 	 * with '\0'.
3480 	 */
3481 	found = NULL;
3482 	envcopy = xstrdup(path);
3483 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3484 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3485 		dirfd = parse_integer(fdstr);
3486 		if (dirfd < 0) {
3487 			_rtld_error("failed to parse directory FD: '%s'",
3488 				fdstr);
3489 			break;
3490 		}
3491 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3492 		if (fd >= 0) {
3493 			*fdp = fd;
3494 			len = strlen(fdstr) + strlen(name) + 3;
3495 			found = xmalloc(len);
3496 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3497 				_rtld_error("error generating '%d/%s'",
3498 				    dirfd, name);
3499 				rtld_die();
3500 			}
3501 			dbg("open('%s') => %d", found, fd);
3502 			break;
3503 		}
3504 	}
3505 	free(envcopy);
3506 
3507 	return (found);
3508 }
3509 
3510 
3511 int
3512 dlclose(void *handle)
3513 {
3514 	RtldLockState lockstate;
3515 	int error;
3516 
3517 	wlock_acquire(rtld_bind_lock, &lockstate);
3518 	error = dlclose_locked(handle, &lockstate);
3519 	lock_release(rtld_bind_lock, &lockstate);
3520 	return (error);
3521 }
3522 
3523 static int
3524 dlclose_locked(void *handle, RtldLockState *lockstate)
3525 {
3526     Obj_Entry *root;
3527 
3528     root = dlcheck(handle);
3529     if (root == NULL)
3530 	return -1;
3531     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3532 	root->path);
3533 
3534     /* Unreference the object and its dependencies. */
3535     root->dl_refcount--;
3536 
3537     if (root->refcount == 1) {
3538 	/*
3539 	 * The object will be no longer referenced, so we must unload it.
3540 	 * First, call the fini functions.
3541 	 */
3542 	objlist_call_fini(&list_fini, root, lockstate);
3543 
3544 	unref_dag(root);
3545 
3546 	/* Finish cleaning up the newly-unreferenced objects. */
3547 	GDB_STATE(RT_DELETE,&root->linkmap);
3548 	unload_object(root, lockstate);
3549 	GDB_STATE(RT_CONSISTENT,NULL);
3550     } else
3551 	unref_dag(root);
3552 
3553     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3554     return 0;
3555 }
3556 
3557 char *
3558 dlerror(void)
3559 {
3560 	if (*(lockinfo.dlerror_seen()) != 0)
3561 		return (NULL);
3562 	*lockinfo.dlerror_seen() = 1;
3563 	return (lockinfo.dlerror_loc());
3564 }
3565 
3566 /*
3567  * This function is deprecated and has no effect.
3568  */
3569 void
3570 dllockinit(void *context,
3571     void *(*_lock_create)(void *context) __unused,
3572     void (*_rlock_acquire)(void *lock) __unused,
3573     void (*_wlock_acquire)(void *lock)  __unused,
3574     void (*_lock_release)(void *lock) __unused,
3575     void (*_lock_destroy)(void *lock) __unused,
3576     void (*context_destroy)(void *context))
3577 {
3578     static void *cur_context;
3579     static void (*cur_context_destroy)(void *);
3580 
3581     /* Just destroy the context from the previous call, if necessary. */
3582     if (cur_context_destroy != NULL)
3583 	cur_context_destroy(cur_context);
3584     cur_context = context;
3585     cur_context_destroy = context_destroy;
3586 }
3587 
3588 void *
3589 dlopen(const char *name, int mode)
3590 {
3591 
3592 	return (rtld_dlopen(name, -1, mode));
3593 }
3594 
3595 void *
3596 fdlopen(int fd, int mode)
3597 {
3598 
3599 	return (rtld_dlopen(NULL, fd, mode));
3600 }
3601 
3602 static void *
3603 rtld_dlopen(const char *name, int fd, int mode)
3604 {
3605     RtldLockState lockstate;
3606     int lo_flags;
3607 
3608     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3609     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3610     if (ld_tracing != NULL) {
3611 	rlock_acquire(rtld_bind_lock, &lockstate);
3612 	if (sigsetjmp(lockstate.env, 0) != 0)
3613 	    lock_upgrade(rtld_bind_lock, &lockstate);
3614 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3615 	lock_release(rtld_bind_lock, &lockstate);
3616     }
3617     lo_flags = RTLD_LO_DLOPEN;
3618     if (mode & RTLD_NODELETE)
3619 	    lo_flags |= RTLD_LO_NODELETE;
3620     if (mode & RTLD_NOLOAD)
3621 	    lo_flags |= RTLD_LO_NOLOAD;
3622     if (mode & RTLD_DEEPBIND)
3623 	    lo_flags |= RTLD_LO_DEEPBIND;
3624     if (ld_tracing != NULL)
3625 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3626 
3627     return (dlopen_object(name, fd, obj_main, lo_flags,
3628       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3629 }
3630 
3631 static void
3632 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3633 {
3634 
3635 	obj->dl_refcount--;
3636 	unref_dag(obj);
3637 	if (obj->refcount == 0)
3638 		unload_object(obj, lockstate);
3639 }
3640 
3641 static Obj_Entry *
3642 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3643     int mode, RtldLockState *lockstate)
3644 {
3645     Obj_Entry *old_obj_tail;
3646     Obj_Entry *obj;
3647     Objlist initlist;
3648     RtldLockState mlockstate;
3649     int result;
3650 
3651     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3652       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3653       refobj->path, lo_flags, mode);
3654     objlist_init(&initlist);
3655 
3656     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3657 	wlock_acquire(rtld_bind_lock, &mlockstate);
3658 	lockstate = &mlockstate;
3659     }
3660     GDB_STATE(RT_ADD,NULL);
3661 
3662     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3663     obj = NULL;
3664     if (name == NULL && fd == -1) {
3665 	obj = obj_main;
3666 	obj->refcount++;
3667     } else {
3668 	obj = load_object(name, fd, refobj, lo_flags);
3669     }
3670 
3671     if (obj) {
3672 	obj->dl_refcount++;
3673 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3674 	    objlist_push_tail(&list_global, obj);
3675 	if (globallist_next(old_obj_tail) != NULL) {
3676 	    /* We loaded something new. */
3677 	    assert(globallist_next(old_obj_tail) == obj);
3678 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3679 		obj->symbolic = true;
3680 	    result = 0;
3681 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3682 	      obj->static_tls && !allocate_tls_offset(obj)) {
3683 		_rtld_error("%s: No space available "
3684 		  "for static Thread Local Storage", obj->path);
3685 		result = -1;
3686 	    }
3687 	    if (result != -1)
3688 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3689 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3690 	    init_dag(obj);
3691 	    ref_dag(obj);
3692 	    if (result != -1)
3693 		result = rtld_verify_versions(&obj->dagmembers);
3694 	    if (result != -1 && ld_tracing)
3695 		goto trace;
3696 	    if (result == -1 || relocate_object_dag(obj,
3697 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3698 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3699 	      lockstate) == -1) {
3700 		dlopen_cleanup(obj, lockstate);
3701 		obj = NULL;
3702 	    } else if (lo_flags & RTLD_LO_EARLY) {
3703 		/*
3704 		 * Do not call the init functions for early loaded
3705 		 * filtees.  The image is still not initialized enough
3706 		 * for them to work.
3707 		 *
3708 		 * Our object is found by the global object list and
3709 		 * will be ordered among all init calls done right
3710 		 * before transferring control to main.
3711 		 */
3712 	    } else {
3713 		/* Make list of init functions to call. */
3714 		initlist_add_objects(obj, obj, &initlist);
3715 	    }
3716 	    /*
3717 	     * Process all no_delete or global objects here, given
3718 	     * them own DAGs to prevent their dependencies from being
3719 	     * unloaded.  This has to be done after we have loaded all
3720 	     * of the dependencies, so that we do not miss any.
3721 	     */
3722 	    if (obj != NULL)
3723 		process_z(obj);
3724 	} else {
3725 	    /*
3726 	     * Bump the reference counts for objects on this DAG.  If
3727 	     * this is the first dlopen() call for the object that was
3728 	     * already loaded as a dependency, initialize the dag
3729 	     * starting at it.
3730 	     */
3731 	    init_dag(obj);
3732 	    ref_dag(obj);
3733 
3734 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3735 		goto trace;
3736 	}
3737 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3738 	  obj->z_nodelete) && !obj->ref_nodel) {
3739 	    dbg("obj %s nodelete", obj->path);
3740 	    ref_dag(obj);
3741 	    obj->z_nodelete = obj->ref_nodel = true;
3742 	}
3743     }
3744 
3745     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3746 	name);
3747     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3748 
3749     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3750 	map_stacks_exec(lockstate);
3751 	if (obj != NULL)
3752 	    distribute_static_tls(&initlist, lockstate);
3753     }
3754 
3755     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3756       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3757       lockstate) == -1) {
3758 	objlist_clear(&initlist);
3759 	dlopen_cleanup(obj, lockstate);
3760 	if (lockstate == &mlockstate)
3761 	    lock_release(rtld_bind_lock, lockstate);
3762 	return (NULL);
3763     }
3764 
3765     if (!(lo_flags & RTLD_LO_EARLY)) {
3766 	/* Call the init functions. */
3767 	objlist_call_init(&initlist, lockstate);
3768     }
3769     objlist_clear(&initlist);
3770     if (lockstate == &mlockstate)
3771 	lock_release(rtld_bind_lock, lockstate);
3772     return obj;
3773 trace:
3774     trace_loaded_objects(obj);
3775     if (lockstate == &mlockstate)
3776 	lock_release(rtld_bind_lock, lockstate);
3777     exit(0);
3778 }
3779 
3780 static void *
3781 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3782     int flags)
3783 {
3784     DoneList donelist;
3785     const Obj_Entry *obj, *defobj;
3786     const Elf_Sym *def;
3787     SymLook req;
3788     RtldLockState lockstate;
3789     tls_index ti;
3790     void *sym;
3791     int res;
3792 
3793     def = NULL;
3794     defobj = NULL;
3795     symlook_init(&req, name);
3796     req.ventry = ve;
3797     req.flags = flags | SYMLOOK_IN_PLT;
3798     req.lockstate = &lockstate;
3799 
3800     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3801     rlock_acquire(rtld_bind_lock, &lockstate);
3802     if (sigsetjmp(lockstate.env, 0) != 0)
3803 	    lock_upgrade(rtld_bind_lock, &lockstate);
3804     if (handle == NULL || handle == RTLD_NEXT ||
3805 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3806 
3807 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3808 	    _rtld_error("Cannot determine caller's shared object");
3809 	    lock_release(rtld_bind_lock, &lockstate);
3810 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3811 	    return NULL;
3812 	}
3813 	if (handle == NULL) {	/* Just the caller's shared object. */
3814 	    res = symlook_obj(&req, obj);
3815 	    if (res == 0) {
3816 		def = req.sym_out;
3817 		defobj = req.defobj_out;
3818 	    }
3819 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3820 		   handle == RTLD_SELF) { /* ... caller included */
3821 	    if (handle == RTLD_NEXT)
3822 		obj = globallist_next(obj);
3823 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3824 		if (obj->marker)
3825 		    continue;
3826 		res = symlook_obj(&req, obj);
3827 		if (res == 0) {
3828 		    if (def == NULL || (ld_dynamic_weak &&
3829                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3830 			def = req.sym_out;
3831 			defobj = req.defobj_out;
3832 			if (!ld_dynamic_weak ||
3833 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3834 			    break;
3835 		    }
3836 		}
3837 	    }
3838 	    /*
3839 	     * Search the dynamic linker itself, and possibly resolve the
3840 	     * symbol from there.  This is how the application links to
3841 	     * dynamic linker services such as dlopen.
3842 	     * Note that we ignore ld_dynamic_weak == false case,
3843 	     * always overriding weak symbols by rtld definitions.
3844 	     */
3845 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3846 		res = symlook_obj(&req, &obj_rtld);
3847 		if (res == 0) {
3848 		    def = req.sym_out;
3849 		    defobj = req.defobj_out;
3850 		}
3851 	    }
3852 	} else {
3853 	    assert(handle == RTLD_DEFAULT);
3854 	    res = symlook_default(&req, obj);
3855 	    if (res == 0) {
3856 		defobj = req.defobj_out;
3857 		def = req.sym_out;
3858 	    }
3859 	}
3860     } else {
3861 	if ((obj = dlcheck(handle)) == NULL) {
3862 	    lock_release(rtld_bind_lock, &lockstate);
3863 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3864 	    return NULL;
3865 	}
3866 
3867 	donelist_init(&donelist);
3868 	if (obj->mainprog) {
3869             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3870 	    res = symlook_global(&req, &donelist);
3871 	    if (res == 0) {
3872 		def = req.sym_out;
3873 		defobj = req.defobj_out;
3874 	    }
3875 	    /*
3876 	     * Search the dynamic linker itself, and possibly resolve the
3877 	     * symbol from there.  This is how the application links to
3878 	     * dynamic linker services such as dlopen.
3879 	     */
3880 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3881 		res = symlook_obj(&req, &obj_rtld);
3882 		if (res == 0) {
3883 		    def = req.sym_out;
3884 		    defobj = req.defobj_out;
3885 		}
3886 	    }
3887 	}
3888 	else {
3889 	    /* Search the whole DAG rooted at the given object. */
3890 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3891 	    if (res == 0) {
3892 		def = req.sym_out;
3893 		defobj = req.defobj_out;
3894 	    }
3895 	}
3896     }
3897 
3898     if (def != NULL) {
3899 	lock_release(rtld_bind_lock, &lockstate);
3900 
3901 	/*
3902 	 * The value required by the caller is derived from the value
3903 	 * of the symbol. this is simply the relocated value of the
3904 	 * symbol.
3905 	 */
3906 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3907 	    sym = make_function_pointer(def, defobj);
3908 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3909 	    sym = rtld_resolve_ifunc(defobj, def);
3910 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3911 	    ti.ti_module = defobj->tlsindex;
3912 	    ti.ti_offset = def->st_value;
3913 	    sym = __tls_get_addr(&ti);
3914 	} else
3915 	    sym = defobj->relocbase + def->st_value;
3916 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3917 	return (sym);
3918     }
3919 
3920     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3921       ve != NULL ? ve->name : "");
3922     lock_release(rtld_bind_lock, &lockstate);
3923     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3924     return NULL;
3925 }
3926 
3927 void *
3928 dlsym(void *handle, const char *name)
3929 {
3930 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3931 	    SYMLOOK_DLSYM);
3932 }
3933 
3934 dlfunc_t
3935 dlfunc(void *handle, const char *name)
3936 {
3937 	union {
3938 		void *d;
3939 		dlfunc_t f;
3940 	} rv;
3941 
3942 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3943 	    SYMLOOK_DLSYM);
3944 	return (rv.f);
3945 }
3946 
3947 void *
3948 dlvsym(void *handle, const char *name, const char *version)
3949 {
3950 	Ver_Entry ventry;
3951 
3952 	ventry.name = version;
3953 	ventry.file = NULL;
3954 	ventry.hash = elf_hash(version);
3955 	ventry.flags= 0;
3956 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3957 	    SYMLOOK_DLSYM);
3958 }
3959 
3960 int
3961 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3962 {
3963     const Obj_Entry *obj;
3964     RtldLockState lockstate;
3965 
3966     rlock_acquire(rtld_bind_lock, &lockstate);
3967     obj = obj_from_addr(addr);
3968     if (obj == NULL) {
3969         _rtld_error("No shared object contains address");
3970 	lock_release(rtld_bind_lock, &lockstate);
3971         return (0);
3972     }
3973     rtld_fill_dl_phdr_info(obj, phdr_info);
3974     lock_release(rtld_bind_lock, &lockstate);
3975     return (1);
3976 }
3977 
3978 int
3979 dladdr(const void *addr, Dl_info *info)
3980 {
3981     const Obj_Entry *obj;
3982     const Elf_Sym *def;
3983     void *symbol_addr;
3984     unsigned long symoffset;
3985     RtldLockState lockstate;
3986 
3987     rlock_acquire(rtld_bind_lock, &lockstate);
3988     obj = obj_from_addr(addr);
3989     if (obj == NULL) {
3990         _rtld_error("No shared object contains address");
3991 	lock_release(rtld_bind_lock, &lockstate);
3992         return 0;
3993     }
3994     info->dli_fname = obj->path;
3995     info->dli_fbase = obj->mapbase;
3996     info->dli_saddr = (void *)0;
3997     info->dli_sname = NULL;
3998 
3999     /*
4000      * Walk the symbol list looking for the symbol whose address is
4001      * closest to the address sent in.
4002      */
4003     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4004         def = obj->symtab + symoffset;
4005 
4006         /*
4007          * For skip the symbol if st_shndx is either SHN_UNDEF or
4008          * SHN_COMMON.
4009          */
4010         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4011             continue;
4012 
4013         /*
4014          * If the symbol is greater than the specified address, or if it
4015          * is further away from addr than the current nearest symbol,
4016          * then reject it.
4017          */
4018         symbol_addr = obj->relocbase + def->st_value;
4019         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4020             continue;
4021 
4022         /* Update our idea of the nearest symbol. */
4023         info->dli_sname = obj->strtab + def->st_name;
4024         info->dli_saddr = symbol_addr;
4025 
4026         /* Exact match? */
4027         if (info->dli_saddr == addr)
4028             break;
4029     }
4030     lock_release(rtld_bind_lock, &lockstate);
4031     return 1;
4032 }
4033 
4034 int
4035 dlinfo(void *handle, int request, void *p)
4036 {
4037     const Obj_Entry *obj;
4038     RtldLockState lockstate;
4039     int error;
4040 
4041     rlock_acquire(rtld_bind_lock, &lockstate);
4042 
4043     if (handle == NULL || handle == RTLD_SELF) {
4044 	void *retaddr;
4045 
4046 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4047 	if ((obj = obj_from_addr(retaddr)) == NULL)
4048 	    _rtld_error("Cannot determine caller's shared object");
4049     } else
4050 	obj = dlcheck(handle);
4051 
4052     if (obj == NULL) {
4053 	lock_release(rtld_bind_lock, &lockstate);
4054 	return (-1);
4055     }
4056 
4057     error = 0;
4058     switch (request) {
4059     case RTLD_DI_LINKMAP:
4060 	*((struct link_map const **)p) = &obj->linkmap;
4061 	break;
4062     case RTLD_DI_ORIGIN:
4063 	error = rtld_dirname(obj->path, p);
4064 	break;
4065 
4066     case RTLD_DI_SERINFOSIZE:
4067     case RTLD_DI_SERINFO:
4068 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4069 	break;
4070 
4071     default:
4072 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4073 	error = -1;
4074     }
4075 
4076     lock_release(rtld_bind_lock, &lockstate);
4077 
4078     return (error);
4079 }
4080 
4081 static void
4082 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4083 {
4084 	Elf_Addr **dtvp;
4085 
4086 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4087 	phdr_info->dlpi_name = obj->path;
4088 	phdr_info->dlpi_phdr = obj->phdr;
4089 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4090 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4091 	dtvp = _get_tp();
4092 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4093 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4094 	phdr_info->dlpi_adds = obj_loads;
4095 	phdr_info->dlpi_subs = obj_loads - obj_count;
4096 }
4097 
4098 int
4099 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4100 {
4101 	struct dl_phdr_info phdr_info;
4102 	Obj_Entry *obj, marker;
4103 	RtldLockState bind_lockstate, phdr_lockstate;
4104 	int error;
4105 
4106 	init_marker(&marker);
4107 	error = 0;
4108 
4109 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4110 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4111 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4112 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4113 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4114 		hold_object(obj);
4115 		lock_release(rtld_bind_lock, &bind_lockstate);
4116 
4117 		error = callback(&phdr_info, sizeof phdr_info, param);
4118 
4119 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4120 		unhold_object(obj);
4121 		obj = globallist_next(&marker);
4122 		TAILQ_REMOVE(&obj_list, &marker, next);
4123 		if (error != 0) {
4124 			lock_release(rtld_bind_lock, &bind_lockstate);
4125 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4126 			return (error);
4127 		}
4128 	}
4129 
4130 	if (error == 0) {
4131 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4132 		lock_release(rtld_bind_lock, &bind_lockstate);
4133 		error = callback(&phdr_info, sizeof(phdr_info), param);
4134 	}
4135 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4136 	return (error);
4137 }
4138 
4139 static void *
4140 fill_search_info(const char *dir, size_t dirlen, void *param)
4141 {
4142     struct fill_search_info_args *arg;
4143 
4144     arg = param;
4145 
4146     if (arg->request == RTLD_DI_SERINFOSIZE) {
4147 	arg->serinfo->dls_cnt ++;
4148 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4149     } else {
4150 	struct dl_serpath *s_entry;
4151 
4152 	s_entry = arg->serpath;
4153 	s_entry->dls_name  = arg->strspace;
4154 	s_entry->dls_flags = arg->flags;
4155 
4156 	strncpy(arg->strspace, dir, dirlen);
4157 	arg->strspace[dirlen] = '\0';
4158 
4159 	arg->strspace += dirlen + 1;
4160 	arg->serpath++;
4161     }
4162 
4163     return (NULL);
4164 }
4165 
4166 static int
4167 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4168 {
4169     struct dl_serinfo _info;
4170     struct fill_search_info_args args;
4171 
4172     args.request = RTLD_DI_SERINFOSIZE;
4173     args.serinfo = &_info;
4174 
4175     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4176     _info.dls_cnt  = 0;
4177 
4178     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4179     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4180     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4181     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4182     if (!obj->z_nodeflib)
4183       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4184 
4185 
4186     if (request == RTLD_DI_SERINFOSIZE) {
4187 	info->dls_size = _info.dls_size;
4188 	info->dls_cnt = _info.dls_cnt;
4189 	return (0);
4190     }
4191 
4192     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4193 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4194 	return (-1);
4195     }
4196 
4197     args.request  = RTLD_DI_SERINFO;
4198     args.serinfo  = info;
4199     args.serpath  = &info->dls_serpath[0];
4200     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4201 
4202     args.flags = LA_SER_RUNPATH;
4203     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4204 	return (-1);
4205 
4206     args.flags = LA_SER_LIBPATH;
4207     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4208 	return (-1);
4209 
4210     args.flags = LA_SER_RUNPATH;
4211     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4212 	return (-1);
4213 
4214     args.flags = LA_SER_CONFIG;
4215     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4216       != NULL)
4217 	return (-1);
4218 
4219     args.flags = LA_SER_DEFAULT;
4220     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4221       fill_search_info, NULL, &args) != NULL)
4222 	return (-1);
4223     return (0);
4224 }
4225 
4226 static int
4227 rtld_dirname(const char *path, char *bname)
4228 {
4229     const char *endp;
4230 
4231     /* Empty or NULL string gets treated as "." */
4232     if (path == NULL || *path == '\0') {
4233 	bname[0] = '.';
4234 	bname[1] = '\0';
4235 	return (0);
4236     }
4237 
4238     /* Strip trailing slashes */
4239     endp = path + strlen(path) - 1;
4240     while (endp > path && *endp == '/')
4241 	endp--;
4242 
4243     /* Find the start of the dir */
4244     while (endp > path && *endp != '/')
4245 	endp--;
4246 
4247     /* Either the dir is "/" or there are no slashes */
4248     if (endp == path) {
4249 	bname[0] = *endp == '/' ? '/' : '.';
4250 	bname[1] = '\0';
4251 	return (0);
4252     } else {
4253 	do {
4254 	    endp--;
4255 	} while (endp > path && *endp == '/');
4256     }
4257 
4258     if (endp - path + 2 > PATH_MAX)
4259     {
4260 	_rtld_error("Filename is too long: %s", path);
4261 	return(-1);
4262     }
4263 
4264     strncpy(bname, path, endp - path + 1);
4265     bname[endp - path + 1] = '\0';
4266     return (0);
4267 }
4268 
4269 static int
4270 rtld_dirname_abs(const char *path, char *base)
4271 {
4272 	char *last;
4273 
4274 	if (realpath(path, base) == NULL) {
4275 		_rtld_error("realpath \"%s\" failed (%s)", path,
4276 		    rtld_strerror(errno));
4277 		return (-1);
4278 	}
4279 	dbg("%s -> %s", path, base);
4280 	last = strrchr(base, '/');
4281 	if (last == NULL) {
4282 		_rtld_error("non-abs result from realpath \"%s\"", path);
4283 		return (-1);
4284 	}
4285 	if (last != base)
4286 		*last = '\0';
4287 	return (0);
4288 }
4289 
4290 static void
4291 linkmap_add(Obj_Entry *obj)
4292 {
4293 	struct link_map *l, *prev;
4294 
4295 	l = &obj->linkmap;
4296 	l->l_name = obj->path;
4297 	l->l_base = obj->mapbase;
4298 	l->l_ld = obj->dynamic;
4299 	l->l_addr = obj->relocbase;
4300 
4301 	if (r_debug.r_map == NULL) {
4302 		r_debug.r_map = l;
4303 		return;
4304 	}
4305 
4306 	/*
4307 	 * Scan to the end of the list, but not past the entry for the
4308 	 * dynamic linker, which we want to keep at the very end.
4309 	 */
4310 	for (prev = r_debug.r_map;
4311 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4312 	     prev = prev->l_next)
4313 		;
4314 
4315 	/* Link in the new entry. */
4316 	l->l_prev = prev;
4317 	l->l_next = prev->l_next;
4318 	if (l->l_next != NULL)
4319 		l->l_next->l_prev = l;
4320 	prev->l_next = l;
4321 }
4322 
4323 static void
4324 linkmap_delete(Obj_Entry *obj)
4325 {
4326 	struct link_map *l;
4327 
4328 	l = &obj->linkmap;
4329 	if (l->l_prev == NULL) {
4330 		if ((r_debug.r_map = l->l_next) != NULL)
4331 			l->l_next->l_prev = NULL;
4332 		return;
4333 	}
4334 
4335 	if ((l->l_prev->l_next = l->l_next) != NULL)
4336 		l->l_next->l_prev = l->l_prev;
4337 }
4338 
4339 /*
4340  * Function for the debugger to set a breakpoint on to gain control.
4341  *
4342  * The two parameters allow the debugger to easily find and determine
4343  * what the runtime loader is doing and to whom it is doing it.
4344  *
4345  * When the loadhook trap is hit (r_debug_state, set at program
4346  * initialization), the arguments can be found on the stack:
4347  *
4348  *  +8   struct link_map *m
4349  *  +4   struct r_debug  *rd
4350  *  +0   RetAddr
4351  */
4352 void
4353 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4354 {
4355     /*
4356      * The following is a hack to force the compiler to emit calls to
4357      * this function, even when optimizing.  If the function is empty,
4358      * the compiler is not obliged to emit any code for calls to it,
4359      * even when marked __noinline.  However, gdb depends on those
4360      * calls being made.
4361      */
4362     __compiler_membar();
4363 }
4364 
4365 /*
4366  * A function called after init routines have completed. This can be used to
4367  * break before a program's entry routine is called, and can be used when
4368  * main is not available in the symbol table.
4369  */
4370 void
4371 _r_debug_postinit(struct link_map *m __unused)
4372 {
4373 
4374 	/* See r_debug_state(). */
4375 	__compiler_membar();
4376 }
4377 
4378 static void
4379 release_object(Obj_Entry *obj)
4380 {
4381 
4382 	if (obj->holdcount > 0) {
4383 		obj->unholdfree = true;
4384 		return;
4385 	}
4386 	munmap(obj->mapbase, obj->mapsize);
4387 	linkmap_delete(obj);
4388 	obj_free(obj);
4389 }
4390 
4391 /*
4392  * Get address of the pointer variable in the main program.
4393  * Prefer non-weak symbol over the weak one.
4394  */
4395 static const void **
4396 get_program_var_addr(const char *name, RtldLockState *lockstate)
4397 {
4398     SymLook req;
4399     DoneList donelist;
4400 
4401     symlook_init(&req, name);
4402     req.lockstate = lockstate;
4403     donelist_init(&donelist);
4404     if (symlook_global(&req, &donelist) != 0)
4405 	return (NULL);
4406     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4407 	return ((const void **)make_function_pointer(req.sym_out,
4408 	  req.defobj_out));
4409     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4410 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4411     else
4412 	return ((const void **)(req.defobj_out->relocbase +
4413 	  req.sym_out->st_value));
4414 }
4415 
4416 /*
4417  * Set a pointer variable in the main program to the given value.  This
4418  * is used to set key variables such as "environ" before any of the
4419  * init functions are called.
4420  */
4421 static void
4422 set_program_var(const char *name, const void *value)
4423 {
4424     const void **addr;
4425 
4426     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4427 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4428 	*addr = value;
4429     }
4430 }
4431 
4432 /*
4433  * Search the global objects, including dependencies and main object,
4434  * for the given symbol.
4435  */
4436 static int
4437 symlook_global(SymLook *req, DoneList *donelist)
4438 {
4439     SymLook req1;
4440     const Objlist_Entry *elm;
4441     int res;
4442 
4443     symlook_init_from_req(&req1, req);
4444 
4445     /* Search all objects loaded at program start up. */
4446     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4447       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4448 	res = symlook_list(&req1, &list_main, donelist);
4449 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4450 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4451 	    req->sym_out = req1.sym_out;
4452 	    req->defobj_out = req1.defobj_out;
4453 	    assert(req->defobj_out != NULL);
4454 	}
4455     }
4456 
4457     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4458     STAILQ_FOREACH(elm, &list_global, link) {
4459 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4460           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4461 	    break;
4462 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4463 	if (res == 0 && (req->defobj_out == NULL ||
4464 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4465 	    req->sym_out = req1.sym_out;
4466 	    req->defobj_out = req1.defobj_out;
4467 	    assert(req->defobj_out != NULL);
4468 	}
4469     }
4470 
4471     return (req->sym_out != NULL ? 0 : ESRCH);
4472 }
4473 
4474 /*
4475  * Given a symbol name in a referencing object, find the corresponding
4476  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4477  * no definition was found.  Returns a pointer to the Obj_Entry of the
4478  * defining object via the reference parameter DEFOBJ_OUT.
4479  */
4480 static int
4481 symlook_default(SymLook *req, const Obj_Entry *refobj)
4482 {
4483     DoneList donelist;
4484     const Objlist_Entry *elm;
4485     SymLook req1;
4486     int res;
4487 
4488     donelist_init(&donelist);
4489     symlook_init_from_req(&req1, req);
4490 
4491     /*
4492      * Look first in the referencing object if linked symbolically,
4493      * and similarly handle protected symbols.
4494      */
4495     res = symlook_obj(&req1, refobj);
4496     if (res == 0 && (refobj->symbolic ||
4497       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4498 	req->sym_out = req1.sym_out;
4499 	req->defobj_out = req1.defobj_out;
4500 	assert(req->defobj_out != NULL);
4501     }
4502     if (refobj->symbolic || req->defobj_out != NULL)
4503 	donelist_check(&donelist, refobj);
4504 
4505     symlook_global(req, &donelist);
4506 
4507     /* Search all dlopened DAGs containing the referencing object. */
4508     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4509 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4510           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4511 	    break;
4512 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4513 	if (res == 0 && (req->sym_out == NULL ||
4514 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4515 	    req->sym_out = req1.sym_out;
4516 	    req->defobj_out = req1.defobj_out;
4517 	    assert(req->defobj_out != NULL);
4518 	}
4519     }
4520 
4521     /*
4522      * Search the dynamic linker itself, and possibly resolve the
4523      * symbol from there.  This is how the application links to
4524      * dynamic linker services such as dlopen.
4525      */
4526     if (req->sym_out == NULL ||
4527       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4528 	res = symlook_obj(&req1, &obj_rtld);
4529 	if (res == 0) {
4530 	    req->sym_out = req1.sym_out;
4531 	    req->defobj_out = req1.defobj_out;
4532 	    assert(req->defobj_out != NULL);
4533 	}
4534     }
4535 
4536     return (req->sym_out != NULL ? 0 : ESRCH);
4537 }
4538 
4539 static int
4540 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4541 {
4542     const Elf_Sym *def;
4543     const Obj_Entry *defobj;
4544     const Objlist_Entry *elm;
4545     SymLook req1;
4546     int res;
4547 
4548     def = NULL;
4549     defobj = NULL;
4550     STAILQ_FOREACH(elm, objlist, link) {
4551 	if (donelist_check(dlp, elm->obj))
4552 	    continue;
4553 	symlook_init_from_req(&req1, req);
4554 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4555 	    if (def == NULL || (ld_dynamic_weak &&
4556               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4557 		def = req1.sym_out;
4558 		defobj = req1.defobj_out;
4559 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4560 		    break;
4561 	    }
4562 	}
4563     }
4564     if (def != NULL) {
4565 	req->sym_out = def;
4566 	req->defobj_out = defobj;
4567 	return (0);
4568     }
4569     return (ESRCH);
4570 }
4571 
4572 /*
4573  * Search the chain of DAGS cointed to by the given Needed_Entry
4574  * for a symbol of the given name.  Each DAG is scanned completely
4575  * before advancing to the next one.  Returns a pointer to the symbol,
4576  * or NULL if no definition was found.
4577  */
4578 static int
4579 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4580 {
4581     const Elf_Sym *def;
4582     const Needed_Entry *n;
4583     const Obj_Entry *defobj;
4584     SymLook req1;
4585     int res;
4586 
4587     def = NULL;
4588     defobj = NULL;
4589     symlook_init_from_req(&req1, req);
4590     for (n = needed; n != NULL; n = n->next) {
4591 	if (n->obj == NULL ||
4592 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4593 	    continue;
4594 	if (def == NULL || (ld_dynamic_weak &&
4595           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4596 	    def = req1.sym_out;
4597 	    defobj = req1.defobj_out;
4598 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4599 		break;
4600 	}
4601     }
4602     if (def != NULL) {
4603 	req->sym_out = def;
4604 	req->defobj_out = defobj;
4605 	return (0);
4606     }
4607     return (ESRCH);
4608 }
4609 
4610 /*
4611  * Search the symbol table of a single shared object for a symbol of
4612  * the given name and version, if requested.  Returns a pointer to the
4613  * symbol, or NULL if no definition was found.  If the object is
4614  * filter, return filtered symbol from filtee.
4615  *
4616  * The symbol's hash value is passed in for efficiency reasons; that
4617  * eliminates many recomputations of the hash value.
4618  */
4619 int
4620 symlook_obj(SymLook *req, const Obj_Entry *obj)
4621 {
4622     DoneList donelist;
4623     SymLook req1;
4624     int flags, res, mres;
4625 
4626     /*
4627      * If there is at least one valid hash at this point, we prefer to
4628      * use the faster GNU version if available.
4629      */
4630     if (obj->valid_hash_gnu)
4631 	mres = symlook_obj1_gnu(req, obj);
4632     else if (obj->valid_hash_sysv)
4633 	mres = symlook_obj1_sysv(req, obj);
4634     else
4635 	return (EINVAL);
4636 
4637     if (mres == 0) {
4638 	if (obj->needed_filtees != NULL) {
4639 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4640 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4641 	    donelist_init(&donelist);
4642 	    symlook_init_from_req(&req1, req);
4643 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4644 	    if (res == 0) {
4645 		req->sym_out = req1.sym_out;
4646 		req->defobj_out = req1.defobj_out;
4647 	    }
4648 	    return (res);
4649 	}
4650 	if (obj->needed_aux_filtees != NULL) {
4651 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4652 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4653 	    donelist_init(&donelist);
4654 	    symlook_init_from_req(&req1, req);
4655 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4656 	    if (res == 0) {
4657 		req->sym_out = req1.sym_out;
4658 		req->defobj_out = req1.defobj_out;
4659 		return (res);
4660 	    }
4661 	}
4662     }
4663     return (mres);
4664 }
4665 
4666 /* Symbol match routine common to both hash functions */
4667 static bool
4668 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4669     const unsigned long symnum)
4670 {
4671 	Elf_Versym verndx;
4672 	const Elf_Sym *symp;
4673 	const char *strp;
4674 
4675 	symp = obj->symtab + symnum;
4676 	strp = obj->strtab + symp->st_name;
4677 
4678 	switch (ELF_ST_TYPE(symp->st_info)) {
4679 	case STT_FUNC:
4680 	case STT_NOTYPE:
4681 	case STT_OBJECT:
4682 	case STT_COMMON:
4683 	case STT_GNU_IFUNC:
4684 		if (symp->st_value == 0)
4685 			return (false);
4686 		/* fallthrough */
4687 	case STT_TLS:
4688 		if (symp->st_shndx != SHN_UNDEF)
4689 			break;
4690 #ifndef __mips__
4691 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4692 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4693 			break;
4694 #endif
4695 		/* fallthrough */
4696 	default:
4697 		return (false);
4698 	}
4699 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4700 		return (false);
4701 
4702 	if (req->ventry == NULL) {
4703 		if (obj->versyms != NULL) {
4704 			verndx = VER_NDX(obj->versyms[symnum]);
4705 			if (verndx > obj->vernum) {
4706 				_rtld_error(
4707 				    "%s: symbol %s references wrong version %d",
4708 				    obj->path, obj->strtab + symnum, verndx);
4709 				return (false);
4710 			}
4711 			/*
4712 			 * If we are not called from dlsym (i.e. this
4713 			 * is a normal relocation from unversioned
4714 			 * binary), accept the symbol immediately if
4715 			 * it happens to have first version after this
4716 			 * shared object became versioned.  Otherwise,
4717 			 * if symbol is versioned and not hidden,
4718 			 * remember it. If it is the only symbol with
4719 			 * this name exported by the shared object, it
4720 			 * will be returned as a match by the calling
4721 			 * function. If symbol is global (verndx < 2)
4722 			 * accept it unconditionally.
4723 			 */
4724 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4725 			    verndx == VER_NDX_GIVEN) {
4726 				result->sym_out = symp;
4727 				return (true);
4728 			}
4729 			else if (verndx >= VER_NDX_GIVEN) {
4730 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4731 				    == 0) {
4732 					if (result->vsymp == NULL)
4733 						result->vsymp = symp;
4734 					result->vcount++;
4735 				}
4736 				return (false);
4737 			}
4738 		}
4739 		result->sym_out = symp;
4740 		return (true);
4741 	}
4742 	if (obj->versyms == NULL) {
4743 		if (object_match_name(obj, req->ventry->name)) {
4744 			_rtld_error("%s: object %s should provide version %s "
4745 			    "for symbol %s", obj_rtld.path, obj->path,
4746 			    req->ventry->name, obj->strtab + symnum);
4747 			return (false);
4748 		}
4749 	} else {
4750 		verndx = VER_NDX(obj->versyms[symnum]);
4751 		if (verndx > obj->vernum) {
4752 			_rtld_error("%s: symbol %s references wrong version %d",
4753 			    obj->path, obj->strtab + symnum, verndx);
4754 			return (false);
4755 		}
4756 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4757 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4758 			/*
4759 			 * Version does not match. Look if this is a
4760 			 * global symbol and if it is not hidden. If
4761 			 * global symbol (verndx < 2) is available,
4762 			 * use it. Do not return symbol if we are
4763 			 * called by dlvsym, because dlvsym looks for
4764 			 * a specific version and default one is not
4765 			 * what dlvsym wants.
4766 			 */
4767 			if ((req->flags & SYMLOOK_DLSYM) ||
4768 			    (verndx >= VER_NDX_GIVEN) ||
4769 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4770 				return (false);
4771 		}
4772 	}
4773 	result->sym_out = symp;
4774 	return (true);
4775 }
4776 
4777 /*
4778  * Search for symbol using SysV hash function.
4779  * obj->buckets is known not to be NULL at this point; the test for this was
4780  * performed with the obj->valid_hash_sysv assignment.
4781  */
4782 static int
4783 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4784 {
4785 	unsigned long symnum;
4786 	Sym_Match_Result matchres;
4787 
4788 	matchres.sym_out = NULL;
4789 	matchres.vsymp = NULL;
4790 	matchres.vcount = 0;
4791 
4792 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4793 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4794 		if (symnum >= obj->nchains)
4795 			return (ESRCH);	/* Bad object */
4796 
4797 		if (matched_symbol(req, obj, &matchres, symnum)) {
4798 			req->sym_out = matchres.sym_out;
4799 			req->defobj_out = obj;
4800 			return (0);
4801 		}
4802 	}
4803 	if (matchres.vcount == 1) {
4804 		req->sym_out = matchres.vsymp;
4805 		req->defobj_out = obj;
4806 		return (0);
4807 	}
4808 	return (ESRCH);
4809 }
4810 
4811 /* Search for symbol using GNU hash function */
4812 static int
4813 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4814 {
4815 	Elf_Addr bloom_word;
4816 	const Elf32_Word *hashval;
4817 	Elf32_Word bucket;
4818 	Sym_Match_Result matchres;
4819 	unsigned int h1, h2;
4820 	unsigned long symnum;
4821 
4822 	matchres.sym_out = NULL;
4823 	matchres.vsymp = NULL;
4824 	matchres.vcount = 0;
4825 
4826 	/* Pick right bitmask word from Bloom filter array */
4827 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4828 	    obj->maskwords_bm_gnu];
4829 
4830 	/* Calculate modulus word size of gnu hash and its derivative */
4831 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4832 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4833 
4834 	/* Filter out the "definitely not in set" queries */
4835 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4836 		return (ESRCH);
4837 
4838 	/* Locate hash chain and corresponding value element*/
4839 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4840 	if (bucket == 0)
4841 		return (ESRCH);
4842 	hashval = &obj->chain_zero_gnu[bucket];
4843 	do {
4844 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4845 			symnum = hashval - obj->chain_zero_gnu;
4846 			if (matched_symbol(req, obj, &matchres, symnum)) {
4847 				req->sym_out = matchres.sym_out;
4848 				req->defobj_out = obj;
4849 				return (0);
4850 			}
4851 		}
4852 	} while ((*hashval++ & 1) == 0);
4853 	if (matchres.vcount == 1) {
4854 		req->sym_out = matchres.vsymp;
4855 		req->defobj_out = obj;
4856 		return (0);
4857 	}
4858 	return (ESRCH);
4859 }
4860 
4861 static void
4862 trace_loaded_objects(Obj_Entry *obj)
4863 {
4864     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4865     int c;
4866 
4867     if ((main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME)) ==
4868       NULL)
4869 	main_local = "";
4870 
4871     if ((fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1)) == NULL)
4872 	fmt1 = "\t%o => %p (%x)\n";
4873 
4874     if ((fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2)) == NULL)
4875 	fmt2 = "\t%o (%x)\n";
4876 
4877     list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL);
4878 
4879     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4880 	Needed_Entry *needed;
4881 	const char *name, *path;
4882 	bool is_lib;
4883 
4884 	if (obj->marker)
4885 	    continue;
4886 	if (list_containers && obj->needed != NULL)
4887 	    rtld_printf("%s:\n", obj->path);
4888 	for (needed = obj->needed; needed; needed = needed->next) {
4889 	    if (needed->obj != NULL) {
4890 		if (needed->obj->traced && !list_containers)
4891 		    continue;
4892 		needed->obj->traced = true;
4893 		path = needed->obj->path;
4894 	    } else
4895 		path = "not found";
4896 
4897 	    name = obj->strtab + needed->name;
4898 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4899 
4900 	    fmt = is_lib ? fmt1 : fmt2;
4901 	    while ((c = *fmt++) != '\0') {
4902 		switch (c) {
4903 		default:
4904 		    rtld_putchar(c);
4905 		    continue;
4906 		case '\\':
4907 		    switch (c = *fmt) {
4908 		    case '\0':
4909 			continue;
4910 		    case 'n':
4911 			rtld_putchar('\n');
4912 			break;
4913 		    case 't':
4914 			rtld_putchar('\t');
4915 			break;
4916 		    }
4917 		    break;
4918 		case '%':
4919 		    switch (c = *fmt) {
4920 		    case '\0':
4921 			continue;
4922 		    case '%':
4923 		    default:
4924 			rtld_putchar(c);
4925 			break;
4926 		    case 'A':
4927 			rtld_putstr(main_local);
4928 			break;
4929 		    case 'a':
4930 			rtld_putstr(obj_main->path);
4931 			break;
4932 		    case 'o':
4933 			rtld_putstr(name);
4934 			break;
4935 #if 0
4936 		    case 'm':
4937 			rtld_printf("%d", sodp->sod_major);
4938 			break;
4939 		    case 'n':
4940 			rtld_printf("%d", sodp->sod_minor);
4941 			break;
4942 #endif
4943 		    case 'p':
4944 			rtld_putstr(path);
4945 			break;
4946 		    case 'x':
4947 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4948 			  0);
4949 			break;
4950 		    }
4951 		    break;
4952 		}
4953 		++fmt;
4954 	    }
4955 	}
4956     }
4957 }
4958 
4959 /*
4960  * Unload a dlopened object and its dependencies from memory and from
4961  * our data structures.  It is assumed that the DAG rooted in the
4962  * object has already been unreferenced, and that the object has a
4963  * reference count of 0.
4964  */
4965 static void
4966 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4967 {
4968 	Obj_Entry marker, *obj, *next;
4969 
4970 	assert(root->refcount == 0);
4971 
4972 	/*
4973 	 * Pass over the DAG removing unreferenced objects from
4974 	 * appropriate lists.
4975 	 */
4976 	unlink_object(root);
4977 
4978 	/* Unmap all objects that are no longer referenced. */
4979 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4980 		next = TAILQ_NEXT(obj, next);
4981 		if (obj->marker || obj->refcount != 0)
4982 			continue;
4983 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4984 		    obj->mapsize, 0, obj->path);
4985 		dbg("unloading \"%s\"", obj->path);
4986 		/*
4987 		 * Unlink the object now to prevent new references from
4988 		 * being acquired while the bind lock is dropped in
4989 		 * recursive dlclose() invocations.
4990 		 */
4991 		TAILQ_REMOVE(&obj_list, obj, next);
4992 		obj_count--;
4993 
4994 		if (obj->filtees_loaded) {
4995 			if (next != NULL) {
4996 				init_marker(&marker);
4997 				TAILQ_INSERT_BEFORE(next, &marker, next);
4998 				unload_filtees(obj, lockstate);
4999 				next = TAILQ_NEXT(&marker, next);
5000 				TAILQ_REMOVE(&obj_list, &marker, next);
5001 			} else
5002 				unload_filtees(obj, lockstate);
5003 		}
5004 		release_object(obj);
5005 	}
5006 }
5007 
5008 static void
5009 unlink_object(Obj_Entry *root)
5010 {
5011     Objlist_Entry *elm;
5012 
5013     if (root->refcount == 0) {
5014 	/* Remove the object from the RTLD_GLOBAL list. */
5015 	objlist_remove(&list_global, root);
5016 
5017     	/* Remove the object from all objects' DAG lists. */
5018     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5019 	    objlist_remove(&elm->obj->dldags, root);
5020 	    if (elm->obj != root)
5021 		unlink_object(elm->obj);
5022 	}
5023     }
5024 }
5025 
5026 static void
5027 ref_dag(Obj_Entry *root)
5028 {
5029     Objlist_Entry *elm;
5030 
5031     assert(root->dag_inited);
5032     STAILQ_FOREACH(elm, &root->dagmembers, link)
5033 	elm->obj->refcount++;
5034 }
5035 
5036 static void
5037 unref_dag(Obj_Entry *root)
5038 {
5039     Objlist_Entry *elm;
5040 
5041     assert(root->dag_inited);
5042     STAILQ_FOREACH(elm, &root->dagmembers, link)
5043 	elm->obj->refcount--;
5044 }
5045 
5046 /*
5047  * Common code for MD __tls_get_addr().
5048  */
5049 static void *
5050 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5051 {
5052 	Elf_Addr *newdtv, *dtv;
5053 	RtldLockState lockstate;
5054 	int to_copy;
5055 
5056 	dtv = *dtvp;
5057 	/* Check dtv generation in case new modules have arrived */
5058 	if (dtv[0] != tls_dtv_generation) {
5059 		if (!locked)
5060 			wlock_acquire(rtld_bind_lock, &lockstate);
5061 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5062 		to_copy = dtv[1];
5063 		if (to_copy > tls_max_index)
5064 			to_copy = tls_max_index;
5065 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5066 		newdtv[0] = tls_dtv_generation;
5067 		newdtv[1] = tls_max_index;
5068 		free(dtv);
5069 		if (!locked)
5070 			lock_release(rtld_bind_lock, &lockstate);
5071 		dtv = *dtvp = newdtv;
5072 	}
5073 
5074 	/* Dynamically allocate module TLS if necessary */
5075 	if (dtv[index + 1] == 0) {
5076 		/* Signal safe, wlock will block out signals. */
5077 		if (!locked)
5078 			wlock_acquire(rtld_bind_lock, &lockstate);
5079 		if (!dtv[index + 1])
5080 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5081 		if (!locked)
5082 			lock_release(rtld_bind_lock, &lockstate);
5083 	}
5084 	return ((void *)(dtv[index + 1] + offset));
5085 }
5086 
5087 void *
5088 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
5089 {
5090 	Elf_Addr *dtv;
5091 
5092 	dtv = *dtvp;
5093 	/* Check dtv generation in case new modules have arrived */
5094 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5095 	    dtv[index + 1] != 0))
5096 		return ((void *)(dtv[index + 1] + offset));
5097 	return (tls_get_addr_slow(dtvp, index, offset, false));
5098 }
5099 
5100 #ifdef TLS_VARIANT_I
5101 
5102 /*
5103  * Return pointer to allocated TLS block
5104  */
5105 static void *
5106 get_tls_block_ptr(void *tcb, size_t tcbsize)
5107 {
5108     size_t extra_size, post_size, pre_size, tls_block_size;
5109     size_t tls_init_align;
5110 
5111     tls_init_align = MAX(obj_main->tlsalign, 1);
5112 
5113     /* Compute fragments sizes. */
5114     extra_size = tcbsize - TLS_TCB_SIZE;
5115     post_size = calculate_tls_post_size(tls_init_align);
5116     tls_block_size = tcbsize + post_size;
5117     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5118 
5119     return ((char *)tcb - pre_size - extra_size);
5120 }
5121 
5122 /*
5123  * Allocate Static TLS using the Variant I method.
5124  *
5125  * For details on the layout, see lib/libc/gen/tls.c.
5126  *
5127  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5128  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5129  *     offsets, whereas libc's tls_static_space is just the executable's static
5130  *     TLS segment.
5131  */
5132 void *
5133 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5134 {
5135     Obj_Entry *obj;
5136     char *tls_block;
5137     Elf_Addr *dtv, **tcb;
5138     Elf_Addr addr;
5139     Elf_Addr i;
5140     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5141     size_t tls_init_align, tls_init_offset;
5142 
5143     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5144 	return (oldtcb);
5145 
5146     assert(tcbsize >= TLS_TCB_SIZE);
5147     maxalign = MAX(tcbalign, tls_static_max_align);
5148     tls_init_align = MAX(obj_main->tlsalign, 1);
5149 
5150     /* Compute fragmets sizes. */
5151     extra_size = tcbsize - TLS_TCB_SIZE;
5152     post_size = calculate_tls_post_size(tls_init_align);
5153     tls_block_size = tcbsize + post_size;
5154     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5155     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5156 
5157     /* Allocate whole TLS block */
5158     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5159     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5160 
5161     if (oldtcb != NULL) {
5162 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5163 	    tls_static_space);
5164 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5165 
5166 	/* Adjust the DTV. */
5167 	dtv = tcb[0];
5168 	for (i = 0; i < dtv[1]; i++) {
5169 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5170 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5171 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5172 	    }
5173 	}
5174     } else {
5175 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5176 	tcb[0] = dtv;
5177 	dtv[0] = tls_dtv_generation;
5178 	dtv[1] = tls_max_index;
5179 
5180 	for (obj = globallist_curr(objs); obj != NULL;
5181 	  obj = globallist_next(obj)) {
5182 	    if (obj->tlsoffset == 0)
5183 		continue;
5184 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5185 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5186 	    if (tls_init_offset > 0)
5187 		memset((void *)addr, 0, tls_init_offset);
5188 	    if (obj->tlsinitsize > 0) {
5189 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5190 		    obj->tlsinitsize);
5191 	    }
5192 	    if (obj->tlssize > obj->tlsinitsize) {
5193 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5194 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5195 	    }
5196 	    dtv[obj->tlsindex + 1] = addr;
5197 	}
5198     }
5199 
5200     return (tcb);
5201 }
5202 
5203 void
5204 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5205 {
5206     Elf_Addr *dtv;
5207     Elf_Addr tlsstart, tlsend;
5208     size_t post_size;
5209     size_t dtvsize, i, tls_init_align;
5210 
5211     assert(tcbsize >= TLS_TCB_SIZE);
5212     tls_init_align = MAX(obj_main->tlsalign, 1);
5213 
5214     /* Compute fragments sizes. */
5215     post_size = calculate_tls_post_size(tls_init_align);
5216 
5217     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5218     tlsend = (Elf_Addr)tcb + tls_static_space;
5219 
5220     dtv = *(Elf_Addr **)tcb;
5221     dtvsize = dtv[1];
5222     for (i = 0; i < dtvsize; i++) {
5223 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5224 	    free((void*)dtv[i+2]);
5225 	}
5226     }
5227     free(dtv);
5228     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5229 }
5230 
5231 #endif	/* TLS_VARIANT_I */
5232 
5233 #ifdef TLS_VARIANT_II
5234 
5235 /*
5236  * Allocate Static TLS using the Variant II method.
5237  */
5238 void *
5239 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5240 {
5241     Obj_Entry *obj;
5242     size_t size, ralign;
5243     char *tls;
5244     Elf_Addr *dtv, *olddtv;
5245     Elf_Addr segbase, oldsegbase, addr;
5246     size_t i;
5247 
5248     ralign = tcbalign;
5249     if (tls_static_max_align > ralign)
5250 	    ralign = tls_static_max_align;
5251     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5252 
5253     assert(tcbsize >= 2*sizeof(Elf_Addr));
5254     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5255     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5256 
5257     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5258     ((Elf_Addr*)segbase)[0] = segbase;
5259     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
5260 
5261     dtv[0] = tls_dtv_generation;
5262     dtv[1] = tls_max_index;
5263 
5264     if (oldtls) {
5265 	/*
5266 	 * Copy the static TLS block over whole.
5267 	 */
5268 	oldsegbase = (Elf_Addr) oldtls;
5269 	memcpy((void *)(segbase - tls_static_space),
5270 	       (const void *)(oldsegbase - tls_static_space),
5271 	       tls_static_space);
5272 
5273 	/*
5274 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5275 	 * move them over.
5276 	 */
5277 	olddtv = ((Elf_Addr**)oldsegbase)[1];
5278 	for (i = 0; i < olddtv[1]; i++) {
5279 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
5280 		dtv[i+2] = olddtv[i+2];
5281 		olddtv[i+2] = 0;
5282 	    }
5283 	}
5284 
5285 	/*
5286 	 * We assume that this block was the one we created with
5287 	 * allocate_initial_tls().
5288 	 */
5289 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
5290     } else {
5291 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5292 		if (obj->marker || obj->tlsoffset == 0)
5293 			continue;
5294 		addr = segbase - obj->tlsoffset;
5295 		memset((void*)(addr + obj->tlsinitsize),
5296 		       0, obj->tlssize - obj->tlsinitsize);
5297 		if (obj->tlsinit) {
5298 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
5299 		    obj->static_tls_copied = true;
5300 		}
5301 		dtv[obj->tlsindex + 1] = addr;
5302 	}
5303     }
5304 
5305     return (void*) segbase;
5306 }
5307 
5308 void
5309 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5310 {
5311     Elf_Addr* dtv;
5312     size_t size, ralign;
5313     int dtvsize, i;
5314     Elf_Addr tlsstart, tlsend;
5315 
5316     /*
5317      * Figure out the size of the initial TLS block so that we can
5318      * find stuff which ___tls_get_addr() allocated dynamically.
5319      */
5320     ralign = tcbalign;
5321     if (tls_static_max_align > ralign)
5322 	    ralign = tls_static_max_align;
5323     size = roundup(tls_static_space, ralign);
5324 
5325     dtv = ((Elf_Addr**)tls)[1];
5326     dtvsize = dtv[1];
5327     tlsend = (Elf_Addr) tls;
5328     tlsstart = tlsend - size;
5329     for (i = 0; i < dtvsize; i++) {
5330 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
5331 		free_aligned((void *)dtv[i + 2]);
5332 	}
5333     }
5334 
5335     free_aligned((void *)tlsstart);
5336     free((void*) dtv);
5337 }
5338 
5339 #endif	/* TLS_VARIANT_II */
5340 
5341 /*
5342  * Allocate TLS block for module with given index.
5343  */
5344 void *
5345 allocate_module_tls(int index)
5346 {
5347 	Obj_Entry *obj;
5348 	char *p;
5349 
5350 	TAILQ_FOREACH(obj, &obj_list, next) {
5351 		if (obj->marker)
5352 			continue;
5353 		if (obj->tlsindex == index)
5354 			break;
5355 	}
5356 	if (obj == NULL) {
5357 		_rtld_error("Can't find module with TLS index %d", index);
5358 		rtld_die();
5359 	}
5360 
5361 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5362 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5363 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5364 	return (p);
5365 }
5366 
5367 bool
5368 allocate_tls_offset(Obj_Entry *obj)
5369 {
5370     size_t off;
5371 
5372     if (obj->tls_done)
5373 	return true;
5374 
5375     if (obj->tlssize == 0) {
5376 	obj->tls_done = true;
5377 	return true;
5378     }
5379 
5380     if (tls_last_offset == 0)
5381 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5382 	  obj->tlspoffset);
5383     else
5384 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5385 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5386 
5387     obj->tlsoffset = off;
5388 #ifdef TLS_VARIANT_I
5389     off += obj->tlssize;
5390 #endif
5391 
5392     /*
5393      * If we have already fixed the size of the static TLS block, we
5394      * must stay within that size. When allocating the static TLS, we
5395      * leave a small amount of space spare to be used for dynamically
5396      * loading modules which use static TLS.
5397      */
5398     if (tls_static_space != 0) {
5399 	if (off > tls_static_space)
5400 	    return false;
5401     } else if (obj->tlsalign > tls_static_max_align) {
5402 	    tls_static_max_align = obj->tlsalign;
5403     }
5404 
5405     tls_last_offset = off;
5406     tls_last_size = obj->tlssize;
5407     obj->tls_done = true;
5408 
5409     return true;
5410 }
5411 
5412 void
5413 free_tls_offset(Obj_Entry *obj)
5414 {
5415 
5416     /*
5417      * If we were the last thing to allocate out of the static TLS
5418      * block, we give our space back to the 'allocator'. This is a
5419      * simplistic workaround to allow libGL.so.1 to be loaded and
5420      * unloaded multiple times.
5421      */
5422     size_t off = obj->tlsoffset;
5423 #ifdef TLS_VARIANT_I
5424     off += obj->tlssize;
5425 #endif
5426     if (off == tls_last_offset) {
5427 	tls_last_offset -= obj->tlssize;
5428 	tls_last_size = 0;
5429     }
5430 }
5431 
5432 void *
5433 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5434 {
5435     void *ret;
5436     RtldLockState lockstate;
5437 
5438     wlock_acquire(rtld_bind_lock, &lockstate);
5439     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5440       tcbsize, tcbalign);
5441     lock_release(rtld_bind_lock, &lockstate);
5442     return (ret);
5443 }
5444 
5445 void
5446 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5447 {
5448     RtldLockState lockstate;
5449 
5450     wlock_acquire(rtld_bind_lock, &lockstate);
5451     free_tls(tcb, tcbsize, tcbalign);
5452     lock_release(rtld_bind_lock, &lockstate);
5453 }
5454 
5455 static void
5456 object_add_name(Obj_Entry *obj, const char *name)
5457 {
5458     Name_Entry *entry;
5459     size_t len;
5460 
5461     len = strlen(name);
5462     entry = malloc(sizeof(Name_Entry) + len);
5463 
5464     if (entry != NULL) {
5465 	strcpy(entry->name, name);
5466 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5467     }
5468 }
5469 
5470 static int
5471 object_match_name(const Obj_Entry *obj, const char *name)
5472 {
5473     Name_Entry *entry;
5474 
5475     STAILQ_FOREACH(entry, &obj->names, link) {
5476 	if (strcmp(name, entry->name) == 0)
5477 	    return (1);
5478     }
5479     return (0);
5480 }
5481 
5482 static Obj_Entry *
5483 locate_dependency(const Obj_Entry *obj, const char *name)
5484 {
5485     const Objlist_Entry *entry;
5486     const Needed_Entry *needed;
5487 
5488     STAILQ_FOREACH(entry, &list_main, link) {
5489 	if (object_match_name(entry->obj, name))
5490 	    return entry->obj;
5491     }
5492 
5493     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5494 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5495 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5496 	    /*
5497 	     * If there is DT_NEEDED for the name we are looking for,
5498 	     * we are all set.  Note that object might not be found if
5499 	     * dependency was not loaded yet, so the function can
5500 	     * return NULL here.  This is expected and handled
5501 	     * properly by the caller.
5502 	     */
5503 	    return (needed->obj);
5504 	}
5505     }
5506     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5507 	obj->path, name);
5508     rtld_die();
5509 }
5510 
5511 static int
5512 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5513     const Elf_Vernaux *vna)
5514 {
5515     const Elf_Verdef *vd;
5516     const char *vername;
5517 
5518     vername = refobj->strtab + vna->vna_name;
5519     vd = depobj->verdef;
5520     if (vd == NULL) {
5521 	_rtld_error("%s: version %s required by %s not defined",
5522 	    depobj->path, vername, refobj->path);
5523 	return (-1);
5524     }
5525     for (;;) {
5526 	if (vd->vd_version != VER_DEF_CURRENT) {
5527 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5528 		depobj->path, vd->vd_version);
5529 	    return (-1);
5530 	}
5531 	if (vna->vna_hash == vd->vd_hash) {
5532 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5533 		((const char *)vd + vd->vd_aux);
5534 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5535 		return (0);
5536 	}
5537 	if (vd->vd_next == 0)
5538 	    break;
5539 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5540     }
5541     if (vna->vna_flags & VER_FLG_WEAK)
5542 	return (0);
5543     _rtld_error("%s: version %s required by %s not found",
5544 	depobj->path, vername, refobj->path);
5545     return (-1);
5546 }
5547 
5548 static int
5549 rtld_verify_object_versions(Obj_Entry *obj)
5550 {
5551     const Elf_Verneed *vn;
5552     const Elf_Verdef  *vd;
5553     const Elf_Verdaux *vda;
5554     const Elf_Vernaux *vna;
5555     const Obj_Entry *depobj;
5556     int maxvernum, vernum;
5557 
5558     if (obj->ver_checked)
5559 	return (0);
5560     obj->ver_checked = true;
5561 
5562     maxvernum = 0;
5563     /*
5564      * Walk over defined and required version records and figure out
5565      * max index used by any of them. Do very basic sanity checking
5566      * while there.
5567      */
5568     vn = obj->verneed;
5569     while (vn != NULL) {
5570 	if (vn->vn_version != VER_NEED_CURRENT) {
5571 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5572 		obj->path, vn->vn_version);
5573 	    return (-1);
5574 	}
5575 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5576 	for (;;) {
5577 	    vernum = VER_NEED_IDX(vna->vna_other);
5578 	    if (vernum > maxvernum)
5579 		maxvernum = vernum;
5580 	    if (vna->vna_next == 0)
5581 		 break;
5582 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5583 	}
5584 	if (vn->vn_next == 0)
5585 	    break;
5586 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5587     }
5588 
5589     vd = obj->verdef;
5590     while (vd != NULL) {
5591 	if (vd->vd_version != VER_DEF_CURRENT) {
5592 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5593 		obj->path, vd->vd_version);
5594 	    return (-1);
5595 	}
5596 	vernum = VER_DEF_IDX(vd->vd_ndx);
5597 	if (vernum > maxvernum)
5598 		maxvernum = vernum;
5599 	if (vd->vd_next == 0)
5600 	    break;
5601 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5602     }
5603 
5604     if (maxvernum == 0)
5605 	return (0);
5606 
5607     /*
5608      * Store version information in array indexable by version index.
5609      * Verify that object version requirements are satisfied along the
5610      * way.
5611      */
5612     obj->vernum = maxvernum + 1;
5613     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5614 
5615     vd = obj->verdef;
5616     while (vd != NULL) {
5617 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5618 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5619 	    assert(vernum <= maxvernum);
5620 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5621 	    obj->vertab[vernum].hash = vd->vd_hash;
5622 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5623 	    obj->vertab[vernum].file = NULL;
5624 	    obj->vertab[vernum].flags = 0;
5625 	}
5626 	if (vd->vd_next == 0)
5627 	    break;
5628 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5629     }
5630 
5631     vn = obj->verneed;
5632     while (vn != NULL) {
5633 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5634 	if (depobj == NULL)
5635 	    return (-1);
5636 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5637 	for (;;) {
5638 	    if (check_object_provided_version(obj, depobj, vna))
5639 		return (-1);
5640 	    vernum = VER_NEED_IDX(vna->vna_other);
5641 	    assert(vernum <= maxvernum);
5642 	    obj->vertab[vernum].hash = vna->vna_hash;
5643 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5644 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5645 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5646 		VER_INFO_HIDDEN : 0;
5647 	    if (vna->vna_next == 0)
5648 		 break;
5649 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5650 	}
5651 	if (vn->vn_next == 0)
5652 	    break;
5653 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5654     }
5655     return 0;
5656 }
5657 
5658 static int
5659 rtld_verify_versions(const Objlist *objlist)
5660 {
5661     Objlist_Entry *entry;
5662     int rc;
5663 
5664     rc = 0;
5665     STAILQ_FOREACH(entry, objlist, link) {
5666 	/*
5667 	 * Skip dummy objects or objects that have their version requirements
5668 	 * already checked.
5669 	 */
5670 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5671 	    continue;
5672 	if (rtld_verify_object_versions(entry->obj) == -1) {
5673 	    rc = -1;
5674 	    if (ld_tracing == NULL)
5675 		break;
5676 	}
5677     }
5678     if (rc == 0 || ld_tracing != NULL)
5679     	rc = rtld_verify_object_versions(&obj_rtld);
5680     return rc;
5681 }
5682 
5683 const Ver_Entry *
5684 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5685 {
5686     Elf_Versym vernum;
5687 
5688     if (obj->vertab) {
5689 	vernum = VER_NDX(obj->versyms[symnum]);
5690 	if (vernum >= obj->vernum) {
5691 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5692 		obj->path, obj->strtab + symnum, vernum);
5693 	} else if (obj->vertab[vernum].hash != 0) {
5694 	    return &obj->vertab[vernum];
5695 	}
5696     }
5697     return NULL;
5698 }
5699 
5700 int
5701 _rtld_get_stack_prot(void)
5702 {
5703 
5704 	return (stack_prot);
5705 }
5706 
5707 int
5708 _rtld_is_dlopened(void *arg)
5709 {
5710 	Obj_Entry *obj;
5711 	RtldLockState lockstate;
5712 	int res;
5713 
5714 	rlock_acquire(rtld_bind_lock, &lockstate);
5715 	obj = dlcheck(arg);
5716 	if (obj == NULL)
5717 		obj = obj_from_addr(arg);
5718 	if (obj == NULL) {
5719 		_rtld_error("No shared object contains address");
5720 		lock_release(rtld_bind_lock, &lockstate);
5721 		return (-1);
5722 	}
5723 	res = obj->dlopened ? 1 : 0;
5724 	lock_release(rtld_bind_lock, &lockstate);
5725 	return (res);
5726 }
5727 
5728 static int
5729 obj_remap_relro(Obj_Entry *obj, int prot)
5730 {
5731 
5732 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5733 	    prot) == -1) {
5734 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5735 		    obj->path, prot, rtld_strerror(errno));
5736 		return (-1);
5737 	}
5738 	return (0);
5739 }
5740 
5741 static int
5742 obj_disable_relro(Obj_Entry *obj)
5743 {
5744 
5745 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5746 }
5747 
5748 static int
5749 obj_enforce_relro(Obj_Entry *obj)
5750 {
5751 
5752 	return (obj_remap_relro(obj, PROT_READ));
5753 }
5754 
5755 static void
5756 map_stacks_exec(RtldLockState *lockstate)
5757 {
5758 	void (*thr_map_stacks_exec)(void);
5759 
5760 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5761 		return;
5762 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5763 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5764 	if (thr_map_stacks_exec != NULL) {
5765 		stack_prot |= PROT_EXEC;
5766 		thr_map_stacks_exec();
5767 	}
5768 }
5769 
5770 static void
5771 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5772 {
5773 	Objlist_Entry *elm;
5774 	Obj_Entry *obj;
5775 	void (*distrib)(size_t, void *, size_t, size_t);
5776 
5777 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5778 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5779 	if (distrib == NULL)
5780 		return;
5781 	STAILQ_FOREACH(elm, list, link) {
5782 		obj = elm->obj;
5783 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5784 			continue;
5785 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5786 		    obj->tlssize);
5787 		obj->static_tls_copied = true;
5788 	}
5789 }
5790 
5791 void
5792 symlook_init(SymLook *dst, const char *name)
5793 {
5794 
5795 	bzero(dst, sizeof(*dst));
5796 	dst->name = name;
5797 	dst->hash = elf_hash(name);
5798 	dst->hash_gnu = gnu_hash(name);
5799 }
5800 
5801 static void
5802 symlook_init_from_req(SymLook *dst, const SymLook *src)
5803 {
5804 
5805 	dst->name = src->name;
5806 	dst->hash = src->hash;
5807 	dst->hash_gnu = src->hash_gnu;
5808 	dst->ventry = src->ventry;
5809 	dst->flags = src->flags;
5810 	dst->defobj_out = NULL;
5811 	dst->sym_out = NULL;
5812 	dst->lockstate = src->lockstate;
5813 }
5814 
5815 static int
5816 open_binary_fd(const char *argv0, bool search_in_path,
5817     const char **binpath_res)
5818 {
5819 	char *binpath, *pathenv, *pe, *res1;
5820 	const char *res;
5821 	int fd;
5822 
5823 	binpath = NULL;
5824 	res = NULL;
5825 	if (search_in_path && strchr(argv0, '/') == NULL) {
5826 		binpath = xmalloc(PATH_MAX);
5827 		pathenv = getenv("PATH");
5828 		if (pathenv == NULL) {
5829 			_rtld_error("-p and no PATH environment variable");
5830 			rtld_die();
5831 		}
5832 		pathenv = strdup(pathenv);
5833 		if (pathenv == NULL) {
5834 			_rtld_error("Cannot allocate memory");
5835 			rtld_die();
5836 		}
5837 		fd = -1;
5838 		errno = ENOENT;
5839 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5840 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5841 				continue;
5842 			if (binpath[0] != '\0' &&
5843 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5844 				continue;
5845 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5846 				continue;
5847 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5848 			if (fd != -1 || errno != ENOENT) {
5849 				res = binpath;
5850 				break;
5851 			}
5852 		}
5853 		free(pathenv);
5854 	} else {
5855 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5856 		res = argv0;
5857 	}
5858 
5859 	if (fd == -1) {
5860 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5861 		rtld_die();
5862 	}
5863 	if (res != NULL && res[0] != '/') {
5864 		res1 = xmalloc(PATH_MAX);
5865 		if (realpath(res, res1) != NULL) {
5866 			if (res != argv0)
5867 				free(__DECONST(char *, res));
5868 			res = res1;
5869 		} else {
5870 			free(res1);
5871 		}
5872 	}
5873 	*binpath_res = res;
5874 	return (fd);
5875 }
5876 
5877 /*
5878  * Parse a set of command-line arguments.
5879  */
5880 static int
5881 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5882     const char **argv0, bool *dir_ignore)
5883 {
5884 	const char *arg;
5885 	char machine[64];
5886 	size_t sz;
5887 	int arglen, fd, i, j, mib[2];
5888 	char opt;
5889 	bool seen_b, seen_f;
5890 
5891 	dbg("Parsing command-line arguments");
5892 	*use_pathp = false;
5893 	*fdp = -1;
5894 	*dir_ignore = false;
5895 	seen_b = seen_f = false;
5896 
5897 	for (i = 1; i < argc; i++ ) {
5898 		arg = argv[i];
5899 		dbg("argv[%d]: '%s'", i, arg);
5900 
5901 		/*
5902 		 * rtld arguments end with an explicit "--" or with the first
5903 		 * non-prefixed argument.
5904 		 */
5905 		if (strcmp(arg, "--") == 0) {
5906 			i++;
5907 			break;
5908 		}
5909 		if (arg[0] != '-')
5910 			break;
5911 
5912 		/*
5913 		 * All other arguments are single-character options that can
5914 		 * be combined, so we need to search through `arg` for them.
5915 		 */
5916 		arglen = strlen(arg);
5917 		for (j = 1; j < arglen; j++) {
5918 			opt = arg[j];
5919 			if (opt == 'h') {
5920 				print_usage(argv[0]);
5921 				_exit(0);
5922 			} else if (opt == 'b') {
5923 				if (seen_f) {
5924 					_rtld_error("Both -b and -f specified");
5925 					rtld_die();
5926 				}
5927 				i++;
5928 				*argv0 = argv[i];
5929 				seen_b = true;
5930 				break;
5931 			} else if (opt == 'd') {
5932 				*dir_ignore = true;
5933 				break;
5934 			} else if (opt == 'f') {
5935 				if (seen_b) {
5936 					_rtld_error("Both -b and -f specified");
5937 					rtld_die();
5938 				}
5939 
5940 				/*
5941 				 * -f XX can be used to specify a
5942 				 * descriptor for the binary named at
5943 				 * the command line (i.e., the later
5944 				 * argument will specify the process
5945 				 * name but the descriptor is what
5946 				 * will actually be executed).
5947 				 *
5948 				 * -f must be the last option in, e.g., -abcf.
5949 				 */
5950 				if (j != arglen - 1) {
5951 					_rtld_error("Invalid options: %s", arg);
5952 					rtld_die();
5953 				}
5954 				i++;
5955 				fd = parse_integer(argv[i]);
5956 				if (fd == -1) {
5957 					_rtld_error(
5958 					    "Invalid file descriptor: '%s'",
5959 					    argv[i]);
5960 					rtld_die();
5961 				}
5962 				*fdp = fd;
5963 				seen_f = true;
5964 				break;
5965 			} else if (opt == 'p') {
5966 				*use_pathp = true;
5967 			} else if (opt == 'u') {
5968 				trust = false;
5969 			} else if (opt == 'v') {
5970 				machine[0] = '\0';
5971 				mib[0] = CTL_HW;
5972 				mib[1] = HW_MACHINE;
5973 				sz = sizeof(machine);
5974 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
5975 				rtld_printf(
5976 				    "FreeBSD ld-elf.so.1 %s\n"
5977 				    "FreeBSD_version %d\n"
5978 				    "Default lib path %s\n"
5979 				    "Env prefix %s\n"
5980 				    "Hint file %s\n"
5981 				    "libmap file %s\n",
5982 				    machine,
5983 				    __FreeBSD_version, ld_standard_library_path,
5984 				    ld_env_prefix, ld_elf_hints_default,
5985 				    ld_path_libmap_conf);
5986 				_exit(0);
5987 			} else {
5988 				_rtld_error("Invalid argument: '%s'", arg);
5989 				print_usage(argv[0]);
5990 				rtld_die();
5991 			}
5992 		}
5993 	}
5994 
5995 	if (!seen_b)
5996 		*argv0 = argv[i];
5997 	return (i);
5998 }
5999 
6000 /*
6001  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6002  */
6003 static int
6004 parse_integer(const char *str)
6005 {
6006 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6007 	const char *orig;
6008 	int n;
6009 	char c;
6010 
6011 	orig = str;
6012 	n = 0;
6013 	for (c = *str; c != '\0'; c = *++str) {
6014 		if (c < '0' || c > '9')
6015 			return (-1);
6016 
6017 		n *= RADIX;
6018 		n += c - '0';
6019 	}
6020 
6021 	/* Make sure we actually parsed something. */
6022 	if (str == orig)
6023 		return (-1);
6024 	return (n);
6025 }
6026 
6027 static void
6028 print_usage(const char *argv0)
6029 {
6030 
6031 	rtld_printf(
6032 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6033 	    "\n"
6034 	    "Options:\n"
6035 	    "  -h        Display this help message\n"
6036 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6037 	    "  -d        Ignore lack of exec permissions for the binary\n"
6038 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6039 	    "  -p        Search in PATH for named binary\n"
6040 	    "  -u        Ignore LD_ environment variables\n"
6041 	    "  -v        Display identification information\n"
6042 	    "  --        End of RTLD options\n"
6043 	    "  <binary>  Name of process to execute\n"
6044 	    "  <args>    Arguments to the executed process\n", argv0);
6045 }
6046 
6047 /*
6048  * Overrides for libc_pic-provided functions.
6049  */
6050 
6051 int
6052 __getosreldate(void)
6053 {
6054 	size_t len;
6055 	int oid[2];
6056 	int error, osrel;
6057 
6058 	if (osreldate != 0)
6059 		return (osreldate);
6060 
6061 	oid[0] = CTL_KERN;
6062 	oid[1] = KERN_OSRELDATE;
6063 	osrel = 0;
6064 	len = sizeof(osrel);
6065 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6066 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6067 		osreldate = osrel;
6068 	return (osreldate);
6069 }
6070 const char *
6071 rtld_strerror(int errnum)
6072 {
6073 
6074 	if (errnum < 0 || errnum >= sys_nerr)
6075 		return ("Unknown error");
6076 	return (sys_errlist[errnum]);
6077 }
6078 
6079 char *
6080 getenv(const char *name)
6081 {
6082 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6083 	    strlen(name))));
6084 }
6085 
6086 /* malloc */
6087 void *
6088 malloc(size_t nbytes)
6089 {
6090 
6091 	return (__crt_malloc(nbytes));
6092 }
6093 
6094 void *
6095 calloc(size_t num, size_t size)
6096 {
6097 
6098 	return (__crt_calloc(num, size));
6099 }
6100 
6101 void
6102 free(void *cp)
6103 {
6104 
6105 	__crt_free(cp);
6106 }
6107 
6108 void *
6109 realloc(void *cp, size_t nbytes)
6110 {
6111 
6112 	return (__crt_realloc(cp, nbytes));
6113 }
6114 
6115 extern int _rtld_version__FreeBSD_version __exported;
6116 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6117 
6118 extern char _rtld_version_laddr_offset __exported;
6119 char _rtld_version_laddr_offset;
6120 
6121 extern char _rtld_version_dlpi_tls_data __exported;
6122 char _rtld_version_dlpi_tls_data;
6123