xref: /freebsd/libexec/rtld-elf/rtld.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static const char *basename(const char *);
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **, const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
83     const Elf_Dyn *);
84 static void digest_dynamic(Obj_Entry *, int);
85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86 static Obj_Entry *dlcheck(void *);
87 static int dlclose_locked(void *, RtldLockState *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *, int *);
97 static const char *gethints(bool);
98 static void hold_object(Obj_Entry *);
99 static void unhold_object(Obj_Entry *);
100 static void init_dag(Obj_Entry *);
101 static void init_marker(Obj_Entry *);
102 static void init_pagesizes(Elf_Auxinfo **aux_info);
103 static void init_rtld(caddr_t, Elf_Auxinfo **);
104 static void initlist_add_neededs(Needed_Entry *, Objlist *);
105 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
106 static void linkmap_add(Obj_Entry *);
107 static void linkmap_delete(Obj_Entry *);
108 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
109 static void unload_filtees(Obj_Entry *, RtldLockState *);
110 static int load_needed_objects(Obj_Entry *, int);
111 static int load_preload_objects(void);
112 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
113 static void map_stacks_exec(RtldLockState *);
114 static int obj_enforce_relro(Obj_Entry *);
115 static Obj_Entry *obj_from_addr(const void *);
116 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
117 static void objlist_call_init(Objlist *, RtldLockState *);
118 static void objlist_clear(Objlist *);
119 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
120 static void objlist_init(Objlist *);
121 static void objlist_push_head(Objlist *, Obj_Entry *);
122 static void objlist_push_tail(Objlist *, Obj_Entry *);
123 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
124 static void objlist_remove(Objlist *, Obj_Entry *);
125 static int open_binary_fd(const char *argv0, bool search_in_path);
126 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
127 static int parse_integer(const char *);
128 static void *path_enumerate(const char *, path_enum_proc, void *);
129 static void print_usage(const char *argv0);
130 static void release_object(Obj_Entry *);
131 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
132     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
133 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
134     int flags, RtldLockState *lockstate);
135 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
136     RtldLockState *);
137 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
138     int flags, RtldLockState *lockstate);
139 static int rtld_dirname(const char *, char *);
140 static int rtld_dirname_abs(const char *, char *);
141 static void *rtld_dlopen(const char *name, int fd, int mode);
142 static void rtld_exit(void);
143 static char *search_library_path(const char *, const char *, int *);
144 static char *search_library_pathfds(const char *, const char *, int *);
145 static const void **get_program_var_addr(const char *, RtldLockState *);
146 static void set_program_var(const char *, const void *);
147 static int symlook_default(SymLook *, const Obj_Entry *refobj);
148 static int symlook_global(SymLook *, DoneList *);
149 static void symlook_init_from_req(SymLook *, const SymLook *);
150 static int symlook_list(SymLook *, const Objlist *, DoneList *);
151 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
152 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
153 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
154 static void trace_loaded_objects(Obj_Entry *);
155 static void unlink_object(Obj_Entry *);
156 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
157 static void unref_dag(Obj_Entry *);
158 static void ref_dag(Obj_Entry *);
159 static char *origin_subst_one(Obj_Entry *, char *, const char *,
160     const char *, bool);
161 static char *origin_subst(Obj_Entry *, char *);
162 static bool obj_resolve_origin(Obj_Entry *obj);
163 static void preinit_main(void);
164 static int  rtld_verify_versions(const Objlist *);
165 static int  rtld_verify_object_versions(Obj_Entry *);
166 static void object_add_name(Obj_Entry *, const char *);
167 static int  object_match_name(const Obj_Entry *, const char *);
168 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
169 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
170     struct dl_phdr_info *phdr_info);
171 static uint32_t gnu_hash(const char *);
172 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
173     const unsigned long);
174 
175 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
176 void _r_debug_postinit(struct link_map *) __noinline __exported;
177 
178 int __sys_openat(int, const char *, int, ...);
179 
180 /*
181  * Data declarations.
182  */
183 static char *error_message;	/* Message for dlerror(), or NULL */
184 struct r_debug r_debug __exported;	/* for GDB; */
185 static bool libmap_disable;	/* Disable libmap */
186 static bool ld_loadfltr;	/* Immediate filters processing */
187 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
188 static bool trust;		/* False for setuid and setgid programs */
189 static bool dangerous_ld_env;	/* True if environment variables have been
190 				   used to affect the libraries loaded */
191 bool ld_bind_not;		/* Disable PLT update */
192 static char *ld_bind_now;	/* Environment variable for immediate binding */
193 static char *ld_debug;		/* Environment variable for debugging */
194 static char *ld_library_path;	/* Environment variable for search path */
195 static char *ld_library_dirs;	/* Environment variable for library descriptors */
196 static char *ld_preload;	/* Environment variable for libraries to
197 				   load first */
198 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
199 static char *ld_tracing;	/* Called from ldd to print libs */
200 static char *ld_utrace;		/* Use utrace() to log events. */
201 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
202 static Obj_Entry *obj_main;	/* The main program shared object */
203 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
204 static unsigned int obj_count;	/* Number of objects in obj_list */
205 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
206 
207 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
208   STAILQ_HEAD_INITIALIZER(list_global);
209 static Objlist list_main =	/* Objects loaded at program startup */
210   STAILQ_HEAD_INITIALIZER(list_main);
211 static Objlist list_fini =	/* Objects needing fini() calls */
212   STAILQ_HEAD_INITIALIZER(list_fini);
213 
214 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
215 
216 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
217 
218 extern Elf_Dyn _DYNAMIC;
219 #pragma weak _DYNAMIC
220 
221 int dlclose(void *) __exported;
222 char *dlerror(void) __exported;
223 void *dlopen(const char *, int) __exported;
224 void *fdlopen(int, int) __exported;
225 void *dlsym(void *, const char *) __exported;
226 dlfunc_t dlfunc(void *, const char *) __exported;
227 void *dlvsym(void *, const char *, const char *) __exported;
228 int dladdr(const void *, Dl_info *) __exported;
229 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
230     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
231 int dlinfo(void *, int , void *) __exported;
232 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
233 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
234 int _rtld_get_stack_prot(void) __exported;
235 int _rtld_is_dlopened(void *) __exported;
236 void _rtld_error(const char *, ...) __exported;
237 
238 int npagesizes, osreldate;
239 size_t *pagesizes;
240 
241 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
242 static int max_stack_flags;
243 
244 /*
245  * Global declarations normally provided by crt1.  The dynamic linker is
246  * not built with crt1, so we have to provide them ourselves.
247  */
248 char *__progname;
249 char **environ;
250 
251 /*
252  * Used to pass argc, argv to init functions.
253  */
254 int main_argc;
255 char **main_argv;
256 
257 /*
258  * Globals to control TLS allocation.
259  */
260 size_t tls_last_offset;		/* Static TLS offset of last module */
261 size_t tls_last_size;		/* Static TLS size of last module */
262 size_t tls_static_space;	/* Static TLS space allocated */
263 size_t tls_static_max_align;
264 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
265 int tls_max_index = 1;		/* Largest module index allocated */
266 
267 bool ld_library_path_rpath = false;
268 
269 /*
270  * Globals for path names, and such
271  */
272 char *ld_elf_hints_default = _PATH_ELF_HINTS;
273 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
274 char *ld_path_rtld = _PATH_RTLD;
275 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
276 char *ld_env_prefix = LD_;
277 
278 /*
279  * Fill in a DoneList with an allocation large enough to hold all of
280  * the currently-loaded objects.  Keep this as a macro since it calls
281  * alloca and we want that to occur within the scope of the caller.
282  */
283 #define donelist_init(dlp)					\
284     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
285     assert((dlp)->objs != NULL),				\
286     (dlp)->num_alloc = obj_count,				\
287     (dlp)->num_used = 0)
288 
289 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
290 	if (ld_utrace != NULL)					\
291 		ld_utrace_log(e, h, mb, ms, r, n);		\
292 } while (0)
293 
294 static void
295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
296     int refcnt, const char *name)
297 {
298 	struct utrace_rtld ut;
299 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
300 
301 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
302 	ut.event = event;
303 	ut.handle = handle;
304 	ut.mapbase = mapbase;
305 	ut.mapsize = mapsize;
306 	ut.refcnt = refcnt;
307 	bzero(ut.name, sizeof(ut.name));
308 	if (name)
309 		strlcpy(ut.name, name, sizeof(ut.name));
310 	utrace(&ut, sizeof(ut));
311 }
312 
313 #ifdef RTLD_VARIANT_ENV_NAMES
314 /*
315  * construct the env variable based on the type of binary that's
316  * running.
317  */
318 static inline const char *
319 _LD(const char *var)
320 {
321 	static char buffer[128];
322 
323 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
324 	strlcat(buffer, var, sizeof(buffer));
325 	return (buffer);
326 }
327 #else
328 #define _LD(x)	LD_ x
329 #endif
330 
331 /*
332  * Main entry point for dynamic linking.  The first argument is the
333  * stack pointer.  The stack is expected to be laid out as described
334  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
335  * Specifically, the stack pointer points to a word containing
336  * ARGC.  Following that in the stack is a null-terminated sequence
337  * of pointers to argument strings.  Then comes a null-terminated
338  * sequence of pointers to environment strings.  Finally, there is a
339  * sequence of "auxiliary vector" entries.
340  *
341  * The second argument points to a place to store the dynamic linker's
342  * exit procedure pointer and the third to a place to store the main
343  * program's object.
344  *
345  * The return value is the main program's entry point.
346  */
347 func_ptr_type
348 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
349 {
350     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
351     Objlist_Entry *entry;
352     Obj_Entry *last_interposer, *obj, *preload_tail;
353     const Elf_Phdr *phdr;
354     Objlist initlist;
355     RtldLockState lockstate;
356     struct stat st;
357     Elf_Addr *argcp;
358     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
359     caddr_t imgentry;
360     char buf[MAXPATHLEN];
361     int argc, fd, i, phnum, rtld_argc;
362     bool dir_enable, explicit_fd, search_in_path;
363 
364     /*
365      * On entry, the dynamic linker itself has not been relocated yet.
366      * Be very careful not to reference any global data until after
367      * init_rtld has returned.  It is OK to reference file-scope statics
368      * and string constants, and to call static and global functions.
369      */
370 
371     /* Find the auxiliary vector on the stack. */
372     argcp = sp;
373     argc = *sp++;
374     argv = (char **) sp;
375     sp += argc + 1;	/* Skip over arguments and NULL terminator */
376     env = (char **) sp;
377     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
378 	;
379     aux = (Elf_Auxinfo *) sp;
380 
381     /* Digest the auxiliary vector. */
382     for (i = 0;  i < AT_COUNT;  i++)
383 	aux_info[i] = NULL;
384     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
385 	if (auxp->a_type < AT_COUNT)
386 	    aux_info[auxp->a_type] = auxp;
387     }
388 
389     /* Initialize and relocate ourselves. */
390     assert(aux_info[AT_BASE] != NULL);
391     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
392 
393     __progname = obj_rtld.path;
394     argv0 = argv[0] != NULL ? argv[0] : "(null)";
395     environ = env;
396     main_argc = argc;
397     main_argv = argv;
398 
399     trust = !issetugid();
400 
401     md_abi_variant_hook(aux_info);
402 
403     fd = -1;
404     if (aux_info[AT_EXECFD] != NULL) {
405 	fd = aux_info[AT_EXECFD]->a_un.a_val;
406     } else {
407 	assert(aux_info[AT_PHDR] != NULL);
408 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
409 	if (phdr == obj_rtld.phdr) {
410 	    if (!trust) {
411 		_rtld_error("Tainted process refusing to run binary %s",
412 		    argv0);
413 		rtld_die();
414 	    }
415 	    dbg("opening main program in direct exec mode");
416 	    if (argc >= 2) {
417 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
418 		argv0 = argv[rtld_argc];
419 		explicit_fd = (fd != -1);
420 		if (!explicit_fd)
421 		    fd = open_binary_fd(argv0, search_in_path);
422 		if (fstat(fd, &st) == -1) {
423 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
424 		      explicit_fd ? "user-provided descriptor" : argv0,
425 		      rtld_strerror(errno));
426 		    rtld_die();
427 		}
428 
429 		/*
430 		 * Rough emulation of the permission checks done by
431 		 * execve(2), only Unix DACs are checked, ACLs are
432 		 * ignored.  Preserve the semantic of disabling owner
433 		 * to execute if owner x bit is cleared, even if
434 		 * others x bit is enabled.
435 		 * mmap(2) does not allow to mmap with PROT_EXEC if
436 		 * binary' file comes from noexec mount.  We cannot
437 		 * set VV_TEXT on the binary.
438 		 */
439 		dir_enable = false;
440 		if (st.st_uid == geteuid()) {
441 		    if ((st.st_mode & S_IXUSR) != 0)
442 			dir_enable = true;
443 		} else if (st.st_gid == getegid()) {
444 		    if ((st.st_mode & S_IXGRP) != 0)
445 			dir_enable = true;
446 		} else if ((st.st_mode & S_IXOTH) != 0) {
447 		    dir_enable = true;
448 		}
449 		if (!dir_enable) {
450 		    _rtld_error("No execute permission for binary %s",
451 		        argv0);
452 		    rtld_die();
453 		}
454 
455 		/*
456 		 * For direct exec mode, argv[0] is the interpreter
457 		 * name, we must remove it and shift arguments left
458 		 * before invoking binary main.  Since stack layout
459 		 * places environment pointers and aux vectors right
460 		 * after the terminating NULL, we must shift
461 		 * environment and aux as well.
462 		 */
463 		main_argc = argc - rtld_argc;
464 		for (i = 0; i <= main_argc; i++)
465 		    argv[i] = argv[i + rtld_argc];
466 		*argcp -= rtld_argc;
467 		environ = env = envp = argv + main_argc + 1;
468 		do {
469 		    *envp = *(envp + rtld_argc);
470 		    envp++;
471 		} while (*envp != NULL);
472 		aux = auxp = (Elf_Auxinfo *)envp;
473 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
474 		for (;; auxp++, auxpf++) {
475 		    *auxp = *auxpf;
476 		    if (auxp->a_type == AT_NULL)
477 			    break;
478 		}
479 	    } else {
480 		_rtld_error("No binary");
481 		rtld_die();
482 	    }
483 	}
484     }
485 
486     ld_bind_now = getenv(_LD("BIND_NOW"));
487 
488     /*
489      * If the process is tainted, then we un-set the dangerous environment
490      * variables.  The process will be marked as tainted until setuid(2)
491      * is called.  If any child process calls setuid(2) we do not want any
492      * future processes to honor the potentially un-safe variables.
493      */
494     if (!trust) {
495 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
496 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
497 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
498 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
499 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
500 		_rtld_error("environment corrupt; aborting");
501 		rtld_die();
502 	}
503     }
504     ld_debug = getenv(_LD("DEBUG"));
505     if (ld_bind_now == NULL)
506 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
507     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
508     libmap_override = getenv(_LD("LIBMAP"));
509     ld_library_path = getenv(_LD("LIBRARY_PATH"));
510     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
511     ld_preload = getenv(_LD("PRELOAD"));
512     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
513     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
514     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
515     if (library_path_rpath != NULL) {
516 	    if (library_path_rpath[0] == 'y' ||
517 		library_path_rpath[0] == 'Y' ||
518 		library_path_rpath[0] == '1')
519 		    ld_library_path_rpath = true;
520 	    else
521 		    ld_library_path_rpath = false;
522     }
523     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
524 	(ld_library_path != NULL) || (ld_preload != NULL) ||
525 	(ld_elf_hints_path != NULL) || ld_loadfltr;
526     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
527     ld_utrace = getenv(_LD("UTRACE"));
528 
529     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
530 	ld_elf_hints_path = ld_elf_hints_default;
531 
532     if (ld_debug != NULL && *ld_debug != '\0')
533 	debug = 1;
534     dbg("%s is initialized, base address = %p", __progname,
535 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
536     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
537     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
538 
539     dbg("initializing thread locks");
540     lockdflt_init();
541 
542     /*
543      * Load the main program, or process its program header if it is
544      * already loaded.
545      */
546     if (fd != -1) {	/* Load the main program. */
547 	dbg("loading main program");
548 	obj_main = map_object(fd, argv0, NULL);
549 	close(fd);
550 	if (obj_main == NULL)
551 	    rtld_die();
552 	max_stack_flags = obj_main->stack_flags;
553     } else {				/* Main program already loaded. */
554 	dbg("processing main program's program header");
555 	assert(aux_info[AT_PHDR] != NULL);
556 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
557 	assert(aux_info[AT_PHNUM] != NULL);
558 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
559 	assert(aux_info[AT_PHENT] != NULL);
560 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
561 	assert(aux_info[AT_ENTRY] != NULL);
562 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
563 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
564 	    rtld_die();
565     }
566 
567     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
568 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
569 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
570 	    if (kexecpath[0] == '/')
571 		    obj_main->path = kexecpath;
572 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
573 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
574 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
575 		    obj_main->path = xstrdup(argv0);
576 	    else
577 		    obj_main->path = xstrdup(buf);
578     } else {
579 	    dbg("No AT_EXECPATH or direct exec");
580 	    obj_main->path = xstrdup(argv0);
581     }
582     dbg("obj_main path %s", obj_main->path);
583     obj_main->mainprog = true;
584 
585     if (aux_info[AT_STACKPROT] != NULL &&
586       aux_info[AT_STACKPROT]->a_un.a_val != 0)
587 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
588 
589 #ifndef COMPAT_32BIT
590     /*
591      * Get the actual dynamic linker pathname from the executable if
592      * possible.  (It should always be possible.)  That ensures that
593      * gdb will find the right dynamic linker even if a non-standard
594      * one is being used.
595      */
596     if (obj_main->interp != NULL &&
597       strcmp(obj_main->interp, obj_rtld.path) != 0) {
598 	free(obj_rtld.path);
599 	obj_rtld.path = xstrdup(obj_main->interp);
600         __progname = obj_rtld.path;
601     }
602 #endif
603 
604     digest_dynamic(obj_main, 0);
605     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
606 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
607 	obj_main->dynsymcount);
608 
609     linkmap_add(obj_main);
610     linkmap_add(&obj_rtld);
611 
612     /* Link the main program into the list of objects. */
613     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
614     obj_count++;
615     obj_loads++;
616 
617     /* Initialize a fake symbol for resolving undefined weak references. */
618     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
619     sym_zero.st_shndx = SHN_UNDEF;
620     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
621 
622     if (!libmap_disable)
623         libmap_disable = (bool)lm_init(libmap_override);
624 
625     dbg("loading LD_PRELOAD libraries");
626     if (load_preload_objects() == -1)
627 	rtld_die();
628     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
629 
630     dbg("loading needed objects");
631     if (load_needed_objects(obj_main, 0) == -1)
632 	rtld_die();
633 
634     /* Make a list of all objects loaded at startup. */
635     last_interposer = obj_main;
636     TAILQ_FOREACH(obj, &obj_list, next) {
637 	if (obj->marker)
638 	    continue;
639 	if (obj->z_interpose && obj != obj_main) {
640 	    objlist_put_after(&list_main, last_interposer, obj);
641 	    last_interposer = obj;
642 	} else {
643 	    objlist_push_tail(&list_main, obj);
644 	}
645     	obj->refcount++;
646     }
647 
648     dbg("checking for required versions");
649     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
650 	rtld_die();
651 
652     if (ld_tracing) {		/* We're done */
653 	trace_loaded_objects(obj_main);
654 	exit(0);
655     }
656 
657     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
658        dump_relocations(obj_main);
659        exit (0);
660     }
661 
662     /*
663      * Processing tls relocations requires having the tls offsets
664      * initialized.  Prepare offsets before starting initial
665      * relocation processing.
666      */
667     dbg("initializing initial thread local storage offsets");
668     STAILQ_FOREACH(entry, &list_main, link) {
669 	/*
670 	 * Allocate all the initial objects out of the static TLS
671 	 * block even if they didn't ask for it.
672 	 */
673 	allocate_tls_offset(entry->obj);
674     }
675 
676     if (relocate_objects(obj_main,
677       ld_bind_now != NULL && *ld_bind_now != '\0',
678       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
679 	rtld_die();
680 
681     dbg("doing copy relocations");
682     if (do_copy_relocations(obj_main) == -1)
683 	rtld_die();
684 
685     dbg("enforcing main obj relro");
686     if (obj_enforce_relro(obj_main) == -1)
687 	rtld_die();
688 
689     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
690        dump_relocations(obj_main);
691        exit (0);
692     }
693 
694     /*
695      * Setup TLS for main thread.  This must be done after the
696      * relocations are processed, since tls initialization section
697      * might be the subject for relocations.
698      */
699     dbg("initializing initial thread local storage");
700     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
701 
702     dbg("initializing key program variables");
703     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
704     set_program_var("environ", env);
705     set_program_var("__elf_aux_vector", aux);
706 
707     /* Make a list of init functions to call. */
708     objlist_init(&initlist);
709     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
710       preload_tail, &initlist);
711 
712     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
713 
714     map_stacks_exec(NULL);
715     ifunc_init(aux);
716 
717     dbg("resolving ifuncs");
718     if (resolve_objects_ifunc(obj_main,
719       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
720       NULL) == -1)
721 	rtld_die();
722 
723     if (!obj_main->crt_no_init) {
724 	/*
725 	 * Make sure we don't call the main program's init and fini
726 	 * functions for binaries linked with old crt1 which calls
727 	 * _init itself.
728 	 */
729 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
730 	obj_main->preinit_array = obj_main->init_array =
731 	    obj_main->fini_array = (Elf_Addr)NULL;
732     }
733 
734     /*
735      * Execute MD initializers required before we call the objects'
736      * init functions.
737      */
738     pre_init();
739 
740     wlock_acquire(rtld_bind_lock, &lockstate);
741     if (obj_main->crt_no_init)
742 	preinit_main();
743     objlist_call_init(&initlist, &lockstate);
744     _r_debug_postinit(&obj_main->linkmap);
745     objlist_clear(&initlist);
746     dbg("loading filtees");
747     TAILQ_FOREACH(obj, &obj_list, next) {
748 	if (obj->marker)
749 	    continue;
750 	if (ld_loadfltr || obj->z_loadfltr)
751 	    load_filtees(obj, 0, &lockstate);
752     }
753     lock_release(rtld_bind_lock, &lockstate);
754 
755     dbg("transferring control to program entry point = %p", obj_main->entry);
756 
757     /* Return the exit procedure and the program entry point. */
758     *exit_proc = rtld_exit;
759     *objp = obj_main;
760     return (func_ptr_type) obj_main->entry;
761 }
762 
763 void *
764 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
765 {
766 	void *ptr;
767 	Elf_Addr target;
768 
769 	ptr = (void *)make_function_pointer(def, obj);
770 	target = call_ifunc_resolver(ptr);
771 	return ((void *)target);
772 }
773 
774 /*
775  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
776  * Changes to this function should be applied there as well.
777  */
778 Elf_Addr
779 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
780 {
781     const Elf_Rel *rel;
782     const Elf_Sym *def;
783     const Obj_Entry *defobj;
784     Elf_Addr *where;
785     Elf_Addr target;
786     RtldLockState lockstate;
787 
788     rlock_acquire(rtld_bind_lock, &lockstate);
789     if (sigsetjmp(lockstate.env, 0) != 0)
790 	    lock_upgrade(rtld_bind_lock, &lockstate);
791     if (obj->pltrel)
792 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
793     else
794 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
795 
796     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
797     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
798 	NULL, &lockstate);
799     if (def == NULL)
800 	rtld_die();
801     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
802 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
803     else
804 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
805 
806     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
807       defobj->strtab + def->st_name, basename(obj->path),
808       (void *)target, basename(defobj->path));
809 
810     /*
811      * Write the new contents for the jmpslot. Note that depending on
812      * architecture, the value which we need to return back to the
813      * lazy binding trampoline may or may not be the target
814      * address. The value returned from reloc_jmpslot() is the value
815      * that the trampoline needs.
816      */
817     target = reloc_jmpslot(where, target, defobj, obj, rel);
818     lock_release(rtld_bind_lock, &lockstate);
819     return target;
820 }
821 
822 /*
823  * Error reporting function.  Use it like printf.  If formats the message
824  * into a buffer, and sets things up so that the next call to dlerror()
825  * will return the message.
826  */
827 void
828 _rtld_error(const char *fmt, ...)
829 {
830     static char buf[512];
831     va_list ap;
832 
833     va_start(ap, fmt);
834     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
835     error_message = buf;
836     va_end(ap);
837     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
838 }
839 
840 /*
841  * Return a dynamically-allocated copy of the current error message, if any.
842  */
843 static char *
844 errmsg_save(void)
845 {
846     return error_message == NULL ? NULL : xstrdup(error_message);
847 }
848 
849 /*
850  * Restore the current error message from a copy which was previously saved
851  * by errmsg_save().  The copy is freed.
852  */
853 static void
854 errmsg_restore(char *saved_msg)
855 {
856     if (saved_msg == NULL)
857 	error_message = NULL;
858     else {
859 	_rtld_error("%s", saved_msg);
860 	free(saved_msg);
861     }
862 }
863 
864 static const char *
865 basename(const char *name)
866 {
867     const char *p = strrchr(name, '/');
868     return p != NULL ? p + 1 : name;
869 }
870 
871 static struct utsname uts;
872 
873 static char *
874 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
875     const char *subst, bool may_free)
876 {
877 	char *p, *p1, *res, *resp;
878 	int subst_len, kw_len, subst_count, old_len, new_len;
879 
880 	kw_len = strlen(kw);
881 
882 	/*
883 	 * First, count the number of the keyword occurrences, to
884 	 * preallocate the final string.
885 	 */
886 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
887 		p1 = strstr(p, kw);
888 		if (p1 == NULL)
889 			break;
890 	}
891 
892 	/*
893 	 * If the keyword is not found, just return.
894 	 *
895 	 * Return non-substituted string if resolution failed.  We
896 	 * cannot do anything more reasonable, the failure mode of the
897 	 * caller is unresolved library anyway.
898 	 */
899 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
900 		return (may_free ? real : xstrdup(real));
901 	if (obj != NULL)
902 		subst = obj->origin_path;
903 
904 	/*
905 	 * There is indeed something to substitute.  Calculate the
906 	 * length of the resulting string, and allocate it.
907 	 */
908 	subst_len = strlen(subst);
909 	old_len = strlen(real);
910 	new_len = old_len + (subst_len - kw_len) * subst_count;
911 	res = xmalloc(new_len + 1);
912 
913 	/*
914 	 * Now, execute the substitution loop.
915 	 */
916 	for (p = real, resp = res, *resp = '\0';;) {
917 		p1 = strstr(p, kw);
918 		if (p1 != NULL) {
919 			/* Copy the prefix before keyword. */
920 			memcpy(resp, p, p1 - p);
921 			resp += p1 - p;
922 			/* Keyword replacement. */
923 			memcpy(resp, subst, subst_len);
924 			resp += subst_len;
925 			*resp = '\0';
926 			p = p1 + kw_len;
927 		} else
928 			break;
929 	}
930 
931 	/* Copy to the end of string and finish. */
932 	strcat(resp, p);
933 	if (may_free)
934 		free(real);
935 	return (res);
936 }
937 
938 static char *
939 origin_subst(Obj_Entry *obj, char *real)
940 {
941 	char *res1, *res2, *res3, *res4;
942 
943 	if (obj == NULL || !trust)
944 		return (xstrdup(real));
945 	if (uts.sysname[0] == '\0') {
946 		if (uname(&uts) != 0) {
947 			_rtld_error("utsname failed: %d", errno);
948 			return (NULL);
949 		}
950 	}
951 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
952 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
953 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
954 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
955 	return (res4);
956 }
957 
958 void
959 rtld_die(void)
960 {
961     const char *msg = dlerror();
962 
963     if (msg == NULL)
964 	msg = "Fatal error";
965     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
966     rtld_fdputstr(STDERR_FILENO, msg);
967     rtld_fdputchar(STDERR_FILENO, '\n');
968     _exit(1);
969 }
970 
971 /*
972  * Process a shared object's DYNAMIC section, and save the important
973  * information in its Obj_Entry structure.
974  */
975 static void
976 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
977     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
978 {
979     const Elf_Dyn *dynp;
980     Needed_Entry **needed_tail = &obj->needed;
981     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
982     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
983     const Elf_Hashelt *hashtab;
984     const Elf32_Word *hashval;
985     Elf32_Word bkt, nmaskwords;
986     int bloom_size32;
987     int plttype = DT_REL;
988 
989     *dyn_rpath = NULL;
990     *dyn_soname = NULL;
991     *dyn_runpath = NULL;
992 
993     obj->bind_now = false;
994     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
995 	switch (dynp->d_tag) {
996 
997 	case DT_REL:
998 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
999 	    break;
1000 
1001 	case DT_RELSZ:
1002 	    obj->relsize = dynp->d_un.d_val;
1003 	    break;
1004 
1005 	case DT_RELENT:
1006 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1007 	    break;
1008 
1009 	case DT_JMPREL:
1010 	    obj->pltrel = (const Elf_Rel *)
1011 	      (obj->relocbase + dynp->d_un.d_ptr);
1012 	    break;
1013 
1014 	case DT_PLTRELSZ:
1015 	    obj->pltrelsize = dynp->d_un.d_val;
1016 	    break;
1017 
1018 	case DT_RELA:
1019 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1020 	    break;
1021 
1022 	case DT_RELASZ:
1023 	    obj->relasize = dynp->d_un.d_val;
1024 	    break;
1025 
1026 	case DT_RELAENT:
1027 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1028 	    break;
1029 
1030 	case DT_PLTREL:
1031 	    plttype = dynp->d_un.d_val;
1032 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1033 	    break;
1034 
1035 	case DT_SYMTAB:
1036 	    obj->symtab = (const Elf_Sym *)
1037 	      (obj->relocbase + dynp->d_un.d_ptr);
1038 	    break;
1039 
1040 	case DT_SYMENT:
1041 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1042 	    break;
1043 
1044 	case DT_STRTAB:
1045 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1046 	    break;
1047 
1048 	case DT_STRSZ:
1049 	    obj->strsize = dynp->d_un.d_val;
1050 	    break;
1051 
1052 	case DT_VERNEED:
1053 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1054 		dynp->d_un.d_val);
1055 	    break;
1056 
1057 	case DT_VERNEEDNUM:
1058 	    obj->verneednum = dynp->d_un.d_val;
1059 	    break;
1060 
1061 	case DT_VERDEF:
1062 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1063 		dynp->d_un.d_val);
1064 	    break;
1065 
1066 	case DT_VERDEFNUM:
1067 	    obj->verdefnum = dynp->d_un.d_val;
1068 	    break;
1069 
1070 	case DT_VERSYM:
1071 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1072 		dynp->d_un.d_val);
1073 	    break;
1074 
1075 	case DT_HASH:
1076 	    {
1077 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1078 		    dynp->d_un.d_ptr);
1079 		obj->nbuckets = hashtab[0];
1080 		obj->nchains = hashtab[1];
1081 		obj->buckets = hashtab + 2;
1082 		obj->chains = obj->buckets + obj->nbuckets;
1083 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1084 		  obj->buckets != NULL;
1085 	    }
1086 	    break;
1087 
1088 	case DT_GNU_HASH:
1089 	    {
1090 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1091 		    dynp->d_un.d_ptr);
1092 		obj->nbuckets_gnu = hashtab[0];
1093 		obj->symndx_gnu = hashtab[1];
1094 		nmaskwords = hashtab[2];
1095 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1096 		obj->maskwords_bm_gnu = nmaskwords - 1;
1097 		obj->shift2_gnu = hashtab[3];
1098 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1099 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1100 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1101 		  obj->symndx_gnu;
1102 		/* Number of bitmask words is required to be power of 2 */
1103 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1104 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1105 	    }
1106 	    break;
1107 
1108 	case DT_NEEDED:
1109 	    if (!obj->rtld) {
1110 		Needed_Entry *nep = NEW(Needed_Entry);
1111 		nep->name = dynp->d_un.d_val;
1112 		nep->obj = NULL;
1113 		nep->next = NULL;
1114 
1115 		*needed_tail = nep;
1116 		needed_tail = &nep->next;
1117 	    }
1118 	    break;
1119 
1120 	case DT_FILTER:
1121 	    if (!obj->rtld) {
1122 		Needed_Entry *nep = NEW(Needed_Entry);
1123 		nep->name = dynp->d_un.d_val;
1124 		nep->obj = NULL;
1125 		nep->next = NULL;
1126 
1127 		*needed_filtees_tail = nep;
1128 		needed_filtees_tail = &nep->next;
1129 	    }
1130 	    break;
1131 
1132 	case DT_AUXILIARY:
1133 	    if (!obj->rtld) {
1134 		Needed_Entry *nep = NEW(Needed_Entry);
1135 		nep->name = dynp->d_un.d_val;
1136 		nep->obj = NULL;
1137 		nep->next = NULL;
1138 
1139 		*needed_aux_filtees_tail = nep;
1140 		needed_aux_filtees_tail = &nep->next;
1141 	    }
1142 	    break;
1143 
1144 	case DT_PLTGOT:
1145 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1146 	    break;
1147 
1148 	case DT_TEXTREL:
1149 	    obj->textrel = true;
1150 	    break;
1151 
1152 	case DT_SYMBOLIC:
1153 	    obj->symbolic = true;
1154 	    break;
1155 
1156 	case DT_RPATH:
1157 	    /*
1158 	     * We have to wait until later to process this, because we
1159 	     * might not have gotten the address of the string table yet.
1160 	     */
1161 	    *dyn_rpath = dynp;
1162 	    break;
1163 
1164 	case DT_SONAME:
1165 	    *dyn_soname = dynp;
1166 	    break;
1167 
1168 	case DT_RUNPATH:
1169 	    *dyn_runpath = dynp;
1170 	    break;
1171 
1172 	case DT_INIT:
1173 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1174 	    break;
1175 
1176 	case DT_PREINIT_ARRAY:
1177 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1178 	    break;
1179 
1180 	case DT_PREINIT_ARRAYSZ:
1181 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1182 	    break;
1183 
1184 	case DT_INIT_ARRAY:
1185 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1186 	    break;
1187 
1188 	case DT_INIT_ARRAYSZ:
1189 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1190 	    break;
1191 
1192 	case DT_FINI:
1193 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1194 	    break;
1195 
1196 	case DT_FINI_ARRAY:
1197 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1198 	    break;
1199 
1200 	case DT_FINI_ARRAYSZ:
1201 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1202 	    break;
1203 
1204 	/*
1205 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1206 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1207 	 */
1208 
1209 #ifndef __mips__
1210 	case DT_DEBUG:
1211 	    if (!early)
1212 		dbg("Filling in DT_DEBUG entry");
1213 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1214 	    break;
1215 #endif
1216 
1217 	case DT_FLAGS:
1218 		if (dynp->d_un.d_val & DF_ORIGIN)
1219 		    obj->z_origin = true;
1220 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1221 		    obj->symbolic = true;
1222 		if (dynp->d_un.d_val & DF_TEXTREL)
1223 		    obj->textrel = true;
1224 		if (dynp->d_un.d_val & DF_BIND_NOW)
1225 		    obj->bind_now = true;
1226 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1227 		    ;*/
1228 	    break;
1229 #ifdef __mips__
1230 	case DT_MIPS_LOCAL_GOTNO:
1231 		obj->local_gotno = dynp->d_un.d_val;
1232 		break;
1233 
1234 	case DT_MIPS_SYMTABNO:
1235 		obj->symtabno = dynp->d_un.d_val;
1236 		break;
1237 
1238 	case DT_MIPS_GOTSYM:
1239 		obj->gotsym = dynp->d_un.d_val;
1240 		break;
1241 
1242 	case DT_MIPS_RLD_MAP:
1243 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1244 		break;
1245 
1246 	case DT_MIPS_PLTGOT:
1247 		obj->mips_pltgot = (Elf_Addr *) (obj->relocbase +
1248 		    dynp->d_un.d_ptr);
1249 		break;
1250 
1251 #endif
1252 
1253 #ifdef __powerpc64__
1254 	case DT_PPC64_GLINK:
1255 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1256 		break;
1257 #endif
1258 
1259 	case DT_FLAGS_1:
1260 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1261 		    obj->z_noopen = true;
1262 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1263 		    obj->z_origin = true;
1264 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1265 		    obj->z_global = true;
1266 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1267 		    obj->bind_now = true;
1268 		if (dynp->d_un.d_val & DF_1_NODELETE)
1269 		    obj->z_nodelete = true;
1270 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1271 		    obj->z_loadfltr = true;
1272 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1273 		    obj->z_interpose = true;
1274 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1275 		    obj->z_nodeflib = true;
1276 	    break;
1277 
1278 	default:
1279 	    if (!early) {
1280 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1281 		    (long)dynp->d_tag);
1282 	    }
1283 	    break;
1284 	}
1285     }
1286 
1287     obj->traced = false;
1288 
1289     if (plttype == DT_RELA) {
1290 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1291 	obj->pltrel = NULL;
1292 	obj->pltrelasize = obj->pltrelsize;
1293 	obj->pltrelsize = 0;
1294     }
1295 
1296     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1297     if (obj->valid_hash_sysv)
1298 	obj->dynsymcount = obj->nchains;
1299     else if (obj->valid_hash_gnu) {
1300 	obj->dynsymcount = 0;
1301 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1302 	    if (obj->buckets_gnu[bkt] == 0)
1303 		continue;
1304 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1305 	    do
1306 		obj->dynsymcount++;
1307 	    while ((*hashval++ & 1u) == 0);
1308 	}
1309 	obj->dynsymcount += obj->symndx_gnu;
1310     }
1311 }
1312 
1313 static bool
1314 obj_resolve_origin(Obj_Entry *obj)
1315 {
1316 
1317 	if (obj->origin_path != NULL)
1318 		return (true);
1319 	obj->origin_path = xmalloc(PATH_MAX);
1320 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1321 }
1322 
1323 static void
1324 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1325     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1326 {
1327 
1328 	if (obj->z_origin && !obj_resolve_origin(obj))
1329 		rtld_die();
1330 
1331 	if (dyn_runpath != NULL) {
1332 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1333 		obj->runpath = origin_subst(obj, obj->runpath);
1334 	} else if (dyn_rpath != NULL) {
1335 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1336 		obj->rpath = origin_subst(obj, obj->rpath);
1337 	}
1338 	if (dyn_soname != NULL)
1339 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1340 }
1341 
1342 static void
1343 digest_dynamic(Obj_Entry *obj, int early)
1344 {
1345 	const Elf_Dyn *dyn_rpath;
1346 	const Elf_Dyn *dyn_soname;
1347 	const Elf_Dyn *dyn_runpath;
1348 
1349 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1350 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1351 }
1352 
1353 /*
1354  * Process a shared object's program header.  This is used only for the
1355  * main program, when the kernel has already loaded the main program
1356  * into memory before calling the dynamic linker.  It creates and
1357  * returns an Obj_Entry structure.
1358  */
1359 static Obj_Entry *
1360 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1361 {
1362     Obj_Entry *obj;
1363     const Elf_Phdr *phlimit = phdr + phnum;
1364     const Elf_Phdr *ph;
1365     Elf_Addr note_start, note_end;
1366     int nsegs = 0;
1367 
1368     obj = obj_new();
1369     for (ph = phdr;  ph < phlimit;  ph++) {
1370 	if (ph->p_type != PT_PHDR)
1371 	    continue;
1372 
1373 	obj->phdr = phdr;
1374 	obj->phsize = ph->p_memsz;
1375 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1376 	break;
1377     }
1378 
1379     obj->stack_flags = PF_X | PF_R | PF_W;
1380 
1381     for (ph = phdr;  ph < phlimit;  ph++) {
1382 	switch (ph->p_type) {
1383 
1384 	case PT_INTERP:
1385 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1386 	    break;
1387 
1388 	case PT_LOAD:
1389 	    if (nsegs == 0) {	/* First load segment */
1390 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1391 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1392 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1393 		  obj->vaddrbase;
1394 	    } else {		/* Last load segment */
1395 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1396 		  obj->vaddrbase;
1397 	    }
1398 	    nsegs++;
1399 	    break;
1400 
1401 	case PT_DYNAMIC:
1402 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1403 	    break;
1404 
1405 	case PT_TLS:
1406 	    obj->tlsindex = 1;
1407 	    obj->tlssize = ph->p_memsz;
1408 	    obj->tlsalign = ph->p_align;
1409 	    obj->tlsinitsize = ph->p_filesz;
1410 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1411 	    break;
1412 
1413 	case PT_GNU_STACK:
1414 	    obj->stack_flags = ph->p_flags;
1415 	    break;
1416 
1417 	case PT_GNU_RELRO:
1418 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1419 	    obj->relro_size = round_page(ph->p_memsz);
1420 	    break;
1421 
1422 	case PT_NOTE:
1423 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1424 	    note_end = note_start + ph->p_filesz;
1425 	    digest_notes(obj, note_start, note_end);
1426 	    break;
1427 	}
1428     }
1429     if (nsegs < 1) {
1430 	_rtld_error("%s: too few PT_LOAD segments", path);
1431 	return NULL;
1432     }
1433 
1434     obj->entry = entry;
1435     return obj;
1436 }
1437 
1438 void
1439 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1440 {
1441 	const Elf_Note *note;
1442 	const char *note_name;
1443 	uintptr_t p;
1444 
1445 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1446 	    note = (const Elf_Note *)((const char *)(note + 1) +
1447 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1448 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1449 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1450 		    note->n_descsz != sizeof(int32_t))
1451 			continue;
1452 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1453 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1454 			continue;
1455 		note_name = (const char *)(note + 1);
1456 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1457 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1458 			continue;
1459 		switch (note->n_type) {
1460 		case NT_FREEBSD_ABI_TAG:
1461 			/* FreeBSD osrel note */
1462 			p = (uintptr_t)(note + 1);
1463 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1464 			obj->osrel = *(const int32_t *)(p);
1465 			dbg("note osrel %d", obj->osrel);
1466 			break;
1467 		case NT_FREEBSD_NOINIT_TAG:
1468 			/* FreeBSD 'crt does not call init' note */
1469 			obj->crt_no_init = true;
1470 			dbg("note crt_no_init");
1471 			break;
1472 		}
1473 	}
1474 }
1475 
1476 static Obj_Entry *
1477 dlcheck(void *handle)
1478 {
1479     Obj_Entry *obj;
1480 
1481     TAILQ_FOREACH(obj, &obj_list, next) {
1482 	if (obj == (Obj_Entry *) handle)
1483 	    break;
1484     }
1485 
1486     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1487 	_rtld_error("Invalid shared object handle %p", handle);
1488 	return NULL;
1489     }
1490     return obj;
1491 }
1492 
1493 /*
1494  * If the given object is already in the donelist, return true.  Otherwise
1495  * add the object to the list and return false.
1496  */
1497 static bool
1498 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1499 {
1500     unsigned int i;
1501 
1502     for (i = 0;  i < dlp->num_used;  i++)
1503 	if (dlp->objs[i] == obj)
1504 	    return true;
1505     /*
1506      * Our donelist allocation should always be sufficient.  But if
1507      * our threads locking isn't working properly, more shared objects
1508      * could have been loaded since we allocated the list.  That should
1509      * never happen, but we'll handle it properly just in case it does.
1510      */
1511     if (dlp->num_used < dlp->num_alloc)
1512 	dlp->objs[dlp->num_used++] = obj;
1513     return false;
1514 }
1515 
1516 /*
1517  * Hash function for symbol table lookup.  Don't even think about changing
1518  * this.  It is specified by the System V ABI.
1519  */
1520 unsigned long
1521 elf_hash(const char *name)
1522 {
1523     const unsigned char *p = (const unsigned char *) name;
1524     unsigned long h = 0;
1525     unsigned long g;
1526 
1527     while (*p != '\0') {
1528 	h = (h << 4) + *p++;
1529 	if ((g = h & 0xf0000000) != 0)
1530 	    h ^= g >> 24;
1531 	h &= ~g;
1532     }
1533     return h;
1534 }
1535 
1536 /*
1537  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1538  * unsigned in case it's implemented with a wider type.
1539  */
1540 static uint32_t
1541 gnu_hash(const char *s)
1542 {
1543 	uint32_t h;
1544 	unsigned char c;
1545 
1546 	h = 5381;
1547 	for (c = *s; c != '\0'; c = *++s)
1548 		h = h * 33 + c;
1549 	return (h & 0xffffffff);
1550 }
1551 
1552 
1553 /*
1554  * Find the library with the given name, and return its full pathname.
1555  * The returned string is dynamically allocated.  Generates an error
1556  * message and returns NULL if the library cannot be found.
1557  *
1558  * If the second argument is non-NULL, then it refers to an already-
1559  * loaded shared object, whose library search path will be searched.
1560  *
1561  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1562  * descriptor (which is close-on-exec) will be passed out via the third
1563  * argument.
1564  *
1565  * The search order is:
1566  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1567  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1568  *   LD_LIBRARY_PATH
1569  *   DT_RUNPATH in the referencing file
1570  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1571  *	 from list)
1572  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1573  *
1574  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1575  */
1576 static char *
1577 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1578 {
1579 	char *pathname;
1580 	char *name;
1581 	bool nodeflib, objgiven;
1582 
1583 	objgiven = refobj != NULL;
1584 
1585 	if (libmap_disable || !objgiven ||
1586 	    (name = lm_find(refobj->path, xname)) == NULL)
1587 		name = (char *)xname;
1588 
1589 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1590 		if (name[0] != '/' && !trust) {
1591 			_rtld_error("Absolute pathname required "
1592 			    "for shared object \"%s\"", name);
1593 			return (NULL);
1594 		}
1595 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1596 		    __DECONST(char *, name)));
1597 	}
1598 
1599 	dbg(" Searching for \"%s\"", name);
1600 
1601 	/*
1602 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1603 	 * back to pre-conforming behaviour if user requested so with
1604 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1605 	 * nodeflib.
1606 	 */
1607 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1608 		pathname = search_library_path(name, ld_library_path, fdp);
1609 		if (pathname != NULL)
1610 			return (pathname);
1611 		if (refobj != NULL) {
1612 			pathname = search_library_path(name, refobj->rpath, fdp);
1613 			if (pathname != NULL)
1614 				return (pathname);
1615 		}
1616 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1617 		if (pathname != NULL)
1618 			return (pathname);
1619 		pathname = search_library_path(name, gethints(false), fdp);
1620 		if (pathname != NULL)
1621 			return (pathname);
1622 		pathname = search_library_path(name, ld_standard_library_path, fdp);
1623 		if (pathname != NULL)
1624 			return (pathname);
1625 	} else {
1626 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1627 		if (objgiven) {
1628 			pathname = search_library_path(name, refobj->rpath, fdp);
1629 			if (pathname != NULL)
1630 				return (pathname);
1631 		}
1632 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1633 			pathname = search_library_path(name, obj_main->rpath, fdp);
1634 			if (pathname != NULL)
1635 				return (pathname);
1636 		}
1637 		pathname = search_library_path(name, ld_library_path, fdp);
1638 		if (pathname != NULL)
1639 			return (pathname);
1640 		if (objgiven) {
1641 			pathname = search_library_path(name, refobj->runpath, fdp);
1642 			if (pathname != NULL)
1643 				return (pathname);
1644 		}
1645 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1646 		if (pathname != NULL)
1647 			return (pathname);
1648 		pathname = search_library_path(name, gethints(nodeflib), fdp);
1649 		if (pathname != NULL)
1650 			return (pathname);
1651 		if (objgiven && !nodeflib) {
1652 			pathname = search_library_path(name,
1653 			    ld_standard_library_path, fdp);
1654 			if (pathname != NULL)
1655 				return (pathname);
1656 		}
1657 	}
1658 
1659 	if (objgiven && refobj->path != NULL) {
1660 		_rtld_error("Shared object \"%s\" not found, "
1661 		    "required by \"%s\"", name, basename(refobj->path));
1662 	} else {
1663 		_rtld_error("Shared object \"%s\" not found", name);
1664 	}
1665 	return (NULL);
1666 }
1667 
1668 /*
1669  * Given a symbol number in a referencing object, find the corresponding
1670  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1671  * no definition was found.  Returns a pointer to the Obj_Entry of the
1672  * defining object via the reference parameter DEFOBJ_OUT.
1673  */
1674 const Elf_Sym *
1675 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1676     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1677     RtldLockState *lockstate)
1678 {
1679     const Elf_Sym *ref;
1680     const Elf_Sym *def;
1681     const Obj_Entry *defobj;
1682     const Ver_Entry *ve;
1683     SymLook req;
1684     const char *name;
1685     int res;
1686 
1687     /*
1688      * If we have already found this symbol, get the information from
1689      * the cache.
1690      */
1691     if (symnum >= refobj->dynsymcount)
1692 	return NULL;	/* Bad object */
1693     if (cache != NULL && cache[symnum].sym != NULL) {
1694 	*defobj_out = cache[symnum].obj;
1695 	return cache[symnum].sym;
1696     }
1697 
1698     ref = refobj->symtab + symnum;
1699     name = refobj->strtab + ref->st_name;
1700     def = NULL;
1701     defobj = NULL;
1702     ve = NULL;
1703 
1704     /*
1705      * We don't have to do a full scale lookup if the symbol is local.
1706      * We know it will bind to the instance in this load module; to
1707      * which we already have a pointer (ie ref). By not doing a lookup,
1708      * we not only improve performance, but it also avoids unresolvable
1709      * symbols when local symbols are not in the hash table. This has
1710      * been seen with the ia64 toolchain.
1711      */
1712     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1713 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1714 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1715 		symnum);
1716 	}
1717 	symlook_init(&req, name);
1718 	req.flags = flags;
1719 	ve = req.ventry = fetch_ventry(refobj, symnum);
1720 	req.lockstate = lockstate;
1721 	res = symlook_default(&req, refobj);
1722 	if (res == 0) {
1723 	    def = req.sym_out;
1724 	    defobj = req.defobj_out;
1725 	}
1726     } else {
1727 	def = ref;
1728 	defobj = refobj;
1729     }
1730 
1731     /*
1732      * If we found no definition and the reference is weak, treat the
1733      * symbol as having the value zero.
1734      */
1735     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1736 	def = &sym_zero;
1737 	defobj = obj_main;
1738     }
1739 
1740     if (def != NULL) {
1741 	*defobj_out = defobj;
1742 	/* Record the information in the cache to avoid subsequent lookups. */
1743 	if (cache != NULL) {
1744 	    cache[symnum].sym = def;
1745 	    cache[symnum].obj = defobj;
1746 	}
1747     } else {
1748 	if (refobj != &obj_rtld)
1749 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1750 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1751     }
1752     return def;
1753 }
1754 
1755 /*
1756  * Return the search path from the ldconfig hints file, reading it if
1757  * necessary.  If nostdlib is true, then the default search paths are
1758  * not added to result.
1759  *
1760  * Returns NULL if there are problems with the hints file,
1761  * or if the search path there is empty.
1762  */
1763 static const char *
1764 gethints(bool nostdlib)
1765 {
1766 	static char *hints, *filtered_path;
1767 	static struct elfhints_hdr hdr;
1768 	struct fill_search_info_args sargs, hargs;
1769 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1770 	struct dl_serpath *SLPpath, *hintpath;
1771 	char *p;
1772 	struct stat hint_stat;
1773 	unsigned int SLPndx, hintndx, fndx, fcount;
1774 	int fd;
1775 	size_t flen;
1776 	uint32_t dl;
1777 	bool skip;
1778 
1779 	/* First call, read the hints file */
1780 	if (hints == NULL) {
1781 		/* Keep from trying again in case the hints file is bad. */
1782 		hints = "";
1783 
1784 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1785 			return (NULL);
1786 
1787 		/*
1788 		 * Check of hdr.dirlistlen value against type limit
1789 		 * intends to pacify static analyzers.  Further
1790 		 * paranoia leads to checks that dirlist is fully
1791 		 * contained in the file range.
1792 		 */
1793 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1794 		    hdr.magic != ELFHINTS_MAGIC ||
1795 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1796 		    fstat(fd, &hint_stat) == -1) {
1797 cleanup1:
1798 			close(fd);
1799 			hdr.dirlistlen = 0;
1800 			return (NULL);
1801 		}
1802 		dl = hdr.strtab;
1803 		if (dl + hdr.dirlist < dl)
1804 			goto cleanup1;
1805 		dl += hdr.dirlist;
1806 		if (dl + hdr.dirlistlen < dl)
1807 			goto cleanup1;
1808 		dl += hdr.dirlistlen;
1809 		if (dl > hint_stat.st_size)
1810 			goto cleanup1;
1811 		p = xmalloc(hdr.dirlistlen + 1);
1812 		if (pread(fd, p, hdr.dirlistlen + 1,
1813 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1814 		    p[hdr.dirlistlen] != '\0') {
1815 			free(p);
1816 			goto cleanup1;
1817 		}
1818 		hints = p;
1819 		close(fd);
1820 	}
1821 
1822 	/*
1823 	 * If caller agreed to receive list which includes the default
1824 	 * paths, we are done. Otherwise, if we still did not
1825 	 * calculated filtered result, do it now.
1826 	 */
1827 	if (!nostdlib)
1828 		return (hints[0] != '\0' ? hints : NULL);
1829 	if (filtered_path != NULL)
1830 		goto filt_ret;
1831 
1832 	/*
1833 	 * Obtain the list of all configured search paths, and the
1834 	 * list of the default paths.
1835 	 *
1836 	 * First estimate the size of the results.
1837 	 */
1838 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1839 	smeta.dls_cnt = 0;
1840 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1841 	hmeta.dls_cnt = 0;
1842 
1843 	sargs.request = RTLD_DI_SERINFOSIZE;
1844 	sargs.serinfo = &smeta;
1845 	hargs.request = RTLD_DI_SERINFOSIZE;
1846 	hargs.serinfo = &hmeta;
1847 
1848 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1849 	path_enumerate(hints, fill_search_info, &hargs);
1850 
1851 	SLPinfo = xmalloc(smeta.dls_size);
1852 	hintinfo = xmalloc(hmeta.dls_size);
1853 
1854 	/*
1855 	 * Next fetch both sets of paths.
1856 	 */
1857 	sargs.request = RTLD_DI_SERINFO;
1858 	sargs.serinfo = SLPinfo;
1859 	sargs.serpath = &SLPinfo->dls_serpath[0];
1860 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1861 
1862 	hargs.request = RTLD_DI_SERINFO;
1863 	hargs.serinfo = hintinfo;
1864 	hargs.serpath = &hintinfo->dls_serpath[0];
1865 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1866 
1867 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1868 	path_enumerate(hints, fill_search_info, &hargs);
1869 
1870 	/*
1871 	 * Now calculate the difference between two sets, by excluding
1872 	 * standard paths from the full set.
1873 	 */
1874 	fndx = 0;
1875 	fcount = 0;
1876 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1877 	hintpath = &hintinfo->dls_serpath[0];
1878 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1879 		skip = false;
1880 		SLPpath = &SLPinfo->dls_serpath[0];
1881 		/*
1882 		 * Check each standard path against current.
1883 		 */
1884 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1885 			/* matched, skip the path */
1886 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1887 				skip = true;
1888 				break;
1889 			}
1890 		}
1891 		if (skip)
1892 			continue;
1893 		/*
1894 		 * Not matched against any standard path, add the path
1895 		 * to result. Separate consequtive paths with ':'.
1896 		 */
1897 		if (fcount > 0) {
1898 			filtered_path[fndx] = ':';
1899 			fndx++;
1900 		}
1901 		fcount++;
1902 		flen = strlen(hintpath->dls_name);
1903 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1904 		fndx += flen;
1905 	}
1906 	filtered_path[fndx] = '\0';
1907 
1908 	free(SLPinfo);
1909 	free(hintinfo);
1910 
1911 filt_ret:
1912 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1913 }
1914 
1915 static void
1916 init_dag(Obj_Entry *root)
1917 {
1918     const Needed_Entry *needed;
1919     const Objlist_Entry *elm;
1920     DoneList donelist;
1921 
1922     if (root->dag_inited)
1923 	return;
1924     donelist_init(&donelist);
1925 
1926     /* Root object belongs to own DAG. */
1927     objlist_push_tail(&root->dldags, root);
1928     objlist_push_tail(&root->dagmembers, root);
1929     donelist_check(&donelist, root);
1930 
1931     /*
1932      * Add dependencies of root object to DAG in breadth order
1933      * by exploiting the fact that each new object get added
1934      * to the tail of the dagmembers list.
1935      */
1936     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1937 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1938 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1939 		continue;
1940 	    objlist_push_tail(&needed->obj->dldags, root);
1941 	    objlist_push_tail(&root->dagmembers, needed->obj);
1942 	}
1943     }
1944     root->dag_inited = true;
1945 }
1946 
1947 static void
1948 init_marker(Obj_Entry *marker)
1949 {
1950 
1951 	bzero(marker, sizeof(*marker));
1952 	marker->marker = true;
1953 }
1954 
1955 Obj_Entry *
1956 globallist_curr(const Obj_Entry *obj)
1957 {
1958 
1959 	for (;;) {
1960 		if (obj == NULL)
1961 			return (NULL);
1962 		if (!obj->marker)
1963 			return (__DECONST(Obj_Entry *, obj));
1964 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1965 	}
1966 }
1967 
1968 Obj_Entry *
1969 globallist_next(const Obj_Entry *obj)
1970 {
1971 
1972 	for (;;) {
1973 		obj = TAILQ_NEXT(obj, next);
1974 		if (obj == NULL)
1975 			return (NULL);
1976 		if (!obj->marker)
1977 			return (__DECONST(Obj_Entry *, obj));
1978 	}
1979 }
1980 
1981 /* Prevent the object from being unmapped while the bind lock is dropped. */
1982 static void
1983 hold_object(Obj_Entry *obj)
1984 {
1985 
1986 	obj->holdcount++;
1987 }
1988 
1989 static void
1990 unhold_object(Obj_Entry *obj)
1991 {
1992 
1993 	assert(obj->holdcount > 0);
1994 	if (--obj->holdcount == 0 && obj->unholdfree)
1995 		release_object(obj);
1996 }
1997 
1998 static void
1999 process_z(Obj_Entry *root)
2000 {
2001 	const Objlist_Entry *elm;
2002 	Obj_Entry *obj;
2003 
2004 	/*
2005 	 * Walk over object DAG and process every dependent object
2006 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2007 	 * to grow their own DAG.
2008 	 *
2009 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2010 	 * symlook_global() to work.
2011 	 *
2012 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2013 	 */
2014 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2015 		obj = elm->obj;
2016 		if (obj == NULL)
2017 			continue;
2018 		if (obj->z_nodelete && !obj->ref_nodel) {
2019 			dbg("obj %s -z nodelete", obj->path);
2020 			init_dag(obj);
2021 			ref_dag(obj);
2022 			obj->ref_nodel = true;
2023 		}
2024 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2025 			dbg("obj %s -z global", obj->path);
2026 			objlist_push_tail(&list_global, obj);
2027 			init_dag(obj);
2028 		}
2029 	}
2030 }
2031 /*
2032  * Initialize the dynamic linker.  The argument is the address at which
2033  * the dynamic linker has been mapped into memory.  The primary task of
2034  * this function is to relocate the dynamic linker.
2035  */
2036 static void
2037 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2038 {
2039     Obj_Entry objtmp;	/* Temporary rtld object */
2040     const Elf_Ehdr *ehdr;
2041     const Elf_Dyn *dyn_rpath;
2042     const Elf_Dyn *dyn_soname;
2043     const Elf_Dyn *dyn_runpath;
2044 
2045 #ifdef RTLD_INIT_PAGESIZES_EARLY
2046     /* The page size is required by the dynamic memory allocator. */
2047     init_pagesizes(aux_info);
2048 #endif
2049 
2050     /*
2051      * Conjure up an Obj_Entry structure for the dynamic linker.
2052      *
2053      * The "path" member can't be initialized yet because string constants
2054      * cannot yet be accessed. Below we will set it correctly.
2055      */
2056     memset(&objtmp, 0, sizeof(objtmp));
2057     objtmp.path = NULL;
2058     objtmp.rtld = true;
2059     objtmp.mapbase = mapbase;
2060 #ifdef PIC
2061     objtmp.relocbase = mapbase;
2062 #endif
2063 
2064     objtmp.dynamic = rtld_dynamic(&objtmp);
2065     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2066     assert(objtmp.needed == NULL);
2067 #if !defined(__mips__)
2068     /* MIPS has a bogus DT_TEXTREL. */
2069     assert(!objtmp.textrel);
2070 #endif
2071     /*
2072      * Temporarily put the dynamic linker entry into the object list, so
2073      * that symbols can be found.
2074      */
2075     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2076 
2077     ehdr = (Elf_Ehdr *)mapbase;
2078     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2079     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2080 
2081     /* Initialize the object list. */
2082     TAILQ_INIT(&obj_list);
2083 
2084     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2085     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2086 
2087 #ifndef RTLD_INIT_PAGESIZES_EARLY
2088     /* The page size is required by the dynamic memory allocator. */
2089     init_pagesizes(aux_info);
2090 #endif
2091 
2092     if (aux_info[AT_OSRELDATE] != NULL)
2093 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2094 
2095     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2096 
2097     /* Replace the path with a dynamically allocated copy. */
2098     obj_rtld.path = xstrdup(ld_path_rtld);
2099 
2100     r_debug.r_brk = r_debug_state;
2101     r_debug.r_state = RT_CONSISTENT;
2102 }
2103 
2104 /*
2105  * Retrieve the array of supported page sizes.  The kernel provides the page
2106  * sizes in increasing order.
2107  */
2108 static void
2109 init_pagesizes(Elf_Auxinfo **aux_info)
2110 {
2111 	static size_t psa[MAXPAGESIZES];
2112 	int mib[2];
2113 	size_t len, size;
2114 
2115 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2116 	    NULL) {
2117 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2118 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2119 	} else {
2120 		len = 2;
2121 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2122 			size = sizeof(psa);
2123 		else {
2124 			/* As a fallback, retrieve the base page size. */
2125 			size = sizeof(psa[0]);
2126 			if (aux_info[AT_PAGESZ] != NULL) {
2127 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2128 				goto psa_filled;
2129 			} else {
2130 				mib[0] = CTL_HW;
2131 				mib[1] = HW_PAGESIZE;
2132 				len = 2;
2133 			}
2134 		}
2135 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2136 			_rtld_error("sysctl for hw.pagesize(s) failed");
2137 			rtld_die();
2138 		}
2139 psa_filled:
2140 		pagesizes = psa;
2141 	}
2142 	npagesizes = size / sizeof(pagesizes[0]);
2143 	/* Discard any invalid entries at the end of the array. */
2144 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2145 		npagesizes--;
2146 }
2147 
2148 /*
2149  * Add the init functions from a needed object list (and its recursive
2150  * needed objects) to "list".  This is not used directly; it is a helper
2151  * function for initlist_add_objects().  The write lock must be held
2152  * when this function is called.
2153  */
2154 static void
2155 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2156 {
2157     /* Recursively process the successor needed objects. */
2158     if (needed->next != NULL)
2159 	initlist_add_neededs(needed->next, list);
2160 
2161     /* Process the current needed object. */
2162     if (needed->obj != NULL)
2163 	initlist_add_objects(needed->obj, needed->obj, list);
2164 }
2165 
2166 /*
2167  * Scan all of the DAGs rooted in the range of objects from "obj" to
2168  * "tail" and add their init functions to "list".  This recurses over
2169  * the DAGs and ensure the proper init ordering such that each object's
2170  * needed libraries are initialized before the object itself.  At the
2171  * same time, this function adds the objects to the global finalization
2172  * list "list_fini" in the opposite order.  The write lock must be
2173  * held when this function is called.
2174  */
2175 static void
2176 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2177 {
2178     Obj_Entry *nobj;
2179 
2180     if (obj->init_scanned || obj->init_done)
2181 	return;
2182     obj->init_scanned = true;
2183 
2184     /* Recursively process the successor objects. */
2185     nobj = globallist_next(obj);
2186     if (nobj != NULL && obj != tail)
2187 	initlist_add_objects(nobj, tail, list);
2188 
2189     /* Recursively process the needed objects. */
2190     if (obj->needed != NULL)
2191 	initlist_add_neededs(obj->needed, list);
2192     if (obj->needed_filtees != NULL)
2193 	initlist_add_neededs(obj->needed_filtees, list);
2194     if (obj->needed_aux_filtees != NULL)
2195 	initlist_add_neededs(obj->needed_aux_filtees, list);
2196 
2197     /* Add the object to the init list. */
2198     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2199       obj->init_array != (Elf_Addr)NULL)
2200 	objlist_push_tail(list, obj);
2201 
2202     /* Add the object to the global fini list in the reverse order. */
2203     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2204       && !obj->on_fini_list) {
2205 	objlist_push_head(&list_fini, obj);
2206 	obj->on_fini_list = true;
2207     }
2208 }
2209 
2210 #ifndef FPTR_TARGET
2211 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2212 #endif
2213 
2214 static void
2215 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2216 {
2217     Needed_Entry *needed, *needed1;
2218 
2219     for (needed = n; needed != NULL; needed = needed->next) {
2220 	if (needed->obj != NULL) {
2221 	    dlclose_locked(needed->obj, lockstate);
2222 	    needed->obj = NULL;
2223 	}
2224     }
2225     for (needed = n; needed != NULL; needed = needed1) {
2226 	needed1 = needed->next;
2227 	free(needed);
2228     }
2229 }
2230 
2231 static void
2232 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2233 {
2234 
2235 	free_needed_filtees(obj->needed_filtees, lockstate);
2236 	obj->needed_filtees = NULL;
2237 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2238 	obj->needed_aux_filtees = NULL;
2239 	obj->filtees_loaded = false;
2240 }
2241 
2242 static void
2243 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2244     RtldLockState *lockstate)
2245 {
2246 
2247     for (; needed != NULL; needed = needed->next) {
2248 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2249 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2250 	  RTLD_LOCAL, lockstate);
2251     }
2252 }
2253 
2254 static void
2255 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2256 {
2257 
2258     lock_restart_for_upgrade(lockstate);
2259     if (!obj->filtees_loaded) {
2260 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2261 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2262 	obj->filtees_loaded = true;
2263     }
2264 }
2265 
2266 static int
2267 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2268 {
2269     Obj_Entry *obj1;
2270 
2271     for (; needed != NULL; needed = needed->next) {
2272 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2273 	  flags & ~RTLD_LO_NOLOAD);
2274 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2275 	    return (-1);
2276     }
2277     return (0);
2278 }
2279 
2280 /*
2281  * Given a shared object, traverse its list of needed objects, and load
2282  * each of them.  Returns 0 on success.  Generates an error message and
2283  * returns -1 on failure.
2284  */
2285 static int
2286 load_needed_objects(Obj_Entry *first, int flags)
2287 {
2288     Obj_Entry *obj;
2289 
2290     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2291 	if (obj->marker)
2292 	    continue;
2293 	if (process_needed(obj, obj->needed, flags) == -1)
2294 	    return (-1);
2295     }
2296     return (0);
2297 }
2298 
2299 static int
2300 load_preload_objects(void)
2301 {
2302     char *p = ld_preload;
2303     Obj_Entry *obj;
2304     static const char delim[] = " \t:;";
2305 
2306     if (p == NULL)
2307 	return 0;
2308 
2309     p += strspn(p, delim);
2310     while (*p != '\0') {
2311 	size_t len = strcspn(p, delim);
2312 	char savech;
2313 
2314 	savech = p[len];
2315 	p[len] = '\0';
2316 	obj = load_object(p, -1, NULL, 0);
2317 	if (obj == NULL)
2318 	    return -1;	/* XXX - cleanup */
2319 	obj->z_interpose = true;
2320 	p[len] = savech;
2321 	p += len;
2322 	p += strspn(p, delim);
2323     }
2324     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2325     return 0;
2326 }
2327 
2328 static const char *
2329 printable_path(const char *path)
2330 {
2331 
2332 	return (path == NULL ? "<unknown>" : path);
2333 }
2334 
2335 /*
2336  * Load a shared object into memory, if it is not already loaded.  The
2337  * object may be specified by name or by user-supplied file descriptor
2338  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2339  * duplicate is.
2340  *
2341  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2342  * on failure.
2343  */
2344 static Obj_Entry *
2345 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2346 {
2347     Obj_Entry *obj;
2348     int fd;
2349     struct stat sb;
2350     char *path;
2351 
2352     fd = -1;
2353     if (name != NULL) {
2354 	TAILQ_FOREACH(obj, &obj_list, next) {
2355 	    if (obj->marker || obj->doomed)
2356 		continue;
2357 	    if (object_match_name(obj, name))
2358 		return (obj);
2359 	}
2360 
2361 	path = find_library(name, refobj, &fd);
2362 	if (path == NULL)
2363 	    return (NULL);
2364     } else
2365 	path = NULL;
2366 
2367     if (fd >= 0) {
2368 	/*
2369 	 * search_library_pathfds() opens a fresh file descriptor for the
2370 	 * library, so there is no need to dup().
2371 	 */
2372     } else if (fd_u == -1) {
2373 	/*
2374 	 * If we didn't find a match by pathname, or the name is not
2375 	 * supplied, open the file and check again by device and inode.
2376 	 * This avoids false mismatches caused by multiple links or ".."
2377 	 * in pathnames.
2378 	 *
2379 	 * To avoid a race, we open the file and use fstat() rather than
2380 	 * using stat().
2381 	 */
2382 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2383 	    _rtld_error("Cannot open \"%s\"", path);
2384 	    free(path);
2385 	    return (NULL);
2386 	}
2387     } else {
2388 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2389 	if (fd == -1) {
2390 	    _rtld_error("Cannot dup fd");
2391 	    free(path);
2392 	    return (NULL);
2393 	}
2394     }
2395     if (fstat(fd, &sb) == -1) {
2396 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2397 	close(fd);
2398 	free(path);
2399 	return NULL;
2400     }
2401     TAILQ_FOREACH(obj, &obj_list, next) {
2402 	if (obj->marker || obj->doomed)
2403 	    continue;
2404 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2405 	    break;
2406     }
2407     if (obj != NULL && name != NULL) {
2408 	object_add_name(obj, name);
2409 	free(path);
2410 	close(fd);
2411 	return obj;
2412     }
2413     if (flags & RTLD_LO_NOLOAD) {
2414 	free(path);
2415 	close(fd);
2416 	return (NULL);
2417     }
2418 
2419     /* First use of this object, so we must map it in */
2420     obj = do_load_object(fd, name, path, &sb, flags);
2421     if (obj == NULL)
2422 	free(path);
2423     close(fd);
2424 
2425     return obj;
2426 }
2427 
2428 static Obj_Entry *
2429 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2430   int flags)
2431 {
2432     Obj_Entry *obj;
2433     struct statfs fs;
2434 
2435     /*
2436      * but first, make sure that environment variables haven't been
2437      * used to circumvent the noexec flag on a filesystem.
2438      */
2439     if (dangerous_ld_env) {
2440 	if (fstatfs(fd, &fs) != 0) {
2441 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2442 	    return NULL;
2443 	}
2444 	if (fs.f_flags & MNT_NOEXEC) {
2445 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2446 	    return NULL;
2447 	}
2448     }
2449     dbg("loading \"%s\"", printable_path(path));
2450     obj = map_object(fd, printable_path(path), sbp);
2451     if (obj == NULL)
2452         return NULL;
2453 
2454     /*
2455      * If DT_SONAME is present in the object, digest_dynamic2 already
2456      * added it to the object names.
2457      */
2458     if (name != NULL)
2459 	object_add_name(obj, name);
2460     obj->path = path;
2461     digest_dynamic(obj, 0);
2462     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2463 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2464     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2465       RTLD_LO_DLOPEN) {
2466 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2467 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2468 	munmap(obj->mapbase, obj->mapsize);
2469 	obj_free(obj);
2470 	return (NULL);
2471     }
2472 
2473     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2474     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2475     obj_count++;
2476     obj_loads++;
2477     linkmap_add(obj);	/* for GDB & dlinfo() */
2478     max_stack_flags |= obj->stack_flags;
2479 
2480     dbg("  %p .. %p: %s", obj->mapbase,
2481          obj->mapbase + obj->mapsize - 1, obj->path);
2482     if (obj->textrel)
2483 	dbg("  WARNING: %s has impure text", obj->path);
2484     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2485 	obj->path);
2486 
2487     return obj;
2488 }
2489 
2490 static Obj_Entry *
2491 obj_from_addr(const void *addr)
2492 {
2493     Obj_Entry *obj;
2494 
2495     TAILQ_FOREACH(obj, &obj_list, next) {
2496 	if (obj->marker)
2497 	    continue;
2498 	if (addr < (void *) obj->mapbase)
2499 	    continue;
2500 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2501 	    return obj;
2502     }
2503     return NULL;
2504 }
2505 
2506 static void
2507 preinit_main(void)
2508 {
2509     Elf_Addr *preinit_addr;
2510     int index;
2511 
2512     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2513     if (preinit_addr == NULL)
2514 	return;
2515 
2516     for (index = 0; index < obj_main->preinit_array_num; index++) {
2517 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2518 	    dbg("calling preinit function for %s at %p", obj_main->path,
2519 	      (void *)preinit_addr[index]);
2520 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2521 	      0, 0, obj_main->path);
2522 	    call_init_pointer(obj_main, preinit_addr[index]);
2523 	}
2524     }
2525 }
2526 
2527 /*
2528  * Call the finalization functions for each of the objects in "list"
2529  * belonging to the DAG of "root" and referenced once. If NULL "root"
2530  * is specified, every finalization function will be called regardless
2531  * of the reference count and the list elements won't be freed. All of
2532  * the objects are expected to have non-NULL fini functions.
2533  */
2534 static void
2535 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2536 {
2537     Objlist_Entry *elm;
2538     char *saved_msg;
2539     Elf_Addr *fini_addr;
2540     int index;
2541 
2542     assert(root == NULL || root->refcount == 1);
2543 
2544     if (root != NULL)
2545 	root->doomed = true;
2546 
2547     /*
2548      * Preserve the current error message since a fini function might
2549      * call into the dynamic linker and overwrite it.
2550      */
2551     saved_msg = errmsg_save();
2552     do {
2553 	STAILQ_FOREACH(elm, list, link) {
2554 	    if (root != NULL && (elm->obj->refcount != 1 ||
2555 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2556 		continue;
2557 	    /* Remove object from fini list to prevent recursive invocation. */
2558 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2559 	    /* Ensure that new references cannot be acquired. */
2560 	    elm->obj->doomed = true;
2561 
2562 	    hold_object(elm->obj);
2563 	    lock_release(rtld_bind_lock, lockstate);
2564 	    /*
2565 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2566 	     * When this happens, DT_FINI_ARRAY is processed first.
2567 	     */
2568 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2569 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2570 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2571 		  index--) {
2572 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2573 			dbg("calling fini function for %s at %p",
2574 			    elm->obj->path, (void *)fini_addr[index]);
2575 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2576 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2577 			call_initfini_pointer(elm->obj, fini_addr[index]);
2578 		    }
2579 		}
2580 	    }
2581 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2582 		dbg("calling fini function for %s at %p", elm->obj->path,
2583 		    (void *)elm->obj->fini);
2584 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2585 		    0, 0, elm->obj->path);
2586 		call_initfini_pointer(elm->obj, elm->obj->fini);
2587 	    }
2588 	    wlock_acquire(rtld_bind_lock, lockstate);
2589 	    unhold_object(elm->obj);
2590 	    /* No need to free anything if process is going down. */
2591 	    if (root != NULL)
2592 	    	free(elm);
2593 	    /*
2594 	     * We must restart the list traversal after every fini call
2595 	     * because a dlclose() call from the fini function or from
2596 	     * another thread might have modified the reference counts.
2597 	     */
2598 	    break;
2599 	}
2600     } while (elm != NULL);
2601     errmsg_restore(saved_msg);
2602 }
2603 
2604 /*
2605  * Call the initialization functions for each of the objects in
2606  * "list".  All of the objects are expected to have non-NULL init
2607  * functions.
2608  */
2609 static void
2610 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2611 {
2612     Objlist_Entry *elm;
2613     Obj_Entry *obj;
2614     char *saved_msg;
2615     Elf_Addr *init_addr;
2616     int index;
2617 
2618     /*
2619      * Clean init_scanned flag so that objects can be rechecked and
2620      * possibly initialized earlier if any of vectors called below
2621      * cause the change by using dlopen.
2622      */
2623     TAILQ_FOREACH(obj, &obj_list, next) {
2624 	if (obj->marker)
2625 	    continue;
2626 	obj->init_scanned = false;
2627     }
2628 
2629     /*
2630      * Preserve the current error message since an init function might
2631      * call into the dynamic linker and overwrite it.
2632      */
2633     saved_msg = errmsg_save();
2634     STAILQ_FOREACH(elm, list, link) {
2635 	if (elm->obj->init_done) /* Initialized early. */
2636 	    continue;
2637 	/*
2638 	 * Race: other thread might try to use this object before current
2639 	 * one completes the initialization. Not much can be done here
2640 	 * without better locking.
2641 	 */
2642 	elm->obj->init_done = true;
2643 	hold_object(elm->obj);
2644 	lock_release(rtld_bind_lock, lockstate);
2645 
2646         /*
2647          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2648          * When this happens, DT_INIT is processed first.
2649          */
2650 	if (elm->obj->init != (Elf_Addr)NULL) {
2651 	    dbg("calling init function for %s at %p", elm->obj->path,
2652 	        (void *)elm->obj->init);
2653 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2654 	        0, 0, elm->obj->path);
2655 	    call_initfini_pointer(elm->obj, elm->obj->init);
2656 	}
2657 	init_addr = (Elf_Addr *)elm->obj->init_array;
2658 	if (init_addr != NULL) {
2659 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2660 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2661 		    dbg("calling init function for %s at %p", elm->obj->path,
2662 			(void *)init_addr[index]);
2663 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2664 			(void *)init_addr[index], 0, 0, elm->obj->path);
2665 		    call_init_pointer(elm->obj, init_addr[index]);
2666 		}
2667 	    }
2668 	}
2669 	wlock_acquire(rtld_bind_lock, lockstate);
2670 	unhold_object(elm->obj);
2671     }
2672     errmsg_restore(saved_msg);
2673 }
2674 
2675 static void
2676 objlist_clear(Objlist *list)
2677 {
2678     Objlist_Entry *elm;
2679 
2680     while (!STAILQ_EMPTY(list)) {
2681 	elm = STAILQ_FIRST(list);
2682 	STAILQ_REMOVE_HEAD(list, link);
2683 	free(elm);
2684     }
2685 }
2686 
2687 static Objlist_Entry *
2688 objlist_find(Objlist *list, const Obj_Entry *obj)
2689 {
2690     Objlist_Entry *elm;
2691 
2692     STAILQ_FOREACH(elm, list, link)
2693 	if (elm->obj == obj)
2694 	    return elm;
2695     return NULL;
2696 }
2697 
2698 static void
2699 objlist_init(Objlist *list)
2700 {
2701     STAILQ_INIT(list);
2702 }
2703 
2704 static void
2705 objlist_push_head(Objlist *list, Obj_Entry *obj)
2706 {
2707     Objlist_Entry *elm;
2708 
2709     elm = NEW(Objlist_Entry);
2710     elm->obj = obj;
2711     STAILQ_INSERT_HEAD(list, elm, link);
2712 }
2713 
2714 static void
2715 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2716 {
2717     Objlist_Entry *elm;
2718 
2719     elm = NEW(Objlist_Entry);
2720     elm->obj = obj;
2721     STAILQ_INSERT_TAIL(list, elm, link);
2722 }
2723 
2724 static void
2725 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2726 {
2727 	Objlist_Entry *elm, *listelm;
2728 
2729 	STAILQ_FOREACH(listelm, list, link) {
2730 		if (listelm->obj == listobj)
2731 			break;
2732 	}
2733 	elm = NEW(Objlist_Entry);
2734 	elm->obj = obj;
2735 	if (listelm != NULL)
2736 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2737 	else
2738 		STAILQ_INSERT_TAIL(list, elm, link);
2739 }
2740 
2741 static void
2742 objlist_remove(Objlist *list, Obj_Entry *obj)
2743 {
2744     Objlist_Entry *elm;
2745 
2746     if ((elm = objlist_find(list, obj)) != NULL) {
2747 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2748 	free(elm);
2749     }
2750 }
2751 
2752 /*
2753  * Relocate dag rooted in the specified object.
2754  * Returns 0 on success, or -1 on failure.
2755  */
2756 
2757 static int
2758 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2759     int flags, RtldLockState *lockstate)
2760 {
2761 	Objlist_Entry *elm;
2762 	int error;
2763 
2764 	error = 0;
2765 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2766 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2767 		    lockstate);
2768 		if (error == -1)
2769 			break;
2770 	}
2771 	return (error);
2772 }
2773 
2774 /*
2775  * Prepare for, or clean after, relocating an object marked with
2776  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2777  * segments are remapped read-write.  After relocations are done, the
2778  * segment's permissions are returned back to the modes specified in
2779  * the phdrs.  If any relocation happened, or always for wired
2780  * program, COW is triggered.
2781  */
2782 static int
2783 reloc_textrel_prot(Obj_Entry *obj, bool before)
2784 {
2785 	const Elf_Phdr *ph;
2786 	void *base;
2787 	size_t l, sz;
2788 	int prot;
2789 
2790 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2791 	    l--, ph++) {
2792 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2793 			continue;
2794 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2795 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2796 		    trunc_page(ph->p_vaddr);
2797 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2798 		if (mprotect(base, sz, prot) == -1) {
2799 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2800 			    obj->path, before ? "en" : "dis",
2801 			    rtld_strerror(errno));
2802 			return (-1);
2803 		}
2804 	}
2805 	return (0);
2806 }
2807 
2808 /*
2809  * Relocate single object.
2810  * Returns 0 on success, or -1 on failure.
2811  */
2812 static int
2813 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2814     int flags, RtldLockState *lockstate)
2815 {
2816 
2817 	if (obj->relocated)
2818 		return (0);
2819 	obj->relocated = true;
2820 	if (obj != rtldobj)
2821 		dbg("relocating \"%s\"", obj->path);
2822 
2823 	if (obj->symtab == NULL || obj->strtab == NULL ||
2824 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2825 		_rtld_error("%s: Shared object has no run-time symbol table",
2826 			    obj->path);
2827 		return (-1);
2828 	}
2829 
2830 	/* There are relocations to the write-protected text segment. */
2831 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2832 		return (-1);
2833 
2834 	/* Process the non-PLT non-IFUNC relocations. */
2835 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2836 		return (-1);
2837 
2838 	/* Re-protected the text segment. */
2839 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2840 		return (-1);
2841 
2842 	/* Set the special PLT or GOT entries. */
2843 	init_pltgot(obj);
2844 
2845 	/* Process the PLT relocations. */
2846 	if (reloc_plt(obj) == -1)
2847 		return (-1);
2848 	/* Relocate the jump slots if we are doing immediate binding. */
2849 	if (obj->bind_now || bind_now)
2850 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2851 			return (-1);
2852 
2853 	/*
2854 	 * Process the non-PLT IFUNC relocations.  The relocations are
2855 	 * processed in two phases, because IFUNC resolvers may
2856 	 * reference other symbols, which must be readily processed
2857 	 * before resolvers are called.
2858 	 */
2859 	if (obj->non_plt_gnu_ifunc &&
2860 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2861 		return (-1);
2862 
2863 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2864 		return (-1);
2865 
2866 	/*
2867 	 * Set up the magic number and version in the Obj_Entry.  These
2868 	 * were checked in the crt1.o from the original ElfKit, so we
2869 	 * set them for backward compatibility.
2870 	 */
2871 	obj->magic = RTLD_MAGIC;
2872 	obj->version = RTLD_VERSION;
2873 
2874 	return (0);
2875 }
2876 
2877 /*
2878  * Relocate newly-loaded shared objects.  The argument is a pointer to
2879  * the Obj_Entry for the first such object.  All objects from the first
2880  * to the end of the list of objects are relocated.  Returns 0 on success,
2881  * or -1 on failure.
2882  */
2883 static int
2884 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2885     int flags, RtldLockState *lockstate)
2886 {
2887 	Obj_Entry *obj;
2888 	int error;
2889 
2890 	for (error = 0, obj = first;  obj != NULL;
2891 	    obj = TAILQ_NEXT(obj, next)) {
2892 		if (obj->marker)
2893 			continue;
2894 		error = relocate_object(obj, bind_now, rtldobj, flags,
2895 		    lockstate);
2896 		if (error == -1)
2897 			break;
2898 	}
2899 	return (error);
2900 }
2901 
2902 /*
2903  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2904  * referencing STT_GNU_IFUNC symbols is postponed till the other
2905  * relocations are done.  The indirect functions specified as
2906  * ifunc are allowed to call other symbols, so we need to have
2907  * objects relocated before asking for resolution from indirects.
2908  *
2909  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2910  * instead of the usual lazy handling of PLT slots.  It is
2911  * consistent with how GNU does it.
2912  */
2913 static int
2914 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2915     RtldLockState *lockstate)
2916 {
2917 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2918 		return (-1);
2919 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2920 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2921 		return (-1);
2922 	return (0);
2923 }
2924 
2925 static int
2926 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2927     RtldLockState *lockstate)
2928 {
2929 	Obj_Entry *obj;
2930 
2931 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2932 		if (obj->marker)
2933 			continue;
2934 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2935 			return (-1);
2936 	}
2937 	return (0);
2938 }
2939 
2940 static int
2941 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2942     RtldLockState *lockstate)
2943 {
2944 	Objlist_Entry *elm;
2945 
2946 	STAILQ_FOREACH(elm, list, link) {
2947 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2948 		    lockstate) == -1)
2949 			return (-1);
2950 	}
2951 	return (0);
2952 }
2953 
2954 /*
2955  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2956  * before the process exits.
2957  */
2958 static void
2959 rtld_exit(void)
2960 {
2961     RtldLockState lockstate;
2962 
2963     wlock_acquire(rtld_bind_lock, &lockstate);
2964     dbg("rtld_exit()");
2965     objlist_call_fini(&list_fini, NULL, &lockstate);
2966     /* No need to remove the items from the list, since we are exiting. */
2967     if (!libmap_disable)
2968         lm_fini();
2969     lock_release(rtld_bind_lock, &lockstate);
2970 }
2971 
2972 /*
2973  * Iterate over a search path, translate each element, and invoke the
2974  * callback on the result.
2975  */
2976 static void *
2977 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2978 {
2979     const char *trans;
2980     if (path == NULL)
2981 	return (NULL);
2982 
2983     path += strspn(path, ":;");
2984     while (*path != '\0') {
2985 	size_t len;
2986 	char  *res;
2987 
2988 	len = strcspn(path, ":;");
2989 	trans = lm_findn(NULL, path, len);
2990 	if (trans)
2991 	    res = callback(trans, strlen(trans), arg);
2992 	else
2993 	    res = callback(path, len, arg);
2994 
2995 	if (res != NULL)
2996 	    return (res);
2997 
2998 	path += len;
2999 	path += strspn(path, ":;");
3000     }
3001 
3002     return (NULL);
3003 }
3004 
3005 struct try_library_args {
3006     const char	*name;
3007     size_t	 namelen;
3008     char	*buffer;
3009     size_t	 buflen;
3010     int		 fd;
3011 };
3012 
3013 static void *
3014 try_library_path(const char *dir, size_t dirlen, void *param)
3015 {
3016     struct try_library_args *arg;
3017     int fd;
3018 
3019     arg = param;
3020     if (*dir == '/' || trust) {
3021 	char *pathname;
3022 
3023 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3024 		return (NULL);
3025 
3026 	pathname = arg->buffer;
3027 	strncpy(pathname, dir, dirlen);
3028 	pathname[dirlen] = '/';
3029 	strcpy(pathname + dirlen + 1, arg->name);
3030 
3031 	dbg("  Trying \"%s\"", pathname);
3032 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3033 	if (fd >= 0) {
3034 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3035 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3036 	    strcpy(pathname, arg->buffer);
3037 	    arg->fd = fd;
3038 	    return (pathname);
3039 	} else {
3040 	    dbg("  Failed to open \"%s\": %s",
3041 		pathname, rtld_strerror(errno));
3042 	}
3043     }
3044     return (NULL);
3045 }
3046 
3047 static char *
3048 search_library_path(const char *name, const char *path, int *fdp)
3049 {
3050     char *p;
3051     struct try_library_args arg;
3052 
3053     if (path == NULL)
3054 	return NULL;
3055 
3056     arg.name = name;
3057     arg.namelen = strlen(name);
3058     arg.buffer = xmalloc(PATH_MAX);
3059     arg.buflen = PATH_MAX;
3060     arg.fd = -1;
3061 
3062     p = path_enumerate(path, try_library_path, &arg);
3063     *fdp = arg.fd;
3064 
3065     free(arg.buffer);
3066 
3067     return (p);
3068 }
3069 
3070 
3071 /*
3072  * Finds the library with the given name using the directory descriptors
3073  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3074  *
3075  * Returns a freshly-opened close-on-exec file descriptor for the library,
3076  * or -1 if the library cannot be found.
3077  */
3078 static char *
3079 search_library_pathfds(const char *name, const char *path, int *fdp)
3080 {
3081 	char *envcopy, *fdstr, *found, *last_token;
3082 	size_t len;
3083 	int dirfd, fd;
3084 
3085 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3086 
3087 	/* Don't load from user-specified libdirs into setuid binaries. */
3088 	if (!trust)
3089 		return (NULL);
3090 
3091 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3092 	if (path == NULL)
3093 		return (NULL);
3094 
3095 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3096 	if (name[0] == '/') {
3097 		dbg("Absolute path (%s) passed to %s", name, __func__);
3098 		return (NULL);
3099 	}
3100 
3101 	/*
3102 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3103 	 * copy of the path, as strtok_r rewrites separator tokens
3104 	 * with '\0'.
3105 	 */
3106 	found = NULL;
3107 	envcopy = xstrdup(path);
3108 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3109 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3110 		dirfd = parse_integer(fdstr);
3111 		if (dirfd < 0) {
3112 			_rtld_error("failed to parse directory FD: '%s'",
3113 				fdstr);
3114 			break;
3115 		}
3116 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3117 		if (fd >= 0) {
3118 			*fdp = fd;
3119 			len = strlen(fdstr) + strlen(name) + 3;
3120 			found = xmalloc(len);
3121 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3122 				_rtld_error("error generating '%d/%s'",
3123 				    dirfd, name);
3124 				rtld_die();
3125 			}
3126 			dbg("open('%s') => %d", found, fd);
3127 			break;
3128 		}
3129 	}
3130 	free(envcopy);
3131 
3132 	return (found);
3133 }
3134 
3135 
3136 int
3137 dlclose(void *handle)
3138 {
3139 	RtldLockState lockstate;
3140 	int error;
3141 
3142 	wlock_acquire(rtld_bind_lock, &lockstate);
3143 	error = dlclose_locked(handle, &lockstate);
3144 	lock_release(rtld_bind_lock, &lockstate);
3145 	return (error);
3146 }
3147 
3148 static int
3149 dlclose_locked(void *handle, RtldLockState *lockstate)
3150 {
3151     Obj_Entry *root;
3152 
3153     root = dlcheck(handle);
3154     if (root == NULL)
3155 	return -1;
3156     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3157 	root->path);
3158 
3159     /* Unreference the object and its dependencies. */
3160     root->dl_refcount--;
3161 
3162     if (root->refcount == 1) {
3163 	/*
3164 	 * The object will be no longer referenced, so we must unload it.
3165 	 * First, call the fini functions.
3166 	 */
3167 	objlist_call_fini(&list_fini, root, lockstate);
3168 
3169 	unref_dag(root);
3170 
3171 	/* Finish cleaning up the newly-unreferenced objects. */
3172 	GDB_STATE(RT_DELETE,&root->linkmap);
3173 	unload_object(root, lockstate);
3174 	GDB_STATE(RT_CONSISTENT,NULL);
3175     } else
3176 	unref_dag(root);
3177 
3178     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3179     return 0;
3180 }
3181 
3182 char *
3183 dlerror(void)
3184 {
3185     char *msg = error_message;
3186     error_message = NULL;
3187     return msg;
3188 }
3189 
3190 /*
3191  * This function is deprecated and has no effect.
3192  */
3193 void
3194 dllockinit(void *context,
3195 	   void *(*lock_create)(void *context),
3196            void (*rlock_acquire)(void *lock),
3197            void (*wlock_acquire)(void *lock),
3198            void (*lock_release)(void *lock),
3199            void (*lock_destroy)(void *lock),
3200 	   void (*context_destroy)(void *context))
3201 {
3202     static void *cur_context;
3203     static void (*cur_context_destroy)(void *);
3204 
3205     /* Just destroy the context from the previous call, if necessary. */
3206     if (cur_context_destroy != NULL)
3207 	cur_context_destroy(cur_context);
3208     cur_context = context;
3209     cur_context_destroy = context_destroy;
3210 }
3211 
3212 void *
3213 dlopen(const char *name, int mode)
3214 {
3215 
3216 	return (rtld_dlopen(name, -1, mode));
3217 }
3218 
3219 void *
3220 fdlopen(int fd, int mode)
3221 {
3222 
3223 	return (rtld_dlopen(NULL, fd, mode));
3224 }
3225 
3226 static void *
3227 rtld_dlopen(const char *name, int fd, int mode)
3228 {
3229     RtldLockState lockstate;
3230     int lo_flags;
3231 
3232     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3233     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3234     if (ld_tracing != NULL) {
3235 	rlock_acquire(rtld_bind_lock, &lockstate);
3236 	if (sigsetjmp(lockstate.env, 0) != 0)
3237 	    lock_upgrade(rtld_bind_lock, &lockstate);
3238 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3239 	lock_release(rtld_bind_lock, &lockstate);
3240     }
3241     lo_flags = RTLD_LO_DLOPEN;
3242     if (mode & RTLD_NODELETE)
3243 	    lo_flags |= RTLD_LO_NODELETE;
3244     if (mode & RTLD_NOLOAD)
3245 	    lo_flags |= RTLD_LO_NOLOAD;
3246     if (ld_tracing != NULL)
3247 	    lo_flags |= RTLD_LO_TRACE;
3248 
3249     return (dlopen_object(name, fd, obj_main, lo_flags,
3250       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3251 }
3252 
3253 static void
3254 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3255 {
3256 
3257 	obj->dl_refcount--;
3258 	unref_dag(obj);
3259 	if (obj->refcount == 0)
3260 		unload_object(obj, lockstate);
3261 }
3262 
3263 static Obj_Entry *
3264 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3265     int mode, RtldLockState *lockstate)
3266 {
3267     Obj_Entry *old_obj_tail;
3268     Obj_Entry *obj;
3269     Objlist initlist;
3270     RtldLockState mlockstate;
3271     int result;
3272 
3273     objlist_init(&initlist);
3274 
3275     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3276 	wlock_acquire(rtld_bind_lock, &mlockstate);
3277 	lockstate = &mlockstate;
3278     }
3279     GDB_STATE(RT_ADD,NULL);
3280 
3281     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3282     obj = NULL;
3283     if (name == NULL && fd == -1) {
3284 	obj = obj_main;
3285 	obj->refcount++;
3286     } else {
3287 	obj = load_object(name, fd, refobj, lo_flags);
3288     }
3289 
3290     if (obj) {
3291 	obj->dl_refcount++;
3292 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3293 	    objlist_push_tail(&list_global, obj);
3294 	if (globallist_next(old_obj_tail) != NULL) {
3295 	    /* We loaded something new. */
3296 	    assert(globallist_next(old_obj_tail) == obj);
3297 	    result = load_needed_objects(obj,
3298 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3299 	    init_dag(obj);
3300 	    ref_dag(obj);
3301 	    if (result != -1)
3302 		result = rtld_verify_versions(&obj->dagmembers);
3303 	    if (result != -1 && ld_tracing)
3304 		goto trace;
3305 	    if (result == -1 || relocate_object_dag(obj,
3306 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3307 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3308 	      lockstate) == -1) {
3309 		dlopen_cleanup(obj, lockstate);
3310 		obj = NULL;
3311 	    } else if (lo_flags & RTLD_LO_EARLY) {
3312 		/*
3313 		 * Do not call the init functions for early loaded
3314 		 * filtees.  The image is still not initialized enough
3315 		 * for them to work.
3316 		 *
3317 		 * Our object is found by the global object list and
3318 		 * will be ordered among all init calls done right
3319 		 * before transferring control to main.
3320 		 */
3321 	    } else {
3322 		/* Make list of init functions to call. */
3323 		initlist_add_objects(obj, obj, &initlist);
3324 	    }
3325 	    /*
3326 	     * Process all no_delete or global objects here, given
3327 	     * them own DAGs to prevent their dependencies from being
3328 	     * unloaded.  This has to be done after we have loaded all
3329 	     * of the dependencies, so that we do not miss any.
3330 	     */
3331 	    if (obj != NULL)
3332 		process_z(obj);
3333 	} else {
3334 	    /*
3335 	     * Bump the reference counts for objects on this DAG.  If
3336 	     * this is the first dlopen() call for the object that was
3337 	     * already loaded as a dependency, initialize the dag
3338 	     * starting at it.
3339 	     */
3340 	    init_dag(obj);
3341 	    ref_dag(obj);
3342 
3343 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3344 		goto trace;
3345 	}
3346 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3347 	  obj->z_nodelete) && !obj->ref_nodel) {
3348 	    dbg("obj %s nodelete", obj->path);
3349 	    ref_dag(obj);
3350 	    obj->z_nodelete = obj->ref_nodel = true;
3351 	}
3352     }
3353 
3354     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3355 	name);
3356     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3357 
3358     if (!(lo_flags & RTLD_LO_EARLY)) {
3359 	map_stacks_exec(lockstate);
3360     }
3361 
3362     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3363       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3364       lockstate) == -1) {
3365 	objlist_clear(&initlist);
3366 	dlopen_cleanup(obj, lockstate);
3367 	if (lockstate == &mlockstate)
3368 	    lock_release(rtld_bind_lock, lockstate);
3369 	return (NULL);
3370     }
3371 
3372     if (!(lo_flags & RTLD_LO_EARLY)) {
3373 	/* Call the init functions. */
3374 	objlist_call_init(&initlist, lockstate);
3375     }
3376     objlist_clear(&initlist);
3377     if (lockstate == &mlockstate)
3378 	lock_release(rtld_bind_lock, lockstate);
3379     return obj;
3380 trace:
3381     trace_loaded_objects(obj);
3382     if (lockstate == &mlockstate)
3383 	lock_release(rtld_bind_lock, lockstate);
3384     exit(0);
3385 }
3386 
3387 static void *
3388 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3389     int flags)
3390 {
3391     DoneList donelist;
3392     const Obj_Entry *obj, *defobj;
3393     const Elf_Sym *def;
3394     SymLook req;
3395     RtldLockState lockstate;
3396     tls_index ti;
3397     void *sym;
3398     int res;
3399 
3400     def = NULL;
3401     defobj = NULL;
3402     symlook_init(&req, name);
3403     req.ventry = ve;
3404     req.flags = flags | SYMLOOK_IN_PLT;
3405     req.lockstate = &lockstate;
3406 
3407     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3408     rlock_acquire(rtld_bind_lock, &lockstate);
3409     if (sigsetjmp(lockstate.env, 0) != 0)
3410 	    lock_upgrade(rtld_bind_lock, &lockstate);
3411     if (handle == NULL || handle == RTLD_NEXT ||
3412 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3413 
3414 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3415 	    _rtld_error("Cannot determine caller's shared object");
3416 	    lock_release(rtld_bind_lock, &lockstate);
3417 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3418 	    return NULL;
3419 	}
3420 	if (handle == NULL) {	/* Just the caller's shared object. */
3421 	    res = symlook_obj(&req, obj);
3422 	    if (res == 0) {
3423 		def = req.sym_out;
3424 		defobj = req.defobj_out;
3425 	    }
3426 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3427 		   handle == RTLD_SELF) { /* ... caller included */
3428 	    if (handle == RTLD_NEXT)
3429 		obj = globallist_next(obj);
3430 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3431 		if (obj->marker)
3432 		    continue;
3433 		res = symlook_obj(&req, obj);
3434 		if (res == 0) {
3435 		    if (def == NULL ||
3436 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3437 			def = req.sym_out;
3438 			defobj = req.defobj_out;
3439 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3440 			    break;
3441 		    }
3442 		}
3443 	    }
3444 	    /*
3445 	     * Search the dynamic linker itself, and possibly resolve the
3446 	     * symbol from there.  This is how the application links to
3447 	     * dynamic linker services such as dlopen.
3448 	     */
3449 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3450 		res = symlook_obj(&req, &obj_rtld);
3451 		if (res == 0) {
3452 		    def = req.sym_out;
3453 		    defobj = req.defobj_out;
3454 		}
3455 	    }
3456 	} else {
3457 	    assert(handle == RTLD_DEFAULT);
3458 	    res = symlook_default(&req, obj);
3459 	    if (res == 0) {
3460 		defobj = req.defobj_out;
3461 		def = req.sym_out;
3462 	    }
3463 	}
3464     } else {
3465 	if ((obj = dlcheck(handle)) == NULL) {
3466 	    lock_release(rtld_bind_lock, &lockstate);
3467 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3468 	    return NULL;
3469 	}
3470 
3471 	donelist_init(&donelist);
3472 	if (obj->mainprog) {
3473             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3474 	    res = symlook_global(&req, &donelist);
3475 	    if (res == 0) {
3476 		def = req.sym_out;
3477 		defobj = req.defobj_out;
3478 	    }
3479 	    /*
3480 	     * Search the dynamic linker itself, and possibly resolve the
3481 	     * symbol from there.  This is how the application links to
3482 	     * dynamic linker services such as dlopen.
3483 	     */
3484 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3485 		res = symlook_obj(&req, &obj_rtld);
3486 		if (res == 0) {
3487 		    def = req.sym_out;
3488 		    defobj = req.defobj_out;
3489 		}
3490 	    }
3491 	}
3492 	else {
3493 	    /* Search the whole DAG rooted at the given object. */
3494 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3495 	    if (res == 0) {
3496 		def = req.sym_out;
3497 		defobj = req.defobj_out;
3498 	    }
3499 	}
3500     }
3501 
3502     if (def != NULL) {
3503 	lock_release(rtld_bind_lock, &lockstate);
3504 
3505 	/*
3506 	 * The value required by the caller is derived from the value
3507 	 * of the symbol. this is simply the relocated value of the
3508 	 * symbol.
3509 	 */
3510 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3511 	    sym = make_function_pointer(def, defobj);
3512 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3513 	    sym = rtld_resolve_ifunc(defobj, def);
3514 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3515 	    ti.ti_module = defobj->tlsindex;
3516 	    ti.ti_offset = def->st_value;
3517 	    sym = __tls_get_addr(&ti);
3518 	} else
3519 	    sym = defobj->relocbase + def->st_value;
3520 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3521 	return (sym);
3522     }
3523 
3524     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3525       ve != NULL ? ve->name : "");
3526     lock_release(rtld_bind_lock, &lockstate);
3527     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3528     return NULL;
3529 }
3530 
3531 void *
3532 dlsym(void *handle, const char *name)
3533 {
3534 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3535 	    SYMLOOK_DLSYM);
3536 }
3537 
3538 dlfunc_t
3539 dlfunc(void *handle, const char *name)
3540 {
3541 	union {
3542 		void *d;
3543 		dlfunc_t f;
3544 	} rv;
3545 
3546 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3547 	    SYMLOOK_DLSYM);
3548 	return (rv.f);
3549 }
3550 
3551 void *
3552 dlvsym(void *handle, const char *name, const char *version)
3553 {
3554 	Ver_Entry ventry;
3555 
3556 	ventry.name = version;
3557 	ventry.file = NULL;
3558 	ventry.hash = elf_hash(version);
3559 	ventry.flags= 0;
3560 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3561 	    SYMLOOK_DLSYM);
3562 }
3563 
3564 int
3565 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3566 {
3567     const Obj_Entry *obj;
3568     RtldLockState lockstate;
3569 
3570     rlock_acquire(rtld_bind_lock, &lockstate);
3571     obj = obj_from_addr(addr);
3572     if (obj == NULL) {
3573         _rtld_error("No shared object contains address");
3574 	lock_release(rtld_bind_lock, &lockstate);
3575         return (0);
3576     }
3577     rtld_fill_dl_phdr_info(obj, phdr_info);
3578     lock_release(rtld_bind_lock, &lockstate);
3579     return (1);
3580 }
3581 
3582 int
3583 dladdr(const void *addr, Dl_info *info)
3584 {
3585     const Obj_Entry *obj;
3586     const Elf_Sym *def;
3587     void *symbol_addr;
3588     unsigned long symoffset;
3589     RtldLockState lockstate;
3590 
3591     rlock_acquire(rtld_bind_lock, &lockstate);
3592     obj = obj_from_addr(addr);
3593     if (obj == NULL) {
3594         _rtld_error("No shared object contains address");
3595 	lock_release(rtld_bind_lock, &lockstate);
3596         return 0;
3597     }
3598     info->dli_fname = obj->path;
3599     info->dli_fbase = obj->mapbase;
3600     info->dli_saddr = (void *)0;
3601     info->dli_sname = NULL;
3602 
3603     /*
3604      * Walk the symbol list looking for the symbol whose address is
3605      * closest to the address sent in.
3606      */
3607     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3608         def = obj->symtab + symoffset;
3609 
3610         /*
3611          * For skip the symbol if st_shndx is either SHN_UNDEF or
3612          * SHN_COMMON.
3613          */
3614         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3615             continue;
3616 
3617         /*
3618          * If the symbol is greater than the specified address, or if it
3619          * is further away from addr than the current nearest symbol,
3620          * then reject it.
3621          */
3622         symbol_addr = obj->relocbase + def->st_value;
3623         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3624             continue;
3625 
3626         /* Update our idea of the nearest symbol. */
3627         info->dli_sname = obj->strtab + def->st_name;
3628         info->dli_saddr = symbol_addr;
3629 
3630         /* Exact match? */
3631         if (info->dli_saddr == addr)
3632             break;
3633     }
3634     lock_release(rtld_bind_lock, &lockstate);
3635     return 1;
3636 }
3637 
3638 int
3639 dlinfo(void *handle, int request, void *p)
3640 {
3641     const Obj_Entry *obj;
3642     RtldLockState lockstate;
3643     int error;
3644 
3645     rlock_acquire(rtld_bind_lock, &lockstate);
3646 
3647     if (handle == NULL || handle == RTLD_SELF) {
3648 	void *retaddr;
3649 
3650 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3651 	if ((obj = obj_from_addr(retaddr)) == NULL)
3652 	    _rtld_error("Cannot determine caller's shared object");
3653     } else
3654 	obj = dlcheck(handle);
3655 
3656     if (obj == NULL) {
3657 	lock_release(rtld_bind_lock, &lockstate);
3658 	return (-1);
3659     }
3660 
3661     error = 0;
3662     switch (request) {
3663     case RTLD_DI_LINKMAP:
3664 	*((struct link_map const **)p) = &obj->linkmap;
3665 	break;
3666     case RTLD_DI_ORIGIN:
3667 	error = rtld_dirname(obj->path, p);
3668 	break;
3669 
3670     case RTLD_DI_SERINFOSIZE:
3671     case RTLD_DI_SERINFO:
3672 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3673 	break;
3674 
3675     default:
3676 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3677 	error = -1;
3678     }
3679 
3680     lock_release(rtld_bind_lock, &lockstate);
3681 
3682     return (error);
3683 }
3684 
3685 static void
3686 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3687 {
3688 
3689 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3690 	phdr_info->dlpi_name = obj->path;
3691 	phdr_info->dlpi_phdr = obj->phdr;
3692 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3693 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3694 	phdr_info->dlpi_tls_data = obj->tlsinit;
3695 	phdr_info->dlpi_adds = obj_loads;
3696 	phdr_info->dlpi_subs = obj_loads - obj_count;
3697 }
3698 
3699 int
3700 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3701 {
3702 	struct dl_phdr_info phdr_info;
3703 	Obj_Entry *obj, marker;
3704 	RtldLockState bind_lockstate, phdr_lockstate;
3705 	int error;
3706 
3707 	init_marker(&marker);
3708 	error = 0;
3709 
3710 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3711 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3712 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3713 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3714 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3715 		hold_object(obj);
3716 		lock_release(rtld_bind_lock, &bind_lockstate);
3717 
3718 		error = callback(&phdr_info, sizeof phdr_info, param);
3719 
3720 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3721 		unhold_object(obj);
3722 		obj = globallist_next(&marker);
3723 		TAILQ_REMOVE(&obj_list, &marker, next);
3724 		if (error != 0) {
3725 			lock_release(rtld_bind_lock, &bind_lockstate);
3726 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3727 			return (error);
3728 		}
3729 	}
3730 
3731 	if (error == 0) {
3732 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3733 		lock_release(rtld_bind_lock, &bind_lockstate);
3734 		error = callback(&phdr_info, sizeof(phdr_info), param);
3735 	}
3736 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3737 	return (error);
3738 }
3739 
3740 static void *
3741 fill_search_info(const char *dir, size_t dirlen, void *param)
3742 {
3743     struct fill_search_info_args *arg;
3744 
3745     arg = param;
3746 
3747     if (arg->request == RTLD_DI_SERINFOSIZE) {
3748 	arg->serinfo->dls_cnt ++;
3749 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3750     } else {
3751 	struct dl_serpath *s_entry;
3752 
3753 	s_entry = arg->serpath;
3754 	s_entry->dls_name  = arg->strspace;
3755 	s_entry->dls_flags = arg->flags;
3756 
3757 	strncpy(arg->strspace, dir, dirlen);
3758 	arg->strspace[dirlen] = '\0';
3759 
3760 	arg->strspace += dirlen + 1;
3761 	arg->serpath++;
3762     }
3763 
3764     return (NULL);
3765 }
3766 
3767 static int
3768 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3769 {
3770     struct dl_serinfo _info;
3771     struct fill_search_info_args args;
3772 
3773     args.request = RTLD_DI_SERINFOSIZE;
3774     args.serinfo = &_info;
3775 
3776     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3777     _info.dls_cnt  = 0;
3778 
3779     path_enumerate(obj->rpath, fill_search_info, &args);
3780     path_enumerate(ld_library_path, fill_search_info, &args);
3781     path_enumerate(obj->runpath, fill_search_info, &args);
3782     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3783     if (!obj->z_nodeflib)
3784       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3785 
3786 
3787     if (request == RTLD_DI_SERINFOSIZE) {
3788 	info->dls_size = _info.dls_size;
3789 	info->dls_cnt = _info.dls_cnt;
3790 	return (0);
3791     }
3792 
3793     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3794 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3795 	return (-1);
3796     }
3797 
3798     args.request  = RTLD_DI_SERINFO;
3799     args.serinfo  = info;
3800     args.serpath  = &info->dls_serpath[0];
3801     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3802 
3803     args.flags = LA_SER_RUNPATH;
3804     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3805 	return (-1);
3806 
3807     args.flags = LA_SER_LIBPATH;
3808     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3809 	return (-1);
3810 
3811     args.flags = LA_SER_RUNPATH;
3812     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3813 	return (-1);
3814 
3815     args.flags = LA_SER_CONFIG;
3816     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3817       != NULL)
3818 	return (-1);
3819 
3820     args.flags = LA_SER_DEFAULT;
3821     if (!obj->z_nodeflib &&
3822       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3823 	return (-1);
3824     return (0);
3825 }
3826 
3827 static int
3828 rtld_dirname(const char *path, char *bname)
3829 {
3830     const char *endp;
3831 
3832     /* Empty or NULL string gets treated as "." */
3833     if (path == NULL || *path == '\0') {
3834 	bname[0] = '.';
3835 	bname[1] = '\0';
3836 	return (0);
3837     }
3838 
3839     /* Strip trailing slashes */
3840     endp = path + strlen(path) - 1;
3841     while (endp > path && *endp == '/')
3842 	endp--;
3843 
3844     /* Find the start of the dir */
3845     while (endp > path && *endp != '/')
3846 	endp--;
3847 
3848     /* Either the dir is "/" or there are no slashes */
3849     if (endp == path) {
3850 	bname[0] = *endp == '/' ? '/' : '.';
3851 	bname[1] = '\0';
3852 	return (0);
3853     } else {
3854 	do {
3855 	    endp--;
3856 	} while (endp > path && *endp == '/');
3857     }
3858 
3859     if (endp - path + 2 > PATH_MAX)
3860     {
3861 	_rtld_error("Filename is too long: %s", path);
3862 	return(-1);
3863     }
3864 
3865     strncpy(bname, path, endp - path + 1);
3866     bname[endp - path + 1] = '\0';
3867     return (0);
3868 }
3869 
3870 static int
3871 rtld_dirname_abs(const char *path, char *base)
3872 {
3873 	char *last;
3874 
3875 	if (realpath(path, base) == NULL)
3876 		return (-1);
3877 	dbg("%s -> %s", path, base);
3878 	last = strrchr(base, '/');
3879 	if (last == NULL)
3880 		return (-1);
3881 	if (last != base)
3882 		*last = '\0';
3883 	return (0);
3884 }
3885 
3886 static void
3887 linkmap_add(Obj_Entry *obj)
3888 {
3889     struct link_map *l = &obj->linkmap;
3890     struct link_map *prev;
3891 
3892     obj->linkmap.l_name = obj->path;
3893     obj->linkmap.l_addr = obj->mapbase;
3894     obj->linkmap.l_ld = obj->dynamic;
3895 #ifdef __mips__
3896     /* GDB needs load offset on MIPS to use the symbols */
3897     obj->linkmap.l_offs = obj->relocbase;
3898 #endif
3899 
3900     if (r_debug.r_map == NULL) {
3901 	r_debug.r_map = l;
3902 	return;
3903     }
3904 
3905     /*
3906      * Scan to the end of the list, but not past the entry for the
3907      * dynamic linker, which we want to keep at the very end.
3908      */
3909     for (prev = r_debug.r_map;
3910       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3911       prev = prev->l_next)
3912 	;
3913 
3914     /* Link in the new entry. */
3915     l->l_prev = prev;
3916     l->l_next = prev->l_next;
3917     if (l->l_next != NULL)
3918 	l->l_next->l_prev = l;
3919     prev->l_next = l;
3920 }
3921 
3922 static void
3923 linkmap_delete(Obj_Entry *obj)
3924 {
3925     struct link_map *l = &obj->linkmap;
3926 
3927     if (l->l_prev == NULL) {
3928 	if ((r_debug.r_map = l->l_next) != NULL)
3929 	    l->l_next->l_prev = NULL;
3930 	return;
3931     }
3932 
3933     if ((l->l_prev->l_next = l->l_next) != NULL)
3934 	l->l_next->l_prev = l->l_prev;
3935 }
3936 
3937 /*
3938  * Function for the debugger to set a breakpoint on to gain control.
3939  *
3940  * The two parameters allow the debugger to easily find and determine
3941  * what the runtime loader is doing and to whom it is doing it.
3942  *
3943  * When the loadhook trap is hit (r_debug_state, set at program
3944  * initialization), the arguments can be found on the stack:
3945  *
3946  *  +8   struct link_map *m
3947  *  +4   struct r_debug  *rd
3948  *  +0   RetAddr
3949  */
3950 void
3951 r_debug_state(struct r_debug* rd, struct link_map *m)
3952 {
3953     /*
3954      * The following is a hack to force the compiler to emit calls to
3955      * this function, even when optimizing.  If the function is empty,
3956      * the compiler is not obliged to emit any code for calls to it,
3957      * even when marked __noinline.  However, gdb depends on those
3958      * calls being made.
3959      */
3960     __compiler_membar();
3961 }
3962 
3963 /*
3964  * A function called after init routines have completed. This can be used to
3965  * break before a program's entry routine is called, and can be used when
3966  * main is not available in the symbol table.
3967  */
3968 void
3969 _r_debug_postinit(struct link_map *m)
3970 {
3971 
3972 	/* See r_debug_state(). */
3973 	__compiler_membar();
3974 }
3975 
3976 static void
3977 release_object(Obj_Entry *obj)
3978 {
3979 
3980 	if (obj->holdcount > 0) {
3981 		obj->unholdfree = true;
3982 		return;
3983 	}
3984 	munmap(obj->mapbase, obj->mapsize);
3985 	linkmap_delete(obj);
3986 	obj_free(obj);
3987 }
3988 
3989 /*
3990  * Get address of the pointer variable in the main program.
3991  * Prefer non-weak symbol over the weak one.
3992  */
3993 static const void **
3994 get_program_var_addr(const char *name, RtldLockState *lockstate)
3995 {
3996     SymLook req;
3997     DoneList donelist;
3998 
3999     symlook_init(&req, name);
4000     req.lockstate = lockstate;
4001     donelist_init(&donelist);
4002     if (symlook_global(&req, &donelist) != 0)
4003 	return (NULL);
4004     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4005 	return ((const void **)make_function_pointer(req.sym_out,
4006 	  req.defobj_out));
4007     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4008 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4009     else
4010 	return ((const void **)(req.defobj_out->relocbase +
4011 	  req.sym_out->st_value));
4012 }
4013 
4014 /*
4015  * Set a pointer variable in the main program to the given value.  This
4016  * is used to set key variables such as "environ" before any of the
4017  * init functions are called.
4018  */
4019 static void
4020 set_program_var(const char *name, const void *value)
4021 {
4022     const void **addr;
4023 
4024     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4025 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4026 	*addr = value;
4027     }
4028 }
4029 
4030 /*
4031  * Search the global objects, including dependencies and main object,
4032  * for the given symbol.
4033  */
4034 static int
4035 symlook_global(SymLook *req, DoneList *donelist)
4036 {
4037     SymLook req1;
4038     const Objlist_Entry *elm;
4039     int res;
4040 
4041     symlook_init_from_req(&req1, req);
4042 
4043     /* Search all objects loaded at program start up. */
4044     if (req->defobj_out == NULL ||
4045       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4046 	res = symlook_list(&req1, &list_main, donelist);
4047 	if (res == 0 && (req->defobj_out == NULL ||
4048 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4049 	    req->sym_out = req1.sym_out;
4050 	    req->defobj_out = req1.defobj_out;
4051 	    assert(req->defobj_out != NULL);
4052 	}
4053     }
4054 
4055     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4056     STAILQ_FOREACH(elm, &list_global, link) {
4057 	if (req->defobj_out != NULL &&
4058 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4059 	    break;
4060 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4061 	if (res == 0 && (req->defobj_out == NULL ||
4062 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4063 	    req->sym_out = req1.sym_out;
4064 	    req->defobj_out = req1.defobj_out;
4065 	    assert(req->defobj_out != NULL);
4066 	}
4067     }
4068 
4069     return (req->sym_out != NULL ? 0 : ESRCH);
4070 }
4071 
4072 /*
4073  * Given a symbol name in a referencing object, find the corresponding
4074  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4075  * no definition was found.  Returns a pointer to the Obj_Entry of the
4076  * defining object via the reference parameter DEFOBJ_OUT.
4077  */
4078 static int
4079 symlook_default(SymLook *req, const Obj_Entry *refobj)
4080 {
4081     DoneList donelist;
4082     const Objlist_Entry *elm;
4083     SymLook req1;
4084     int res;
4085 
4086     donelist_init(&donelist);
4087     symlook_init_from_req(&req1, req);
4088 
4089     /*
4090      * Look first in the referencing object if linked symbolically,
4091      * and similarly handle protected symbols.
4092      */
4093     res = symlook_obj(&req1, refobj);
4094     if (res == 0 && (refobj->symbolic ||
4095       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4096 	req->sym_out = req1.sym_out;
4097 	req->defobj_out = req1.defobj_out;
4098 	assert(req->defobj_out != NULL);
4099     }
4100     if (refobj->symbolic || req->defobj_out != NULL)
4101 	donelist_check(&donelist, refobj);
4102 
4103     symlook_global(req, &donelist);
4104 
4105     /* Search all dlopened DAGs containing the referencing object. */
4106     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4107 	if (req->sym_out != NULL &&
4108 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4109 	    break;
4110 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4111 	if (res == 0 && (req->sym_out == NULL ||
4112 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4113 	    req->sym_out = req1.sym_out;
4114 	    req->defobj_out = req1.defobj_out;
4115 	    assert(req->defobj_out != NULL);
4116 	}
4117     }
4118 
4119     /*
4120      * Search the dynamic linker itself, and possibly resolve the
4121      * symbol from there.  This is how the application links to
4122      * dynamic linker services such as dlopen.
4123      */
4124     if (req->sym_out == NULL ||
4125       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4126 	res = symlook_obj(&req1, &obj_rtld);
4127 	if (res == 0) {
4128 	    req->sym_out = req1.sym_out;
4129 	    req->defobj_out = req1.defobj_out;
4130 	    assert(req->defobj_out != NULL);
4131 	}
4132     }
4133 
4134     return (req->sym_out != NULL ? 0 : ESRCH);
4135 }
4136 
4137 static int
4138 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4139 {
4140     const Elf_Sym *def;
4141     const Obj_Entry *defobj;
4142     const Objlist_Entry *elm;
4143     SymLook req1;
4144     int res;
4145 
4146     def = NULL;
4147     defobj = NULL;
4148     STAILQ_FOREACH(elm, objlist, link) {
4149 	if (donelist_check(dlp, elm->obj))
4150 	    continue;
4151 	symlook_init_from_req(&req1, req);
4152 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4153 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4154 		def = req1.sym_out;
4155 		defobj = req1.defobj_out;
4156 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4157 		    break;
4158 	    }
4159 	}
4160     }
4161     if (def != NULL) {
4162 	req->sym_out = def;
4163 	req->defobj_out = defobj;
4164 	return (0);
4165     }
4166     return (ESRCH);
4167 }
4168 
4169 /*
4170  * Search the chain of DAGS cointed to by the given Needed_Entry
4171  * for a symbol of the given name.  Each DAG is scanned completely
4172  * before advancing to the next one.  Returns a pointer to the symbol,
4173  * or NULL if no definition was found.
4174  */
4175 static int
4176 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4177 {
4178     const Elf_Sym *def;
4179     const Needed_Entry *n;
4180     const Obj_Entry *defobj;
4181     SymLook req1;
4182     int res;
4183 
4184     def = NULL;
4185     defobj = NULL;
4186     symlook_init_from_req(&req1, req);
4187     for (n = needed; n != NULL; n = n->next) {
4188 	if (n->obj == NULL ||
4189 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4190 	    continue;
4191 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4192 	    def = req1.sym_out;
4193 	    defobj = req1.defobj_out;
4194 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4195 		break;
4196 	}
4197     }
4198     if (def != NULL) {
4199 	req->sym_out = def;
4200 	req->defobj_out = defobj;
4201 	return (0);
4202     }
4203     return (ESRCH);
4204 }
4205 
4206 /*
4207  * Search the symbol table of a single shared object for a symbol of
4208  * the given name and version, if requested.  Returns a pointer to the
4209  * symbol, or NULL if no definition was found.  If the object is
4210  * filter, return filtered symbol from filtee.
4211  *
4212  * The symbol's hash value is passed in for efficiency reasons; that
4213  * eliminates many recomputations of the hash value.
4214  */
4215 int
4216 symlook_obj(SymLook *req, const Obj_Entry *obj)
4217 {
4218     DoneList donelist;
4219     SymLook req1;
4220     int flags, res, mres;
4221 
4222     /*
4223      * If there is at least one valid hash at this point, we prefer to
4224      * use the faster GNU version if available.
4225      */
4226     if (obj->valid_hash_gnu)
4227 	mres = symlook_obj1_gnu(req, obj);
4228     else if (obj->valid_hash_sysv)
4229 	mres = symlook_obj1_sysv(req, obj);
4230     else
4231 	return (EINVAL);
4232 
4233     if (mres == 0) {
4234 	if (obj->needed_filtees != NULL) {
4235 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4236 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4237 	    donelist_init(&donelist);
4238 	    symlook_init_from_req(&req1, req);
4239 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4240 	    if (res == 0) {
4241 		req->sym_out = req1.sym_out;
4242 		req->defobj_out = req1.defobj_out;
4243 	    }
4244 	    return (res);
4245 	}
4246 	if (obj->needed_aux_filtees != NULL) {
4247 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4248 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4249 	    donelist_init(&donelist);
4250 	    symlook_init_from_req(&req1, req);
4251 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4252 	    if (res == 0) {
4253 		req->sym_out = req1.sym_out;
4254 		req->defobj_out = req1.defobj_out;
4255 		return (res);
4256 	    }
4257 	}
4258     }
4259     return (mres);
4260 }
4261 
4262 /* Symbol match routine common to both hash functions */
4263 static bool
4264 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4265     const unsigned long symnum)
4266 {
4267 	Elf_Versym verndx;
4268 	const Elf_Sym *symp;
4269 	const char *strp;
4270 
4271 	symp = obj->symtab + symnum;
4272 	strp = obj->strtab + symp->st_name;
4273 
4274 	switch (ELF_ST_TYPE(symp->st_info)) {
4275 	case STT_FUNC:
4276 	case STT_NOTYPE:
4277 	case STT_OBJECT:
4278 	case STT_COMMON:
4279 	case STT_GNU_IFUNC:
4280 		if (symp->st_value == 0)
4281 			return (false);
4282 		/* fallthrough */
4283 	case STT_TLS:
4284 		if (symp->st_shndx != SHN_UNDEF)
4285 			break;
4286 #ifndef __mips__
4287 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4288 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4289 			break;
4290 		/* fallthrough */
4291 #endif
4292 	default:
4293 		return (false);
4294 	}
4295 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4296 		return (false);
4297 
4298 	if (req->ventry == NULL) {
4299 		if (obj->versyms != NULL) {
4300 			verndx = VER_NDX(obj->versyms[symnum]);
4301 			if (verndx > obj->vernum) {
4302 				_rtld_error(
4303 				    "%s: symbol %s references wrong version %d",
4304 				    obj->path, obj->strtab + symnum, verndx);
4305 				return (false);
4306 			}
4307 			/*
4308 			 * If we are not called from dlsym (i.e. this
4309 			 * is a normal relocation from unversioned
4310 			 * binary), accept the symbol immediately if
4311 			 * it happens to have first version after this
4312 			 * shared object became versioned.  Otherwise,
4313 			 * if symbol is versioned and not hidden,
4314 			 * remember it. If it is the only symbol with
4315 			 * this name exported by the shared object, it
4316 			 * will be returned as a match by the calling
4317 			 * function. If symbol is global (verndx < 2)
4318 			 * accept it unconditionally.
4319 			 */
4320 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4321 			    verndx == VER_NDX_GIVEN) {
4322 				result->sym_out = symp;
4323 				return (true);
4324 			}
4325 			else if (verndx >= VER_NDX_GIVEN) {
4326 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4327 				    == 0) {
4328 					if (result->vsymp == NULL)
4329 						result->vsymp = symp;
4330 					result->vcount++;
4331 				}
4332 				return (false);
4333 			}
4334 		}
4335 		result->sym_out = symp;
4336 		return (true);
4337 	}
4338 	if (obj->versyms == NULL) {
4339 		if (object_match_name(obj, req->ventry->name)) {
4340 			_rtld_error("%s: object %s should provide version %s "
4341 			    "for symbol %s", obj_rtld.path, obj->path,
4342 			    req->ventry->name, obj->strtab + symnum);
4343 			return (false);
4344 		}
4345 	} else {
4346 		verndx = VER_NDX(obj->versyms[symnum]);
4347 		if (verndx > obj->vernum) {
4348 			_rtld_error("%s: symbol %s references wrong version %d",
4349 			    obj->path, obj->strtab + symnum, verndx);
4350 			return (false);
4351 		}
4352 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4353 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4354 			/*
4355 			 * Version does not match. Look if this is a
4356 			 * global symbol and if it is not hidden. If
4357 			 * global symbol (verndx < 2) is available,
4358 			 * use it. Do not return symbol if we are
4359 			 * called by dlvsym, because dlvsym looks for
4360 			 * a specific version and default one is not
4361 			 * what dlvsym wants.
4362 			 */
4363 			if ((req->flags & SYMLOOK_DLSYM) ||
4364 			    (verndx >= VER_NDX_GIVEN) ||
4365 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4366 				return (false);
4367 		}
4368 	}
4369 	result->sym_out = symp;
4370 	return (true);
4371 }
4372 
4373 /*
4374  * Search for symbol using SysV hash function.
4375  * obj->buckets is known not to be NULL at this point; the test for this was
4376  * performed with the obj->valid_hash_sysv assignment.
4377  */
4378 static int
4379 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4380 {
4381 	unsigned long symnum;
4382 	Sym_Match_Result matchres;
4383 
4384 	matchres.sym_out = NULL;
4385 	matchres.vsymp = NULL;
4386 	matchres.vcount = 0;
4387 
4388 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4389 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4390 		if (symnum >= obj->nchains)
4391 			return (ESRCH);	/* Bad object */
4392 
4393 		if (matched_symbol(req, obj, &matchres, symnum)) {
4394 			req->sym_out = matchres.sym_out;
4395 			req->defobj_out = obj;
4396 			return (0);
4397 		}
4398 	}
4399 	if (matchres.vcount == 1) {
4400 		req->sym_out = matchres.vsymp;
4401 		req->defobj_out = obj;
4402 		return (0);
4403 	}
4404 	return (ESRCH);
4405 }
4406 
4407 /* Search for symbol using GNU hash function */
4408 static int
4409 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4410 {
4411 	Elf_Addr bloom_word;
4412 	const Elf32_Word *hashval;
4413 	Elf32_Word bucket;
4414 	Sym_Match_Result matchres;
4415 	unsigned int h1, h2;
4416 	unsigned long symnum;
4417 
4418 	matchres.sym_out = NULL;
4419 	matchres.vsymp = NULL;
4420 	matchres.vcount = 0;
4421 
4422 	/* Pick right bitmask word from Bloom filter array */
4423 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4424 	    obj->maskwords_bm_gnu];
4425 
4426 	/* Calculate modulus word size of gnu hash and its derivative */
4427 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4428 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4429 
4430 	/* Filter out the "definitely not in set" queries */
4431 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4432 		return (ESRCH);
4433 
4434 	/* Locate hash chain and corresponding value element*/
4435 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4436 	if (bucket == 0)
4437 		return (ESRCH);
4438 	hashval = &obj->chain_zero_gnu[bucket];
4439 	do {
4440 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4441 			symnum = hashval - obj->chain_zero_gnu;
4442 			if (matched_symbol(req, obj, &matchres, symnum)) {
4443 				req->sym_out = matchres.sym_out;
4444 				req->defobj_out = obj;
4445 				return (0);
4446 			}
4447 		}
4448 	} while ((*hashval++ & 1) == 0);
4449 	if (matchres.vcount == 1) {
4450 		req->sym_out = matchres.vsymp;
4451 		req->defobj_out = obj;
4452 		return (0);
4453 	}
4454 	return (ESRCH);
4455 }
4456 
4457 static void
4458 trace_loaded_objects(Obj_Entry *obj)
4459 {
4460     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4461     int		c;
4462 
4463     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4464 	main_local = "";
4465 
4466     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4467 	fmt1 = "\t%o => %p (%x)\n";
4468 
4469     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4470 	fmt2 = "\t%o (%x)\n";
4471 
4472     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4473 
4474     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4475 	Needed_Entry		*needed;
4476 	char			*name, *path;
4477 	bool			is_lib;
4478 
4479 	if (obj->marker)
4480 	    continue;
4481 	if (list_containers && obj->needed != NULL)
4482 	    rtld_printf("%s:\n", obj->path);
4483 	for (needed = obj->needed; needed; needed = needed->next) {
4484 	    if (needed->obj != NULL) {
4485 		if (needed->obj->traced && !list_containers)
4486 		    continue;
4487 		needed->obj->traced = true;
4488 		path = needed->obj->path;
4489 	    } else
4490 		path = "not found";
4491 
4492 	    name = (char *)obj->strtab + needed->name;
4493 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4494 
4495 	    fmt = is_lib ? fmt1 : fmt2;
4496 	    while ((c = *fmt++) != '\0') {
4497 		switch (c) {
4498 		default:
4499 		    rtld_putchar(c);
4500 		    continue;
4501 		case '\\':
4502 		    switch (c = *fmt) {
4503 		    case '\0':
4504 			continue;
4505 		    case 'n':
4506 			rtld_putchar('\n');
4507 			break;
4508 		    case 't':
4509 			rtld_putchar('\t');
4510 			break;
4511 		    }
4512 		    break;
4513 		case '%':
4514 		    switch (c = *fmt) {
4515 		    case '\0':
4516 			continue;
4517 		    case '%':
4518 		    default:
4519 			rtld_putchar(c);
4520 			break;
4521 		    case 'A':
4522 			rtld_putstr(main_local);
4523 			break;
4524 		    case 'a':
4525 			rtld_putstr(obj_main->path);
4526 			break;
4527 		    case 'o':
4528 			rtld_putstr(name);
4529 			break;
4530 #if 0
4531 		    case 'm':
4532 			rtld_printf("%d", sodp->sod_major);
4533 			break;
4534 		    case 'n':
4535 			rtld_printf("%d", sodp->sod_minor);
4536 			break;
4537 #endif
4538 		    case 'p':
4539 			rtld_putstr(path);
4540 			break;
4541 		    case 'x':
4542 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4543 			  0);
4544 			break;
4545 		    }
4546 		    break;
4547 		}
4548 		++fmt;
4549 	    }
4550 	}
4551     }
4552 }
4553 
4554 /*
4555  * Unload a dlopened object and its dependencies from memory and from
4556  * our data structures.  It is assumed that the DAG rooted in the
4557  * object has already been unreferenced, and that the object has a
4558  * reference count of 0.
4559  */
4560 static void
4561 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4562 {
4563 	Obj_Entry marker, *obj, *next;
4564 
4565 	assert(root->refcount == 0);
4566 
4567 	/*
4568 	 * Pass over the DAG removing unreferenced objects from
4569 	 * appropriate lists.
4570 	 */
4571 	unlink_object(root);
4572 
4573 	/* Unmap all objects that are no longer referenced. */
4574 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4575 		next = TAILQ_NEXT(obj, next);
4576 		if (obj->marker || obj->refcount != 0)
4577 			continue;
4578 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4579 		    obj->mapsize, 0, obj->path);
4580 		dbg("unloading \"%s\"", obj->path);
4581 		/*
4582 		 * Unlink the object now to prevent new references from
4583 		 * being acquired while the bind lock is dropped in
4584 		 * recursive dlclose() invocations.
4585 		 */
4586 		TAILQ_REMOVE(&obj_list, obj, next);
4587 		obj_count--;
4588 
4589 		if (obj->filtees_loaded) {
4590 			if (next != NULL) {
4591 				init_marker(&marker);
4592 				TAILQ_INSERT_BEFORE(next, &marker, next);
4593 				unload_filtees(obj, lockstate);
4594 				next = TAILQ_NEXT(&marker, next);
4595 				TAILQ_REMOVE(&obj_list, &marker, next);
4596 			} else
4597 				unload_filtees(obj, lockstate);
4598 		}
4599 		release_object(obj);
4600 	}
4601 }
4602 
4603 static void
4604 unlink_object(Obj_Entry *root)
4605 {
4606     Objlist_Entry *elm;
4607 
4608     if (root->refcount == 0) {
4609 	/* Remove the object from the RTLD_GLOBAL list. */
4610 	objlist_remove(&list_global, root);
4611 
4612     	/* Remove the object from all objects' DAG lists. */
4613     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4614 	    objlist_remove(&elm->obj->dldags, root);
4615 	    if (elm->obj != root)
4616 		unlink_object(elm->obj);
4617 	}
4618     }
4619 }
4620 
4621 static void
4622 ref_dag(Obj_Entry *root)
4623 {
4624     Objlist_Entry *elm;
4625 
4626     assert(root->dag_inited);
4627     STAILQ_FOREACH(elm, &root->dagmembers, link)
4628 	elm->obj->refcount++;
4629 }
4630 
4631 static void
4632 unref_dag(Obj_Entry *root)
4633 {
4634     Objlist_Entry *elm;
4635 
4636     assert(root->dag_inited);
4637     STAILQ_FOREACH(elm, &root->dagmembers, link)
4638 	elm->obj->refcount--;
4639 }
4640 
4641 /*
4642  * Common code for MD __tls_get_addr().
4643  */
4644 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4645 static void *
4646 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4647 {
4648     Elf_Addr *newdtv, *dtv;
4649     RtldLockState lockstate;
4650     int to_copy;
4651 
4652     dtv = *dtvp;
4653     /* Check dtv generation in case new modules have arrived */
4654     if (dtv[0] != tls_dtv_generation) {
4655 	wlock_acquire(rtld_bind_lock, &lockstate);
4656 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4657 	to_copy = dtv[1];
4658 	if (to_copy > tls_max_index)
4659 	    to_copy = tls_max_index;
4660 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4661 	newdtv[0] = tls_dtv_generation;
4662 	newdtv[1] = tls_max_index;
4663 	free(dtv);
4664 	lock_release(rtld_bind_lock, &lockstate);
4665 	dtv = *dtvp = newdtv;
4666     }
4667 
4668     /* Dynamically allocate module TLS if necessary */
4669     if (dtv[index + 1] == 0) {
4670 	/* Signal safe, wlock will block out signals. */
4671 	wlock_acquire(rtld_bind_lock, &lockstate);
4672 	if (!dtv[index + 1])
4673 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4674 	lock_release(rtld_bind_lock, &lockstate);
4675     }
4676     return ((void *)(dtv[index + 1] + offset));
4677 }
4678 
4679 void *
4680 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4681 {
4682 	Elf_Addr *dtv;
4683 
4684 	dtv = *dtvp;
4685 	/* Check dtv generation in case new modules have arrived */
4686 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4687 	    dtv[index + 1] != 0))
4688 		return ((void *)(dtv[index + 1] + offset));
4689 	return (tls_get_addr_slow(dtvp, index, offset));
4690 }
4691 
4692 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4693     defined(__powerpc__) || defined(__riscv)
4694 
4695 /*
4696  * Allocate Static TLS using the Variant I method.
4697  */
4698 void *
4699 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4700 {
4701     Obj_Entry *obj;
4702     char *tcb;
4703     Elf_Addr **tls;
4704     Elf_Addr *dtv;
4705     Elf_Addr addr;
4706     int i;
4707 
4708     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4709 	return (oldtcb);
4710 
4711     assert(tcbsize >= TLS_TCB_SIZE);
4712     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4713     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4714 
4715     if (oldtcb != NULL) {
4716 	memcpy(tls, oldtcb, tls_static_space);
4717 	free(oldtcb);
4718 
4719 	/* Adjust the DTV. */
4720 	dtv = tls[0];
4721 	for (i = 0; i < dtv[1]; i++) {
4722 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4723 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4724 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4725 	    }
4726 	}
4727     } else {
4728 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4729 	tls[0] = dtv;
4730 	dtv[0] = tls_dtv_generation;
4731 	dtv[1] = tls_max_index;
4732 
4733 	for (obj = globallist_curr(objs); obj != NULL;
4734 	  obj = globallist_next(obj)) {
4735 	    if (obj->tlsoffset > 0) {
4736 		addr = (Elf_Addr)tls + obj->tlsoffset;
4737 		if (obj->tlsinitsize > 0)
4738 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4739 		if (obj->tlssize > obj->tlsinitsize)
4740 		    memset((void*) (addr + obj->tlsinitsize), 0,
4741 			   obj->tlssize - obj->tlsinitsize);
4742 		dtv[obj->tlsindex + 1] = addr;
4743 	    }
4744 	}
4745     }
4746 
4747     return (tcb);
4748 }
4749 
4750 void
4751 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4752 {
4753     Elf_Addr *dtv;
4754     Elf_Addr tlsstart, tlsend;
4755     int dtvsize, i;
4756 
4757     assert(tcbsize >= TLS_TCB_SIZE);
4758 
4759     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4760     tlsend = tlsstart + tls_static_space;
4761 
4762     dtv = *(Elf_Addr **)tlsstart;
4763     dtvsize = dtv[1];
4764     for (i = 0; i < dtvsize; i++) {
4765 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4766 	    free((void*)dtv[i+2]);
4767 	}
4768     }
4769     free(dtv);
4770     free(tcb);
4771 }
4772 
4773 #endif
4774 
4775 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4776 
4777 /*
4778  * Allocate Static TLS using the Variant II method.
4779  */
4780 void *
4781 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4782 {
4783     Obj_Entry *obj;
4784     size_t size, ralign;
4785     char *tls;
4786     Elf_Addr *dtv, *olddtv;
4787     Elf_Addr segbase, oldsegbase, addr;
4788     int i;
4789 
4790     ralign = tcbalign;
4791     if (tls_static_max_align > ralign)
4792 	    ralign = tls_static_max_align;
4793     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4794 
4795     assert(tcbsize >= 2*sizeof(Elf_Addr));
4796     tls = malloc_aligned(size, ralign);
4797     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4798 
4799     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4800     ((Elf_Addr*)segbase)[0] = segbase;
4801     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4802 
4803     dtv[0] = tls_dtv_generation;
4804     dtv[1] = tls_max_index;
4805 
4806     if (oldtls) {
4807 	/*
4808 	 * Copy the static TLS block over whole.
4809 	 */
4810 	oldsegbase = (Elf_Addr) oldtls;
4811 	memcpy((void *)(segbase - tls_static_space),
4812 	       (const void *)(oldsegbase - tls_static_space),
4813 	       tls_static_space);
4814 
4815 	/*
4816 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4817 	 * move them over.
4818 	 */
4819 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4820 	for (i = 0; i < olddtv[1]; i++) {
4821 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4822 		dtv[i+2] = olddtv[i+2];
4823 		olddtv[i+2] = 0;
4824 	    }
4825 	}
4826 
4827 	/*
4828 	 * We assume that this block was the one we created with
4829 	 * allocate_initial_tls().
4830 	 */
4831 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4832     } else {
4833 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4834 		if (obj->marker || obj->tlsoffset == 0)
4835 			continue;
4836 		addr = segbase - obj->tlsoffset;
4837 		memset((void*) (addr + obj->tlsinitsize),
4838 		       0, obj->tlssize - obj->tlsinitsize);
4839 		if (obj->tlsinit)
4840 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4841 		dtv[obj->tlsindex + 1] = addr;
4842 	}
4843     }
4844 
4845     return (void*) segbase;
4846 }
4847 
4848 void
4849 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4850 {
4851     Elf_Addr* dtv;
4852     size_t size, ralign;
4853     int dtvsize, i;
4854     Elf_Addr tlsstart, tlsend;
4855 
4856     /*
4857      * Figure out the size of the initial TLS block so that we can
4858      * find stuff which ___tls_get_addr() allocated dynamically.
4859      */
4860     ralign = tcbalign;
4861     if (tls_static_max_align > ralign)
4862 	    ralign = tls_static_max_align;
4863     size = round(tls_static_space, ralign);
4864 
4865     dtv = ((Elf_Addr**)tls)[1];
4866     dtvsize = dtv[1];
4867     tlsend = (Elf_Addr) tls;
4868     tlsstart = tlsend - size;
4869     for (i = 0; i < dtvsize; i++) {
4870 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4871 		free_aligned((void *)dtv[i + 2]);
4872 	}
4873     }
4874 
4875     free_aligned((void *)tlsstart);
4876     free((void*) dtv);
4877 }
4878 
4879 #endif
4880 
4881 /*
4882  * Allocate TLS block for module with given index.
4883  */
4884 void *
4885 allocate_module_tls(int index)
4886 {
4887     Obj_Entry* obj;
4888     char* p;
4889 
4890     TAILQ_FOREACH(obj, &obj_list, next) {
4891 	if (obj->marker)
4892 	    continue;
4893 	if (obj->tlsindex == index)
4894 	    break;
4895     }
4896     if (!obj) {
4897 	_rtld_error("Can't find module with TLS index %d", index);
4898 	rtld_die();
4899     }
4900 
4901     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4902     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4903     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4904 
4905     return p;
4906 }
4907 
4908 bool
4909 allocate_tls_offset(Obj_Entry *obj)
4910 {
4911     size_t off;
4912 
4913     if (obj->tls_done)
4914 	return true;
4915 
4916     if (obj->tlssize == 0) {
4917 	obj->tls_done = true;
4918 	return true;
4919     }
4920 
4921     if (tls_last_offset == 0)
4922 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4923     else
4924 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4925 				   obj->tlssize, obj->tlsalign);
4926 
4927     /*
4928      * If we have already fixed the size of the static TLS block, we
4929      * must stay within that size. When allocating the static TLS, we
4930      * leave a small amount of space spare to be used for dynamically
4931      * loading modules which use static TLS.
4932      */
4933     if (tls_static_space != 0) {
4934 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4935 	    return false;
4936     } else if (obj->tlsalign > tls_static_max_align) {
4937 	    tls_static_max_align = obj->tlsalign;
4938     }
4939 
4940     tls_last_offset = obj->tlsoffset = off;
4941     tls_last_size = obj->tlssize;
4942     obj->tls_done = true;
4943 
4944     return true;
4945 }
4946 
4947 void
4948 free_tls_offset(Obj_Entry *obj)
4949 {
4950 
4951     /*
4952      * If we were the last thing to allocate out of the static TLS
4953      * block, we give our space back to the 'allocator'. This is a
4954      * simplistic workaround to allow libGL.so.1 to be loaded and
4955      * unloaded multiple times.
4956      */
4957     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4958 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4959 	tls_last_offset -= obj->tlssize;
4960 	tls_last_size = 0;
4961     }
4962 }
4963 
4964 void *
4965 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4966 {
4967     void *ret;
4968     RtldLockState lockstate;
4969 
4970     wlock_acquire(rtld_bind_lock, &lockstate);
4971     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4972       tcbsize, tcbalign);
4973     lock_release(rtld_bind_lock, &lockstate);
4974     return (ret);
4975 }
4976 
4977 void
4978 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4979 {
4980     RtldLockState lockstate;
4981 
4982     wlock_acquire(rtld_bind_lock, &lockstate);
4983     free_tls(tcb, tcbsize, tcbalign);
4984     lock_release(rtld_bind_lock, &lockstate);
4985 }
4986 
4987 static void
4988 object_add_name(Obj_Entry *obj, const char *name)
4989 {
4990     Name_Entry *entry;
4991     size_t len;
4992 
4993     len = strlen(name);
4994     entry = malloc(sizeof(Name_Entry) + len);
4995 
4996     if (entry != NULL) {
4997 	strcpy(entry->name, name);
4998 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4999     }
5000 }
5001 
5002 static int
5003 object_match_name(const Obj_Entry *obj, const char *name)
5004 {
5005     Name_Entry *entry;
5006 
5007     STAILQ_FOREACH(entry, &obj->names, link) {
5008 	if (strcmp(name, entry->name) == 0)
5009 	    return (1);
5010     }
5011     return (0);
5012 }
5013 
5014 static Obj_Entry *
5015 locate_dependency(const Obj_Entry *obj, const char *name)
5016 {
5017     const Objlist_Entry *entry;
5018     const Needed_Entry *needed;
5019 
5020     STAILQ_FOREACH(entry, &list_main, link) {
5021 	if (object_match_name(entry->obj, name))
5022 	    return entry->obj;
5023     }
5024 
5025     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5026 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5027 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5028 	    /*
5029 	     * If there is DT_NEEDED for the name we are looking for,
5030 	     * we are all set.  Note that object might not be found if
5031 	     * dependency was not loaded yet, so the function can
5032 	     * return NULL here.  This is expected and handled
5033 	     * properly by the caller.
5034 	     */
5035 	    return (needed->obj);
5036 	}
5037     }
5038     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5039 	obj->path, name);
5040     rtld_die();
5041 }
5042 
5043 static int
5044 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5045     const Elf_Vernaux *vna)
5046 {
5047     const Elf_Verdef *vd;
5048     const char *vername;
5049 
5050     vername = refobj->strtab + vna->vna_name;
5051     vd = depobj->verdef;
5052     if (vd == NULL) {
5053 	_rtld_error("%s: version %s required by %s not defined",
5054 	    depobj->path, vername, refobj->path);
5055 	return (-1);
5056     }
5057     for (;;) {
5058 	if (vd->vd_version != VER_DEF_CURRENT) {
5059 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5060 		depobj->path, vd->vd_version);
5061 	    return (-1);
5062 	}
5063 	if (vna->vna_hash == vd->vd_hash) {
5064 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5065 		((char *)vd + vd->vd_aux);
5066 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5067 		return (0);
5068 	}
5069 	if (vd->vd_next == 0)
5070 	    break;
5071 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5072     }
5073     if (vna->vna_flags & VER_FLG_WEAK)
5074 	return (0);
5075     _rtld_error("%s: version %s required by %s not found",
5076 	depobj->path, vername, refobj->path);
5077     return (-1);
5078 }
5079 
5080 static int
5081 rtld_verify_object_versions(Obj_Entry *obj)
5082 {
5083     const Elf_Verneed *vn;
5084     const Elf_Verdef  *vd;
5085     const Elf_Verdaux *vda;
5086     const Elf_Vernaux *vna;
5087     const Obj_Entry *depobj;
5088     int maxvernum, vernum;
5089 
5090     if (obj->ver_checked)
5091 	return (0);
5092     obj->ver_checked = true;
5093 
5094     maxvernum = 0;
5095     /*
5096      * Walk over defined and required version records and figure out
5097      * max index used by any of them. Do very basic sanity checking
5098      * while there.
5099      */
5100     vn = obj->verneed;
5101     while (vn != NULL) {
5102 	if (vn->vn_version != VER_NEED_CURRENT) {
5103 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5104 		obj->path, vn->vn_version);
5105 	    return (-1);
5106 	}
5107 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5108 	for (;;) {
5109 	    vernum = VER_NEED_IDX(vna->vna_other);
5110 	    if (vernum > maxvernum)
5111 		maxvernum = vernum;
5112 	    if (vna->vna_next == 0)
5113 		 break;
5114 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5115 	}
5116 	if (vn->vn_next == 0)
5117 	    break;
5118 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5119     }
5120 
5121     vd = obj->verdef;
5122     while (vd != NULL) {
5123 	if (vd->vd_version != VER_DEF_CURRENT) {
5124 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5125 		obj->path, vd->vd_version);
5126 	    return (-1);
5127 	}
5128 	vernum = VER_DEF_IDX(vd->vd_ndx);
5129 	if (vernum > maxvernum)
5130 		maxvernum = vernum;
5131 	if (vd->vd_next == 0)
5132 	    break;
5133 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5134     }
5135 
5136     if (maxvernum == 0)
5137 	return (0);
5138 
5139     /*
5140      * Store version information in array indexable by version index.
5141      * Verify that object version requirements are satisfied along the
5142      * way.
5143      */
5144     obj->vernum = maxvernum + 1;
5145     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5146 
5147     vd = obj->verdef;
5148     while (vd != NULL) {
5149 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5150 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5151 	    assert(vernum <= maxvernum);
5152 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5153 	    obj->vertab[vernum].hash = vd->vd_hash;
5154 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5155 	    obj->vertab[vernum].file = NULL;
5156 	    obj->vertab[vernum].flags = 0;
5157 	}
5158 	if (vd->vd_next == 0)
5159 	    break;
5160 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5161     }
5162 
5163     vn = obj->verneed;
5164     while (vn != NULL) {
5165 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5166 	if (depobj == NULL)
5167 	    return (-1);
5168 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5169 	for (;;) {
5170 	    if (check_object_provided_version(obj, depobj, vna))
5171 		return (-1);
5172 	    vernum = VER_NEED_IDX(vna->vna_other);
5173 	    assert(vernum <= maxvernum);
5174 	    obj->vertab[vernum].hash = vna->vna_hash;
5175 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5176 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5177 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5178 		VER_INFO_HIDDEN : 0;
5179 	    if (vna->vna_next == 0)
5180 		 break;
5181 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5182 	}
5183 	if (vn->vn_next == 0)
5184 	    break;
5185 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5186     }
5187     return 0;
5188 }
5189 
5190 static int
5191 rtld_verify_versions(const Objlist *objlist)
5192 {
5193     Objlist_Entry *entry;
5194     int rc;
5195 
5196     rc = 0;
5197     STAILQ_FOREACH(entry, objlist, link) {
5198 	/*
5199 	 * Skip dummy objects or objects that have their version requirements
5200 	 * already checked.
5201 	 */
5202 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5203 	    continue;
5204 	if (rtld_verify_object_versions(entry->obj) == -1) {
5205 	    rc = -1;
5206 	    if (ld_tracing == NULL)
5207 		break;
5208 	}
5209     }
5210     if (rc == 0 || ld_tracing != NULL)
5211     	rc = rtld_verify_object_versions(&obj_rtld);
5212     return rc;
5213 }
5214 
5215 const Ver_Entry *
5216 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5217 {
5218     Elf_Versym vernum;
5219 
5220     if (obj->vertab) {
5221 	vernum = VER_NDX(obj->versyms[symnum]);
5222 	if (vernum >= obj->vernum) {
5223 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5224 		obj->path, obj->strtab + symnum, vernum);
5225 	} else if (obj->vertab[vernum].hash != 0) {
5226 	    return &obj->vertab[vernum];
5227 	}
5228     }
5229     return NULL;
5230 }
5231 
5232 int
5233 _rtld_get_stack_prot(void)
5234 {
5235 
5236 	return (stack_prot);
5237 }
5238 
5239 int
5240 _rtld_is_dlopened(void *arg)
5241 {
5242 	Obj_Entry *obj;
5243 	RtldLockState lockstate;
5244 	int res;
5245 
5246 	rlock_acquire(rtld_bind_lock, &lockstate);
5247 	obj = dlcheck(arg);
5248 	if (obj == NULL)
5249 		obj = obj_from_addr(arg);
5250 	if (obj == NULL) {
5251 		_rtld_error("No shared object contains address");
5252 		lock_release(rtld_bind_lock, &lockstate);
5253 		return (-1);
5254 	}
5255 	res = obj->dlopened ? 1 : 0;
5256 	lock_release(rtld_bind_lock, &lockstate);
5257 	return (res);
5258 }
5259 
5260 int
5261 obj_enforce_relro(Obj_Entry *obj)
5262 {
5263 
5264 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5265 	    PROT_READ) == -1) {
5266 		_rtld_error("%s: Cannot enforce relro protection: %s",
5267 		    obj->path, rtld_strerror(errno));
5268 		return (-1);
5269 	}
5270 	return (0);
5271 }
5272 
5273 static void
5274 map_stacks_exec(RtldLockState *lockstate)
5275 {
5276 	void (*thr_map_stacks_exec)(void);
5277 
5278 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5279 		return;
5280 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5281 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5282 	if (thr_map_stacks_exec != NULL) {
5283 		stack_prot |= PROT_EXEC;
5284 		thr_map_stacks_exec();
5285 	}
5286 }
5287 
5288 void
5289 symlook_init(SymLook *dst, const char *name)
5290 {
5291 
5292 	bzero(dst, sizeof(*dst));
5293 	dst->name = name;
5294 	dst->hash = elf_hash(name);
5295 	dst->hash_gnu = gnu_hash(name);
5296 }
5297 
5298 static void
5299 symlook_init_from_req(SymLook *dst, const SymLook *src)
5300 {
5301 
5302 	dst->name = src->name;
5303 	dst->hash = src->hash;
5304 	dst->hash_gnu = src->hash_gnu;
5305 	dst->ventry = src->ventry;
5306 	dst->flags = src->flags;
5307 	dst->defobj_out = NULL;
5308 	dst->sym_out = NULL;
5309 	dst->lockstate = src->lockstate;
5310 }
5311 
5312 static int
5313 open_binary_fd(const char *argv0, bool search_in_path)
5314 {
5315 	char *pathenv, *pe, binpath[PATH_MAX];
5316 	int fd;
5317 
5318 	if (search_in_path && strchr(argv0, '/') == NULL) {
5319 		pathenv = getenv("PATH");
5320 		if (pathenv == NULL) {
5321 			_rtld_error("-p and no PATH environment variable");
5322 			rtld_die();
5323 		}
5324 		pathenv = strdup(pathenv);
5325 		if (pathenv == NULL) {
5326 			_rtld_error("Cannot allocate memory");
5327 			rtld_die();
5328 		}
5329 		fd = -1;
5330 		errno = ENOENT;
5331 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5332 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5333 			    sizeof(binpath))
5334 				continue;
5335 			if (binpath[0] != '\0' &&
5336 			    strlcat(binpath, "/", sizeof(binpath)) >=
5337 			    sizeof(binpath))
5338 				continue;
5339 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5340 			    sizeof(binpath))
5341 				continue;
5342 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5343 			if (fd != -1 || errno != ENOENT)
5344 				break;
5345 		}
5346 		free(pathenv);
5347 	} else {
5348 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5349 	}
5350 
5351 	if (fd == -1) {
5352 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5353 		rtld_die();
5354 	}
5355 	return (fd);
5356 }
5357 
5358 /*
5359  * Parse a set of command-line arguments.
5360  */
5361 static int
5362 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5363 {
5364 	const char *arg;
5365 	int fd, i, j, arglen;
5366 	char opt;
5367 
5368 	dbg("Parsing command-line arguments");
5369 	*use_pathp = false;
5370 	*fdp = -1;
5371 
5372 	for (i = 1; i < argc; i++ ) {
5373 		arg = argv[i];
5374 		dbg("argv[%d]: '%s'", i, arg);
5375 
5376 		/*
5377 		 * rtld arguments end with an explicit "--" or with the first
5378 		 * non-prefixed argument.
5379 		 */
5380 		if (strcmp(arg, "--") == 0) {
5381 			i++;
5382 			break;
5383 		}
5384 		if (arg[0] != '-')
5385 			break;
5386 
5387 		/*
5388 		 * All other arguments are single-character options that can
5389 		 * be combined, so we need to search through `arg` for them.
5390 		 */
5391 		arglen = strlen(arg);
5392 		for (j = 1; j < arglen; j++) {
5393 			opt = arg[j];
5394 			if (opt == 'h') {
5395 				print_usage(argv[0]);
5396 				_exit(0);
5397 			} else if (opt == 'f') {
5398 			/*
5399 			 * -f XX can be used to specify a descriptor for the
5400 			 * binary named at the command line (i.e., the later
5401 			 * argument will specify the process name but the
5402 			 * descriptor is what will actually be executed)
5403 			 */
5404 			if (j != arglen - 1) {
5405 				/* -f must be the last option in, e.g., -abcf */
5406 				_rtld_error("Invalid options: %s", arg);
5407 				rtld_die();
5408 			}
5409 			i++;
5410 			fd = parse_integer(argv[i]);
5411 			if (fd == -1) {
5412 				_rtld_error("Invalid file descriptor: '%s'",
5413 				    argv[i]);
5414 				rtld_die();
5415 			}
5416 			*fdp = fd;
5417 			break;
5418 			} else if (opt == 'p') {
5419 				*use_pathp = true;
5420 			} else {
5421 				_rtld_error("Invalid argument: '%s'", arg);
5422 				print_usage(argv[0]);
5423 				rtld_die();
5424 			}
5425 		}
5426 	}
5427 
5428 	return (i);
5429 }
5430 
5431 /*
5432  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5433  */
5434 static int
5435 parse_integer(const char *str)
5436 {
5437 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5438 	const char *orig;
5439 	int n;
5440 	char c;
5441 
5442 	orig = str;
5443 	n = 0;
5444 	for (c = *str; c != '\0'; c = *++str) {
5445 		if (c < '0' || c > '9')
5446 			return (-1);
5447 
5448 		n *= RADIX;
5449 		n += c - '0';
5450 	}
5451 
5452 	/* Make sure we actually parsed something. */
5453 	if (str == orig)
5454 		return (-1);
5455 	return (n);
5456 }
5457 
5458 static void
5459 print_usage(const char *argv0)
5460 {
5461 
5462 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5463 		"\n"
5464 		"Options:\n"
5465 		"  -h        Display this help message\n"
5466 		"  -p        Search in PATH for named binary\n"
5467 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5468 		"  --        End of RTLD options\n"
5469 		"  <binary>  Name of process to execute\n"
5470 		"  <args>    Arguments to the executed process\n", argv0);
5471 }
5472 
5473 /*
5474  * Overrides for libc_pic-provided functions.
5475  */
5476 
5477 int
5478 __getosreldate(void)
5479 {
5480 	size_t len;
5481 	int oid[2];
5482 	int error, osrel;
5483 
5484 	if (osreldate != 0)
5485 		return (osreldate);
5486 
5487 	oid[0] = CTL_KERN;
5488 	oid[1] = KERN_OSRELDATE;
5489 	osrel = 0;
5490 	len = sizeof(osrel);
5491 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5492 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5493 		osreldate = osrel;
5494 	return (osreldate);
5495 }
5496 
5497 void
5498 exit(int status)
5499 {
5500 
5501 	_exit(status);
5502 }
5503 
5504 void (*__cleanup)(void);
5505 int __isthreaded = 0;
5506 int _thread_autoinit_dummy_decl = 1;
5507 
5508 /*
5509  * No unresolved symbols for rtld.
5510  */
5511 void
5512 __pthread_cxa_finalize(struct dl_phdr_info *a)
5513 {
5514 }
5515 
5516 const char *
5517 rtld_strerror(int errnum)
5518 {
5519 
5520 	if (errnum < 0 || errnum >= sys_nerr)
5521 		return ("Unknown error");
5522 	return (sys_errlist[errnum]);
5523 }
5524