xref: /freebsd/libexec/rtld-elf/rtld.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
82     const Elf_Dyn **, const Elf_Dyn **);
83 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
84     const Elf_Dyn *);
85 static void digest_dynamic(Obj_Entry *, int);
86 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
87 static Obj_Entry *dlcheck(void *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *, int *);
97 static const char *gethints(bool);
98 static void init_dag(Obj_Entry *);
99 static void init_pagesizes(Elf_Auxinfo **aux_info);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static int parse_libdir(const char *);
122 static void *path_enumerate(const char *, path_enum_proc, void *);
123 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126     int flags, RtldLockState *lockstate);
127 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128     RtldLockState *);
129 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130     int flags, RtldLockState *lockstate);
131 static int rtld_dirname(const char *, char *);
132 static int rtld_dirname_abs(const char *, char *);
133 static void *rtld_dlopen(const char *name, int fd, int mode);
134 static void rtld_exit(void);
135 static char *search_library_path(const char *, const char *);
136 static char *search_library_pathfds(const char *, const char *, int *);
137 static const void **get_program_var_addr(const char *, RtldLockState *);
138 static void set_program_var(const char *, const void *);
139 static int symlook_default(SymLook *, const Obj_Entry *refobj);
140 static int symlook_global(SymLook *, DoneList *);
141 static void symlook_init_from_req(SymLook *, const SymLook *);
142 static int symlook_list(SymLook *, const Objlist *, DoneList *);
143 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
144 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
145 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
146 static void trace_loaded_objects(Obj_Entry *);
147 static void unlink_object(Obj_Entry *);
148 static void unload_object(Obj_Entry *);
149 static void unref_dag(Obj_Entry *);
150 static void ref_dag(Obj_Entry *);
151 static char *origin_subst_one(char *, const char *, const char *, bool);
152 static char *origin_subst(char *, const char *);
153 static void preinit_main(void);
154 static int  rtld_verify_versions(const Objlist *);
155 static int  rtld_verify_object_versions(Obj_Entry *);
156 static void object_add_name(Obj_Entry *, const char *);
157 static int  object_match_name(const Obj_Entry *, const char *);
158 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
159 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
160     struct dl_phdr_info *phdr_info);
161 static uint32_t gnu_hash(const char *);
162 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
163     const unsigned long);
164 
165 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
166 void _r_debug_postinit(struct link_map *) __noinline __exported;
167 
168 int __sys_openat(int, const char *, int, ...);
169 
170 /*
171  * Data declarations.
172  */
173 static char *error_message;	/* Message for dlerror(), or NULL */
174 struct r_debug r_debug __exported;	/* for GDB; */
175 static bool libmap_disable;	/* Disable libmap */
176 static bool ld_loadfltr;	/* Immediate filters processing */
177 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
178 static bool trust;		/* False for setuid and setgid programs */
179 static bool dangerous_ld_env;	/* True if environment variables have been
180 				   used to affect the libraries loaded */
181 static char *ld_bind_now;	/* Environment variable for immediate binding */
182 static char *ld_debug;		/* Environment variable for debugging */
183 static char *ld_library_path;	/* Environment variable for search path */
184 static char *ld_library_dirs;	/* Environment variable for library descriptors */
185 static char *ld_preload;	/* Environment variable for libraries to
186 				   load first */
187 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
188 static char *ld_tracing;	/* Called from ldd to print libs */
189 static char *ld_utrace;		/* Use utrace() to log events. */
190 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
191 static Obj_Entry **obj_tail;	/* Link field of last object in list */
192 static Obj_Entry *obj_main;	/* The main program shared object */
193 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
194 static unsigned int obj_count;	/* Number of objects in obj_list */
195 static unsigned int obj_loads;	/* Number of objects in obj_list */
196 
197 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
198   STAILQ_HEAD_INITIALIZER(list_global);
199 static Objlist list_main =	/* Objects loaded at program startup */
200   STAILQ_HEAD_INITIALIZER(list_main);
201 static Objlist list_fini =	/* Objects needing fini() calls */
202   STAILQ_HEAD_INITIALIZER(list_fini);
203 
204 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
205 
206 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
207 
208 extern Elf_Dyn _DYNAMIC;
209 #pragma weak _DYNAMIC
210 #ifndef RTLD_IS_DYNAMIC
211 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
212 #endif
213 
214 int dlclose(void *) __exported;
215 char *dlerror(void) __exported;
216 void *dlopen(const char *, int) __exported;
217 void *fdlopen(int, int) __exported;
218 void *dlsym(void *, const char *) __exported;
219 dlfunc_t dlfunc(void *, const char *) __exported;
220 void *dlvsym(void *, const char *, const char *) __exported;
221 int dladdr(const void *, Dl_info *) __exported;
222 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
223     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
224 int dlinfo(void *, int , void *) __exported;
225 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
226 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
227 int _rtld_get_stack_prot(void) __exported;
228 int _rtld_is_dlopened(void *) __exported;
229 void _rtld_error(const char *, ...) __exported;
230 
231 int npagesizes, osreldate;
232 size_t *pagesizes;
233 
234 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
235 
236 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
237 static int max_stack_flags;
238 
239 /*
240  * Global declarations normally provided by crt1.  The dynamic linker is
241  * not built with crt1, so we have to provide them ourselves.
242  */
243 char *__progname;
244 char **environ;
245 
246 /*
247  * Used to pass argc, argv to init functions.
248  */
249 int main_argc;
250 char **main_argv;
251 
252 /*
253  * Globals to control TLS allocation.
254  */
255 size_t tls_last_offset;		/* Static TLS offset of last module */
256 size_t tls_last_size;		/* Static TLS size of last module */
257 size_t tls_static_space;	/* Static TLS space allocated */
258 size_t tls_static_max_align;
259 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
260 int tls_max_index = 1;		/* Largest module index allocated */
261 
262 bool ld_library_path_rpath = false;
263 
264 /*
265  * Fill in a DoneList with an allocation large enough to hold all of
266  * the currently-loaded objects.  Keep this as a macro since it calls
267  * alloca and we want that to occur within the scope of the caller.
268  */
269 #define donelist_init(dlp)					\
270     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
271     assert((dlp)->objs != NULL),				\
272     (dlp)->num_alloc = obj_count,				\
273     (dlp)->num_used = 0)
274 
275 #define	UTRACE_DLOPEN_START		1
276 #define	UTRACE_DLOPEN_STOP		2
277 #define	UTRACE_DLCLOSE_START		3
278 #define	UTRACE_DLCLOSE_STOP		4
279 #define	UTRACE_LOAD_OBJECT		5
280 #define	UTRACE_UNLOAD_OBJECT		6
281 #define	UTRACE_ADD_RUNDEP		7
282 #define	UTRACE_PRELOAD_FINISHED		8
283 #define	UTRACE_INIT_CALL		9
284 #define	UTRACE_FINI_CALL		10
285 #define	UTRACE_DLSYM_START		11
286 #define	UTRACE_DLSYM_STOP		12
287 
288 struct utrace_rtld {
289 	char sig[4];			/* 'RTLD' */
290 	int event;
291 	void *handle;
292 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
293 	size_t mapsize;
294 	int refcnt;			/* Used for 'mode' */
295 	char name[MAXPATHLEN];
296 };
297 
298 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
299 	if (ld_utrace != NULL)					\
300 		ld_utrace_log(e, h, mb, ms, r, n);		\
301 } while (0)
302 
303 static void
304 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
305     int refcnt, const char *name)
306 {
307 	struct utrace_rtld ut;
308 
309 	ut.sig[0] = 'R';
310 	ut.sig[1] = 'T';
311 	ut.sig[2] = 'L';
312 	ut.sig[3] = 'D';
313 	ut.event = event;
314 	ut.handle = handle;
315 	ut.mapbase = mapbase;
316 	ut.mapsize = mapsize;
317 	ut.refcnt = refcnt;
318 	bzero(ut.name, sizeof(ut.name));
319 	if (name)
320 		strlcpy(ut.name, name, sizeof(ut.name));
321 	utrace(&ut, sizeof(ut));
322 }
323 
324 /*
325  * Main entry point for dynamic linking.  The first argument is the
326  * stack pointer.  The stack is expected to be laid out as described
327  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
328  * Specifically, the stack pointer points to a word containing
329  * ARGC.  Following that in the stack is a null-terminated sequence
330  * of pointers to argument strings.  Then comes a null-terminated
331  * sequence of pointers to environment strings.  Finally, there is a
332  * sequence of "auxiliary vector" entries.
333  *
334  * The second argument points to a place to store the dynamic linker's
335  * exit procedure pointer and the third to a place to store the main
336  * program's object.
337  *
338  * The return value is the main program's entry point.
339  */
340 func_ptr_type
341 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
342 {
343     Elf_Auxinfo *aux_info[AT_COUNT];
344     int i;
345     int argc;
346     char **argv;
347     char **env;
348     Elf_Auxinfo *aux;
349     Elf_Auxinfo *auxp;
350     const char *argv0;
351     Objlist_Entry *entry;
352     Obj_Entry *obj;
353     Obj_Entry **preload_tail;
354     Obj_Entry *last_interposer;
355     Objlist initlist;
356     RtldLockState lockstate;
357     char *library_path_rpath;
358     int mib[2];
359     size_t len;
360 
361     /*
362      * On entry, the dynamic linker itself has not been relocated yet.
363      * Be very careful not to reference any global data until after
364      * init_rtld has returned.  It is OK to reference file-scope statics
365      * and string constants, and to call static and global functions.
366      */
367 
368     /* Find the auxiliary vector on the stack. */
369     argc = *sp++;
370     argv = (char **) sp;
371     sp += argc + 1;	/* Skip over arguments and NULL terminator */
372     env = (char **) sp;
373     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
374 	;
375     aux = (Elf_Auxinfo *) sp;
376 
377     /* Digest the auxiliary vector. */
378     for (i = 0;  i < AT_COUNT;  i++)
379 	aux_info[i] = NULL;
380     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
381 	if (auxp->a_type < AT_COUNT)
382 	    aux_info[auxp->a_type] = auxp;
383     }
384 
385     /* Initialize and relocate ourselves. */
386     assert(aux_info[AT_BASE] != NULL);
387     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
388 
389     __progname = obj_rtld.path;
390     argv0 = argv[0] != NULL ? argv[0] : "(null)";
391     environ = env;
392     main_argc = argc;
393     main_argv = argv;
394 
395     if (aux_info[AT_CANARY] != NULL &&
396 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
397 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
398 	    if (i > sizeof(__stack_chk_guard))
399 		    i = sizeof(__stack_chk_guard);
400 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
401     } else {
402 	mib[0] = CTL_KERN;
403 	mib[1] = KERN_ARND;
404 
405 	len = sizeof(__stack_chk_guard);
406 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
407 	    len != sizeof(__stack_chk_guard)) {
408 		/* If sysctl was unsuccessful, use the "terminator canary". */
409 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
410 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
411 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
412 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
413 	}
414     }
415 
416     trust = !issetugid();
417 
418     ld_bind_now = getenv(LD_ "BIND_NOW");
419     /*
420      * If the process is tainted, then we un-set the dangerous environment
421      * variables.  The process will be marked as tainted until setuid(2)
422      * is called.  If any child process calls setuid(2) we do not want any
423      * future processes to honor the potentially un-safe variables.
424      */
425     if (!trust) {
426         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
427 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
428 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
429 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
430 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
431 		_rtld_error("environment corrupt; aborting");
432 		rtld_die();
433 	}
434     }
435     ld_debug = getenv(LD_ "DEBUG");
436     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
437     libmap_override = getenv(LD_ "LIBMAP");
438     ld_library_path = getenv(LD_ "LIBRARY_PATH");
439     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
440     ld_preload = getenv(LD_ "PRELOAD");
441     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
442     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
443     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
444     if (library_path_rpath != NULL) {
445 	    if (library_path_rpath[0] == 'y' ||
446 		library_path_rpath[0] == 'Y' ||
447 		library_path_rpath[0] == '1')
448 		    ld_library_path_rpath = true;
449 	    else
450 		    ld_library_path_rpath = false;
451     }
452     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
453 	(ld_library_path != NULL) || (ld_preload != NULL) ||
454 	(ld_elf_hints_path != NULL) || ld_loadfltr;
455     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
456     ld_utrace = getenv(LD_ "UTRACE");
457 
458     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
459 	ld_elf_hints_path = _PATH_ELF_HINTS;
460 
461     if (ld_debug != NULL && *ld_debug != '\0')
462 	debug = 1;
463     dbg("%s is initialized, base address = %p", __progname,
464 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
465     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
466     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
467 
468     dbg("initializing thread locks");
469     lockdflt_init();
470 
471     /*
472      * Load the main program, or process its program header if it is
473      * already loaded.
474      */
475     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
476 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
477 	dbg("loading main program");
478 	obj_main = map_object(fd, argv0, NULL);
479 	close(fd);
480 	if (obj_main == NULL)
481 	    rtld_die();
482 	max_stack_flags = obj->stack_flags;
483     } else {				/* Main program already loaded. */
484 	const Elf_Phdr *phdr;
485 	int phnum;
486 	caddr_t entry;
487 
488 	dbg("processing main program's program header");
489 	assert(aux_info[AT_PHDR] != NULL);
490 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
491 	assert(aux_info[AT_PHNUM] != NULL);
492 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
493 	assert(aux_info[AT_PHENT] != NULL);
494 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
495 	assert(aux_info[AT_ENTRY] != NULL);
496 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
497 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
498 	    rtld_die();
499     }
500 
501     if (aux_info[AT_EXECPATH] != 0) {
502 	    char *kexecpath;
503 	    char buf[MAXPATHLEN];
504 
505 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
506 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
507 	    if (kexecpath[0] == '/')
508 		    obj_main->path = kexecpath;
509 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
510 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
511 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
512 		    obj_main->path = xstrdup(argv0);
513 	    else
514 		    obj_main->path = xstrdup(buf);
515     } else {
516 	    dbg("No AT_EXECPATH");
517 	    obj_main->path = xstrdup(argv0);
518     }
519     dbg("obj_main path %s", obj_main->path);
520     obj_main->mainprog = true;
521 
522     if (aux_info[AT_STACKPROT] != NULL &&
523       aux_info[AT_STACKPROT]->a_un.a_val != 0)
524 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
525 
526 #ifndef COMPAT_32BIT
527     /*
528      * Get the actual dynamic linker pathname from the executable if
529      * possible.  (It should always be possible.)  That ensures that
530      * gdb will find the right dynamic linker even if a non-standard
531      * one is being used.
532      */
533     if (obj_main->interp != NULL &&
534       strcmp(obj_main->interp, obj_rtld.path) != 0) {
535 	free(obj_rtld.path);
536 	obj_rtld.path = xstrdup(obj_main->interp);
537         __progname = obj_rtld.path;
538     }
539 #endif
540 
541     digest_dynamic(obj_main, 0);
542     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
543 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
544 	obj_main->dynsymcount);
545 
546     linkmap_add(obj_main);
547     linkmap_add(&obj_rtld);
548 
549     /* Link the main program into the list of objects. */
550     *obj_tail = obj_main;
551     obj_tail = &obj_main->next;
552     obj_count++;
553     obj_loads++;
554 
555     /* Initialize a fake symbol for resolving undefined weak references. */
556     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
557     sym_zero.st_shndx = SHN_UNDEF;
558     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
559 
560     if (!libmap_disable)
561         libmap_disable = (bool)lm_init(libmap_override);
562 
563     dbg("loading LD_PRELOAD libraries");
564     if (load_preload_objects() == -1)
565 	rtld_die();
566     preload_tail = obj_tail;
567 
568     dbg("loading needed objects");
569     if (load_needed_objects(obj_main, 0) == -1)
570 	rtld_die();
571 
572     /* Make a list of all objects loaded at startup. */
573     last_interposer = obj_main;
574     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
575 	if (obj->z_interpose && obj != obj_main) {
576 	    objlist_put_after(&list_main, last_interposer, obj);
577 	    last_interposer = obj;
578 	} else {
579 	    objlist_push_tail(&list_main, obj);
580 	}
581     	obj->refcount++;
582     }
583 
584     dbg("checking for required versions");
585     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
586 	rtld_die();
587 
588     if (ld_tracing) {		/* We're done */
589 	trace_loaded_objects(obj_main);
590 	exit(0);
591     }
592 
593     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
594        dump_relocations(obj_main);
595        exit (0);
596     }
597 
598     /*
599      * Processing tls relocations requires having the tls offsets
600      * initialized.  Prepare offsets before starting initial
601      * relocation processing.
602      */
603     dbg("initializing initial thread local storage offsets");
604     STAILQ_FOREACH(entry, &list_main, link) {
605 	/*
606 	 * Allocate all the initial objects out of the static TLS
607 	 * block even if they didn't ask for it.
608 	 */
609 	allocate_tls_offset(entry->obj);
610     }
611 
612     if (relocate_objects(obj_main,
613       ld_bind_now != NULL && *ld_bind_now != '\0',
614       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
615 	rtld_die();
616 
617     dbg("doing copy relocations");
618     if (do_copy_relocations(obj_main) == -1)
619 	rtld_die();
620 
621     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
622        dump_relocations(obj_main);
623        exit (0);
624     }
625 
626     /*
627      * Setup TLS for main thread.  This must be done after the
628      * relocations are processed, since tls initialization section
629      * might be the subject for relocations.
630      */
631     dbg("initializing initial thread local storage");
632     allocate_initial_tls(obj_list);
633 
634     dbg("initializing key program variables");
635     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
636     set_program_var("environ", env);
637     set_program_var("__elf_aux_vector", aux);
638 
639     /* Make a list of init functions to call. */
640     objlist_init(&initlist);
641     initlist_add_objects(obj_list, preload_tail, &initlist);
642 
643     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
644 
645     map_stacks_exec(NULL);
646 
647     dbg("resolving ifuncs");
648     if (resolve_objects_ifunc(obj_main,
649       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
650       NULL) == -1)
651 	rtld_die();
652 
653     if (!obj_main->crt_no_init) {
654 	/*
655 	 * Make sure we don't call the main program's init and fini
656 	 * functions for binaries linked with old crt1 which calls
657 	 * _init itself.
658 	 */
659 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
660 	obj_main->preinit_array = obj_main->init_array =
661 	    obj_main->fini_array = (Elf_Addr)NULL;
662     }
663 
664     wlock_acquire(rtld_bind_lock, &lockstate);
665     if (obj_main->crt_no_init)
666 	preinit_main();
667     objlist_call_init(&initlist, &lockstate);
668     _r_debug_postinit(&obj_main->linkmap);
669     objlist_clear(&initlist);
670     dbg("loading filtees");
671     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
672 	if (ld_loadfltr || obj->z_loadfltr)
673 	    load_filtees(obj, 0, &lockstate);
674     }
675     lock_release(rtld_bind_lock, &lockstate);
676 
677     dbg("transferring control to program entry point = %p", obj_main->entry);
678 
679     /* Return the exit procedure and the program entry point. */
680     *exit_proc = rtld_exit;
681     *objp = obj_main;
682     return (func_ptr_type) obj_main->entry;
683 }
684 
685 void *
686 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
687 {
688 	void *ptr;
689 	Elf_Addr target;
690 
691 	ptr = (void *)make_function_pointer(def, obj);
692 	target = ((Elf_Addr (*)(void))ptr)();
693 	return ((void *)target);
694 }
695 
696 Elf_Addr
697 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
698 {
699     const Elf_Rel *rel;
700     const Elf_Sym *def;
701     const Obj_Entry *defobj;
702     Elf_Addr *where;
703     Elf_Addr target;
704     RtldLockState lockstate;
705 
706     rlock_acquire(rtld_bind_lock, &lockstate);
707     if (sigsetjmp(lockstate.env, 0) != 0)
708 	    lock_upgrade(rtld_bind_lock, &lockstate);
709     if (obj->pltrel)
710 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
711     else
712 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
713 
714     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
715     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
716 	&lockstate);
717     if (def == NULL)
718 	rtld_die();
719     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
720 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
721     else
722 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
723 
724     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
725       defobj->strtab + def->st_name, basename(obj->path),
726       (void *)target, basename(defobj->path));
727 
728     /*
729      * Write the new contents for the jmpslot. Note that depending on
730      * architecture, the value which we need to return back to the
731      * lazy binding trampoline may or may not be the target
732      * address. The value returned from reloc_jmpslot() is the value
733      * that the trampoline needs.
734      */
735     target = reloc_jmpslot(where, target, defobj, obj, rel);
736     lock_release(rtld_bind_lock, &lockstate);
737     return target;
738 }
739 
740 /*
741  * Error reporting function.  Use it like printf.  If formats the message
742  * into a buffer, and sets things up so that the next call to dlerror()
743  * will return the message.
744  */
745 void
746 _rtld_error(const char *fmt, ...)
747 {
748     static char buf[512];
749     va_list ap;
750 
751     va_start(ap, fmt);
752     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
753     error_message = buf;
754     va_end(ap);
755 }
756 
757 /*
758  * Return a dynamically-allocated copy of the current error message, if any.
759  */
760 static char *
761 errmsg_save(void)
762 {
763     return error_message == NULL ? NULL : xstrdup(error_message);
764 }
765 
766 /*
767  * Restore the current error message from a copy which was previously saved
768  * by errmsg_save().  The copy is freed.
769  */
770 static void
771 errmsg_restore(char *saved_msg)
772 {
773     if (saved_msg == NULL)
774 	error_message = NULL;
775     else {
776 	_rtld_error("%s", saved_msg);
777 	free(saved_msg);
778     }
779 }
780 
781 static const char *
782 basename(const char *name)
783 {
784     const char *p = strrchr(name, '/');
785     return p != NULL ? p + 1 : name;
786 }
787 
788 static struct utsname uts;
789 
790 static char *
791 origin_subst_one(char *real, const char *kw, const char *subst,
792     bool may_free)
793 {
794 	char *p, *p1, *res, *resp;
795 	int subst_len, kw_len, subst_count, old_len, new_len;
796 
797 	kw_len = strlen(kw);
798 
799 	/*
800 	 * First, count the number of the keyword occurences, to
801 	 * preallocate the final string.
802 	 */
803 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
804 		p1 = strstr(p, kw);
805 		if (p1 == NULL)
806 			break;
807 	}
808 
809 	/*
810 	 * If the keyword is not found, just return.
811 	 */
812 	if (subst_count == 0)
813 		return (may_free ? real : xstrdup(real));
814 
815 	/*
816 	 * There is indeed something to substitute.  Calculate the
817 	 * length of the resulting string, and allocate it.
818 	 */
819 	subst_len = strlen(subst);
820 	old_len = strlen(real);
821 	new_len = old_len + (subst_len - kw_len) * subst_count;
822 	res = xmalloc(new_len + 1);
823 
824 	/*
825 	 * Now, execute the substitution loop.
826 	 */
827 	for (p = real, resp = res, *resp = '\0';;) {
828 		p1 = strstr(p, kw);
829 		if (p1 != NULL) {
830 			/* Copy the prefix before keyword. */
831 			memcpy(resp, p, p1 - p);
832 			resp += p1 - p;
833 			/* Keyword replacement. */
834 			memcpy(resp, subst, subst_len);
835 			resp += subst_len;
836 			*resp = '\0';
837 			p = p1 + kw_len;
838 		} else
839 			break;
840 	}
841 
842 	/* Copy to the end of string and finish. */
843 	strcat(resp, p);
844 	if (may_free)
845 		free(real);
846 	return (res);
847 }
848 
849 static char *
850 origin_subst(char *real, const char *origin_path)
851 {
852 	char *res1, *res2, *res3, *res4;
853 
854 	if (uts.sysname[0] == '\0') {
855 		if (uname(&uts) != 0) {
856 			_rtld_error("utsname failed: %d", errno);
857 			return (NULL);
858 		}
859 	}
860 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
861 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
862 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
863 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
864 	return (res4);
865 }
866 
867 void
868 rtld_die(void)
869 {
870     const char *msg = dlerror();
871 
872     if (msg == NULL)
873 	msg = "Fatal error";
874     rtld_fdputstr(STDERR_FILENO, msg);
875     rtld_fdputchar(STDERR_FILENO, '\n');
876     _exit(1);
877 }
878 
879 /*
880  * Process a shared object's DYNAMIC section, and save the important
881  * information in its Obj_Entry structure.
882  */
883 static void
884 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
885     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
886 {
887     const Elf_Dyn *dynp;
888     Needed_Entry **needed_tail = &obj->needed;
889     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
890     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
891     const Elf_Hashelt *hashtab;
892     const Elf32_Word *hashval;
893     Elf32_Word bkt, nmaskwords;
894     int bloom_size32;
895     int plttype = DT_REL;
896 
897     *dyn_rpath = NULL;
898     *dyn_soname = NULL;
899     *dyn_runpath = NULL;
900 
901     obj->bind_now = false;
902     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
903 	switch (dynp->d_tag) {
904 
905 	case DT_REL:
906 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
907 	    break;
908 
909 	case DT_RELSZ:
910 	    obj->relsize = dynp->d_un.d_val;
911 	    break;
912 
913 	case DT_RELENT:
914 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
915 	    break;
916 
917 	case DT_JMPREL:
918 	    obj->pltrel = (const Elf_Rel *)
919 	      (obj->relocbase + dynp->d_un.d_ptr);
920 	    break;
921 
922 	case DT_PLTRELSZ:
923 	    obj->pltrelsize = dynp->d_un.d_val;
924 	    break;
925 
926 	case DT_RELA:
927 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
928 	    break;
929 
930 	case DT_RELASZ:
931 	    obj->relasize = dynp->d_un.d_val;
932 	    break;
933 
934 	case DT_RELAENT:
935 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
936 	    break;
937 
938 	case DT_PLTREL:
939 	    plttype = dynp->d_un.d_val;
940 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
941 	    break;
942 
943 	case DT_SYMTAB:
944 	    obj->symtab = (const Elf_Sym *)
945 	      (obj->relocbase + dynp->d_un.d_ptr);
946 	    break;
947 
948 	case DT_SYMENT:
949 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
950 	    break;
951 
952 	case DT_STRTAB:
953 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
954 	    break;
955 
956 	case DT_STRSZ:
957 	    obj->strsize = dynp->d_un.d_val;
958 	    break;
959 
960 	case DT_VERNEED:
961 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
962 		dynp->d_un.d_val);
963 	    break;
964 
965 	case DT_VERNEEDNUM:
966 	    obj->verneednum = dynp->d_un.d_val;
967 	    break;
968 
969 	case DT_VERDEF:
970 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
971 		dynp->d_un.d_val);
972 	    break;
973 
974 	case DT_VERDEFNUM:
975 	    obj->verdefnum = dynp->d_un.d_val;
976 	    break;
977 
978 	case DT_VERSYM:
979 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
980 		dynp->d_un.d_val);
981 	    break;
982 
983 	case DT_HASH:
984 	    {
985 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
986 		    dynp->d_un.d_ptr);
987 		obj->nbuckets = hashtab[0];
988 		obj->nchains = hashtab[1];
989 		obj->buckets = hashtab + 2;
990 		obj->chains = obj->buckets + obj->nbuckets;
991 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
992 		  obj->buckets != NULL;
993 	    }
994 	    break;
995 
996 	case DT_GNU_HASH:
997 	    {
998 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
999 		    dynp->d_un.d_ptr);
1000 		obj->nbuckets_gnu = hashtab[0];
1001 		obj->symndx_gnu = hashtab[1];
1002 		nmaskwords = hashtab[2];
1003 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1004 		obj->maskwords_bm_gnu = nmaskwords - 1;
1005 		obj->shift2_gnu = hashtab[3];
1006 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1007 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1008 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1009 		  obj->symndx_gnu;
1010 		/* Number of bitmask words is required to be power of 2 */
1011 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1012 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1013 	    }
1014 	    break;
1015 
1016 	case DT_NEEDED:
1017 	    if (!obj->rtld) {
1018 		Needed_Entry *nep = NEW(Needed_Entry);
1019 		nep->name = dynp->d_un.d_val;
1020 		nep->obj = NULL;
1021 		nep->next = NULL;
1022 
1023 		*needed_tail = nep;
1024 		needed_tail = &nep->next;
1025 	    }
1026 	    break;
1027 
1028 	case DT_FILTER:
1029 	    if (!obj->rtld) {
1030 		Needed_Entry *nep = NEW(Needed_Entry);
1031 		nep->name = dynp->d_un.d_val;
1032 		nep->obj = NULL;
1033 		nep->next = NULL;
1034 
1035 		*needed_filtees_tail = nep;
1036 		needed_filtees_tail = &nep->next;
1037 	    }
1038 	    break;
1039 
1040 	case DT_AUXILIARY:
1041 	    if (!obj->rtld) {
1042 		Needed_Entry *nep = NEW(Needed_Entry);
1043 		nep->name = dynp->d_un.d_val;
1044 		nep->obj = NULL;
1045 		nep->next = NULL;
1046 
1047 		*needed_aux_filtees_tail = nep;
1048 		needed_aux_filtees_tail = &nep->next;
1049 	    }
1050 	    break;
1051 
1052 	case DT_PLTGOT:
1053 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1054 	    break;
1055 
1056 	case DT_TEXTREL:
1057 	    obj->textrel = true;
1058 	    break;
1059 
1060 	case DT_SYMBOLIC:
1061 	    obj->symbolic = true;
1062 	    break;
1063 
1064 	case DT_RPATH:
1065 	    /*
1066 	     * We have to wait until later to process this, because we
1067 	     * might not have gotten the address of the string table yet.
1068 	     */
1069 	    *dyn_rpath = dynp;
1070 	    break;
1071 
1072 	case DT_SONAME:
1073 	    *dyn_soname = dynp;
1074 	    break;
1075 
1076 	case DT_RUNPATH:
1077 	    *dyn_runpath = dynp;
1078 	    break;
1079 
1080 	case DT_INIT:
1081 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1082 	    break;
1083 
1084 	case DT_PREINIT_ARRAY:
1085 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1086 	    break;
1087 
1088 	case DT_PREINIT_ARRAYSZ:
1089 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1090 	    break;
1091 
1092 	case DT_INIT_ARRAY:
1093 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1094 	    break;
1095 
1096 	case DT_INIT_ARRAYSZ:
1097 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1098 	    break;
1099 
1100 	case DT_FINI:
1101 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1102 	    break;
1103 
1104 	case DT_FINI_ARRAY:
1105 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1106 	    break;
1107 
1108 	case DT_FINI_ARRAYSZ:
1109 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1110 	    break;
1111 
1112 	/*
1113 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1114 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1115 	 */
1116 
1117 #ifndef __mips__
1118 	case DT_DEBUG:
1119 	    /* XXX - not implemented yet */
1120 	    if (!early)
1121 		dbg("Filling in DT_DEBUG entry");
1122 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1123 	    break;
1124 #endif
1125 
1126 	case DT_FLAGS:
1127 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1128 		    obj->z_origin = true;
1129 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1130 		    obj->symbolic = true;
1131 		if (dynp->d_un.d_val & DF_TEXTREL)
1132 		    obj->textrel = true;
1133 		if (dynp->d_un.d_val & DF_BIND_NOW)
1134 		    obj->bind_now = true;
1135 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1136 		    ;*/
1137 	    break;
1138 #ifdef __mips__
1139 	case DT_MIPS_LOCAL_GOTNO:
1140 		obj->local_gotno = dynp->d_un.d_val;
1141 	    break;
1142 
1143 	case DT_MIPS_SYMTABNO:
1144 		obj->symtabno = dynp->d_un.d_val;
1145 		break;
1146 
1147 	case DT_MIPS_GOTSYM:
1148 		obj->gotsym = dynp->d_un.d_val;
1149 		break;
1150 
1151 	case DT_MIPS_RLD_MAP:
1152 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1153 		break;
1154 #endif
1155 
1156 	case DT_FLAGS_1:
1157 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1158 		    obj->z_noopen = true;
1159 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1160 		    obj->z_origin = true;
1161 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1162 		    obj->z_global = true;
1163 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1164 		    obj->bind_now = true;
1165 		if (dynp->d_un.d_val & DF_1_NODELETE)
1166 		    obj->z_nodelete = true;
1167 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1168 		    obj->z_loadfltr = true;
1169 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1170 		    obj->z_interpose = true;
1171 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1172 		    obj->z_nodeflib = true;
1173 	    break;
1174 
1175 	default:
1176 	    if (!early) {
1177 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1178 		    (long)dynp->d_tag);
1179 	    }
1180 	    break;
1181 	}
1182     }
1183 
1184     obj->traced = false;
1185 
1186     if (plttype == DT_RELA) {
1187 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1188 	obj->pltrel = NULL;
1189 	obj->pltrelasize = obj->pltrelsize;
1190 	obj->pltrelsize = 0;
1191     }
1192 
1193     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1194     if (obj->valid_hash_sysv)
1195 	obj->dynsymcount = obj->nchains;
1196     else if (obj->valid_hash_gnu) {
1197 	obj->dynsymcount = 0;
1198 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1199 	    if (obj->buckets_gnu[bkt] == 0)
1200 		continue;
1201 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1202 	    do
1203 		obj->dynsymcount++;
1204 	    while ((*hashval++ & 1u) == 0);
1205 	}
1206 	obj->dynsymcount += obj->symndx_gnu;
1207     }
1208 }
1209 
1210 static void
1211 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1212     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1213 {
1214 
1215     if (obj->z_origin && obj->origin_path == NULL) {
1216 	obj->origin_path = xmalloc(PATH_MAX);
1217 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1218 	    rtld_die();
1219     }
1220 
1221     if (dyn_runpath != NULL) {
1222 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1223 	if (obj->z_origin)
1224 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1225     }
1226     else if (dyn_rpath != NULL) {
1227 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1228 	if (obj->z_origin)
1229 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1230     }
1231 
1232     if (dyn_soname != NULL)
1233 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1234 }
1235 
1236 static void
1237 digest_dynamic(Obj_Entry *obj, int early)
1238 {
1239 	const Elf_Dyn *dyn_rpath;
1240 	const Elf_Dyn *dyn_soname;
1241 	const Elf_Dyn *dyn_runpath;
1242 
1243 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1244 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1245 }
1246 
1247 /*
1248  * Process a shared object's program header.  This is used only for the
1249  * main program, when the kernel has already loaded the main program
1250  * into memory before calling the dynamic linker.  It creates and
1251  * returns an Obj_Entry structure.
1252  */
1253 static Obj_Entry *
1254 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1255 {
1256     Obj_Entry *obj;
1257     const Elf_Phdr *phlimit = phdr + phnum;
1258     const Elf_Phdr *ph;
1259     Elf_Addr note_start, note_end;
1260     int nsegs = 0;
1261 
1262     obj = obj_new();
1263     for (ph = phdr;  ph < phlimit;  ph++) {
1264 	if (ph->p_type != PT_PHDR)
1265 	    continue;
1266 
1267 	obj->phdr = phdr;
1268 	obj->phsize = ph->p_memsz;
1269 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1270 	break;
1271     }
1272 
1273     obj->stack_flags = PF_X | PF_R | PF_W;
1274 
1275     for (ph = phdr;  ph < phlimit;  ph++) {
1276 	switch (ph->p_type) {
1277 
1278 	case PT_INTERP:
1279 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1280 	    break;
1281 
1282 	case PT_LOAD:
1283 	    if (nsegs == 0) {	/* First load segment */
1284 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1285 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1286 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1287 		  obj->vaddrbase;
1288 	    } else {		/* Last load segment */
1289 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1290 		  obj->vaddrbase;
1291 	    }
1292 	    nsegs++;
1293 	    break;
1294 
1295 	case PT_DYNAMIC:
1296 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1297 	    break;
1298 
1299 	case PT_TLS:
1300 	    obj->tlsindex = 1;
1301 	    obj->tlssize = ph->p_memsz;
1302 	    obj->tlsalign = ph->p_align;
1303 	    obj->tlsinitsize = ph->p_filesz;
1304 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1305 	    break;
1306 
1307 	case PT_GNU_STACK:
1308 	    obj->stack_flags = ph->p_flags;
1309 	    break;
1310 
1311 	case PT_GNU_RELRO:
1312 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1313 	    obj->relro_size = round_page(ph->p_memsz);
1314 	    break;
1315 
1316 	case PT_NOTE:
1317 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1318 	    note_end = note_start + ph->p_filesz;
1319 	    digest_notes(obj, note_start, note_end);
1320 	    break;
1321 	}
1322     }
1323     if (nsegs < 1) {
1324 	_rtld_error("%s: too few PT_LOAD segments", path);
1325 	return NULL;
1326     }
1327 
1328     obj->entry = entry;
1329     return obj;
1330 }
1331 
1332 void
1333 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1334 {
1335 	const Elf_Note *note;
1336 	const char *note_name;
1337 	uintptr_t p;
1338 
1339 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1340 	    note = (const Elf_Note *)((const char *)(note + 1) +
1341 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1342 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1343 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1344 		    note->n_descsz != sizeof(int32_t))
1345 			continue;
1346 		if (note->n_type != ABI_NOTETYPE &&
1347 		    note->n_type != CRT_NOINIT_NOTETYPE)
1348 			continue;
1349 		note_name = (const char *)(note + 1);
1350 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1351 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1352 			continue;
1353 		switch (note->n_type) {
1354 		case ABI_NOTETYPE:
1355 			/* FreeBSD osrel note */
1356 			p = (uintptr_t)(note + 1);
1357 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1358 			obj->osrel = *(const int32_t *)(p);
1359 			dbg("note osrel %d", obj->osrel);
1360 			break;
1361 		case CRT_NOINIT_NOTETYPE:
1362 			/* FreeBSD 'crt does not call init' note */
1363 			obj->crt_no_init = true;
1364 			dbg("note crt_no_init");
1365 			break;
1366 		}
1367 	}
1368 }
1369 
1370 static Obj_Entry *
1371 dlcheck(void *handle)
1372 {
1373     Obj_Entry *obj;
1374 
1375     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1376 	if (obj == (Obj_Entry *) handle)
1377 	    break;
1378 
1379     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1380 	_rtld_error("Invalid shared object handle %p", handle);
1381 	return NULL;
1382     }
1383     return obj;
1384 }
1385 
1386 /*
1387  * If the given object is already in the donelist, return true.  Otherwise
1388  * add the object to the list and return false.
1389  */
1390 static bool
1391 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1392 {
1393     unsigned int i;
1394 
1395     for (i = 0;  i < dlp->num_used;  i++)
1396 	if (dlp->objs[i] == obj)
1397 	    return true;
1398     /*
1399      * Our donelist allocation should always be sufficient.  But if
1400      * our threads locking isn't working properly, more shared objects
1401      * could have been loaded since we allocated the list.  That should
1402      * never happen, but we'll handle it properly just in case it does.
1403      */
1404     if (dlp->num_used < dlp->num_alloc)
1405 	dlp->objs[dlp->num_used++] = obj;
1406     return false;
1407 }
1408 
1409 /*
1410  * Hash function for symbol table lookup.  Don't even think about changing
1411  * this.  It is specified by the System V ABI.
1412  */
1413 unsigned long
1414 elf_hash(const char *name)
1415 {
1416     const unsigned char *p = (const unsigned char *) name;
1417     unsigned long h = 0;
1418     unsigned long g;
1419 
1420     while (*p != '\0') {
1421 	h = (h << 4) + *p++;
1422 	if ((g = h & 0xf0000000) != 0)
1423 	    h ^= g >> 24;
1424 	h &= ~g;
1425     }
1426     return h;
1427 }
1428 
1429 /*
1430  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1431  * unsigned in case it's implemented with a wider type.
1432  */
1433 static uint32_t
1434 gnu_hash(const char *s)
1435 {
1436 	uint32_t h;
1437 	unsigned char c;
1438 
1439 	h = 5381;
1440 	for (c = *s; c != '\0'; c = *++s)
1441 		h = h * 33 + c;
1442 	return (h & 0xffffffff);
1443 }
1444 
1445 
1446 /*
1447  * Find the library with the given name, and return its full pathname.
1448  * The returned string is dynamically allocated.  Generates an error
1449  * message and returns NULL if the library cannot be found.
1450  *
1451  * If the second argument is non-NULL, then it refers to an already-
1452  * loaded shared object, whose library search path will be searched.
1453  *
1454  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1455  * descriptor (which is close-on-exec) will be passed out via the third
1456  * argument.
1457  *
1458  * The search order is:
1459  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1460  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1461  *   LD_LIBRARY_PATH
1462  *   DT_RUNPATH in the referencing file
1463  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1464  *	 from list)
1465  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1466  *
1467  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1468  */
1469 static char *
1470 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1471 {
1472     char *pathname;
1473     char *name;
1474     bool nodeflib, objgiven;
1475 
1476     objgiven = refobj != NULL;
1477     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1478 	if (xname[0] != '/' && !trust) {
1479 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1480 	      xname);
1481 	    return NULL;
1482 	}
1483 	if (objgiven && refobj->z_origin) {
1484 		return (origin_subst(__DECONST(char *, xname),
1485 		    refobj->origin_path));
1486 	} else {
1487 		return (xstrdup(xname));
1488 	}
1489     }
1490 
1491     if (libmap_disable || !objgiven ||
1492 	(name = lm_find(refobj->path, xname)) == NULL)
1493 	name = (char *)xname;
1494 
1495     dbg(" Searching for \"%s\"", name);
1496 
1497     /*
1498      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1499      * back to pre-conforming behaviour if user requested so with
1500      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1501      * nodeflib.
1502      */
1503     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1504 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1505 	  (refobj != NULL &&
1506 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1507 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1508           (pathname = search_library_path(name, gethints(false))) != NULL ||
1509 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1510 	    return (pathname);
1511     } else {
1512 	nodeflib = objgiven ? refobj->z_nodeflib : false;
1513 	if ((objgiven &&
1514 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1515 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1516 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1517 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1518 	  (objgiven &&
1519 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1520 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1521 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1522 	  (objgiven && !nodeflib &&
1523 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1524 	    return (pathname);
1525     }
1526 
1527     if (objgiven && refobj->path != NULL) {
1528 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1529 	  name, basename(refobj->path));
1530     } else {
1531 	_rtld_error("Shared object \"%s\" not found", name);
1532     }
1533     return NULL;
1534 }
1535 
1536 /*
1537  * Given a symbol number in a referencing object, find the corresponding
1538  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1539  * no definition was found.  Returns a pointer to the Obj_Entry of the
1540  * defining object via the reference parameter DEFOBJ_OUT.
1541  */
1542 const Elf_Sym *
1543 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1544     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1545     RtldLockState *lockstate)
1546 {
1547     const Elf_Sym *ref;
1548     const Elf_Sym *def;
1549     const Obj_Entry *defobj;
1550     SymLook req;
1551     const char *name;
1552     int res;
1553 
1554     /*
1555      * If we have already found this symbol, get the information from
1556      * the cache.
1557      */
1558     if (symnum >= refobj->dynsymcount)
1559 	return NULL;	/* Bad object */
1560     if (cache != NULL && cache[symnum].sym != NULL) {
1561 	*defobj_out = cache[symnum].obj;
1562 	return cache[symnum].sym;
1563     }
1564 
1565     ref = refobj->symtab + symnum;
1566     name = refobj->strtab + ref->st_name;
1567     def = NULL;
1568     defobj = NULL;
1569 
1570     /*
1571      * We don't have to do a full scale lookup if the symbol is local.
1572      * We know it will bind to the instance in this load module; to
1573      * which we already have a pointer (ie ref). By not doing a lookup,
1574      * we not only improve performance, but it also avoids unresolvable
1575      * symbols when local symbols are not in the hash table. This has
1576      * been seen with the ia64 toolchain.
1577      */
1578     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1579 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1580 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1581 		symnum);
1582 	}
1583 	symlook_init(&req, name);
1584 	req.flags = flags;
1585 	req.ventry = fetch_ventry(refobj, symnum);
1586 	req.lockstate = lockstate;
1587 	res = symlook_default(&req, refobj);
1588 	if (res == 0) {
1589 	    def = req.sym_out;
1590 	    defobj = req.defobj_out;
1591 	}
1592     } else {
1593 	def = ref;
1594 	defobj = refobj;
1595     }
1596 
1597     /*
1598      * If we found no definition and the reference is weak, treat the
1599      * symbol as having the value zero.
1600      */
1601     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1602 	def = &sym_zero;
1603 	defobj = obj_main;
1604     }
1605 
1606     if (def != NULL) {
1607 	*defobj_out = defobj;
1608 	/* Record the information in the cache to avoid subsequent lookups. */
1609 	if (cache != NULL) {
1610 	    cache[symnum].sym = def;
1611 	    cache[symnum].obj = defobj;
1612 	}
1613     } else {
1614 	if (refobj != &obj_rtld)
1615 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1616     }
1617     return def;
1618 }
1619 
1620 /*
1621  * Return the search path from the ldconfig hints file, reading it if
1622  * necessary.  If nostdlib is true, then the default search paths are
1623  * not added to result.
1624  *
1625  * Returns NULL if there are problems with the hints file,
1626  * or if the search path there is empty.
1627  */
1628 static const char *
1629 gethints(bool nostdlib)
1630 {
1631 	static char *hints, *filtered_path;
1632 	struct elfhints_hdr hdr;
1633 	struct fill_search_info_args sargs, hargs;
1634 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1635 	struct dl_serpath *SLPpath, *hintpath;
1636 	char *p;
1637 	unsigned int SLPndx, hintndx, fndx, fcount;
1638 	int fd;
1639 	size_t flen;
1640 	bool skip;
1641 
1642 	/* First call, read the hints file */
1643 	if (hints == NULL) {
1644 		/* Keep from trying again in case the hints file is bad. */
1645 		hints = "";
1646 
1647 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1648 			return (NULL);
1649 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1650 		    hdr.magic != ELFHINTS_MAGIC ||
1651 		    hdr.version != 1) {
1652 			close(fd);
1653 			return (NULL);
1654 		}
1655 		p = xmalloc(hdr.dirlistlen + 1);
1656 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1657 		    read(fd, p, hdr.dirlistlen + 1) !=
1658 		    (ssize_t)hdr.dirlistlen + 1) {
1659 			free(p);
1660 			close(fd);
1661 			return (NULL);
1662 		}
1663 		hints = p;
1664 		close(fd);
1665 	}
1666 
1667 	/*
1668 	 * If caller agreed to receive list which includes the default
1669 	 * paths, we are done. Otherwise, if we still did not
1670 	 * calculated filtered result, do it now.
1671 	 */
1672 	if (!nostdlib)
1673 		return (hints[0] != '\0' ? hints : NULL);
1674 	if (filtered_path != NULL)
1675 		goto filt_ret;
1676 
1677 	/*
1678 	 * Obtain the list of all configured search paths, and the
1679 	 * list of the default paths.
1680 	 *
1681 	 * First estimate the size of the results.
1682 	 */
1683 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1684 	smeta.dls_cnt = 0;
1685 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1686 	hmeta.dls_cnt = 0;
1687 
1688 	sargs.request = RTLD_DI_SERINFOSIZE;
1689 	sargs.serinfo = &smeta;
1690 	hargs.request = RTLD_DI_SERINFOSIZE;
1691 	hargs.serinfo = &hmeta;
1692 
1693 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1694 	path_enumerate(p, fill_search_info, &hargs);
1695 
1696 	SLPinfo = xmalloc(smeta.dls_size);
1697 	hintinfo = xmalloc(hmeta.dls_size);
1698 
1699 	/*
1700 	 * Next fetch both sets of paths.
1701 	 */
1702 	sargs.request = RTLD_DI_SERINFO;
1703 	sargs.serinfo = SLPinfo;
1704 	sargs.serpath = &SLPinfo->dls_serpath[0];
1705 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1706 
1707 	hargs.request = RTLD_DI_SERINFO;
1708 	hargs.serinfo = hintinfo;
1709 	hargs.serpath = &hintinfo->dls_serpath[0];
1710 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1711 
1712 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1713 	path_enumerate(p, fill_search_info, &hargs);
1714 
1715 	/*
1716 	 * Now calculate the difference between two sets, by excluding
1717 	 * standard paths from the full set.
1718 	 */
1719 	fndx = 0;
1720 	fcount = 0;
1721 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1722 	hintpath = &hintinfo->dls_serpath[0];
1723 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1724 		skip = false;
1725 		SLPpath = &SLPinfo->dls_serpath[0];
1726 		/*
1727 		 * Check each standard path against current.
1728 		 */
1729 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1730 			/* matched, skip the path */
1731 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1732 				skip = true;
1733 				break;
1734 			}
1735 		}
1736 		if (skip)
1737 			continue;
1738 		/*
1739 		 * Not matched against any standard path, add the path
1740 		 * to result. Separate consequtive paths with ':'.
1741 		 */
1742 		if (fcount > 0) {
1743 			filtered_path[fndx] = ':';
1744 			fndx++;
1745 		}
1746 		fcount++;
1747 		flen = strlen(hintpath->dls_name);
1748 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1749 		fndx += flen;
1750 	}
1751 	filtered_path[fndx] = '\0';
1752 
1753 	free(SLPinfo);
1754 	free(hintinfo);
1755 
1756 filt_ret:
1757 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1758 }
1759 
1760 static void
1761 init_dag(Obj_Entry *root)
1762 {
1763     const Needed_Entry *needed;
1764     const Objlist_Entry *elm;
1765     DoneList donelist;
1766 
1767     if (root->dag_inited)
1768 	return;
1769     donelist_init(&donelist);
1770 
1771     /* Root object belongs to own DAG. */
1772     objlist_push_tail(&root->dldags, root);
1773     objlist_push_tail(&root->dagmembers, root);
1774     donelist_check(&donelist, root);
1775 
1776     /*
1777      * Add dependencies of root object to DAG in breadth order
1778      * by exploiting the fact that each new object get added
1779      * to the tail of the dagmembers list.
1780      */
1781     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1782 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1783 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1784 		continue;
1785 	    objlist_push_tail(&needed->obj->dldags, root);
1786 	    objlist_push_tail(&root->dagmembers, needed->obj);
1787 	}
1788     }
1789     root->dag_inited = true;
1790 }
1791 
1792 static void
1793 process_z(Obj_Entry *root)
1794 {
1795 	const Objlist_Entry *elm;
1796 	Obj_Entry *obj;
1797 
1798 	/*
1799 	 * Walk over object DAG and process every dependent object
1800 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
1801 	 * to grow their own DAG.
1802 	 *
1803 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
1804 	 * symlook_global() to work.
1805 	 *
1806 	 * For DF_1_NODELETE, the DAG should have its reference upped.
1807 	 */
1808 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1809 		obj = elm->obj;
1810 		if (obj == NULL)
1811 			continue;
1812 		if (obj->z_nodelete && !obj->ref_nodel) {
1813 			dbg("obj %s -z nodelete", obj->path);
1814 			init_dag(obj);
1815 			ref_dag(obj);
1816 			obj->ref_nodel = true;
1817 		}
1818 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
1819 			dbg("obj %s -z global", obj->path);
1820 			objlist_push_tail(&list_global, obj);
1821 			init_dag(obj);
1822 		}
1823 	}
1824 }
1825 /*
1826  * Initialize the dynamic linker.  The argument is the address at which
1827  * the dynamic linker has been mapped into memory.  The primary task of
1828  * this function is to relocate the dynamic linker.
1829  */
1830 static void
1831 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1832 {
1833     Obj_Entry objtmp;	/* Temporary rtld object */
1834     const Elf_Dyn *dyn_rpath;
1835     const Elf_Dyn *dyn_soname;
1836     const Elf_Dyn *dyn_runpath;
1837 
1838 #ifdef RTLD_INIT_PAGESIZES_EARLY
1839     /* The page size is required by the dynamic memory allocator. */
1840     init_pagesizes(aux_info);
1841 #endif
1842 
1843     /*
1844      * Conjure up an Obj_Entry structure for the dynamic linker.
1845      *
1846      * The "path" member can't be initialized yet because string constants
1847      * cannot yet be accessed. Below we will set it correctly.
1848      */
1849     memset(&objtmp, 0, sizeof(objtmp));
1850     objtmp.path = NULL;
1851     objtmp.rtld = true;
1852     objtmp.mapbase = mapbase;
1853 #ifdef PIC
1854     objtmp.relocbase = mapbase;
1855 #endif
1856     if (RTLD_IS_DYNAMIC()) {
1857 	objtmp.dynamic = rtld_dynamic(&objtmp);
1858 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1859 	assert(objtmp.needed == NULL);
1860 #if !defined(__mips__)
1861 	/* MIPS has a bogus DT_TEXTREL. */
1862 	assert(!objtmp.textrel);
1863 #endif
1864 
1865 	/*
1866 	 * Temporarily put the dynamic linker entry into the object list, so
1867 	 * that symbols can be found.
1868 	 */
1869 
1870 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1871     }
1872 
1873     /* Initialize the object list. */
1874     obj_tail = &obj_list;
1875 
1876     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1877     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1878 
1879 #ifndef RTLD_INIT_PAGESIZES_EARLY
1880     /* The page size is required by the dynamic memory allocator. */
1881     init_pagesizes(aux_info);
1882 #endif
1883 
1884     if (aux_info[AT_OSRELDATE] != NULL)
1885 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1886 
1887     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1888 
1889     /* Replace the path with a dynamically allocated copy. */
1890     obj_rtld.path = xstrdup(PATH_RTLD);
1891 
1892     r_debug.r_brk = r_debug_state;
1893     r_debug.r_state = RT_CONSISTENT;
1894 }
1895 
1896 /*
1897  * Retrieve the array of supported page sizes.  The kernel provides the page
1898  * sizes in increasing order.
1899  */
1900 static void
1901 init_pagesizes(Elf_Auxinfo **aux_info)
1902 {
1903 	static size_t psa[MAXPAGESIZES];
1904 	int mib[2];
1905 	size_t len, size;
1906 
1907 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
1908 	    NULL) {
1909 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
1910 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
1911 	} else {
1912 		len = 2;
1913 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
1914 			size = sizeof(psa);
1915 		else {
1916 			/* As a fallback, retrieve the base page size. */
1917 			size = sizeof(psa[0]);
1918 			if (aux_info[AT_PAGESZ] != NULL) {
1919 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
1920 				goto psa_filled;
1921 			} else {
1922 				mib[0] = CTL_HW;
1923 				mib[1] = HW_PAGESIZE;
1924 				len = 2;
1925 			}
1926 		}
1927 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
1928 			_rtld_error("sysctl for hw.pagesize(s) failed");
1929 			rtld_die();
1930 		}
1931 psa_filled:
1932 		pagesizes = psa;
1933 	}
1934 	npagesizes = size / sizeof(pagesizes[0]);
1935 	/* Discard any invalid entries at the end of the array. */
1936 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
1937 		npagesizes--;
1938 }
1939 
1940 /*
1941  * Add the init functions from a needed object list (and its recursive
1942  * needed objects) to "list".  This is not used directly; it is a helper
1943  * function for initlist_add_objects().  The write lock must be held
1944  * when this function is called.
1945  */
1946 static void
1947 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1948 {
1949     /* Recursively process the successor needed objects. */
1950     if (needed->next != NULL)
1951 	initlist_add_neededs(needed->next, list);
1952 
1953     /* Process the current needed object. */
1954     if (needed->obj != NULL)
1955 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1956 }
1957 
1958 /*
1959  * Scan all of the DAGs rooted in the range of objects from "obj" to
1960  * "tail" and add their init functions to "list".  This recurses over
1961  * the DAGs and ensure the proper init ordering such that each object's
1962  * needed libraries are initialized before the object itself.  At the
1963  * same time, this function adds the objects to the global finalization
1964  * list "list_fini" in the opposite order.  The write lock must be
1965  * held when this function is called.
1966  */
1967 static void
1968 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1969 {
1970 
1971     if (obj->init_scanned || obj->init_done)
1972 	return;
1973     obj->init_scanned = true;
1974 
1975     /* Recursively process the successor objects. */
1976     if (&obj->next != tail)
1977 	initlist_add_objects(obj->next, tail, list);
1978 
1979     /* Recursively process the needed objects. */
1980     if (obj->needed != NULL)
1981 	initlist_add_neededs(obj->needed, list);
1982     if (obj->needed_filtees != NULL)
1983 	initlist_add_neededs(obj->needed_filtees, list);
1984     if (obj->needed_aux_filtees != NULL)
1985 	initlist_add_neededs(obj->needed_aux_filtees, list);
1986 
1987     /* Add the object to the init list. */
1988     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1989       obj->init_array != (Elf_Addr)NULL)
1990 	objlist_push_tail(list, obj);
1991 
1992     /* Add the object to the global fini list in the reverse order. */
1993     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1994       && !obj->on_fini_list) {
1995 	objlist_push_head(&list_fini, obj);
1996 	obj->on_fini_list = true;
1997     }
1998 }
1999 
2000 #ifndef FPTR_TARGET
2001 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2002 #endif
2003 
2004 static void
2005 free_needed_filtees(Needed_Entry *n)
2006 {
2007     Needed_Entry *needed, *needed1;
2008 
2009     for (needed = n; needed != NULL; needed = needed->next) {
2010 	if (needed->obj != NULL) {
2011 	    dlclose(needed->obj);
2012 	    needed->obj = NULL;
2013 	}
2014     }
2015     for (needed = n; needed != NULL; needed = needed1) {
2016 	needed1 = needed->next;
2017 	free(needed);
2018     }
2019 }
2020 
2021 static void
2022 unload_filtees(Obj_Entry *obj)
2023 {
2024 
2025     free_needed_filtees(obj->needed_filtees);
2026     obj->needed_filtees = NULL;
2027     free_needed_filtees(obj->needed_aux_filtees);
2028     obj->needed_aux_filtees = NULL;
2029     obj->filtees_loaded = false;
2030 }
2031 
2032 static void
2033 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2034     RtldLockState *lockstate)
2035 {
2036 
2037     for (; needed != NULL; needed = needed->next) {
2038 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2039 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2040 	  RTLD_LOCAL, lockstate);
2041     }
2042 }
2043 
2044 static void
2045 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2046 {
2047 
2048     lock_restart_for_upgrade(lockstate);
2049     if (!obj->filtees_loaded) {
2050 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2051 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2052 	obj->filtees_loaded = true;
2053     }
2054 }
2055 
2056 static int
2057 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2058 {
2059     Obj_Entry *obj1;
2060 
2061     for (; needed != NULL; needed = needed->next) {
2062 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2063 	  flags & ~RTLD_LO_NOLOAD);
2064 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2065 	    return (-1);
2066     }
2067     return (0);
2068 }
2069 
2070 /*
2071  * Given a shared object, traverse its list of needed objects, and load
2072  * each of them.  Returns 0 on success.  Generates an error message and
2073  * returns -1 on failure.
2074  */
2075 static int
2076 load_needed_objects(Obj_Entry *first, int flags)
2077 {
2078     Obj_Entry *obj;
2079 
2080     for (obj = first;  obj != NULL;  obj = obj->next) {
2081 	if (process_needed(obj, obj->needed, flags) == -1)
2082 	    return (-1);
2083     }
2084     return (0);
2085 }
2086 
2087 static int
2088 load_preload_objects(void)
2089 {
2090     char *p = ld_preload;
2091     Obj_Entry *obj;
2092     static const char delim[] = " \t:;";
2093 
2094     if (p == NULL)
2095 	return 0;
2096 
2097     p += strspn(p, delim);
2098     while (*p != '\0') {
2099 	size_t len = strcspn(p, delim);
2100 	char savech;
2101 
2102 	savech = p[len];
2103 	p[len] = '\0';
2104 	obj = load_object(p, -1, NULL, 0);
2105 	if (obj == NULL)
2106 	    return -1;	/* XXX - cleanup */
2107 	obj->z_interpose = true;
2108 	p[len] = savech;
2109 	p += len;
2110 	p += strspn(p, delim);
2111     }
2112     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2113     return 0;
2114 }
2115 
2116 static const char *
2117 printable_path(const char *path)
2118 {
2119 
2120 	return (path == NULL ? "<unknown>" : path);
2121 }
2122 
2123 /*
2124  * Load a shared object into memory, if it is not already loaded.  The
2125  * object may be specified by name or by user-supplied file descriptor
2126  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2127  * duplicate is.
2128  *
2129  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2130  * on failure.
2131  */
2132 static Obj_Entry *
2133 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2134 {
2135     Obj_Entry *obj;
2136     int fd;
2137     struct stat sb;
2138     char *path;
2139 
2140     fd = -1;
2141     if (name != NULL) {
2142 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2143 	    if (object_match_name(obj, name))
2144 		return (obj);
2145 	}
2146 
2147 	path = find_library(name, refobj, &fd);
2148 	if (path == NULL)
2149 	    return (NULL);
2150     } else
2151 	path = NULL;
2152 
2153     if (fd >= 0) {
2154 	/*
2155 	 * search_library_pathfds() opens a fresh file descriptor for the
2156 	 * library, so there is no need to dup().
2157 	 */
2158     } else if (fd_u == -1) {
2159 	/*
2160 	 * If we didn't find a match by pathname, or the name is not
2161 	 * supplied, open the file and check again by device and inode.
2162 	 * This avoids false mismatches caused by multiple links or ".."
2163 	 * in pathnames.
2164 	 *
2165 	 * To avoid a race, we open the file and use fstat() rather than
2166 	 * using stat().
2167 	 */
2168 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2169 	    _rtld_error("Cannot open \"%s\"", path);
2170 	    free(path);
2171 	    return (NULL);
2172 	}
2173     } else {
2174 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2175 	if (fd == -1) {
2176 	    _rtld_error("Cannot dup fd");
2177 	    free(path);
2178 	    return (NULL);
2179 	}
2180     }
2181     if (fstat(fd, &sb) == -1) {
2182 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2183 	close(fd);
2184 	free(path);
2185 	return NULL;
2186     }
2187     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2188 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2189 	    break;
2190     if (obj != NULL && name != NULL) {
2191 	object_add_name(obj, name);
2192 	free(path);
2193 	close(fd);
2194 	return obj;
2195     }
2196     if (flags & RTLD_LO_NOLOAD) {
2197 	free(path);
2198 	close(fd);
2199 	return (NULL);
2200     }
2201 
2202     /* First use of this object, so we must map it in */
2203     obj = do_load_object(fd, name, path, &sb, flags);
2204     if (obj == NULL)
2205 	free(path);
2206     close(fd);
2207 
2208     return obj;
2209 }
2210 
2211 static Obj_Entry *
2212 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2213   int flags)
2214 {
2215     Obj_Entry *obj;
2216     struct statfs fs;
2217 
2218     /*
2219      * but first, make sure that environment variables haven't been
2220      * used to circumvent the noexec flag on a filesystem.
2221      */
2222     if (dangerous_ld_env) {
2223 	if (fstatfs(fd, &fs) != 0) {
2224 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2225 	    return NULL;
2226 	}
2227 	if (fs.f_flags & MNT_NOEXEC) {
2228 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2229 	    return NULL;
2230 	}
2231     }
2232     dbg("loading \"%s\"", printable_path(path));
2233     obj = map_object(fd, printable_path(path), sbp);
2234     if (obj == NULL)
2235         return NULL;
2236 
2237     /*
2238      * If DT_SONAME is present in the object, digest_dynamic2 already
2239      * added it to the object names.
2240      */
2241     if (name != NULL)
2242 	object_add_name(obj, name);
2243     obj->path = path;
2244     digest_dynamic(obj, 0);
2245     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2246 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2247     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2248       RTLD_LO_DLOPEN) {
2249 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2250 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2251 	munmap(obj->mapbase, obj->mapsize);
2252 	obj_free(obj);
2253 	return (NULL);
2254     }
2255 
2256     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2257     *obj_tail = obj;
2258     obj_tail = &obj->next;
2259     obj_count++;
2260     obj_loads++;
2261     linkmap_add(obj);	/* for GDB & dlinfo() */
2262     max_stack_flags |= obj->stack_flags;
2263 
2264     dbg("  %p .. %p: %s", obj->mapbase,
2265          obj->mapbase + obj->mapsize - 1, obj->path);
2266     if (obj->textrel)
2267 	dbg("  WARNING: %s has impure text", obj->path);
2268     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2269 	obj->path);
2270 
2271     return obj;
2272 }
2273 
2274 static Obj_Entry *
2275 obj_from_addr(const void *addr)
2276 {
2277     Obj_Entry *obj;
2278 
2279     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2280 	if (addr < (void *) obj->mapbase)
2281 	    continue;
2282 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2283 	    return obj;
2284     }
2285     return NULL;
2286 }
2287 
2288 static void
2289 preinit_main(void)
2290 {
2291     Elf_Addr *preinit_addr;
2292     int index;
2293 
2294     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2295     if (preinit_addr == NULL)
2296 	return;
2297 
2298     for (index = 0; index < obj_main->preinit_array_num; index++) {
2299 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2300 	    dbg("calling preinit function for %s at %p", obj_main->path,
2301 	      (void *)preinit_addr[index]);
2302 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2303 	      0, 0, obj_main->path);
2304 	    call_init_pointer(obj_main, preinit_addr[index]);
2305 	}
2306     }
2307 }
2308 
2309 /*
2310  * Call the finalization functions for each of the objects in "list"
2311  * belonging to the DAG of "root" and referenced once. If NULL "root"
2312  * is specified, every finalization function will be called regardless
2313  * of the reference count and the list elements won't be freed. All of
2314  * the objects are expected to have non-NULL fini functions.
2315  */
2316 static void
2317 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2318 {
2319     Objlist_Entry *elm;
2320     char *saved_msg;
2321     Elf_Addr *fini_addr;
2322     int index;
2323 
2324     assert(root == NULL || root->refcount == 1);
2325 
2326     /*
2327      * Preserve the current error message since a fini function might
2328      * call into the dynamic linker and overwrite it.
2329      */
2330     saved_msg = errmsg_save();
2331     do {
2332 	STAILQ_FOREACH(elm, list, link) {
2333 	    if (root != NULL && (elm->obj->refcount != 1 ||
2334 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2335 		continue;
2336 	    /* Remove object from fini list to prevent recursive invocation. */
2337 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2338 	    /*
2339 	     * XXX: If a dlopen() call references an object while the
2340 	     * fini function is in progress, we might end up trying to
2341 	     * unload the referenced object in dlclose() or the object
2342 	     * won't be unloaded although its fini function has been
2343 	     * called.
2344 	     */
2345 	    lock_release(rtld_bind_lock, lockstate);
2346 
2347 	    /*
2348 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2349 	     * When this happens, DT_FINI_ARRAY is processed first.
2350 	     */
2351 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2352 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2353 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2354 		  index--) {
2355 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2356 			dbg("calling fini function for %s at %p",
2357 			    elm->obj->path, (void *)fini_addr[index]);
2358 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2359 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2360 			call_initfini_pointer(elm->obj, fini_addr[index]);
2361 		    }
2362 		}
2363 	    }
2364 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2365 		dbg("calling fini function for %s at %p", elm->obj->path,
2366 		    (void *)elm->obj->fini);
2367 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2368 		    0, 0, elm->obj->path);
2369 		call_initfini_pointer(elm->obj, elm->obj->fini);
2370 	    }
2371 	    wlock_acquire(rtld_bind_lock, lockstate);
2372 	    /* No need to free anything if process is going down. */
2373 	    if (root != NULL)
2374 	    	free(elm);
2375 	    /*
2376 	     * We must restart the list traversal after every fini call
2377 	     * because a dlclose() call from the fini function or from
2378 	     * another thread might have modified the reference counts.
2379 	     */
2380 	    break;
2381 	}
2382     } while (elm != NULL);
2383     errmsg_restore(saved_msg);
2384 }
2385 
2386 /*
2387  * Call the initialization functions for each of the objects in
2388  * "list".  All of the objects are expected to have non-NULL init
2389  * functions.
2390  */
2391 static void
2392 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2393 {
2394     Objlist_Entry *elm;
2395     Obj_Entry *obj;
2396     char *saved_msg;
2397     Elf_Addr *init_addr;
2398     int index;
2399 
2400     /*
2401      * Clean init_scanned flag so that objects can be rechecked and
2402      * possibly initialized earlier if any of vectors called below
2403      * cause the change by using dlopen.
2404      */
2405     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2406 	obj->init_scanned = false;
2407 
2408     /*
2409      * Preserve the current error message since an init function might
2410      * call into the dynamic linker and overwrite it.
2411      */
2412     saved_msg = errmsg_save();
2413     STAILQ_FOREACH(elm, list, link) {
2414 	if (elm->obj->init_done) /* Initialized early. */
2415 	    continue;
2416 	/*
2417 	 * Race: other thread might try to use this object before current
2418 	 * one completes the initilization. Not much can be done here
2419 	 * without better locking.
2420 	 */
2421 	elm->obj->init_done = true;
2422 	lock_release(rtld_bind_lock, lockstate);
2423 
2424         /*
2425          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2426          * When this happens, DT_INIT is processed first.
2427          */
2428 	if (elm->obj->init != (Elf_Addr)NULL) {
2429 	    dbg("calling init function for %s at %p", elm->obj->path,
2430 	        (void *)elm->obj->init);
2431 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2432 	        0, 0, elm->obj->path);
2433 	    call_initfini_pointer(elm->obj, elm->obj->init);
2434 	}
2435 	init_addr = (Elf_Addr *)elm->obj->init_array;
2436 	if (init_addr != NULL) {
2437 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2438 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2439 		    dbg("calling init function for %s at %p", elm->obj->path,
2440 			(void *)init_addr[index]);
2441 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2442 			(void *)init_addr[index], 0, 0, elm->obj->path);
2443 		    call_init_pointer(elm->obj, init_addr[index]);
2444 		}
2445 	    }
2446 	}
2447 	wlock_acquire(rtld_bind_lock, lockstate);
2448     }
2449     errmsg_restore(saved_msg);
2450 }
2451 
2452 static void
2453 objlist_clear(Objlist *list)
2454 {
2455     Objlist_Entry *elm;
2456 
2457     while (!STAILQ_EMPTY(list)) {
2458 	elm = STAILQ_FIRST(list);
2459 	STAILQ_REMOVE_HEAD(list, link);
2460 	free(elm);
2461     }
2462 }
2463 
2464 static Objlist_Entry *
2465 objlist_find(Objlist *list, const Obj_Entry *obj)
2466 {
2467     Objlist_Entry *elm;
2468 
2469     STAILQ_FOREACH(elm, list, link)
2470 	if (elm->obj == obj)
2471 	    return elm;
2472     return NULL;
2473 }
2474 
2475 static void
2476 objlist_init(Objlist *list)
2477 {
2478     STAILQ_INIT(list);
2479 }
2480 
2481 static void
2482 objlist_push_head(Objlist *list, Obj_Entry *obj)
2483 {
2484     Objlist_Entry *elm;
2485 
2486     elm = NEW(Objlist_Entry);
2487     elm->obj = obj;
2488     STAILQ_INSERT_HEAD(list, elm, link);
2489 }
2490 
2491 static void
2492 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2493 {
2494     Objlist_Entry *elm;
2495 
2496     elm = NEW(Objlist_Entry);
2497     elm->obj = obj;
2498     STAILQ_INSERT_TAIL(list, elm, link);
2499 }
2500 
2501 static void
2502 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2503 {
2504 	Objlist_Entry *elm, *listelm;
2505 
2506 	STAILQ_FOREACH(listelm, list, link) {
2507 		if (listelm->obj == listobj)
2508 			break;
2509 	}
2510 	elm = NEW(Objlist_Entry);
2511 	elm->obj = obj;
2512 	if (listelm != NULL)
2513 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2514 	else
2515 		STAILQ_INSERT_TAIL(list, elm, link);
2516 }
2517 
2518 static void
2519 objlist_remove(Objlist *list, Obj_Entry *obj)
2520 {
2521     Objlist_Entry *elm;
2522 
2523     if ((elm = objlist_find(list, obj)) != NULL) {
2524 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2525 	free(elm);
2526     }
2527 }
2528 
2529 /*
2530  * Relocate dag rooted in the specified object.
2531  * Returns 0 on success, or -1 on failure.
2532  */
2533 
2534 static int
2535 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2536     int flags, RtldLockState *lockstate)
2537 {
2538 	Objlist_Entry *elm;
2539 	int error;
2540 
2541 	error = 0;
2542 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2543 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2544 		    lockstate);
2545 		if (error == -1)
2546 			break;
2547 	}
2548 	return (error);
2549 }
2550 
2551 /*
2552  * Relocate single object.
2553  * Returns 0 on success, or -1 on failure.
2554  */
2555 static int
2556 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2557     int flags, RtldLockState *lockstate)
2558 {
2559 
2560 	if (obj->relocated)
2561 		return (0);
2562 	obj->relocated = true;
2563 	if (obj != rtldobj)
2564 		dbg("relocating \"%s\"", obj->path);
2565 
2566 	if (obj->symtab == NULL || obj->strtab == NULL ||
2567 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2568 		_rtld_error("%s: Shared object has no run-time symbol table",
2569 			    obj->path);
2570 		return (-1);
2571 	}
2572 
2573 	if (obj->textrel) {
2574 		/* There are relocations to the write-protected text segment. */
2575 		if (mprotect(obj->mapbase, obj->textsize,
2576 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2577 			_rtld_error("%s: Cannot write-enable text segment: %s",
2578 			    obj->path, rtld_strerror(errno));
2579 			return (-1);
2580 		}
2581 	}
2582 
2583 	/* Process the non-PLT non-IFUNC relocations. */
2584 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2585 		return (-1);
2586 
2587 	if (obj->textrel) {	/* Re-protected the text segment. */
2588 		if (mprotect(obj->mapbase, obj->textsize,
2589 		    PROT_READ|PROT_EXEC) == -1) {
2590 			_rtld_error("%s: Cannot write-protect text segment: %s",
2591 			    obj->path, rtld_strerror(errno));
2592 			return (-1);
2593 		}
2594 	}
2595 
2596 	/* Set the special PLT or GOT entries. */
2597 	init_pltgot(obj);
2598 
2599 	/* Process the PLT relocations. */
2600 	if (reloc_plt(obj) == -1)
2601 		return (-1);
2602 	/* Relocate the jump slots if we are doing immediate binding. */
2603 	if (obj->bind_now || bind_now)
2604 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2605 			return (-1);
2606 
2607 	/*
2608 	 * Process the non-PLT IFUNC relocations.  The relocations are
2609 	 * processed in two phases, because IFUNC resolvers may
2610 	 * reference other symbols, which must be readily processed
2611 	 * before resolvers are called.
2612 	 */
2613 	if (obj->non_plt_gnu_ifunc &&
2614 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2615 		return (-1);
2616 
2617 	if (obj->relro_size > 0) {
2618 		if (mprotect(obj->relro_page, obj->relro_size,
2619 		    PROT_READ) == -1) {
2620 			_rtld_error("%s: Cannot enforce relro protection: %s",
2621 			    obj->path, rtld_strerror(errno));
2622 			return (-1);
2623 		}
2624 	}
2625 
2626 	/*
2627 	 * Set up the magic number and version in the Obj_Entry.  These
2628 	 * were checked in the crt1.o from the original ElfKit, so we
2629 	 * set them for backward compatibility.
2630 	 */
2631 	obj->magic = RTLD_MAGIC;
2632 	obj->version = RTLD_VERSION;
2633 
2634 	return (0);
2635 }
2636 
2637 /*
2638  * Relocate newly-loaded shared objects.  The argument is a pointer to
2639  * the Obj_Entry for the first such object.  All objects from the first
2640  * to the end of the list of objects are relocated.  Returns 0 on success,
2641  * or -1 on failure.
2642  */
2643 static int
2644 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2645     int flags, RtldLockState *lockstate)
2646 {
2647 	Obj_Entry *obj;
2648 	int error;
2649 
2650 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2651 		error = relocate_object(obj, bind_now, rtldobj, flags,
2652 		    lockstate);
2653 		if (error == -1)
2654 			break;
2655 	}
2656 	return (error);
2657 }
2658 
2659 /*
2660  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2661  * referencing STT_GNU_IFUNC symbols is postponed till the other
2662  * relocations are done.  The indirect functions specified as
2663  * ifunc are allowed to call other symbols, so we need to have
2664  * objects relocated before asking for resolution from indirects.
2665  *
2666  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2667  * instead of the usual lazy handling of PLT slots.  It is
2668  * consistent with how GNU does it.
2669  */
2670 static int
2671 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2672     RtldLockState *lockstate)
2673 {
2674 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2675 		return (-1);
2676 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2677 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2678 		return (-1);
2679 	return (0);
2680 }
2681 
2682 static int
2683 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2684     RtldLockState *lockstate)
2685 {
2686 	Obj_Entry *obj;
2687 
2688 	for (obj = first;  obj != NULL;  obj = obj->next) {
2689 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2690 			return (-1);
2691 	}
2692 	return (0);
2693 }
2694 
2695 static int
2696 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2697     RtldLockState *lockstate)
2698 {
2699 	Objlist_Entry *elm;
2700 
2701 	STAILQ_FOREACH(elm, list, link) {
2702 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2703 		    lockstate) == -1)
2704 			return (-1);
2705 	}
2706 	return (0);
2707 }
2708 
2709 /*
2710  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2711  * before the process exits.
2712  */
2713 static void
2714 rtld_exit(void)
2715 {
2716     RtldLockState lockstate;
2717 
2718     wlock_acquire(rtld_bind_lock, &lockstate);
2719     dbg("rtld_exit()");
2720     objlist_call_fini(&list_fini, NULL, &lockstate);
2721     /* No need to remove the items from the list, since we are exiting. */
2722     if (!libmap_disable)
2723         lm_fini();
2724     lock_release(rtld_bind_lock, &lockstate);
2725 }
2726 
2727 /*
2728  * Iterate over a search path, translate each element, and invoke the
2729  * callback on the result.
2730  */
2731 static void *
2732 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2733 {
2734     const char *trans;
2735     if (path == NULL)
2736 	return (NULL);
2737 
2738     path += strspn(path, ":;");
2739     while (*path != '\0') {
2740 	size_t len;
2741 	char  *res;
2742 
2743 	len = strcspn(path, ":;");
2744 	trans = lm_findn(NULL, path, len);
2745 	if (trans)
2746 	    res = callback(trans, strlen(trans), arg);
2747 	else
2748 	    res = callback(path, len, arg);
2749 
2750 	if (res != NULL)
2751 	    return (res);
2752 
2753 	path += len;
2754 	path += strspn(path, ":;");
2755     }
2756 
2757     return (NULL);
2758 }
2759 
2760 struct try_library_args {
2761     const char	*name;
2762     size_t	 namelen;
2763     char	*buffer;
2764     size_t	 buflen;
2765 };
2766 
2767 static void *
2768 try_library_path(const char *dir, size_t dirlen, void *param)
2769 {
2770     struct try_library_args *arg;
2771 
2772     arg = param;
2773     if (*dir == '/' || trust) {
2774 	char *pathname;
2775 
2776 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2777 		return (NULL);
2778 
2779 	pathname = arg->buffer;
2780 	strncpy(pathname, dir, dirlen);
2781 	pathname[dirlen] = '/';
2782 	strcpy(pathname + dirlen + 1, arg->name);
2783 
2784 	dbg("  Trying \"%s\"", pathname);
2785 	if (access(pathname, F_OK) == 0) {		/* We found it */
2786 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2787 	    strcpy(pathname, arg->buffer);
2788 	    return (pathname);
2789 	}
2790     }
2791     return (NULL);
2792 }
2793 
2794 static char *
2795 search_library_path(const char *name, const char *path)
2796 {
2797     char *p;
2798     struct try_library_args arg;
2799 
2800     if (path == NULL)
2801 	return NULL;
2802 
2803     arg.name = name;
2804     arg.namelen = strlen(name);
2805     arg.buffer = xmalloc(PATH_MAX);
2806     arg.buflen = PATH_MAX;
2807 
2808     p = path_enumerate(path, try_library_path, &arg);
2809 
2810     free(arg.buffer);
2811 
2812     return (p);
2813 }
2814 
2815 
2816 /*
2817  * Finds the library with the given name using the directory descriptors
2818  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2819  *
2820  * Returns a freshly-opened close-on-exec file descriptor for the library,
2821  * or -1 if the library cannot be found.
2822  */
2823 static char *
2824 search_library_pathfds(const char *name, const char *path, int *fdp)
2825 {
2826 	char *envcopy, *fdstr, *found, *last_token;
2827 	size_t len;
2828 	int dirfd, fd;
2829 
2830 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2831 
2832 	/* Don't load from user-specified libdirs into setuid binaries. */
2833 	if (!trust)
2834 		return (NULL);
2835 
2836 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2837 	if (path == NULL)
2838 		return (NULL);
2839 
2840 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2841 	if (name[0] == '/') {
2842 		dbg("Absolute path (%s) passed to %s", name, __func__);
2843 		return (NULL);
2844 	}
2845 
2846 	/*
2847 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2848 	 * copy of the path, as strtok_r rewrites separator tokens
2849 	 * with '\0'.
2850 	 */
2851 	found = NULL;
2852 	envcopy = xstrdup(path);
2853 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2854 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2855 		dirfd = parse_libdir(fdstr);
2856 		if (dirfd < 0)
2857 			break;
2858 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
2859 		if (fd >= 0) {
2860 			*fdp = fd;
2861 			len = strlen(fdstr) + strlen(name) + 3;
2862 			found = xmalloc(len);
2863 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2864 				_rtld_error("error generating '%d/%s'",
2865 				    dirfd, name);
2866 				rtld_die();
2867 			}
2868 			dbg("open('%s') => %d", found, fd);
2869 			break;
2870 		}
2871 	}
2872 	free(envcopy);
2873 
2874 	return (found);
2875 }
2876 
2877 
2878 int
2879 dlclose(void *handle)
2880 {
2881     Obj_Entry *root;
2882     RtldLockState lockstate;
2883 
2884     wlock_acquire(rtld_bind_lock, &lockstate);
2885     root = dlcheck(handle);
2886     if (root == NULL) {
2887 	lock_release(rtld_bind_lock, &lockstate);
2888 	return -1;
2889     }
2890     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2891 	root->path);
2892 
2893     /* Unreference the object and its dependencies. */
2894     root->dl_refcount--;
2895 
2896     if (root->refcount == 1) {
2897 	/*
2898 	 * The object will be no longer referenced, so we must unload it.
2899 	 * First, call the fini functions.
2900 	 */
2901 	objlist_call_fini(&list_fini, root, &lockstate);
2902 
2903 	unref_dag(root);
2904 
2905 	/* Finish cleaning up the newly-unreferenced objects. */
2906 	GDB_STATE(RT_DELETE,&root->linkmap);
2907 	unload_object(root);
2908 	GDB_STATE(RT_CONSISTENT,NULL);
2909     } else
2910 	unref_dag(root);
2911 
2912     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2913     lock_release(rtld_bind_lock, &lockstate);
2914     return 0;
2915 }
2916 
2917 char *
2918 dlerror(void)
2919 {
2920     char *msg = error_message;
2921     error_message = NULL;
2922     return msg;
2923 }
2924 
2925 /*
2926  * This function is deprecated and has no effect.
2927  */
2928 void
2929 dllockinit(void *context,
2930 	   void *(*lock_create)(void *context),
2931            void (*rlock_acquire)(void *lock),
2932            void (*wlock_acquire)(void *lock),
2933            void (*lock_release)(void *lock),
2934            void (*lock_destroy)(void *lock),
2935 	   void (*context_destroy)(void *context))
2936 {
2937     static void *cur_context;
2938     static void (*cur_context_destroy)(void *);
2939 
2940     /* Just destroy the context from the previous call, if necessary. */
2941     if (cur_context_destroy != NULL)
2942 	cur_context_destroy(cur_context);
2943     cur_context = context;
2944     cur_context_destroy = context_destroy;
2945 }
2946 
2947 void *
2948 dlopen(const char *name, int mode)
2949 {
2950 
2951 	return (rtld_dlopen(name, -1, mode));
2952 }
2953 
2954 void *
2955 fdlopen(int fd, int mode)
2956 {
2957 
2958 	return (rtld_dlopen(NULL, fd, mode));
2959 }
2960 
2961 static void *
2962 rtld_dlopen(const char *name, int fd, int mode)
2963 {
2964     RtldLockState lockstate;
2965     int lo_flags;
2966 
2967     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2968     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2969     if (ld_tracing != NULL) {
2970 	rlock_acquire(rtld_bind_lock, &lockstate);
2971 	if (sigsetjmp(lockstate.env, 0) != 0)
2972 	    lock_upgrade(rtld_bind_lock, &lockstate);
2973 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2974 	lock_release(rtld_bind_lock, &lockstate);
2975     }
2976     lo_flags = RTLD_LO_DLOPEN;
2977     if (mode & RTLD_NODELETE)
2978 	    lo_flags |= RTLD_LO_NODELETE;
2979     if (mode & RTLD_NOLOAD)
2980 	    lo_flags |= RTLD_LO_NOLOAD;
2981     if (ld_tracing != NULL)
2982 	    lo_flags |= RTLD_LO_TRACE;
2983 
2984     return (dlopen_object(name, fd, obj_main, lo_flags,
2985       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2986 }
2987 
2988 static void
2989 dlopen_cleanup(Obj_Entry *obj)
2990 {
2991 
2992 	obj->dl_refcount--;
2993 	unref_dag(obj);
2994 	if (obj->refcount == 0)
2995 		unload_object(obj);
2996 }
2997 
2998 static Obj_Entry *
2999 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3000     int mode, RtldLockState *lockstate)
3001 {
3002     Obj_Entry **old_obj_tail;
3003     Obj_Entry *obj;
3004     Objlist initlist;
3005     RtldLockState mlockstate;
3006     int result;
3007 
3008     objlist_init(&initlist);
3009 
3010     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3011 	wlock_acquire(rtld_bind_lock, &mlockstate);
3012 	lockstate = &mlockstate;
3013     }
3014     GDB_STATE(RT_ADD,NULL);
3015 
3016     old_obj_tail = obj_tail;
3017     obj = NULL;
3018     if (name == NULL && fd == -1) {
3019 	obj = obj_main;
3020 	obj->refcount++;
3021     } else {
3022 	obj = load_object(name, fd, refobj, lo_flags);
3023     }
3024 
3025     if (obj) {
3026 	obj->dl_refcount++;
3027 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3028 	    objlist_push_tail(&list_global, obj);
3029 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3030 	    assert(*old_obj_tail == obj);
3031 	    result = load_needed_objects(obj,
3032 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3033 	    init_dag(obj);
3034 	    ref_dag(obj);
3035 	    if (result != -1)
3036 		result = rtld_verify_versions(&obj->dagmembers);
3037 	    if (result != -1 && ld_tracing)
3038 		goto trace;
3039 	    if (result == -1 || relocate_object_dag(obj,
3040 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3041 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3042 	      lockstate) == -1) {
3043 		dlopen_cleanup(obj);
3044 		obj = NULL;
3045 	    } else if (lo_flags & RTLD_LO_EARLY) {
3046 		/*
3047 		 * Do not call the init functions for early loaded
3048 		 * filtees.  The image is still not initialized enough
3049 		 * for them to work.
3050 		 *
3051 		 * Our object is found by the global object list and
3052 		 * will be ordered among all init calls done right
3053 		 * before transferring control to main.
3054 		 */
3055 	    } else {
3056 		/* Make list of init functions to call. */
3057 		initlist_add_objects(obj, &obj->next, &initlist);
3058 	    }
3059 	    /*
3060 	     * Process all no_delete or global objects here, given
3061 	     * them own DAGs to prevent their dependencies from being
3062 	     * unloaded.  This has to be done after we have loaded all
3063 	     * of the dependencies, so that we do not miss any.
3064 	     */
3065 	    if (obj != NULL)
3066 		process_z(obj);
3067 	} else {
3068 	    /*
3069 	     * Bump the reference counts for objects on this DAG.  If
3070 	     * this is the first dlopen() call for the object that was
3071 	     * already loaded as a dependency, initialize the dag
3072 	     * starting at it.
3073 	     */
3074 	    init_dag(obj);
3075 	    ref_dag(obj);
3076 
3077 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3078 		goto trace;
3079 	}
3080 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3081 	  obj->z_nodelete) && !obj->ref_nodel) {
3082 	    dbg("obj %s nodelete", obj->path);
3083 	    ref_dag(obj);
3084 	    obj->z_nodelete = obj->ref_nodel = true;
3085 	}
3086     }
3087 
3088     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3089 	name);
3090     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3091 
3092     if (!(lo_flags & RTLD_LO_EARLY)) {
3093 	map_stacks_exec(lockstate);
3094     }
3095 
3096     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3097       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3098       lockstate) == -1) {
3099 	objlist_clear(&initlist);
3100 	dlopen_cleanup(obj);
3101 	if (lockstate == &mlockstate)
3102 	    lock_release(rtld_bind_lock, lockstate);
3103 	return (NULL);
3104     }
3105 
3106     if (!(lo_flags & RTLD_LO_EARLY)) {
3107 	/* Call the init functions. */
3108 	objlist_call_init(&initlist, lockstate);
3109     }
3110     objlist_clear(&initlist);
3111     if (lockstate == &mlockstate)
3112 	lock_release(rtld_bind_lock, lockstate);
3113     return obj;
3114 trace:
3115     trace_loaded_objects(obj);
3116     if (lockstate == &mlockstate)
3117 	lock_release(rtld_bind_lock, lockstate);
3118     exit(0);
3119 }
3120 
3121 static void *
3122 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3123     int flags)
3124 {
3125     DoneList donelist;
3126     const Obj_Entry *obj, *defobj;
3127     const Elf_Sym *def;
3128     SymLook req;
3129     RtldLockState lockstate;
3130     tls_index ti;
3131     void *sym;
3132     int res;
3133 
3134     def = NULL;
3135     defobj = NULL;
3136     symlook_init(&req, name);
3137     req.ventry = ve;
3138     req.flags = flags | SYMLOOK_IN_PLT;
3139     req.lockstate = &lockstate;
3140 
3141     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3142     rlock_acquire(rtld_bind_lock, &lockstate);
3143     if (sigsetjmp(lockstate.env, 0) != 0)
3144 	    lock_upgrade(rtld_bind_lock, &lockstate);
3145     if (handle == NULL || handle == RTLD_NEXT ||
3146 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3147 
3148 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3149 	    _rtld_error("Cannot determine caller's shared object");
3150 	    lock_release(rtld_bind_lock, &lockstate);
3151 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3152 	    return NULL;
3153 	}
3154 	if (handle == NULL) {	/* Just the caller's shared object. */
3155 	    res = symlook_obj(&req, obj);
3156 	    if (res == 0) {
3157 		def = req.sym_out;
3158 		defobj = req.defobj_out;
3159 	    }
3160 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3161 		   handle == RTLD_SELF) { /* ... caller included */
3162 	    if (handle == RTLD_NEXT)
3163 		obj = obj->next;
3164 	    for (; obj != NULL; obj = obj->next) {
3165 		res = symlook_obj(&req, obj);
3166 		if (res == 0) {
3167 		    if (def == NULL ||
3168 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3169 			def = req.sym_out;
3170 			defobj = req.defobj_out;
3171 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3172 			    break;
3173 		    }
3174 		}
3175 	    }
3176 	    /*
3177 	     * Search the dynamic linker itself, and possibly resolve the
3178 	     * symbol from there.  This is how the application links to
3179 	     * dynamic linker services such as dlopen.
3180 	     */
3181 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3182 		res = symlook_obj(&req, &obj_rtld);
3183 		if (res == 0) {
3184 		    def = req.sym_out;
3185 		    defobj = req.defobj_out;
3186 		}
3187 	    }
3188 	} else {
3189 	    assert(handle == RTLD_DEFAULT);
3190 	    res = symlook_default(&req, obj);
3191 	    if (res == 0) {
3192 		defobj = req.defobj_out;
3193 		def = req.sym_out;
3194 	    }
3195 	}
3196     } else {
3197 	if ((obj = dlcheck(handle)) == NULL) {
3198 	    lock_release(rtld_bind_lock, &lockstate);
3199 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3200 	    return NULL;
3201 	}
3202 
3203 	donelist_init(&donelist);
3204 	if (obj->mainprog) {
3205             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3206 	    res = symlook_global(&req, &donelist);
3207 	    if (res == 0) {
3208 		def = req.sym_out;
3209 		defobj = req.defobj_out;
3210 	    }
3211 	    /*
3212 	     * Search the dynamic linker itself, and possibly resolve the
3213 	     * symbol from there.  This is how the application links to
3214 	     * dynamic linker services such as dlopen.
3215 	     */
3216 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3217 		res = symlook_obj(&req, &obj_rtld);
3218 		if (res == 0) {
3219 		    def = req.sym_out;
3220 		    defobj = req.defobj_out;
3221 		}
3222 	    }
3223 	}
3224 	else {
3225 	    /* Search the whole DAG rooted at the given object. */
3226 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3227 	    if (res == 0) {
3228 		def = req.sym_out;
3229 		defobj = req.defobj_out;
3230 	    }
3231 	}
3232     }
3233 
3234     if (def != NULL) {
3235 	lock_release(rtld_bind_lock, &lockstate);
3236 
3237 	/*
3238 	 * The value required by the caller is derived from the value
3239 	 * of the symbol. this is simply the relocated value of the
3240 	 * symbol.
3241 	 */
3242 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3243 	    sym = make_function_pointer(def, defobj);
3244 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3245 	    sym = rtld_resolve_ifunc(defobj, def);
3246 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3247 	    ti.ti_module = defobj->tlsindex;
3248 	    ti.ti_offset = def->st_value;
3249 	    sym = __tls_get_addr(&ti);
3250 	} else
3251 	    sym = defobj->relocbase + def->st_value;
3252 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3253 	return (sym);
3254     }
3255 
3256     _rtld_error("Undefined symbol \"%s\"", name);
3257     lock_release(rtld_bind_lock, &lockstate);
3258     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3259     return NULL;
3260 }
3261 
3262 void *
3263 dlsym(void *handle, const char *name)
3264 {
3265 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3266 	    SYMLOOK_DLSYM);
3267 }
3268 
3269 dlfunc_t
3270 dlfunc(void *handle, const char *name)
3271 {
3272 	union {
3273 		void *d;
3274 		dlfunc_t f;
3275 	} rv;
3276 
3277 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3278 	    SYMLOOK_DLSYM);
3279 	return (rv.f);
3280 }
3281 
3282 void *
3283 dlvsym(void *handle, const char *name, const char *version)
3284 {
3285 	Ver_Entry ventry;
3286 
3287 	ventry.name = version;
3288 	ventry.file = NULL;
3289 	ventry.hash = elf_hash(version);
3290 	ventry.flags= 0;
3291 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3292 	    SYMLOOK_DLSYM);
3293 }
3294 
3295 int
3296 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3297 {
3298     const Obj_Entry *obj;
3299     RtldLockState lockstate;
3300 
3301     rlock_acquire(rtld_bind_lock, &lockstate);
3302     obj = obj_from_addr(addr);
3303     if (obj == NULL) {
3304         _rtld_error("No shared object contains address");
3305 	lock_release(rtld_bind_lock, &lockstate);
3306         return (0);
3307     }
3308     rtld_fill_dl_phdr_info(obj, phdr_info);
3309     lock_release(rtld_bind_lock, &lockstate);
3310     return (1);
3311 }
3312 
3313 int
3314 dladdr(const void *addr, Dl_info *info)
3315 {
3316     const Obj_Entry *obj;
3317     const Elf_Sym *def;
3318     void *symbol_addr;
3319     unsigned long symoffset;
3320     RtldLockState lockstate;
3321 
3322     rlock_acquire(rtld_bind_lock, &lockstate);
3323     obj = obj_from_addr(addr);
3324     if (obj == NULL) {
3325         _rtld_error("No shared object contains address");
3326 	lock_release(rtld_bind_lock, &lockstate);
3327         return 0;
3328     }
3329     info->dli_fname = obj->path;
3330     info->dli_fbase = obj->mapbase;
3331     info->dli_saddr = (void *)0;
3332     info->dli_sname = NULL;
3333 
3334     /*
3335      * Walk the symbol list looking for the symbol whose address is
3336      * closest to the address sent in.
3337      */
3338     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3339         def = obj->symtab + symoffset;
3340 
3341         /*
3342          * For skip the symbol if st_shndx is either SHN_UNDEF or
3343          * SHN_COMMON.
3344          */
3345         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3346             continue;
3347 
3348         /*
3349          * If the symbol is greater than the specified address, or if it
3350          * is further away from addr than the current nearest symbol,
3351          * then reject it.
3352          */
3353         symbol_addr = obj->relocbase + def->st_value;
3354         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3355             continue;
3356 
3357         /* Update our idea of the nearest symbol. */
3358         info->dli_sname = obj->strtab + def->st_name;
3359         info->dli_saddr = symbol_addr;
3360 
3361         /* Exact match? */
3362         if (info->dli_saddr == addr)
3363             break;
3364     }
3365     lock_release(rtld_bind_lock, &lockstate);
3366     return 1;
3367 }
3368 
3369 int
3370 dlinfo(void *handle, int request, void *p)
3371 {
3372     const Obj_Entry *obj;
3373     RtldLockState lockstate;
3374     int error;
3375 
3376     rlock_acquire(rtld_bind_lock, &lockstate);
3377 
3378     if (handle == NULL || handle == RTLD_SELF) {
3379 	void *retaddr;
3380 
3381 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3382 	if ((obj = obj_from_addr(retaddr)) == NULL)
3383 	    _rtld_error("Cannot determine caller's shared object");
3384     } else
3385 	obj = dlcheck(handle);
3386 
3387     if (obj == NULL) {
3388 	lock_release(rtld_bind_lock, &lockstate);
3389 	return (-1);
3390     }
3391 
3392     error = 0;
3393     switch (request) {
3394     case RTLD_DI_LINKMAP:
3395 	*((struct link_map const **)p) = &obj->linkmap;
3396 	break;
3397     case RTLD_DI_ORIGIN:
3398 	error = rtld_dirname(obj->path, p);
3399 	break;
3400 
3401     case RTLD_DI_SERINFOSIZE:
3402     case RTLD_DI_SERINFO:
3403 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3404 	break;
3405 
3406     default:
3407 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3408 	error = -1;
3409     }
3410 
3411     lock_release(rtld_bind_lock, &lockstate);
3412 
3413     return (error);
3414 }
3415 
3416 static void
3417 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3418 {
3419 
3420 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3421 	phdr_info->dlpi_name = obj->path;
3422 	phdr_info->dlpi_phdr = obj->phdr;
3423 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3424 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3425 	phdr_info->dlpi_tls_data = obj->tlsinit;
3426 	phdr_info->dlpi_adds = obj_loads;
3427 	phdr_info->dlpi_subs = obj_loads - obj_count;
3428 }
3429 
3430 int
3431 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3432 {
3433     struct dl_phdr_info phdr_info;
3434     const Obj_Entry *obj;
3435     RtldLockState bind_lockstate, phdr_lockstate;
3436     int error;
3437 
3438     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3439     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3440 
3441     error = 0;
3442 
3443     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3444 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3445 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3446 		break;
3447 
3448     }
3449     if (error == 0) {
3450 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3451 	error = callback(&phdr_info, sizeof(phdr_info), param);
3452     }
3453 
3454     lock_release(rtld_bind_lock, &bind_lockstate);
3455     lock_release(rtld_phdr_lock, &phdr_lockstate);
3456 
3457     return (error);
3458 }
3459 
3460 static void *
3461 fill_search_info(const char *dir, size_t dirlen, void *param)
3462 {
3463     struct fill_search_info_args *arg;
3464 
3465     arg = param;
3466 
3467     if (arg->request == RTLD_DI_SERINFOSIZE) {
3468 	arg->serinfo->dls_cnt ++;
3469 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3470     } else {
3471 	struct dl_serpath *s_entry;
3472 
3473 	s_entry = arg->serpath;
3474 	s_entry->dls_name  = arg->strspace;
3475 	s_entry->dls_flags = arg->flags;
3476 
3477 	strncpy(arg->strspace, dir, dirlen);
3478 	arg->strspace[dirlen] = '\0';
3479 
3480 	arg->strspace += dirlen + 1;
3481 	arg->serpath++;
3482     }
3483 
3484     return (NULL);
3485 }
3486 
3487 static int
3488 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3489 {
3490     struct dl_serinfo _info;
3491     struct fill_search_info_args args;
3492 
3493     args.request = RTLD_DI_SERINFOSIZE;
3494     args.serinfo = &_info;
3495 
3496     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3497     _info.dls_cnt  = 0;
3498 
3499     path_enumerate(obj->rpath, fill_search_info, &args);
3500     path_enumerate(ld_library_path, fill_search_info, &args);
3501     path_enumerate(obj->runpath, fill_search_info, &args);
3502     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3503     if (!obj->z_nodeflib)
3504       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3505 
3506 
3507     if (request == RTLD_DI_SERINFOSIZE) {
3508 	info->dls_size = _info.dls_size;
3509 	info->dls_cnt = _info.dls_cnt;
3510 	return (0);
3511     }
3512 
3513     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3514 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3515 	return (-1);
3516     }
3517 
3518     args.request  = RTLD_DI_SERINFO;
3519     args.serinfo  = info;
3520     args.serpath  = &info->dls_serpath[0];
3521     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3522 
3523     args.flags = LA_SER_RUNPATH;
3524     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3525 	return (-1);
3526 
3527     args.flags = LA_SER_LIBPATH;
3528     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3529 	return (-1);
3530 
3531     args.flags = LA_SER_RUNPATH;
3532     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3533 	return (-1);
3534 
3535     args.flags = LA_SER_CONFIG;
3536     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3537       != NULL)
3538 	return (-1);
3539 
3540     args.flags = LA_SER_DEFAULT;
3541     if (!obj->z_nodeflib &&
3542       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3543 	return (-1);
3544     return (0);
3545 }
3546 
3547 static int
3548 rtld_dirname(const char *path, char *bname)
3549 {
3550     const char *endp;
3551 
3552     /* Empty or NULL string gets treated as "." */
3553     if (path == NULL || *path == '\0') {
3554 	bname[0] = '.';
3555 	bname[1] = '\0';
3556 	return (0);
3557     }
3558 
3559     /* Strip trailing slashes */
3560     endp = path + strlen(path) - 1;
3561     while (endp > path && *endp == '/')
3562 	endp--;
3563 
3564     /* Find the start of the dir */
3565     while (endp > path && *endp != '/')
3566 	endp--;
3567 
3568     /* Either the dir is "/" or there are no slashes */
3569     if (endp == path) {
3570 	bname[0] = *endp == '/' ? '/' : '.';
3571 	bname[1] = '\0';
3572 	return (0);
3573     } else {
3574 	do {
3575 	    endp--;
3576 	} while (endp > path && *endp == '/');
3577     }
3578 
3579     if (endp - path + 2 > PATH_MAX)
3580     {
3581 	_rtld_error("Filename is too long: %s", path);
3582 	return(-1);
3583     }
3584 
3585     strncpy(bname, path, endp - path + 1);
3586     bname[endp - path + 1] = '\0';
3587     return (0);
3588 }
3589 
3590 static int
3591 rtld_dirname_abs(const char *path, char *base)
3592 {
3593 	char *last;
3594 
3595 	if (realpath(path, base) == NULL)
3596 		return (-1);
3597 	dbg("%s -> %s", path, base);
3598 	last = strrchr(base, '/');
3599 	if (last == NULL)
3600 		return (-1);
3601 	if (last != base)
3602 		*last = '\0';
3603 	return (0);
3604 }
3605 
3606 static void
3607 linkmap_add(Obj_Entry *obj)
3608 {
3609     struct link_map *l = &obj->linkmap;
3610     struct link_map *prev;
3611 
3612     obj->linkmap.l_name = obj->path;
3613     obj->linkmap.l_addr = obj->mapbase;
3614     obj->linkmap.l_ld = obj->dynamic;
3615 #ifdef __mips__
3616     /* GDB needs load offset on MIPS to use the symbols */
3617     obj->linkmap.l_offs = obj->relocbase;
3618 #endif
3619 
3620     if (r_debug.r_map == NULL) {
3621 	r_debug.r_map = l;
3622 	return;
3623     }
3624 
3625     /*
3626      * Scan to the end of the list, but not past the entry for the
3627      * dynamic linker, which we want to keep at the very end.
3628      */
3629     for (prev = r_debug.r_map;
3630       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3631       prev = prev->l_next)
3632 	;
3633 
3634     /* Link in the new entry. */
3635     l->l_prev = prev;
3636     l->l_next = prev->l_next;
3637     if (l->l_next != NULL)
3638 	l->l_next->l_prev = l;
3639     prev->l_next = l;
3640 }
3641 
3642 static void
3643 linkmap_delete(Obj_Entry *obj)
3644 {
3645     struct link_map *l = &obj->linkmap;
3646 
3647     if (l->l_prev == NULL) {
3648 	if ((r_debug.r_map = l->l_next) != NULL)
3649 	    l->l_next->l_prev = NULL;
3650 	return;
3651     }
3652 
3653     if ((l->l_prev->l_next = l->l_next) != NULL)
3654 	l->l_next->l_prev = l->l_prev;
3655 }
3656 
3657 /*
3658  * Function for the debugger to set a breakpoint on to gain control.
3659  *
3660  * The two parameters allow the debugger to easily find and determine
3661  * what the runtime loader is doing and to whom it is doing it.
3662  *
3663  * When the loadhook trap is hit (r_debug_state, set at program
3664  * initialization), the arguments can be found on the stack:
3665  *
3666  *  +8   struct link_map *m
3667  *  +4   struct r_debug  *rd
3668  *  +0   RetAddr
3669  */
3670 void
3671 r_debug_state(struct r_debug* rd, struct link_map *m)
3672 {
3673     /*
3674      * The following is a hack to force the compiler to emit calls to
3675      * this function, even when optimizing.  If the function is empty,
3676      * the compiler is not obliged to emit any code for calls to it,
3677      * even when marked __noinline.  However, gdb depends on those
3678      * calls being made.
3679      */
3680     __compiler_membar();
3681 }
3682 
3683 /*
3684  * A function called after init routines have completed. This can be used to
3685  * break before a program's entry routine is called, and can be used when
3686  * main is not available in the symbol table.
3687  */
3688 void
3689 _r_debug_postinit(struct link_map *m)
3690 {
3691 
3692 	/* See r_debug_state(). */
3693 	__compiler_membar();
3694 }
3695 
3696 /*
3697  * Get address of the pointer variable in the main program.
3698  * Prefer non-weak symbol over the weak one.
3699  */
3700 static const void **
3701 get_program_var_addr(const char *name, RtldLockState *lockstate)
3702 {
3703     SymLook req;
3704     DoneList donelist;
3705 
3706     symlook_init(&req, name);
3707     req.lockstate = lockstate;
3708     donelist_init(&donelist);
3709     if (symlook_global(&req, &donelist) != 0)
3710 	return (NULL);
3711     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3712 	return ((const void **)make_function_pointer(req.sym_out,
3713 	  req.defobj_out));
3714     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3715 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3716     else
3717 	return ((const void **)(req.defobj_out->relocbase +
3718 	  req.sym_out->st_value));
3719 }
3720 
3721 /*
3722  * Set a pointer variable in the main program to the given value.  This
3723  * is used to set key variables such as "environ" before any of the
3724  * init functions are called.
3725  */
3726 static void
3727 set_program_var(const char *name, const void *value)
3728 {
3729     const void **addr;
3730 
3731     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3732 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3733 	*addr = value;
3734     }
3735 }
3736 
3737 /*
3738  * Search the global objects, including dependencies and main object,
3739  * for the given symbol.
3740  */
3741 static int
3742 symlook_global(SymLook *req, DoneList *donelist)
3743 {
3744     SymLook req1;
3745     const Objlist_Entry *elm;
3746     int res;
3747 
3748     symlook_init_from_req(&req1, req);
3749 
3750     /* Search all objects loaded at program start up. */
3751     if (req->defobj_out == NULL ||
3752       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3753 	res = symlook_list(&req1, &list_main, donelist);
3754 	if (res == 0 && (req->defobj_out == NULL ||
3755 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3756 	    req->sym_out = req1.sym_out;
3757 	    req->defobj_out = req1.defobj_out;
3758 	    assert(req->defobj_out != NULL);
3759 	}
3760     }
3761 
3762     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3763     STAILQ_FOREACH(elm, &list_global, link) {
3764 	if (req->defobj_out != NULL &&
3765 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3766 	    break;
3767 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3768 	if (res == 0 && (req->defobj_out == NULL ||
3769 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3770 	    req->sym_out = req1.sym_out;
3771 	    req->defobj_out = req1.defobj_out;
3772 	    assert(req->defobj_out != NULL);
3773 	}
3774     }
3775 
3776     return (req->sym_out != NULL ? 0 : ESRCH);
3777 }
3778 
3779 /*
3780  * Given a symbol name in a referencing object, find the corresponding
3781  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3782  * no definition was found.  Returns a pointer to the Obj_Entry of the
3783  * defining object via the reference parameter DEFOBJ_OUT.
3784  */
3785 static int
3786 symlook_default(SymLook *req, const Obj_Entry *refobj)
3787 {
3788     DoneList donelist;
3789     const Objlist_Entry *elm;
3790     SymLook req1;
3791     int res;
3792 
3793     donelist_init(&donelist);
3794     symlook_init_from_req(&req1, req);
3795 
3796     /* Look first in the referencing object if linked symbolically. */
3797     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3798 	res = symlook_obj(&req1, refobj);
3799 	if (res == 0) {
3800 	    req->sym_out = req1.sym_out;
3801 	    req->defobj_out = req1.defobj_out;
3802 	    assert(req->defobj_out != NULL);
3803 	}
3804     }
3805 
3806     symlook_global(req, &donelist);
3807 
3808     /* Search all dlopened DAGs containing the referencing object. */
3809     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3810 	if (req->sym_out != NULL &&
3811 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3812 	    break;
3813 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3814 	if (res == 0 && (req->sym_out == NULL ||
3815 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3816 	    req->sym_out = req1.sym_out;
3817 	    req->defobj_out = req1.defobj_out;
3818 	    assert(req->defobj_out != NULL);
3819 	}
3820     }
3821 
3822     /*
3823      * Search the dynamic linker itself, and possibly resolve the
3824      * symbol from there.  This is how the application links to
3825      * dynamic linker services such as dlopen.
3826      */
3827     if (req->sym_out == NULL ||
3828       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3829 	res = symlook_obj(&req1, &obj_rtld);
3830 	if (res == 0) {
3831 	    req->sym_out = req1.sym_out;
3832 	    req->defobj_out = req1.defobj_out;
3833 	    assert(req->defobj_out != NULL);
3834 	}
3835     }
3836 
3837     return (req->sym_out != NULL ? 0 : ESRCH);
3838 }
3839 
3840 static int
3841 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3842 {
3843     const Elf_Sym *def;
3844     const Obj_Entry *defobj;
3845     const Objlist_Entry *elm;
3846     SymLook req1;
3847     int res;
3848 
3849     def = NULL;
3850     defobj = NULL;
3851     STAILQ_FOREACH(elm, objlist, link) {
3852 	if (donelist_check(dlp, elm->obj))
3853 	    continue;
3854 	symlook_init_from_req(&req1, req);
3855 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3856 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3857 		def = req1.sym_out;
3858 		defobj = req1.defobj_out;
3859 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3860 		    break;
3861 	    }
3862 	}
3863     }
3864     if (def != NULL) {
3865 	req->sym_out = def;
3866 	req->defobj_out = defobj;
3867 	return (0);
3868     }
3869     return (ESRCH);
3870 }
3871 
3872 /*
3873  * Search the chain of DAGS cointed to by the given Needed_Entry
3874  * for a symbol of the given name.  Each DAG is scanned completely
3875  * before advancing to the next one.  Returns a pointer to the symbol,
3876  * or NULL if no definition was found.
3877  */
3878 static int
3879 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3880 {
3881     const Elf_Sym *def;
3882     const Needed_Entry *n;
3883     const Obj_Entry *defobj;
3884     SymLook req1;
3885     int res;
3886 
3887     def = NULL;
3888     defobj = NULL;
3889     symlook_init_from_req(&req1, req);
3890     for (n = needed; n != NULL; n = n->next) {
3891 	if (n->obj == NULL ||
3892 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3893 	    continue;
3894 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3895 	    def = req1.sym_out;
3896 	    defobj = req1.defobj_out;
3897 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3898 		break;
3899 	}
3900     }
3901     if (def != NULL) {
3902 	req->sym_out = def;
3903 	req->defobj_out = defobj;
3904 	return (0);
3905     }
3906     return (ESRCH);
3907 }
3908 
3909 /*
3910  * Search the symbol table of a single shared object for a symbol of
3911  * the given name and version, if requested.  Returns a pointer to the
3912  * symbol, or NULL if no definition was found.  If the object is
3913  * filter, return filtered symbol from filtee.
3914  *
3915  * The symbol's hash value is passed in for efficiency reasons; that
3916  * eliminates many recomputations of the hash value.
3917  */
3918 int
3919 symlook_obj(SymLook *req, const Obj_Entry *obj)
3920 {
3921     DoneList donelist;
3922     SymLook req1;
3923     int flags, res, mres;
3924 
3925     /*
3926      * If there is at least one valid hash at this point, we prefer to
3927      * use the faster GNU version if available.
3928      */
3929     if (obj->valid_hash_gnu)
3930 	mres = symlook_obj1_gnu(req, obj);
3931     else if (obj->valid_hash_sysv)
3932 	mres = symlook_obj1_sysv(req, obj);
3933     else
3934 	return (EINVAL);
3935 
3936     if (mres == 0) {
3937 	if (obj->needed_filtees != NULL) {
3938 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3939 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3940 	    donelist_init(&donelist);
3941 	    symlook_init_from_req(&req1, req);
3942 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3943 	    if (res == 0) {
3944 		req->sym_out = req1.sym_out;
3945 		req->defobj_out = req1.defobj_out;
3946 	    }
3947 	    return (res);
3948 	}
3949 	if (obj->needed_aux_filtees != NULL) {
3950 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3951 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3952 	    donelist_init(&donelist);
3953 	    symlook_init_from_req(&req1, req);
3954 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3955 	    if (res == 0) {
3956 		req->sym_out = req1.sym_out;
3957 		req->defobj_out = req1.defobj_out;
3958 		return (res);
3959 	    }
3960 	}
3961     }
3962     return (mres);
3963 }
3964 
3965 /* Symbol match routine common to both hash functions */
3966 static bool
3967 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3968     const unsigned long symnum)
3969 {
3970 	Elf_Versym verndx;
3971 	const Elf_Sym *symp;
3972 	const char *strp;
3973 
3974 	symp = obj->symtab + symnum;
3975 	strp = obj->strtab + symp->st_name;
3976 
3977 	switch (ELF_ST_TYPE(symp->st_info)) {
3978 	case STT_FUNC:
3979 	case STT_NOTYPE:
3980 	case STT_OBJECT:
3981 	case STT_COMMON:
3982 	case STT_GNU_IFUNC:
3983 		if (symp->st_value == 0)
3984 			return (false);
3985 		/* fallthrough */
3986 	case STT_TLS:
3987 		if (symp->st_shndx != SHN_UNDEF)
3988 			break;
3989 #ifndef __mips__
3990 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3991 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3992 			break;
3993 		/* fallthrough */
3994 #endif
3995 	default:
3996 		return (false);
3997 	}
3998 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3999 		return (false);
4000 
4001 	if (req->ventry == NULL) {
4002 		if (obj->versyms != NULL) {
4003 			verndx = VER_NDX(obj->versyms[symnum]);
4004 			if (verndx > obj->vernum) {
4005 				_rtld_error(
4006 				    "%s: symbol %s references wrong version %d",
4007 				    obj->path, obj->strtab + symnum, verndx);
4008 				return (false);
4009 			}
4010 			/*
4011 			 * If we are not called from dlsym (i.e. this
4012 			 * is a normal relocation from unversioned
4013 			 * binary), accept the symbol immediately if
4014 			 * it happens to have first version after this
4015 			 * shared object became versioned.  Otherwise,
4016 			 * if symbol is versioned and not hidden,
4017 			 * remember it. If it is the only symbol with
4018 			 * this name exported by the shared object, it
4019 			 * will be returned as a match by the calling
4020 			 * function. If symbol is global (verndx < 2)
4021 			 * accept it unconditionally.
4022 			 */
4023 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4024 			    verndx == VER_NDX_GIVEN) {
4025 				result->sym_out = symp;
4026 				return (true);
4027 			}
4028 			else if (verndx >= VER_NDX_GIVEN) {
4029 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4030 				    == 0) {
4031 					if (result->vsymp == NULL)
4032 						result->vsymp = symp;
4033 					result->vcount++;
4034 				}
4035 				return (false);
4036 			}
4037 		}
4038 		result->sym_out = symp;
4039 		return (true);
4040 	}
4041 	if (obj->versyms == NULL) {
4042 		if (object_match_name(obj, req->ventry->name)) {
4043 			_rtld_error("%s: object %s should provide version %s "
4044 			    "for symbol %s", obj_rtld.path, obj->path,
4045 			    req->ventry->name, obj->strtab + symnum);
4046 			return (false);
4047 		}
4048 	} else {
4049 		verndx = VER_NDX(obj->versyms[symnum]);
4050 		if (verndx > obj->vernum) {
4051 			_rtld_error("%s: symbol %s references wrong version %d",
4052 			    obj->path, obj->strtab + symnum, verndx);
4053 			return (false);
4054 		}
4055 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4056 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4057 			/*
4058 			 * Version does not match. Look if this is a
4059 			 * global symbol and if it is not hidden. If
4060 			 * global symbol (verndx < 2) is available,
4061 			 * use it. Do not return symbol if we are
4062 			 * called by dlvsym, because dlvsym looks for
4063 			 * a specific version and default one is not
4064 			 * what dlvsym wants.
4065 			 */
4066 			if ((req->flags & SYMLOOK_DLSYM) ||
4067 			    (verndx >= VER_NDX_GIVEN) ||
4068 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4069 				return (false);
4070 		}
4071 	}
4072 	result->sym_out = symp;
4073 	return (true);
4074 }
4075 
4076 /*
4077  * Search for symbol using SysV hash function.
4078  * obj->buckets is known not to be NULL at this point; the test for this was
4079  * performed with the obj->valid_hash_sysv assignment.
4080  */
4081 static int
4082 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4083 {
4084 	unsigned long symnum;
4085 	Sym_Match_Result matchres;
4086 
4087 	matchres.sym_out = NULL;
4088 	matchres.vsymp = NULL;
4089 	matchres.vcount = 0;
4090 
4091 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4092 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4093 		if (symnum >= obj->nchains)
4094 			return (ESRCH);	/* Bad object */
4095 
4096 		if (matched_symbol(req, obj, &matchres, symnum)) {
4097 			req->sym_out = matchres.sym_out;
4098 			req->defobj_out = obj;
4099 			return (0);
4100 		}
4101 	}
4102 	if (matchres.vcount == 1) {
4103 		req->sym_out = matchres.vsymp;
4104 		req->defobj_out = obj;
4105 		return (0);
4106 	}
4107 	return (ESRCH);
4108 }
4109 
4110 /* Search for symbol using GNU hash function */
4111 static int
4112 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4113 {
4114 	Elf_Addr bloom_word;
4115 	const Elf32_Word *hashval;
4116 	Elf32_Word bucket;
4117 	Sym_Match_Result matchres;
4118 	unsigned int h1, h2;
4119 	unsigned long symnum;
4120 
4121 	matchres.sym_out = NULL;
4122 	matchres.vsymp = NULL;
4123 	matchres.vcount = 0;
4124 
4125 	/* Pick right bitmask word from Bloom filter array */
4126 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4127 	    obj->maskwords_bm_gnu];
4128 
4129 	/* Calculate modulus word size of gnu hash and its derivative */
4130 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4131 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4132 
4133 	/* Filter out the "definitely not in set" queries */
4134 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4135 		return (ESRCH);
4136 
4137 	/* Locate hash chain and corresponding value element*/
4138 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4139 	if (bucket == 0)
4140 		return (ESRCH);
4141 	hashval = &obj->chain_zero_gnu[bucket];
4142 	do {
4143 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4144 			symnum = hashval - obj->chain_zero_gnu;
4145 			if (matched_symbol(req, obj, &matchres, symnum)) {
4146 				req->sym_out = matchres.sym_out;
4147 				req->defobj_out = obj;
4148 				return (0);
4149 			}
4150 		}
4151 	} while ((*hashval++ & 1) == 0);
4152 	if (matchres.vcount == 1) {
4153 		req->sym_out = matchres.vsymp;
4154 		req->defobj_out = obj;
4155 		return (0);
4156 	}
4157 	return (ESRCH);
4158 }
4159 
4160 static void
4161 trace_loaded_objects(Obj_Entry *obj)
4162 {
4163     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4164     int		c;
4165 
4166     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4167 	main_local = "";
4168 
4169     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4170 	fmt1 = "\t%o => %p (%x)\n";
4171 
4172     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4173 	fmt2 = "\t%o (%x)\n";
4174 
4175     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
4176 
4177     for (; obj; obj = obj->next) {
4178 	Needed_Entry		*needed;
4179 	char			*name, *path;
4180 	bool			is_lib;
4181 
4182 	if (list_containers && obj->needed != NULL)
4183 	    rtld_printf("%s:\n", obj->path);
4184 	for (needed = obj->needed; needed; needed = needed->next) {
4185 	    if (needed->obj != NULL) {
4186 		if (needed->obj->traced && !list_containers)
4187 		    continue;
4188 		needed->obj->traced = true;
4189 		path = needed->obj->path;
4190 	    } else
4191 		path = "not found";
4192 
4193 	    name = (char *)obj->strtab + needed->name;
4194 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4195 
4196 	    fmt = is_lib ? fmt1 : fmt2;
4197 	    while ((c = *fmt++) != '\0') {
4198 		switch (c) {
4199 		default:
4200 		    rtld_putchar(c);
4201 		    continue;
4202 		case '\\':
4203 		    switch (c = *fmt) {
4204 		    case '\0':
4205 			continue;
4206 		    case 'n':
4207 			rtld_putchar('\n');
4208 			break;
4209 		    case 't':
4210 			rtld_putchar('\t');
4211 			break;
4212 		    }
4213 		    break;
4214 		case '%':
4215 		    switch (c = *fmt) {
4216 		    case '\0':
4217 			continue;
4218 		    case '%':
4219 		    default:
4220 			rtld_putchar(c);
4221 			break;
4222 		    case 'A':
4223 			rtld_putstr(main_local);
4224 			break;
4225 		    case 'a':
4226 			rtld_putstr(obj_main->path);
4227 			break;
4228 		    case 'o':
4229 			rtld_putstr(name);
4230 			break;
4231 #if 0
4232 		    case 'm':
4233 			rtld_printf("%d", sodp->sod_major);
4234 			break;
4235 		    case 'n':
4236 			rtld_printf("%d", sodp->sod_minor);
4237 			break;
4238 #endif
4239 		    case 'p':
4240 			rtld_putstr(path);
4241 			break;
4242 		    case 'x':
4243 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4244 			  0);
4245 			break;
4246 		    }
4247 		    break;
4248 		}
4249 		++fmt;
4250 	    }
4251 	}
4252     }
4253 }
4254 
4255 /*
4256  * Unload a dlopened object and its dependencies from memory and from
4257  * our data structures.  It is assumed that the DAG rooted in the
4258  * object has already been unreferenced, and that the object has a
4259  * reference count of 0.
4260  */
4261 static void
4262 unload_object(Obj_Entry *root)
4263 {
4264     Obj_Entry *obj;
4265     Obj_Entry **linkp;
4266 
4267     assert(root->refcount == 0);
4268 
4269     /*
4270      * Pass over the DAG removing unreferenced objects from
4271      * appropriate lists.
4272      */
4273     unlink_object(root);
4274 
4275     /* Unmap all objects that are no longer referenced. */
4276     linkp = &obj_list->next;
4277     while ((obj = *linkp) != NULL) {
4278 	if (obj->refcount == 0) {
4279 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4280 		obj->path);
4281 	    dbg("unloading \"%s\"", obj->path);
4282 	    unload_filtees(root);
4283 	    munmap(obj->mapbase, obj->mapsize);
4284 	    linkmap_delete(obj);
4285 	    *linkp = obj->next;
4286 	    obj_count--;
4287 	    obj_free(obj);
4288 	} else
4289 	    linkp = &obj->next;
4290     }
4291     obj_tail = linkp;
4292 }
4293 
4294 static void
4295 unlink_object(Obj_Entry *root)
4296 {
4297     Objlist_Entry *elm;
4298 
4299     if (root->refcount == 0) {
4300 	/* Remove the object from the RTLD_GLOBAL list. */
4301 	objlist_remove(&list_global, root);
4302 
4303     	/* Remove the object from all objects' DAG lists. */
4304     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4305 	    objlist_remove(&elm->obj->dldags, root);
4306 	    if (elm->obj != root)
4307 		unlink_object(elm->obj);
4308 	}
4309     }
4310 }
4311 
4312 static void
4313 ref_dag(Obj_Entry *root)
4314 {
4315     Objlist_Entry *elm;
4316 
4317     assert(root->dag_inited);
4318     STAILQ_FOREACH(elm, &root->dagmembers, link)
4319 	elm->obj->refcount++;
4320 }
4321 
4322 static void
4323 unref_dag(Obj_Entry *root)
4324 {
4325     Objlist_Entry *elm;
4326 
4327     assert(root->dag_inited);
4328     STAILQ_FOREACH(elm, &root->dagmembers, link)
4329 	elm->obj->refcount--;
4330 }
4331 
4332 /*
4333  * Common code for MD __tls_get_addr().
4334  */
4335 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4336 static void *
4337 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4338 {
4339     Elf_Addr *newdtv, *dtv;
4340     RtldLockState lockstate;
4341     int to_copy;
4342 
4343     dtv = *dtvp;
4344     /* Check dtv generation in case new modules have arrived */
4345     if (dtv[0] != tls_dtv_generation) {
4346 	wlock_acquire(rtld_bind_lock, &lockstate);
4347 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4348 	to_copy = dtv[1];
4349 	if (to_copy > tls_max_index)
4350 	    to_copy = tls_max_index;
4351 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4352 	newdtv[0] = tls_dtv_generation;
4353 	newdtv[1] = tls_max_index;
4354 	free(dtv);
4355 	lock_release(rtld_bind_lock, &lockstate);
4356 	dtv = *dtvp = newdtv;
4357     }
4358 
4359     /* Dynamically allocate module TLS if necessary */
4360     if (dtv[index + 1] == 0) {
4361 	/* Signal safe, wlock will block out signals. */
4362 	wlock_acquire(rtld_bind_lock, &lockstate);
4363 	if (!dtv[index + 1])
4364 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4365 	lock_release(rtld_bind_lock, &lockstate);
4366     }
4367     return ((void *)(dtv[index + 1] + offset));
4368 }
4369 
4370 void *
4371 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4372 {
4373 	Elf_Addr *dtv;
4374 
4375 	dtv = *dtvp;
4376 	/* Check dtv generation in case new modules have arrived */
4377 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4378 	    dtv[index + 1] != 0))
4379 		return ((void *)(dtv[index + 1] + offset));
4380 	return (tls_get_addr_slow(dtvp, index, offset));
4381 }
4382 
4383 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4384     defined(__powerpc__)
4385 
4386 /*
4387  * Allocate Static TLS using the Variant I method.
4388  */
4389 void *
4390 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4391 {
4392     Obj_Entry *obj;
4393     char *tcb;
4394     Elf_Addr **tls;
4395     Elf_Addr *dtv;
4396     Elf_Addr addr;
4397     int i;
4398 
4399     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4400 	return (oldtcb);
4401 
4402     assert(tcbsize >= TLS_TCB_SIZE);
4403     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4404     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4405 
4406     if (oldtcb != NULL) {
4407 	memcpy(tls, oldtcb, tls_static_space);
4408 	free(oldtcb);
4409 
4410 	/* Adjust the DTV. */
4411 	dtv = tls[0];
4412 	for (i = 0; i < dtv[1]; i++) {
4413 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4414 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4415 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4416 	    }
4417 	}
4418     } else {
4419 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4420 	tls[0] = dtv;
4421 	dtv[0] = tls_dtv_generation;
4422 	dtv[1] = tls_max_index;
4423 
4424 	for (obj = objs; obj; obj = obj->next) {
4425 	    if (obj->tlsoffset > 0) {
4426 		addr = (Elf_Addr)tls + obj->tlsoffset;
4427 		if (obj->tlsinitsize > 0)
4428 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4429 		if (obj->tlssize > obj->tlsinitsize)
4430 		    memset((void*) (addr + obj->tlsinitsize), 0,
4431 			   obj->tlssize - obj->tlsinitsize);
4432 		dtv[obj->tlsindex + 1] = addr;
4433 	    }
4434 	}
4435     }
4436 
4437     return (tcb);
4438 }
4439 
4440 void
4441 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4442 {
4443     Elf_Addr *dtv;
4444     Elf_Addr tlsstart, tlsend;
4445     int dtvsize, i;
4446 
4447     assert(tcbsize >= TLS_TCB_SIZE);
4448 
4449     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4450     tlsend = tlsstart + tls_static_space;
4451 
4452     dtv = *(Elf_Addr **)tlsstart;
4453     dtvsize = dtv[1];
4454     for (i = 0; i < dtvsize; i++) {
4455 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4456 	    free((void*)dtv[i+2]);
4457 	}
4458     }
4459     free(dtv);
4460     free(tcb);
4461 }
4462 
4463 #endif
4464 
4465 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4466 
4467 /*
4468  * Allocate Static TLS using the Variant II method.
4469  */
4470 void *
4471 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4472 {
4473     Obj_Entry *obj;
4474     size_t size, ralign;
4475     char *tls;
4476     Elf_Addr *dtv, *olddtv;
4477     Elf_Addr segbase, oldsegbase, addr;
4478     int i;
4479 
4480     ralign = tcbalign;
4481     if (tls_static_max_align > ralign)
4482 	    ralign = tls_static_max_align;
4483     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4484 
4485     assert(tcbsize >= 2*sizeof(Elf_Addr));
4486     tls = malloc_aligned(size, ralign);
4487     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4488 
4489     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4490     ((Elf_Addr*)segbase)[0] = segbase;
4491     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4492 
4493     dtv[0] = tls_dtv_generation;
4494     dtv[1] = tls_max_index;
4495 
4496     if (oldtls) {
4497 	/*
4498 	 * Copy the static TLS block over whole.
4499 	 */
4500 	oldsegbase = (Elf_Addr) oldtls;
4501 	memcpy((void *)(segbase - tls_static_space),
4502 	       (const void *)(oldsegbase - tls_static_space),
4503 	       tls_static_space);
4504 
4505 	/*
4506 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4507 	 * move them over.
4508 	 */
4509 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4510 	for (i = 0; i < olddtv[1]; i++) {
4511 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4512 		dtv[i+2] = olddtv[i+2];
4513 		olddtv[i+2] = 0;
4514 	    }
4515 	}
4516 
4517 	/*
4518 	 * We assume that this block was the one we created with
4519 	 * allocate_initial_tls().
4520 	 */
4521 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4522     } else {
4523 	for (obj = objs; obj; obj = obj->next) {
4524 	    if (obj->tlsoffset) {
4525 		addr = segbase - obj->tlsoffset;
4526 		memset((void*) (addr + obj->tlsinitsize),
4527 		       0, obj->tlssize - obj->tlsinitsize);
4528 		if (obj->tlsinit)
4529 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4530 		dtv[obj->tlsindex + 1] = addr;
4531 	    }
4532 	}
4533     }
4534 
4535     return (void*) segbase;
4536 }
4537 
4538 void
4539 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4540 {
4541     Elf_Addr* dtv;
4542     size_t size, ralign;
4543     int dtvsize, i;
4544     Elf_Addr tlsstart, tlsend;
4545 
4546     /*
4547      * Figure out the size of the initial TLS block so that we can
4548      * find stuff which ___tls_get_addr() allocated dynamically.
4549      */
4550     ralign = tcbalign;
4551     if (tls_static_max_align > ralign)
4552 	    ralign = tls_static_max_align;
4553     size = round(tls_static_space, ralign);
4554 
4555     dtv = ((Elf_Addr**)tls)[1];
4556     dtvsize = dtv[1];
4557     tlsend = (Elf_Addr) tls;
4558     tlsstart = tlsend - size;
4559     for (i = 0; i < dtvsize; i++) {
4560 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4561 		free_aligned((void *)dtv[i + 2]);
4562 	}
4563     }
4564 
4565     free_aligned((void *)tlsstart);
4566     free((void*) dtv);
4567 }
4568 
4569 #endif
4570 
4571 /*
4572  * Allocate TLS block for module with given index.
4573  */
4574 void *
4575 allocate_module_tls(int index)
4576 {
4577     Obj_Entry* obj;
4578     char* p;
4579 
4580     for (obj = obj_list; obj; obj = obj->next) {
4581 	if (obj->tlsindex == index)
4582 	    break;
4583     }
4584     if (!obj) {
4585 	_rtld_error("Can't find module with TLS index %d", index);
4586 	rtld_die();
4587     }
4588 
4589     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4590     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4591     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4592 
4593     return p;
4594 }
4595 
4596 bool
4597 allocate_tls_offset(Obj_Entry *obj)
4598 {
4599     size_t off;
4600 
4601     if (obj->tls_done)
4602 	return true;
4603 
4604     if (obj->tlssize == 0) {
4605 	obj->tls_done = true;
4606 	return true;
4607     }
4608 
4609     if (obj->tlsindex == 1)
4610 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4611     else
4612 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4613 				   obj->tlssize, obj->tlsalign);
4614 
4615     /*
4616      * If we have already fixed the size of the static TLS block, we
4617      * must stay within that size. When allocating the static TLS, we
4618      * leave a small amount of space spare to be used for dynamically
4619      * loading modules which use static TLS.
4620      */
4621     if (tls_static_space != 0) {
4622 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4623 	    return false;
4624     } else if (obj->tlsalign > tls_static_max_align) {
4625 	    tls_static_max_align = obj->tlsalign;
4626     }
4627 
4628     tls_last_offset = obj->tlsoffset = off;
4629     tls_last_size = obj->tlssize;
4630     obj->tls_done = true;
4631 
4632     return true;
4633 }
4634 
4635 void
4636 free_tls_offset(Obj_Entry *obj)
4637 {
4638 
4639     /*
4640      * If we were the last thing to allocate out of the static TLS
4641      * block, we give our space back to the 'allocator'. This is a
4642      * simplistic workaround to allow libGL.so.1 to be loaded and
4643      * unloaded multiple times.
4644      */
4645     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4646 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4647 	tls_last_offset -= obj->tlssize;
4648 	tls_last_size = 0;
4649     }
4650 }
4651 
4652 void *
4653 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4654 {
4655     void *ret;
4656     RtldLockState lockstate;
4657 
4658     wlock_acquire(rtld_bind_lock, &lockstate);
4659     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4660     lock_release(rtld_bind_lock, &lockstate);
4661     return (ret);
4662 }
4663 
4664 void
4665 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4666 {
4667     RtldLockState lockstate;
4668 
4669     wlock_acquire(rtld_bind_lock, &lockstate);
4670     free_tls(tcb, tcbsize, tcbalign);
4671     lock_release(rtld_bind_lock, &lockstate);
4672 }
4673 
4674 static void
4675 object_add_name(Obj_Entry *obj, const char *name)
4676 {
4677     Name_Entry *entry;
4678     size_t len;
4679 
4680     len = strlen(name);
4681     entry = malloc(sizeof(Name_Entry) + len);
4682 
4683     if (entry != NULL) {
4684 	strcpy(entry->name, name);
4685 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4686     }
4687 }
4688 
4689 static int
4690 object_match_name(const Obj_Entry *obj, const char *name)
4691 {
4692     Name_Entry *entry;
4693 
4694     STAILQ_FOREACH(entry, &obj->names, link) {
4695 	if (strcmp(name, entry->name) == 0)
4696 	    return (1);
4697     }
4698     return (0);
4699 }
4700 
4701 static Obj_Entry *
4702 locate_dependency(const Obj_Entry *obj, const char *name)
4703 {
4704     const Objlist_Entry *entry;
4705     const Needed_Entry *needed;
4706 
4707     STAILQ_FOREACH(entry, &list_main, link) {
4708 	if (object_match_name(entry->obj, name))
4709 	    return entry->obj;
4710     }
4711 
4712     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4713 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4714 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4715 	    /*
4716 	     * If there is DT_NEEDED for the name we are looking for,
4717 	     * we are all set.  Note that object might not be found if
4718 	     * dependency was not loaded yet, so the function can
4719 	     * return NULL here.  This is expected and handled
4720 	     * properly by the caller.
4721 	     */
4722 	    return (needed->obj);
4723 	}
4724     }
4725     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4726 	obj->path, name);
4727     rtld_die();
4728 }
4729 
4730 static int
4731 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4732     const Elf_Vernaux *vna)
4733 {
4734     const Elf_Verdef *vd;
4735     const char *vername;
4736 
4737     vername = refobj->strtab + vna->vna_name;
4738     vd = depobj->verdef;
4739     if (vd == NULL) {
4740 	_rtld_error("%s: version %s required by %s not defined",
4741 	    depobj->path, vername, refobj->path);
4742 	return (-1);
4743     }
4744     for (;;) {
4745 	if (vd->vd_version != VER_DEF_CURRENT) {
4746 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4747 		depobj->path, vd->vd_version);
4748 	    return (-1);
4749 	}
4750 	if (vna->vna_hash == vd->vd_hash) {
4751 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4752 		((char *)vd + vd->vd_aux);
4753 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4754 		return (0);
4755 	}
4756 	if (vd->vd_next == 0)
4757 	    break;
4758 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4759     }
4760     if (vna->vna_flags & VER_FLG_WEAK)
4761 	return (0);
4762     _rtld_error("%s: version %s required by %s not found",
4763 	depobj->path, vername, refobj->path);
4764     return (-1);
4765 }
4766 
4767 static int
4768 rtld_verify_object_versions(Obj_Entry *obj)
4769 {
4770     const Elf_Verneed *vn;
4771     const Elf_Verdef  *vd;
4772     const Elf_Verdaux *vda;
4773     const Elf_Vernaux *vna;
4774     const Obj_Entry *depobj;
4775     int maxvernum, vernum;
4776 
4777     if (obj->ver_checked)
4778 	return (0);
4779     obj->ver_checked = true;
4780 
4781     maxvernum = 0;
4782     /*
4783      * Walk over defined and required version records and figure out
4784      * max index used by any of them. Do very basic sanity checking
4785      * while there.
4786      */
4787     vn = obj->verneed;
4788     while (vn != NULL) {
4789 	if (vn->vn_version != VER_NEED_CURRENT) {
4790 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4791 		obj->path, vn->vn_version);
4792 	    return (-1);
4793 	}
4794 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4795 	for (;;) {
4796 	    vernum = VER_NEED_IDX(vna->vna_other);
4797 	    if (vernum > maxvernum)
4798 		maxvernum = vernum;
4799 	    if (vna->vna_next == 0)
4800 		 break;
4801 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4802 	}
4803 	if (vn->vn_next == 0)
4804 	    break;
4805 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4806     }
4807 
4808     vd = obj->verdef;
4809     while (vd != NULL) {
4810 	if (vd->vd_version != VER_DEF_CURRENT) {
4811 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4812 		obj->path, vd->vd_version);
4813 	    return (-1);
4814 	}
4815 	vernum = VER_DEF_IDX(vd->vd_ndx);
4816 	if (vernum > maxvernum)
4817 		maxvernum = vernum;
4818 	if (vd->vd_next == 0)
4819 	    break;
4820 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4821     }
4822 
4823     if (maxvernum == 0)
4824 	return (0);
4825 
4826     /*
4827      * Store version information in array indexable by version index.
4828      * Verify that object version requirements are satisfied along the
4829      * way.
4830      */
4831     obj->vernum = maxvernum + 1;
4832     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4833 
4834     vd = obj->verdef;
4835     while (vd != NULL) {
4836 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4837 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4838 	    assert(vernum <= maxvernum);
4839 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4840 	    obj->vertab[vernum].hash = vd->vd_hash;
4841 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4842 	    obj->vertab[vernum].file = NULL;
4843 	    obj->vertab[vernum].flags = 0;
4844 	}
4845 	if (vd->vd_next == 0)
4846 	    break;
4847 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4848     }
4849 
4850     vn = obj->verneed;
4851     while (vn != NULL) {
4852 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4853 	if (depobj == NULL)
4854 	    return (-1);
4855 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4856 	for (;;) {
4857 	    if (check_object_provided_version(obj, depobj, vna))
4858 		return (-1);
4859 	    vernum = VER_NEED_IDX(vna->vna_other);
4860 	    assert(vernum <= maxvernum);
4861 	    obj->vertab[vernum].hash = vna->vna_hash;
4862 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4863 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4864 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4865 		VER_INFO_HIDDEN : 0;
4866 	    if (vna->vna_next == 0)
4867 		 break;
4868 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4869 	}
4870 	if (vn->vn_next == 0)
4871 	    break;
4872 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4873     }
4874     return 0;
4875 }
4876 
4877 static int
4878 rtld_verify_versions(const Objlist *objlist)
4879 {
4880     Objlist_Entry *entry;
4881     int rc;
4882 
4883     rc = 0;
4884     STAILQ_FOREACH(entry, objlist, link) {
4885 	/*
4886 	 * Skip dummy objects or objects that have their version requirements
4887 	 * already checked.
4888 	 */
4889 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4890 	    continue;
4891 	if (rtld_verify_object_versions(entry->obj) == -1) {
4892 	    rc = -1;
4893 	    if (ld_tracing == NULL)
4894 		break;
4895 	}
4896     }
4897     if (rc == 0 || ld_tracing != NULL)
4898     	rc = rtld_verify_object_versions(&obj_rtld);
4899     return rc;
4900 }
4901 
4902 const Ver_Entry *
4903 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4904 {
4905     Elf_Versym vernum;
4906 
4907     if (obj->vertab) {
4908 	vernum = VER_NDX(obj->versyms[symnum]);
4909 	if (vernum >= obj->vernum) {
4910 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4911 		obj->path, obj->strtab + symnum, vernum);
4912 	} else if (obj->vertab[vernum].hash != 0) {
4913 	    return &obj->vertab[vernum];
4914 	}
4915     }
4916     return NULL;
4917 }
4918 
4919 int
4920 _rtld_get_stack_prot(void)
4921 {
4922 
4923 	return (stack_prot);
4924 }
4925 
4926 int
4927 _rtld_is_dlopened(void *arg)
4928 {
4929 	Obj_Entry *obj;
4930 	RtldLockState lockstate;
4931 	int res;
4932 
4933 	rlock_acquire(rtld_bind_lock, &lockstate);
4934 	obj = dlcheck(arg);
4935 	if (obj == NULL)
4936 		obj = obj_from_addr(arg);
4937 	if (obj == NULL) {
4938 		_rtld_error("No shared object contains address");
4939 		lock_release(rtld_bind_lock, &lockstate);
4940 		return (-1);
4941 	}
4942 	res = obj->dlopened ? 1 : 0;
4943 	lock_release(rtld_bind_lock, &lockstate);
4944 	return (res);
4945 }
4946 
4947 static void
4948 map_stacks_exec(RtldLockState *lockstate)
4949 {
4950 	void (*thr_map_stacks_exec)(void);
4951 
4952 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4953 		return;
4954 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4955 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4956 	if (thr_map_stacks_exec != NULL) {
4957 		stack_prot |= PROT_EXEC;
4958 		thr_map_stacks_exec();
4959 	}
4960 }
4961 
4962 void
4963 symlook_init(SymLook *dst, const char *name)
4964 {
4965 
4966 	bzero(dst, sizeof(*dst));
4967 	dst->name = name;
4968 	dst->hash = elf_hash(name);
4969 	dst->hash_gnu = gnu_hash(name);
4970 }
4971 
4972 static void
4973 symlook_init_from_req(SymLook *dst, const SymLook *src)
4974 {
4975 
4976 	dst->name = src->name;
4977 	dst->hash = src->hash;
4978 	dst->hash_gnu = src->hash_gnu;
4979 	dst->ventry = src->ventry;
4980 	dst->flags = src->flags;
4981 	dst->defobj_out = NULL;
4982 	dst->sym_out = NULL;
4983 	dst->lockstate = src->lockstate;
4984 }
4985 
4986 
4987 /*
4988  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4989  */
4990 static int
4991 parse_libdir(const char *str)
4992 {
4993 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4994 	const char *orig;
4995 	int fd;
4996 	char c;
4997 
4998 	orig = str;
4999 	fd = 0;
5000 	for (c = *str; c != '\0'; c = *++str) {
5001 		if (c < '0' || c > '9')
5002 			return (-1);
5003 
5004 		fd *= RADIX;
5005 		fd += c - '0';
5006 	}
5007 
5008 	/* Make sure we actually parsed something. */
5009 	if (str == orig) {
5010 		_rtld_error("failed to parse directory FD from '%s'", str);
5011 		return (-1);
5012 	}
5013 	return (fd);
5014 }
5015 
5016 /*
5017  * Overrides for libc_pic-provided functions.
5018  */
5019 
5020 int
5021 __getosreldate(void)
5022 {
5023 	size_t len;
5024 	int oid[2];
5025 	int error, osrel;
5026 
5027 	if (osreldate != 0)
5028 		return (osreldate);
5029 
5030 	oid[0] = CTL_KERN;
5031 	oid[1] = KERN_OSRELDATE;
5032 	osrel = 0;
5033 	len = sizeof(osrel);
5034 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5035 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5036 		osreldate = osrel;
5037 	return (osreldate);
5038 }
5039 
5040 void
5041 exit(int status)
5042 {
5043 
5044 	_exit(status);
5045 }
5046 
5047 void (*__cleanup)(void);
5048 int __isthreaded = 0;
5049 int _thread_autoinit_dummy_decl = 1;
5050 
5051 /*
5052  * No unresolved symbols for rtld.
5053  */
5054 void
5055 __pthread_cxa_finalize(struct dl_phdr_info *a)
5056 {
5057 }
5058 
5059 void
5060 __stack_chk_fail(void)
5061 {
5062 
5063 	_rtld_error("stack overflow detected; terminated");
5064 	rtld_die();
5065 }
5066 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
5067 
5068 void
5069 __chk_fail(void)
5070 {
5071 
5072 	_rtld_error("buffer overflow detected; terminated");
5073 	rtld_die();
5074 }
5075 
5076 const char *
5077 rtld_strerror(int errnum)
5078 {
5079 
5080 	if (errnum < 0 || errnum >= sys_nerr)
5081 		return ("Unknown error");
5082 	return (sys_errlist[errnum]);
5083 }
5084