1 /*- 2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>. 4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>. 5 * Copyright 2012 John Marino <draco@marino.st>. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 /* 32 * Dynamic linker for ELF. 33 * 34 * John Polstra <jdp@polstra.com>. 35 */ 36 37 #ifndef __GNUC__ 38 #error "GCC is needed to compile this file" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/mount.h> 43 #include <sys/mman.h> 44 #include <sys/stat.h> 45 #include <sys/sysctl.h> 46 #include <sys/uio.h> 47 #include <sys/utsname.h> 48 #include <sys/ktrace.h> 49 50 #include <dlfcn.h> 51 #include <err.h> 52 #include <errno.h> 53 #include <fcntl.h> 54 #include <stdarg.h> 55 #include <stdio.h> 56 #include <stdlib.h> 57 #include <string.h> 58 #include <unistd.h> 59 60 #include "debug.h" 61 #include "rtld.h" 62 #include "libmap.h" 63 #include "rtld_tls.h" 64 #include "rtld_printf.h" 65 #include "notes.h" 66 67 #ifndef COMPAT_32BIT 68 #define PATH_RTLD "/libexec/ld-elf.so.1" 69 #else 70 #define PATH_RTLD "/libexec/ld-elf32.so.1" 71 #endif 72 73 /* Types. */ 74 typedef void (*func_ptr_type)(); 75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); 76 77 /* 78 * Function declarations. 79 */ 80 static const char *basename(const char *); 81 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, 82 const Elf_Dyn **, const Elf_Dyn **); 83 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, 84 const Elf_Dyn *); 85 static void digest_dynamic(Obj_Entry *, int); 86 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 87 static Obj_Entry *dlcheck(void *); 88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, 89 int lo_flags, int mode, RtldLockState *lockstate); 90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); 91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); 92 static bool donelist_check(DoneList *, const Obj_Entry *); 93 static void errmsg_restore(char *); 94 static char *errmsg_save(void); 95 static void *fill_search_info(const char *, size_t, void *); 96 static char *find_library(const char *, const Obj_Entry *, int *); 97 static const char *gethints(bool); 98 static void init_dag(Obj_Entry *); 99 static void init_pagesizes(Elf_Auxinfo **aux_info); 100 static void init_rtld(caddr_t, Elf_Auxinfo **); 101 static void initlist_add_neededs(Needed_Entry *, Objlist *); 102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *); 103 static void linkmap_add(Obj_Entry *); 104 static void linkmap_delete(Obj_Entry *); 105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *); 106 static void unload_filtees(Obj_Entry *); 107 static int load_needed_objects(Obj_Entry *, int); 108 static int load_preload_objects(void); 109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); 110 static void map_stacks_exec(RtldLockState *); 111 static Obj_Entry *obj_from_addr(const void *); 112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); 113 static void objlist_call_init(Objlist *, RtldLockState *); 114 static void objlist_clear(Objlist *); 115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 116 static void objlist_init(Objlist *); 117 static void objlist_push_head(Objlist *, Obj_Entry *); 118 static void objlist_push_tail(Objlist *, Obj_Entry *); 119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); 120 static void objlist_remove(Objlist *, Obj_Entry *); 121 static int parse_libdir(const char *); 122 static void *path_enumerate(const char *, path_enum_proc, void *); 123 static int relocate_object_dag(Obj_Entry *root, bool bind_now, 124 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); 125 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 126 int flags, RtldLockState *lockstate); 127 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, 128 RtldLockState *); 129 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, 130 int flags, RtldLockState *lockstate); 131 static int rtld_dirname(const char *, char *); 132 static int rtld_dirname_abs(const char *, char *); 133 static void *rtld_dlopen(const char *name, int fd, int mode); 134 static void rtld_exit(void); 135 static char *search_library_path(const char *, const char *); 136 static char *search_library_pathfds(const char *, const char *, int *); 137 static const void **get_program_var_addr(const char *, RtldLockState *); 138 static void set_program_var(const char *, const void *); 139 static int symlook_default(SymLook *, const Obj_Entry *refobj); 140 static int symlook_global(SymLook *, DoneList *); 141 static void symlook_init_from_req(SymLook *, const SymLook *); 142 static int symlook_list(SymLook *, const Objlist *, DoneList *); 143 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); 144 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); 145 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); 146 static void trace_loaded_objects(Obj_Entry *); 147 static void unlink_object(Obj_Entry *); 148 static void unload_object(Obj_Entry *); 149 static void unref_dag(Obj_Entry *); 150 static void ref_dag(Obj_Entry *); 151 static char *origin_subst_one(char *, const char *, const char *, bool); 152 static char *origin_subst(char *, const char *); 153 static void preinit_main(void); 154 static int rtld_verify_versions(const Objlist *); 155 static int rtld_verify_object_versions(Obj_Entry *); 156 static void object_add_name(Obj_Entry *, const char *); 157 static int object_match_name(const Obj_Entry *, const char *); 158 static void ld_utrace_log(int, void *, void *, size_t, int, const char *); 159 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, 160 struct dl_phdr_info *phdr_info); 161 static uint32_t gnu_hash(const char *); 162 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, 163 const unsigned long); 164 165 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; 166 void _r_debug_postinit(struct link_map *) __noinline __exported; 167 168 int __sys_openat(int, const char *, int, ...); 169 170 /* 171 * Data declarations. 172 */ 173 static char *error_message; /* Message for dlerror(), or NULL */ 174 struct r_debug r_debug __exported; /* for GDB; */ 175 static bool libmap_disable; /* Disable libmap */ 176 static bool ld_loadfltr; /* Immediate filters processing */ 177 static char *libmap_override; /* Maps to use in addition to libmap.conf */ 178 static bool trust; /* False for setuid and setgid programs */ 179 static bool dangerous_ld_env; /* True if environment variables have been 180 used to affect the libraries loaded */ 181 static char *ld_bind_now; /* Environment variable for immediate binding */ 182 static char *ld_debug; /* Environment variable for debugging */ 183 static char *ld_library_path; /* Environment variable for search path */ 184 static char *ld_library_dirs; /* Environment variable for library descriptors */ 185 static char *ld_preload; /* Environment variable for libraries to 186 load first */ 187 static char *ld_elf_hints_path; /* Environment variable for alternative hints path */ 188 static char *ld_tracing; /* Called from ldd to print libs */ 189 static char *ld_utrace; /* Use utrace() to log events. */ 190 static Obj_Entry *obj_list; /* Head of linked list of shared objects */ 191 static Obj_Entry **obj_tail; /* Link field of last object in list */ 192 static Obj_Entry *obj_main; /* The main program shared object */ 193 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 194 static unsigned int obj_count; /* Number of objects in obj_list */ 195 static unsigned int obj_loads; /* Number of objects in obj_list */ 196 197 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 198 STAILQ_HEAD_INITIALIZER(list_global); 199 static Objlist list_main = /* Objects loaded at program startup */ 200 STAILQ_HEAD_INITIALIZER(list_main); 201 static Objlist list_fini = /* Objects needing fini() calls */ 202 STAILQ_HEAD_INITIALIZER(list_fini); 203 204 Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 205 206 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 207 208 extern Elf_Dyn _DYNAMIC; 209 #pragma weak _DYNAMIC 210 #ifndef RTLD_IS_DYNAMIC 211 #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL) 212 #endif 213 214 int dlclose(void *) __exported; 215 char *dlerror(void) __exported; 216 void *dlopen(const char *, int) __exported; 217 void *fdlopen(int, int) __exported; 218 void *dlsym(void *, const char *) __exported; 219 dlfunc_t dlfunc(void *, const char *) __exported; 220 void *dlvsym(void *, const char *, const char *) __exported; 221 int dladdr(const void *, Dl_info *) __exported; 222 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), 223 void (*)(void *), void (*)(void *), void (*)(void *)) __exported; 224 int dlinfo(void *, int , void *) __exported; 225 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; 226 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; 227 int _rtld_get_stack_prot(void) __exported; 228 int _rtld_is_dlopened(void *) __exported; 229 void _rtld_error(const char *, ...) __exported; 230 231 int npagesizes, osreldate; 232 size_t *pagesizes; 233 234 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0}; 235 236 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC; 237 static int max_stack_flags; 238 239 /* 240 * Global declarations normally provided by crt1. The dynamic linker is 241 * not built with crt1, so we have to provide them ourselves. 242 */ 243 char *__progname; 244 char **environ; 245 246 /* 247 * Used to pass argc, argv to init functions. 248 */ 249 int main_argc; 250 char **main_argv; 251 252 /* 253 * Globals to control TLS allocation. 254 */ 255 size_t tls_last_offset; /* Static TLS offset of last module */ 256 size_t tls_last_size; /* Static TLS size of last module */ 257 size_t tls_static_space; /* Static TLS space allocated */ 258 size_t tls_static_max_align; 259 int tls_dtv_generation = 1; /* Used to detect when dtv size changes */ 260 int tls_max_index = 1; /* Largest module index allocated */ 261 262 bool ld_library_path_rpath = false; 263 264 /* 265 * Fill in a DoneList with an allocation large enough to hold all of 266 * the currently-loaded objects. Keep this as a macro since it calls 267 * alloca and we want that to occur within the scope of the caller. 268 */ 269 #define donelist_init(dlp) \ 270 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 271 assert((dlp)->objs != NULL), \ 272 (dlp)->num_alloc = obj_count, \ 273 (dlp)->num_used = 0) 274 275 #define UTRACE_DLOPEN_START 1 276 #define UTRACE_DLOPEN_STOP 2 277 #define UTRACE_DLCLOSE_START 3 278 #define UTRACE_DLCLOSE_STOP 4 279 #define UTRACE_LOAD_OBJECT 5 280 #define UTRACE_UNLOAD_OBJECT 6 281 #define UTRACE_ADD_RUNDEP 7 282 #define UTRACE_PRELOAD_FINISHED 8 283 #define UTRACE_INIT_CALL 9 284 #define UTRACE_FINI_CALL 10 285 #define UTRACE_DLSYM_START 11 286 #define UTRACE_DLSYM_STOP 12 287 288 struct utrace_rtld { 289 char sig[4]; /* 'RTLD' */ 290 int event; 291 void *handle; 292 void *mapbase; /* Used for 'parent' and 'init/fini' */ 293 size_t mapsize; 294 int refcnt; /* Used for 'mode' */ 295 char name[MAXPATHLEN]; 296 }; 297 298 #define LD_UTRACE(e, h, mb, ms, r, n) do { \ 299 if (ld_utrace != NULL) \ 300 ld_utrace_log(e, h, mb, ms, r, n); \ 301 } while (0) 302 303 static void 304 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, 305 int refcnt, const char *name) 306 { 307 struct utrace_rtld ut; 308 309 ut.sig[0] = 'R'; 310 ut.sig[1] = 'T'; 311 ut.sig[2] = 'L'; 312 ut.sig[3] = 'D'; 313 ut.event = event; 314 ut.handle = handle; 315 ut.mapbase = mapbase; 316 ut.mapsize = mapsize; 317 ut.refcnt = refcnt; 318 bzero(ut.name, sizeof(ut.name)); 319 if (name) 320 strlcpy(ut.name, name, sizeof(ut.name)); 321 utrace(&ut, sizeof(ut)); 322 } 323 324 /* 325 * Main entry point for dynamic linking. The first argument is the 326 * stack pointer. The stack is expected to be laid out as described 327 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 328 * Specifically, the stack pointer points to a word containing 329 * ARGC. Following that in the stack is a null-terminated sequence 330 * of pointers to argument strings. Then comes a null-terminated 331 * sequence of pointers to environment strings. Finally, there is a 332 * sequence of "auxiliary vector" entries. 333 * 334 * The second argument points to a place to store the dynamic linker's 335 * exit procedure pointer and the third to a place to store the main 336 * program's object. 337 * 338 * The return value is the main program's entry point. 339 */ 340 func_ptr_type 341 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 342 { 343 Elf_Auxinfo *aux_info[AT_COUNT]; 344 int i; 345 int argc; 346 char **argv; 347 char **env; 348 Elf_Auxinfo *aux; 349 Elf_Auxinfo *auxp; 350 const char *argv0; 351 Objlist_Entry *entry; 352 Obj_Entry *obj; 353 Obj_Entry **preload_tail; 354 Obj_Entry *last_interposer; 355 Objlist initlist; 356 RtldLockState lockstate; 357 char *library_path_rpath; 358 int mib[2]; 359 size_t len; 360 361 /* 362 * On entry, the dynamic linker itself has not been relocated yet. 363 * Be very careful not to reference any global data until after 364 * init_rtld has returned. It is OK to reference file-scope statics 365 * and string constants, and to call static and global functions. 366 */ 367 368 /* Find the auxiliary vector on the stack. */ 369 argc = *sp++; 370 argv = (char **) sp; 371 sp += argc + 1; /* Skip over arguments and NULL terminator */ 372 env = (char **) sp; 373 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 374 ; 375 aux = (Elf_Auxinfo *) sp; 376 377 /* Digest the auxiliary vector. */ 378 for (i = 0; i < AT_COUNT; i++) 379 aux_info[i] = NULL; 380 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 381 if (auxp->a_type < AT_COUNT) 382 aux_info[auxp->a_type] = auxp; 383 } 384 385 /* Initialize and relocate ourselves. */ 386 assert(aux_info[AT_BASE] != NULL); 387 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); 388 389 __progname = obj_rtld.path; 390 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 391 environ = env; 392 main_argc = argc; 393 main_argv = argv; 394 395 if (aux_info[AT_CANARY] != NULL && 396 aux_info[AT_CANARY]->a_un.a_ptr != NULL) { 397 i = aux_info[AT_CANARYLEN]->a_un.a_val; 398 if (i > sizeof(__stack_chk_guard)) 399 i = sizeof(__stack_chk_guard); 400 memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i); 401 } else { 402 mib[0] = CTL_KERN; 403 mib[1] = KERN_ARND; 404 405 len = sizeof(__stack_chk_guard); 406 if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 || 407 len != sizeof(__stack_chk_guard)) { 408 /* If sysctl was unsuccessful, use the "terminator canary". */ 409 ((unsigned char *)(void *)__stack_chk_guard)[0] = 0; 410 ((unsigned char *)(void *)__stack_chk_guard)[1] = 0; 411 ((unsigned char *)(void *)__stack_chk_guard)[2] = '\n'; 412 ((unsigned char *)(void *)__stack_chk_guard)[3] = 255; 413 } 414 } 415 416 trust = !issetugid(); 417 418 ld_bind_now = getenv(LD_ "BIND_NOW"); 419 /* 420 * If the process is tainted, then we un-set the dangerous environment 421 * variables. The process will be marked as tainted until setuid(2) 422 * is called. If any child process calls setuid(2) we do not want any 423 * future processes to honor the potentially un-safe variables. 424 */ 425 if (!trust) { 426 if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") || 427 unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") || 428 unsetenv(LD_ "LIBMAP_DISABLE") || 429 unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") || 430 unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) { 431 _rtld_error("environment corrupt; aborting"); 432 rtld_die(); 433 } 434 } 435 ld_debug = getenv(LD_ "DEBUG"); 436 libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL; 437 libmap_override = getenv(LD_ "LIBMAP"); 438 ld_library_path = getenv(LD_ "LIBRARY_PATH"); 439 ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS"); 440 ld_preload = getenv(LD_ "PRELOAD"); 441 ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH"); 442 ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL; 443 library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH"); 444 if (library_path_rpath != NULL) { 445 if (library_path_rpath[0] == 'y' || 446 library_path_rpath[0] == 'Y' || 447 library_path_rpath[0] == '1') 448 ld_library_path_rpath = true; 449 else 450 ld_library_path_rpath = false; 451 } 452 dangerous_ld_env = libmap_disable || (libmap_override != NULL) || 453 (ld_library_path != NULL) || (ld_preload != NULL) || 454 (ld_elf_hints_path != NULL) || ld_loadfltr; 455 ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS"); 456 ld_utrace = getenv(LD_ "UTRACE"); 457 458 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0) 459 ld_elf_hints_path = _PATH_ELF_HINTS; 460 461 if (ld_debug != NULL && *ld_debug != '\0') 462 debug = 1; 463 dbg("%s is initialized, base address = %p", __progname, 464 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 465 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 466 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 467 468 dbg("initializing thread locks"); 469 lockdflt_init(); 470 471 /* 472 * Load the main program, or process its program header if it is 473 * already loaded. 474 */ 475 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ 476 int fd = aux_info[AT_EXECFD]->a_un.a_val; 477 dbg("loading main program"); 478 obj_main = map_object(fd, argv0, NULL); 479 close(fd); 480 if (obj_main == NULL) 481 rtld_die(); 482 max_stack_flags = obj->stack_flags; 483 } else { /* Main program already loaded. */ 484 const Elf_Phdr *phdr; 485 int phnum; 486 caddr_t entry; 487 488 dbg("processing main program's program header"); 489 assert(aux_info[AT_PHDR] != NULL); 490 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 491 assert(aux_info[AT_PHNUM] != NULL); 492 phnum = aux_info[AT_PHNUM]->a_un.a_val; 493 assert(aux_info[AT_PHENT] != NULL); 494 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 495 assert(aux_info[AT_ENTRY] != NULL); 496 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 497 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) 498 rtld_die(); 499 } 500 501 if (aux_info[AT_EXECPATH] != 0) { 502 char *kexecpath; 503 char buf[MAXPATHLEN]; 504 505 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; 506 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); 507 if (kexecpath[0] == '/') 508 obj_main->path = kexecpath; 509 else if (getcwd(buf, sizeof(buf)) == NULL || 510 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || 511 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) 512 obj_main->path = xstrdup(argv0); 513 else 514 obj_main->path = xstrdup(buf); 515 } else { 516 dbg("No AT_EXECPATH"); 517 obj_main->path = xstrdup(argv0); 518 } 519 dbg("obj_main path %s", obj_main->path); 520 obj_main->mainprog = true; 521 522 if (aux_info[AT_STACKPROT] != NULL && 523 aux_info[AT_STACKPROT]->a_un.a_val != 0) 524 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; 525 526 #ifndef COMPAT_32BIT 527 /* 528 * Get the actual dynamic linker pathname from the executable if 529 * possible. (It should always be possible.) That ensures that 530 * gdb will find the right dynamic linker even if a non-standard 531 * one is being used. 532 */ 533 if (obj_main->interp != NULL && 534 strcmp(obj_main->interp, obj_rtld.path) != 0) { 535 free(obj_rtld.path); 536 obj_rtld.path = xstrdup(obj_main->interp); 537 __progname = obj_rtld.path; 538 } 539 #endif 540 541 digest_dynamic(obj_main, 0); 542 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", 543 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, 544 obj_main->dynsymcount); 545 546 linkmap_add(obj_main); 547 linkmap_add(&obj_rtld); 548 549 /* Link the main program into the list of objects. */ 550 *obj_tail = obj_main; 551 obj_tail = &obj_main->next; 552 obj_count++; 553 obj_loads++; 554 555 /* Initialize a fake symbol for resolving undefined weak references. */ 556 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 557 sym_zero.st_shndx = SHN_UNDEF; 558 sym_zero.st_value = -(uintptr_t)obj_main->relocbase; 559 560 if (!libmap_disable) 561 libmap_disable = (bool)lm_init(libmap_override); 562 563 dbg("loading LD_PRELOAD libraries"); 564 if (load_preload_objects() == -1) 565 rtld_die(); 566 preload_tail = obj_tail; 567 568 dbg("loading needed objects"); 569 if (load_needed_objects(obj_main, 0) == -1) 570 rtld_die(); 571 572 /* Make a list of all objects loaded at startup. */ 573 last_interposer = obj_main; 574 for (obj = obj_list; obj != NULL; obj = obj->next) { 575 if (obj->z_interpose && obj != obj_main) { 576 objlist_put_after(&list_main, last_interposer, obj); 577 last_interposer = obj; 578 } else { 579 objlist_push_tail(&list_main, obj); 580 } 581 obj->refcount++; 582 } 583 584 dbg("checking for required versions"); 585 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) 586 rtld_die(); 587 588 if (ld_tracing) { /* We're done */ 589 trace_loaded_objects(obj_main); 590 exit(0); 591 } 592 593 if (getenv(LD_ "DUMP_REL_PRE") != NULL) { 594 dump_relocations(obj_main); 595 exit (0); 596 } 597 598 /* 599 * Processing tls relocations requires having the tls offsets 600 * initialized. Prepare offsets before starting initial 601 * relocation processing. 602 */ 603 dbg("initializing initial thread local storage offsets"); 604 STAILQ_FOREACH(entry, &list_main, link) { 605 /* 606 * Allocate all the initial objects out of the static TLS 607 * block even if they didn't ask for it. 608 */ 609 allocate_tls_offset(entry->obj); 610 } 611 612 if (relocate_objects(obj_main, 613 ld_bind_now != NULL && *ld_bind_now != '\0', 614 &obj_rtld, SYMLOOK_EARLY, NULL) == -1) 615 rtld_die(); 616 617 dbg("doing copy relocations"); 618 if (do_copy_relocations(obj_main) == -1) 619 rtld_die(); 620 621 if (getenv(LD_ "DUMP_REL_POST") != NULL) { 622 dump_relocations(obj_main); 623 exit (0); 624 } 625 626 /* 627 * Setup TLS for main thread. This must be done after the 628 * relocations are processed, since tls initialization section 629 * might be the subject for relocations. 630 */ 631 dbg("initializing initial thread local storage"); 632 allocate_initial_tls(obj_list); 633 634 dbg("initializing key program variables"); 635 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 636 set_program_var("environ", env); 637 set_program_var("__elf_aux_vector", aux); 638 639 /* Make a list of init functions to call. */ 640 objlist_init(&initlist); 641 initlist_add_objects(obj_list, preload_tail, &initlist); 642 643 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 644 645 map_stacks_exec(NULL); 646 647 dbg("resolving ifuncs"); 648 if (resolve_objects_ifunc(obj_main, 649 ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY, 650 NULL) == -1) 651 rtld_die(); 652 653 if (!obj_main->crt_no_init) { 654 /* 655 * Make sure we don't call the main program's init and fini 656 * functions for binaries linked with old crt1 which calls 657 * _init itself. 658 */ 659 obj_main->init = obj_main->fini = (Elf_Addr)NULL; 660 obj_main->preinit_array = obj_main->init_array = 661 obj_main->fini_array = (Elf_Addr)NULL; 662 } 663 664 wlock_acquire(rtld_bind_lock, &lockstate); 665 if (obj_main->crt_no_init) 666 preinit_main(); 667 objlist_call_init(&initlist, &lockstate); 668 _r_debug_postinit(&obj_main->linkmap); 669 objlist_clear(&initlist); 670 dbg("loading filtees"); 671 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 672 if (ld_loadfltr || obj->z_loadfltr) 673 load_filtees(obj, 0, &lockstate); 674 } 675 lock_release(rtld_bind_lock, &lockstate); 676 677 dbg("transferring control to program entry point = %p", obj_main->entry); 678 679 /* Return the exit procedure and the program entry point. */ 680 *exit_proc = rtld_exit; 681 *objp = obj_main; 682 return (func_ptr_type) obj_main->entry; 683 } 684 685 void * 686 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) 687 { 688 void *ptr; 689 Elf_Addr target; 690 691 ptr = (void *)make_function_pointer(def, obj); 692 target = ((Elf_Addr (*)(void))ptr)(); 693 return ((void *)target); 694 } 695 696 Elf_Addr 697 _rtld_bind(Obj_Entry *obj, Elf_Size reloff) 698 { 699 const Elf_Rel *rel; 700 const Elf_Sym *def; 701 const Obj_Entry *defobj; 702 Elf_Addr *where; 703 Elf_Addr target; 704 RtldLockState lockstate; 705 706 rlock_acquire(rtld_bind_lock, &lockstate); 707 if (sigsetjmp(lockstate.env, 0) != 0) 708 lock_upgrade(rtld_bind_lock, &lockstate); 709 if (obj->pltrel) 710 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 711 else 712 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 713 714 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 715 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL, 716 &lockstate); 717 if (def == NULL) 718 rtld_die(); 719 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 720 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); 721 else 722 target = (Elf_Addr)(defobj->relocbase + def->st_value); 723 724 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 725 defobj->strtab + def->st_name, basename(obj->path), 726 (void *)target, basename(defobj->path)); 727 728 /* 729 * Write the new contents for the jmpslot. Note that depending on 730 * architecture, the value which we need to return back to the 731 * lazy binding trampoline may or may not be the target 732 * address. The value returned from reloc_jmpslot() is the value 733 * that the trampoline needs. 734 */ 735 target = reloc_jmpslot(where, target, defobj, obj, rel); 736 lock_release(rtld_bind_lock, &lockstate); 737 return target; 738 } 739 740 /* 741 * Error reporting function. Use it like printf. If formats the message 742 * into a buffer, and sets things up so that the next call to dlerror() 743 * will return the message. 744 */ 745 void 746 _rtld_error(const char *fmt, ...) 747 { 748 static char buf[512]; 749 va_list ap; 750 751 va_start(ap, fmt); 752 rtld_vsnprintf(buf, sizeof buf, fmt, ap); 753 error_message = buf; 754 va_end(ap); 755 } 756 757 /* 758 * Return a dynamically-allocated copy of the current error message, if any. 759 */ 760 static char * 761 errmsg_save(void) 762 { 763 return error_message == NULL ? NULL : xstrdup(error_message); 764 } 765 766 /* 767 * Restore the current error message from a copy which was previously saved 768 * by errmsg_save(). The copy is freed. 769 */ 770 static void 771 errmsg_restore(char *saved_msg) 772 { 773 if (saved_msg == NULL) 774 error_message = NULL; 775 else { 776 _rtld_error("%s", saved_msg); 777 free(saved_msg); 778 } 779 } 780 781 static const char * 782 basename(const char *name) 783 { 784 const char *p = strrchr(name, '/'); 785 return p != NULL ? p + 1 : name; 786 } 787 788 static struct utsname uts; 789 790 static char * 791 origin_subst_one(char *real, const char *kw, const char *subst, 792 bool may_free) 793 { 794 char *p, *p1, *res, *resp; 795 int subst_len, kw_len, subst_count, old_len, new_len; 796 797 kw_len = strlen(kw); 798 799 /* 800 * First, count the number of the keyword occurences, to 801 * preallocate the final string. 802 */ 803 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { 804 p1 = strstr(p, kw); 805 if (p1 == NULL) 806 break; 807 } 808 809 /* 810 * If the keyword is not found, just return. 811 */ 812 if (subst_count == 0) 813 return (may_free ? real : xstrdup(real)); 814 815 /* 816 * There is indeed something to substitute. Calculate the 817 * length of the resulting string, and allocate it. 818 */ 819 subst_len = strlen(subst); 820 old_len = strlen(real); 821 new_len = old_len + (subst_len - kw_len) * subst_count; 822 res = xmalloc(new_len + 1); 823 824 /* 825 * Now, execute the substitution loop. 826 */ 827 for (p = real, resp = res, *resp = '\0';;) { 828 p1 = strstr(p, kw); 829 if (p1 != NULL) { 830 /* Copy the prefix before keyword. */ 831 memcpy(resp, p, p1 - p); 832 resp += p1 - p; 833 /* Keyword replacement. */ 834 memcpy(resp, subst, subst_len); 835 resp += subst_len; 836 *resp = '\0'; 837 p = p1 + kw_len; 838 } else 839 break; 840 } 841 842 /* Copy to the end of string and finish. */ 843 strcat(resp, p); 844 if (may_free) 845 free(real); 846 return (res); 847 } 848 849 static char * 850 origin_subst(char *real, const char *origin_path) 851 { 852 char *res1, *res2, *res3, *res4; 853 854 if (uts.sysname[0] == '\0') { 855 if (uname(&uts) != 0) { 856 _rtld_error("utsname failed: %d", errno); 857 return (NULL); 858 } 859 } 860 res1 = origin_subst_one(real, "$ORIGIN", origin_path, false); 861 res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true); 862 res3 = origin_subst_one(res2, "$OSREL", uts.release, true); 863 res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true); 864 return (res4); 865 } 866 867 void 868 rtld_die(void) 869 { 870 const char *msg = dlerror(); 871 872 if (msg == NULL) 873 msg = "Fatal error"; 874 rtld_fdputstr(STDERR_FILENO, msg); 875 rtld_fdputchar(STDERR_FILENO, '\n'); 876 _exit(1); 877 } 878 879 /* 880 * Process a shared object's DYNAMIC section, and save the important 881 * information in its Obj_Entry structure. 882 */ 883 static void 884 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, 885 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) 886 { 887 const Elf_Dyn *dynp; 888 Needed_Entry **needed_tail = &obj->needed; 889 Needed_Entry **needed_filtees_tail = &obj->needed_filtees; 890 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; 891 const Elf_Hashelt *hashtab; 892 const Elf32_Word *hashval; 893 Elf32_Word bkt, nmaskwords; 894 int bloom_size32; 895 int plttype = DT_REL; 896 897 *dyn_rpath = NULL; 898 *dyn_soname = NULL; 899 *dyn_runpath = NULL; 900 901 obj->bind_now = false; 902 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 903 switch (dynp->d_tag) { 904 905 case DT_REL: 906 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 907 break; 908 909 case DT_RELSZ: 910 obj->relsize = dynp->d_un.d_val; 911 break; 912 913 case DT_RELENT: 914 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 915 break; 916 917 case DT_JMPREL: 918 obj->pltrel = (const Elf_Rel *) 919 (obj->relocbase + dynp->d_un.d_ptr); 920 break; 921 922 case DT_PLTRELSZ: 923 obj->pltrelsize = dynp->d_un.d_val; 924 break; 925 926 case DT_RELA: 927 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 928 break; 929 930 case DT_RELASZ: 931 obj->relasize = dynp->d_un.d_val; 932 break; 933 934 case DT_RELAENT: 935 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 936 break; 937 938 case DT_PLTREL: 939 plttype = dynp->d_un.d_val; 940 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 941 break; 942 943 case DT_SYMTAB: 944 obj->symtab = (const Elf_Sym *) 945 (obj->relocbase + dynp->d_un.d_ptr); 946 break; 947 948 case DT_SYMENT: 949 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 950 break; 951 952 case DT_STRTAB: 953 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 954 break; 955 956 case DT_STRSZ: 957 obj->strsize = dynp->d_un.d_val; 958 break; 959 960 case DT_VERNEED: 961 obj->verneed = (const Elf_Verneed *) (obj->relocbase + 962 dynp->d_un.d_val); 963 break; 964 965 case DT_VERNEEDNUM: 966 obj->verneednum = dynp->d_un.d_val; 967 break; 968 969 case DT_VERDEF: 970 obj->verdef = (const Elf_Verdef *) (obj->relocbase + 971 dynp->d_un.d_val); 972 break; 973 974 case DT_VERDEFNUM: 975 obj->verdefnum = dynp->d_un.d_val; 976 break; 977 978 case DT_VERSYM: 979 obj->versyms = (const Elf_Versym *)(obj->relocbase + 980 dynp->d_un.d_val); 981 break; 982 983 case DT_HASH: 984 { 985 hashtab = (const Elf_Hashelt *)(obj->relocbase + 986 dynp->d_un.d_ptr); 987 obj->nbuckets = hashtab[0]; 988 obj->nchains = hashtab[1]; 989 obj->buckets = hashtab + 2; 990 obj->chains = obj->buckets + obj->nbuckets; 991 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && 992 obj->buckets != NULL; 993 } 994 break; 995 996 case DT_GNU_HASH: 997 { 998 hashtab = (const Elf_Hashelt *)(obj->relocbase + 999 dynp->d_un.d_ptr); 1000 obj->nbuckets_gnu = hashtab[0]; 1001 obj->symndx_gnu = hashtab[1]; 1002 nmaskwords = hashtab[2]; 1003 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; 1004 obj->maskwords_bm_gnu = nmaskwords - 1; 1005 obj->shift2_gnu = hashtab[3]; 1006 obj->bloom_gnu = (Elf_Addr *) (hashtab + 4); 1007 obj->buckets_gnu = hashtab + 4 + bloom_size32; 1008 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - 1009 obj->symndx_gnu; 1010 /* Number of bitmask words is required to be power of 2 */ 1011 obj->valid_hash_gnu = powerof2(nmaskwords) && 1012 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; 1013 } 1014 break; 1015 1016 case DT_NEEDED: 1017 if (!obj->rtld) { 1018 Needed_Entry *nep = NEW(Needed_Entry); 1019 nep->name = dynp->d_un.d_val; 1020 nep->obj = NULL; 1021 nep->next = NULL; 1022 1023 *needed_tail = nep; 1024 needed_tail = &nep->next; 1025 } 1026 break; 1027 1028 case DT_FILTER: 1029 if (!obj->rtld) { 1030 Needed_Entry *nep = NEW(Needed_Entry); 1031 nep->name = dynp->d_un.d_val; 1032 nep->obj = NULL; 1033 nep->next = NULL; 1034 1035 *needed_filtees_tail = nep; 1036 needed_filtees_tail = &nep->next; 1037 } 1038 break; 1039 1040 case DT_AUXILIARY: 1041 if (!obj->rtld) { 1042 Needed_Entry *nep = NEW(Needed_Entry); 1043 nep->name = dynp->d_un.d_val; 1044 nep->obj = NULL; 1045 nep->next = NULL; 1046 1047 *needed_aux_filtees_tail = nep; 1048 needed_aux_filtees_tail = &nep->next; 1049 } 1050 break; 1051 1052 case DT_PLTGOT: 1053 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 1054 break; 1055 1056 case DT_TEXTREL: 1057 obj->textrel = true; 1058 break; 1059 1060 case DT_SYMBOLIC: 1061 obj->symbolic = true; 1062 break; 1063 1064 case DT_RPATH: 1065 /* 1066 * We have to wait until later to process this, because we 1067 * might not have gotten the address of the string table yet. 1068 */ 1069 *dyn_rpath = dynp; 1070 break; 1071 1072 case DT_SONAME: 1073 *dyn_soname = dynp; 1074 break; 1075 1076 case DT_RUNPATH: 1077 *dyn_runpath = dynp; 1078 break; 1079 1080 case DT_INIT: 1081 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1082 break; 1083 1084 case DT_PREINIT_ARRAY: 1085 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1086 break; 1087 1088 case DT_PREINIT_ARRAYSZ: 1089 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1090 break; 1091 1092 case DT_INIT_ARRAY: 1093 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1094 break; 1095 1096 case DT_INIT_ARRAYSZ: 1097 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1098 break; 1099 1100 case DT_FINI: 1101 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1102 break; 1103 1104 case DT_FINI_ARRAY: 1105 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1106 break; 1107 1108 case DT_FINI_ARRAYSZ: 1109 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1110 break; 1111 1112 /* 1113 * Don't process DT_DEBUG on MIPS as the dynamic section 1114 * is mapped read-only. DT_MIPS_RLD_MAP is used instead. 1115 */ 1116 1117 #ifndef __mips__ 1118 case DT_DEBUG: 1119 /* XXX - not implemented yet */ 1120 if (!early) 1121 dbg("Filling in DT_DEBUG entry"); 1122 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 1123 break; 1124 #endif 1125 1126 case DT_FLAGS: 1127 if ((dynp->d_un.d_val & DF_ORIGIN) && trust) 1128 obj->z_origin = true; 1129 if (dynp->d_un.d_val & DF_SYMBOLIC) 1130 obj->symbolic = true; 1131 if (dynp->d_un.d_val & DF_TEXTREL) 1132 obj->textrel = true; 1133 if (dynp->d_un.d_val & DF_BIND_NOW) 1134 obj->bind_now = true; 1135 /*if (dynp->d_un.d_val & DF_STATIC_TLS) 1136 ;*/ 1137 break; 1138 #ifdef __mips__ 1139 case DT_MIPS_LOCAL_GOTNO: 1140 obj->local_gotno = dynp->d_un.d_val; 1141 break; 1142 1143 case DT_MIPS_SYMTABNO: 1144 obj->symtabno = dynp->d_un.d_val; 1145 break; 1146 1147 case DT_MIPS_GOTSYM: 1148 obj->gotsym = dynp->d_un.d_val; 1149 break; 1150 1151 case DT_MIPS_RLD_MAP: 1152 *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug; 1153 break; 1154 #endif 1155 1156 case DT_FLAGS_1: 1157 if (dynp->d_un.d_val & DF_1_NOOPEN) 1158 obj->z_noopen = true; 1159 if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust) 1160 obj->z_origin = true; 1161 if (dynp->d_un.d_val & DF_1_GLOBAL) 1162 obj->z_global = true; 1163 if (dynp->d_un.d_val & DF_1_BIND_NOW) 1164 obj->bind_now = true; 1165 if (dynp->d_un.d_val & DF_1_NODELETE) 1166 obj->z_nodelete = true; 1167 if (dynp->d_un.d_val & DF_1_LOADFLTR) 1168 obj->z_loadfltr = true; 1169 if (dynp->d_un.d_val & DF_1_INTERPOSE) 1170 obj->z_interpose = true; 1171 if (dynp->d_un.d_val & DF_1_NODEFLIB) 1172 obj->z_nodeflib = true; 1173 break; 1174 1175 default: 1176 if (!early) { 1177 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 1178 (long)dynp->d_tag); 1179 } 1180 break; 1181 } 1182 } 1183 1184 obj->traced = false; 1185 1186 if (plttype == DT_RELA) { 1187 obj->pltrela = (const Elf_Rela *) obj->pltrel; 1188 obj->pltrel = NULL; 1189 obj->pltrelasize = obj->pltrelsize; 1190 obj->pltrelsize = 0; 1191 } 1192 1193 /* Determine size of dynsym table (equal to nchains of sysv hash) */ 1194 if (obj->valid_hash_sysv) 1195 obj->dynsymcount = obj->nchains; 1196 else if (obj->valid_hash_gnu) { 1197 obj->dynsymcount = 0; 1198 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { 1199 if (obj->buckets_gnu[bkt] == 0) 1200 continue; 1201 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; 1202 do 1203 obj->dynsymcount++; 1204 while ((*hashval++ & 1u) == 0); 1205 } 1206 obj->dynsymcount += obj->symndx_gnu; 1207 } 1208 } 1209 1210 static void 1211 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, 1212 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) 1213 { 1214 1215 if (obj->z_origin && obj->origin_path == NULL) { 1216 obj->origin_path = xmalloc(PATH_MAX); 1217 if (rtld_dirname_abs(obj->path, obj->origin_path) == -1) 1218 rtld_die(); 1219 } 1220 1221 if (dyn_runpath != NULL) { 1222 obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val; 1223 if (obj->z_origin) 1224 obj->runpath = origin_subst(obj->runpath, obj->origin_path); 1225 } 1226 else if (dyn_rpath != NULL) { 1227 obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val; 1228 if (obj->z_origin) 1229 obj->rpath = origin_subst(obj->rpath, obj->origin_path); 1230 } 1231 1232 if (dyn_soname != NULL) 1233 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); 1234 } 1235 1236 static void 1237 digest_dynamic(Obj_Entry *obj, int early) 1238 { 1239 const Elf_Dyn *dyn_rpath; 1240 const Elf_Dyn *dyn_soname; 1241 const Elf_Dyn *dyn_runpath; 1242 1243 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); 1244 digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath); 1245 } 1246 1247 /* 1248 * Process a shared object's program header. This is used only for the 1249 * main program, when the kernel has already loaded the main program 1250 * into memory before calling the dynamic linker. It creates and 1251 * returns an Obj_Entry structure. 1252 */ 1253 static Obj_Entry * 1254 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 1255 { 1256 Obj_Entry *obj; 1257 const Elf_Phdr *phlimit = phdr + phnum; 1258 const Elf_Phdr *ph; 1259 Elf_Addr note_start, note_end; 1260 int nsegs = 0; 1261 1262 obj = obj_new(); 1263 for (ph = phdr; ph < phlimit; ph++) { 1264 if (ph->p_type != PT_PHDR) 1265 continue; 1266 1267 obj->phdr = phdr; 1268 obj->phsize = ph->p_memsz; 1269 obj->relocbase = (caddr_t)phdr - ph->p_vaddr; 1270 break; 1271 } 1272 1273 obj->stack_flags = PF_X | PF_R | PF_W; 1274 1275 for (ph = phdr; ph < phlimit; ph++) { 1276 switch (ph->p_type) { 1277 1278 case PT_INTERP: 1279 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); 1280 break; 1281 1282 case PT_LOAD: 1283 if (nsegs == 0) { /* First load segment */ 1284 obj->vaddrbase = trunc_page(ph->p_vaddr); 1285 obj->mapbase = obj->vaddrbase + obj->relocbase; 1286 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 1287 obj->vaddrbase; 1288 } else { /* Last load segment */ 1289 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 1290 obj->vaddrbase; 1291 } 1292 nsegs++; 1293 break; 1294 1295 case PT_DYNAMIC: 1296 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); 1297 break; 1298 1299 case PT_TLS: 1300 obj->tlsindex = 1; 1301 obj->tlssize = ph->p_memsz; 1302 obj->tlsalign = ph->p_align; 1303 obj->tlsinitsize = ph->p_filesz; 1304 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); 1305 break; 1306 1307 case PT_GNU_STACK: 1308 obj->stack_flags = ph->p_flags; 1309 break; 1310 1311 case PT_GNU_RELRO: 1312 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr); 1313 obj->relro_size = round_page(ph->p_memsz); 1314 break; 1315 1316 case PT_NOTE: 1317 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; 1318 note_end = note_start + ph->p_filesz; 1319 digest_notes(obj, note_start, note_end); 1320 break; 1321 } 1322 } 1323 if (nsegs < 1) { 1324 _rtld_error("%s: too few PT_LOAD segments", path); 1325 return NULL; 1326 } 1327 1328 obj->entry = entry; 1329 return obj; 1330 } 1331 1332 void 1333 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) 1334 { 1335 const Elf_Note *note; 1336 const char *note_name; 1337 uintptr_t p; 1338 1339 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; 1340 note = (const Elf_Note *)((const char *)(note + 1) + 1341 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1342 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { 1343 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || 1344 note->n_descsz != sizeof(int32_t)) 1345 continue; 1346 if (note->n_type != ABI_NOTETYPE && 1347 note->n_type != CRT_NOINIT_NOTETYPE) 1348 continue; 1349 note_name = (const char *)(note + 1); 1350 if (strncmp(NOTE_FREEBSD_VENDOR, note_name, 1351 sizeof(NOTE_FREEBSD_VENDOR)) != 0) 1352 continue; 1353 switch (note->n_type) { 1354 case ABI_NOTETYPE: 1355 /* FreeBSD osrel note */ 1356 p = (uintptr_t)(note + 1); 1357 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 1358 obj->osrel = *(const int32_t *)(p); 1359 dbg("note osrel %d", obj->osrel); 1360 break; 1361 case CRT_NOINIT_NOTETYPE: 1362 /* FreeBSD 'crt does not call init' note */ 1363 obj->crt_no_init = true; 1364 dbg("note crt_no_init"); 1365 break; 1366 } 1367 } 1368 } 1369 1370 static Obj_Entry * 1371 dlcheck(void *handle) 1372 { 1373 Obj_Entry *obj; 1374 1375 for (obj = obj_list; obj != NULL; obj = obj->next) 1376 if (obj == (Obj_Entry *) handle) 1377 break; 1378 1379 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 1380 _rtld_error("Invalid shared object handle %p", handle); 1381 return NULL; 1382 } 1383 return obj; 1384 } 1385 1386 /* 1387 * If the given object is already in the donelist, return true. Otherwise 1388 * add the object to the list and return false. 1389 */ 1390 static bool 1391 donelist_check(DoneList *dlp, const Obj_Entry *obj) 1392 { 1393 unsigned int i; 1394 1395 for (i = 0; i < dlp->num_used; i++) 1396 if (dlp->objs[i] == obj) 1397 return true; 1398 /* 1399 * Our donelist allocation should always be sufficient. But if 1400 * our threads locking isn't working properly, more shared objects 1401 * could have been loaded since we allocated the list. That should 1402 * never happen, but we'll handle it properly just in case it does. 1403 */ 1404 if (dlp->num_used < dlp->num_alloc) 1405 dlp->objs[dlp->num_used++] = obj; 1406 return false; 1407 } 1408 1409 /* 1410 * Hash function for symbol table lookup. Don't even think about changing 1411 * this. It is specified by the System V ABI. 1412 */ 1413 unsigned long 1414 elf_hash(const char *name) 1415 { 1416 const unsigned char *p = (const unsigned char *) name; 1417 unsigned long h = 0; 1418 unsigned long g; 1419 1420 while (*p != '\0') { 1421 h = (h << 4) + *p++; 1422 if ((g = h & 0xf0000000) != 0) 1423 h ^= g >> 24; 1424 h &= ~g; 1425 } 1426 return h; 1427 } 1428 1429 /* 1430 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits 1431 * unsigned in case it's implemented with a wider type. 1432 */ 1433 static uint32_t 1434 gnu_hash(const char *s) 1435 { 1436 uint32_t h; 1437 unsigned char c; 1438 1439 h = 5381; 1440 for (c = *s; c != '\0'; c = *++s) 1441 h = h * 33 + c; 1442 return (h & 0xffffffff); 1443 } 1444 1445 1446 /* 1447 * Find the library with the given name, and return its full pathname. 1448 * The returned string is dynamically allocated. Generates an error 1449 * message and returns NULL if the library cannot be found. 1450 * 1451 * If the second argument is non-NULL, then it refers to an already- 1452 * loaded shared object, whose library search path will be searched. 1453 * 1454 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its 1455 * descriptor (which is close-on-exec) will be passed out via the third 1456 * argument. 1457 * 1458 * The search order is: 1459 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) 1460 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) 1461 * LD_LIBRARY_PATH 1462 * DT_RUNPATH in the referencing file 1463 * ldconfig hints (if -z nodefaultlib, filter out default library directories 1464 * from list) 1465 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib 1466 * 1467 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. 1468 */ 1469 static char * 1470 find_library(const char *xname, const Obj_Entry *refobj, int *fdp) 1471 { 1472 char *pathname; 1473 char *name; 1474 bool nodeflib, objgiven; 1475 1476 objgiven = refobj != NULL; 1477 if (strchr(xname, '/') != NULL) { /* Hard coded pathname */ 1478 if (xname[0] != '/' && !trust) { 1479 _rtld_error("Absolute pathname required for shared object \"%s\"", 1480 xname); 1481 return NULL; 1482 } 1483 if (objgiven && refobj->z_origin) { 1484 return (origin_subst(__DECONST(char *, xname), 1485 refobj->origin_path)); 1486 } else { 1487 return (xstrdup(xname)); 1488 } 1489 } 1490 1491 if (libmap_disable || !objgiven || 1492 (name = lm_find(refobj->path, xname)) == NULL) 1493 name = (char *)xname; 1494 1495 dbg(" Searching for \"%s\"", name); 1496 1497 /* 1498 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall 1499 * back to pre-conforming behaviour if user requested so with 1500 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z 1501 * nodeflib. 1502 */ 1503 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { 1504 if ((pathname = search_library_path(name, ld_library_path)) != NULL || 1505 (refobj != NULL && 1506 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 1507 (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL || 1508 (pathname = search_library_path(name, gethints(false))) != NULL || 1509 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL) 1510 return (pathname); 1511 } else { 1512 nodeflib = objgiven ? refobj->z_nodeflib : false; 1513 if ((objgiven && 1514 (pathname = search_library_path(name, refobj->rpath)) != NULL) || 1515 (objgiven && refobj->runpath == NULL && refobj != obj_main && 1516 (pathname = search_library_path(name, obj_main->rpath)) != NULL) || 1517 (pathname = search_library_path(name, ld_library_path)) != NULL || 1518 (objgiven && 1519 (pathname = search_library_path(name, refobj->runpath)) != NULL) || 1520 (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL || 1521 (pathname = search_library_path(name, gethints(nodeflib))) != NULL || 1522 (objgiven && !nodeflib && 1523 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)) 1524 return (pathname); 1525 } 1526 1527 if (objgiven && refobj->path != NULL) { 1528 _rtld_error("Shared object \"%s\" not found, required by \"%s\"", 1529 name, basename(refobj->path)); 1530 } else { 1531 _rtld_error("Shared object \"%s\" not found", name); 1532 } 1533 return NULL; 1534 } 1535 1536 /* 1537 * Given a symbol number in a referencing object, find the corresponding 1538 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1539 * no definition was found. Returns a pointer to the Obj_Entry of the 1540 * defining object via the reference parameter DEFOBJ_OUT. 1541 */ 1542 const Elf_Sym * 1543 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 1544 const Obj_Entry **defobj_out, int flags, SymCache *cache, 1545 RtldLockState *lockstate) 1546 { 1547 const Elf_Sym *ref; 1548 const Elf_Sym *def; 1549 const Obj_Entry *defobj; 1550 SymLook req; 1551 const char *name; 1552 int res; 1553 1554 /* 1555 * If we have already found this symbol, get the information from 1556 * the cache. 1557 */ 1558 if (symnum >= refobj->dynsymcount) 1559 return NULL; /* Bad object */ 1560 if (cache != NULL && cache[symnum].sym != NULL) { 1561 *defobj_out = cache[symnum].obj; 1562 return cache[symnum].sym; 1563 } 1564 1565 ref = refobj->symtab + symnum; 1566 name = refobj->strtab + ref->st_name; 1567 def = NULL; 1568 defobj = NULL; 1569 1570 /* 1571 * We don't have to do a full scale lookup if the symbol is local. 1572 * We know it will bind to the instance in this load module; to 1573 * which we already have a pointer (ie ref). By not doing a lookup, 1574 * we not only improve performance, but it also avoids unresolvable 1575 * symbols when local symbols are not in the hash table. This has 1576 * been seen with the ia64 toolchain. 1577 */ 1578 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 1579 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 1580 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 1581 symnum); 1582 } 1583 symlook_init(&req, name); 1584 req.flags = flags; 1585 req.ventry = fetch_ventry(refobj, symnum); 1586 req.lockstate = lockstate; 1587 res = symlook_default(&req, refobj); 1588 if (res == 0) { 1589 def = req.sym_out; 1590 defobj = req.defobj_out; 1591 } 1592 } else { 1593 def = ref; 1594 defobj = refobj; 1595 } 1596 1597 /* 1598 * If we found no definition and the reference is weak, treat the 1599 * symbol as having the value zero. 1600 */ 1601 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 1602 def = &sym_zero; 1603 defobj = obj_main; 1604 } 1605 1606 if (def != NULL) { 1607 *defobj_out = defobj; 1608 /* Record the information in the cache to avoid subsequent lookups. */ 1609 if (cache != NULL) { 1610 cache[symnum].sym = def; 1611 cache[symnum].obj = defobj; 1612 } 1613 } else { 1614 if (refobj != &obj_rtld) 1615 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); 1616 } 1617 return def; 1618 } 1619 1620 /* 1621 * Return the search path from the ldconfig hints file, reading it if 1622 * necessary. If nostdlib is true, then the default search paths are 1623 * not added to result. 1624 * 1625 * Returns NULL if there are problems with the hints file, 1626 * or if the search path there is empty. 1627 */ 1628 static const char * 1629 gethints(bool nostdlib) 1630 { 1631 static char *hints, *filtered_path; 1632 struct elfhints_hdr hdr; 1633 struct fill_search_info_args sargs, hargs; 1634 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; 1635 struct dl_serpath *SLPpath, *hintpath; 1636 char *p; 1637 unsigned int SLPndx, hintndx, fndx, fcount; 1638 int fd; 1639 size_t flen; 1640 bool skip; 1641 1642 /* First call, read the hints file */ 1643 if (hints == NULL) { 1644 /* Keep from trying again in case the hints file is bad. */ 1645 hints = ""; 1646 1647 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) 1648 return (NULL); 1649 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 1650 hdr.magic != ELFHINTS_MAGIC || 1651 hdr.version != 1) { 1652 close(fd); 1653 return (NULL); 1654 } 1655 p = xmalloc(hdr.dirlistlen + 1); 1656 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || 1657 read(fd, p, hdr.dirlistlen + 1) != 1658 (ssize_t)hdr.dirlistlen + 1) { 1659 free(p); 1660 close(fd); 1661 return (NULL); 1662 } 1663 hints = p; 1664 close(fd); 1665 } 1666 1667 /* 1668 * If caller agreed to receive list which includes the default 1669 * paths, we are done. Otherwise, if we still did not 1670 * calculated filtered result, do it now. 1671 */ 1672 if (!nostdlib) 1673 return (hints[0] != '\0' ? hints : NULL); 1674 if (filtered_path != NULL) 1675 goto filt_ret; 1676 1677 /* 1678 * Obtain the list of all configured search paths, and the 1679 * list of the default paths. 1680 * 1681 * First estimate the size of the results. 1682 */ 1683 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1684 smeta.dls_cnt = 0; 1685 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1686 hmeta.dls_cnt = 0; 1687 1688 sargs.request = RTLD_DI_SERINFOSIZE; 1689 sargs.serinfo = &smeta; 1690 hargs.request = RTLD_DI_SERINFOSIZE; 1691 hargs.serinfo = &hmeta; 1692 1693 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs); 1694 path_enumerate(p, fill_search_info, &hargs); 1695 1696 SLPinfo = xmalloc(smeta.dls_size); 1697 hintinfo = xmalloc(hmeta.dls_size); 1698 1699 /* 1700 * Next fetch both sets of paths. 1701 */ 1702 sargs.request = RTLD_DI_SERINFO; 1703 sargs.serinfo = SLPinfo; 1704 sargs.serpath = &SLPinfo->dls_serpath[0]; 1705 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; 1706 1707 hargs.request = RTLD_DI_SERINFO; 1708 hargs.serinfo = hintinfo; 1709 hargs.serpath = &hintinfo->dls_serpath[0]; 1710 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; 1711 1712 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs); 1713 path_enumerate(p, fill_search_info, &hargs); 1714 1715 /* 1716 * Now calculate the difference between two sets, by excluding 1717 * standard paths from the full set. 1718 */ 1719 fndx = 0; 1720 fcount = 0; 1721 filtered_path = xmalloc(hdr.dirlistlen + 1); 1722 hintpath = &hintinfo->dls_serpath[0]; 1723 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { 1724 skip = false; 1725 SLPpath = &SLPinfo->dls_serpath[0]; 1726 /* 1727 * Check each standard path against current. 1728 */ 1729 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { 1730 /* matched, skip the path */ 1731 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { 1732 skip = true; 1733 break; 1734 } 1735 } 1736 if (skip) 1737 continue; 1738 /* 1739 * Not matched against any standard path, add the path 1740 * to result. Separate consequtive paths with ':'. 1741 */ 1742 if (fcount > 0) { 1743 filtered_path[fndx] = ':'; 1744 fndx++; 1745 } 1746 fcount++; 1747 flen = strlen(hintpath->dls_name); 1748 strncpy((filtered_path + fndx), hintpath->dls_name, flen); 1749 fndx += flen; 1750 } 1751 filtered_path[fndx] = '\0'; 1752 1753 free(SLPinfo); 1754 free(hintinfo); 1755 1756 filt_ret: 1757 return (filtered_path[0] != '\0' ? filtered_path : NULL); 1758 } 1759 1760 static void 1761 init_dag(Obj_Entry *root) 1762 { 1763 const Needed_Entry *needed; 1764 const Objlist_Entry *elm; 1765 DoneList donelist; 1766 1767 if (root->dag_inited) 1768 return; 1769 donelist_init(&donelist); 1770 1771 /* Root object belongs to own DAG. */ 1772 objlist_push_tail(&root->dldags, root); 1773 objlist_push_tail(&root->dagmembers, root); 1774 donelist_check(&donelist, root); 1775 1776 /* 1777 * Add dependencies of root object to DAG in breadth order 1778 * by exploiting the fact that each new object get added 1779 * to the tail of the dagmembers list. 1780 */ 1781 STAILQ_FOREACH(elm, &root->dagmembers, link) { 1782 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { 1783 if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) 1784 continue; 1785 objlist_push_tail(&needed->obj->dldags, root); 1786 objlist_push_tail(&root->dagmembers, needed->obj); 1787 } 1788 } 1789 root->dag_inited = true; 1790 } 1791 1792 static void 1793 process_z(Obj_Entry *root) 1794 { 1795 const Objlist_Entry *elm; 1796 Obj_Entry *obj; 1797 1798 /* 1799 * Walk over object DAG and process every dependent object 1800 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need 1801 * to grow their own DAG. 1802 * 1803 * For DF_1_GLOBAL, DAG is required for symbol lookups in 1804 * symlook_global() to work. 1805 * 1806 * For DF_1_NODELETE, the DAG should have its reference upped. 1807 */ 1808 STAILQ_FOREACH(elm, &root->dagmembers, link) { 1809 obj = elm->obj; 1810 if (obj == NULL) 1811 continue; 1812 if (obj->z_nodelete && !obj->ref_nodel) { 1813 dbg("obj %s -z nodelete", obj->path); 1814 init_dag(obj); 1815 ref_dag(obj); 1816 obj->ref_nodel = true; 1817 } 1818 if (obj->z_global && objlist_find(&list_global, obj) == NULL) { 1819 dbg("obj %s -z global", obj->path); 1820 objlist_push_tail(&list_global, obj); 1821 init_dag(obj); 1822 } 1823 } 1824 } 1825 /* 1826 * Initialize the dynamic linker. The argument is the address at which 1827 * the dynamic linker has been mapped into memory. The primary task of 1828 * this function is to relocate the dynamic linker. 1829 */ 1830 static void 1831 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) 1832 { 1833 Obj_Entry objtmp; /* Temporary rtld object */ 1834 const Elf_Dyn *dyn_rpath; 1835 const Elf_Dyn *dyn_soname; 1836 const Elf_Dyn *dyn_runpath; 1837 1838 #ifdef RTLD_INIT_PAGESIZES_EARLY 1839 /* The page size is required by the dynamic memory allocator. */ 1840 init_pagesizes(aux_info); 1841 #endif 1842 1843 /* 1844 * Conjure up an Obj_Entry structure for the dynamic linker. 1845 * 1846 * The "path" member can't be initialized yet because string constants 1847 * cannot yet be accessed. Below we will set it correctly. 1848 */ 1849 memset(&objtmp, 0, sizeof(objtmp)); 1850 objtmp.path = NULL; 1851 objtmp.rtld = true; 1852 objtmp.mapbase = mapbase; 1853 #ifdef PIC 1854 objtmp.relocbase = mapbase; 1855 #endif 1856 if (RTLD_IS_DYNAMIC()) { 1857 objtmp.dynamic = rtld_dynamic(&objtmp); 1858 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); 1859 assert(objtmp.needed == NULL); 1860 #if !defined(__mips__) 1861 /* MIPS has a bogus DT_TEXTREL. */ 1862 assert(!objtmp.textrel); 1863 #endif 1864 1865 /* 1866 * Temporarily put the dynamic linker entry into the object list, so 1867 * that symbols can be found. 1868 */ 1869 1870 relocate_objects(&objtmp, true, &objtmp, 0, NULL); 1871 } 1872 1873 /* Initialize the object list. */ 1874 obj_tail = &obj_list; 1875 1876 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 1877 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 1878 1879 #ifndef RTLD_INIT_PAGESIZES_EARLY 1880 /* The page size is required by the dynamic memory allocator. */ 1881 init_pagesizes(aux_info); 1882 #endif 1883 1884 if (aux_info[AT_OSRELDATE] != NULL) 1885 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; 1886 1887 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); 1888 1889 /* Replace the path with a dynamically allocated copy. */ 1890 obj_rtld.path = xstrdup(PATH_RTLD); 1891 1892 r_debug.r_brk = r_debug_state; 1893 r_debug.r_state = RT_CONSISTENT; 1894 } 1895 1896 /* 1897 * Retrieve the array of supported page sizes. The kernel provides the page 1898 * sizes in increasing order. 1899 */ 1900 static void 1901 init_pagesizes(Elf_Auxinfo **aux_info) 1902 { 1903 static size_t psa[MAXPAGESIZES]; 1904 int mib[2]; 1905 size_t len, size; 1906 1907 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != 1908 NULL) { 1909 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; 1910 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; 1911 } else { 1912 len = 2; 1913 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) 1914 size = sizeof(psa); 1915 else { 1916 /* As a fallback, retrieve the base page size. */ 1917 size = sizeof(psa[0]); 1918 if (aux_info[AT_PAGESZ] != NULL) { 1919 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; 1920 goto psa_filled; 1921 } else { 1922 mib[0] = CTL_HW; 1923 mib[1] = HW_PAGESIZE; 1924 len = 2; 1925 } 1926 } 1927 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { 1928 _rtld_error("sysctl for hw.pagesize(s) failed"); 1929 rtld_die(); 1930 } 1931 psa_filled: 1932 pagesizes = psa; 1933 } 1934 npagesizes = size / sizeof(pagesizes[0]); 1935 /* Discard any invalid entries at the end of the array. */ 1936 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) 1937 npagesizes--; 1938 } 1939 1940 /* 1941 * Add the init functions from a needed object list (and its recursive 1942 * needed objects) to "list". This is not used directly; it is a helper 1943 * function for initlist_add_objects(). The write lock must be held 1944 * when this function is called. 1945 */ 1946 static void 1947 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 1948 { 1949 /* Recursively process the successor needed objects. */ 1950 if (needed->next != NULL) 1951 initlist_add_neededs(needed->next, list); 1952 1953 /* Process the current needed object. */ 1954 if (needed->obj != NULL) 1955 initlist_add_objects(needed->obj, &needed->obj->next, list); 1956 } 1957 1958 /* 1959 * Scan all of the DAGs rooted in the range of objects from "obj" to 1960 * "tail" and add their init functions to "list". This recurses over 1961 * the DAGs and ensure the proper init ordering such that each object's 1962 * needed libraries are initialized before the object itself. At the 1963 * same time, this function adds the objects to the global finalization 1964 * list "list_fini" in the opposite order. The write lock must be 1965 * held when this function is called. 1966 */ 1967 static void 1968 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list) 1969 { 1970 1971 if (obj->init_scanned || obj->init_done) 1972 return; 1973 obj->init_scanned = true; 1974 1975 /* Recursively process the successor objects. */ 1976 if (&obj->next != tail) 1977 initlist_add_objects(obj->next, tail, list); 1978 1979 /* Recursively process the needed objects. */ 1980 if (obj->needed != NULL) 1981 initlist_add_neededs(obj->needed, list); 1982 if (obj->needed_filtees != NULL) 1983 initlist_add_neededs(obj->needed_filtees, list); 1984 if (obj->needed_aux_filtees != NULL) 1985 initlist_add_neededs(obj->needed_aux_filtees, list); 1986 1987 /* Add the object to the init list. */ 1988 if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL || 1989 obj->init_array != (Elf_Addr)NULL) 1990 objlist_push_tail(list, obj); 1991 1992 /* Add the object to the global fini list in the reverse order. */ 1993 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) 1994 && !obj->on_fini_list) { 1995 objlist_push_head(&list_fini, obj); 1996 obj->on_fini_list = true; 1997 } 1998 } 1999 2000 #ifndef FPTR_TARGET 2001 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 2002 #endif 2003 2004 static void 2005 free_needed_filtees(Needed_Entry *n) 2006 { 2007 Needed_Entry *needed, *needed1; 2008 2009 for (needed = n; needed != NULL; needed = needed->next) { 2010 if (needed->obj != NULL) { 2011 dlclose(needed->obj); 2012 needed->obj = NULL; 2013 } 2014 } 2015 for (needed = n; needed != NULL; needed = needed1) { 2016 needed1 = needed->next; 2017 free(needed); 2018 } 2019 } 2020 2021 static void 2022 unload_filtees(Obj_Entry *obj) 2023 { 2024 2025 free_needed_filtees(obj->needed_filtees); 2026 obj->needed_filtees = NULL; 2027 free_needed_filtees(obj->needed_aux_filtees); 2028 obj->needed_aux_filtees = NULL; 2029 obj->filtees_loaded = false; 2030 } 2031 2032 static void 2033 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, 2034 RtldLockState *lockstate) 2035 { 2036 2037 for (; needed != NULL; needed = needed->next) { 2038 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, 2039 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | 2040 RTLD_LOCAL, lockstate); 2041 } 2042 } 2043 2044 static void 2045 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) 2046 { 2047 2048 lock_restart_for_upgrade(lockstate); 2049 if (!obj->filtees_loaded) { 2050 load_filtee1(obj, obj->needed_filtees, flags, lockstate); 2051 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); 2052 obj->filtees_loaded = true; 2053 } 2054 } 2055 2056 static int 2057 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) 2058 { 2059 Obj_Entry *obj1; 2060 2061 for (; needed != NULL; needed = needed->next) { 2062 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, 2063 flags & ~RTLD_LO_NOLOAD); 2064 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) 2065 return (-1); 2066 } 2067 return (0); 2068 } 2069 2070 /* 2071 * Given a shared object, traverse its list of needed objects, and load 2072 * each of them. Returns 0 on success. Generates an error message and 2073 * returns -1 on failure. 2074 */ 2075 static int 2076 load_needed_objects(Obj_Entry *first, int flags) 2077 { 2078 Obj_Entry *obj; 2079 2080 for (obj = first; obj != NULL; obj = obj->next) { 2081 if (process_needed(obj, obj->needed, flags) == -1) 2082 return (-1); 2083 } 2084 return (0); 2085 } 2086 2087 static int 2088 load_preload_objects(void) 2089 { 2090 char *p = ld_preload; 2091 Obj_Entry *obj; 2092 static const char delim[] = " \t:;"; 2093 2094 if (p == NULL) 2095 return 0; 2096 2097 p += strspn(p, delim); 2098 while (*p != '\0') { 2099 size_t len = strcspn(p, delim); 2100 char savech; 2101 2102 savech = p[len]; 2103 p[len] = '\0'; 2104 obj = load_object(p, -1, NULL, 0); 2105 if (obj == NULL) 2106 return -1; /* XXX - cleanup */ 2107 obj->z_interpose = true; 2108 p[len] = savech; 2109 p += len; 2110 p += strspn(p, delim); 2111 } 2112 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); 2113 return 0; 2114 } 2115 2116 static const char * 2117 printable_path(const char *path) 2118 { 2119 2120 return (path == NULL ? "<unknown>" : path); 2121 } 2122 2123 /* 2124 * Load a shared object into memory, if it is not already loaded. The 2125 * object may be specified by name or by user-supplied file descriptor 2126 * fd_u. In the later case, the fd_u descriptor is not closed, but its 2127 * duplicate is. 2128 * 2129 * Returns a pointer to the Obj_Entry for the object. Returns NULL 2130 * on failure. 2131 */ 2132 static Obj_Entry * 2133 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) 2134 { 2135 Obj_Entry *obj; 2136 int fd; 2137 struct stat sb; 2138 char *path; 2139 2140 fd = -1; 2141 if (name != NULL) { 2142 for (obj = obj_list->next; obj != NULL; obj = obj->next) { 2143 if (object_match_name(obj, name)) 2144 return (obj); 2145 } 2146 2147 path = find_library(name, refobj, &fd); 2148 if (path == NULL) 2149 return (NULL); 2150 } else 2151 path = NULL; 2152 2153 if (fd >= 0) { 2154 /* 2155 * search_library_pathfds() opens a fresh file descriptor for the 2156 * library, so there is no need to dup(). 2157 */ 2158 } else if (fd_u == -1) { 2159 /* 2160 * If we didn't find a match by pathname, or the name is not 2161 * supplied, open the file and check again by device and inode. 2162 * This avoids false mismatches caused by multiple links or ".." 2163 * in pathnames. 2164 * 2165 * To avoid a race, we open the file and use fstat() rather than 2166 * using stat(). 2167 */ 2168 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) { 2169 _rtld_error("Cannot open \"%s\"", path); 2170 free(path); 2171 return (NULL); 2172 } 2173 } else { 2174 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); 2175 if (fd == -1) { 2176 _rtld_error("Cannot dup fd"); 2177 free(path); 2178 return (NULL); 2179 } 2180 } 2181 if (fstat(fd, &sb) == -1) { 2182 _rtld_error("Cannot fstat \"%s\"", printable_path(path)); 2183 close(fd); 2184 free(path); 2185 return NULL; 2186 } 2187 for (obj = obj_list->next; obj != NULL; obj = obj->next) 2188 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) 2189 break; 2190 if (obj != NULL && name != NULL) { 2191 object_add_name(obj, name); 2192 free(path); 2193 close(fd); 2194 return obj; 2195 } 2196 if (flags & RTLD_LO_NOLOAD) { 2197 free(path); 2198 close(fd); 2199 return (NULL); 2200 } 2201 2202 /* First use of this object, so we must map it in */ 2203 obj = do_load_object(fd, name, path, &sb, flags); 2204 if (obj == NULL) 2205 free(path); 2206 close(fd); 2207 2208 return obj; 2209 } 2210 2211 static Obj_Entry * 2212 do_load_object(int fd, const char *name, char *path, struct stat *sbp, 2213 int flags) 2214 { 2215 Obj_Entry *obj; 2216 struct statfs fs; 2217 2218 /* 2219 * but first, make sure that environment variables haven't been 2220 * used to circumvent the noexec flag on a filesystem. 2221 */ 2222 if (dangerous_ld_env) { 2223 if (fstatfs(fd, &fs) != 0) { 2224 _rtld_error("Cannot fstatfs \"%s\"", printable_path(path)); 2225 return NULL; 2226 } 2227 if (fs.f_flags & MNT_NOEXEC) { 2228 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname); 2229 return NULL; 2230 } 2231 } 2232 dbg("loading \"%s\"", printable_path(path)); 2233 obj = map_object(fd, printable_path(path), sbp); 2234 if (obj == NULL) 2235 return NULL; 2236 2237 /* 2238 * If DT_SONAME is present in the object, digest_dynamic2 already 2239 * added it to the object names. 2240 */ 2241 if (name != NULL) 2242 object_add_name(obj, name); 2243 obj->path = path; 2244 digest_dynamic(obj, 0); 2245 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, 2246 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); 2247 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == 2248 RTLD_LO_DLOPEN) { 2249 dbg("refusing to load non-loadable \"%s\"", obj->path); 2250 _rtld_error("Cannot dlopen non-loadable %s", obj->path); 2251 munmap(obj->mapbase, obj->mapsize); 2252 obj_free(obj); 2253 return (NULL); 2254 } 2255 2256 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; 2257 *obj_tail = obj; 2258 obj_tail = &obj->next; 2259 obj_count++; 2260 obj_loads++; 2261 linkmap_add(obj); /* for GDB & dlinfo() */ 2262 max_stack_flags |= obj->stack_flags; 2263 2264 dbg(" %p .. %p: %s", obj->mapbase, 2265 obj->mapbase + obj->mapsize - 1, obj->path); 2266 if (obj->textrel) 2267 dbg(" WARNING: %s has impure text", obj->path); 2268 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 2269 obj->path); 2270 2271 return obj; 2272 } 2273 2274 static Obj_Entry * 2275 obj_from_addr(const void *addr) 2276 { 2277 Obj_Entry *obj; 2278 2279 for (obj = obj_list; obj != NULL; obj = obj->next) { 2280 if (addr < (void *) obj->mapbase) 2281 continue; 2282 if (addr < (void *) (obj->mapbase + obj->mapsize)) 2283 return obj; 2284 } 2285 return NULL; 2286 } 2287 2288 static void 2289 preinit_main(void) 2290 { 2291 Elf_Addr *preinit_addr; 2292 int index; 2293 2294 preinit_addr = (Elf_Addr *)obj_main->preinit_array; 2295 if (preinit_addr == NULL) 2296 return; 2297 2298 for (index = 0; index < obj_main->preinit_array_num; index++) { 2299 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { 2300 dbg("calling preinit function for %s at %p", obj_main->path, 2301 (void *)preinit_addr[index]); 2302 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 2303 0, 0, obj_main->path); 2304 call_init_pointer(obj_main, preinit_addr[index]); 2305 } 2306 } 2307 } 2308 2309 /* 2310 * Call the finalization functions for each of the objects in "list" 2311 * belonging to the DAG of "root" and referenced once. If NULL "root" 2312 * is specified, every finalization function will be called regardless 2313 * of the reference count and the list elements won't be freed. All of 2314 * the objects are expected to have non-NULL fini functions. 2315 */ 2316 static void 2317 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) 2318 { 2319 Objlist_Entry *elm; 2320 char *saved_msg; 2321 Elf_Addr *fini_addr; 2322 int index; 2323 2324 assert(root == NULL || root->refcount == 1); 2325 2326 /* 2327 * Preserve the current error message since a fini function might 2328 * call into the dynamic linker and overwrite it. 2329 */ 2330 saved_msg = errmsg_save(); 2331 do { 2332 STAILQ_FOREACH(elm, list, link) { 2333 if (root != NULL && (elm->obj->refcount != 1 || 2334 objlist_find(&root->dagmembers, elm->obj) == NULL)) 2335 continue; 2336 /* Remove object from fini list to prevent recursive invocation. */ 2337 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2338 /* 2339 * XXX: If a dlopen() call references an object while the 2340 * fini function is in progress, we might end up trying to 2341 * unload the referenced object in dlclose() or the object 2342 * won't be unloaded although its fini function has been 2343 * called. 2344 */ 2345 lock_release(rtld_bind_lock, lockstate); 2346 2347 /* 2348 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. 2349 * When this happens, DT_FINI_ARRAY is processed first. 2350 */ 2351 fini_addr = (Elf_Addr *)elm->obj->fini_array; 2352 if (fini_addr != NULL && elm->obj->fini_array_num > 0) { 2353 for (index = elm->obj->fini_array_num - 1; index >= 0; 2354 index--) { 2355 if (fini_addr[index] != 0 && fini_addr[index] != 1) { 2356 dbg("calling fini function for %s at %p", 2357 elm->obj->path, (void *)fini_addr[index]); 2358 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, 2359 (void *)fini_addr[index], 0, 0, elm->obj->path); 2360 call_initfini_pointer(elm->obj, fini_addr[index]); 2361 } 2362 } 2363 } 2364 if (elm->obj->fini != (Elf_Addr)NULL) { 2365 dbg("calling fini function for %s at %p", elm->obj->path, 2366 (void *)elm->obj->fini); 2367 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 2368 0, 0, elm->obj->path); 2369 call_initfini_pointer(elm->obj, elm->obj->fini); 2370 } 2371 wlock_acquire(rtld_bind_lock, lockstate); 2372 /* No need to free anything if process is going down. */ 2373 if (root != NULL) 2374 free(elm); 2375 /* 2376 * We must restart the list traversal after every fini call 2377 * because a dlclose() call from the fini function or from 2378 * another thread might have modified the reference counts. 2379 */ 2380 break; 2381 } 2382 } while (elm != NULL); 2383 errmsg_restore(saved_msg); 2384 } 2385 2386 /* 2387 * Call the initialization functions for each of the objects in 2388 * "list". All of the objects are expected to have non-NULL init 2389 * functions. 2390 */ 2391 static void 2392 objlist_call_init(Objlist *list, RtldLockState *lockstate) 2393 { 2394 Objlist_Entry *elm; 2395 Obj_Entry *obj; 2396 char *saved_msg; 2397 Elf_Addr *init_addr; 2398 int index; 2399 2400 /* 2401 * Clean init_scanned flag so that objects can be rechecked and 2402 * possibly initialized earlier if any of vectors called below 2403 * cause the change by using dlopen. 2404 */ 2405 for (obj = obj_list; obj != NULL; obj = obj->next) 2406 obj->init_scanned = false; 2407 2408 /* 2409 * Preserve the current error message since an init function might 2410 * call into the dynamic linker and overwrite it. 2411 */ 2412 saved_msg = errmsg_save(); 2413 STAILQ_FOREACH(elm, list, link) { 2414 if (elm->obj->init_done) /* Initialized early. */ 2415 continue; 2416 /* 2417 * Race: other thread might try to use this object before current 2418 * one completes the initilization. Not much can be done here 2419 * without better locking. 2420 */ 2421 elm->obj->init_done = true; 2422 lock_release(rtld_bind_lock, lockstate); 2423 2424 /* 2425 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. 2426 * When this happens, DT_INIT is processed first. 2427 */ 2428 if (elm->obj->init != (Elf_Addr)NULL) { 2429 dbg("calling init function for %s at %p", elm->obj->path, 2430 (void *)elm->obj->init); 2431 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 2432 0, 0, elm->obj->path); 2433 call_initfini_pointer(elm->obj, elm->obj->init); 2434 } 2435 init_addr = (Elf_Addr *)elm->obj->init_array; 2436 if (init_addr != NULL) { 2437 for (index = 0; index < elm->obj->init_array_num; index++) { 2438 if (init_addr[index] != 0 && init_addr[index] != 1) { 2439 dbg("calling init function for %s at %p", elm->obj->path, 2440 (void *)init_addr[index]); 2441 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, 2442 (void *)init_addr[index], 0, 0, elm->obj->path); 2443 call_init_pointer(elm->obj, init_addr[index]); 2444 } 2445 } 2446 } 2447 wlock_acquire(rtld_bind_lock, lockstate); 2448 } 2449 errmsg_restore(saved_msg); 2450 } 2451 2452 static void 2453 objlist_clear(Objlist *list) 2454 { 2455 Objlist_Entry *elm; 2456 2457 while (!STAILQ_EMPTY(list)) { 2458 elm = STAILQ_FIRST(list); 2459 STAILQ_REMOVE_HEAD(list, link); 2460 free(elm); 2461 } 2462 } 2463 2464 static Objlist_Entry * 2465 objlist_find(Objlist *list, const Obj_Entry *obj) 2466 { 2467 Objlist_Entry *elm; 2468 2469 STAILQ_FOREACH(elm, list, link) 2470 if (elm->obj == obj) 2471 return elm; 2472 return NULL; 2473 } 2474 2475 static void 2476 objlist_init(Objlist *list) 2477 { 2478 STAILQ_INIT(list); 2479 } 2480 2481 static void 2482 objlist_push_head(Objlist *list, Obj_Entry *obj) 2483 { 2484 Objlist_Entry *elm; 2485 2486 elm = NEW(Objlist_Entry); 2487 elm->obj = obj; 2488 STAILQ_INSERT_HEAD(list, elm, link); 2489 } 2490 2491 static void 2492 objlist_push_tail(Objlist *list, Obj_Entry *obj) 2493 { 2494 Objlist_Entry *elm; 2495 2496 elm = NEW(Objlist_Entry); 2497 elm->obj = obj; 2498 STAILQ_INSERT_TAIL(list, elm, link); 2499 } 2500 2501 static void 2502 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) 2503 { 2504 Objlist_Entry *elm, *listelm; 2505 2506 STAILQ_FOREACH(listelm, list, link) { 2507 if (listelm->obj == listobj) 2508 break; 2509 } 2510 elm = NEW(Objlist_Entry); 2511 elm->obj = obj; 2512 if (listelm != NULL) 2513 STAILQ_INSERT_AFTER(list, listelm, elm, link); 2514 else 2515 STAILQ_INSERT_TAIL(list, elm, link); 2516 } 2517 2518 static void 2519 objlist_remove(Objlist *list, Obj_Entry *obj) 2520 { 2521 Objlist_Entry *elm; 2522 2523 if ((elm = objlist_find(list, obj)) != NULL) { 2524 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2525 free(elm); 2526 } 2527 } 2528 2529 /* 2530 * Relocate dag rooted in the specified object. 2531 * Returns 0 on success, or -1 on failure. 2532 */ 2533 2534 static int 2535 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, 2536 int flags, RtldLockState *lockstate) 2537 { 2538 Objlist_Entry *elm; 2539 int error; 2540 2541 error = 0; 2542 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2543 error = relocate_object(elm->obj, bind_now, rtldobj, flags, 2544 lockstate); 2545 if (error == -1) 2546 break; 2547 } 2548 return (error); 2549 } 2550 2551 /* 2552 * Relocate single object. 2553 * Returns 0 on success, or -1 on failure. 2554 */ 2555 static int 2556 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 2557 int flags, RtldLockState *lockstate) 2558 { 2559 2560 if (obj->relocated) 2561 return (0); 2562 obj->relocated = true; 2563 if (obj != rtldobj) 2564 dbg("relocating \"%s\"", obj->path); 2565 2566 if (obj->symtab == NULL || obj->strtab == NULL || 2567 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) { 2568 _rtld_error("%s: Shared object has no run-time symbol table", 2569 obj->path); 2570 return (-1); 2571 } 2572 2573 if (obj->textrel) { 2574 /* There are relocations to the write-protected text segment. */ 2575 if (mprotect(obj->mapbase, obj->textsize, 2576 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) { 2577 _rtld_error("%s: Cannot write-enable text segment: %s", 2578 obj->path, rtld_strerror(errno)); 2579 return (-1); 2580 } 2581 } 2582 2583 /* Process the non-PLT non-IFUNC relocations. */ 2584 if (reloc_non_plt(obj, rtldobj, flags, lockstate)) 2585 return (-1); 2586 2587 if (obj->textrel) { /* Re-protected the text segment. */ 2588 if (mprotect(obj->mapbase, obj->textsize, 2589 PROT_READ|PROT_EXEC) == -1) { 2590 _rtld_error("%s: Cannot write-protect text segment: %s", 2591 obj->path, rtld_strerror(errno)); 2592 return (-1); 2593 } 2594 } 2595 2596 /* Set the special PLT or GOT entries. */ 2597 init_pltgot(obj); 2598 2599 /* Process the PLT relocations. */ 2600 if (reloc_plt(obj) == -1) 2601 return (-1); 2602 /* Relocate the jump slots if we are doing immediate binding. */ 2603 if (obj->bind_now || bind_now) 2604 if (reloc_jmpslots(obj, flags, lockstate) == -1) 2605 return (-1); 2606 2607 /* 2608 * Process the non-PLT IFUNC relocations. The relocations are 2609 * processed in two phases, because IFUNC resolvers may 2610 * reference other symbols, which must be readily processed 2611 * before resolvers are called. 2612 */ 2613 if (obj->non_plt_gnu_ifunc && 2614 reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate)) 2615 return (-1); 2616 2617 if (obj->relro_size > 0) { 2618 if (mprotect(obj->relro_page, obj->relro_size, 2619 PROT_READ) == -1) { 2620 _rtld_error("%s: Cannot enforce relro protection: %s", 2621 obj->path, rtld_strerror(errno)); 2622 return (-1); 2623 } 2624 } 2625 2626 /* 2627 * Set up the magic number and version in the Obj_Entry. These 2628 * were checked in the crt1.o from the original ElfKit, so we 2629 * set them for backward compatibility. 2630 */ 2631 obj->magic = RTLD_MAGIC; 2632 obj->version = RTLD_VERSION; 2633 2634 return (0); 2635 } 2636 2637 /* 2638 * Relocate newly-loaded shared objects. The argument is a pointer to 2639 * the Obj_Entry for the first such object. All objects from the first 2640 * to the end of the list of objects are relocated. Returns 0 on success, 2641 * or -1 on failure. 2642 */ 2643 static int 2644 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, 2645 int flags, RtldLockState *lockstate) 2646 { 2647 Obj_Entry *obj; 2648 int error; 2649 2650 for (error = 0, obj = first; obj != NULL; obj = obj->next) { 2651 error = relocate_object(obj, bind_now, rtldobj, flags, 2652 lockstate); 2653 if (error == -1) 2654 break; 2655 } 2656 return (error); 2657 } 2658 2659 /* 2660 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots 2661 * referencing STT_GNU_IFUNC symbols is postponed till the other 2662 * relocations are done. The indirect functions specified as 2663 * ifunc are allowed to call other symbols, so we need to have 2664 * objects relocated before asking for resolution from indirects. 2665 * 2666 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, 2667 * instead of the usual lazy handling of PLT slots. It is 2668 * consistent with how GNU does it. 2669 */ 2670 static int 2671 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, 2672 RtldLockState *lockstate) 2673 { 2674 if (obj->irelative && reloc_iresolve(obj, lockstate) == -1) 2675 return (-1); 2676 if ((obj->bind_now || bind_now) && obj->gnu_ifunc && 2677 reloc_gnu_ifunc(obj, flags, lockstate) == -1) 2678 return (-1); 2679 return (0); 2680 } 2681 2682 static int 2683 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, 2684 RtldLockState *lockstate) 2685 { 2686 Obj_Entry *obj; 2687 2688 for (obj = first; obj != NULL; obj = obj->next) { 2689 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1) 2690 return (-1); 2691 } 2692 return (0); 2693 } 2694 2695 static int 2696 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, 2697 RtldLockState *lockstate) 2698 { 2699 Objlist_Entry *elm; 2700 2701 STAILQ_FOREACH(elm, list, link) { 2702 if (resolve_object_ifunc(elm->obj, bind_now, flags, 2703 lockstate) == -1) 2704 return (-1); 2705 } 2706 return (0); 2707 } 2708 2709 /* 2710 * Cleanup procedure. It will be called (by the atexit mechanism) just 2711 * before the process exits. 2712 */ 2713 static void 2714 rtld_exit(void) 2715 { 2716 RtldLockState lockstate; 2717 2718 wlock_acquire(rtld_bind_lock, &lockstate); 2719 dbg("rtld_exit()"); 2720 objlist_call_fini(&list_fini, NULL, &lockstate); 2721 /* No need to remove the items from the list, since we are exiting. */ 2722 if (!libmap_disable) 2723 lm_fini(); 2724 lock_release(rtld_bind_lock, &lockstate); 2725 } 2726 2727 /* 2728 * Iterate over a search path, translate each element, and invoke the 2729 * callback on the result. 2730 */ 2731 static void * 2732 path_enumerate(const char *path, path_enum_proc callback, void *arg) 2733 { 2734 const char *trans; 2735 if (path == NULL) 2736 return (NULL); 2737 2738 path += strspn(path, ":;"); 2739 while (*path != '\0') { 2740 size_t len; 2741 char *res; 2742 2743 len = strcspn(path, ":;"); 2744 trans = lm_findn(NULL, path, len); 2745 if (trans) 2746 res = callback(trans, strlen(trans), arg); 2747 else 2748 res = callback(path, len, arg); 2749 2750 if (res != NULL) 2751 return (res); 2752 2753 path += len; 2754 path += strspn(path, ":;"); 2755 } 2756 2757 return (NULL); 2758 } 2759 2760 struct try_library_args { 2761 const char *name; 2762 size_t namelen; 2763 char *buffer; 2764 size_t buflen; 2765 }; 2766 2767 static void * 2768 try_library_path(const char *dir, size_t dirlen, void *param) 2769 { 2770 struct try_library_args *arg; 2771 2772 arg = param; 2773 if (*dir == '/' || trust) { 2774 char *pathname; 2775 2776 if (dirlen + 1 + arg->namelen + 1 > arg->buflen) 2777 return (NULL); 2778 2779 pathname = arg->buffer; 2780 strncpy(pathname, dir, dirlen); 2781 pathname[dirlen] = '/'; 2782 strcpy(pathname + dirlen + 1, arg->name); 2783 2784 dbg(" Trying \"%s\"", pathname); 2785 if (access(pathname, F_OK) == 0) { /* We found it */ 2786 pathname = xmalloc(dirlen + 1 + arg->namelen + 1); 2787 strcpy(pathname, arg->buffer); 2788 return (pathname); 2789 } 2790 } 2791 return (NULL); 2792 } 2793 2794 static char * 2795 search_library_path(const char *name, const char *path) 2796 { 2797 char *p; 2798 struct try_library_args arg; 2799 2800 if (path == NULL) 2801 return NULL; 2802 2803 arg.name = name; 2804 arg.namelen = strlen(name); 2805 arg.buffer = xmalloc(PATH_MAX); 2806 arg.buflen = PATH_MAX; 2807 2808 p = path_enumerate(path, try_library_path, &arg); 2809 2810 free(arg.buffer); 2811 2812 return (p); 2813 } 2814 2815 2816 /* 2817 * Finds the library with the given name using the directory descriptors 2818 * listed in the LD_LIBRARY_PATH_FDS environment variable. 2819 * 2820 * Returns a freshly-opened close-on-exec file descriptor for the library, 2821 * or -1 if the library cannot be found. 2822 */ 2823 static char * 2824 search_library_pathfds(const char *name, const char *path, int *fdp) 2825 { 2826 char *envcopy, *fdstr, *found, *last_token; 2827 size_t len; 2828 int dirfd, fd; 2829 2830 dbg("%s('%s', '%s', fdp)", __func__, name, path); 2831 2832 /* Don't load from user-specified libdirs into setuid binaries. */ 2833 if (!trust) 2834 return (NULL); 2835 2836 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */ 2837 if (path == NULL) 2838 return (NULL); 2839 2840 /* LD_LIBRARY_PATH_FDS only works with relative paths. */ 2841 if (name[0] == '/') { 2842 dbg("Absolute path (%s) passed to %s", name, __func__); 2843 return (NULL); 2844 } 2845 2846 /* 2847 * Use strtok_r() to walk the FD:FD:FD list. This requires a local 2848 * copy of the path, as strtok_r rewrites separator tokens 2849 * with '\0'. 2850 */ 2851 found = NULL; 2852 envcopy = xstrdup(path); 2853 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL; 2854 fdstr = strtok_r(NULL, ":", &last_token)) { 2855 dirfd = parse_libdir(fdstr); 2856 if (dirfd < 0) 2857 break; 2858 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY); 2859 if (fd >= 0) { 2860 *fdp = fd; 2861 len = strlen(fdstr) + strlen(name) + 3; 2862 found = xmalloc(len); 2863 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) { 2864 _rtld_error("error generating '%d/%s'", 2865 dirfd, name); 2866 rtld_die(); 2867 } 2868 dbg("open('%s') => %d", found, fd); 2869 break; 2870 } 2871 } 2872 free(envcopy); 2873 2874 return (found); 2875 } 2876 2877 2878 int 2879 dlclose(void *handle) 2880 { 2881 Obj_Entry *root; 2882 RtldLockState lockstate; 2883 2884 wlock_acquire(rtld_bind_lock, &lockstate); 2885 root = dlcheck(handle); 2886 if (root == NULL) { 2887 lock_release(rtld_bind_lock, &lockstate); 2888 return -1; 2889 } 2890 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, 2891 root->path); 2892 2893 /* Unreference the object and its dependencies. */ 2894 root->dl_refcount--; 2895 2896 if (root->refcount == 1) { 2897 /* 2898 * The object will be no longer referenced, so we must unload it. 2899 * First, call the fini functions. 2900 */ 2901 objlist_call_fini(&list_fini, root, &lockstate); 2902 2903 unref_dag(root); 2904 2905 /* Finish cleaning up the newly-unreferenced objects. */ 2906 GDB_STATE(RT_DELETE,&root->linkmap); 2907 unload_object(root); 2908 GDB_STATE(RT_CONSISTENT,NULL); 2909 } else 2910 unref_dag(root); 2911 2912 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); 2913 lock_release(rtld_bind_lock, &lockstate); 2914 return 0; 2915 } 2916 2917 char * 2918 dlerror(void) 2919 { 2920 char *msg = error_message; 2921 error_message = NULL; 2922 return msg; 2923 } 2924 2925 /* 2926 * This function is deprecated and has no effect. 2927 */ 2928 void 2929 dllockinit(void *context, 2930 void *(*lock_create)(void *context), 2931 void (*rlock_acquire)(void *lock), 2932 void (*wlock_acquire)(void *lock), 2933 void (*lock_release)(void *lock), 2934 void (*lock_destroy)(void *lock), 2935 void (*context_destroy)(void *context)) 2936 { 2937 static void *cur_context; 2938 static void (*cur_context_destroy)(void *); 2939 2940 /* Just destroy the context from the previous call, if necessary. */ 2941 if (cur_context_destroy != NULL) 2942 cur_context_destroy(cur_context); 2943 cur_context = context; 2944 cur_context_destroy = context_destroy; 2945 } 2946 2947 void * 2948 dlopen(const char *name, int mode) 2949 { 2950 2951 return (rtld_dlopen(name, -1, mode)); 2952 } 2953 2954 void * 2955 fdlopen(int fd, int mode) 2956 { 2957 2958 return (rtld_dlopen(NULL, fd, mode)); 2959 } 2960 2961 static void * 2962 rtld_dlopen(const char *name, int fd, int mode) 2963 { 2964 RtldLockState lockstate; 2965 int lo_flags; 2966 2967 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); 2968 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 2969 if (ld_tracing != NULL) { 2970 rlock_acquire(rtld_bind_lock, &lockstate); 2971 if (sigsetjmp(lockstate.env, 0) != 0) 2972 lock_upgrade(rtld_bind_lock, &lockstate); 2973 environ = (char **)*get_program_var_addr("environ", &lockstate); 2974 lock_release(rtld_bind_lock, &lockstate); 2975 } 2976 lo_flags = RTLD_LO_DLOPEN; 2977 if (mode & RTLD_NODELETE) 2978 lo_flags |= RTLD_LO_NODELETE; 2979 if (mode & RTLD_NOLOAD) 2980 lo_flags |= RTLD_LO_NOLOAD; 2981 if (ld_tracing != NULL) 2982 lo_flags |= RTLD_LO_TRACE; 2983 2984 return (dlopen_object(name, fd, obj_main, lo_flags, 2985 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); 2986 } 2987 2988 static void 2989 dlopen_cleanup(Obj_Entry *obj) 2990 { 2991 2992 obj->dl_refcount--; 2993 unref_dag(obj); 2994 if (obj->refcount == 0) 2995 unload_object(obj); 2996 } 2997 2998 static Obj_Entry * 2999 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, 3000 int mode, RtldLockState *lockstate) 3001 { 3002 Obj_Entry **old_obj_tail; 3003 Obj_Entry *obj; 3004 Objlist initlist; 3005 RtldLockState mlockstate; 3006 int result; 3007 3008 objlist_init(&initlist); 3009 3010 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { 3011 wlock_acquire(rtld_bind_lock, &mlockstate); 3012 lockstate = &mlockstate; 3013 } 3014 GDB_STATE(RT_ADD,NULL); 3015 3016 old_obj_tail = obj_tail; 3017 obj = NULL; 3018 if (name == NULL && fd == -1) { 3019 obj = obj_main; 3020 obj->refcount++; 3021 } else { 3022 obj = load_object(name, fd, refobj, lo_flags); 3023 } 3024 3025 if (obj) { 3026 obj->dl_refcount++; 3027 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 3028 objlist_push_tail(&list_global, obj); 3029 if (*old_obj_tail != NULL) { /* We loaded something new. */ 3030 assert(*old_obj_tail == obj); 3031 result = load_needed_objects(obj, 3032 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY)); 3033 init_dag(obj); 3034 ref_dag(obj); 3035 if (result != -1) 3036 result = rtld_verify_versions(&obj->dagmembers); 3037 if (result != -1 && ld_tracing) 3038 goto trace; 3039 if (result == -1 || relocate_object_dag(obj, 3040 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, 3041 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3042 lockstate) == -1) { 3043 dlopen_cleanup(obj); 3044 obj = NULL; 3045 } else if (lo_flags & RTLD_LO_EARLY) { 3046 /* 3047 * Do not call the init functions for early loaded 3048 * filtees. The image is still not initialized enough 3049 * for them to work. 3050 * 3051 * Our object is found by the global object list and 3052 * will be ordered among all init calls done right 3053 * before transferring control to main. 3054 */ 3055 } else { 3056 /* Make list of init functions to call. */ 3057 initlist_add_objects(obj, &obj->next, &initlist); 3058 } 3059 /* 3060 * Process all no_delete or global objects here, given 3061 * them own DAGs to prevent their dependencies from being 3062 * unloaded. This has to be done after we have loaded all 3063 * of the dependencies, so that we do not miss any. 3064 */ 3065 if (obj != NULL) 3066 process_z(obj); 3067 } else { 3068 /* 3069 * Bump the reference counts for objects on this DAG. If 3070 * this is the first dlopen() call for the object that was 3071 * already loaded as a dependency, initialize the dag 3072 * starting at it. 3073 */ 3074 init_dag(obj); 3075 ref_dag(obj); 3076 3077 if ((lo_flags & RTLD_LO_TRACE) != 0) 3078 goto trace; 3079 } 3080 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || 3081 obj->z_nodelete) && !obj->ref_nodel) { 3082 dbg("obj %s nodelete", obj->path); 3083 ref_dag(obj); 3084 obj->z_nodelete = obj->ref_nodel = true; 3085 } 3086 } 3087 3088 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, 3089 name); 3090 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 3091 3092 if (!(lo_flags & RTLD_LO_EARLY)) { 3093 map_stacks_exec(lockstate); 3094 } 3095 3096 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, 3097 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3098 lockstate) == -1) { 3099 objlist_clear(&initlist); 3100 dlopen_cleanup(obj); 3101 if (lockstate == &mlockstate) 3102 lock_release(rtld_bind_lock, lockstate); 3103 return (NULL); 3104 } 3105 3106 if (!(lo_flags & RTLD_LO_EARLY)) { 3107 /* Call the init functions. */ 3108 objlist_call_init(&initlist, lockstate); 3109 } 3110 objlist_clear(&initlist); 3111 if (lockstate == &mlockstate) 3112 lock_release(rtld_bind_lock, lockstate); 3113 return obj; 3114 trace: 3115 trace_loaded_objects(obj); 3116 if (lockstate == &mlockstate) 3117 lock_release(rtld_bind_lock, lockstate); 3118 exit(0); 3119 } 3120 3121 static void * 3122 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, 3123 int flags) 3124 { 3125 DoneList donelist; 3126 const Obj_Entry *obj, *defobj; 3127 const Elf_Sym *def; 3128 SymLook req; 3129 RtldLockState lockstate; 3130 tls_index ti; 3131 void *sym; 3132 int res; 3133 3134 def = NULL; 3135 defobj = NULL; 3136 symlook_init(&req, name); 3137 req.ventry = ve; 3138 req.flags = flags | SYMLOOK_IN_PLT; 3139 req.lockstate = &lockstate; 3140 3141 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); 3142 rlock_acquire(rtld_bind_lock, &lockstate); 3143 if (sigsetjmp(lockstate.env, 0) != 0) 3144 lock_upgrade(rtld_bind_lock, &lockstate); 3145 if (handle == NULL || handle == RTLD_NEXT || 3146 handle == RTLD_DEFAULT || handle == RTLD_SELF) { 3147 3148 if ((obj = obj_from_addr(retaddr)) == NULL) { 3149 _rtld_error("Cannot determine caller's shared object"); 3150 lock_release(rtld_bind_lock, &lockstate); 3151 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3152 return NULL; 3153 } 3154 if (handle == NULL) { /* Just the caller's shared object. */ 3155 res = symlook_obj(&req, obj); 3156 if (res == 0) { 3157 def = req.sym_out; 3158 defobj = req.defobj_out; 3159 } 3160 } else if (handle == RTLD_NEXT || /* Objects after caller's */ 3161 handle == RTLD_SELF) { /* ... caller included */ 3162 if (handle == RTLD_NEXT) 3163 obj = obj->next; 3164 for (; obj != NULL; obj = obj->next) { 3165 res = symlook_obj(&req, obj); 3166 if (res == 0) { 3167 if (def == NULL || 3168 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) { 3169 def = req.sym_out; 3170 defobj = req.defobj_out; 3171 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3172 break; 3173 } 3174 } 3175 } 3176 /* 3177 * Search the dynamic linker itself, and possibly resolve the 3178 * symbol from there. This is how the application links to 3179 * dynamic linker services such as dlopen. 3180 */ 3181 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3182 res = symlook_obj(&req, &obj_rtld); 3183 if (res == 0) { 3184 def = req.sym_out; 3185 defobj = req.defobj_out; 3186 } 3187 } 3188 } else { 3189 assert(handle == RTLD_DEFAULT); 3190 res = symlook_default(&req, obj); 3191 if (res == 0) { 3192 defobj = req.defobj_out; 3193 def = req.sym_out; 3194 } 3195 } 3196 } else { 3197 if ((obj = dlcheck(handle)) == NULL) { 3198 lock_release(rtld_bind_lock, &lockstate); 3199 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3200 return NULL; 3201 } 3202 3203 donelist_init(&donelist); 3204 if (obj->mainprog) { 3205 /* Handle obtained by dlopen(NULL, ...) implies global scope. */ 3206 res = symlook_global(&req, &donelist); 3207 if (res == 0) { 3208 def = req.sym_out; 3209 defobj = req.defobj_out; 3210 } 3211 /* 3212 * Search the dynamic linker itself, and possibly resolve the 3213 * symbol from there. This is how the application links to 3214 * dynamic linker services such as dlopen. 3215 */ 3216 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3217 res = symlook_obj(&req, &obj_rtld); 3218 if (res == 0) { 3219 def = req.sym_out; 3220 defobj = req.defobj_out; 3221 } 3222 } 3223 } 3224 else { 3225 /* Search the whole DAG rooted at the given object. */ 3226 res = symlook_list(&req, &obj->dagmembers, &donelist); 3227 if (res == 0) { 3228 def = req.sym_out; 3229 defobj = req.defobj_out; 3230 } 3231 } 3232 } 3233 3234 if (def != NULL) { 3235 lock_release(rtld_bind_lock, &lockstate); 3236 3237 /* 3238 * The value required by the caller is derived from the value 3239 * of the symbol. this is simply the relocated value of the 3240 * symbol. 3241 */ 3242 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 3243 sym = make_function_pointer(def, defobj); 3244 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 3245 sym = rtld_resolve_ifunc(defobj, def); 3246 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { 3247 ti.ti_module = defobj->tlsindex; 3248 ti.ti_offset = def->st_value; 3249 sym = __tls_get_addr(&ti); 3250 } else 3251 sym = defobj->relocbase + def->st_value; 3252 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); 3253 return (sym); 3254 } 3255 3256 _rtld_error("Undefined symbol \"%s\"", name); 3257 lock_release(rtld_bind_lock, &lockstate); 3258 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3259 return NULL; 3260 } 3261 3262 void * 3263 dlsym(void *handle, const char *name) 3264 { 3265 return do_dlsym(handle, name, __builtin_return_address(0), NULL, 3266 SYMLOOK_DLSYM); 3267 } 3268 3269 dlfunc_t 3270 dlfunc(void *handle, const char *name) 3271 { 3272 union { 3273 void *d; 3274 dlfunc_t f; 3275 } rv; 3276 3277 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, 3278 SYMLOOK_DLSYM); 3279 return (rv.f); 3280 } 3281 3282 void * 3283 dlvsym(void *handle, const char *name, const char *version) 3284 { 3285 Ver_Entry ventry; 3286 3287 ventry.name = version; 3288 ventry.file = NULL; 3289 ventry.hash = elf_hash(version); 3290 ventry.flags= 0; 3291 return do_dlsym(handle, name, __builtin_return_address(0), &ventry, 3292 SYMLOOK_DLSYM); 3293 } 3294 3295 int 3296 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) 3297 { 3298 const Obj_Entry *obj; 3299 RtldLockState lockstate; 3300 3301 rlock_acquire(rtld_bind_lock, &lockstate); 3302 obj = obj_from_addr(addr); 3303 if (obj == NULL) { 3304 _rtld_error("No shared object contains address"); 3305 lock_release(rtld_bind_lock, &lockstate); 3306 return (0); 3307 } 3308 rtld_fill_dl_phdr_info(obj, phdr_info); 3309 lock_release(rtld_bind_lock, &lockstate); 3310 return (1); 3311 } 3312 3313 int 3314 dladdr(const void *addr, Dl_info *info) 3315 { 3316 const Obj_Entry *obj; 3317 const Elf_Sym *def; 3318 void *symbol_addr; 3319 unsigned long symoffset; 3320 RtldLockState lockstate; 3321 3322 rlock_acquire(rtld_bind_lock, &lockstate); 3323 obj = obj_from_addr(addr); 3324 if (obj == NULL) { 3325 _rtld_error("No shared object contains address"); 3326 lock_release(rtld_bind_lock, &lockstate); 3327 return 0; 3328 } 3329 info->dli_fname = obj->path; 3330 info->dli_fbase = obj->mapbase; 3331 info->dli_saddr = (void *)0; 3332 info->dli_sname = NULL; 3333 3334 /* 3335 * Walk the symbol list looking for the symbol whose address is 3336 * closest to the address sent in. 3337 */ 3338 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { 3339 def = obj->symtab + symoffset; 3340 3341 /* 3342 * For skip the symbol if st_shndx is either SHN_UNDEF or 3343 * SHN_COMMON. 3344 */ 3345 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 3346 continue; 3347 3348 /* 3349 * If the symbol is greater than the specified address, or if it 3350 * is further away from addr than the current nearest symbol, 3351 * then reject it. 3352 */ 3353 symbol_addr = obj->relocbase + def->st_value; 3354 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 3355 continue; 3356 3357 /* Update our idea of the nearest symbol. */ 3358 info->dli_sname = obj->strtab + def->st_name; 3359 info->dli_saddr = symbol_addr; 3360 3361 /* Exact match? */ 3362 if (info->dli_saddr == addr) 3363 break; 3364 } 3365 lock_release(rtld_bind_lock, &lockstate); 3366 return 1; 3367 } 3368 3369 int 3370 dlinfo(void *handle, int request, void *p) 3371 { 3372 const Obj_Entry *obj; 3373 RtldLockState lockstate; 3374 int error; 3375 3376 rlock_acquire(rtld_bind_lock, &lockstate); 3377 3378 if (handle == NULL || handle == RTLD_SELF) { 3379 void *retaddr; 3380 3381 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 3382 if ((obj = obj_from_addr(retaddr)) == NULL) 3383 _rtld_error("Cannot determine caller's shared object"); 3384 } else 3385 obj = dlcheck(handle); 3386 3387 if (obj == NULL) { 3388 lock_release(rtld_bind_lock, &lockstate); 3389 return (-1); 3390 } 3391 3392 error = 0; 3393 switch (request) { 3394 case RTLD_DI_LINKMAP: 3395 *((struct link_map const **)p) = &obj->linkmap; 3396 break; 3397 case RTLD_DI_ORIGIN: 3398 error = rtld_dirname(obj->path, p); 3399 break; 3400 3401 case RTLD_DI_SERINFOSIZE: 3402 case RTLD_DI_SERINFO: 3403 error = do_search_info(obj, request, (struct dl_serinfo *)p); 3404 break; 3405 3406 default: 3407 _rtld_error("Invalid request %d passed to dlinfo()", request); 3408 error = -1; 3409 } 3410 3411 lock_release(rtld_bind_lock, &lockstate); 3412 3413 return (error); 3414 } 3415 3416 static void 3417 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) 3418 { 3419 3420 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; 3421 phdr_info->dlpi_name = obj->path; 3422 phdr_info->dlpi_phdr = obj->phdr; 3423 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); 3424 phdr_info->dlpi_tls_modid = obj->tlsindex; 3425 phdr_info->dlpi_tls_data = obj->tlsinit; 3426 phdr_info->dlpi_adds = obj_loads; 3427 phdr_info->dlpi_subs = obj_loads - obj_count; 3428 } 3429 3430 int 3431 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) 3432 { 3433 struct dl_phdr_info phdr_info; 3434 const Obj_Entry *obj; 3435 RtldLockState bind_lockstate, phdr_lockstate; 3436 int error; 3437 3438 wlock_acquire(rtld_phdr_lock, &phdr_lockstate); 3439 rlock_acquire(rtld_bind_lock, &bind_lockstate); 3440 3441 error = 0; 3442 3443 for (obj = obj_list; obj != NULL; obj = obj->next) { 3444 rtld_fill_dl_phdr_info(obj, &phdr_info); 3445 if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0) 3446 break; 3447 3448 } 3449 if (error == 0) { 3450 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); 3451 error = callback(&phdr_info, sizeof(phdr_info), param); 3452 } 3453 3454 lock_release(rtld_bind_lock, &bind_lockstate); 3455 lock_release(rtld_phdr_lock, &phdr_lockstate); 3456 3457 return (error); 3458 } 3459 3460 static void * 3461 fill_search_info(const char *dir, size_t dirlen, void *param) 3462 { 3463 struct fill_search_info_args *arg; 3464 3465 arg = param; 3466 3467 if (arg->request == RTLD_DI_SERINFOSIZE) { 3468 arg->serinfo->dls_cnt ++; 3469 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; 3470 } else { 3471 struct dl_serpath *s_entry; 3472 3473 s_entry = arg->serpath; 3474 s_entry->dls_name = arg->strspace; 3475 s_entry->dls_flags = arg->flags; 3476 3477 strncpy(arg->strspace, dir, dirlen); 3478 arg->strspace[dirlen] = '\0'; 3479 3480 arg->strspace += dirlen + 1; 3481 arg->serpath++; 3482 } 3483 3484 return (NULL); 3485 } 3486 3487 static int 3488 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) 3489 { 3490 struct dl_serinfo _info; 3491 struct fill_search_info_args args; 3492 3493 args.request = RTLD_DI_SERINFOSIZE; 3494 args.serinfo = &_info; 3495 3496 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 3497 _info.dls_cnt = 0; 3498 3499 path_enumerate(obj->rpath, fill_search_info, &args); 3500 path_enumerate(ld_library_path, fill_search_info, &args); 3501 path_enumerate(obj->runpath, fill_search_info, &args); 3502 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args); 3503 if (!obj->z_nodeflib) 3504 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args); 3505 3506 3507 if (request == RTLD_DI_SERINFOSIZE) { 3508 info->dls_size = _info.dls_size; 3509 info->dls_cnt = _info.dls_cnt; 3510 return (0); 3511 } 3512 3513 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { 3514 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); 3515 return (-1); 3516 } 3517 3518 args.request = RTLD_DI_SERINFO; 3519 args.serinfo = info; 3520 args.serpath = &info->dls_serpath[0]; 3521 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; 3522 3523 args.flags = LA_SER_RUNPATH; 3524 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL) 3525 return (-1); 3526 3527 args.flags = LA_SER_LIBPATH; 3528 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL) 3529 return (-1); 3530 3531 args.flags = LA_SER_RUNPATH; 3532 if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL) 3533 return (-1); 3534 3535 args.flags = LA_SER_CONFIG; 3536 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args) 3537 != NULL) 3538 return (-1); 3539 3540 args.flags = LA_SER_DEFAULT; 3541 if (!obj->z_nodeflib && 3542 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL) 3543 return (-1); 3544 return (0); 3545 } 3546 3547 static int 3548 rtld_dirname(const char *path, char *bname) 3549 { 3550 const char *endp; 3551 3552 /* Empty or NULL string gets treated as "." */ 3553 if (path == NULL || *path == '\0') { 3554 bname[0] = '.'; 3555 bname[1] = '\0'; 3556 return (0); 3557 } 3558 3559 /* Strip trailing slashes */ 3560 endp = path + strlen(path) - 1; 3561 while (endp > path && *endp == '/') 3562 endp--; 3563 3564 /* Find the start of the dir */ 3565 while (endp > path && *endp != '/') 3566 endp--; 3567 3568 /* Either the dir is "/" or there are no slashes */ 3569 if (endp == path) { 3570 bname[0] = *endp == '/' ? '/' : '.'; 3571 bname[1] = '\0'; 3572 return (0); 3573 } else { 3574 do { 3575 endp--; 3576 } while (endp > path && *endp == '/'); 3577 } 3578 3579 if (endp - path + 2 > PATH_MAX) 3580 { 3581 _rtld_error("Filename is too long: %s", path); 3582 return(-1); 3583 } 3584 3585 strncpy(bname, path, endp - path + 1); 3586 bname[endp - path + 1] = '\0'; 3587 return (0); 3588 } 3589 3590 static int 3591 rtld_dirname_abs(const char *path, char *base) 3592 { 3593 char *last; 3594 3595 if (realpath(path, base) == NULL) 3596 return (-1); 3597 dbg("%s -> %s", path, base); 3598 last = strrchr(base, '/'); 3599 if (last == NULL) 3600 return (-1); 3601 if (last != base) 3602 *last = '\0'; 3603 return (0); 3604 } 3605 3606 static void 3607 linkmap_add(Obj_Entry *obj) 3608 { 3609 struct link_map *l = &obj->linkmap; 3610 struct link_map *prev; 3611 3612 obj->linkmap.l_name = obj->path; 3613 obj->linkmap.l_addr = obj->mapbase; 3614 obj->linkmap.l_ld = obj->dynamic; 3615 #ifdef __mips__ 3616 /* GDB needs load offset on MIPS to use the symbols */ 3617 obj->linkmap.l_offs = obj->relocbase; 3618 #endif 3619 3620 if (r_debug.r_map == NULL) { 3621 r_debug.r_map = l; 3622 return; 3623 } 3624 3625 /* 3626 * Scan to the end of the list, but not past the entry for the 3627 * dynamic linker, which we want to keep at the very end. 3628 */ 3629 for (prev = r_debug.r_map; 3630 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 3631 prev = prev->l_next) 3632 ; 3633 3634 /* Link in the new entry. */ 3635 l->l_prev = prev; 3636 l->l_next = prev->l_next; 3637 if (l->l_next != NULL) 3638 l->l_next->l_prev = l; 3639 prev->l_next = l; 3640 } 3641 3642 static void 3643 linkmap_delete(Obj_Entry *obj) 3644 { 3645 struct link_map *l = &obj->linkmap; 3646 3647 if (l->l_prev == NULL) { 3648 if ((r_debug.r_map = l->l_next) != NULL) 3649 l->l_next->l_prev = NULL; 3650 return; 3651 } 3652 3653 if ((l->l_prev->l_next = l->l_next) != NULL) 3654 l->l_next->l_prev = l->l_prev; 3655 } 3656 3657 /* 3658 * Function for the debugger to set a breakpoint on to gain control. 3659 * 3660 * The two parameters allow the debugger to easily find and determine 3661 * what the runtime loader is doing and to whom it is doing it. 3662 * 3663 * When the loadhook trap is hit (r_debug_state, set at program 3664 * initialization), the arguments can be found on the stack: 3665 * 3666 * +8 struct link_map *m 3667 * +4 struct r_debug *rd 3668 * +0 RetAddr 3669 */ 3670 void 3671 r_debug_state(struct r_debug* rd, struct link_map *m) 3672 { 3673 /* 3674 * The following is a hack to force the compiler to emit calls to 3675 * this function, even when optimizing. If the function is empty, 3676 * the compiler is not obliged to emit any code for calls to it, 3677 * even when marked __noinline. However, gdb depends on those 3678 * calls being made. 3679 */ 3680 __compiler_membar(); 3681 } 3682 3683 /* 3684 * A function called after init routines have completed. This can be used to 3685 * break before a program's entry routine is called, and can be used when 3686 * main is not available in the symbol table. 3687 */ 3688 void 3689 _r_debug_postinit(struct link_map *m) 3690 { 3691 3692 /* See r_debug_state(). */ 3693 __compiler_membar(); 3694 } 3695 3696 /* 3697 * Get address of the pointer variable in the main program. 3698 * Prefer non-weak symbol over the weak one. 3699 */ 3700 static const void ** 3701 get_program_var_addr(const char *name, RtldLockState *lockstate) 3702 { 3703 SymLook req; 3704 DoneList donelist; 3705 3706 symlook_init(&req, name); 3707 req.lockstate = lockstate; 3708 donelist_init(&donelist); 3709 if (symlook_global(&req, &donelist) != 0) 3710 return (NULL); 3711 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) 3712 return ((const void **)make_function_pointer(req.sym_out, 3713 req.defobj_out)); 3714 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) 3715 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); 3716 else 3717 return ((const void **)(req.defobj_out->relocbase + 3718 req.sym_out->st_value)); 3719 } 3720 3721 /* 3722 * Set a pointer variable in the main program to the given value. This 3723 * is used to set key variables such as "environ" before any of the 3724 * init functions are called. 3725 */ 3726 static void 3727 set_program_var(const char *name, const void *value) 3728 { 3729 const void **addr; 3730 3731 if ((addr = get_program_var_addr(name, NULL)) != NULL) { 3732 dbg("\"%s\": *%p <-- %p", name, addr, value); 3733 *addr = value; 3734 } 3735 } 3736 3737 /* 3738 * Search the global objects, including dependencies and main object, 3739 * for the given symbol. 3740 */ 3741 static int 3742 symlook_global(SymLook *req, DoneList *donelist) 3743 { 3744 SymLook req1; 3745 const Objlist_Entry *elm; 3746 int res; 3747 3748 symlook_init_from_req(&req1, req); 3749 3750 /* Search all objects loaded at program start up. */ 3751 if (req->defobj_out == NULL || 3752 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 3753 res = symlook_list(&req1, &list_main, donelist); 3754 if (res == 0 && (req->defobj_out == NULL || 3755 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 3756 req->sym_out = req1.sym_out; 3757 req->defobj_out = req1.defobj_out; 3758 assert(req->defobj_out != NULL); 3759 } 3760 } 3761 3762 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 3763 STAILQ_FOREACH(elm, &list_global, link) { 3764 if (req->defobj_out != NULL && 3765 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 3766 break; 3767 res = symlook_list(&req1, &elm->obj->dagmembers, donelist); 3768 if (res == 0 && (req->defobj_out == NULL || 3769 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 3770 req->sym_out = req1.sym_out; 3771 req->defobj_out = req1.defobj_out; 3772 assert(req->defobj_out != NULL); 3773 } 3774 } 3775 3776 return (req->sym_out != NULL ? 0 : ESRCH); 3777 } 3778 3779 /* 3780 * Given a symbol name in a referencing object, find the corresponding 3781 * definition of the symbol. Returns a pointer to the symbol, or NULL if 3782 * no definition was found. Returns a pointer to the Obj_Entry of the 3783 * defining object via the reference parameter DEFOBJ_OUT. 3784 */ 3785 static int 3786 symlook_default(SymLook *req, const Obj_Entry *refobj) 3787 { 3788 DoneList donelist; 3789 const Objlist_Entry *elm; 3790 SymLook req1; 3791 int res; 3792 3793 donelist_init(&donelist); 3794 symlook_init_from_req(&req1, req); 3795 3796 /* Look first in the referencing object if linked symbolically. */ 3797 if (refobj->symbolic && !donelist_check(&donelist, refobj)) { 3798 res = symlook_obj(&req1, refobj); 3799 if (res == 0) { 3800 req->sym_out = req1.sym_out; 3801 req->defobj_out = req1.defobj_out; 3802 assert(req->defobj_out != NULL); 3803 } 3804 } 3805 3806 symlook_global(req, &donelist); 3807 3808 /* Search all dlopened DAGs containing the referencing object. */ 3809 STAILQ_FOREACH(elm, &refobj->dldags, link) { 3810 if (req->sym_out != NULL && 3811 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 3812 break; 3813 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); 3814 if (res == 0 && (req->sym_out == NULL || 3815 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 3816 req->sym_out = req1.sym_out; 3817 req->defobj_out = req1.defobj_out; 3818 assert(req->defobj_out != NULL); 3819 } 3820 } 3821 3822 /* 3823 * Search the dynamic linker itself, and possibly resolve the 3824 * symbol from there. This is how the application links to 3825 * dynamic linker services such as dlopen. 3826 */ 3827 if (req->sym_out == NULL || 3828 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 3829 res = symlook_obj(&req1, &obj_rtld); 3830 if (res == 0) { 3831 req->sym_out = req1.sym_out; 3832 req->defobj_out = req1.defobj_out; 3833 assert(req->defobj_out != NULL); 3834 } 3835 } 3836 3837 return (req->sym_out != NULL ? 0 : ESRCH); 3838 } 3839 3840 static int 3841 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) 3842 { 3843 const Elf_Sym *def; 3844 const Obj_Entry *defobj; 3845 const Objlist_Entry *elm; 3846 SymLook req1; 3847 int res; 3848 3849 def = NULL; 3850 defobj = NULL; 3851 STAILQ_FOREACH(elm, objlist, link) { 3852 if (donelist_check(dlp, elm->obj)) 3853 continue; 3854 symlook_init_from_req(&req1, req); 3855 if ((res = symlook_obj(&req1, elm->obj)) == 0) { 3856 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 3857 def = req1.sym_out; 3858 defobj = req1.defobj_out; 3859 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3860 break; 3861 } 3862 } 3863 } 3864 if (def != NULL) { 3865 req->sym_out = def; 3866 req->defobj_out = defobj; 3867 return (0); 3868 } 3869 return (ESRCH); 3870 } 3871 3872 /* 3873 * Search the chain of DAGS cointed to by the given Needed_Entry 3874 * for a symbol of the given name. Each DAG is scanned completely 3875 * before advancing to the next one. Returns a pointer to the symbol, 3876 * or NULL if no definition was found. 3877 */ 3878 static int 3879 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) 3880 { 3881 const Elf_Sym *def; 3882 const Needed_Entry *n; 3883 const Obj_Entry *defobj; 3884 SymLook req1; 3885 int res; 3886 3887 def = NULL; 3888 defobj = NULL; 3889 symlook_init_from_req(&req1, req); 3890 for (n = needed; n != NULL; n = n->next) { 3891 if (n->obj == NULL || 3892 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) 3893 continue; 3894 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 3895 def = req1.sym_out; 3896 defobj = req1.defobj_out; 3897 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3898 break; 3899 } 3900 } 3901 if (def != NULL) { 3902 req->sym_out = def; 3903 req->defobj_out = defobj; 3904 return (0); 3905 } 3906 return (ESRCH); 3907 } 3908 3909 /* 3910 * Search the symbol table of a single shared object for a symbol of 3911 * the given name and version, if requested. Returns a pointer to the 3912 * symbol, or NULL if no definition was found. If the object is 3913 * filter, return filtered symbol from filtee. 3914 * 3915 * The symbol's hash value is passed in for efficiency reasons; that 3916 * eliminates many recomputations of the hash value. 3917 */ 3918 int 3919 symlook_obj(SymLook *req, const Obj_Entry *obj) 3920 { 3921 DoneList donelist; 3922 SymLook req1; 3923 int flags, res, mres; 3924 3925 /* 3926 * If there is at least one valid hash at this point, we prefer to 3927 * use the faster GNU version if available. 3928 */ 3929 if (obj->valid_hash_gnu) 3930 mres = symlook_obj1_gnu(req, obj); 3931 else if (obj->valid_hash_sysv) 3932 mres = symlook_obj1_sysv(req, obj); 3933 else 3934 return (EINVAL); 3935 3936 if (mres == 0) { 3937 if (obj->needed_filtees != NULL) { 3938 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 3939 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 3940 donelist_init(&donelist); 3941 symlook_init_from_req(&req1, req); 3942 res = symlook_needed(&req1, obj->needed_filtees, &donelist); 3943 if (res == 0) { 3944 req->sym_out = req1.sym_out; 3945 req->defobj_out = req1.defobj_out; 3946 } 3947 return (res); 3948 } 3949 if (obj->needed_aux_filtees != NULL) { 3950 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 3951 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 3952 donelist_init(&donelist); 3953 symlook_init_from_req(&req1, req); 3954 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist); 3955 if (res == 0) { 3956 req->sym_out = req1.sym_out; 3957 req->defobj_out = req1.defobj_out; 3958 return (res); 3959 } 3960 } 3961 } 3962 return (mres); 3963 } 3964 3965 /* Symbol match routine common to both hash functions */ 3966 static bool 3967 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, 3968 const unsigned long symnum) 3969 { 3970 Elf_Versym verndx; 3971 const Elf_Sym *symp; 3972 const char *strp; 3973 3974 symp = obj->symtab + symnum; 3975 strp = obj->strtab + symp->st_name; 3976 3977 switch (ELF_ST_TYPE(symp->st_info)) { 3978 case STT_FUNC: 3979 case STT_NOTYPE: 3980 case STT_OBJECT: 3981 case STT_COMMON: 3982 case STT_GNU_IFUNC: 3983 if (symp->st_value == 0) 3984 return (false); 3985 /* fallthrough */ 3986 case STT_TLS: 3987 if (symp->st_shndx != SHN_UNDEF) 3988 break; 3989 #ifndef __mips__ 3990 else if (((req->flags & SYMLOOK_IN_PLT) == 0) && 3991 (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) 3992 break; 3993 /* fallthrough */ 3994 #endif 3995 default: 3996 return (false); 3997 } 3998 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) 3999 return (false); 4000 4001 if (req->ventry == NULL) { 4002 if (obj->versyms != NULL) { 4003 verndx = VER_NDX(obj->versyms[symnum]); 4004 if (verndx > obj->vernum) { 4005 _rtld_error( 4006 "%s: symbol %s references wrong version %d", 4007 obj->path, obj->strtab + symnum, verndx); 4008 return (false); 4009 } 4010 /* 4011 * If we are not called from dlsym (i.e. this 4012 * is a normal relocation from unversioned 4013 * binary), accept the symbol immediately if 4014 * it happens to have first version after this 4015 * shared object became versioned. Otherwise, 4016 * if symbol is versioned and not hidden, 4017 * remember it. If it is the only symbol with 4018 * this name exported by the shared object, it 4019 * will be returned as a match by the calling 4020 * function. If symbol is global (verndx < 2) 4021 * accept it unconditionally. 4022 */ 4023 if ((req->flags & SYMLOOK_DLSYM) == 0 && 4024 verndx == VER_NDX_GIVEN) { 4025 result->sym_out = symp; 4026 return (true); 4027 } 4028 else if (verndx >= VER_NDX_GIVEN) { 4029 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) 4030 == 0) { 4031 if (result->vsymp == NULL) 4032 result->vsymp = symp; 4033 result->vcount++; 4034 } 4035 return (false); 4036 } 4037 } 4038 result->sym_out = symp; 4039 return (true); 4040 } 4041 if (obj->versyms == NULL) { 4042 if (object_match_name(obj, req->ventry->name)) { 4043 _rtld_error("%s: object %s should provide version %s " 4044 "for symbol %s", obj_rtld.path, obj->path, 4045 req->ventry->name, obj->strtab + symnum); 4046 return (false); 4047 } 4048 } else { 4049 verndx = VER_NDX(obj->versyms[symnum]); 4050 if (verndx > obj->vernum) { 4051 _rtld_error("%s: symbol %s references wrong version %d", 4052 obj->path, obj->strtab + symnum, verndx); 4053 return (false); 4054 } 4055 if (obj->vertab[verndx].hash != req->ventry->hash || 4056 strcmp(obj->vertab[verndx].name, req->ventry->name)) { 4057 /* 4058 * Version does not match. Look if this is a 4059 * global symbol and if it is not hidden. If 4060 * global symbol (verndx < 2) is available, 4061 * use it. Do not return symbol if we are 4062 * called by dlvsym, because dlvsym looks for 4063 * a specific version and default one is not 4064 * what dlvsym wants. 4065 */ 4066 if ((req->flags & SYMLOOK_DLSYM) || 4067 (verndx >= VER_NDX_GIVEN) || 4068 (obj->versyms[symnum] & VER_NDX_HIDDEN)) 4069 return (false); 4070 } 4071 } 4072 result->sym_out = symp; 4073 return (true); 4074 } 4075 4076 /* 4077 * Search for symbol using SysV hash function. 4078 * obj->buckets is known not to be NULL at this point; the test for this was 4079 * performed with the obj->valid_hash_sysv assignment. 4080 */ 4081 static int 4082 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) 4083 { 4084 unsigned long symnum; 4085 Sym_Match_Result matchres; 4086 4087 matchres.sym_out = NULL; 4088 matchres.vsymp = NULL; 4089 matchres.vcount = 0; 4090 4091 for (symnum = obj->buckets[req->hash % obj->nbuckets]; 4092 symnum != STN_UNDEF; symnum = obj->chains[symnum]) { 4093 if (symnum >= obj->nchains) 4094 return (ESRCH); /* Bad object */ 4095 4096 if (matched_symbol(req, obj, &matchres, symnum)) { 4097 req->sym_out = matchres.sym_out; 4098 req->defobj_out = obj; 4099 return (0); 4100 } 4101 } 4102 if (matchres.vcount == 1) { 4103 req->sym_out = matchres.vsymp; 4104 req->defobj_out = obj; 4105 return (0); 4106 } 4107 return (ESRCH); 4108 } 4109 4110 /* Search for symbol using GNU hash function */ 4111 static int 4112 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) 4113 { 4114 Elf_Addr bloom_word; 4115 const Elf32_Word *hashval; 4116 Elf32_Word bucket; 4117 Sym_Match_Result matchres; 4118 unsigned int h1, h2; 4119 unsigned long symnum; 4120 4121 matchres.sym_out = NULL; 4122 matchres.vsymp = NULL; 4123 matchres.vcount = 0; 4124 4125 /* Pick right bitmask word from Bloom filter array */ 4126 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & 4127 obj->maskwords_bm_gnu]; 4128 4129 /* Calculate modulus word size of gnu hash and its derivative */ 4130 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); 4131 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); 4132 4133 /* Filter out the "definitely not in set" queries */ 4134 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) 4135 return (ESRCH); 4136 4137 /* Locate hash chain and corresponding value element*/ 4138 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; 4139 if (bucket == 0) 4140 return (ESRCH); 4141 hashval = &obj->chain_zero_gnu[bucket]; 4142 do { 4143 if (((*hashval ^ req->hash_gnu) >> 1) == 0) { 4144 symnum = hashval - obj->chain_zero_gnu; 4145 if (matched_symbol(req, obj, &matchres, symnum)) { 4146 req->sym_out = matchres.sym_out; 4147 req->defobj_out = obj; 4148 return (0); 4149 } 4150 } 4151 } while ((*hashval++ & 1) == 0); 4152 if (matchres.vcount == 1) { 4153 req->sym_out = matchres.vsymp; 4154 req->defobj_out = obj; 4155 return (0); 4156 } 4157 return (ESRCH); 4158 } 4159 4160 static void 4161 trace_loaded_objects(Obj_Entry *obj) 4162 { 4163 char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 4164 int c; 4165 4166 if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) 4167 main_local = ""; 4168 4169 if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL) 4170 fmt1 = "\t%o => %p (%x)\n"; 4171 4172 if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL) 4173 fmt2 = "\t%o (%x)\n"; 4174 4175 list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL"); 4176 4177 for (; obj; obj = obj->next) { 4178 Needed_Entry *needed; 4179 char *name, *path; 4180 bool is_lib; 4181 4182 if (list_containers && obj->needed != NULL) 4183 rtld_printf("%s:\n", obj->path); 4184 for (needed = obj->needed; needed; needed = needed->next) { 4185 if (needed->obj != NULL) { 4186 if (needed->obj->traced && !list_containers) 4187 continue; 4188 needed->obj->traced = true; 4189 path = needed->obj->path; 4190 } else 4191 path = "not found"; 4192 4193 name = (char *)obj->strtab + needed->name; 4194 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 4195 4196 fmt = is_lib ? fmt1 : fmt2; 4197 while ((c = *fmt++) != '\0') { 4198 switch (c) { 4199 default: 4200 rtld_putchar(c); 4201 continue; 4202 case '\\': 4203 switch (c = *fmt) { 4204 case '\0': 4205 continue; 4206 case 'n': 4207 rtld_putchar('\n'); 4208 break; 4209 case 't': 4210 rtld_putchar('\t'); 4211 break; 4212 } 4213 break; 4214 case '%': 4215 switch (c = *fmt) { 4216 case '\0': 4217 continue; 4218 case '%': 4219 default: 4220 rtld_putchar(c); 4221 break; 4222 case 'A': 4223 rtld_putstr(main_local); 4224 break; 4225 case 'a': 4226 rtld_putstr(obj_main->path); 4227 break; 4228 case 'o': 4229 rtld_putstr(name); 4230 break; 4231 #if 0 4232 case 'm': 4233 rtld_printf("%d", sodp->sod_major); 4234 break; 4235 case 'n': 4236 rtld_printf("%d", sodp->sod_minor); 4237 break; 4238 #endif 4239 case 'p': 4240 rtld_putstr(path); 4241 break; 4242 case 'x': 4243 rtld_printf("%p", needed->obj ? needed->obj->mapbase : 4244 0); 4245 break; 4246 } 4247 break; 4248 } 4249 ++fmt; 4250 } 4251 } 4252 } 4253 } 4254 4255 /* 4256 * Unload a dlopened object and its dependencies from memory and from 4257 * our data structures. It is assumed that the DAG rooted in the 4258 * object has already been unreferenced, and that the object has a 4259 * reference count of 0. 4260 */ 4261 static void 4262 unload_object(Obj_Entry *root) 4263 { 4264 Obj_Entry *obj; 4265 Obj_Entry **linkp; 4266 4267 assert(root->refcount == 0); 4268 4269 /* 4270 * Pass over the DAG removing unreferenced objects from 4271 * appropriate lists. 4272 */ 4273 unlink_object(root); 4274 4275 /* Unmap all objects that are no longer referenced. */ 4276 linkp = &obj_list->next; 4277 while ((obj = *linkp) != NULL) { 4278 if (obj->refcount == 0) { 4279 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 4280 obj->path); 4281 dbg("unloading \"%s\"", obj->path); 4282 unload_filtees(root); 4283 munmap(obj->mapbase, obj->mapsize); 4284 linkmap_delete(obj); 4285 *linkp = obj->next; 4286 obj_count--; 4287 obj_free(obj); 4288 } else 4289 linkp = &obj->next; 4290 } 4291 obj_tail = linkp; 4292 } 4293 4294 static void 4295 unlink_object(Obj_Entry *root) 4296 { 4297 Objlist_Entry *elm; 4298 4299 if (root->refcount == 0) { 4300 /* Remove the object from the RTLD_GLOBAL list. */ 4301 objlist_remove(&list_global, root); 4302 4303 /* Remove the object from all objects' DAG lists. */ 4304 STAILQ_FOREACH(elm, &root->dagmembers, link) { 4305 objlist_remove(&elm->obj->dldags, root); 4306 if (elm->obj != root) 4307 unlink_object(elm->obj); 4308 } 4309 } 4310 } 4311 4312 static void 4313 ref_dag(Obj_Entry *root) 4314 { 4315 Objlist_Entry *elm; 4316 4317 assert(root->dag_inited); 4318 STAILQ_FOREACH(elm, &root->dagmembers, link) 4319 elm->obj->refcount++; 4320 } 4321 4322 static void 4323 unref_dag(Obj_Entry *root) 4324 { 4325 Objlist_Entry *elm; 4326 4327 assert(root->dag_inited); 4328 STAILQ_FOREACH(elm, &root->dagmembers, link) 4329 elm->obj->refcount--; 4330 } 4331 4332 /* 4333 * Common code for MD __tls_get_addr(). 4334 */ 4335 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline; 4336 static void * 4337 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset) 4338 { 4339 Elf_Addr *newdtv, *dtv; 4340 RtldLockState lockstate; 4341 int to_copy; 4342 4343 dtv = *dtvp; 4344 /* Check dtv generation in case new modules have arrived */ 4345 if (dtv[0] != tls_dtv_generation) { 4346 wlock_acquire(rtld_bind_lock, &lockstate); 4347 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4348 to_copy = dtv[1]; 4349 if (to_copy > tls_max_index) 4350 to_copy = tls_max_index; 4351 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); 4352 newdtv[0] = tls_dtv_generation; 4353 newdtv[1] = tls_max_index; 4354 free(dtv); 4355 lock_release(rtld_bind_lock, &lockstate); 4356 dtv = *dtvp = newdtv; 4357 } 4358 4359 /* Dynamically allocate module TLS if necessary */ 4360 if (dtv[index + 1] == 0) { 4361 /* Signal safe, wlock will block out signals. */ 4362 wlock_acquire(rtld_bind_lock, &lockstate); 4363 if (!dtv[index + 1]) 4364 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); 4365 lock_release(rtld_bind_lock, &lockstate); 4366 } 4367 return ((void *)(dtv[index + 1] + offset)); 4368 } 4369 4370 void * 4371 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset) 4372 { 4373 Elf_Addr *dtv; 4374 4375 dtv = *dtvp; 4376 /* Check dtv generation in case new modules have arrived */ 4377 if (__predict_true(dtv[0] == tls_dtv_generation && 4378 dtv[index + 1] != 0)) 4379 return ((void *)(dtv[index + 1] + offset)); 4380 return (tls_get_addr_slow(dtvp, index, offset)); 4381 } 4382 4383 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \ 4384 defined(__powerpc__) 4385 4386 /* 4387 * Allocate Static TLS using the Variant I method. 4388 */ 4389 void * 4390 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) 4391 { 4392 Obj_Entry *obj; 4393 char *tcb; 4394 Elf_Addr **tls; 4395 Elf_Addr *dtv; 4396 Elf_Addr addr; 4397 int i; 4398 4399 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) 4400 return (oldtcb); 4401 4402 assert(tcbsize >= TLS_TCB_SIZE); 4403 tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize); 4404 tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE); 4405 4406 if (oldtcb != NULL) { 4407 memcpy(tls, oldtcb, tls_static_space); 4408 free(oldtcb); 4409 4410 /* Adjust the DTV. */ 4411 dtv = tls[0]; 4412 for (i = 0; i < dtv[1]; i++) { 4413 if (dtv[i+2] >= (Elf_Addr)oldtcb && 4414 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { 4415 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls; 4416 } 4417 } 4418 } else { 4419 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4420 tls[0] = dtv; 4421 dtv[0] = tls_dtv_generation; 4422 dtv[1] = tls_max_index; 4423 4424 for (obj = objs; obj; obj = obj->next) { 4425 if (obj->tlsoffset > 0) { 4426 addr = (Elf_Addr)tls + obj->tlsoffset; 4427 if (obj->tlsinitsize > 0) 4428 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4429 if (obj->tlssize > obj->tlsinitsize) 4430 memset((void*) (addr + obj->tlsinitsize), 0, 4431 obj->tlssize - obj->tlsinitsize); 4432 dtv[obj->tlsindex + 1] = addr; 4433 } 4434 } 4435 } 4436 4437 return (tcb); 4438 } 4439 4440 void 4441 free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 4442 { 4443 Elf_Addr *dtv; 4444 Elf_Addr tlsstart, tlsend; 4445 int dtvsize, i; 4446 4447 assert(tcbsize >= TLS_TCB_SIZE); 4448 4449 tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE; 4450 tlsend = tlsstart + tls_static_space; 4451 4452 dtv = *(Elf_Addr **)tlsstart; 4453 dtvsize = dtv[1]; 4454 for (i = 0; i < dtvsize; i++) { 4455 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { 4456 free((void*)dtv[i+2]); 4457 } 4458 } 4459 free(dtv); 4460 free(tcb); 4461 } 4462 4463 #endif 4464 4465 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) 4466 4467 /* 4468 * Allocate Static TLS using the Variant II method. 4469 */ 4470 void * 4471 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) 4472 { 4473 Obj_Entry *obj; 4474 size_t size, ralign; 4475 char *tls; 4476 Elf_Addr *dtv, *olddtv; 4477 Elf_Addr segbase, oldsegbase, addr; 4478 int i; 4479 4480 ralign = tcbalign; 4481 if (tls_static_max_align > ralign) 4482 ralign = tls_static_max_align; 4483 size = round(tls_static_space, ralign) + round(tcbsize, ralign); 4484 4485 assert(tcbsize >= 2*sizeof(Elf_Addr)); 4486 tls = malloc_aligned(size, ralign); 4487 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4488 4489 segbase = (Elf_Addr)(tls + round(tls_static_space, ralign)); 4490 ((Elf_Addr*)segbase)[0] = segbase; 4491 ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv; 4492 4493 dtv[0] = tls_dtv_generation; 4494 dtv[1] = tls_max_index; 4495 4496 if (oldtls) { 4497 /* 4498 * Copy the static TLS block over whole. 4499 */ 4500 oldsegbase = (Elf_Addr) oldtls; 4501 memcpy((void *)(segbase - tls_static_space), 4502 (const void *)(oldsegbase - tls_static_space), 4503 tls_static_space); 4504 4505 /* 4506 * If any dynamic TLS blocks have been created tls_get_addr(), 4507 * move them over. 4508 */ 4509 olddtv = ((Elf_Addr**)oldsegbase)[1]; 4510 for (i = 0; i < olddtv[1]; i++) { 4511 if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) { 4512 dtv[i+2] = olddtv[i+2]; 4513 olddtv[i+2] = 0; 4514 } 4515 } 4516 4517 /* 4518 * We assume that this block was the one we created with 4519 * allocate_initial_tls(). 4520 */ 4521 free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr)); 4522 } else { 4523 for (obj = objs; obj; obj = obj->next) { 4524 if (obj->tlsoffset) { 4525 addr = segbase - obj->tlsoffset; 4526 memset((void*) (addr + obj->tlsinitsize), 4527 0, obj->tlssize - obj->tlsinitsize); 4528 if (obj->tlsinit) 4529 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4530 dtv[obj->tlsindex + 1] = addr; 4531 } 4532 } 4533 } 4534 4535 return (void*) segbase; 4536 } 4537 4538 void 4539 free_tls(void *tls, size_t tcbsize, size_t tcbalign) 4540 { 4541 Elf_Addr* dtv; 4542 size_t size, ralign; 4543 int dtvsize, i; 4544 Elf_Addr tlsstart, tlsend; 4545 4546 /* 4547 * Figure out the size of the initial TLS block so that we can 4548 * find stuff which ___tls_get_addr() allocated dynamically. 4549 */ 4550 ralign = tcbalign; 4551 if (tls_static_max_align > ralign) 4552 ralign = tls_static_max_align; 4553 size = round(tls_static_space, ralign); 4554 4555 dtv = ((Elf_Addr**)tls)[1]; 4556 dtvsize = dtv[1]; 4557 tlsend = (Elf_Addr) tls; 4558 tlsstart = tlsend - size; 4559 for (i = 0; i < dtvsize; i++) { 4560 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) { 4561 free_aligned((void *)dtv[i + 2]); 4562 } 4563 } 4564 4565 free_aligned((void *)tlsstart); 4566 free((void*) dtv); 4567 } 4568 4569 #endif 4570 4571 /* 4572 * Allocate TLS block for module with given index. 4573 */ 4574 void * 4575 allocate_module_tls(int index) 4576 { 4577 Obj_Entry* obj; 4578 char* p; 4579 4580 for (obj = obj_list; obj; obj = obj->next) { 4581 if (obj->tlsindex == index) 4582 break; 4583 } 4584 if (!obj) { 4585 _rtld_error("Can't find module with TLS index %d", index); 4586 rtld_die(); 4587 } 4588 4589 p = malloc_aligned(obj->tlssize, obj->tlsalign); 4590 memcpy(p, obj->tlsinit, obj->tlsinitsize); 4591 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); 4592 4593 return p; 4594 } 4595 4596 bool 4597 allocate_tls_offset(Obj_Entry *obj) 4598 { 4599 size_t off; 4600 4601 if (obj->tls_done) 4602 return true; 4603 4604 if (obj->tlssize == 0) { 4605 obj->tls_done = true; 4606 return true; 4607 } 4608 4609 if (obj->tlsindex == 1) 4610 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign); 4611 else 4612 off = calculate_tls_offset(tls_last_offset, tls_last_size, 4613 obj->tlssize, obj->tlsalign); 4614 4615 /* 4616 * If we have already fixed the size of the static TLS block, we 4617 * must stay within that size. When allocating the static TLS, we 4618 * leave a small amount of space spare to be used for dynamically 4619 * loading modules which use static TLS. 4620 */ 4621 if (tls_static_space != 0) { 4622 if (calculate_tls_end(off, obj->tlssize) > tls_static_space) 4623 return false; 4624 } else if (obj->tlsalign > tls_static_max_align) { 4625 tls_static_max_align = obj->tlsalign; 4626 } 4627 4628 tls_last_offset = obj->tlsoffset = off; 4629 tls_last_size = obj->tlssize; 4630 obj->tls_done = true; 4631 4632 return true; 4633 } 4634 4635 void 4636 free_tls_offset(Obj_Entry *obj) 4637 { 4638 4639 /* 4640 * If we were the last thing to allocate out of the static TLS 4641 * block, we give our space back to the 'allocator'. This is a 4642 * simplistic workaround to allow libGL.so.1 to be loaded and 4643 * unloaded multiple times. 4644 */ 4645 if (calculate_tls_end(obj->tlsoffset, obj->tlssize) 4646 == calculate_tls_end(tls_last_offset, tls_last_size)) { 4647 tls_last_offset -= obj->tlssize; 4648 tls_last_size = 0; 4649 } 4650 } 4651 4652 void * 4653 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) 4654 { 4655 void *ret; 4656 RtldLockState lockstate; 4657 4658 wlock_acquire(rtld_bind_lock, &lockstate); 4659 ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign); 4660 lock_release(rtld_bind_lock, &lockstate); 4661 return (ret); 4662 } 4663 4664 void 4665 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 4666 { 4667 RtldLockState lockstate; 4668 4669 wlock_acquire(rtld_bind_lock, &lockstate); 4670 free_tls(tcb, tcbsize, tcbalign); 4671 lock_release(rtld_bind_lock, &lockstate); 4672 } 4673 4674 static void 4675 object_add_name(Obj_Entry *obj, const char *name) 4676 { 4677 Name_Entry *entry; 4678 size_t len; 4679 4680 len = strlen(name); 4681 entry = malloc(sizeof(Name_Entry) + len); 4682 4683 if (entry != NULL) { 4684 strcpy(entry->name, name); 4685 STAILQ_INSERT_TAIL(&obj->names, entry, link); 4686 } 4687 } 4688 4689 static int 4690 object_match_name(const Obj_Entry *obj, const char *name) 4691 { 4692 Name_Entry *entry; 4693 4694 STAILQ_FOREACH(entry, &obj->names, link) { 4695 if (strcmp(name, entry->name) == 0) 4696 return (1); 4697 } 4698 return (0); 4699 } 4700 4701 static Obj_Entry * 4702 locate_dependency(const Obj_Entry *obj, const char *name) 4703 { 4704 const Objlist_Entry *entry; 4705 const Needed_Entry *needed; 4706 4707 STAILQ_FOREACH(entry, &list_main, link) { 4708 if (object_match_name(entry->obj, name)) 4709 return entry->obj; 4710 } 4711 4712 for (needed = obj->needed; needed != NULL; needed = needed->next) { 4713 if (strcmp(obj->strtab + needed->name, name) == 0 || 4714 (needed->obj != NULL && object_match_name(needed->obj, name))) { 4715 /* 4716 * If there is DT_NEEDED for the name we are looking for, 4717 * we are all set. Note that object might not be found if 4718 * dependency was not loaded yet, so the function can 4719 * return NULL here. This is expected and handled 4720 * properly by the caller. 4721 */ 4722 return (needed->obj); 4723 } 4724 } 4725 _rtld_error("%s: Unexpected inconsistency: dependency %s not found", 4726 obj->path, name); 4727 rtld_die(); 4728 } 4729 4730 static int 4731 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, 4732 const Elf_Vernaux *vna) 4733 { 4734 const Elf_Verdef *vd; 4735 const char *vername; 4736 4737 vername = refobj->strtab + vna->vna_name; 4738 vd = depobj->verdef; 4739 if (vd == NULL) { 4740 _rtld_error("%s: version %s required by %s not defined", 4741 depobj->path, vername, refobj->path); 4742 return (-1); 4743 } 4744 for (;;) { 4745 if (vd->vd_version != VER_DEF_CURRENT) { 4746 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 4747 depobj->path, vd->vd_version); 4748 return (-1); 4749 } 4750 if (vna->vna_hash == vd->vd_hash) { 4751 const Elf_Verdaux *aux = (const Elf_Verdaux *) 4752 ((char *)vd + vd->vd_aux); 4753 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) 4754 return (0); 4755 } 4756 if (vd->vd_next == 0) 4757 break; 4758 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 4759 } 4760 if (vna->vna_flags & VER_FLG_WEAK) 4761 return (0); 4762 _rtld_error("%s: version %s required by %s not found", 4763 depobj->path, vername, refobj->path); 4764 return (-1); 4765 } 4766 4767 static int 4768 rtld_verify_object_versions(Obj_Entry *obj) 4769 { 4770 const Elf_Verneed *vn; 4771 const Elf_Verdef *vd; 4772 const Elf_Verdaux *vda; 4773 const Elf_Vernaux *vna; 4774 const Obj_Entry *depobj; 4775 int maxvernum, vernum; 4776 4777 if (obj->ver_checked) 4778 return (0); 4779 obj->ver_checked = true; 4780 4781 maxvernum = 0; 4782 /* 4783 * Walk over defined and required version records and figure out 4784 * max index used by any of them. Do very basic sanity checking 4785 * while there. 4786 */ 4787 vn = obj->verneed; 4788 while (vn != NULL) { 4789 if (vn->vn_version != VER_NEED_CURRENT) { 4790 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", 4791 obj->path, vn->vn_version); 4792 return (-1); 4793 } 4794 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); 4795 for (;;) { 4796 vernum = VER_NEED_IDX(vna->vna_other); 4797 if (vernum > maxvernum) 4798 maxvernum = vernum; 4799 if (vna->vna_next == 0) 4800 break; 4801 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); 4802 } 4803 if (vn->vn_next == 0) 4804 break; 4805 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); 4806 } 4807 4808 vd = obj->verdef; 4809 while (vd != NULL) { 4810 if (vd->vd_version != VER_DEF_CURRENT) { 4811 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 4812 obj->path, vd->vd_version); 4813 return (-1); 4814 } 4815 vernum = VER_DEF_IDX(vd->vd_ndx); 4816 if (vernum > maxvernum) 4817 maxvernum = vernum; 4818 if (vd->vd_next == 0) 4819 break; 4820 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 4821 } 4822 4823 if (maxvernum == 0) 4824 return (0); 4825 4826 /* 4827 * Store version information in array indexable by version index. 4828 * Verify that object version requirements are satisfied along the 4829 * way. 4830 */ 4831 obj->vernum = maxvernum + 1; 4832 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); 4833 4834 vd = obj->verdef; 4835 while (vd != NULL) { 4836 if ((vd->vd_flags & VER_FLG_BASE) == 0) { 4837 vernum = VER_DEF_IDX(vd->vd_ndx); 4838 assert(vernum <= maxvernum); 4839 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux); 4840 obj->vertab[vernum].hash = vd->vd_hash; 4841 obj->vertab[vernum].name = obj->strtab + vda->vda_name; 4842 obj->vertab[vernum].file = NULL; 4843 obj->vertab[vernum].flags = 0; 4844 } 4845 if (vd->vd_next == 0) 4846 break; 4847 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 4848 } 4849 4850 vn = obj->verneed; 4851 while (vn != NULL) { 4852 depobj = locate_dependency(obj, obj->strtab + vn->vn_file); 4853 if (depobj == NULL) 4854 return (-1); 4855 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); 4856 for (;;) { 4857 if (check_object_provided_version(obj, depobj, vna)) 4858 return (-1); 4859 vernum = VER_NEED_IDX(vna->vna_other); 4860 assert(vernum <= maxvernum); 4861 obj->vertab[vernum].hash = vna->vna_hash; 4862 obj->vertab[vernum].name = obj->strtab + vna->vna_name; 4863 obj->vertab[vernum].file = obj->strtab + vn->vn_file; 4864 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? 4865 VER_INFO_HIDDEN : 0; 4866 if (vna->vna_next == 0) 4867 break; 4868 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); 4869 } 4870 if (vn->vn_next == 0) 4871 break; 4872 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); 4873 } 4874 return 0; 4875 } 4876 4877 static int 4878 rtld_verify_versions(const Objlist *objlist) 4879 { 4880 Objlist_Entry *entry; 4881 int rc; 4882 4883 rc = 0; 4884 STAILQ_FOREACH(entry, objlist, link) { 4885 /* 4886 * Skip dummy objects or objects that have their version requirements 4887 * already checked. 4888 */ 4889 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) 4890 continue; 4891 if (rtld_verify_object_versions(entry->obj) == -1) { 4892 rc = -1; 4893 if (ld_tracing == NULL) 4894 break; 4895 } 4896 } 4897 if (rc == 0 || ld_tracing != NULL) 4898 rc = rtld_verify_object_versions(&obj_rtld); 4899 return rc; 4900 } 4901 4902 const Ver_Entry * 4903 fetch_ventry(const Obj_Entry *obj, unsigned long symnum) 4904 { 4905 Elf_Versym vernum; 4906 4907 if (obj->vertab) { 4908 vernum = VER_NDX(obj->versyms[symnum]); 4909 if (vernum >= obj->vernum) { 4910 _rtld_error("%s: symbol %s has wrong verneed value %d", 4911 obj->path, obj->strtab + symnum, vernum); 4912 } else if (obj->vertab[vernum].hash != 0) { 4913 return &obj->vertab[vernum]; 4914 } 4915 } 4916 return NULL; 4917 } 4918 4919 int 4920 _rtld_get_stack_prot(void) 4921 { 4922 4923 return (stack_prot); 4924 } 4925 4926 int 4927 _rtld_is_dlopened(void *arg) 4928 { 4929 Obj_Entry *obj; 4930 RtldLockState lockstate; 4931 int res; 4932 4933 rlock_acquire(rtld_bind_lock, &lockstate); 4934 obj = dlcheck(arg); 4935 if (obj == NULL) 4936 obj = obj_from_addr(arg); 4937 if (obj == NULL) { 4938 _rtld_error("No shared object contains address"); 4939 lock_release(rtld_bind_lock, &lockstate); 4940 return (-1); 4941 } 4942 res = obj->dlopened ? 1 : 0; 4943 lock_release(rtld_bind_lock, &lockstate); 4944 return (res); 4945 } 4946 4947 static void 4948 map_stacks_exec(RtldLockState *lockstate) 4949 { 4950 void (*thr_map_stacks_exec)(void); 4951 4952 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) 4953 return; 4954 thr_map_stacks_exec = (void (*)(void))(uintptr_t) 4955 get_program_var_addr("__pthread_map_stacks_exec", lockstate); 4956 if (thr_map_stacks_exec != NULL) { 4957 stack_prot |= PROT_EXEC; 4958 thr_map_stacks_exec(); 4959 } 4960 } 4961 4962 void 4963 symlook_init(SymLook *dst, const char *name) 4964 { 4965 4966 bzero(dst, sizeof(*dst)); 4967 dst->name = name; 4968 dst->hash = elf_hash(name); 4969 dst->hash_gnu = gnu_hash(name); 4970 } 4971 4972 static void 4973 symlook_init_from_req(SymLook *dst, const SymLook *src) 4974 { 4975 4976 dst->name = src->name; 4977 dst->hash = src->hash; 4978 dst->hash_gnu = src->hash_gnu; 4979 dst->ventry = src->ventry; 4980 dst->flags = src->flags; 4981 dst->defobj_out = NULL; 4982 dst->sym_out = NULL; 4983 dst->lockstate = src->lockstate; 4984 } 4985 4986 4987 /* 4988 * Parse a file descriptor number without pulling in more of libc (e.g. atoi). 4989 */ 4990 static int 4991 parse_libdir(const char *str) 4992 { 4993 static const int RADIX = 10; /* XXXJA: possibly support hex? */ 4994 const char *orig; 4995 int fd; 4996 char c; 4997 4998 orig = str; 4999 fd = 0; 5000 for (c = *str; c != '\0'; c = *++str) { 5001 if (c < '0' || c > '9') 5002 return (-1); 5003 5004 fd *= RADIX; 5005 fd += c - '0'; 5006 } 5007 5008 /* Make sure we actually parsed something. */ 5009 if (str == orig) { 5010 _rtld_error("failed to parse directory FD from '%s'", str); 5011 return (-1); 5012 } 5013 return (fd); 5014 } 5015 5016 /* 5017 * Overrides for libc_pic-provided functions. 5018 */ 5019 5020 int 5021 __getosreldate(void) 5022 { 5023 size_t len; 5024 int oid[2]; 5025 int error, osrel; 5026 5027 if (osreldate != 0) 5028 return (osreldate); 5029 5030 oid[0] = CTL_KERN; 5031 oid[1] = KERN_OSRELDATE; 5032 osrel = 0; 5033 len = sizeof(osrel); 5034 error = sysctl(oid, 2, &osrel, &len, NULL, 0); 5035 if (error == 0 && osrel > 0 && len == sizeof(osrel)) 5036 osreldate = osrel; 5037 return (osreldate); 5038 } 5039 5040 void 5041 exit(int status) 5042 { 5043 5044 _exit(status); 5045 } 5046 5047 void (*__cleanup)(void); 5048 int __isthreaded = 0; 5049 int _thread_autoinit_dummy_decl = 1; 5050 5051 /* 5052 * No unresolved symbols for rtld. 5053 */ 5054 void 5055 __pthread_cxa_finalize(struct dl_phdr_info *a) 5056 { 5057 } 5058 5059 void 5060 __stack_chk_fail(void) 5061 { 5062 5063 _rtld_error("stack overflow detected; terminated"); 5064 rtld_die(); 5065 } 5066 __weak_reference(__stack_chk_fail, __stack_chk_fail_local); 5067 5068 void 5069 __chk_fail(void) 5070 { 5071 5072 _rtld_error("buffer overflow detected; terminated"); 5073 rtld_die(); 5074 } 5075 5076 const char * 5077 rtld_strerror(int errnum) 5078 { 5079 5080 if (errnum < 0 || errnum >= sys_nerr) 5081 return ("Unknown error"); 5082 return (sys_errlist[errnum]); 5083 } 5084