xref: /freebsd/libexec/rtld-elf/rtld.c (revision 780fb4a2fa9a9aee5ac48a60b790f567c0dc13e9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_utrace.h"
70 #include "notes.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static const char *basename(const char *);
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **, const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
83     const Elf_Dyn *);
84 static void digest_dynamic(Obj_Entry *, int);
85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
86 static Obj_Entry *dlcheck(void *);
87 static int dlclose_locked(void *, RtldLockState *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *, int *);
97 static const char *gethints(bool);
98 static void hold_object(Obj_Entry *);
99 static void unhold_object(Obj_Entry *);
100 static void init_dag(Obj_Entry *);
101 static void init_marker(Obj_Entry *);
102 static void init_pagesizes(Elf_Auxinfo **aux_info);
103 static void init_rtld(caddr_t, Elf_Auxinfo **);
104 static void initlist_add_neededs(Needed_Entry *, Objlist *);
105 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
106 static void linkmap_add(Obj_Entry *);
107 static void linkmap_delete(Obj_Entry *);
108 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
109 static void unload_filtees(Obj_Entry *, RtldLockState *);
110 static int load_needed_objects(Obj_Entry *, int);
111 static int load_preload_objects(void);
112 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
113 static void map_stacks_exec(RtldLockState *);
114 static int obj_enforce_relro(Obj_Entry *);
115 static Obj_Entry *obj_from_addr(const void *);
116 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
117 static void objlist_call_init(Objlist *, RtldLockState *);
118 static void objlist_clear(Objlist *);
119 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
120 static void objlist_init(Objlist *);
121 static void objlist_push_head(Objlist *, Obj_Entry *);
122 static void objlist_push_tail(Objlist *, Obj_Entry *);
123 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
124 static void objlist_remove(Objlist *, Obj_Entry *);
125 static int open_binary_fd(const char *argv0, bool search_in_path);
126 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp);
127 static int parse_integer(const char *);
128 static void *path_enumerate(const char *, path_enum_proc, void *);
129 static void print_usage(const char *argv0);
130 static void release_object(Obj_Entry *);
131 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
132     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
133 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
134     int flags, RtldLockState *lockstate);
135 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
136     RtldLockState *);
137 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
138     int flags, RtldLockState *lockstate);
139 static int rtld_dirname(const char *, char *);
140 static int rtld_dirname_abs(const char *, char *);
141 static void *rtld_dlopen(const char *name, int fd, int mode);
142 static void rtld_exit(void);
143 static char *search_library_path(const char *, const char *, int *);
144 static char *search_library_pathfds(const char *, const char *, int *);
145 static const void **get_program_var_addr(const char *, RtldLockState *);
146 static void set_program_var(const char *, const void *);
147 static int symlook_default(SymLook *, const Obj_Entry *refobj);
148 static int symlook_global(SymLook *, DoneList *);
149 static void symlook_init_from_req(SymLook *, const SymLook *);
150 static int symlook_list(SymLook *, const Objlist *, DoneList *);
151 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
152 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
153 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
154 static void trace_loaded_objects(Obj_Entry *);
155 static void unlink_object(Obj_Entry *);
156 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
157 static void unref_dag(Obj_Entry *);
158 static void ref_dag(Obj_Entry *);
159 static char *origin_subst_one(Obj_Entry *, char *, const char *,
160     const char *, bool);
161 static char *origin_subst(Obj_Entry *, char *);
162 static bool obj_resolve_origin(Obj_Entry *obj);
163 static void preinit_main(void);
164 static int  rtld_verify_versions(const Objlist *);
165 static int  rtld_verify_object_versions(Obj_Entry *);
166 static void object_add_name(Obj_Entry *, const char *);
167 static int  object_match_name(const Obj_Entry *, const char *);
168 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
169 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
170     struct dl_phdr_info *phdr_info);
171 static uint32_t gnu_hash(const char *);
172 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
173     const unsigned long);
174 
175 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
176 void _r_debug_postinit(struct link_map *) __noinline __exported;
177 
178 int __sys_openat(int, const char *, int, ...);
179 
180 /*
181  * Data declarations.
182  */
183 static char *error_message;	/* Message for dlerror(), or NULL */
184 struct r_debug r_debug __exported;	/* for GDB; */
185 static bool libmap_disable;	/* Disable libmap */
186 static bool ld_loadfltr;	/* Immediate filters processing */
187 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
188 static bool trust;		/* False for setuid and setgid programs */
189 static bool dangerous_ld_env;	/* True if environment variables have been
190 				   used to affect the libraries loaded */
191 bool ld_bind_not;		/* Disable PLT update */
192 static char *ld_bind_now;	/* Environment variable for immediate binding */
193 static char *ld_debug;		/* Environment variable for debugging */
194 static char *ld_library_path;	/* Environment variable for search path */
195 static char *ld_library_dirs;	/* Environment variable for library descriptors */
196 static char *ld_preload;	/* Environment variable for libraries to
197 				   load first */
198 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
199 static char *ld_tracing;	/* Called from ldd to print libs */
200 static char *ld_utrace;		/* Use utrace() to log events. */
201 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
202 static Obj_Entry *obj_main;	/* The main program shared object */
203 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
204 static unsigned int obj_count;	/* Number of objects in obj_list */
205 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
206 
207 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
208   STAILQ_HEAD_INITIALIZER(list_global);
209 static Objlist list_main =	/* Objects loaded at program startup */
210   STAILQ_HEAD_INITIALIZER(list_main);
211 static Objlist list_fini =	/* Objects needing fini() calls */
212   STAILQ_HEAD_INITIALIZER(list_fini);
213 
214 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
215 
216 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
217 
218 extern Elf_Dyn _DYNAMIC;
219 #pragma weak _DYNAMIC
220 
221 int dlclose(void *) __exported;
222 char *dlerror(void) __exported;
223 void *dlopen(const char *, int) __exported;
224 void *fdlopen(int, int) __exported;
225 void *dlsym(void *, const char *) __exported;
226 dlfunc_t dlfunc(void *, const char *) __exported;
227 void *dlvsym(void *, const char *, const char *) __exported;
228 int dladdr(const void *, Dl_info *) __exported;
229 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
230     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
231 int dlinfo(void *, int , void *) __exported;
232 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
233 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
234 int _rtld_get_stack_prot(void) __exported;
235 int _rtld_is_dlopened(void *) __exported;
236 void _rtld_error(const char *, ...) __exported;
237 
238 int npagesizes, osreldate;
239 size_t *pagesizes;
240 
241 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
242 static int max_stack_flags;
243 
244 /*
245  * Global declarations normally provided by crt1.  The dynamic linker is
246  * not built with crt1, so we have to provide them ourselves.
247  */
248 char *__progname;
249 char **environ;
250 
251 /*
252  * Used to pass argc, argv to init functions.
253  */
254 int main_argc;
255 char **main_argv;
256 
257 /*
258  * Globals to control TLS allocation.
259  */
260 size_t tls_last_offset;		/* Static TLS offset of last module */
261 size_t tls_last_size;		/* Static TLS size of last module */
262 size_t tls_static_space;	/* Static TLS space allocated */
263 size_t tls_static_max_align;
264 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
265 int tls_max_index = 1;		/* Largest module index allocated */
266 
267 bool ld_library_path_rpath = false;
268 
269 /*
270  * Globals for path names, and such
271  */
272 char *ld_elf_hints_default = _PATH_ELF_HINTS;
273 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
274 char *ld_path_rtld = _PATH_RTLD;
275 char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
276 char *ld_env_prefix = LD_;
277 
278 /*
279  * Fill in a DoneList with an allocation large enough to hold all of
280  * the currently-loaded objects.  Keep this as a macro since it calls
281  * alloca and we want that to occur within the scope of the caller.
282  */
283 #define donelist_init(dlp)					\
284     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
285     assert((dlp)->objs != NULL),				\
286     (dlp)->num_alloc = obj_count,				\
287     (dlp)->num_used = 0)
288 
289 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
290 	if (ld_utrace != NULL)					\
291 		ld_utrace_log(e, h, mb, ms, r, n);		\
292 } while (0)
293 
294 static void
295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
296     int refcnt, const char *name)
297 {
298 	struct utrace_rtld ut;
299 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
300 
301 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
302 	ut.event = event;
303 	ut.handle = handle;
304 	ut.mapbase = mapbase;
305 	ut.mapsize = mapsize;
306 	ut.refcnt = refcnt;
307 	bzero(ut.name, sizeof(ut.name));
308 	if (name)
309 		strlcpy(ut.name, name, sizeof(ut.name));
310 	utrace(&ut, sizeof(ut));
311 }
312 
313 #ifdef RTLD_VARIANT_ENV_NAMES
314 /*
315  * construct the env variable based on the type of binary that's
316  * running.
317  */
318 static inline const char *
319 _LD(const char *var)
320 {
321 	static char buffer[128];
322 
323 	strlcpy(buffer, ld_env_prefix, sizeof(buffer));
324 	strlcat(buffer, var, sizeof(buffer));
325 	return (buffer);
326 }
327 #else
328 #define _LD(x)	LD_ x
329 #endif
330 
331 /*
332  * Main entry point for dynamic linking.  The first argument is the
333  * stack pointer.  The stack is expected to be laid out as described
334  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
335  * Specifically, the stack pointer points to a word containing
336  * ARGC.  Following that in the stack is a null-terminated sequence
337  * of pointers to argument strings.  Then comes a null-terminated
338  * sequence of pointers to environment strings.  Finally, there is a
339  * sequence of "auxiliary vector" entries.
340  *
341  * The second argument points to a place to store the dynamic linker's
342  * exit procedure pointer and the third to a place to store the main
343  * program's object.
344  *
345  * The return value is the main program's entry point.
346  */
347 func_ptr_type
348 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
349 {
350     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
351     Objlist_Entry *entry;
352     Obj_Entry *last_interposer, *obj, *preload_tail;
353     const Elf_Phdr *phdr;
354     Objlist initlist;
355     RtldLockState lockstate;
356     struct stat st;
357     Elf_Addr *argcp;
358     char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath;
359     caddr_t imgentry;
360     char buf[MAXPATHLEN];
361     int argc, fd, i, phnum, rtld_argc;
362     bool dir_enable, explicit_fd, search_in_path;
363 
364     /*
365      * On entry, the dynamic linker itself has not been relocated yet.
366      * Be very careful not to reference any global data until after
367      * init_rtld has returned.  It is OK to reference file-scope statics
368      * and string constants, and to call static and global functions.
369      */
370 
371     /* Find the auxiliary vector on the stack. */
372     argcp = sp;
373     argc = *sp++;
374     argv = (char **) sp;
375     sp += argc + 1;	/* Skip over arguments and NULL terminator */
376     env = (char **) sp;
377     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
378 	;
379     aux = (Elf_Auxinfo *) sp;
380 
381     /* Digest the auxiliary vector. */
382     for (i = 0;  i < AT_COUNT;  i++)
383 	aux_info[i] = NULL;
384     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
385 	if (auxp->a_type < AT_COUNT)
386 	    aux_info[auxp->a_type] = auxp;
387     }
388 
389     /* Initialize and relocate ourselves. */
390     assert(aux_info[AT_BASE] != NULL);
391     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
392 
393     __progname = obj_rtld.path;
394     argv0 = argv[0] != NULL ? argv[0] : "(null)";
395     environ = env;
396     main_argc = argc;
397     main_argv = argv;
398 
399     trust = !issetugid();
400 
401     md_abi_variant_hook(aux_info);
402 
403     fd = -1;
404     if (aux_info[AT_EXECFD] != NULL) {
405 	fd = aux_info[AT_EXECFD]->a_un.a_val;
406     } else {
407 	assert(aux_info[AT_PHDR] != NULL);
408 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
409 	if (phdr == obj_rtld.phdr) {
410 	    if (!trust) {
411 		rtld_printf("Tainted process refusing to run binary %s\n",
412 		  argv0);
413 		rtld_die();
414 	    }
415 	    dbg("opening main program in direct exec mode");
416 	    if (argc >= 2) {
417 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd);
418 		argv0 = argv[rtld_argc];
419 		explicit_fd = (fd != -1);
420 		if (!explicit_fd)
421 		    fd = open_binary_fd(argv0, search_in_path);
422 		if (fstat(fd, &st) == -1) {
423 		    _rtld_error("failed to fstat FD %d (%s): %s", fd,
424 		      explicit_fd ? "user-provided descriptor" : argv0,
425 		      rtld_strerror(errno));
426 		    rtld_die();
427 		}
428 
429 		/*
430 		 * Rough emulation of the permission checks done by
431 		 * execve(2), only Unix DACs are checked, ACLs are
432 		 * ignored.  Preserve the semantic of disabling owner
433 		 * to execute if owner x bit is cleared, even if
434 		 * others x bit is enabled.
435 		 * mmap(2) does not allow to mmap with PROT_EXEC if
436 		 * binary' file comes from noexec mount.  We cannot
437 		 * set VV_TEXT on the binary.
438 		 */
439 		dir_enable = false;
440 		if (st.st_uid == geteuid()) {
441 		    if ((st.st_mode & S_IXUSR) != 0)
442 			dir_enable = true;
443 		} else if (st.st_gid == getegid()) {
444 		    if ((st.st_mode & S_IXGRP) != 0)
445 			dir_enable = true;
446 		} else if ((st.st_mode & S_IXOTH) != 0) {
447 		    dir_enable = true;
448 		}
449 		if (!dir_enable) {
450 		    rtld_printf("No execute permission for binary %s\n",
451 		      argv0);
452 		    rtld_die();
453 		}
454 
455 		/*
456 		 * For direct exec mode, argv[0] is the interpreter
457 		 * name, we must remove it and shift arguments left
458 		 * before invoking binary main.  Since stack layout
459 		 * places environment pointers and aux vectors right
460 		 * after the terminating NULL, we must shift
461 		 * environment and aux as well.
462 		 */
463 		main_argc = argc - rtld_argc;
464 		for (i = 0; i <= main_argc; i++)
465 		    argv[i] = argv[i + rtld_argc];
466 		*argcp -= rtld_argc;
467 		environ = env = envp = argv + main_argc + 1;
468 		do {
469 		    *envp = *(envp + rtld_argc);
470 		    envp++;
471 		} while (*envp != NULL);
472 		aux = auxp = (Elf_Auxinfo *)envp;
473 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
474 		for (;; auxp++, auxpf++) {
475 		    *auxp = *auxpf;
476 		    if (auxp->a_type == AT_NULL)
477 			    break;
478 		}
479 	    } else {
480 		rtld_printf("no binary\n");
481 		rtld_die();
482 	    }
483 	}
484     }
485 
486     ld_bind_now = getenv(_LD("BIND_NOW"));
487 
488     /*
489      * If the process is tainted, then we un-set the dangerous environment
490      * variables.  The process will be marked as tainted until setuid(2)
491      * is called.  If any child process calls setuid(2) we do not want any
492      * future processes to honor the potentially un-safe variables.
493      */
494     if (!trust) {
495 	if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) ||
496 	    unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) ||
497 	    unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) ||
498 	    unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) ||
499 	    unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) {
500 		_rtld_error("environment corrupt; aborting");
501 		rtld_die();
502 	}
503     }
504     ld_debug = getenv(_LD("DEBUG"));
505     if (ld_bind_now == NULL)
506 	    ld_bind_not = getenv(_LD("BIND_NOT")) != NULL;
507     libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL;
508     libmap_override = getenv(_LD("LIBMAP"));
509     ld_library_path = getenv(_LD("LIBRARY_PATH"));
510     ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS"));
511     ld_preload = getenv(_LD("PRELOAD"));
512     ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH"));
513     ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL;
514     library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH"));
515     if (library_path_rpath != NULL) {
516 	    if (library_path_rpath[0] == 'y' ||
517 		library_path_rpath[0] == 'Y' ||
518 		library_path_rpath[0] == '1')
519 		    ld_library_path_rpath = true;
520 	    else
521 		    ld_library_path_rpath = false;
522     }
523     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
524 	(ld_library_path != NULL) || (ld_preload != NULL) ||
525 	(ld_elf_hints_path != NULL) || ld_loadfltr;
526     ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS"));
527     ld_utrace = getenv(_LD("UTRACE"));
528 
529     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
530 	ld_elf_hints_path = ld_elf_hints_default;
531 
532     if (ld_debug != NULL && *ld_debug != '\0')
533 	debug = 1;
534     dbg("%s is initialized, base address = %p", __progname,
535 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
536     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
537     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
538 
539     dbg("initializing thread locks");
540     lockdflt_init();
541 
542     /*
543      * Load the main program, or process its program header if it is
544      * already loaded.
545      */
546     if (fd != -1) {	/* Load the main program. */
547 	dbg("loading main program");
548 	obj_main = map_object(fd, argv0, NULL);
549 	close(fd);
550 	if (obj_main == NULL)
551 	    rtld_die();
552 	max_stack_flags = obj_main->stack_flags;
553     } else {				/* Main program already loaded. */
554 	dbg("processing main program's program header");
555 	assert(aux_info[AT_PHDR] != NULL);
556 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
557 	assert(aux_info[AT_PHNUM] != NULL);
558 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
559 	assert(aux_info[AT_PHENT] != NULL);
560 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
561 	assert(aux_info[AT_ENTRY] != NULL);
562 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
563 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
564 	    rtld_die();
565     }
566 
567     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
568 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
569 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
570 	    if (kexecpath[0] == '/')
571 		    obj_main->path = kexecpath;
572 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
573 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
574 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
575 		    obj_main->path = xstrdup(argv0);
576 	    else
577 		    obj_main->path = xstrdup(buf);
578     } else {
579 	    dbg("No AT_EXECPATH or direct exec");
580 	    obj_main->path = xstrdup(argv0);
581     }
582     dbg("obj_main path %s", obj_main->path);
583     obj_main->mainprog = true;
584 
585     if (aux_info[AT_STACKPROT] != NULL &&
586       aux_info[AT_STACKPROT]->a_un.a_val != 0)
587 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
588 
589 #ifndef COMPAT_32BIT
590     /*
591      * Get the actual dynamic linker pathname from the executable if
592      * possible.  (It should always be possible.)  That ensures that
593      * gdb will find the right dynamic linker even if a non-standard
594      * one is being used.
595      */
596     if (obj_main->interp != NULL &&
597       strcmp(obj_main->interp, obj_rtld.path) != 0) {
598 	free(obj_rtld.path);
599 	obj_rtld.path = xstrdup(obj_main->interp);
600         __progname = obj_rtld.path;
601     }
602 #endif
603 
604     digest_dynamic(obj_main, 0);
605     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
606 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
607 	obj_main->dynsymcount);
608 
609     linkmap_add(obj_main);
610     linkmap_add(&obj_rtld);
611 
612     /* Link the main program into the list of objects. */
613     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
614     obj_count++;
615     obj_loads++;
616 
617     /* Initialize a fake symbol for resolving undefined weak references. */
618     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
619     sym_zero.st_shndx = SHN_UNDEF;
620     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
621 
622     if (!libmap_disable)
623         libmap_disable = (bool)lm_init(libmap_override);
624 
625     dbg("loading LD_PRELOAD libraries");
626     if (load_preload_objects() == -1)
627 	rtld_die();
628     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
629 
630     dbg("loading needed objects");
631     if (load_needed_objects(obj_main, 0) == -1)
632 	rtld_die();
633 
634     /* Make a list of all objects loaded at startup. */
635     last_interposer = obj_main;
636     TAILQ_FOREACH(obj, &obj_list, next) {
637 	if (obj->marker)
638 	    continue;
639 	if (obj->z_interpose && obj != obj_main) {
640 	    objlist_put_after(&list_main, last_interposer, obj);
641 	    last_interposer = obj;
642 	} else {
643 	    objlist_push_tail(&list_main, obj);
644 	}
645     	obj->refcount++;
646     }
647 
648     dbg("checking for required versions");
649     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
650 	rtld_die();
651 
652     if (ld_tracing) {		/* We're done */
653 	trace_loaded_objects(obj_main);
654 	exit(0);
655     }
656 
657     if (getenv(_LD("DUMP_REL_PRE")) != NULL) {
658        dump_relocations(obj_main);
659        exit (0);
660     }
661 
662     /*
663      * Processing tls relocations requires having the tls offsets
664      * initialized.  Prepare offsets before starting initial
665      * relocation processing.
666      */
667     dbg("initializing initial thread local storage offsets");
668     STAILQ_FOREACH(entry, &list_main, link) {
669 	/*
670 	 * Allocate all the initial objects out of the static TLS
671 	 * block even if they didn't ask for it.
672 	 */
673 	allocate_tls_offset(entry->obj);
674     }
675 
676     if (relocate_objects(obj_main,
677       ld_bind_now != NULL && *ld_bind_now != '\0',
678       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
679 	rtld_die();
680 
681     dbg("doing copy relocations");
682     if (do_copy_relocations(obj_main) == -1)
683 	rtld_die();
684 
685     dbg("enforcing main obj relro");
686     if (obj_enforce_relro(obj_main) == -1)
687 	rtld_die();
688 
689     if (getenv(_LD("DUMP_REL_POST")) != NULL) {
690        dump_relocations(obj_main);
691        exit (0);
692     }
693 
694     /*
695      * Setup TLS for main thread.  This must be done after the
696      * relocations are processed, since tls initialization section
697      * might be the subject for relocations.
698      */
699     dbg("initializing initial thread local storage");
700     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
701 
702     dbg("initializing key program variables");
703     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
704     set_program_var("environ", env);
705     set_program_var("__elf_aux_vector", aux);
706 
707     /* Make a list of init functions to call. */
708     objlist_init(&initlist);
709     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
710       preload_tail, &initlist);
711 
712     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
713 
714     map_stacks_exec(NULL);
715     ifunc_init(aux);
716 
717     dbg("resolving ifuncs");
718     if (resolve_objects_ifunc(obj_main,
719       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
720       NULL) == -1)
721 	rtld_die();
722 
723     if (!obj_main->crt_no_init) {
724 	/*
725 	 * Make sure we don't call the main program's init and fini
726 	 * functions for binaries linked with old crt1 which calls
727 	 * _init itself.
728 	 */
729 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
730 	obj_main->preinit_array = obj_main->init_array =
731 	    obj_main->fini_array = (Elf_Addr)NULL;
732     }
733 
734     /*
735      * Execute MD initializers required before we call the objects'
736      * init functions.
737      */
738     pre_init();
739 
740     wlock_acquire(rtld_bind_lock, &lockstate);
741     if (obj_main->crt_no_init)
742 	preinit_main();
743     objlist_call_init(&initlist, &lockstate);
744     _r_debug_postinit(&obj_main->linkmap);
745     objlist_clear(&initlist);
746     dbg("loading filtees");
747     TAILQ_FOREACH(obj, &obj_list, next) {
748 	if (obj->marker)
749 	    continue;
750 	if (ld_loadfltr || obj->z_loadfltr)
751 	    load_filtees(obj, 0, &lockstate);
752     }
753     lock_release(rtld_bind_lock, &lockstate);
754 
755     dbg("transferring control to program entry point = %p", obj_main->entry);
756 
757     /* Return the exit procedure and the program entry point. */
758     *exit_proc = rtld_exit;
759     *objp = obj_main;
760     return (func_ptr_type) obj_main->entry;
761 }
762 
763 void *
764 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
765 {
766 	void *ptr;
767 	Elf_Addr target;
768 
769 	ptr = (void *)make_function_pointer(def, obj);
770 	target = call_ifunc_resolver(ptr);
771 	return ((void *)target);
772 }
773 
774 /*
775  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
776  * Changes to this function should be applied there as well.
777  */
778 Elf_Addr
779 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
780 {
781     const Elf_Rel *rel;
782     const Elf_Sym *def;
783     const Obj_Entry *defobj;
784     Elf_Addr *where;
785     Elf_Addr target;
786     RtldLockState lockstate;
787 
788     rlock_acquire(rtld_bind_lock, &lockstate);
789     if (sigsetjmp(lockstate.env, 0) != 0)
790 	    lock_upgrade(rtld_bind_lock, &lockstate);
791     if (obj->pltrel)
792 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
793     else
794 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
795 
796     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
797     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
798 	NULL, &lockstate);
799     if (def == NULL)
800 	rtld_die();
801     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
802 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
803     else
804 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
805 
806     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
807       defobj->strtab + def->st_name, basename(obj->path),
808       (void *)target, basename(defobj->path));
809 
810     /*
811      * Write the new contents for the jmpslot. Note that depending on
812      * architecture, the value which we need to return back to the
813      * lazy binding trampoline may or may not be the target
814      * address. The value returned from reloc_jmpslot() is the value
815      * that the trampoline needs.
816      */
817     target = reloc_jmpslot(where, target, defobj, obj, rel);
818     lock_release(rtld_bind_lock, &lockstate);
819     return target;
820 }
821 
822 /*
823  * Error reporting function.  Use it like printf.  If formats the message
824  * into a buffer, and sets things up so that the next call to dlerror()
825  * will return the message.
826  */
827 void
828 _rtld_error(const char *fmt, ...)
829 {
830     static char buf[512];
831     va_list ap;
832 
833     va_start(ap, fmt);
834     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
835     error_message = buf;
836     va_end(ap);
837     LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message);
838 }
839 
840 /*
841  * Return a dynamically-allocated copy of the current error message, if any.
842  */
843 static char *
844 errmsg_save(void)
845 {
846     return error_message == NULL ? NULL : xstrdup(error_message);
847 }
848 
849 /*
850  * Restore the current error message from a copy which was previously saved
851  * by errmsg_save().  The copy is freed.
852  */
853 static void
854 errmsg_restore(char *saved_msg)
855 {
856     if (saved_msg == NULL)
857 	error_message = NULL;
858     else {
859 	_rtld_error("%s", saved_msg);
860 	free(saved_msg);
861     }
862 }
863 
864 static const char *
865 basename(const char *name)
866 {
867     const char *p = strrchr(name, '/');
868     return p != NULL ? p + 1 : name;
869 }
870 
871 static struct utsname uts;
872 
873 static char *
874 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
875     const char *subst, bool may_free)
876 {
877 	char *p, *p1, *res, *resp;
878 	int subst_len, kw_len, subst_count, old_len, new_len;
879 
880 	kw_len = strlen(kw);
881 
882 	/*
883 	 * First, count the number of the keyword occurrences, to
884 	 * preallocate the final string.
885 	 */
886 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
887 		p1 = strstr(p, kw);
888 		if (p1 == NULL)
889 			break;
890 	}
891 
892 	/*
893 	 * If the keyword is not found, just return.
894 	 *
895 	 * Return non-substituted string if resolution failed.  We
896 	 * cannot do anything more reasonable, the failure mode of the
897 	 * caller is unresolved library anyway.
898 	 */
899 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
900 		return (may_free ? real : xstrdup(real));
901 	if (obj != NULL)
902 		subst = obj->origin_path;
903 
904 	/*
905 	 * There is indeed something to substitute.  Calculate the
906 	 * length of the resulting string, and allocate it.
907 	 */
908 	subst_len = strlen(subst);
909 	old_len = strlen(real);
910 	new_len = old_len + (subst_len - kw_len) * subst_count;
911 	res = xmalloc(new_len + 1);
912 
913 	/*
914 	 * Now, execute the substitution loop.
915 	 */
916 	for (p = real, resp = res, *resp = '\0';;) {
917 		p1 = strstr(p, kw);
918 		if (p1 != NULL) {
919 			/* Copy the prefix before keyword. */
920 			memcpy(resp, p, p1 - p);
921 			resp += p1 - p;
922 			/* Keyword replacement. */
923 			memcpy(resp, subst, subst_len);
924 			resp += subst_len;
925 			*resp = '\0';
926 			p = p1 + kw_len;
927 		} else
928 			break;
929 	}
930 
931 	/* Copy to the end of string and finish. */
932 	strcat(resp, p);
933 	if (may_free)
934 		free(real);
935 	return (res);
936 }
937 
938 static char *
939 origin_subst(Obj_Entry *obj, char *real)
940 {
941 	char *res1, *res2, *res3, *res4;
942 
943 	if (obj == NULL || !trust)
944 		return (xstrdup(real));
945 	if (uts.sysname[0] == '\0') {
946 		if (uname(&uts) != 0) {
947 			_rtld_error("utsname failed: %d", errno);
948 			return (NULL);
949 		}
950 	}
951 	res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false);
952 	res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true);
953 	res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true);
954 	res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true);
955 	return (res4);
956 }
957 
958 void
959 rtld_die(void)
960 {
961     const char *msg = dlerror();
962 
963     if (msg == NULL)
964 	msg = "Fatal error";
965     rtld_fdputstr(STDERR_FILENO, msg);
966     rtld_fdputchar(STDERR_FILENO, '\n');
967     _exit(1);
968 }
969 
970 /*
971  * Process a shared object's DYNAMIC section, and save the important
972  * information in its Obj_Entry structure.
973  */
974 static void
975 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
976     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
977 {
978     const Elf_Dyn *dynp;
979     Needed_Entry **needed_tail = &obj->needed;
980     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
981     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
982     const Elf_Hashelt *hashtab;
983     const Elf32_Word *hashval;
984     Elf32_Word bkt, nmaskwords;
985     int bloom_size32;
986     int plttype = DT_REL;
987 
988     *dyn_rpath = NULL;
989     *dyn_soname = NULL;
990     *dyn_runpath = NULL;
991 
992     obj->bind_now = false;
993     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
994 	switch (dynp->d_tag) {
995 
996 	case DT_REL:
997 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
998 	    break;
999 
1000 	case DT_RELSZ:
1001 	    obj->relsize = dynp->d_un.d_val;
1002 	    break;
1003 
1004 	case DT_RELENT:
1005 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1006 	    break;
1007 
1008 	case DT_JMPREL:
1009 	    obj->pltrel = (const Elf_Rel *)
1010 	      (obj->relocbase + dynp->d_un.d_ptr);
1011 	    break;
1012 
1013 	case DT_PLTRELSZ:
1014 	    obj->pltrelsize = dynp->d_un.d_val;
1015 	    break;
1016 
1017 	case DT_RELA:
1018 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1019 	    break;
1020 
1021 	case DT_RELASZ:
1022 	    obj->relasize = dynp->d_un.d_val;
1023 	    break;
1024 
1025 	case DT_RELAENT:
1026 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1027 	    break;
1028 
1029 	case DT_PLTREL:
1030 	    plttype = dynp->d_un.d_val;
1031 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1032 	    break;
1033 
1034 	case DT_SYMTAB:
1035 	    obj->symtab = (const Elf_Sym *)
1036 	      (obj->relocbase + dynp->d_un.d_ptr);
1037 	    break;
1038 
1039 	case DT_SYMENT:
1040 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1041 	    break;
1042 
1043 	case DT_STRTAB:
1044 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1045 	    break;
1046 
1047 	case DT_STRSZ:
1048 	    obj->strsize = dynp->d_un.d_val;
1049 	    break;
1050 
1051 	case DT_VERNEED:
1052 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1053 		dynp->d_un.d_val);
1054 	    break;
1055 
1056 	case DT_VERNEEDNUM:
1057 	    obj->verneednum = dynp->d_un.d_val;
1058 	    break;
1059 
1060 	case DT_VERDEF:
1061 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1062 		dynp->d_un.d_val);
1063 	    break;
1064 
1065 	case DT_VERDEFNUM:
1066 	    obj->verdefnum = dynp->d_un.d_val;
1067 	    break;
1068 
1069 	case DT_VERSYM:
1070 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1071 		dynp->d_un.d_val);
1072 	    break;
1073 
1074 	case DT_HASH:
1075 	    {
1076 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1077 		    dynp->d_un.d_ptr);
1078 		obj->nbuckets = hashtab[0];
1079 		obj->nchains = hashtab[1];
1080 		obj->buckets = hashtab + 2;
1081 		obj->chains = obj->buckets + obj->nbuckets;
1082 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1083 		  obj->buckets != NULL;
1084 	    }
1085 	    break;
1086 
1087 	case DT_GNU_HASH:
1088 	    {
1089 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1090 		    dynp->d_un.d_ptr);
1091 		obj->nbuckets_gnu = hashtab[0];
1092 		obj->symndx_gnu = hashtab[1];
1093 		nmaskwords = hashtab[2];
1094 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1095 		obj->maskwords_bm_gnu = nmaskwords - 1;
1096 		obj->shift2_gnu = hashtab[3];
1097 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1098 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1099 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1100 		  obj->symndx_gnu;
1101 		/* Number of bitmask words is required to be power of 2 */
1102 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1103 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1104 	    }
1105 	    break;
1106 
1107 	case DT_NEEDED:
1108 	    if (!obj->rtld) {
1109 		Needed_Entry *nep = NEW(Needed_Entry);
1110 		nep->name = dynp->d_un.d_val;
1111 		nep->obj = NULL;
1112 		nep->next = NULL;
1113 
1114 		*needed_tail = nep;
1115 		needed_tail = &nep->next;
1116 	    }
1117 	    break;
1118 
1119 	case DT_FILTER:
1120 	    if (!obj->rtld) {
1121 		Needed_Entry *nep = NEW(Needed_Entry);
1122 		nep->name = dynp->d_un.d_val;
1123 		nep->obj = NULL;
1124 		nep->next = NULL;
1125 
1126 		*needed_filtees_tail = nep;
1127 		needed_filtees_tail = &nep->next;
1128 	    }
1129 	    break;
1130 
1131 	case DT_AUXILIARY:
1132 	    if (!obj->rtld) {
1133 		Needed_Entry *nep = NEW(Needed_Entry);
1134 		nep->name = dynp->d_un.d_val;
1135 		nep->obj = NULL;
1136 		nep->next = NULL;
1137 
1138 		*needed_aux_filtees_tail = nep;
1139 		needed_aux_filtees_tail = &nep->next;
1140 	    }
1141 	    break;
1142 
1143 	case DT_PLTGOT:
1144 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1145 	    break;
1146 
1147 	case DT_TEXTREL:
1148 	    obj->textrel = true;
1149 	    break;
1150 
1151 	case DT_SYMBOLIC:
1152 	    obj->symbolic = true;
1153 	    break;
1154 
1155 	case DT_RPATH:
1156 	    /*
1157 	     * We have to wait until later to process this, because we
1158 	     * might not have gotten the address of the string table yet.
1159 	     */
1160 	    *dyn_rpath = dynp;
1161 	    break;
1162 
1163 	case DT_SONAME:
1164 	    *dyn_soname = dynp;
1165 	    break;
1166 
1167 	case DT_RUNPATH:
1168 	    *dyn_runpath = dynp;
1169 	    break;
1170 
1171 	case DT_INIT:
1172 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1173 	    break;
1174 
1175 	case DT_PREINIT_ARRAY:
1176 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1177 	    break;
1178 
1179 	case DT_PREINIT_ARRAYSZ:
1180 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1181 	    break;
1182 
1183 	case DT_INIT_ARRAY:
1184 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1185 	    break;
1186 
1187 	case DT_INIT_ARRAYSZ:
1188 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1189 	    break;
1190 
1191 	case DT_FINI:
1192 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1193 	    break;
1194 
1195 	case DT_FINI_ARRAY:
1196 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1197 	    break;
1198 
1199 	case DT_FINI_ARRAYSZ:
1200 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1201 	    break;
1202 
1203 	/*
1204 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1205 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1206 	 */
1207 
1208 #ifndef __mips__
1209 	case DT_DEBUG:
1210 	    if (!early)
1211 		dbg("Filling in DT_DEBUG entry");
1212 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1213 	    break;
1214 #endif
1215 
1216 	case DT_FLAGS:
1217 		if (dynp->d_un.d_val & DF_ORIGIN)
1218 		    obj->z_origin = true;
1219 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1220 		    obj->symbolic = true;
1221 		if (dynp->d_un.d_val & DF_TEXTREL)
1222 		    obj->textrel = true;
1223 		if (dynp->d_un.d_val & DF_BIND_NOW)
1224 		    obj->bind_now = true;
1225 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1226 		    ;*/
1227 	    break;
1228 #ifdef __mips__
1229 	case DT_MIPS_LOCAL_GOTNO:
1230 		obj->local_gotno = dynp->d_un.d_val;
1231 		break;
1232 
1233 	case DT_MIPS_SYMTABNO:
1234 		obj->symtabno = dynp->d_un.d_val;
1235 		break;
1236 
1237 	case DT_MIPS_GOTSYM:
1238 		obj->gotsym = dynp->d_un.d_val;
1239 		break;
1240 
1241 	case DT_MIPS_RLD_MAP:
1242 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1243 		break;
1244 
1245 	case DT_MIPS_PLTGOT:
1246 		obj->mips_pltgot = (Elf_Addr *) (obj->relocbase +
1247 		    dynp->d_un.d_ptr);
1248 		break;
1249 
1250 #endif
1251 
1252 #ifdef __powerpc64__
1253 	case DT_PPC64_GLINK:
1254 		obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1255 		break;
1256 #endif
1257 
1258 	case DT_FLAGS_1:
1259 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1260 		    obj->z_noopen = true;
1261 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1262 		    obj->z_origin = true;
1263 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1264 		    obj->z_global = true;
1265 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1266 		    obj->bind_now = true;
1267 		if (dynp->d_un.d_val & DF_1_NODELETE)
1268 		    obj->z_nodelete = true;
1269 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1270 		    obj->z_loadfltr = true;
1271 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1272 		    obj->z_interpose = true;
1273 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1274 		    obj->z_nodeflib = true;
1275 	    break;
1276 
1277 	default:
1278 	    if (!early) {
1279 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1280 		    (long)dynp->d_tag);
1281 	    }
1282 	    break;
1283 	}
1284     }
1285 
1286     obj->traced = false;
1287 
1288     if (plttype == DT_RELA) {
1289 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1290 	obj->pltrel = NULL;
1291 	obj->pltrelasize = obj->pltrelsize;
1292 	obj->pltrelsize = 0;
1293     }
1294 
1295     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1296     if (obj->valid_hash_sysv)
1297 	obj->dynsymcount = obj->nchains;
1298     else if (obj->valid_hash_gnu) {
1299 	obj->dynsymcount = 0;
1300 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1301 	    if (obj->buckets_gnu[bkt] == 0)
1302 		continue;
1303 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1304 	    do
1305 		obj->dynsymcount++;
1306 	    while ((*hashval++ & 1u) == 0);
1307 	}
1308 	obj->dynsymcount += obj->symndx_gnu;
1309     }
1310 }
1311 
1312 static bool
1313 obj_resolve_origin(Obj_Entry *obj)
1314 {
1315 
1316 	if (obj->origin_path != NULL)
1317 		return (true);
1318 	obj->origin_path = xmalloc(PATH_MAX);
1319 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1320 }
1321 
1322 static void
1323 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1324     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1325 {
1326 
1327 	if (obj->z_origin && !obj_resolve_origin(obj))
1328 		rtld_die();
1329 
1330 	if (dyn_runpath != NULL) {
1331 		obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1332 		obj->runpath = origin_subst(obj, obj->runpath);
1333 	} else if (dyn_rpath != NULL) {
1334 		obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1335 		obj->rpath = origin_subst(obj, obj->rpath);
1336 	}
1337 	if (dyn_soname != NULL)
1338 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1339 }
1340 
1341 static void
1342 digest_dynamic(Obj_Entry *obj, int early)
1343 {
1344 	const Elf_Dyn *dyn_rpath;
1345 	const Elf_Dyn *dyn_soname;
1346 	const Elf_Dyn *dyn_runpath;
1347 
1348 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1349 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1350 }
1351 
1352 /*
1353  * Process a shared object's program header.  This is used only for the
1354  * main program, when the kernel has already loaded the main program
1355  * into memory before calling the dynamic linker.  It creates and
1356  * returns an Obj_Entry structure.
1357  */
1358 static Obj_Entry *
1359 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1360 {
1361     Obj_Entry *obj;
1362     const Elf_Phdr *phlimit = phdr + phnum;
1363     const Elf_Phdr *ph;
1364     Elf_Addr note_start, note_end;
1365     int nsegs = 0;
1366 
1367     obj = obj_new();
1368     for (ph = phdr;  ph < phlimit;  ph++) {
1369 	if (ph->p_type != PT_PHDR)
1370 	    continue;
1371 
1372 	obj->phdr = phdr;
1373 	obj->phsize = ph->p_memsz;
1374 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1375 	break;
1376     }
1377 
1378     obj->stack_flags = PF_X | PF_R | PF_W;
1379 
1380     for (ph = phdr;  ph < phlimit;  ph++) {
1381 	switch (ph->p_type) {
1382 
1383 	case PT_INTERP:
1384 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1385 	    break;
1386 
1387 	case PT_LOAD:
1388 	    if (nsegs == 0) {	/* First load segment */
1389 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1390 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1391 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1392 		  obj->vaddrbase;
1393 	    } else {		/* Last load segment */
1394 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1395 		  obj->vaddrbase;
1396 	    }
1397 	    nsegs++;
1398 	    break;
1399 
1400 	case PT_DYNAMIC:
1401 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1402 	    break;
1403 
1404 	case PT_TLS:
1405 	    obj->tlsindex = 1;
1406 	    obj->tlssize = ph->p_memsz;
1407 	    obj->tlsalign = ph->p_align;
1408 	    obj->tlsinitsize = ph->p_filesz;
1409 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1410 	    break;
1411 
1412 	case PT_GNU_STACK:
1413 	    obj->stack_flags = ph->p_flags;
1414 	    break;
1415 
1416 	case PT_GNU_RELRO:
1417 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1418 	    obj->relro_size = round_page(ph->p_memsz);
1419 	    break;
1420 
1421 	case PT_NOTE:
1422 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1423 	    note_end = note_start + ph->p_filesz;
1424 	    digest_notes(obj, note_start, note_end);
1425 	    break;
1426 	}
1427     }
1428     if (nsegs < 1) {
1429 	_rtld_error("%s: too few PT_LOAD segments", path);
1430 	return NULL;
1431     }
1432 
1433     obj->entry = entry;
1434     return obj;
1435 }
1436 
1437 void
1438 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1439 {
1440 	const Elf_Note *note;
1441 	const char *note_name;
1442 	uintptr_t p;
1443 
1444 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1445 	    note = (const Elf_Note *)((const char *)(note + 1) +
1446 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1447 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1448 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1449 		    note->n_descsz != sizeof(int32_t))
1450 			continue;
1451 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1452 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1453 			continue;
1454 		note_name = (const char *)(note + 1);
1455 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1456 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1457 			continue;
1458 		switch (note->n_type) {
1459 		case NT_FREEBSD_ABI_TAG:
1460 			/* FreeBSD osrel note */
1461 			p = (uintptr_t)(note + 1);
1462 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1463 			obj->osrel = *(const int32_t *)(p);
1464 			dbg("note osrel %d", obj->osrel);
1465 			break;
1466 		case NT_FREEBSD_NOINIT_TAG:
1467 			/* FreeBSD 'crt does not call init' note */
1468 			obj->crt_no_init = true;
1469 			dbg("note crt_no_init");
1470 			break;
1471 		}
1472 	}
1473 }
1474 
1475 static Obj_Entry *
1476 dlcheck(void *handle)
1477 {
1478     Obj_Entry *obj;
1479 
1480     TAILQ_FOREACH(obj, &obj_list, next) {
1481 	if (obj == (Obj_Entry *) handle)
1482 	    break;
1483     }
1484 
1485     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1486 	_rtld_error("Invalid shared object handle %p", handle);
1487 	return NULL;
1488     }
1489     return obj;
1490 }
1491 
1492 /*
1493  * If the given object is already in the donelist, return true.  Otherwise
1494  * add the object to the list and return false.
1495  */
1496 static bool
1497 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1498 {
1499     unsigned int i;
1500 
1501     for (i = 0;  i < dlp->num_used;  i++)
1502 	if (dlp->objs[i] == obj)
1503 	    return true;
1504     /*
1505      * Our donelist allocation should always be sufficient.  But if
1506      * our threads locking isn't working properly, more shared objects
1507      * could have been loaded since we allocated the list.  That should
1508      * never happen, but we'll handle it properly just in case it does.
1509      */
1510     if (dlp->num_used < dlp->num_alloc)
1511 	dlp->objs[dlp->num_used++] = obj;
1512     return false;
1513 }
1514 
1515 /*
1516  * Hash function for symbol table lookup.  Don't even think about changing
1517  * this.  It is specified by the System V ABI.
1518  */
1519 unsigned long
1520 elf_hash(const char *name)
1521 {
1522     const unsigned char *p = (const unsigned char *) name;
1523     unsigned long h = 0;
1524     unsigned long g;
1525 
1526     while (*p != '\0') {
1527 	h = (h << 4) + *p++;
1528 	if ((g = h & 0xf0000000) != 0)
1529 	    h ^= g >> 24;
1530 	h &= ~g;
1531     }
1532     return h;
1533 }
1534 
1535 /*
1536  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1537  * unsigned in case it's implemented with a wider type.
1538  */
1539 static uint32_t
1540 gnu_hash(const char *s)
1541 {
1542 	uint32_t h;
1543 	unsigned char c;
1544 
1545 	h = 5381;
1546 	for (c = *s; c != '\0'; c = *++s)
1547 		h = h * 33 + c;
1548 	return (h & 0xffffffff);
1549 }
1550 
1551 
1552 /*
1553  * Find the library with the given name, and return its full pathname.
1554  * The returned string is dynamically allocated.  Generates an error
1555  * message and returns NULL if the library cannot be found.
1556  *
1557  * If the second argument is non-NULL, then it refers to an already-
1558  * loaded shared object, whose library search path will be searched.
1559  *
1560  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1561  * descriptor (which is close-on-exec) will be passed out via the third
1562  * argument.
1563  *
1564  * The search order is:
1565  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1566  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1567  *   LD_LIBRARY_PATH
1568  *   DT_RUNPATH in the referencing file
1569  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1570  *	 from list)
1571  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1572  *
1573  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1574  */
1575 static char *
1576 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1577 {
1578 	char *pathname;
1579 	char *name;
1580 	bool nodeflib, objgiven;
1581 
1582 	objgiven = refobj != NULL;
1583 
1584 	if (libmap_disable || !objgiven ||
1585 	    (name = lm_find(refobj->path, xname)) == NULL)
1586 		name = (char *)xname;
1587 
1588 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1589 		if (name[0] != '/' && !trust) {
1590 			_rtld_error("Absolute pathname required "
1591 			    "for shared object \"%s\"", name);
1592 			return (NULL);
1593 		}
1594 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1595 		    __DECONST(char *, name)));
1596 	}
1597 
1598 	dbg(" Searching for \"%s\"", name);
1599 
1600 	/*
1601 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1602 	 * back to pre-conforming behaviour if user requested so with
1603 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1604 	 * nodeflib.
1605 	 */
1606 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1607 		pathname = search_library_path(name, ld_library_path, fdp);
1608 		if (pathname != NULL)
1609 			return (pathname);
1610 		if (refobj != NULL) {
1611 			pathname = search_library_path(name, refobj->rpath, fdp);
1612 			if (pathname != NULL)
1613 				return (pathname);
1614 		}
1615 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1616 		if (pathname != NULL)
1617 			return (pathname);
1618 		pathname = search_library_path(name, gethints(false), fdp);
1619 		if (pathname != NULL)
1620 			return (pathname);
1621 		pathname = search_library_path(name, ld_standard_library_path, fdp);
1622 		if (pathname != NULL)
1623 			return (pathname);
1624 	} else {
1625 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1626 		if (objgiven) {
1627 			pathname = search_library_path(name, refobj->rpath, fdp);
1628 			if (pathname != NULL)
1629 				return (pathname);
1630 		}
1631 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1632 			pathname = search_library_path(name, obj_main->rpath, fdp);
1633 			if (pathname != NULL)
1634 				return (pathname);
1635 		}
1636 		pathname = search_library_path(name, ld_library_path, fdp);
1637 		if (pathname != NULL)
1638 			return (pathname);
1639 		if (objgiven) {
1640 			pathname = search_library_path(name, refobj->runpath, fdp);
1641 			if (pathname != NULL)
1642 				return (pathname);
1643 		}
1644 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1645 		if (pathname != NULL)
1646 			return (pathname);
1647 		pathname = search_library_path(name, gethints(nodeflib), fdp);
1648 		if (pathname != NULL)
1649 			return (pathname);
1650 		if (objgiven && !nodeflib) {
1651 			pathname = search_library_path(name,
1652 			    ld_standard_library_path, fdp);
1653 			if (pathname != NULL)
1654 				return (pathname);
1655 		}
1656 	}
1657 
1658 	if (objgiven && refobj->path != NULL) {
1659 		_rtld_error("Shared object \"%s\" not found, "
1660 		    "required by \"%s\"", name, basename(refobj->path));
1661 	} else {
1662 		_rtld_error("Shared object \"%s\" not found", name);
1663 	}
1664 	return (NULL);
1665 }
1666 
1667 /*
1668  * Given a symbol number in a referencing object, find the corresponding
1669  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1670  * no definition was found.  Returns a pointer to the Obj_Entry of the
1671  * defining object via the reference parameter DEFOBJ_OUT.
1672  */
1673 const Elf_Sym *
1674 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1675     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1676     RtldLockState *lockstate)
1677 {
1678     const Elf_Sym *ref;
1679     const Elf_Sym *def;
1680     const Obj_Entry *defobj;
1681     const Ver_Entry *ve;
1682     SymLook req;
1683     const char *name;
1684     int res;
1685 
1686     /*
1687      * If we have already found this symbol, get the information from
1688      * the cache.
1689      */
1690     if (symnum >= refobj->dynsymcount)
1691 	return NULL;	/* Bad object */
1692     if (cache != NULL && cache[symnum].sym != NULL) {
1693 	*defobj_out = cache[symnum].obj;
1694 	return cache[symnum].sym;
1695     }
1696 
1697     ref = refobj->symtab + symnum;
1698     name = refobj->strtab + ref->st_name;
1699     def = NULL;
1700     defobj = NULL;
1701     ve = NULL;
1702 
1703     /*
1704      * We don't have to do a full scale lookup if the symbol is local.
1705      * We know it will bind to the instance in this load module; to
1706      * which we already have a pointer (ie ref). By not doing a lookup,
1707      * we not only improve performance, but it also avoids unresolvable
1708      * symbols when local symbols are not in the hash table. This has
1709      * been seen with the ia64 toolchain.
1710      */
1711     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1712 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1713 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1714 		symnum);
1715 	}
1716 	symlook_init(&req, name);
1717 	req.flags = flags;
1718 	ve = req.ventry = fetch_ventry(refobj, symnum);
1719 	req.lockstate = lockstate;
1720 	res = symlook_default(&req, refobj);
1721 	if (res == 0) {
1722 	    def = req.sym_out;
1723 	    defobj = req.defobj_out;
1724 	}
1725     } else {
1726 	def = ref;
1727 	defobj = refobj;
1728     }
1729 
1730     /*
1731      * If we found no definition and the reference is weak, treat the
1732      * symbol as having the value zero.
1733      */
1734     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1735 	def = &sym_zero;
1736 	defobj = obj_main;
1737     }
1738 
1739     if (def != NULL) {
1740 	*defobj_out = defobj;
1741 	/* Record the information in the cache to avoid subsequent lookups. */
1742 	if (cache != NULL) {
1743 	    cache[symnum].sym = def;
1744 	    cache[symnum].obj = defobj;
1745 	}
1746     } else {
1747 	if (refobj != &obj_rtld)
1748 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
1749 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
1750     }
1751     return def;
1752 }
1753 
1754 /*
1755  * Return the search path from the ldconfig hints file, reading it if
1756  * necessary.  If nostdlib is true, then the default search paths are
1757  * not added to result.
1758  *
1759  * Returns NULL if there are problems with the hints file,
1760  * or if the search path there is empty.
1761  */
1762 static const char *
1763 gethints(bool nostdlib)
1764 {
1765 	static char *hints, *filtered_path;
1766 	static struct elfhints_hdr hdr;
1767 	struct fill_search_info_args sargs, hargs;
1768 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1769 	struct dl_serpath *SLPpath, *hintpath;
1770 	char *p;
1771 	struct stat hint_stat;
1772 	unsigned int SLPndx, hintndx, fndx, fcount;
1773 	int fd;
1774 	size_t flen;
1775 	uint32_t dl;
1776 	bool skip;
1777 
1778 	/* First call, read the hints file */
1779 	if (hints == NULL) {
1780 		/* Keep from trying again in case the hints file is bad. */
1781 		hints = "";
1782 
1783 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1784 			return (NULL);
1785 
1786 		/*
1787 		 * Check of hdr.dirlistlen value against type limit
1788 		 * intends to pacify static analyzers.  Further
1789 		 * paranoia leads to checks that dirlist is fully
1790 		 * contained in the file range.
1791 		 */
1792 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1793 		    hdr.magic != ELFHINTS_MAGIC ||
1794 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
1795 		    fstat(fd, &hint_stat) == -1) {
1796 cleanup1:
1797 			close(fd);
1798 			hdr.dirlistlen = 0;
1799 			return (NULL);
1800 		}
1801 		dl = hdr.strtab;
1802 		if (dl + hdr.dirlist < dl)
1803 			goto cleanup1;
1804 		dl += hdr.dirlist;
1805 		if (dl + hdr.dirlistlen < dl)
1806 			goto cleanup1;
1807 		dl += hdr.dirlistlen;
1808 		if (dl > hint_stat.st_size)
1809 			goto cleanup1;
1810 		p = xmalloc(hdr.dirlistlen + 1);
1811 		if (pread(fd, p, hdr.dirlistlen + 1,
1812 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
1813 		    p[hdr.dirlistlen] != '\0') {
1814 			free(p);
1815 			goto cleanup1;
1816 		}
1817 		hints = p;
1818 		close(fd);
1819 	}
1820 
1821 	/*
1822 	 * If caller agreed to receive list which includes the default
1823 	 * paths, we are done. Otherwise, if we still did not
1824 	 * calculated filtered result, do it now.
1825 	 */
1826 	if (!nostdlib)
1827 		return (hints[0] != '\0' ? hints : NULL);
1828 	if (filtered_path != NULL)
1829 		goto filt_ret;
1830 
1831 	/*
1832 	 * Obtain the list of all configured search paths, and the
1833 	 * list of the default paths.
1834 	 *
1835 	 * First estimate the size of the results.
1836 	 */
1837 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1838 	smeta.dls_cnt = 0;
1839 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1840 	hmeta.dls_cnt = 0;
1841 
1842 	sargs.request = RTLD_DI_SERINFOSIZE;
1843 	sargs.serinfo = &smeta;
1844 	hargs.request = RTLD_DI_SERINFOSIZE;
1845 	hargs.serinfo = &hmeta;
1846 
1847 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1848 	path_enumerate(hints, fill_search_info, &hargs);
1849 
1850 	SLPinfo = xmalloc(smeta.dls_size);
1851 	hintinfo = xmalloc(hmeta.dls_size);
1852 
1853 	/*
1854 	 * Next fetch both sets of paths.
1855 	 */
1856 	sargs.request = RTLD_DI_SERINFO;
1857 	sargs.serinfo = SLPinfo;
1858 	sargs.serpath = &SLPinfo->dls_serpath[0];
1859 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1860 
1861 	hargs.request = RTLD_DI_SERINFO;
1862 	hargs.serinfo = hintinfo;
1863 	hargs.serpath = &hintinfo->dls_serpath[0];
1864 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1865 
1866 	path_enumerate(ld_standard_library_path, fill_search_info, &sargs);
1867 	path_enumerate(hints, fill_search_info, &hargs);
1868 
1869 	/*
1870 	 * Now calculate the difference between two sets, by excluding
1871 	 * standard paths from the full set.
1872 	 */
1873 	fndx = 0;
1874 	fcount = 0;
1875 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1876 	hintpath = &hintinfo->dls_serpath[0];
1877 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1878 		skip = false;
1879 		SLPpath = &SLPinfo->dls_serpath[0];
1880 		/*
1881 		 * Check each standard path against current.
1882 		 */
1883 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1884 			/* matched, skip the path */
1885 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1886 				skip = true;
1887 				break;
1888 			}
1889 		}
1890 		if (skip)
1891 			continue;
1892 		/*
1893 		 * Not matched against any standard path, add the path
1894 		 * to result. Separate consequtive paths with ':'.
1895 		 */
1896 		if (fcount > 0) {
1897 			filtered_path[fndx] = ':';
1898 			fndx++;
1899 		}
1900 		fcount++;
1901 		flen = strlen(hintpath->dls_name);
1902 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1903 		fndx += flen;
1904 	}
1905 	filtered_path[fndx] = '\0';
1906 
1907 	free(SLPinfo);
1908 	free(hintinfo);
1909 
1910 filt_ret:
1911 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1912 }
1913 
1914 static void
1915 init_dag(Obj_Entry *root)
1916 {
1917     const Needed_Entry *needed;
1918     const Objlist_Entry *elm;
1919     DoneList donelist;
1920 
1921     if (root->dag_inited)
1922 	return;
1923     donelist_init(&donelist);
1924 
1925     /* Root object belongs to own DAG. */
1926     objlist_push_tail(&root->dldags, root);
1927     objlist_push_tail(&root->dagmembers, root);
1928     donelist_check(&donelist, root);
1929 
1930     /*
1931      * Add dependencies of root object to DAG in breadth order
1932      * by exploiting the fact that each new object get added
1933      * to the tail of the dagmembers list.
1934      */
1935     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1936 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1937 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1938 		continue;
1939 	    objlist_push_tail(&needed->obj->dldags, root);
1940 	    objlist_push_tail(&root->dagmembers, needed->obj);
1941 	}
1942     }
1943     root->dag_inited = true;
1944 }
1945 
1946 static void
1947 init_marker(Obj_Entry *marker)
1948 {
1949 
1950 	bzero(marker, sizeof(*marker));
1951 	marker->marker = true;
1952 }
1953 
1954 Obj_Entry *
1955 globallist_curr(const Obj_Entry *obj)
1956 {
1957 
1958 	for (;;) {
1959 		if (obj == NULL)
1960 			return (NULL);
1961 		if (!obj->marker)
1962 			return (__DECONST(Obj_Entry *, obj));
1963 		obj = TAILQ_PREV(obj, obj_entry_q, next);
1964 	}
1965 }
1966 
1967 Obj_Entry *
1968 globallist_next(const Obj_Entry *obj)
1969 {
1970 
1971 	for (;;) {
1972 		obj = TAILQ_NEXT(obj, next);
1973 		if (obj == NULL)
1974 			return (NULL);
1975 		if (!obj->marker)
1976 			return (__DECONST(Obj_Entry *, obj));
1977 	}
1978 }
1979 
1980 /* Prevent the object from being unmapped while the bind lock is dropped. */
1981 static void
1982 hold_object(Obj_Entry *obj)
1983 {
1984 
1985 	obj->holdcount++;
1986 }
1987 
1988 static void
1989 unhold_object(Obj_Entry *obj)
1990 {
1991 
1992 	assert(obj->holdcount > 0);
1993 	if (--obj->holdcount == 0 && obj->unholdfree)
1994 		release_object(obj);
1995 }
1996 
1997 static void
1998 process_z(Obj_Entry *root)
1999 {
2000 	const Objlist_Entry *elm;
2001 	Obj_Entry *obj;
2002 
2003 	/*
2004 	 * Walk over object DAG and process every dependent object
2005 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2006 	 * to grow their own DAG.
2007 	 *
2008 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2009 	 * symlook_global() to work.
2010 	 *
2011 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2012 	 */
2013 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2014 		obj = elm->obj;
2015 		if (obj == NULL)
2016 			continue;
2017 		if (obj->z_nodelete && !obj->ref_nodel) {
2018 			dbg("obj %s -z nodelete", obj->path);
2019 			init_dag(obj);
2020 			ref_dag(obj);
2021 			obj->ref_nodel = true;
2022 		}
2023 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2024 			dbg("obj %s -z global", obj->path);
2025 			objlist_push_tail(&list_global, obj);
2026 			init_dag(obj);
2027 		}
2028 	}
2029 }
2030 /*
2031  * Initialize the dynamic linker.  The argument is the address at which
2032  * the dynamic linker has been mapped into memory.  The primary task of
2033  * this function is to relocate the dynamic linker.
2034  */
2035 static void
2036 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2037 {
2038     Obj_Entry objtmp;	/* Temporary rtld object */
2039     const Elf_Ehdr *ehdr;
2040     const Elf_Dyn *dyn_rpath;
2041     const Elf_Dyn *dyn_soname;
2042     const Elf_Dyn *dyn_runpath;
2043 
2044 #ifdef RTLD_INIT_PAGESIZES_EARLY
2045     /* The page size is required by the dynamic memory allocator. */
2046     init_pagesizes(aux_info);
2047 #endif
2048 
2049     /*
2050      * Conjure up an Obj_Entry structure for the dynamic linker.
2051      *
2052      * The "path" member can't be initialized yet because string constants
2053      * cannot yet be accessed. Below we will set it correctly.
2054      */
2055     memset(&objtmp, 0, sizeof(objtmp));
2056     objtmp.path = NULL;
2057     objtmp.rtld = true;
2058     objtmp.mapbase = mapbase;
2059 #ifdef PIC
2060     objtmp.relocbase = mapbase;
2061 #endif
2062 
2063     objtmp.dynamic = rtld_dynamic(&objtmp);
2064     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2065     assert(objtmp.needed == NULL);
2066 #if !defined(__mips__)
2067     /* MIPS has a bogus DT_TEXTREL. */
2068     assert(!objtmp.textrel);
2069 #endif
2070     /*
2071      * Temporarily put the dynamic linker entry into the object list, so
2072      * that symbols can be found.
2073      */
2074     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2075 
2076     ehdr = (Elf_Ehdr *)mapbase;
2077     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2078     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2079 
2080     /* Initialize the object list. */
2081     TAILQ_INIT(&obj_list);
2082 
2083     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2084     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2085 
2086 #ifndef RTLD_INIT_PAGESIZES_EARLY
2087     /* The page size is required by the dynamic memory allocator. */
2088     init_pagesizes(aux_info);
2089 #endif
2090 
2091     if (aux_info[AT_OSRELDATE] != NULL)
2092 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2093 
2094     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2095 
2096     /* Replace the path with a dynamically allocated copy. */
2097     obj_rtld.path = xstrdup(ld_path_rtld);
2098 
2099     r_debug.r_brk = r_debug_state;
2100     r_debug.r_state = RT_CONSISTENT;
2101 }
2102 
2103 /*
2104  * Retrieve the array of supported page sizes.  The kernel provides the page
2105  * sizes in increasing order.
2106  */
2107 static void
2108 init_pagesizes(Elf_Auxinfo **aux_info)
2109 {
2110 	static size_t psa[MAXPAGESIZES];
2111 	int mib[2];
2112 	size_t len, size;
2113 
2114 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2115 	    NULL) {
2116 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2117 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2118 	} else {
2119 		len = 2;
2120 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2121 			size = sizeof(psa);
2122 		else {
2123 			/* As a fallback, retrieve the base page size. */
2124 			size = sizeof(psa[0]);
2125 			if (aux_info[AT_PAGESZ] != NULL) {
2126 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2127 				goto psa_filled;
2128 			} else {
2129 				mib[0] = CTL_HW;
2130 				mib[1] = HW_PAGESIZE;
2131 				len = 2;
2132 			}
2133 		}
2134 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2135 			_rtld_error("sysctl for hw.pagesize(s) failed");
2136 			rtld_die();
2137 		}
2138 psa_filled:
2139 		pagesizes = psa;
2140 	}
2141 	npagesizes = size / sizeof(pagesizes[0]);
2142 	/* Discard any invalid entries at the end of the array. */
2143 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2144 		npagesizes--;
2145 }
2146 
2147 /*
2148  * Add the init functions from a needed object list (and its recursive
2149  * needed objects) to "list".  This is not used directly; it is a helper
2150  * function for initlist_add_objects().  The write lock must be held
2151  * when this function is called.
2152  */
2153 static void
2154 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2155 {
2156     /* Recursively process the successor needed objects. */
2157     if (needed->next != NULL)
2158 	initlist_add_neededs(needed->next, list);
2159 
2160     /* Process the current needed object. */
2161     if (needed->obj != NULL)
2162 	initlist_add_objects(needed->obj, needed->obj, list);
2163 }
2164 
2165 /*
2166  * Scan all of the DAGs rooted in the range of objects from "obj" to
2167  * "tail" and add their init functions to "list".  This recurses over
2168  * the DAGs and ensure the proper init ordering such that each object's
2169  * needed libraries are initialized before the object itself.  At the
2170  * same time, this function adds the objects to the global finalization
2171  * list "list_fini" in the opposite order.  The write lock must be
2172  * held when this function is called.
2173  */
2174 static void
2175 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2176 {
2177     Obj_Entry *nobj;
2178 
2179     if (obj->init_scanned || obj->init_done)
2180 	return;
2181     obj->init_scanned = true;
2182 
2183     /* Recursively process the successor objects. */
2184     nobj = globallist_next(obj);
2185     if (nobj != NULL && obj != tail)
2186 	initlist_add_objects(nobj, tail, list);
2187 
2188     /* Recursively process the needed objects. */
2189     if (obj->needed != NULL)
2190 	initlist_add_neededs(obj->needed, list);
2191     if (obj->needed_filtees != NULL)
2192 	initlist_add_neededs(obj->needed_filtees, list);
2193     if (obj->needed_aux_filtees != NULL)
2194 	initlist_add_neededs(obj->needed_aux_filtees, list);
2195 
2196     /* Add the object to the init list. */
2197     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
2198       obj->init_array != (Elf_Addr)NULL)
2199 	objlist_push_tail(list, obj);
2200 
2201     /* Add the object to the global fini list in the reverse order. */
2202     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2203       && !obj->on_fini_list) {
2204 	objlist_push_head(&list_fini, obj);
2205 	obj->on_fini_list = true;
2206     }
2207 }
2208 
2209 #ifndef FPTR_TARGET
2210 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2211 #endif
2212 
2213 static void
2214 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2215 {
2216     Needed_Entry *needed, *needed1;
2217 
2218     for (needed = n; needed != NULL; needed = needed->next) {
2219 	if (needed->obj != NULL) {
2220 	    dlclose_locked(needed->obj, lockstate);
2221 	    needed->obj = NULL;
2222 	}
2223     }
2224     for (needed = n; needed != NULL; needed = needed1) {
2225 	needed1 = needed->next;
2226 	free(needed);
2227     }
2228 }
2229 
2230 static void
2231 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2232 {
2233 
2234 	free_needed_filtees(obj->needed_filtees, lockstate);
2235 	obj->needed_filtees = NULL;
2236 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2237 	obj->needed_aux_filtees = NULL;
2238 	obj->filtees_loaded = false;
2239 }
2240 
2241 static void
2242 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2243     RtldLockState *lockstate)
2244 {
2245 
2246     for (; needed != NULL; needed = needed->next) {
2247 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2248 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2249 	  RTLD_LOCAL, lockstate);
2250     }
2251 }
2252 
2253 static void
2254 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2255 {
2256 
2257     lock_restart_for_upgrade(lockstate);
2258     if (!obj->filtees_loaded) {
2259 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2260 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2261 	obj->filtees_loaded = true;
2262     }
2263 }
2264 
2265 static int
2266 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2267 {
2268     Obj_Entry *obj1;
2269 
2270     for (; needed != NULL; needed = needed->next) {
2271 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2272 	  flags & ~RTLD_LO_NOLOAD);
2273 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2274 	    return (-1);
2275     }
2276     return (0);
2277 }
2278 
2279 /*
2280  * Given a shared object, traverse its list of needed objects, and load
2281  * each of them.  Returns 0 on success.  Generates an error message and
2282  * returns -1 on failure.
2283  */
2284 static int
2285 load_needed_objects(Obj_Entry *first, int flags)
2286 {
2287     Obj_Entry *obj;
2288 
2289     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2290 	if (obj->marker)
2291 	    continue;
2292 	if (process_needed(obj, obj->needed, flags) == -1)
2293 	    return (-1);
2294     }
2295     return (0);
2296 }
2297 
2298 static int
2299 load_preload_objects(void)
2300 {
2301     char *p = ld_preload;
2302     Obj_Entry *obj;
2303     static const char delim[] = " \t:;";
2304 
2305     if (p == NULL)
2306 	return 0;
2307 
2308     p += strspn(p, delim);
2309     while (*p != '\0') {
2310 	size_t len = strcspn(p, delim);
2311 	char savech;
2312 
2313 	savech = p[len];
2314 	p[len] = '\0';
2315 	obj = load_object(p, -1, NULL, 0);
2316 	if (obj == NULL)
2317 	    return -1;	/* XXX - cleanup */
2318 	obj->z_interpose = true;
2319 	p[len] = savech;
2320 	p += len;
2321 	p += strspn(p, delim);
2322     }
2323     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2324     return 0;
2325 }
2326 
2327 static const char *
2328 printable_path(const char *path)
2329 {
2330 
2331 	return (path == NULL ? "<unknown>" : path);
2332 }
2333 
2334 /*
2335  * Load a shared object into memory, if it is not already loaded.  The
2336  * object may be specified by name or by user-supplied file descriptor
2337  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2338  * duplicate is.
2339  *
2340  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2341  * on failure.
2342  */
2343 static Obj_Entry *
2344 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2345 {
2346     Obj_Entry *obj;
2347     int fd;
2348     struct stat sb;
2349     char *path;
2350 
2351     fd = -1;
2352     if (name != NULL) {
2353 	TAILQ_FOREACH(obj, &obj_list, next) {
2354 	    if (obj->marker || obj->doomed)
2355 		continue;
2356 	    if (object_match_name(obj, name))
2357 		return (obj);
2358 	}
2359 
2360 	path = find_library(name, refobj, &fd);
2361 	if (path == NULL)
2362 	    return (NULL);
2363     } else
2364 	path = NULL;
2365 
2366     if (fd >= 0) {
2367 	/*
2368 	 * search_library_pathfds() opens a fresh file descriptor for the
2369 	 * library, so there is no need to dup().
2370 	 */
2371     } else if (fd_u == -1) {
2372 	/*
2373 	 * If we didn't find a match by pathname, or the name is not
2374 	 * supplied, open the file and check again by device and inode.
2375 	 * This avoids false mismatches caused by multiple links or ".."
2376 	 * in pathnames.
2377 	 *
2378 	 * To avoid a race, we open the file and use fstat() rather than
2379 	 * using stat().
2380 	 */
2381 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2382 	    _rtld_error("Cannot open \"%s\"", path);
2383 	    free(path);
2384 	    return (NULL);
2385 	}
2386     } else {
2387 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2388 	if (fd == -1) {
2389 	    _rtld_error("Cannot dup fd");
2390 	    free(path);
2391 	    return (NULL);
2392 	}
2393     }
2394     if (fstat(fd, &sb) == -1) {
2395 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2396 	close(fd);
2397 	free(path);
2398 	return NULL;
2399     }
2400     TAILQ_FOREACH(obj, &obj_list, next) {
2401 	if (obj->marker || obj->doomed)
2402 	    continue;
2403 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2404 	    break;
2405     }
2406     if (obj != NULL && name != NULL) {
2407 	object_add_name(obj, name);
2408 	free(path);
2409 	close(fd);
2410 	return obj;
2411     }
2412     if (flags & RTLD_LO_NOLOAD) {
2413 	free(path);
2414 	close(fd);
2415 	return (NULL);
2416     }
2417 
2418     /* First use of this object, so we must map it in */
2419     obj = do_load_object(fd, name, path, &sb, flags);
2420     if (obj == NULL)
2421 	free(path);
2422     close(fd);
2423 
2424     return obj;
2425 }
2426 
2427 static Obj_Entry *
2428 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2429   int flags)
2430 {
2431     Obj_Entry *obj;
2432     struct statfs fs;
2433 
2434     /*
2435      * but first, make sure that environment variables haven't been
2436      * used to circumvent the noexec flag on a filesystem.
2437      */
2438     if (dangerous_ld_env) {
2439 	if (fstatfs(fd, &fs) != 0) {
2440 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2441 	    return NULL;
2442 	}
2443 	if (fs.f_flags & MNT_NOEXEC) {
2444 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2445 	    return NULL;
2446 	}
2447     }
2448     dbg("loading \"%s\"", printable_path(path));
2449     obj = map_object(fd, printable_path(path), sbp);
2450     if (obj == NULL)
2451         return NULL;
2452 
2453     /*
2454      * If DT_SONAME is present in the object, digest_dynamic2 already
2455      * added it to the object names.
2456      */
2457     if (name != NULL)
2458 	object_add_name(obj, name);
2459     obj->path = path;
2460     digest_dynamic(obj, 0);
2461     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2462 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2463     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2464       RTLD_LO_DLOPEN) {
2465 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2466 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2467 	munmap(obj->mapbase, obj->mapsize);
2468 	obj_free(obj);
2469 	return (NULL);
2470     }
2471 
2472     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2473     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2474     obj_count++;
2475     obj_loads++;
2476     linkmap_add(obj);	/* for GDB & dlinfo() */
2477     max_stack_flags |= obj->stack_flags;
2478 
2479     dbg("  %p .. %p: %s", obj->mapbase,
2480          obj->mapbase + obj->mapsize - 1, obj->path);
2481     if (obj->textrel)
2482 	dbg("  WARNING: %s has impure text", obj->path);
2483     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2484 	obj->path);
2485 
2486     return obj;
2487 }
2488 
2489 static Obj_Entry *
2490 obj_from_addr(const void *addr)
2491 {
2492     Obj_Entry *obj;
2493 
2494     TAILQ_FOREACH(obj, &obj_list, next) {
2495 	if (obj->marker)
2496 	    continue;
2497 	if (addr < (void *) obj->mapbase)
2498 	    continue;
2499 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2500 	    return obj;
2501     }
2502     return NULL;
2503 }
2504 
2505 static void
2506 preinit_main(void)
2507 {
2508     Elf_Addr *preinit_addr;
2509     int index;
2510 
2511     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2512     if (preinit_addr == NULL)
2513 	return;
2514 
2515     for (index = 0; index < obj_main->preinit_array_num; index++) {
2516 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2517 	    dbg("calling preinit function for %s at %p", obj_main->path,
2518 	      (void *)preinit_addr[index]);
2519 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2520 	      0, 0, obj_main->path);
2521 	    call_init_pointer(obj_main, preinit_addr[index]);
2522 	}
2523     }
2524 }
2525 
2526 /*
2527  * Call the finalization functions for each of the objects in "list"
2528  * belonging to the DAG of "root" and referenced once. If NULL "root"
2529  * is specified, every finalization function will be called regardless
2530  * of the reference count and the list elements won't be freed. All of
2531  * the objects are expected to have non-NULL fini functions.
2532  */
2533 static void
2534 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2535 {
2536     Objlist_Entry *elm;
2537     char *saved_msg;
2538     Elf_Addr *fini_addr;
2539     int index;
2540 
2541     assert(root == NULL || root->refcount == 1);
2542 
2543     if (root != NULL)
2544 	root->doomed = true;
2545 
2546     /*
2547      * Preserve the current error message since a fini function might
2548      * call into the dynamic linker and overwrite it.
2549      */
2550     saved_msg = errmsg_save();
2551     do {
2552 	STAILQ_FOREACH(elm, list, link) {
2553 	    if (root != NULL && (elm->obj->refcount != 1 ||
2554 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2555 		continue;
2556 	    /* Remove object from fini list to prevent recursive invocation. */
2557 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2558 	    /* Ensure that new references cannot be acquired. */
2559 	    elm->obj->doomed = true;
2560 
2561 	    hold_object(elm->obj);
2562 	    lock_release(rtld_bind_lock, lockstate);
2563 	    /*
2564 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2565 	     * When this happens, DT_FINI_ARRAY is processed first.
2566 	     */
2567 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2568 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2569 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2570 		  index--) {
2571 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2572 			dbg("calling fini function for %s at %p",
2573 			    elm->obj->path, (void *)fini_addr[index]);
2574 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2575 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2576 			call_initfini_pointer(elm->obj, fini_addr[index]);
2577 		    }
2578 		}
2579 	    }
2580 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2581 		dbg("calling fini function for %s at %p", elm->obj->path,
2582 		    (void *)elm->obj->fini);
2583 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2584 		    0, 0, elm->obj->path);
2585 		call_initfini_pointer(elm->obj, elm->obj->fini);
2586 	    }
2587 	    wlock_acquire(rtld_bind_lock, lockstate);
2588 	    unhold_object(elm->obj);
2589 	    /* No need to free anything if process is going down. */
2590 	    if (root != NULL)
2591 	    	free(elm);
2592 	    /*
2593 	     * We must restart the list traversal after every fini call
2594 	     * because a dlclose() call from the fini function or from
2595 	     * another thread might have modified the reference counts.
2596 	     */
2597 	    break;
2598 	}
2599     } while (elm != NULL);
2600     errmsg_restore(saved_msg);
2601 }
2602 
2603 /*
2604  * Call the initialization functions for each of the objects in
2605  * "list".  All of the objects are expected to have non-NULL init
2606  * functions.
2607  */
2608 static void
2609 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2610 {
2611     Objlist_Entry *elm;
2612     Obj_Entry *obj;
2613     char *saved_msg;
2614     Elf_Addr *init_addr;
2615     int index;
2616 
2617     /*
2618      * Clean init_scanned flag so that objects can be rechecked and
2619      * possibly initialized earlier if any of vectors called below
2620      * cause the change by using dlopen.
2621      */
2622     TAILQ_FOREACH(obj, &obj_list, next) {
2623 	if (obj->marker)
2624 	    continue;
2625 	obj->init_scanned = false;
2626     }
2627 
2628     /*
2629      * Preserve the current error message since an init function might
2630      * call into the dynamic linker and overwrite it.
2631      */
2632     saved_msg = errmsg_save();
2633     STAILQ_FOREACH(elm, list, link) {
2634 	if (elm->obj->init_done) /* Initialized early. */
2635 	    continue;
2636 	/*
2637 	 * Race: other thread might try to use this object before current
2638 	 * one completes the initialization. Not much can be done here
2639 	 * without better locking.
2640 	 */
2641 	elm->obj->init_done = true;
2642 	hold_object(elm->obj);
2643 	lock_release(rtld_bind_lock, lockstate);
2644 
2645         /*
2646          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2647          * When this happens, DT_INIT is processed first.
2648          */
2649 	if (elm->obj->init != (Elf_Addr)NULL) {
2650 	    dbg("calling init function for %s at %p", elm->obj->path,
2651 	        (void *)elm->obj->init);
2652 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2653 	        0, 0, elm->obj->path);
2654 	    call_initfini_pointer(elm->obj, elm->obj->init);
2655 	}
2656 	init_addr = (Elf_Addr *)elm->obj->init_array;
2657 	if (init_addr != NULL) {
2658 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2659 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2660 		    dbg("calling init function for %s at %p", elm->obj->path,
2661 			(void *)init_addr[index]);
2662 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2663 			(void *)init_addr[index], 0, 0, elm->obj->path);
2664 		    call_init_pointer(elm->obj, init_addr[index]);
2665 		}
2666 	    }
2667 	}
2668 	wlock_acquire(rtld_bind_lock, lockstate);
2669 	unhold_object(elm->obj);
2670     }
2671     errmsg_restore(saved_msg);
2672 }
2673 
2674 static void
2675 objlist_clear(Objlist *list)
2676 {
2677     Objlist_Entry *elm;
2678 
2679     while (!STAILQ_EMPTY(list)) {
2680 	elm = STAILQ_FIRST(list);
2681 	STAILQ_REMOVE_HEAD(list, link);
2682 	free(elm);
2683     }
2684 }
2685 
2686 static Objlist_Entry *
2687 objlist_find(Objlist *list, const Obj_Entry *obj)
2688 {
2689     Objlist_Entry *elm;
2690 
2691     STAILQ_FOREACH(elm, list, link)
2692 	if (elm->obj == obj)
2693 	    return elm;
2694     return NULL;
2695 }
2696 
2697 static void
2698 objlist_init(Objlist *list)
2699 {
2700     STAILQ_INIT(list);
2701 }
2702 
2703 static void
2704 objlist_push_head(Objlist *list, Obj_Entry *obj)
2705 {
2706     Objlist_Entry *elm;
2707 
2708     elm = NEW(Objlist_Entry);
2709     elm->obj = obj;
2710     STAILQ_INSERT_HEAD(list, elm, link);
2711 }
2712 
2713 static void
2714 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2715 {
2716     Objlist_Entry *elm;
2717 
2718     elm = NEW(Objlist_Entry);
2719     elm->obj = obj;
2720     STAILQ_INSERT_TAIL(list, elm, link);
2721 }
2722 
2723 static void
2724 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2725 {
2726 	Objlist_Entry *elm, *listelm;
2727 
2728 	STAILQ_FOREACH(listelm, list, link) {
2729 		if (listelm->obj == listobj)
2730 			break;
2731 	}
2732 	elm = NEW(Objlist_Entry);
2733 	elm->obj = obj;
2734 	if (listelm != NULL)
2735 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2736 	else
2737 		STAILQ_INSERT_TAIL(list, elm, link);
2738 }
2739 
2740 static void
2741 objlist_remove(Objlist *list, Obj_Entry *obj)
2742 {
2743     Objlist_Entry *elm;
2744 
2745     if ((elm = objlist_find(list, obj)) != NULL) {
2746 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2747 	free(elm);
2748     }
2749 }
2750 
2751 /*
2752  * Relocate dag rooted in the specified object.
2753  * Returns 0 on success, or -1 on failure.
2754  */
2755 
2756 static int
2757 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2758     int flags, RtldLockState *lockstate)
2759 {
2760 	Objlist_Entry *elm;
2761 	int error;
2762 
2763 	error = 0;
2764 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2765 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2766 		    lockstate);
2767 		if (error == -1)
2768 			break;
2769 	}
2770 	return (error);
2771 }
2772 
2773 /*
2774  * Prepare for, or clean after, relocating an object marked with
2775  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2776  * segments are remapped read-write.  After relocations are done, the
2777  * segment's permissions are returned back to the modes specified in
2778  * the phdrs.  If any relocation happened, or always for wired
2779  * program, COW is triggered.
2780  */
2781 static int
2782 reloc_textrel_prot(Obj_Entry *obj, bool before)
2783 {
2784 	const Elf_Phdr *ph;
2785 	void *base;
2786 	size_t l, sz;
2787 	int prot;
2788 
2789 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2790 	    l--, ph++) {
2791 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2792 			continue;
2793 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2794 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2795 		    trunc_page(ph->p_vaddr);
2796 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2797 		if (mprotect(base, sz, prot) == -1) {
2798 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2799 			    obj->path, before ? "en" : "dis",
2800 			    rtld_strerror(errno));
2801 			return (-1);
2802 		}
2803 	}
2804 	return (0);
2805 }
2806 
2807 /*
2808  * Relocate single object.
2809  * Returns 0 on success, or -1 on failure.
2810  */
2811 static int
2812 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2813     int flags, RtldLockState *lockstate)
2814 {
2815 
2816 	if (obj->relocated)
2817 		return (0);
2818 	obj->relocated = true;
2819 	if (obj != rtldobj)
2820 		dbg("relocating \"%s\"", obj->path);
2821 
2822 	if (obj->symtab == NULL || obj->strtab == NULL ||
2823 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2824 		_rtld_error("%s: Shared object has no run-time symbol table",
2825 			    obj->path);
2826 		return (-1);
2827 	}
2828 
2829 	/* There are relocations to the write-protected text segment. */
2830 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2831 		return (-1);
2832 
2833 	/* Process the non-PLT non-IFUNC relocations. */
2834 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2835 		return (-1);
2836 
2837 	/* Re-protected the text segment. */
2838 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2839 		return (-1);
2840 
2841 	/* Set the special PLT or GOT entries. */
2842 	init_pltgot(obj);
2843 
2844 	/* Process the PLT relocations. */
2845 	if (reloc_plt(obj) == -1)
2846 		return (-1);
2847 	/* Relocate the jump slots if we are doing immediate binding. */
2848 	if (obj->bind_now || bind_now)
2849 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2850 			return (-1);
2851 
2852 	/*
2853 	 * Process the non-PLT IFUNC relocations.  The relocations are
2854 	 * processed in two phases, because IFUNC resolvers may
2855 	 * reference other symbols, which must be readily processed
2856 	 * before resolvers are called.
2857 	 */
2858 	if (obj->non_plt_gnu_ifunc &&
2859 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2860 		return (-1);
2861 
2862 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
2863 		return (-1);
2864 
2865 	/*
2866 	 * Set up the magic number and version in the Obj_Entry.  These
2867 	 * were checked in the crt1.o from the original ElfKit, so we
2868 	 * set them for backward compatibility.
2869 	 */
2870 	obj->magic = RTLD_MAGIC;
2871 	obj->version = RTLD_VERSION;
2872 
2873 	return (0);
2874 }
2875 
2876 /*
2877  * Relocate newly-loaded shared objects.  The argument is a pointer to
2878  * the Obj_Entry for the first such object.  All objects from the first
2879  * to the end of the list of objects are relocated.  Returns 0 on success,
2880  * or -1 on failure.
2881  */
2882 static int
2883 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2884     int flags, RtldLockState *lockstate)
2885 {
2886 	Obj_Entry *obj;
2887 	int error;
2888 
2889 	for (error = 0, obj = first;  obj != NULL;
2890 	    obj = TAILQ_NEXT(obj, next)) {
2891 		if (obj->marker)
2892 			continue;
2893 		error = relocate_object(obj, bind_now, rtldobj, flags,
2894 		    lockstate);
2895 		if (error == -1)
2896 			break;
2897 	}
2898 	return (error);
2899 }
2900 
2901 /*
2902  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2903  * referencing STT_GNU_IFUNC symbols is postponed till the other
2904  * relocations are done.  The indirect functions specified as
2905  * ifunc are allowed to call other symbols, so we need to have
2906  * objects relocated before asking for resolution from indirects.
2907  *
2908  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2909  * instead of the usual lazy handling of PLT slots.  It is
2910  * consistent with how GNU does it.
2911  */
2912 static int
2913 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2914     RtldLockState *lockstate)
2915 {
2916 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2917 		return (-1);
2918 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2919 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2920 		return (-1);
2921 	return (0);
2922 }
2923 
2924 static int
2925 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2926     RtldLockState *lockstate)
2927 {
2928 	Obj_Entry *obj;
2929 
2930 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2931 		if (obj->marker)
2932 			continue;
2933 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2934 			return (-1);
2935 	}
2936 	return (0);
2937 }
2938 
2939 static int
2940 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2941     RtldLockState *lockstate)
2942 {
2943 	Objlist_Entry *elm;
2944 
2945 	STAILQ_FOREACH(elm, list, link) {
2946 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2947 		    lockstate) == -1)
2948 			return (-1);
2949 	}
2950 	return (0);
2951 }
2952 
2953 /*
2954  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2955  * before the process exits.
2956  */
2957 static void
2958 rtld_exit(void)
2959 {
2960     RtldLockState lockstate;
2961 
2962     wlock_acquire(rtld_bind_lock, &lockstate);
2963     dbg("rtld_exit()");
2964     objlist_call_fini(&list_fini, NULL, &lockstate);
2965     /* No need to remove the items from the list, since we are exiting. */
2966     if (!libmap_disable)
2967         lm_fini();
2968     lock_release(rtld_bind_lock, &lockstate);
2969 }
2970 
2971 /*
2972  * Iterate over a search path, translate each element, and invoke the
2973  * callback on the result.
2974  */
2975 static void *
2976 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2977 {
2978     const char *trans;
2979     if (path == NULL)
2980 	return (NULL);
2981 
2982     path += strspn(path, ":;");
2983     while (*path != '\0') {
2984 	size_t len;
2985 	char  *res;
2986 
2987 	len = strcspn(path, ":;");
2988 	trans = lm_findn(NULL, path, len);
2989 	if (trans)
2990 	    res = callback(trans, strlen(trans), arg);
2991 	else
2992 	    res = callback(path, len, arg);
2993 
2994 	if (res != NULL)
2995 	    return (res);
2996 
2997 	path += len;
2998 	path += strspn(path, ":;");
2999     }
3000 
3001     return (NULL);
3002 }
3003 
3004 struct try_library_args {
3005     const char	*name;
3006     size_t	 namelen;
3007     char	*buffer;
3008     size_t	 buflen;
3009     int		 fd;
3010 };
3011 
3012 static void *
3013 try_library_path(const char *dir, size_t dirlen, void *param)
3014 {
3015     struct try_library_args *arg;
3016     int fd;
3017 
3018     arg = param;
3019     if (*dir == '/' || trust) {
3020 	char *pathname;
3021 
3022 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3023 		return (NULL);
3024 
3025 	pathname = arg->buffer;
3026 	strncpy(pathname, dir, dirlen);
3027 	pathname[dirlen] = '/';
3028 	strcpy(pathname + dirlen + 1, arg->name);
3029 
3030 	dbg("  Trying \"%s\"", pathname);
3031 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3032 	if (fd >= 0) {
3033 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3034 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3035 	    strcpy(pathname, arg->buffer);
3036 	    arg->fd = fd;
3037 	    return (pathname);
3038 	} else {
3039 	    dbg("  Failed to open \"%s\": %s",
3040 		pathname, rtld_strerror(errno));
3041 	}
3042     }
3043     return (NULL);
3044 }
3045 
3046 static char *
3047 search_library_path(const char *name, const char *path, int *fdp)
3048 {
3049     char *p;
3050     struct try_library_args arg;
3051 
3052     if (path == NULL)
3053 	return NULL;
3054 
3055     arg.name = name;
3056     arg.namelen = strlen(name);
3057     arg.buffer = xmalloc(PATH_MAX);
3058     arg.buflen = PATH_MAX;
3059     arg.fd = -1;
3060 
3061     p = path_enumerate(path, try_library_path, &arg);
3062     *fdp = arg.fd;
3063 
3064     free(arg.buffer);
3065 
3066     return (p);
3067 }
3068 
3069 
3070 /*
3071  * Finds the library with the given name using the directory descriptors
3072  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3073  *
3074  * Returns a freshly-opened close-on-exec file descriptor for the library,
3075  * or -1 if the library cannot be found.
3076  */
3077 static char *
3078 search_library_pathfds(const char *name, const char *path, int *fdp)
3079 {
3080 	char *envcopy, *fdstr, *found, *last_token;
3081 	size_t len;
3082 	int dirfd, fd;
3083 
3084 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3085 
3086 	/* Don't load from user-specified libdirs into setuid binaries. */
3087 	if (!trust)
3088 		return (NULL);
3089 
3090 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3091 	if (path == NULL)
3092 		return (NULL);
3093 
3094 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3095 	if (name[0] == '/') {
3096 		dbg("Absolute path (%s) passed to %s", name, __func__);
3097 		return (NULL);
3098 	}
3099 
3100 	/*
3101 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3102 	 * copy of the path, as strtok_r rewrites separator tokens
3103 	 * with '\0'.
3104 	 */
3105 	found = NULL;
3106 	envcopy = xstrdup(path);
3107 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3108 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3109 		dirfd = parse_integer(fdstr);
3110 		if (dirfd < 0) {
3111 			_rtld_error("failed to parse directory FD: '%s'",
3112 				fdstr);
3113 			break;
3114 		}
3115 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3116 		if (fd >= 0) {
3117 			*fdp = fd;
3118 			len = strlen(fdstr) + strlen(name) + 3;
3119 			found = xmalloc(len);
3120 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3121 				_rtld_error("error generating '%d/%s'",
3122 				    dirfd, name);
3123 				rtld_die();
3124 			}
3125 			dbg("open('%s') => %d", found, fd);
3126 			break;
3127 		}
3128 	}
3129 	free(envcopy);
3130 
3131 	return (found);
3132 }
3133 
3134 
3135 int
3136 dlclose(void *handle)
3137 {
3138 	RtldLockState lockstate;
3139 	int error;
3140 
3141 	wlock_acquire(rtld_bind_lock, &lockstate);
3142 	error = dlclose_locked(handle, &lockstate);
3143 	lock_release(rtld_bind_lock, &lockstate);
3144 	return (error);
3145 }
3146 
3147 static int
3148 dlclose_locked(void *handle, RtldLockState *lockstate)
3149 {
3150     Obj_Entry *root;
3151 
3152     root = dlcheck(handle);
3153     if (root == NULL)
3154 	return -1;
3155     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3156 	root->path);
3157 
3158     /* Unreference the object and its dependencies. */
3159     root->dl_refcount--;
3160 
3161     if (root->refcount == 1) {
3162 	/*
3163 	 * The object will be no longer referenced, so we must unload it.
3164 	 * First, call the fini functions.
3165 	 */
3166 	objlist_call_fini(&list_fini, root, lockstate);
3167 
3168 	unref_dag(root);
3169 
3170 	/* Finish cleaning up the newly-unreferenced objects. */
3171 	GDB_STATE(RT_DELETE,&root->linkmap);
3172 	unload_object(root, lockstate);
3173 	GDB_STATE(RT_CONSISTENT,NULL);
3174     } else
3175 	unref_dag(root);
3176 
3177     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3178     return 0;
3179 }
3180 
3181 char *
3182 dlerror(void)
3183 {
3184     char *msg = error_message;
3185     error_message = NULL;
3186     return msg;
3187 }
3188 
3189 /*
3190  * This function is deprecated and has no effect.
3191  */
3192 void
3193 dllockinit(void *context,
3194 	   void *(*lock_create)(void *context),
3195            void (*rlock_acquire)(void *lock),
3196            void (*wlock_acquire)(void *lock),
3197            void (*lock_release)(void *lock),
3198            void (*lock_destroy)(void *lock),
3199 	   void (*context_destroy)(void *context))
3200 {
3201     static void *cur_context;
3202     static void (*cur_context_destroy)(void *);
3203 
3204     /* Just destroy the context from the previous call, if necessary. */
3205     if (cur_context_destroy != NULL)
3206 	cur_context_destroy(cur_context);
3207     cur_context = context;
3208     cur_context_destroy = context_destroy;
3209 }
3210 
3211 void *
3212 dlopen(const char *name, int mode)
3213 {
3214 
3215 	return (rtld_dlopen(name, -1, mode));
3216 }
3217 
3218 void *
3219 fdlopen(int fd, int mode)
3220 {
3221 
3222 	return (rtld_dlopen(NULL, fd, mode));
3223 }
3224 
3225 static void *
3226 rtld_dlopen(const char *name, int fd, int mode)
3227 {
3228     RtldLockState lockstate;
3229     int lo_flags;
3230 
3231     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3232     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3233     if (ld_tracing != NULL) {
3234 	rlock_acquire(rtld_bind_lock, &lockstate);
3235 	if (sigsetjmp(lockstate.env, 0) != 0)
3236 	    lock_upgrade(rtld_bind_lock, &lockstate);
3237 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3238 	lock_release(rtld_bind_lock, &lockstate);
3239     }
3240     lo_flags = RTLD_LO_DLOPEN;
3241     if (mode & RTLD_NODELETE)
3242 	    lo_flags |= RTLD_LO_NODELETE;
3243     if (mode & RTLD_NOLOAD)
3244 	    lo_flags |= RTLD_LO_NOLOAD;
3245     if (ld_tracing != NULL)
3246 	    lo_flags |= RTLD_LO_TRACE;
3247 
3248     return (dlopen_object(name, fd, obj_main, lo_flags,
3249       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3250 }
3251 
3252 static void
3253 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3254 {
3255 
3256 	obj->dl_refcount--;
3257 	unref_dag(obj);
3258 	if (obj->refcount == 0)
3259 		unload_object(obj, lockstate);
3260 }
3261 
3262 static Obj_Entry *
3263 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3264     int mode, RtldLockState *lockstate)
3265 {
3266     Obj_Entry *old_obj_tail;
3267     Obj_Entry *obj;
3268     Objlist initlist;
3269     RtldLockState mlockstate;
3270     int result;
3271 
3272     objlist_init(&initlist);
3273 
3274     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3275 	wlock_acquire(rtld_bind_lock, &mlockstate);
3276 	lockstate = &mlockstate;
3277     }
3278     GDB_STATE(RT_ADD,NULL);
3279 
3280     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3281     obj = NULL;
3282     if (name == NULL && fd == -1) {
3283 	obj = obj_main;
3284 	obj->refcount++;
3285     } else {
3286 	obj = load_object(name, fd, refobj, lo_flags);
3287     }
3288 
3289     if (obj) {
3290 	obj->dl_refcount++;
3291 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3292 	    objlist_push_tail(&list_global, obj);
3293 	if (globallist_next(old_obj_tail) != NULL) {
3294 	    /* We loaded something new. */
3295 	    assert(globallist_next(old_obj_tail) == obj);
3296 	    result = load_needed_objects(obj,
3297 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3298 	    init_dag(obj);
3299 	    ref_dag(obj);
3300 	    if (result != -1)
3301 		result = rtld_verify_versions(&obj->dagmembers);
3302 	    if (result != -1 && ld_tracing)
3303 		goto trace;
3304 	    if (result == -1 || relocate_object_dag(obj,
3305 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3306 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3307 	      lockstate) == -1) {
3308 		dlopen_cleanup(obj, lockstate);
3309 		obj = NULL;
3310 	    } else if (lo_flags & RTLD_LO_EARLY) {
3311 		/*
3312 		 * Do not call the init functions for early loaded
3313 		 * filtees.  The image is still not initialized enough
3314 		 * for them to work.
3315 		 *
3316 		 * Our object is found by the global object list and
3317 		 * will be ordered among all init calls done right
3318 		 * before transferring control to main.
3319 		 */
3320 	    } else {
3321 		/* Make list of init functions to call. */
3322 		initlist_add_objects(obj, obj, &initlist);
3323 	    }
3324 	    /*
3325 	     * Process all no_delete or global objects here, given
3326 	     * them own DAGs to prevent their dependencies from being
3327 	     * unloaded.  This has to be done after we have loaded all
3328 	     * of the dependencies, so that we do not miss any.
3329 	     */
3330 	    if (obj != NULL)
3331 		process_z(obj);
3332 	} else {
3333 	    /*
3334 	     * Bump the reference counts for objects on this DAG.  If
3335 	     * this is the first dlopen() call for the object that was
3336 	     * already loaded as a dependency, initialize the dag
3337 	     * starting at it.
3338 	     */
3339 	    init_dag(obj);
3340 	    ref_dag(obj);
3341 
3342 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3343 		goto trace;
3344 	}
3345 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3346 	  obj->z_nodelete) && !obj->ref_nodel) {
3347 	    dbg("obj %s nodelete", obj->path);
3348 	    ref_dag(obj);
3349 	    obj->z_nodelete = obj->ref_nodel = true;
3350 	}
3351     }
3352 
3353     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3354 	name);
3355     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3356 
3357     if (!(lo_flags & RTLD_LO_EARLY)) {
3358 	map_stacks_exec(lockstate);
3359     }
3360 
3361     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3362       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3363       lockstate) == -1) {
3364 	objlist_clear(&initlist);
3365 	dlopen_cleanup(obj, lockstate);
3366 	if (lockstate == &mlockstate)
3367 	    lock_release(rtld_bind_lock, lockstate);
3368 	return (NULL);
3369     }
3370 
3371     if (!(lo_flags & RTLD_LO_EARLY)) {
3372 	/* Call the init functions. */
3373 	objlist_call_init(&initlist, lockstate);
3374     }
3375     objlist_clear(&initlist);
3376     if (lockstate == &mlockstate)
3377 	lock_release(rtld_bind_lock, lockstate);
3378     return obj;
3379 trace:
3380     trace_loaded_objects(obj);
3381     if (lockstate == &mlockstate)
3382 	lock_release(rtld_bind_lock, lockstate);
3383     exit(0);
3384 }
3385 
3386 static void *
3387 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3388     int flags)
3389 {
3390     DoneList donelist;
3391     const Obj_Entry *obj, *defobj;
3392     const Elf_Sym *def;
3393     SymLook req;
3394     RtldLockState lockstate;
3395     tls_index ti;
3396     void *sym;
3397     int res;
3398 
3399     def = NULL;
3400     defobj = NULL;
3401     symlook_init(&req, name);
3402     req.ventry = ve;
3403     req.flags = flags | SYMLOOK_IN_PLT;
3404     req.lockstate = &lockstate;
3405 
3406     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3407     rlock_acquire(rtld_bind_lock, &lockstate);
3408     if (sigsetjmp(lockstate.env, 0) != 0)
3409 	    lock_upgrade(rtld_bind_lock, &lockstate);
3410     if (handle == NULL || handle == RTLD_NEXT ||
3411 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3412 
3413 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3414 	    _rtld_error("Cannot determine caller's shared object");
3415 	    lock_release(rtld_bind_lock, &lockstate);
3416 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3417 	    return NULL;
3418 	}
3419 	if (handle == NULL) {	/* Just the caller's shared object. */
3420 	    res = symlook_obj(&req, obj);
3421 	    if (res == 0) {
3422 		def = req.sym_out;
3423 		defobj = req.defobj_out;
3424 	    }
3425 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3426 		   handle == RTLD_SELF) { /* ... caller included */
3427 	    if (handle == RTLD_NEXT)
3428 		obj = globallist_next(obj);
3429 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3430 		if (obj->marker)
3431 		    continue;
3432 		res = symlook_obj(&req, obj);
3433 		if (res == 0) {
3434 		    if (def == NULL ||
3435 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3436 			def = req.sym_out;
3437 			defobj = req.defobj_out;
3438 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3439 			    break;
3440 		    }
3441 		}
3442 	    }
3443 	    /*
3444 	     * Search the dynamic linker itself, and possibly resolve the
3445 	     * symbol from there.  This is how the application links to
3446 	     * dynamic linker services such as dlopen.
3447 	     */
3448 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3449 		res = symlook_obj(&req, &obj_rtld);
3450 		if (res == 0) {
3451 		    def = req.sym_out;
3452 		    defobj = req.defobj_out;
3453 		}
3454 	    }
3455 	} else {
3456 	    assert(handle == RTLD_DEFAULT);
3457 	    res = symlook_default(&req, obj);
3458 	    if (res == 0) {
3459 		defobj = req.defobj_out;
3460 		def = req.sym_out;
3461 	    }
3462 	}
3463     } else {
3464 	if ((obj = dlcheck(handle)) == NULL) {
3465 	    lock_release(rtld_bind_lock, &lockstate);
3466 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3467 	    return NULL;
3468 	}
3469 
3470 	donelist_init(&donelist);
3471 	if (obj->mainprog) {
3472             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3473 	    res = symlook_global(&req, &donelist);
3474 	    if (res == 0) {
3475 		def = req.sym_out;
3476 		defobj = req.defobj_out;
3477 	    }
3478 	    /*
3479 	     * Search the dynamic linker itself, and possibly resolve the
3480 	     * symbol from there.  This is how the application links to
3481 	     * dynamic linker services such as dlopen.
3482 	     */
3483 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3484 		res = symlook_obj(&req, &obj_rtld);
3485 		if (res == 0) {
3486 		    def = req.sym_out;
3487 		    defobj = req.defobj_out;
3488 		}
3489 	    }
3490 	}
3491 	else {
3492 	    /* Search the whole DAG rooted at the given object. */
3493 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3494 	    if (res == 0) {
3495 		def = req.sym_out;
3496 		defobj = req.defobj_out;
3497 	    }
3498 	}
3499     }
3500 
3501     if (def != NULL) {
3502 	lock_release(rtld_bind_lock, &lockstate);
3503 
3504 	/*
3505 	 * The value required by the caller is derived from the value
3506 	 * of the symbol. this is simply the relocated value of the
3507 	 * symbol.
3508 	 */
3509 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3510 	    sym = make_function_pointer(def, defobj);
3511 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3512 	    sym = rtld_resolve_ifunc(defobj, def);
3513 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3514 	    ti.ti_module = defobj->tlsindex;
3515 	    ti.ti_offset = def->st_value;
3516 	    sym = __tls_get_addr(&ti);
3517 	} else
3518 	    sym = defobj->relocbase + def->st_value;
3519 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
3520 	return (sym);
3521     }
3522 
3523     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
3524       ve != NULL ? ve->name : "");
3525     lock_release(rtld_bind_lock, &lockstate);
3526     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3527     return NULL;
3528 }
3529 
3530 void *
3531 dlsym(void *handle, const char *name)
3532 {
3533 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3534 	    SYMLOOK_DLSYM);
3535 }
3536 
3537 dlfunc_t
3538 dlfunc(void *handle, const char *name)
3539 {
3540 	union {
3541 		void *d;
3542 		dlfunc_t f;
3543 	} rv;
3544 
3545 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3546 	    SYMLOOK_DLSYM);
3547 	return (rv.f);
3548 }
3549 
3550 void *
3551 dlvsym(void *handle, const char *name, const char *version)
3552 {
3553 	Ver_Entry ventry;
3554 
3555 	ventry.name = version;
3556 	ventry.file = NULL;
3557 	ventry.hash = elf_hash(version);
3558 	ventry.flags= 0;
3559 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3560 	    SYMLOOK_DLSYM);
3561 }
3562 
3563 int
3564 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3565 {
3566     const Obj_Entry *obj;
3567     RtldLockState lockstate;
3568 
3569     rlock_acquire(rtld_bind_lock, &lockstate);
3570     obj = obj_from_addr(addr);
3571     if (obj == NULL) {
3572         _rtld_error("No shared object contains address");
3573 	lock_release(rtld_bind_lock, &lockstate);
3574         return (0);
3575     }
3576     rtld_fill_dl_phdr_info(obj, phdr_info);
3577     lock_release(rtld_bind_lock, &lockstate);
3578     return (1);
3579 }
3580 
3581 int
3582 dladdr(const void *addr, Dl_info *info)
3583 {
3584     const Obj_Entry *obj;
3585     const Elf_Sym *def;
3586     void *symbol_addr;
3587     unsigned long symoffset;
3588     RtldLockState lockstate;
3589 
3590     rlock_acquire(rtld_bind_lock, &lockstate);
3591     obj = obj_from_addr(addr);
3592     if (obj == NULL) {
3593         _rtld_error("No shared object contains address");
3594 	lock_release(rtld_bind_lock, &lockstate);
3595         return 0;
3596     }
3597     info->dli_fname = obj->path;
3598     info->dli_fbase = obj->mapbase;
3599     info->dli_saddr = (void *)0;
3600     info->dli_sname = NULL;
3601 
3602     /*
3603      * Walk the symbol list looking for the symbol whose address is
3604      * closest to the address sent in.
3605      */
3606     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3607         def = obj->symtab + symoffset;
3608 
3609         /*
3610          * For skip the symbol if st_shndx is either SHN_UNDEF or
3611          * SHN_COMMON.
3612          */
3613         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3614             continue;
3615 
3616         /*
3617          * If the symbol is greater than the specified address, or if it
3618          * is further away from addr than the current nearest symbol,
3619          * then reject it.
3620          */
3621         symbol_addr = obj->relocbase + def->st_value;
3622         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3623             continue;
3624 
3625         /* Update our idea of the nearest symbol. */
3626         info->dli_sname = obj->strtab + def->st_name;
3627         info->dli_saddr = symbol_addr;
3628 
3629         /* Exact match? */
3630         if (info->dli_saddr == addr)
3631             break;
3632     }
3633     lock_release(rtld_bind_lock, &lockstate);
3634     return 1;
3635 }
3636 
3637 int
3638 dlinfo(void *handle, int request, void *p)
3639 {
3640     const Obj_Entry *obj;
3641     RtldLockState lockstate;
3642     int error;
3643 
3644     rlock_acquire(rtld_bind_lock, &lockstate);
3645 
3646     if (handle == NULL || handle == RTLD_SELF) {
3647 	void *retaddr;
3648 
3649 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3650 	if ((obj = obj_from_addr(retaddr)) == NULL)
3651 	    _rtld_error("Cannot determine caller's shared object");
3652     } else
3653 	obj = dlcheck(handle);
3654 
3655     if (obj == NULL) {
3656 	lock_release(rtld_bind_lock, &lockstate);
3657 	return (-1);
3658     }
3659 
3660     error = 0;
3661     switch (request) {
3662     case RTLD_DI_LINKMAP:
3663 	*((struct link_map const **)p) = &obj->linkmap;
3664 	break;
3665     case RTLD_DI_ORIGIN:
3666 	error = rtld_dirname(obj->path, p);
3667 	break;
3668 
3669     case RTLD_DI_SERINFOSIZE:
3670     case RTLD_DI_SERINFO:
3671 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3672 	break;
3673 
3674     default:
3675 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3676 	error = -1;
3677     }
3678 
3679     lock_release(rtld_bind_lock, &lockstate);
3680 
3681     return (error);
3682 }
3683 
3684 static void
3685 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3686 {
3687 
3688 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3689 	phdr_info->dlpi_name = obj->path;
3690 	phdr_info->dlpi_phdr = obj->phdr;
3691 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3692 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3693 	phdr_info->dlpi_tls_data = obj->tlsinit;
3694 	phdr_info->dlpi_adds = obj_loads;
3695 	phdr_info->dlpi_subs = obj_loads - obj_count;
3696 }
3697 
3698 int
3699 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3700 {
3701 	struct dl_phdr_info phdr_info;
3702 	Obj_Entry *obj, marker;
3703 	RtldLockState bind_lockstate, phdr_lockstate;
3704 	int error;
3705 
3706 	init_marker(&marker);
3707 	error = 0;
3708 
3709 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3710 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
3711 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
3712 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
3713 		rtld_fill_dl_phdr_info(obj, &phdr_info);
3714 		hold_object(obj);
3715 		lock_release(rtld_bind_lock, &bind_lockstate);
3716 
3717 		error = callback(&phdr_info, sizeof phdr_info, param);
3718 
3719 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
3720 		unhold_object(obj);
3721 		obj = globallist_next(&marker);
3722 		TAILQ_REMOVE(&obj_list, &marker, next);
3723 		if (error != 0) {
3724 			lock_release(rtld_bind_lock, &bind_lockstate);
3725 			lock_release(rtld_phdr_lock, &phdr_lockstate);
3726 			return (error);
3727 		}
3728 	}
3729 
3730 	if (error == 0) {
3731 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3732 		lock_release(rtld_bind_lock, &bind_lockstate);
3733 		error = callback(&phdr_info, sizeof(phdr_info), param);
3734 	}
3735 	lock_release(rtld_phdr_lock, &phdr_lockstate);
3736 	return (error);
3737 }
3738 
3739 static void *
3740 fill_search_info(const char *dir, size_t dirlen, void *param)
3741 {
3742     struct fill_search_info_args *arg;
3743 
3744     arg = param;
3745 
3746     if (arg->request == RTLD_DI_SERINFOSIZE) {
3747 	arg->serinfo->dls_cnt ++;
3748 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3749     } else {
3750 	struct dl_serpath *s_entry;
3751 
3752 	s_entry = arg->serpath;
3753 	s_entry->dls_name  = arg->strspace;
3754 	s_entry->dls_flags = arg->flags;
3755 
3756 	strncpy(arg->strspace, dir, dirlen);
3757 	arg->strspace[dirlen] = '\0';
3758 
3759 	arg->strspace += dirlen + 1;
3760 	arg->serpath++;
3761     }
3762 
3763     return (NULL);
3764 }
3765 
3766 static int
3767 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3768 {
3769     struct dl_serinfo _info;
3770     struct fill_search_info_args args;
3771 
3772     args.request = RTLD_DI_SERINFOSIZE;
3773     args.serinfo = &_info;
3774 
3775     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3776     _info.dls_cnt  = 0;
3777 
3778     path_enumerate(obj->rpath, fill_search_info, &args);
3779     path_enumerate(ld_library_path, fill_search_info, &args);
3780     path_enumerate(obj->runpath, fill_search_info, &args);
3781     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3782     if (!obj->z_nodeflib)
3783       path_enumerate(ld_standard_library_path, fill_search_info, &args);
3784 
3785 
3786     if (request == RTLD_DI_SERINFOSIZE) {
3787 	info->dls_size = _info.dls_size;
3788 	info->dls_cnt = _info.dls_cnt;
3789 	return (0);
3790     }
3791 
3792     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3793 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3794 	return (-1);
3795     }
3796 
3797     args.request  = RTLD_DI_SERINFO;
3798     args.serinfo  = info;
3799     args.serpath  = &info->dls_serpath[0];
3800     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3801 
3802     args.flags = LA_SER_RUNPATH;
3803     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3804 	return (-1);
3805 
3806     args.flags = LA_SER_LIBPATH;
3807     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3808 	return (-1);
3809 
3810     args.flags = LA_SER_RUNPATH;
3811     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3812 	return (-1);
3813 
3814     args.flags = LA_SER_CONFIG;
3815     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3816       != NULL)
3817 	return (-1);
3818 
3819     args.flags = LA_SER_DEFAULT;
3820     if (!obj->z_nodeflib &&
3821       path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL)
3822 	return (-1);
3823     return (0);
3824 }
3825 
3826 static int
3827 rtld_dirname(const char *path, char *bname)
3828 {
3829     const char *endp;
3830 
3831     /* Empty or NULL string gets treated as "." */
3832     if (path == NULL || *path == '\0') {
3833 	bname[0] = '.';
3834 	bname[1] = '\0';
3835 	return (0);
3836     }
3837 
3838     /* Strip trailing slashes */
3839     endp = path + strlen(path) - 1;
3840     while (endp > path && *endp == '/')
3841 	endp--;
3842 
3843     /* Find the start of the dir */
3844     while (endp > path && *endp != '/')
3845 	endp--;
3846 
3847     /* Either the dir is "/" or there are no slashes */
3848     if (endp == path) {
3849 	bname[0] = *endp == '/' ? '/' : '.';
3850 	bname[1] = '\0';
3851 	return (0);
3852     } else {
3853 	do {
3854 	    endp--;
3855 	} while (endp > path && *endp == '/');
3856     }
3857 
3858     if (endp - path + 2 > PATH_MAX)
3859     {
3860 	_rtld_error("Filename is too long: %s", path);
3861 	return(-1);
3862     }
3863 
3864     strncpy(bname, path, endp - path + 1);
3865     bname[endp - path + 1] = '\0';
3866     return (0);
3867 }
3868 
3869 static int
3870 rtld_dirname_abs(const char *path, char *base)
3871 {
3872 	char *last;
3873 
3874 	if (realpath(path, base) == NULL)
3875 		return (-1);
3876 	dbg("%s -> %s", path, base);
3877 	last = strrchr(base, '/');
3878 	if (last == NULL)
3879 		return (-1);
3880 	if (last != base)
3881 		*last = '\0';
3882 	return (0);
3883 }
3884 
3885 static void
3886 linkmap_add(Obj_Entry *obj)
3887 {
3888     struct link_map *l = &obj->linkmap;
3889     struct link_map *prev;
3890 
3891     obj->linkmap.l_name = obj->path;
3892     obj->linkmap.l_addr = obj->mapbase;
3893     obj->linkmap.l_ld = obj->dynamic;
3894 #ifdef __mips__
3895     /* GDB needs load offset on MIPS to use the symbols */
3896     obj->linkmap.l_offs = obj->relocbase;
3897 #endif
3898 
3899     if (r_debug.r_map == NULL) {
3900 	r_debug.r_map = l;
3901 	return;
3902     }
3903 
3904     /*
3905      * Scan to the end of the list, but not past the entry for the
3906      * dynamic linker, which we want to keep at the very end.
3907      */
3908     for (prev = r_debug.r_map;
3909       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3910       prev = prev->l_next)
3911 	;
3912 
3913     /* Link in the new entry. */
3914     l->l_prev = prev;
3915     l->l_next = prev->l_next;
3916     if (l->l_next != NULL)
3917 	l->l_next->l_prev = l;
3918     prev->l_next = l;
3919 }
3920 
3921 static void
3922 linkmap_delete(Obj_Entry *obj)
3923 {
3924     struct link_map *l = &obj->linkmap;
3925 
3926     if (l->l_prev == NULL) {
3927 	if ((r_debug.r_map = l->l_next) != NULL)
3928 	    l->l_next->l_prev = NULL;
3929 	return;
3930     }
3931 
3932     if ((l->l_prev->l_next = l->l_next) != NULL)
3933 	l->l_next->l_prev = l->l_prev;
3934 }
3935 
3936 /*
3937  * Function for the debugger to set a breakpoint on to gain control.
3938  *
3939  * The two parameters allow the debugger to easily find and determine
3940  * what the runtime loader is doing and to whom it is doing it.
3941  *
3942  * When the loadhook trap is hit (r_debug_state, set at program
3943  * initialization), the arguments can be found on the stack:
3944  *
3945  *  +8   struct link_map *m
3946  *  +4   struct r_debug  *rd
3947  *  +0   RetAddr
3948  */
3949 void
3950 r_debug_state(struct r_debug* rd, struct link_map *m)
3951 {
3952     /*
3953      * The following is a hack to force the compiler to emit calls to
3954      * this function, even when optimizing.  If the function is empty,
3955      * the compiler is not obliged to emit any code for calls to it,
3956      * even when marked __noinline.  However, gdb depends on those
3957      * calls being made.
3958      */
3959     __compiler_membar();
3960 }
3961 
3962 /*
3963  * A function called after init routines have completed. This can be used to
3964  * break before a program's entry routine is called, and can be used when
3965  * main is not available in the symbol table.
3966  */
3967 void
3968 _r_debug_postinit(struct link_map *m)
3969 {
3970 
3971 	/* See r_debug_state(). */
3972 	__compiler_membar();
3973 }
3974 
3975 static void
3976 release_object(Obj_Entry *obj)
3977 {
3978 
3979 	if (obj->holdcount > 0) {
3980 		obj->unholdfree = true;
3981 		return;
3982 	}
3983 	munmap(obj->mapbase, obj->mapsize);
3984 	linkmap_delete(obj);
3985 	obj_free(obj);
3986 }
3987 
3988 /*
3989  * Get address of the pointer variable in the main program.
3990  * Prefer non-weak symbol over the weak one.
3991  */
3992 static const void **
3993 get_program_var_addr(const char *name, RtldLockState *lockstate)
3994 {
3995     SymLook req;
3996     DoneList donelist;
3997 
3998     symlook_init(&req, name);
3999     req.lockstate = lockstate;
4000     donelist_init(&donelist);
4001     if (symlook_global(&req, &donelist) != 0)
4002 	return (NULL);
4003     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4004 	return ((const void **)make_function_pointer(req.sym_out,
4005 	  req.defobj_out));
4006     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4007 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4008     else
4009 	return ((const void **)(req.defobj_out->relocbase +
4010 	  req.sym_out->st_value));
4011 }
4012 
4013 /*
4014  * Set a pointer variable in the main program to the given value.  This
4015  * is used to set key variables such as "environ" before any of the
4016  * init functions are called.
4017  */
4018 static void
4019 set_program_var(const char *name, const void *value)
4020 {
4021     const void **addr;
4022 
4023     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4024 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4025 	*addr = value;
4026     }
4027 }
4028 
4029 /*
4030  * Search the global objects, including dependencies and main object,
4031  * for the given symbol.
4032  */
4033 static int
4034 symlook_global(SymLook *req, DoneList *donelist)
4035 {
4036     SymLook req1;
4037     const Objlist_Entry *elm;
4038     int res;
4039 
4040     symlook_init_from_req(&req1, req);
4041 
4042     /* Search all objects loaded at program start up. */
4043     if (req->defobj_out == NULL ||
4044       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4045 	res = symlook_list(&req1, &list_main, donelist);
4046 	if (res == 0 && (req->defobj_out == NULL ||
4047 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4048 	    req->sym_out = req1.sym_out;
4049 	    req->defobj_out = req1.defobj_out;
4050 	    assert(req->defobj_out != NULL);
4051 	}
4052     }
4053 
4054     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4055     STAILQ_FOREACH(elm, &list_global, link) {
4056 	if (req->defobj_out != NULL &&
4057 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4058 	    break;
4059 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4060 	if (res == 0 && (req->defobj_out == NULL ||
4061 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4062 	    req->sym_out = req1.sym_out;
4063 	    req->defobj_out = req1.defobj_out;
4064 	    assert(req->defobj_out != NULL);
4065 	}
4066     }
4067 
4068     return (req->sym_out != NULL ? 0 : ESRCH);
4069 }
4070 
4071 /*
4072  * Given a symbol name in a referencing object, find the corresponding
4073  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4074  * no definition was found.  Returns a pointer to the Obj_Entry of the
4075  * defining object via the reference parameter DEFOBJ_OUT.
4076  */
4077 static int
4078 symlook_default(SymLook *req, const Obj_Entry *refobj)
4079 {
4080     DoneList donelist;
4081     const Objlist_Entry *elm;
4082     SymLook req1;
4083     int res;
4084 
4085     donelist_init(&donelist);
4086     symlook_init_from_req(&req1, req);
4087 
4088     /*
4089      * Look first in the referencing object if linked symbolically,
4090      * and similarly handle protected symbols.
4091      */
4092     res = symlook_obj(&req1, refobj);
4093     if (res == 0 && (refobj->symbolic ||
4094       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4095 	req->sym_out = req1.sym_out;
4096 	req->defobj_out = req1.defobj_out;
4097 	assert(req->defobj_out != NULL);
4098     }
4099     if (refobj->symbolic || req->defobj_out != NULL)
4100 	donelist_check(&donelist, refobj);
4101 
4102     symlook_global(req, &donelist);
4103 
4104     /* Search all dlopened DAGs containing the referencing object. */
4105     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4106 	if (req->sym_out != NULL &&
4107 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
4108 	    break;
4109 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4110 	if (res == 0 && (req->sym_out == NULL ||
4111 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4112 	    req->sym_out = req1.sym_out;
4113 	    req->defobj_out = req1.defobj_out;
4114 	    assert(req->defobj_out != NULL);
4115 	}
4116     }
4117 
4118     /*
4119      * Search the dynamic linker itself, and possibly resolve the
4120      * symbol from there.  This is how the application links to
4121      * dynamic linker services such as dlopen.
4122      */
4123     if (req->sym_out == NULL ||
4124       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4125 	res = symlook_obj(&req1, &obj_rtld);
4126 	if (res == 0) {
4127 	    req->sym_out = req1.sym_out;
4128 	    req->defobj_out = req1.defobj_out;
4129 	    assert(req->defobj_out != NULL);
4130 	}
4131     }
4132 
4133     return (req->sym_out != NULL ? 0 : ESRCH);
4134 }
4135 
4136 static int
4137 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4138 {
4139     const Elf_Sym *def;
4140     const Obj_Entry *defobj;
4141     const Objlist_Entry *elm;
4142     SymLook req1;
4143     int res;
4144 
4145     def = NULL;
4146     defobj = NULL;
4147     STAILQ_FOREACH(elm, objlist, link) {
4148 	if (donelist_check(dlp, elm->obj))
4149 	    continue;
4150 	symlook_init_from_req(&req1, req);
4151 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4152 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4153 		def = req1.sym_out;
4154 		defobj = req1.defobj_out;
4155 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4156 		    break;
4157 	    }
4158 	}
4159     }
4160     if (def != NULL) {
4161 	req->sym_out = def;
4162 	req->defobj_out = defobj;
4163 	return (0);
4164     }
4165     return (ESRCH);
4166 }
4167 
4168 /*
4169  * Search the chain of DAGS cointed to by the given Needed_Entry
4170  * for a symbol of the given name.  Each DAG is scanned completely
4171  * before advancing to the next one.  Returns a pointer to the symbol,
4172  * or NULL if no definition was found.
4173  */
4174 static int
4175 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4176 {
4177     const Elf_Sym *def;
4178     const Needed_Entry *n;
4179     const Obj_Entry *defobj;
4180     SymLook req1;
4181     int res;
4182 
4183     def = NULL;
4184     defobj = NULL;
4185     symlook_init_from_req(&req1, req);
4186     for (n = needed; n != NULL; n = n->next) {
4187 	if (n->obj == NULL ||
4188 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4189 	    continue;
4190 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
4191 	    def = req1.sym_out;
4192 	    defobj = req1.defobj_out;
4193 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
4194 		break;
4195 	}
4196     }
4197     if (def != NULL) {
4198 	req->sym_out = def;
4199 	req->defobj_out = defobj;
4200 	return (0);
4201     }
4202     return (ESRCH);
4203 }
4204 
4205 /*
4206  * Search the symbol table of a single shared object for a symbol of
4207  * the given name and version, if requested.  Returns a pointer to the
4208  * symbol, or NULL if no definition was found.  If the object is
4209  * filter, return filtered symbol from filtee.
4210  *
4211  * The symbol's hash value is passed in for efficiency reasons; that
4212  * eliminates many recomputations of the hash value.
4213  */
4214 int
4215 symlook_obj(SymLook *req, const Obj_Entry *obj)
4216 {
4217     DoneList donelist;
4218     SymLook req1;
4219     int flags, res, mres;
4220 
4221     /*
4222      * If there is at least one valid hash at this point, we prefer to
4223      * use the faster GNU version if available.
4224      */
4225     if (obj->valid_hash_gnu)
4226 	mres = symlook_obj1_gnu(req, obj);
4227     else if (obj->valid_hash_sysv)
4228 	mres = symlook_obj1_sysv(req, obj);
4229     else
4230 	return (EINVAL);
4231 
4232     if (mres == 0) {
4233 	if (obj->needed_filtees != NULL) {
4234 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4235 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4236 	    donelist_init(&donelist);
4237 	    symlook_init_from_req(&req1, req);
4238 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4239 	    if (res == 0) {
4240 		req->sym_out = req1.sym_out;
4241 		req->defobj_out = req1.defobj_out;
4242 	    }
4243 	    return (res);
4244 	}
4245 	if (obj->needed_aux_filtees != NULL) {
4246 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4247 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4248 	    donelist_init(&donelist);
4249 	    symlook_init_from_req(&req1, req);
4250 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4251 	    if (res == 0) {
4252 		req->sym_out = req1.sym_out;
4253 		req->defobj_out = req1.defobj_out;
4254 		return (res);
4255 	    }
4256 	}
4257     }
4258     return (mres);
4259 }
4260 
4261 /* Symbol match routine common to both hash functions */
4262 static bool
4263 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4264     const unsigned long symnum)
4265 {
4266 	Elf_Versym verndx;
4267 	const Elf_Sym *symp;
4268 	const char *strp;
4269 
4270 	symp = obj->symtab + symnum;
4271 	strp = obj->strtab + symp->st_name;
4272 
4273 	switch (ELF_ST_TYPE(symp->st_info)) {
4274 	case STT_FUNC:
4275 	case STT_NOTYPE:
4276 	case STT_OBJECT:
4277 	case STT_COMMON:
4278 	case STT_GNU_IFUNC:
4279 		if (symp->st_value == 0)
4280 			return (false);
4281 		/* fallthrough */
4282 	case STT_TLS:
4283 		if (symp->st_shndx != SHN_UNDEF)
4284 			break;
4285 #ifndef __mips__
4286 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4287 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4288 			break;
4289 		/* fallthrough */
4290 #endif
4291 	default:
4292 		return (false);
4293 	}
4294 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4295 		return (false);
4296 
4297 	if (req->ventry == NULL) {
4298 		if (obj->versyms != NULL) {
4299 			verndx = VER_NDX(obj->versyms[symnum]);
4300 			if (verndx > obj->vernum) {
4301 				_rtld_error(
4302 				    "%s: symbol %s references wrong version %d",
4303 				    obj->path, obj->strtab + symnum, verndx);
4304 				return (false);
4305 			}
4306 			/*
4307 			 * If we are not called from dlsym (i.e. this
4308 			 * is a normal relocation from unversioned
4309 			 * binary), accept the symbol immediately if
4310 			 * it happens to have first version after this
4311 			 * shared object became versioned.  Otherwise,
4312 			 * if symbol is versioned and not hidden,
4313 			 * remember it. If it is the only symbol with
4314 			 * this name exported by the shared object, it
4315 			 * will be returned as a match by the calling
4316 			 * function. If symbol is global (verndx < 2)
4317 			 * accept it unconditionally.
4318 			 */
4319 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4320 			    verndx == VER_NDX_GIVEN) {
4321 				result->sym_out = symp;
4322 				return (true);
4323 			}
4324 			else if (verndx >= VER_NDX_GIVEN) {
4325 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4326 				    == 0) {
4327 					if (result->vsymp == NULL)
4328 						result->vsymp = symp;
4329 					result->vcount++;
4330 				}
4331 				return (false);
4332 			}
4333 		}
4334 		result->sym_out = symp;
4335 		return (true);
4336 	}
4337 	if (obj->versyms == NULL) {
4338 		if (object_match_name(obj, req->ventry->name)) {
4339 			_rtld_error("%s: object %s should provide version %s "
4340 			    "for symbol %s", obj_rtld.path, obj->path,
4341 			    req->ventry->name, obj->strtab + symnum);
4342 			return (false);
4343 		}
4344 	} else {
4345 		verndx = VER_NDX(obj->versyms[symnum]);
4346 		if (verndx > obj->vernum) {
4347 			_rtld_error("%s: symbol %s references wrong version %d",
4348 			    obj->path, obj->strtab + symnum, verndx);
4349 			return (false);
4350 		}
4351 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4352 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4353 			/*
4354 			 * Version does not match. Look if this is a
4355 			 * global symbol and if it is not hidden. If
4356 			 * global symbol (verndx < 2) is available,
4357 			 * use it. Do not return symbol if we are
4358 			 * called by dlvsym, because dlvsym looks for
4359 			 * a specific version and default one is not
4360 			 * what dlvsym wants.
4361 			 */
4362 			if ((req->flags & SYMLOOK_DLSYM) ||
4363 			    (verndx >= VER_NDX_GIVEN) ||
4364 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4365 				return (false);
4366 		}
4367 	}
4368 	result->sym_out = symp;
4369 	return (true);
4370 }
4371 
4372 /*
4373  * Search for symbol using SysV hash function.
4374  * obj->buckets is known not to be NULL at this point; the test for this was
4375  * performed with the obj->valid_hash_sysv assignment.
4376  */
4377 static int
4378 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4379 {
4380 	unsigned long symnum;
4381 	Sym_Match_Result matchres;
4382 
4383 	matchres.sym_out = NULL;
4384 	matchres.vsymp = NULL;
4385 	matchres.vcount = 0;
4386 
4387 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4388 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4389 		if (symnum >= obj->nchains)
4390 			return (ESRCH);	/* Bad object */
4391 
4392 		if (matched_symbol(req, obj, &matchres, symnum)) {
4393 			req->sym_out = matchres.sym_out;
4394 			req->defobj_out = obj;
4395 			return (0);
4396 		}
4397 	}
4398 	if (matchres.vcount == 1) {
4399 		req->sym_out = matchres.vsymp;
4400 		req->defobj_out = obj;
4401 		return (0);
4402 	}
4403 	return (ESRCH);
4404 }
4405 
4406 /* Search for symbol using GNU hash function */
4407 static int
4408 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4409 {
4410 	Elf_Addr bloom_word;
4411 	const Elf32_Word *hashval;
4412 	Elf32_Word bucket;
4413 	Sym_Match_Result matchres;
4414 	unsigned int h1, h2;
4415 	unsigned long symnum;
4416 
4417 	matchres.sym_out = NULL;
4418 	matchres.vsymp = NULL;
4419 	matchres.vcount = 0;
4420 
4421 	/* Pick right bitmask word from Bloom filter array */
4422 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4423 	    obj->maskwords_bm_gnu];
4424 
4425 	/* Calculate modulus word size of gnu hash and its derivative */
4426 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4427 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4428 
4429 	/* Filter out the "definitely not in set" queries */
4430 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4431 		return (ESRCH);
4432 
4433 	/* Locate hash chain and corresponding value element*/
4434 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4435 	if (bucket == 0)
4436 		return (ESRCH);
4437 	hashval = &obj->chain_zero_gnu[bucket];
4438 	do {
4439 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4440 			symnum = hashval - obj->chain_zero_gnu;
4441 			if (matched_symbol(req, obj, &matchres, symnum)) {
4442 				req->sym_out = matchres.sym_out;
4443 				req->defobj_out = obj;
4444 				return (0);
4445 			}
4446 		}
4447 	} while ((*hashval++ & 1) == 0);
4448 	if (matchres.vcount == 1) {
4449 		req->sym_out = matchres.vsymp;
4450 		req->defobj_out = obj;
4451 		return (0);
4452 	}
4453 	return (ESRCH);
4454 }
4455 
4456 static void
4457 trace_loaded_objects(Obj_Entry *obj)
4458 {
4459     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
4460     int		c;
4461 
4462     if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL)
4463 	main_local = "";
4464 
4465     if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL)
4466 	fmt1 = "\t%o => %p (%x)\n";
4467 
4468     if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL)
4469 	fmt2 = "\t%o (%x)\n";
4470 
4471     list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL"));
4472 
4473     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4474 	Needed_Entry		*needed;
4475 	char			*name, *path;
4476 	bool			is_lib;
4477 
4478 	if (obj->marker)
4479 	    continue;
4480 	if (list_containers && obj->needed != NULL)
4481 	    rtld_printf("%s:\n", obj->path);
4482 	for (needed = obj->needed; needed; needed = needed->next) {
4483 	    if (needed->obj != NULL) {
4484 		if (needed->obj->traced && !list_containers)
4485 		    continue;
4486 		needed->obj->traced = true;
4487 		path = needed->obj->path;
4488 	    } else
4489 		path = "not found";
4490 
4491 	    name = (char *)obj->strtab + needed->name;
4492 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4493 
4494 	    fmt = is_lib ? fmt1 : fmt2;
4495 	    while ((c = *fmt++) != '\0') {
4496 		switch (c) {
4497 		default:
4498 		    rtld_putchar(c);
4499 		    continue;
4500 		case '\\':
4501 		    switch (c = *fmt) {
4502 		    case '\0':
4503 			continue;
4504 		    case 'n':
4505 			rtld_putchar('\n');
4506 			break;
4507 		    case 't':
4508 			rtld_putchar('\t');
4509 			break;
4510 		    }
4511 		    break;
4512 		case '%':
4513 		    switch (c = *fmt) {
4514 		    case '\0':
4515 			continue;
4516 		    case '%':
4517 		    default:
4518 			rtld_putchar(c);
4519 			break;
4520 		    case 'A':
4521 			rtld_putstr(main_local);
4522 			break;
4523 		    case 'a':
4524 			rtld_putstr(obj_main->path);
4525 			break;
4526 		    case 'o':
4527 			rtld_putstr(name);
4528 			break;
4529 #if 0
4530 		    case 'm':
4531 			rtld_printf("%d", sodp->sod_major);
4532 			break;
4533 		    case 'n':
4534 			rtld_printf("%d", sodp->sod_minor);
4535 			break;
4536 #endif
4537 		    case 'p':
4538 			rtld_putstr(path);
4539 			break;
4540 		    case 'x':
4541 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4542 			  0);
4543 			break;
4544 		    }
4545 		    break;
4546 		}
4547 		++fmt;
4548 	    }
4549 	}
4550     }
4551 }
4552 
4553 /*
4554  * Unload a dlopened object and its dependencies from memory and from
4555  * our data structures.  It is assumed that the DAG rooted in the
4556  * object has already been unreferenced, and that the object has a
4557  * reference count of 0.
4558  */
4559 static void
4560 unload_object(Obj_Entry *root, RtldLockState *lockstate)
4561 {
4562 	Obj_Entry marker, *obj, *next;
4563 
4564 	assert(root->refcount == 0);
4565 
4566 	/*
4567 	 * Pass over the DAG removing unreferenced objects from
4568 	 * appropriate lists.
4569 	 */
4570 	unlink_object(root);
4571 
4572 	/* Unmap all objects that are no longer referenced. */
4573 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
4574 		next = TAILQ_NEXT(obj, next);
4575 		if (obj->marker || obj->refcount != 0)
4576 			continue;
4577 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
4578 		    obj->mapsize, 0, obj->path);
4579 		dbg("unloading \"%s\"", obj->path);
4580 		/*
4581 		 * Unlink the object now to prevent new references from
4582 		 * being acquired while the bind lock is dropped in
4583 		 * recursive dlclose() invocations.
4584 		 */
4585 		TAILQ_REMOVE(&obj_list, obj, next);
4586 		obj_count--;
4587 
4588 		if (obj->filtees_loaded) {
4589 			if (next != NULL) {
4590 				init_marker(&marker);
4591 				TAILQ_INSERT_BEFORE(next, &marker, next);
4592 				unload_filtees(obj, lockstate);
4593 				next = TAILQ_NEXT(&marker, next);
4594 				TAILQ_REMOVE(&obj_list, &marker, next);
4595 			} else
4596 				unload_filtees(obj, lockstate);
4597 		}
4598 		release_object(obj);
4599 	}
4600 }
4601 
4602 static void
4603 unlink_object(Obj_Entry *root)
4604 {
4605     Objlist_Entry *elm;
4606 
4607     if (root->refcount == 0) {
4608 	/* Remove the object from the RTLD_GLOBAL list. */
4609 	objlist_remove(&list_global, root);
4610 
4611     	/* Remove the object from all objects' DAG lists. */
4612     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4613 	    objlist_remove(&elm->obj->dldags, root);
4614 	    if (elm->obj != root)
4615 		unlink_object(elm->obj);
4616 	}
4617     }
4618 }
4619 
4620 static void
4621 ref_dag(Obj_Entry *root)
4622 {
4623     Objlist_Entry *elm;
4624 
4625     assert(root->dag_inited);
4626     STAILQ_FOREACH(elm, &root->dagmembers, link)
4627 	elm->obj->refcount++;
4628 }
4629 
4630 static void
4631 unref_dag(Obj_Entry *root)
4632 {
4633     Objlist_Entry *elm;
4634 
4635     assert(root->dag_inited);
4636     STAILQ_FOREACH(elm, &root->dagmembers, link)
4637 	elm->obj->refcount--;
4638 }
4639 
4640 /*
4641  * Common code for MD __tls_get_addr().
4642  */
4643 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4644 static void *
4645 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4646 {
4647     Elf_Addr *newdtv, *dtv;
4648     RtldLockState lockstate;
4649     int to_copy;
4650 
4651     dtv = *dtvp;
4652     /* Check dtv generation in case new modules have arrived */
4653     if (dtv[0] != tls_dtv_generation) {
4654 	wlock_acquire(rtld_bind_lock, &lockstate);
4655 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4656 	to_copy = dtv[1];
4657 	if (to_copy > tls_max_index)
4658 	    to_copy = tls_max_index;
4659 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4660 	newdtv[0] = tls_dtv_generation;
4661 	newdtv[1] = tls_max_index;
4662 	free(dtv);
4663 	lock_release(rtld_bind_lock, &lockstate);
4664 	dtv = *dtvp = newdtv;
4665     }
4666 
4667     /* Dynamically allocate module TLS if necessary */
4668     if (dtv[index + 1] == 0) {
4669 	/* Signal safe, wlock will block out signals. */
4670 	wlock_acquire(rtld_bind_lock, &lockstate);
4671 	if (!dtv[index + 1])
4672 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4673 	lock_release(rtld_bind_lock, &lockstate);
4674     }
4675     return ((void *)(dtv[index + 1] + offset));
4676 }
4677 
4678 void *
4679 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4680 {
4681 	Elf_Addr *dtv;
4682 
4683 	dtv = *dtvp;
4684 	/* Check dtv generation in case new modules have arrived */
4685 	if (__predict_true(dtv[0] == tls_dtv_generation &&
4686 	    dtv[index + 1] != 0))
4687 		return ((void *)(dtv[index + 1] + offset));
4688 	return (tls_get_addr_slow(dtvp, index, offset));
4689 }
4690 
4691 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
4692     defined(__powerpc__) || defined(__riscv)
4693 
4694 /*
4695  * Allocate Static TLS using the Variant I method.
4696  */
4697 void *
4698 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4699 {
4700     Obj_Entry *obj;
4701     char *tcb;
4702     Elf_Addr **tls;
4703     Elf_Addr *dtv;
4704     Elf_Addr addr;
4705     int i;
4706 
4707     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4708 	return (oldtcb);
4709 
4710     assert(tcbsize >= TLS_TCB_SIZE);
4711     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4712     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4713 
4714     if (oldtcb != NULL) {
4715 	memcpy(tls, oldtcb, tls_static_space);
4716 	free(oldtcb);
4717 
4718 	/* Adjust the DTV. */
4719 	dtv = tls[0];
4720 	for (i = 0; i < dtv[1]; i++) {
4721 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4722 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4723 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4724 	    }
4725 	}
4726     } else {
4727 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4728 	tls[0] = dtv;
4729 	dtv[0] = tls_dtv_generation;
4730 	dtv[1] = tls_max_index;
4731 
4732 	for (obj = globallist_curr(objs); obj != NULL;
4733 	  obj = globallist_next(obj)) {
4734 	    if (obj->tlsoffset > 0) {
4735 		addr = (Elf_Addr)tls + obj->tlsoffset;
4736 		if (obj->tlsinitsize > 0)
4737 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4738 		if (obj->tlssize > obj->tlsinitsize)
4739 		    memset((void*) (addr + obj->tlsinitsize), 0,
4740 			   obj->tlssize - obj->tlsinitsize);
4741 		dtv[obj->tlsindex + 1] = addr;
4742 	    }
4743 	}
4744     }
4745 
4746     return (tcb);
4747 }
4748 
4749 void
4750 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4751 {
4752     Elf_Addr *dtv;
4753     Elf_Addr tlsstart, tlsend;
4754     int dtvsize, i;
4755 
4756     assert(tcbsize >= TLS_TCB_SIZE);
4757 
4758     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4759     tlsend = tlsstart + tls_static_space;
4760 
4761     dtv = *(Elf_Addr **)tlsstart;
4762     dtvsize = dtv[1];
4763     for (i = 0; i < dtvsize; i++) {
4764 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4765 	    free((void*)dtv[i+2]);
4766 	}
4767     }
4768     free(dtv);
4769     free(tcb);
4770 }
4771 
4772 #endif
4773 
4774 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4775 
4776 /*
4777  * Allocate Static TLS using the Variant II method.
4778  */
4779 void *
4780 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4781 {
4782     Obj_Entry *obj;
4783     size_t size, ralign;
4784     char *tls;
4785     Elf_Addr *dtv, *olddtv;
4786     Elf_Addr segbase, oldsegbase, addr;
4787     int i;
4788 
4789     ralign = tcbalign;
4790     if (tls_static_max_align > ralign)
4791 	    ralign = tls_static_max_align;
4792     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
4793 
4794     assert(tcbsize >= 2*sizeof(Elf_Addr));
4795     tls = malloc_aligned(size, ralign);
4796     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4797 
4798     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
4799     ((Elf_Addr*)segbase)[0] = segbase;
4800     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4801 
4802     dtv[0] = tls_dtv_generation;
4803     dtv[1] = tls_max_index;
4804 
4805     if (oldtls) {
4806 	/*
4807 	 * Copy the static TLS block over whole.
4808 	 */
4809 	oldsegbase = (Elf_Addr) oldtls;
4810 	memcpy((void *)(segbase - tls_static_space),
4811 	       (const void *)(oldsegbase - tls_static_space),
4812 	       tls_static_space);
4813 
4814 	/*
4815 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4816 	 * move them over.
4817 	 */
4818 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4819 	for (i = 0; i < olddtv[1]; i++) {
4820 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4821 		dtv[i+2] = olddtv[i+2];
4822 		olddtv[i+2] = 0;
4823 	    }
4824 	}
4825 
4826 	/*
4827 	 * We assume that this block was the one we created with
4828 	 * allocate_initial_tls().
4829 	 */
4830 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4831     } else {
4832 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4833 		if (obj->marker || obj->tlsoffset == 0)
4834 			continue;
4835 		addr = segbase - obj->tlsoffset;
4836 		memset((void*) (addr + obj->tlsinitsize),
4837 		       0, obj->tlssize - obj->tlsinitsize);
4838 		if (obj->tlsinit)
4839 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4840 		dtv[obj->tlsindex + 1] = addr;
4841 	}
4842     }
4843 
4844     return (void*) segbase;
4845 }
4846 
4847 void
4848 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4849 {
4850     Elf_Addr* dtv;
4851     size_t size, ralign;
4852     int dtvsize, i;
4853     Elf_Addr tlsstart, tlsend;
4854 
4855     /*
4856      * Figure out the size of the initial TLS block so that we can
4857      * find stuff which ___tls_get_addr() allocated dynamically.
4858      */
4859     ralign = tcbalign;
4860     if (tls_static_max_align > ralign)
4861 	    ralign = tls_static_max_align;
4862     size = round(tls_static_space, ralign);
4863 
4864     dtv = ((Elf_Addr**)tls)[1];
4865     dtvsize = dtv[1];
4866     tlsend = (Elf_Addr) tls;
4867     tlsstart = tlsend - size;
4868     for (i = 0; i < dtvsize; i++) {
4869 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
4870 		free_aligned((void *)dtv[i + 2]);
4871 	}
4872     }
4873 
4874     free_aligned((void *)tlsstart);
4875     free((void*) dtv);
4876 }
4877 
4878 #endif
4879 
4880 /*
4881  * Allocate TLS block for module with given index.
4882  */
4883 void *
4884 allocate_module_tls(int index)
4885 {
4886     Obj_Entry* obj;
4887     char* p;
4888 
4889     TAILQ_FOREACH(obj, &obj_list, next) {
4890 	if (obj->marker)
4891 	    continue;
4892 	if (obj->tlsindex == index)
4893 	    break;
4894     }
4895     if (!obj) {
4896 	_rtld_error("Can't find module with TLS index %d", index);
4897 	rtld_die();
4898     }
4899 
4900     p = malloc_aligned(obj->tlssize, obj->tlsalign);
4901     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4902     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4903 
4904     return p;
4905 }
4906 
4907 bool
4908 allocate_tls_offset(Obj_Entry *obj)
4909 {
4910     size_t off;
4911 
4912     if (obj->tls_done)
4913 	return true;
4914 
4915     if (obj->tlssize == 0) {
4916 	obj->tls_done = true;
4917 	return true;
4918     }
4919 
4920     if (tls_last_offset == 0)
4921 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4922     else
4923 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4924 				   obj->tlssize, obj->tlsalign);
4925 
4926     /*
4927      * If we have already fixed the size of the static TLS block, we
4928      * must stay within that size. When allocating the static TLS, we
4929      * leave a small amount of space spare to be used for dynamically
4930      * loading modules which use static TLS.
4931      */
4932     if (tls_static_space != 0) {
4933 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4934 	    return false;
4935     } else if (obj->tlsalign > tls_static_max_align) {
4936 	    tls_static_max_align = obj->tlsalign;
4937     }
4938 
4939     tls_last_offset = obj->tlsoffset = off;
4940     tls_last_size = obj->tlssize;
4941     obj->tls_done = true;
4942 
4943     return true;
4944 }
4945 
4946 void
4947 free_tls_offset(Obj_Entry *obj)
4948 {
4949 
4950     /*
4951      * If we were the last thing to allocate out of the static TLS
4952      * block, we give our space back to the 'allocator'. This is a
4953      * simplistic workaround to allow libGL.so.1 to be loaded and
4954      * unloaded multiple times.
4955      */
4956     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4957 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4958 	tls_last_offset -= obj->tlssize;
4959 	tls_last_size = 0;
4960     }
4961 }
4962 
4963 void *
4964 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4965 {
4966     void *ret;
4967     RtldLockState lockstate;
4968 
4969     wlock_acquire(rtld_bind_lock, &lockstate);
4970     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
4971       tcbsize, tcbalign);
4972     lock_release(rtld_bind_lock, &lockstate);
4973     return (ret);
4974 }
4975 
4976 void
4977 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4978 {
4979     RtldLockState lockstate;
4980 
4981     wlock_acquire(rtld_bind_lock, &lockstate);
4982     free_tls(tcb, tcbsize, tcbalign);
4983     lock_release(rtld_bind_lock, &lockstate);
4984 }
4985 
4986 static void
4987 object_add_name(Obj_Entry *obj, const char *name)
4988 {
4989     Name_Entry *entry;
4990     size_t len;
4991 
4992     len = strlen(name);
4993     entry = malloc(sizeof(Name_Entry) + len);
4994 
4995     if (entry != NULL) {
4996 	strcpy(entry->name, name);
4997 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4998     }
4999 }
5000 
5001 static int
5002 object_match_name(const Obj_Entry *obj, const char *name)
5003 {
5004     Name_Entry *entry;
5005 
5006     STAILQ_FOREACH(entry, &obj->names, link) {
5007 	if (strcmp(name, entry->name) == 0)
5008 	    return (1);
5009     }
5010     return (0);
5011 }
5012 
5013 static Obj_Entry *
5014 locate_dependency(const Obj_Entry *obj, const char *name)
5015 {
5016     const Objlist_Entry *entry;
5017     const Needed_Entry *needed;
5018 
5019     STAILQ_FOREACH(entry, &list_main, link) {
5020 	if (object_match_name(entry->obj, name))
5021 	    return entry->obj;
5022     }
5023 
5024     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5025 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5026 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5027 	    /*
5028 	     * If there is DT_NEEDED for the name we are looking for,
5029 	     * we are all set.  Note that object might not be found if
5030 	     * dependency was not loaded yet, so the function can
5031 	     * return NULL here.  This is expected and handled
5032 	     * properly by the caller.
5033 	     */
5034 	    return (needed->obj);
5035 	}
5036     }
5037     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5038 	obj->path, name);
5039     rtld_die();
5040 }
5041 
5042 static int
5043 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5044     const Elf_Vernaux *vna)
5045 {
5046     const Elf_Verdef *vd;
5047     const char *vername;
5048 
5049     vername = refobj->strtab + vna->vna_name;
5050     vd = depobj->verdef;
5051     if (vd == NULL) {
5052 	_rtld_error("%s: version %s required by %s not defined",
5053 	    depobj->path, vername, refobj->path);
5054 	return (-1);
5055     }
5056     for (;;) {
5057 	if (vd->vd_version != VER_DEF_CURRENT) {
5058 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5059 		depobj->path, vd->vd_version);
5060 	    return (-1);
5061 	}
5062 	if (vna->vna_hash == vd->vd_hash) {
5063 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5064 		((char *)vd + vd->vd_aux);
5065 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5066 		return (0);
5067 	}
5068 	if (vd->vd_next == 0)
5069 	    break;
5070 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5071     }
5072     if (vna->vna_flags & VER_FLG_WEAK)
5073 	return (0);
5074     _rtld_error("%s: version %s required by %s not found",
5075 	depobj->path, vername, refobj->path);
5076     return (-1);
5077 }
5078 
5079 static int
5080 rtld_verify_object_versions(Obj_Entry *obj)
5081 {
5082     const Elf_Verneed *vn;
5083     const Elf_Verdef  *vd;
5084     const Elf_Verdaux *vda;
5085     const Elf_Vernaux *vna;
5086     const Obj_Entry *depobj;
5087     int maxvernum, vernum;
5088 
5089     if (obj->ver_checked)
5090 	return (0);
5091     obj->ver_checked = true;
5092 
5093     maxvernum = 0;
5094     /*
5095      * Walk over defined and required version records and figure out
5096      * max index used by any of them. Do very basic sanity checking
5097      * while there.
5098      */
5099     vn = obj->verneed;
5100     while (vn != NULL) {
5101 	if (vn->vn_version != VER_NEED_CURRENT) {
5102 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5103 		obj->path, vn->vn_version);
5104 	    return (-1);
5105 	}
5106 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5107 	for (;;) {
5108 	    vernum = VER_NEED_IDX(vna->vna_other);
5109 	    if (vernum > maxvernum)
5110 		maxvernum = vernum;
5111 	    if (vna->vna_next == 0)
5112 		 break;
5113 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5114 	}
5115 	if (vn->vn_next == 0)
5116 	    break;
5117 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5118     }
5119 
5120     vd = obj->verdef;
5121     while (vd != NULL) {
5122 	if (vd->vd_version != VER_DEF_CURRENT) {
5123 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5124 		obj->path, vd->vd_version);
5125 	    return (-1);
5126 	}
5127 	vernum = VER_DEF_IDX(vd->vd_ndx);
5128 	if (vernum > maxvernum)
5129 		maxvernum = vernum;
5130 	if (vd->vd_next == 0)
5131 	    break;
5132 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5133     }
5134 
5135     if (maxvernum == 0)
5136 	return (0);
5137 
5138     /*
5139      * Store version information in array indexable by version index.
5140      * Verify that object version requirements are satisfied along the
5141      * way.
5142      */
5143     obj->vernum = maxvernum + 1;
5144     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5145 
5146     vd = obj->verdef;
5147     while (vd != NULL) {
5148 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5149 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5150 	    assert(vernum <= maxvernum);
5151 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
5152 	    obj->vertab[vernum].hash = vd->vd_hash;
5153 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5154 	    obj->vertab[vernum].file = NULL;
5155 	    obj->vertab[vernum].flags = 0;
5156 	}
5157 	if (vd->vd_next == 0)
5158 	    break;
5159 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
5160     }
5161 
5162     vn = obj->verneed;
5163     while (vn != NULL) {
5164 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5165 	if (depobj == NULL)
5166 	    return (-1);
5167 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
5168 	for (;;) {
5169 	    if (check_object_provided_version(obj, depobj, vna))
5170 		return (-1);
5171 	    vernum = VER_NEED_IDX(vna->vna_other);
5172 	    assert(vernum <= maxvernum);
5173 	    obj->vertab[vernum].hash = vna->vna_hash;
5174 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5175 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5176 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5177 		VER_INFO_HIDDEN : 0;
5178 	    if (vna->vna_next == 0)
5179 		 break;
5180 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
5181 	}
5182 	if (vn->vn_next == 0)
5183 	    break;
5184 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
5185     }
5186     return 0;
5187 }
5188 
5189 static int
5190 rtld_verify_versions(const Objlist *objlist)
5191 {
5192     Objlist_Entry *entry;
5193     int rc;
5194 
5195     rc = 0;
5196     STAILQ_FOREACH(entry, objlist, link) {
5197 	/*
5198 	 * Skip dummy objects or objects that have their version requirements
5199 	 * already checked.
5200 	 */
5201 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5202 	    continue;
5203 	if (rtld_verify_object_versions(entry->obj) == -1) {
5204 	    rc = -1;
5205 	    if (ld_tracing == NULL)
5206 		break;
5207 	}
5208     }
5209     if (rc == 0 || ld_tracing != NULL)
5210     	rc = rtld_verify_object_versions(&obj_rtld);
5211     return rc;
5212 }
5213 
5214 const Ver_Entry *
5215 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5216 {
5217     Elf_Versym vernum;
5218 
5219     if (obj->vertab) {
5220 	vernum = VER_NDX(obj->versyms[symnum]);
5221 	if (vernum >= obj->vernum) {
5222 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5223 		obj->path, obj->strtab + symnum, vernum);
5224 	} else if (obj->vertab[vernum].hash != 0) {
5225 	    return &obj->vertab[vernum];
5226 	}
5227     }
5228     return NULL;
5229 }
5230 
5231 int
5232 _rtld_get_stack_prot(void)
5233 {
5234 
5235 	return (stack_prot);
5236 }
5237 
5238 int
5239 _rtld_is_dlopened(void *arg)
5240 {
5241 	Obj_Entry *obj;
5242 	RtldLockState lockstate;
5243 	int res;
5244 
5245 	rlock_acquire(rtld_bind_lock, &lockstate);
5246 	obj = dlcheck(arg);
5247 	if (obj == NULL)
5248 		obj = obj_from_addr(arg);
5249 	if (obj == NULL) {
5250 		_rtld_error("No shared object contains address");
5251 		lock_release(rtld_bind_lock, &lockstate);
5252 		return (-1);
5253 	}
5254 	res = obj->dlopened ? 1 : 0;
5255 	lock_release(rtld_bind_lock, &lockstate);
5256 	return (res);
5257 }
5258 
5259 int
5260 obj_enforce_relro(Obj_Entry *obj)
5261 {
5262 
5263 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5264 	    PROT_READ) == -1) {
5265 		_rtld_error("%s: Cannot enforce relro protection: %s",
5266 		    obj->path, rtld_strerror(errno));
5267 		return (-1);
5268 	}
5269 	return (0);
5270 }
5271 
5272 static void
5273 map_stacks_exec(RtldLockState *lockstate)
5274 {
5275 	void (*thr_map_stacks_exec)(void);
5276 
5277 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5278 		return;
5279 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5280 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5281 	if (thr_map_stacks_exec != NULL) {
5282 		stack_prot |= PROT_EXEC;
5283 		thr_map_stacks_exec();
5284 	}
5285 }
5286 
5287 void
5288 symlook_init(SymLook *dst, const char *name)
5289 {
5290 
5291 	bzero(dst, sizeof(*dst));
5292 	dst->name = name;
5293 	dst->hash = elf_hash(name);
5294 	dst->hash_gnu = gnu_hash(name);
5295 }
5296 
5297 static void
5298 symlook_init_from_req(SymLook *dst, const SymLook *src)
5299 {
5300 
5301 	dst->name = src->name;
5302 	dst->hash = src->hash;
5303 	dst->hash_gnu = src->hash_gnu;
5304 	dst->ventry = src->ventry;
5305 	dst->flags = src->flags;
5306 	dst->defobj_out = NULL;
5307 	dst->sym_out = NULL;
5308 	dst->lockstate = src->lockstate;
5309 }
5310 
5311 static int
5312 open_binary_fd(const char *argv0, bool search_in_path)
5313 {
5314 	char *pathenv, *pe, binpath[PATH_MAX];
5315 	int fd;
5316 
5317 	if (search_in_path && strchr(argv0, '/') == NULL) {
5318 		pathenv = getenv("PATH");
5319 		if (pathenv == NULL) {
5320 			rtld_printf("-p and no PATH environment variable\n");
5321 			rtld_die();
5322 		}
5323 		pathenv = strdup(pathenv);
5324 		if (pathenv == NULL) {
5325 			rtld_printf("Cannot allocate memory\n");
5326 			rtld_die();
5327 		}
5328 		fd = -1;
5329 		errno = ENOENT;
5330 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5331 			if (strlcpy(binpath, pe, sizeof(binpath)) >=
5332 			    sizeof(binpath))
5333 				continue;
5334 			if (binpath[0] != '\0' &&
5335 			    strlcat(binpath, "/", sizeof(binpath)) >=
5336 			    sizeof(binpath))
5337 				continue;
5338 			if (strlcat(binpath, argv0, sizeof(binpath)) >=
5339 			    sizeof(binpath))
5340 				continue;
5341 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5342 			if (fd != -1 || errno != ENOENT)
5343 				break;
5344 		}
5345 		free(pathenv);
5346 	} else {
5347 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5348 	}
5349 
5350 	if (fd == -1) {
5351 		rtld_printf("Opening %s: %s\n", argv0,
5352 		    rtld_strerror(errno));
5353 		rtld_die();
5354 	}
5355 	return (fd);
5356 }
5357 
5358 /*
5359  * Parse a set of command-line arguments.
5360  */
5361 static int
5362 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp)
5363 {
5364 	const char *arg;
5365 	int fd, i, j, arglen;
5366 	char opt;
5367 
5368 	dbg("Parsing command-line arguments");
5369 	*use_pathp = false;
5370 	*fdp = -1;
5371 
5372 	for (i = 1; i < argc; i++ ) {
5373 		arg = argv[i];
5374 		dbg("argv[%d]: '%s'", i, arg);
5375 
5376 		/*
5377 		 * rtld arguments end with an explicit "--" or with the first
5378 		 * non-prefixed argument.
5379 		 */
5380 		if (strcmp(arg, "--") == 0) {
5381 			i++;
5382 			break;
5383 		}
5384 		if (arg[0] != '-')
5385 			break;
5386 
5387 		/*
5388 		 * All other arguments are single-character options that can
5389 		 * be combined, so we need to search through `arg` for them.
5390 		 */
5391 		arglen = strlen(arg);
5392 		for (j = 1; j < arglen; j++) {
5393 			opt = arg[j];
5394 			if (opt == 'h') {
5395 				print_usage(argv[0]);
5396 				rtld_die();
5397 			} else if (opt == 'f') {
5398 			/*
5399 			 * -f XX can be used to specify a descriptor for the
5400 			 * binary named at the command line (i.e., the later
5401 			 * argument will specify the process name but the
5402 			 * descriptor is what will actually be executed)
5403 			 */
5404 			if (j != arglen - 1) {
5405 				/* -f must be the last option in, e.g., -abcf */
5406 				_rtld_error("invalid options: %s", arg);
5407 				rtld_die();
5408 			}
5409 			i++;
5410 			fd = parse_integer(argv[i]);
5411 			if (fd == -1) {
5412 				_rtld_error("invalid file descriptor: '%s'",
5413 				    argv[i]);
5414 				rtld_die();
5415 			}
5416 			*fdp = fd;
5417 			break;
5418 			} else if (opt == 'p') {
5419 				*use_pathp = true;
5420 			} else {
5421 				rtld_printf("invalid argument: '%s'\n", arg);
5422 				print_usage(argv[0]);
5423 				rtld_die();
5424 			}
5425 		}
5426 	}
5427 
5428 	return (i);
5429 }
5430 
5431 /*
5432  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
5433  */
5434 static int
5435 parse_integer(const char *str)
5436 {
5437 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5438 	const char *orig;
5439 	int n;
5440 	char c;
5441 
5442 	orig = str;
5443 	n = 0;
5444 	for (c = *str; c != '\0'; c = *++str) {
5445 		if (c < '0' || c > '9')
5446 			return (-1);
5447 
5448 		n *= RADIX;
5449 		n += c - '0';
5450 	}
5451 
5452 	/* Make sure we actually parsed something. */
5453 	if (str == orig)
5454 		return (-1);
5455 	return (n);
5456 }
5457 
5458 static void
5459 print_usage(const char *argv0)
5460 {
5461 
5462 	rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n"
5463 		"\n"
5464 		"Options:\n"
5465 		"  -h        Display this help message\n"
5466 		"  -p        Search in PATH for named binary\n"
5467 		"  -f <FD>   Execute <FD> instead of searching for <binary>\n"
5468 		"  --        End of RTLD options\n"
5469 		"  <binary>  Name of process to execute\n"
5470 		"  <args>    Arguments to the executed process\n", argv0);
5471 }
5472 
5473 /*
5474  * Overrides for libc_pic-provided functions.
5475  */
5476 
5477 int
5478 __getosreldate(void)
5479 {
5480 	size_t len;
5481 	int oid[2];
5482 	int error, osrel;
5483 
5484 	if (osreldate != 0)
5485 		return (osreldate);
5486 
5487 	oid[0] = CTL_KERN;
5488 	oid[1] = KERN_OSRELDATE;
5489 	osrel = 0;
5490 	len = sizeof(osrel);
5491 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5492 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5493 		osreldate = osrel;
5494 	return (osreldate);
5495 }
5496 
5497 void
5498 exit(int status)
5499 {
5500 
5501 	_exit(status);
5502 }
5503 
5504 void (*__cleanup)(void);
5505 int __isthreaded = 0;
5506 int _thread_autoinit_dummy_decl = 1;
5507 
5508 /*
5509  * No unresolved symbols for rtld.
5510  */
5511 void
5512 __pthread_cxa_finalize(struct dl_phdr_info *a)
5513 {
5514 }
5515 
5516 const char *
5517 rtld_strerror(int errnum)
5518 {
5519 
5520 	if (errnum < 0 || errnum >= sys_nerr)
5521 		return ("Unknown error");
5522 	return (sys_errlist[errnum]);
5523 }
5524