1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. 5 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>. 6 * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>. 7 * Copyright 2012 John Marino <draco@marino.st>. 8 * Copyright 2014-2017 The FreeBSD Foundation 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Konstantin Belousov 12 * under sponsorship from the FreeBSD Foundation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Dynamic linker for ELF. 37 * 38 * John Polstra <jdp@polstra.com>. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include <sys/param.h> 45 #include <sys/mount.h> 46 #include <sys/mman.h> 47 #include <sys/stat.h> 48 #include <sys/sysctl.h> 49 #include <sys/uio.h> 50 #include <sys/utsname.h> 51 #include <sys/ktrace.h> 52 53 #include <dlfcn.h> 54 #include <err.h> 55 #include <errno.h> 56 #include <fcntl.h> 57 #include <stdarg.h> 58 #include <stdio.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <unistd.h> 62 63 #include "debug.h" 64 #include "rtld.h" 65 #include "libmap.h" 66 #include "paths.h" 67 #include "rtld_tls.h" 68 #include "rtld_printf.h" 69 #include "rtld_utrace.h" 70 #include "notes.h" 71 72 /* Types. */ 73 typedef void (*func_ptr_type)(); 74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); 75 76 /* 77 * Function declarations. 78 */ 79 static const char *basename(const char *); 80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, 81 const Elf_Dyn **, const Elf_Dyn **); 82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, 83 const Elf_Dyn *); 84 static void digest_dynamic(Obj_Entry *, int); 85 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); 86 static Obj_Entry *dlcheck(void *); 87 static int dlclose_locked(void *, RtldLockState *); 88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, 89 int lo_flags, int mode, RtldLockState *lockstate); 90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); 91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); 92 static bool donelist_check(DoneList *, const Obj_Entry *); 93 static void errmsg_restore(char *); 94 static char *errmsg_save(void); 95 static void *fill_search_info(const char *, size_t, void *); 96 static char *find_library(const char *, const Obj_Entry *, int *); 97 static const char *gethints(bool); 98 static void hold_object(Obj_Entry *); 99 static void unhold_object(Obj_Entry *); 100 static void init_dag(Obj_Entry *); 101 static void init_marker(Obj_Entry *); 102 static void init_pagesizes(Elf_Auxinfo **aux_info); 103 static void init_rtld(caddr_t, Elf_Auxinfo **); 104 static void initlist_add_neededs(Needed_Entry *, Objlist *); 105 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *); 106 static void linkmap_add(Obj_Entry *); 107 static void linkmap_delete(Obj_Entry *); 108 static void load_filtees(Obj_Entry *, int flags, RtldLockState *); 109 static void unload_filtees(Obj_Entry *, RtldLockState *); 110 static int load_needed_objects(Obj_Entry *, int); 111 static int load_preload_objects(void); 112 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); 113 static void map_stacks_exec(RtldLockState *); 114 static int obj_enforce_relro(Obj_Entry *); 115 static Obj_Entry *obj_from_addr(const void *); 116 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); 117 static void objlist_call_init(Objlist *, RtldLockState *); 118 static void objlist_clear(Objlist *); 119 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); 120 static void objlist_init(Objlist *); 121 static void objlist_push_head(Objlist *, Obj_Entry *); 122 static void objlist_push_tail(Objlist *, Obj_Entry *); 123 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); 124 static void objlist_remove(Objlist *, Obj_Entry *); 125 static int open_binary_fd(const char *argv0, bool search_in_path); 126 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp); 127 static int parse_integer(const char *); 128 static void *path_enumerate(const char *, path_enum_proc, void *); 129 static void print_usage(const char *argv0); 130 static void release_object(Obj_Entry *); 131 static int relocate_object_dag(Obj_Entry *root, bool bind_now, 132 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); 133 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 134 int flags, RtldLockState *lockstate); 135 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, 136 RtldLockState *); 137 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, 138 int flags, RtldLockState *lockstate); 139 static int rtld_dirname(const char *, char *); 140 static int rtld_dirname_abs(const char *, char *); 141 static void *rtld_dlopen(const char *name, int fd, int mode); 142 static void rtld_exit(void); 143 static char *search_library_path(const char *, const char *, int *); 144 static char *search_library_pathfds(const char *, const char *, int *); 145 static const void **get_program_var_addr(const char *, RtldLockState *); 146 static void set_program_var(const char *, const void *); 147 static int symlook_default(SymLook *, const Obj_Entry *refobj); 148 static int symlook_global(SymLook *, DoneList *); 149 static void symlook_init_from_req(SymLook *, const SymLook *); 150 static int symlook_list(SymLook *, const Objlist *, DoneList *); 151 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); 152 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); 153 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); 154 static void trace_loaded_objects(Obj_Entry *); 155 static void unlink_object(Obj_Entry *); 156 static void unload_object(Obj_Entry *, RtldLockState *lockstate); 157 static void unref_dag(Obj_Entry *); 158 static void ref_dag(Obj_Entry *); 159 static char *origin_subst_one(Obj_Entry *, char *, const char *, 160 const char *, bool); 161 static char *origin_subst(Obj_Entry *, char *); 162 static bool obj_resolve_origin(Obj_Entry *obj); 163 static void preinit_main(void); 164 static int rtld_verify_versions(const Objlist *); 165 static int rtld_verify_object_versions(Obj_Entry *); 166 static void object_add_name(Obj_Entry *, const char *); 167 static int object_match_name(const Obj_Entry *, const char *); 168 static void ld_utrace_log(int, void *, void *, size_t, int, const char *); 169 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, 170 struct dl_phdr_info *phdr_info); 171 static uint32_t gnu_hash(const char *); 172 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, 173 const unsigned long); 174 175 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; 176 void _r_debug_postinit(struct link_map *) __noinline __exported; 177 178 int __sys_openat(int, const char *, int, ...); 179 180 /* 181 * Data declarations. 182 */ 183 static char *error_message; /* Message for dlerror(), or NULL */ 184 struct r_debug r_debug __exported; /* for GDB; */ 185 static bool libmap_disable; /* Disable libmap */ 186 static bool ld_loadfltr; /* Immediate filters processing */ 187 static char *libmap_override; /* Maps to use in addition to libmap.conf */ 188 static bool trust; /* False for setuid and setgid programs */ 189 static bool dangerous_ld_env; /* True if environment variables have been 190 used to affect the libraries loaded */ 191 bool ld_bind_not; /* Disable PLT update */ 192 static char *ld_bind_now; /* Environment variable for immediate binding */ 193 static char *ld_debug; /* Environment variable for debugging */ 194 static char *ld_library_path; /* Environment variable for search path */ 195 static char *ld_library_dirs; /* Environment variable for library descriptors */ 196 static char *ld_preload; /* Environment variable for libraries to 197 load first */ 198 static char *ld_elf_hints_path; /* Environment variable for alternative hints path */ 199 static char *ld_tracing; /* Called from ldd to print libs */ 200 static char *ld_utrace; /* Use utrace() to log events. */ 201 static struct obj_entry_q obj_list; /* Queue of all loaded objects */ 202 static Obj_Entry *obj_main; /* The main program shared object */ 203 static Obj_Entry obj_rtld; /* The dynamic linker shared object */ 204 static unsigned int obj_count; /* Number of objects in obj_list */ 205 static unsigned int obj_loads; /* Number of loads of objects (gen count) */ 206 207 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ 208 STAILQ_HEAD_INITIALIZER(list_global); 209 static Objlist list_main = /* Objects loaded at program startup */ 210 STAILQ_HEAD_INITIALIZER(list_main); 211 static Objlist list_fini = /* Objects needing fini() calls */ 212 STAILQ_HEAD_INITIALIZER(list_fini); 213 214 Elf_Sym sym_zero; /* For resolving undefined weak refs. */ 215 216 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); 217 218 extern Elf_Dyn _DYNAMIC; 219 #pragma weak _DYNAMIC 220 221 int dlclose(void *) __exported; 222 char *dlerror(void) __exported; 223 void *dlopen(const char *, int) __exported; 224 void *fdlopen(int, int) __exported; 225 void *dlsym(void *, const char *) __exported; 226 dlfunc_t dlfunc(void *, const char *) __exported; 227 void *dlvsym(void *, const char *, const char *) __exported; 228 int dladdr(const void *, Dl_info *) __exported; 229 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), 230 void (*)(void *), void (*)(void *), void (*)(void *)) __exported; 231 int dlinfo(void *, int , void *) __exported; 232 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; 233 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; 234 int _rtld_get_stack_prot(void) __exported; 235 int _rtld_is_dlopened(void *) __exported; 236 void _rtld_error(const char *, ...) __exported; 237 238 int npagesizes, osreldate; 239 size_t *pagesizes; 240 241 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC; 242 static int max_stack_flags; 243 244 /* 245 * Global declarations normally provided by crt1. The dynamic linker is 246 * not built with crt1, so we have to provide them ourselves. 247 */ 248 char *__progname; 249 char **environ; 250 251 /* 252 * Used to pass argc, argv to init functions. 253 */ 254 int main_argc; 255 char **main_argv; 256 257 /* 258 * Globals to control TLS allocation. 259 */ 260 size_t tls_last_offset; /* Static TLS offset of last module */ 261 size_t tls_last_size; /* Static TLS size of last module */ 262 size_t tls_static_space; /* Static TLS space allocated */ 263 size_t tls_static_max_align; 264 int tls_dtv_generation = 1; /* Used to detect when dtv size changes */ 265 int tls_max_index = 1; /* Largest module index allocated */ 266 267 bool ld_library_path_rpath = false; 268 269 /* 270 * Globals for path names, and such 271 */ 272 char *ld_elf_hints_default = _PATH_ELF_HINTS; 273 char *ld_path_libmap_conf = _PATH_LIBMAP_CONF; 274 char *ld_path_rtld = _PATH_RTLD; 275 char *ld_standard_library_path = STANDARD_LIBRARY_PATH; 276 char *ld_env_prefix = LD_; 277 278 /* 279 * Fill in a DoneList with an allocation large enough to hold all of 280 * the currently-loaded objects. Keep this as a macro since it calls 281 * alloca and we want that to occur within the scope of the caller. 282 */ 283 #define donelist_init(dlp) \ 284 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ 285 assert((dlp)->objs != NULL), \ 286 (dlp)->num_alloc = obj_count, \ 287 (dlp)->num_used = 0) 288 289 #define LD_UTRACE(e, h, mb, ms, r, n) do { \ 290 if (ld_utrace != NULL) \ 291 ld_utrace_log(e, h, mb, ms, r, n); \ 292 } while (0) 293 294 static void 295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, 296 int refcnt, const char *name) 297 { 298 struct utrace_rtld ut; 299 static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG; 300 301 memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig)); 302 ut.event = event; 303 ut.handle = handle; 304 ut.mapbase = mapbase; 305 ut.mapsize = mapsize; 306 ut.refcnt = refcnt; 307 bzero(ut.name, sizeof(ut.name)); 308 if (name) 309 strlcpy(ut.name, name, sizeof(ut.name)); 310 utrace(&ut, sizeof(ut)); 311 } 312 313 #ifdef RTLD_VARIANT_ENV_NAMES 314 /* 315 * construct the env variable based on the type of binary that's 316 * running. 317 */ 318 static inline const char * 319 _LD(const char *var) 320 { 321 static char buffer[128]; 322 323 strlcpy(buffer, ld_env_prefix, sizeof(buffer)); 324 strlcat(buffer, var, sizeof(buffer)); 325 return (buffer); 326 } 327 #else 328 #define _LD(x) LD_ x 329 #endif 330 331 /* 332 * Main entry point for dynamic linking. The first argument is the 333 * stack pointer. The stack is expected to be laid out as described 334 * in the SVR4 ABI specification, Intel 386 Processor Supplement. 335 * Specifically, the stack pointer points to a word containing 336 * ARGC. Following that in the stack is a null-terminated sequence 337 * of pointers to argument strings. Then comes a null-terminated 338 * sequence of pointers to environment strings. Finally, there is a 339 * sequence of "auxiliary vector" entries. 340 * 341 * The second argument points to a place to store the dynamic linker's 342 * exit procedure pointer and the third to a place to store the main 343 * program's object. 344 * 345 * The return value is the main program's entry point. 346 */ 347 func_ptr_type 348 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) 349 { 350 Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT]; 351 Objlist_Entry *entry; 352 Obj_Entry *last_interposer, *obj, *preload_tail; 353 const Elf_Phdr *phdr; 354 Objlist initlist; 355 RtldLockState lockstate; 356 struct stat st; 357 Elf_Addr *argcp; 358 char **argv, *argv0, **env, **envp, *kexecpath, *library_path_rpath; 359 caddr_t imgentry; 360 char buf[MAXPATHLEN]; 361 int argc, fd, i, phnum, rtld_argc; 362 bool dir_enable, explicit_fd, search_in_path; 363 364 /* 365 * On entry, the dynamic linker itself has not been relocated yet. 366 * Be very careful not to reference any global data until after 367 * init_rtld has returned. It is OK to reference file-scope statics 368 * and string constants, and to call static and global functions. 369 */ 370 371 /* Find the auxiliary vector on the stack. */ 372 argcp = sp; 373 argc = *sp++; 374 argv = (char **) sp; 375 sp += argc + 1; /* Skip over arguments and NULL terminator */ 376 env = (char **) sp; 377 while (*sp++ != 0) /* Skip over environment, and NULL terminator */ 378 ; 379 aux = (Elf_Auxinfo *) sp; 380 381 /* Digest the auxiliary vector. */ 382 for (i = 0; i < AT_COUNT; i++) 383 aux_info[i] = NULL; 384 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { 385 if (auxp->a_type < AT_COUNT) 386 aux_info[auxp->a_type] = auxp; 387 } 388 389 /* Initialize and relocate ourselves. */ 390 assert(aux_info[AT_BASE] != NULL); 391 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); 392 393 __progname = obj_rtld.path; 394 argv0 = argv[0] != NULL ? argv[0] : "(null)"; 395 environ = env; 396 main_argc = argc; 397 main_argv = argv; 398 399 trust = !issetugid(); 400 401 md_abi_variant_hook(aux_info); 402 403 fd = -1; 404 if (aux_info[AT_EXECFD] != NULL) { 405 fd = aux_info[AT_EXECFD]->a_un.a_val; 406 } else { 407 assert(aux_info[AT_PHDR] != NULL); 408 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr; 409 if (phdr == obj_rtld.phdr) { 410 if (!trust) { 411 rtld_printf("Tainted process refusing to run binary %s\n", 412 argv0); 413 rtld_die(); 414 } 415 dbg("opening main program in direct exec mode"); 416 if (argc >= 2) { 417 rtld_argc = parse_args(argv, argc, &search_in_path, &fd); 418 argv0 = argv[rtld_argc]; 419 explicit_fd = (fd != -1); 420 if (!explicit_fd) 421 fd = open_binary_fd(argv0, search_in_path); 422 if (fstat(fd, &st) == -1) { 423 _rtld_error("failed to fstat FD %d (%s): %s", fd, 424 explicit_fd ? "user-provided descriptor" : argv0, 425 rtld_strerror(errno)); 426 rtld_die(); 427 } 428 429 /* 430 * Rough emulation of the permission checks done by 431 * execve(2), only Unix DACs are checked, ACLs are 432 * ignored. Preserve the semantic of disabling owner 433 * to execute if owner x bit is cleared, even if 434 * others x bit is enabled. 435 * mmap(2) does not allow to mmap with PROT_EXEC if 436 * binary' file comes from noexec mount. We cannot 437 * set VV_TEXT on the binary. 438 */ 439 dir_enable = false; 440 if (st.st_uid == geteuid()) { 441 if ((st.st_mode & S_IXUSR) != 0) 442 dir_enable = true; 443 } else if (st.st_gid == getegid()) { 444 if ((st.st_mode & S_IXGRP) != 0) 445 dir_enable = true; 446 } else if ((st.st_mode & S_IXOTH) != 0) { 447 dir_enable = true; 448 } 449 if (!dir_enable) { 450 rtld_printf("No execute permission for binary %s\n", 451 argv0); 452 rtld_die(); 453 } 454 455 /* 456 * For direct exec mode, argv[0] is the interpreter 457 * name, we must remove it and shift arguments left 458 * before invoking binary main. Since stack layout 459 * places environment pointers and aux vectors right 460 * after the terminating NULL, we must shift 461 * environment and aux as well. 462 */ 463 main_argc = argc - rtld_argc; 464 for (i = 0; i <= main_argc; i++) 465 argv[i] = argv[i + rtld_argc]; 466 *argcp -= rtld_argc; 467 environ = env = envp = argv + main_argc + 1; 468 do { 469 *envp = *(envp + rtld_argc); 470 envp++; 471 } while (*envp != NULL); 472 aux = auxp = (Elf_Auxinfo *)envp; 473 auxpf = (Elf_Auxinfo *)(envp + rtld_argc); 474 for (;; auxp++, auxpf++) { 475 *auxp = *auxpf; 476 if (auxp->a_type == AT_NULL) 477 break; 478 } 479 } else { 480 rtld_printf("no binary\n"); 481 rtld_die(); 482 } 483 } 484 } 485 486 ld_bind_now = getenv(_LD("BIND_NOW")); 487 488 /* 489 * If the process is tainted, then we un-set the dangerous environment 490 * variables. The process will be marked as tainted until setuid(2) 491 * is called. If any child process calls setuid(2) we do not want any 492 * future processes to honor the potentially un-safe variables. 493 */ 494 if (!trust) { 495 if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) || 496 unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) || 497 unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("BIND_NOT")) || 498 unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) || 499 unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) { 500 _rtld_error("environment corrupt; aborting"); 501 rtld_die(); 502 } 503 } 504 ld_debug = getenv(_LD("DEBUG")); 505 if (ld_bind_now == NULL) 506 ld_bind_not = getenv(_LD("BIND_NOT")) != NULL; 507 libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL; 508 libmap_override = getenv(_LD("LIBMAP")); 509 ld_library_path = getenv(_LD("LIBRARY_PATH")); 510 ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS")); 511 ld_preload = getenv(_LD("PRELOAD")); 512 ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH")); 513 ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL; 514 library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH")); 515 if (library_path_rpath != NULL) { 516 if (library_path_rpath[0] == 'y' || 517 library_path_rpath[0] == 'Y' || 518 library_path_rpath[0] == '1') 519 ld_library_path_rpath = true; 520 else 521 ld_library_path_rpath = false; 522 } 523 dangerous_ld_env = libmap_disable || (libmap_override != NULL) || 524 (ld_library_path != NULL) || (ld_preload != NULL) || 525 (ld_elf_hints_path != NULL) || ld_loadfltr; 526 ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS")); 527 ld_utrace = getenv(_LD("UTRACE")); 528 529 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0) 530 ld_elf_hints_path = ld_elf_hints_default; 531 532 if (ld_debug != NULL && *ld_debug != '\0') 533 debug = 1; 534 dbg("%s is initialized, base address = %p", __progname, 535 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); 536 dbg("RTLD dynamic = %p", obj_rtld.dynamic); 537 dbg("RTLD pltgot = %p", obj_rtld.pltgot); 538 539 dbg("initializing thread locks"); 540 lockdflt_init(); 541 542 /* 543 * Load the main program, or process its program header if it is 544 * already loaded. 545 */ 546 if (fd != -1) { /* Load the main program. */ 547 dbg("loading main program"); 548 obj_main = map_object(fd, argv0, NULL); 549 close(fd); 550 if (obj_main == NULL) 551 rtld_die(); 552 max_stack_flags = obj_main->stack_flags; 553 } else { /* Main program already loaded. */ 554 dbg("processing main program's program header"); 555 assert(aux_info[AT_PHDR] != NULL); 556 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; 557 assert(aux_info[AT_PHNUM] != NULL); 558 phnum = aux_info[AT_PHNUM]->a_un.a_val; 559 assert(aux_info[AT_PHENT] != NULL); 560 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); 561 assert(aux_info[AT_ENTRY] != NULL); 562 imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; 563 if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL) 564 rtld_die(); 565 } 566 567 if (aux_info[AT_EXECPATH] != NULL && fd == -1) { 568 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; 569 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); 570 if (kexecpath[0] == '/') 571 obj_main->path = kexecpath; 572 else if (getcwd(buf, sizeof(buf)) == NULL || 573 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || 574 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) 575 obj_main->path = xstrdup(argv0); 576 else 577 obj_main->path = xstrdup(buf); 578 } else { 579 dbg("No AT_EXECPATH or direct exec"); 580 obj_main->path = xstrdup(argv0); 581 } 582 dbg("obj_main path %s", obj_main->path); 583 obj_main->mainprog = true; 584 585 if (aux_info[AT_STACKPROT] != NULL && 586 aux_info[AT_STACKPROT]->a_un.a_val != 0) 587 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; 588 589 #ifndef COMPAT_32BIT 590 /* 591 * Get the actual dynamic linker pathname from the executable if 592 * possible. (It should always be possible.) That ensures that 593 * gdb will find the right dynamic linker even if a non-standard 594 * one is being used. 595 */ 596 if (obj_main->interp != NULL && 597 strcmp(obj_main->interp, obj_rtld.path) != 0) { 598 free(obj_rtld.path); 599 obj_rtld.path = xstrdup(obj_main->interp); 600 __progname = obj_rtld.path; 601 } 602 #endif 603 604 digest_dynamic(obj_main, 0); 605 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", 606 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, 607 obj_main->dynsymcount); 608 609 linkmap_add(obj_main); 610 linkmap_add(&obj_rtld); 611 612 /* Link the main program into the list of objects. */ 613 TAILQ_INSERT_HEAD(&obj_list, obj_main, next); 614 obj_count++; 615 obj_loads++; 616 617 /* Initialize a fake symbol for resolving undefined weak references. */ 618 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); 619 sym_zero.st_shndx = SHN_UNDEF; 620 sym_zero.st_value = -(uintptr_t)obj_main->relocbase; 621 622 if (!libmap_disable) 623 libmap_disable = (bool)lm_init(libmap_override); 624 625 dbg("loading LD_PRELOAD libraries"); 626 if (load_preload_objects() == -1) 627 rtld_die(); 628 preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); 629 630 dbg("loading needed objects"); 631 if (load_needed_objects(obj_main, 0) == -1) 632 rtld_die(); 633 634 /* Make a list of all objects loaded at startup. */ 635 last_interposer = obj_main; 636 TAILQ_FOREACH(obj, &obj_list, next) { 637 if (obj->marker) 638 continue; 639 if (obj->z_interpose && obj != obj_main) { 640 objlist_put_after(&list_main, last_interposer, obj); 641 last_interposer = obj; 642 } else { 643 objlist_push_tail(&list_main, obj); 644 } 645 obj->refcount++; 646 } 647 648 dbg("checking for required versions"); 649 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) 650 rtld_die(); 651 652 if (ld_tracing) { /* We're done */ 653 trace_loaded_objects(obj_main); 654 exit(0); 655 } 656 657 if (getenv(_LD("DUMP_REL_PRE")) != NULL) { 658 dump_relocations(obj_main); 659 exit (0); 660 } 661 662 /* 663 * Processing tls relocations requires having the tls offsets 664 * initialized. Prepare offsets before starting initial 665 * relocation processing. 666 */ 667 dbg("initializing initial thread local storage offsets"); 668 STAILQ_FOREACH(entry, &list_main, link) { 669 /* 670 * Allocate all the initial objects out of the static TLS 671 * block even if they didn't ask for it. 672 */ 673 allocate_tls_offset(entry->obj); 674 } 675 676 if (relocate_objects(obj_main, 677 ld_bind_now != NULL && *ld_bind_now != '\0', 678 &obj_rtld, SYMLOOK_EARLY, NULL) == -1) 679 rtld_die(); 680 681 dbg("doing copy relocations"); 682 if (do_copy_relocations(obj_main) == -1) 683 rtld_die(); 684 685 dbg("enforcing main obj relro"); 686 if (obj_enforce_relro(obj_main) == -1) 687 rtld_die(); 688 689 if (getenv(_LD("DUMP_REL_POST")) != NULL) { 690 dump_relocations(obj_main); 691 exit (0); 692 } 693 694 /* 695 * Setup TLS for main thread. This must be done after the 696 * relocations are processed, since tls initialization section 697 * might be the subject for relocations. 698 */ 699 dbg("initializing initial thread local storage"); 700 allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list))); 701 702 dbg("initializing key program variables"); 703 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); 704 set_program_var("environ", env); 705 set_program_var("__elf_aux_vector", aux); 706 707 /* Make a list of init functions to call. */ 708 objlist_init(&initlist); 709 initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)), 710 preload_tail, &initlist); 711 712 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ 713 714 map_stacks_exec(NULL); 715 ifunc_init(aux); 716 717 dbg("resolving ifuncs"); 718 if (resolve_objects_ifunc(obj_main, 719 ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY, 720 NULL) == -1) 721 rtld_die(); 722 723 if (!obj_main->crt_no_init) { 724 /* 725 * Make sure we don't call the main program's init and fini 726 * functions for binaries linked with old crt1 which calls 727 * _init itself. 728 */ 729 obj_main->init = obj_main->fini = (Elf_Addr)NULL; 730 obj_main->preinit_array = obj_main->init_array = 731 obj_main->fini_array = (Elf_Addr)NULL; 732 } 733 734 /* 735 * Execute MD initializers required before we call the objects' 736 * init functions. 737 */ 738 pre_init(); 739 740 wlock_acquire(rtld_bind_lock, &lockstate); 741 if (obj_main->crt_no_init) 742 preinit_main(); 743 objlist_call_init(&initlist, &lockstate); 744 _r_debug_postinit(&obj_main->linkmap); 745 objlist_clear(&initlist); 746 dbg("loading filtees"); 747 TAILQ_FOREACH(obj, &obj_list, next) { 748 if (obj->marker) 749 continue; 750 if (ld_loadfltr || obj->z_loadfltr) 751 load_filtees(obj, 0, &lockstate); 752 } 753 lock_release(rtld_bind_lock, &lockstate); 754 755 dbg("transferring control to program entry point = %p", obj_main->entry); 756 757 /* Return the exit procedure and the program entry point. */ 758 *exit_proc = rtld_exit; 759 *objp = obj_main; 760 return (func_ptr_type) obj_main->entry; 761 } 762 763 void * 764 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) 765 { 766 void *ptr; 767 Elf_Addr target; 768 769 ptr = (void *)make_function_pointer(def, obj); 770 target = call_ifunc_resolver(ptr); 771 return ((void *)target); 772 } 773 774 /* 775 * NB: MIPS uses a private version of this function (_mips_rtld_bind). 776 * Changes to this function should be applied there as well. 777 */ 778 Elf_Addr 779 _rtld_bind(Obj_Entry *obj, Elf_Size reloff) 780 { 781 const Elf_Rel *rel; 782 const Elf_Sym *def; 783 const Obj_Entry *defobj; 784 Elf_Addr *where; 785 Elf_Addr target; 786 RtldLockState lockstate; 787 788 rlock_acquire(rtld_bind_lock, &lockstate); 789 if (sigsetjmp(lockstate.env, 0) != 0) 790 lock_upgrade(rtld_bind_lock, &lockstate); 791 if (obj->pltrel) 792 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); 793 else 794 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); 795 796 where = (Elf_Addr *) (obj->relocbase + rel->r_offset); 797 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT, 798 NULL, &lockstate); 799 if (def == NULL) 800 rtld_die(); 801 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 802 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); 803 else 804 target = (Elf_Addr)(defobj->relocbase + def->st_value); 805 806 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", 807 defobj->strtab + def->st_name, basename(obj->path), 808 (void *)target, basename(defobj->path)); 809 810 /* 811 * Write the new contents for the jmpslot. Note that depending on 812 * architecture, the value which we need to return back to the 813 * lazy binding trampoline may or may not be the target 814 * address. The value returned from reloc_jmpslot() is the value 815 * that the trampoline needs. 816 */ 817 target = reloc_jmpslot(where, target, defobj, obj, rel); 818 lock_release(rtld_bind_lock, &lockstate); 819 return target; 820 } 821 822 /* 823 * Error reporting function. Use it like printf. If formats the message 824 * into a buffer, and sets things up so that the next call to dlerror() 825 * will return the message. 826 */ 827 void 828 _rtld_error(const char *fmt, ...) 829 { 830 static char buf[512]; 831 va_list ap; 832 833 va_start(ap, fmt); 834 rtld_vsnprintf(buf, sizeof buf, fmt, ap); 835 error_message = buf; 836 va_end(ap); 837 LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, error_message); 838 } 839 840 /* 841 * Return a dynamically-allocated copy of the current error message, if any. 842 */ 843 static char * 844 errmsg_save(void) 845 { 846 return error_message == NULL ? NULL : xstrdup(error_message); 847 } 848 849 /* 850 * Restore the current error message from a copy which was previously saved 851 * by errmsg_save(). The copy is freed. 852 */ 853 static void 854 errmsg_restore(char *saved_msg) 855 { 856 if (saved_msg == NULL) 857 error_message = NULL; 858 else { 859 _rtld_error("%s", saved_msg); 860 free(saved_msg); 861 } 862 } 863 864 static const char * 865 basename(const char *name) 866 { 867 const char *p = strrchr(name, '/'); 868 return p != NULL ? p + 1 : name; 869 } 870 871 static struct utsname uts; 872 873 static char * 874 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, 875 const char *subst, bool may_free) 876 { 877 char *p, *p1, *res, *resp; 878 int subst_len, kw_len, subst_count, old_len, new_len; 879 880 kw_len = strlen(kw); 881 882 /* 883 * First, count the number of the keyword occurrences, to 884 * preallocate the final string. 885 */ 886 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { 887 p1 = strstr(p, kw); 888 if (p1 == NULL) 889 break; 890 } 891 892 /* 893 * If the keyword is not found, just return. 894 * 895 * Return non-substituted string if resolution failed. We 896 * cannot do anything more reasonable, the failure mode of the 897 * caller is unresolved library anyway. 898 */ 899 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj))) 900 return (may_free ? real : xstrdup(real)); 901 if (obj != NULL) 902 subst = obj->origin_path; 903 904 /* 905 * There is indeed something to substitute. Calculate the 906 * length of the resulting string, and allocate it. 907 */ 908 subst_len = strlen(subst); 909 old_len = strlen(real); 910 new_len = old_len + (subst_len - kw_len) * subst_count; 911 res = xmalloc(new_len + 1); 912 913 /* 914 * Now, execute the substitution loop. 915 */ 916 for (p = real, resp = res, *resp = '\0';;) { 917 p1 = strstr(p, kw); 918 if (p1 != NULL) { 919 /* Copy the prefix before keyword. */ 920 memcpy(resp, p, p1 - p); 921 resp += p1 - p; 922 /* Keyword replacement. */ 923 memcpy(resp, subst, subst_len); 924 resp += subst_len; 925 *resp = '\0'; 926 p = p1 + kw_len; 927 } else 928 break; 929 } 930 931 /* Copy to the end of string and finish. */ 932 strcat(resp, p); 933 if (may_free) 934 free(real); 935 return (res); 936 } 937 938 static char * 939 origin_subst(Obj_Entry *obj, char *real) 940 { 941 char *res1, *res2, *res3, *res4; 942 943 if (obj == NULL || !trust) 944 return (xstrdup(real)); 945 if (uts.sysname[0] == '\0') { 946 if (uname(&uts) != 0) { 947 _rtld_error("utsname failed: %d", errno); 948 return (NULL); 949 } 950 } 951 res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false); 952 res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true); 953 res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true); 954 res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true); 955 return (res4); 956 } 957 958 void 959 rtld_die(void) 960 { 961 const char *msg = dlerror(); 962 963 if (msg == NULL) 964 msg = "Fatal error"; 965 rtld_fdputstr(STDERR_FILENO, msg); 966 rtld_fdputchar(STDERR_FILENO, '\n'); 967 _exit(1); 968 } 969 970 /* 971 * Process a shared object's DYNAMIC section, and save the important 972 * information in its Obj_Entry structure. 973 */ 974 static void 975 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, 976 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) 977 { 978 const Elf_Dyn *dynp; 979 Needed_Entry **needed_tail = &obj->needed; 980 Needed_Entry **needed_filtees_tail = &obj->needed_filtees; 981 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; 982 const Elf_Hashelt *hashtab; 983 const Elf32_Word *hashval; 984 Elf32_Word bkt, nmaskwords; 985 int bloom_size32; 986 int plttype = DT_REL; 987 988 *dyn_rpath = NULL; 989 *dyn_soname = NULL; 990 *dyn_runpath = NULL; 991 992 obj->bind_now = false; 993 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { 994 switch (dynp->d_tag) { 995 996 case DT_REL: 997 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); 998 break; 999 1000 case DT_RELSZ: 1001 obj->relsize = dynp->d_un.d_val; 1002 break; 1003 1004 case DT_RELENT: 1005 assert(dynp->d_un.d_val == sizeof(Elf_Rel)); 1006 break; 1007 1008 case DT_JMPREL: 1009 obj->pltrel = (const Elf_Rel *) 1010 (obj->relocbase + dynp->d_un.d_ptr); 1011 break; 1012 1013 case DT_PLTRELSZ: 1014 obj->pltrelsize = dynp->d_un.d_val; 1015 break; 1016 1017 case DT_RELA: 1018 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); 1019 break; 1020 1021 case DT_RELASZ: 1022 obj->relasize = dynp->d_un.d_val; 1023 break; 1024 1025 case DT_RELAENT: 1026 assert(dynp->d_un.d_val == sizeof(Elf_Rela)); 1027 break; 1028 1029 case DT_PLTREL: 1030 plttype = dynp->d_un.d_val; 1031 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); 1032 break; 1033 1034 case DT_SYMTAB: 1035 obj->symtab = (const Elf_Sym *) 1036 (obj->relocbase + dynp->d_un.d_ptr); 1037 break; 1038 1039 case DT_SYMENT: 1040 assert(dynp->d_un.d_val == sizeof(Elf_Sym)); 1041 break; 1042 1043 case DT_STRTAB: 1044 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); 1045 break; 1046 1047 case DT_STRSZ: 1048 obj->strsize = dynp->d_un.d_val; 1049 break; 1050 1051 case DT_VERNEED: 1052 obj->verneed = (const Elf_Verneed *) (obj->relocbase + 1053 dynp->d_un.d_val); 1054 break; 1055 1056 case DT_VERNEEDNUM: 1057 obj->verneednum = dynp->d_un.d_val; 1058 break; 1059 1060 case DT_VERDEF: 1061 obj->verdef = (const Elf_Verdef *) (obj->relocbase + 1062 dynp->d_un.d_val); 1063 break; 1064 1065 case DT_VERDEFNUM: 1066 obj->verdefnum = dynp->d_un.d_val; 1067 break; 1068 1069 case DT_VERSYM: 1070 obj->versyms = (const Elf_Versym *)(obj->relocbase + 1071 dynp->d_un.d_val); 1072 break; 1073 1074 case DT_HASH: 1075 { 1076 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1077 dynp->d_un.d_ptr); 1078 obj->nbuckets = hashtab[0]; 1079 obj->nchains = hashtab[1]; 1080 obj->buckets = hashtab + 2; 1081 obj->chains = obj->buckets + obj->nbuckets; 1082 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && 1083 obj->buckets != NULL; 1084 } 1085 break; 1086 1087 case DT_GNU_HASH: 1088 { 1089 hashtab = (const Elf_Hashelt *)(obj->relocbase + 1090 dynp->d_un.d_ptr); 1091 obj->nbuckets_gnu = hashtab[0]; 1092 obj->symndx_gnu = hashtab[1]; 1093 nmaskwords = hashtab[2]; 1094 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; 1095 obj->maskwords_bm_gnu = nmaskwords - 1; 1096 obj->shift2_gnu = hashtab[3]; 1097 obj->bloom_gnu = (Elf_Addr *) (hashtab + 4); 1098 obj->buckets_gnu = hashtab + 4 + bloom_size32; 1099 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - 1100 obj->symndx_gnu; 1101 /* Number of bitmask words is required to be power of 2 */ 1102 obj->valid_hash_gnu = powerof2(nmaskwords) && 1103 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; 1104 } 1105 break; 1106 1107 case DT_NEEDED: 1108 if (!obj->rtld) { 1109 Needed_Entry *nep = NEW(Needed_Entry); 1110 nep->name = dynp->d_un.d_val; 1111 nep->obj = NULL; 1112 nep->next = NULL; 1113 1114 *needed_tail = nep; 1115 needed_tail = &nep->next; 1116 } 1117 break; 1118 1119 case DT_FILTER: 1120 if (!obj->rtld) { 1121 Needed_Entry *nep = NEW(Needed_Entry); 1122 nep->name = dynp->d_un.d_val; 1123 nep->obj = NULL; 1124 nep->next = NULL; 1125 1126 *needed_filtees_tail = nep; 1127 needed_filtees_tail = &nep->next; 1128 } 1129 break; 1130 1131 case DT_AUXILIARY: 1132 if (!obj->rtld) { 1133 Needed_Entry *nep = NEW(Needed_Entry); 1134 nep->name = dynp->d_un.d_val; 1135 nep->obj = NULL; 1136 nep->next = NULL; 1137 1138 *needed_aux_filtees_tail = nep; 1139 needed_aux_filtees_tail = &nep->next; 1140 } 1141 break; 1142 1143 case DT_PLTGOT: 1144 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); 1145 break; 1146 1147 case DT_TEXTREL: 1148 obj->textrel = true; 1149 break; 1150 1151 case DT_SYMBOLIC: 1152 obj->symbolic = true; 1153 break; 1154 1155 case DT_RPATH: 1156 /* 1157 * We have to wait until later to process this, because we 1158 * might not have gotten the address of the string table yet. 1159 */ 1160 *dyn_rpath = dynp; 1161 break; 1162 1163 case DT_SONAME: 1164 *dyn_soname = dynp; 1165 break; 1166 1167 case DT_RUNPATH: 1168 *dyn_runpath = dynp; 1169 break; 1170 1171 case DT_INIT: 1172 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1173 break; 1174 1175 case DT_PREINIT_ARRAY: 1176 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1177 break; 1178 1179 case DT_PREINIT_ARRAYSZ: 1180 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1181 break; 1182 1183 case DT_INIT_ARRAY: 1184 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1185 break; 1186 1187 case DT_INIT_ARRAYSZ: 1188 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1189 break; 1190 1191 case DT_FINI: 1192 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1193 break; 1194 1195 case DT_FINI_ARRAY: 1196 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); 1197 break; 1198 1199 case DT_FINI_ARRAYSZ: 1200 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); 1201 break; 1202 1203 /* 1204 * Don't process DT_DEBUG on MIPS as the dynamic section 1205 * is mapped read-only. DT_MIPS_RLD_MAP is used instead. 1206 */ 1207 1208 #ifndef __mips__ 1209 case DT_DEBUG: 1210 if (!early) 1211 dbg("Filling in DT_DEBUG entry"); 1212 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; 1213 break; 1214 #endif 1215 1216 case DT_FLAGS: 1217 if (dynp->d_un.d_val & DF_ORIGIN) 1218 obj->z_origin = true; 1219 if (dynp->d_un.d_val & DF_SYMBOLIC) 1220 obj->symbolic = true; 1221 if (dynp->d_un.d_val & DF_TEXTREL) 1222 obj->textrel = true; 1223 if (dynp->d_un.d_val & DF_BIND_NOW) 1224 obj->bind_now = true; 1225 /*if (dynp->d_un.d_val & DF_STATIC_TLS) 1226 ;*/ 1227 break; 1228 #ifdef __mips__ 1229 case DT_MIPS_LOCAL_GOTNO: 1230 obj->local_gotno = dynp->d_un.d_val; 1231 break; 1232 1233 case DT_MIPS_SYMTABNO: 1234 obj->symtabno = dynp->d_un.d_val; 1235 break; 1236 1237 case DT_MIPS_GOTSYM: 1238 obj->gotsym = dynp->d_un.d_val; 1239 break; 1240 1241 case DT_MIPS_RLD_MAP: 1242 *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug; 1243 break; 1244 1245 case DT_MIPS_PLTGOT: 1246 obj->mips_pltgot = (Elf_Addr *) (obj->relocbase + 1247 dynp->d_un.d_ptr); 1248 break; 1249 1250 #endif 1251 1252 #ifdef __powerpc64__ 1253 case DT_PPC64_GLINK: 1254 obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); 1255 break; 1256 #endif 1257 1258 case DT_FLAGS_1: 1259 if (dynp->d_un.d_val & DF_1_NOOPEN) 1260 obj->z_noopen = true; 1261 if (dynp->d_un.d_val & DF_1_ORIGIN) 1262 obj->z_origin = true; 1263 if (dynp->d_un.d_val & DF_1_GLOBAL) 1264 obj->z_global = true; 1265 if (dynp->d_un.d_val & DF_1_BIND_NOW) 1266 obj->bind_now = true; 1267 if (dynp->d_un.d_val & DF_1_NODELETE) 1268 obj->z_nodelete = true; 1269 if (dynp->d_un.d_val & DF_1_LOADFLTR) 1270 obj->z_loadfltr = true; 1271 if (dynp->d_un.d_val & DF_1_INTERPOSE) 1272 obj->z_interpose = true; 1273 if (dynp->d_un.d_val & DF_1_NODEFLIB) 1274 obj->z_nodeflib = true; 1275 break; 1276 1277 default: 1278 if (!early) { 1279 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, 1280 (long)dynp->d_tag); 1281 } 1282 break; 1283 } 1284 } 1285 1286 obj->traced = false; 1287 1288 if (plttype == DT_RELA) { 1289 obj->pltrela = (const Elf_Rela *) obj->pltrel; 1290 obj->pltrel = NULL; 1291 obj->pltrelasize = obj->pltrelsize; 1292 obj->pltrelsize = 0; 1293 } 1294 1295 /* Determine size of dynsym table (equal to nchains of sysv hash) */ 1296 if (obj->valid_hash_sysv) 1297 obj->dynsymcount = obj->nchains; 1298 else if (obj->valid_hash_gnu) { 1299 obj->dynsymcount = 0; 1300 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { 1301 if (obj->buckets_gnu[bkt] == 0) 1302 continue; 1303 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; 1304 do 1305 obj->dynsymcount++; 1306 while ((*hashval++ & 1u) == 0); 1307 } 1308 obj->dynsymcount += obj->symndx_gnu; 1309 } 1310 } 1311 1312 static bool 1313 obj_resolve_origin(Obj_Entry *obj) 1314 { 1315 1316 if (obj->origin_path != NULL) 1317 return (true); 1318 obj->origin_path = xmalloc(PATH_MAX); 1319 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1); 1320 } 1321 1322 static void 1323 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, 1324 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) 1325 { 1326 1327 if (obj->z_origin && !obj_resolve_origin(obj)) 1328 rtld_die(); 1329 1330 if (dyn_runpath != NULL) { 1331 obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val; 1332 obj->runpath = origin_subst(obj, obj->runpath); 1333 } else if (dyn_rpath != NULL) { 1334 obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val; 1335 obj->rpath = origin_subst(obj, obj->rpath); 1336 } 1337 if (dyn_soname != NULL) 1338 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); 1339 } 1340 1341 static void 1342 digest_dynamic(Obj_Entry *obj, int early) 1343 { 1344 const Elf_Dyn *dyn_rpath; 1345 const Elf_Dyn *dyn_soname; 1346 const Elf_Dyn *dyn_runpath; 1347 1348 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); 1349 digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath); 1350 } 1351 1352 /* 1353 * Process a shared object's program header. This is used only for the 1354 * main program, when the kernel has already loaded the main program 1355 * into memory before calling the dynamic linker. It creates and 1356 * returns an Obj_Entry structure. 1357 */ 1358 static Obj_Entry * 1359 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) 1360 { 1361 Obj_Entry *obj; 1362 const Elf_Phdr *phlimit = phdr + phnum; 1363 const Elf_Phdr *ph; 1364 Elf_Addr note_start, note_end; 1365 int nsegs = 0; 1366 1367 obj = obj_new(); 1368 for (ph = phdr; ph < phlimit; ph++) { 1369 if (ph->p_type != PT_PHDR) 1370 continue; 1371 1372 obj->phdr = phdr; 1373 obj->phsize = ph->p_memsz; 1374 obj->relocbase = (caddr_t)phdr - ph->p_vaddr; 1375 break; 1376 } 1377 1378 obj->stack_flags = PF_X | PF_R | PF_W; 1379 1380 for (ph = phdr; ph < phlimit; ph++) { 1381 switch (ph->p_type) { 1382 1383 case PT_INTERP: 1384 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); 1385 break; 1386 1387 case PT_LOAD: 1388 if (nsegs == 0) { /* First load segment */ 1389 obj->vaddrbase = trunc_page(ph->p_vaddr); 1390 obj->mapbase = obj->vaddrbase + obj->relocbase; 1391 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - 1392 obj->vaddrbase; 1393 } else { /* Last load segment */ 1394 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - 1395 obj->vaddrbase; 1396 } 1397 nsegs++; 1398 break; 1399 1400 case PT_DYNAMIC: 1401 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); 1402 break; 1403 1404 case PT_TLS: 1405 obj->tlsindex = 1; 1406 obj->tlssize = ph->p_memsz; 1407 obj->tlsalign = ph->p_align; 1408 obj->tlsinitsize = ph->p_filesz; 1409 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); 1410 break; 1411 1412 case PT_GNU_STACK: 1413 obj->stack_flags = ph->p_flags; 1414 break; 1415 1416 case PT_GNU_RELRO: 1417 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr); 1418 obj->relro_size = round_page(ph->p_memsz); 1419 break; 1420 1421 case PT_NOTE: 1422 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; 1423 note_end = note_start + ph->p_filesz; 1424 digest_notes(obj, note_start, note_end); 1425 break; 1426 } 1427 } 1428 if (nsegs < 1) { 1429 _rtld_error("%s: too few PT_LOAD segments", path); 1430 return NULL; 1431 } 1432 1433 obj->entry = entry; 1434 return obj; 1435 } 1436 1437 void 1438 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) 1439 { 1440 const Elf_Note *note; 1441 const char *note_name; 1442 uintptr_t p; 1443 1444 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; 1445 note = (const Elf_Note *)((const char *)(note + 1) + 1446 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1447 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { 1448 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || 1449 note->n_descsz != sizeof(int32_t)) 1450 continue; 1451 if (note->n_type != NT_FREEBSD_ABI_TAG && 1452 note->n_type != NT_FREEBSD_NOINIT_TAG) 1453 continue; 1454 note_name = (const char *)(note + 1); 1455 if (strncmp(NOTE_FREEBSD_VENDOR, note_name, 1456 sizeof(NOTE_FREEBSD_VENDOR)) != 0) 1457 continue; 1458 switch (note->n_type) { 1459 case NT_FREEBSD_ABI_TAG: 1460 /* FreeBSD osrel note */ 1461 p = (uintptr_t)(note + 1); 1462 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 1463 obj->osrel = *(const int32_t *)(p); 1464 dbg("note osrel %d", obj->osrel); 1465 break; 1466 case NT_FREEBSD_NOINIT_TAG: 1467 /* FreeBSD 'crt does not call init' note */ 1468 obj->crt_no_init = true; 1469 dbg("note crt_no_init"); 1470 break; 1471 } 1472 } 1473 } 1474 1475 static Obj_Entry * 1476 dlcheck(void *handle) 1477 { 1478 Obj_Entry *obj; 1479 1480 TAILQ_FOREACH(obj, &obj_list, next) { 1481 if (obj == (Obj_Entry *) handle) 1482 break; 1483 } 1484 1485 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { 1486 _rtld_error("Invalid shared object handle %p", handle); 1487 return NULL; 1488 } 1489 return obj; 1490 } 1491 1492 /* 1493 * If the given object is already in the donelist, return true. Otherwise 1494 * add the object to the list and return false. 1495 */ 1496 static bool 1497 donelist_check(DoneList *dlp, const Obj_Entry *obj) 1498 { 1499 unsigned int i; 1500 1501 for (i = 0; i < dlp->num_used; i++) 1502 if (dlp->objs[i] == obj) 1503 return true; 1504 /* 1505 * Our donelist allocation should always be sufficient. But if 1506 * our threads locking isn't working properly, more shared objects 1507 * could have been loaded since we allocated the list. That should 1508 * never happen, but we'll handle it properly just in case it does. 1509 */ 1510 if (dlp->num_used < dlp->num_alloc) 1511 dlp->objs[dlp->num_used++] = obj; 1512 return false; 1513 } 1514 1515 /* 1516 * Hash function for symbol table lookup. Don't even think about changing 1517 * this. It is specified by the System V ABI. 1518 */ 1519 unsigned long 1520 elf_hash(const char *name) 1521 { 1522 const unsigned char *p = (const unsigned char *) name; 1523 unsigned long h = 0; 1524 unsigned long g; 1525 1526 while (*p != '\0') { 1527 h = (h << 4) + *p++; 1528 if ((g = h & 0xf0000000) != 0) 1529 h ^= g >> 24; 1530 h &= ~g; 1531 } 1532 return h; 1533 } 1534 1535 /* 1536 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits 1537 * unsigned in case it's implemented with a wider type. 1538 */ 1539 static uint32_t 1540 gnu_hash(const char *s) 1541 { 1542 uint32_t h; 1543 unsigned char c; 1544 1545 h = 5381; 1546 for (c = *s; c != '\0'; c = *++s) 1547 h = h * 33 + c; 1548 return (h & 0xffffffff); 1549 } 1550 1551 1552 /* 1553 * Find the library with the given name, and return its full pathname. 1554 * The returned string is dynamically allocated. Generates an error 1555 * message and returns NULL if the library cannot be found. 1556 * 1557 * If the second argument is non-NULL, then it refers to an already- 1558 * loaded shared object, whose library search path will be searched. 1559 * 1560 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its 1561 * descriptor (which is close-on-exec) will be passed out via the third 1562 * argument. 1563 * 1564 * The search order is: 1565 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) 1566 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) 1567 * LD_LIBRARY_PATH 1568 * DT_RUNPATH in the referencing file 1569 * ldconfig hints (if -z nodefaultlib, filter out default library directories 1570 * from list) 1571 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib 1572 * 1573 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. 1574 */ 1575 static char * 1576 find_library(const char *xname, const Obj_Entry *refobj, int *fdp) 1577 { 1578 char *pathname; 1579 char *name; 1580 bool nodeflib, objgiven; 1581 1582 objgiven = refobj != NULL; 1583 1584 if (libmap_disable || !objgiven || 1585 (name = lm_find(refobj->path, xname)) == NULL) 1586 name = (char *)xname; 1587 1588 if (strchr(name, '/') != NULL) { /* Hard coded pathname */ 1589 if (name[0] != '/' && !trust) { 1590 _rtld_error("Absolute pathname required " 1591 "for shared object \"%s\"", name); 1592 return (NULL); 1593 } 1594 return (origin_subst(__DECONST(Obj_Entry *, refobj), 1595 __DECONST(char *, name))); 1596 } 1597 1598 dbg(" Searching for \"%s\"", name); 1599 1600 /* 1601 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall 1602 * back to pre-conforming behaviour if user requested so with 1603 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z 1604 * nodeflib. 1605 */ 1606 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { 1607 pathname = search_library_path(name, ld_library_path, fdp); 1608 if (pathname != NULL) 1609 return (pathname); 1610 if (refobj != NULL) { 1611 pathname = search_library_path(name, refobj->rpath, fdp); 1612 if (pathname != NULL) 1613 return (pathname); 1614 } 1615 pathname = search_library_pathfds(name, ld_library_dirs, fdp); 1616 if (pathname != NULL) 1617 return (pathname); 1618 pathname = search_library_path(name, gethints(false), fdp); 1619 if (pathname != NULL) 1620 return (pathname); 1621 pathname = search_library_path(name, ld_standard_library_path, fdp); 1622 if (pathname != NULL) 1623 return (pathname); 1624 } else { 1625 nodeflib = objgiven ? refobj->z_nodeflib : false; 1626 if (objgiven) { 1627 pathname = search_library_path(name, refobj->rpath, fdp); 1628 if (pathname != NULL) 1629 return (pathname); 1630 } 1631 if (objgiven && refobj->runpath == NULL && refobj != obj_main) { 1632 pathname = search_library_path(name, obj_main->rpath, fdp); 1633 if (pathname != NULL) 1634 return (pathname); 1635 } 1636 pathname = search_library_path(name, ld_library_path, fdp); 1637 if (pathname != NULL) 1638 return (pathname); 1639 if (objgiven) { 1640 pathname = search_library_path(name, refobj->runpath, fdp); 1641 if (pathname != NULL) 1642 return (pathname); 1643 } 1644 pathname = search_library_pathfds(name, ld_library_dirs, fdp); 1645 if (pathname != NULL) 1646 return (pathname); 1647 pathname = search_library_path(name, gethints(nodeflib), fdp); 1648 if (pathname != NULL) 1649 return (pathname); 1650 if (objgiven && !nodeflib) { 1651 pathname = search_library_path(name, 1652 ld_standard_library_path, fdp); 1653 if (pathname != NULL) 1654 return (pathname); 1655 } 1656 } 1657 1658 if (objgiven && refobj->path != NULL) { 1659 _rtld_error("Shared object \"%s\" not found, " 1660 "required by \"%s\"", name, basename(refobj->path)); 1661 } else { 1662 _rtld_error("Shared object \"%s\" not found", name); 1663 } 1664 return (NULL); 1665 } 1666 1667 /* 1668 * Given a symbol number in a referencing object, find the corresponding 1669 * definition of the symbol. Returns a pointer to the symbol, or NULL if 1670 * no definition was found. Returns a pointer to the Obj_Entry of the 1671 * defining object via the reference parameter DEFOBJ_OUT. 1672 */ 1673 const Elf_Sym * 1674 find_symdef(unsigned long symnum, const Obj_Entry *refobj, 1675 const Obj_Entry **defobj_out, int flags, SymCache *cache, 1676 RtldLockState *lockstate) 1677 { 1678 const Elf_Sym *ref; 1679 const Elf_Sym *def; 1680 const Obj_Entry *defobj; 1681 const Ver_Entry *ve; 1682 SymLook req; 1683 const char *name; 1684 int res; 1685 1686 /* 1687 * If we have already found this symbol, get the information from 1688 * the cache. 1689 */ 1690 if (symnum >= refobj->dynsymcount) 1691 return NULL; /* Bad object */ 1692 if (cache != NULL && cache[symnum].sym != NULL) { 1693 *defobj_out = cache[symnum].obj; 1694 return cache[symnum].sym; 1695 } 1696 1697 ref = refobj->symtab + symnum; 1698 name = refobj->strtab + ref->st_name; 1699 def = NULL; 1700 defobj = NULL; 1701 ve = NULL; 1702 1703 /* 1704 * We don't have to do a full scale lookup if the symbol is local. 1705 * We know it will bind to the instance in this load module; to 1706 * which we already have a pointer (ie ref). By not doing a lookup, 1707 * we not only improve performance, but it also avoids unresolvable 1708 * symbols when local symbols are not in the hash table. This has 1709 * been seen with the ia64 toolchain. 1710 */ 1711 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { 1712 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { 1713 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, 1714 symnum); 1715 } 1716 symlook_init(&req, name); 1717 req.flags = flags; 1718 ve = req.ventry = fetch_ventry(refobj, symnum); 1719 req.lockstate = lockstate; 1720 res = symlook_default(&req, refobj); 1721 if (res == 0) { 1722 def = req.sym_out; 1723 defobj = req.defobj_out; 1724 } 1725 } else { 1726 def = ref; 1727 defobj = refobj; 1728 } 1729 1730 /* 1731 * If we found no definition and the reference is weak, treat the 1732 * symbol as having the value zero. 1733 */ 1734 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { 1735 def = &sym_zero; 1736 defobj = obj_main; 1737 } 1738 1739 if (def != NULL) { 1740 *defobj_out = defobj; 1741 /* Record the information in the cache to avoid subsequent lookups. */ 1742 if (cache != NULL) { 1743 cache[symnum].sym = def; 1744 cache[symnum].obj = defobj; 1745 } 1746 } else { 1747 if (refobj != &obj_rtld) 1748 _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name, 1749 ve != NULL ? "@" : "", ve != NULL ? ve->name : ""); 1750 } 1751 return def; 1752 } 1753 1754 /* 1755 * Return the search path from the ldconfig hints file, reading it if 1756 * necessary. If nostdlib is true, then the default search paths are 1757 * not added to result. 1758 * 1759 * Returns NULL if there are problems with the hints file, 1760 * or if the search path there is empty. 1761 */ 1762 static const char * 1763 gethints(bool nostdlib) 1764 { 1765 static char *hints, *filtered_path; 1766 static struct elfhints_hdr hdr; 1767 struct fill_search_info_args sargs, hargs; 1768 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; 1769 struct dl_serpath *SLPpath, *hintpath; 1770 char *p; 1771 struct stat hint_stat; 1772 unsigned int SLPndx, hintndx, fndx, fcount; 1773 int fd; 1774 size_t flen; 1775 uint32_t dl; 1776 bool skip; 1777 1778 /* First call, read the hints file */ 1779 if (hints == NULL) { 1780 /* Keep from trying again in case the hints file is bad. */ 1781 hints = ""; 1782 1783 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) 1784 return (NULL); 1785 1786 /* 1787 * Check of hdr.dirlistlen value against type limit 1788 * intends to pacify static analyzers. Further 1789 * paranoia leads to checks that dirlist is fully 1790 * contained in the file range. 1791 */ 1792 if (read(fd, &hdr, sizeof hdr) != sizeof hdr || 1793 hdr.magic != ELFHINTS_MAGIC || 1794 hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 || 1795 fstat(fd, &hint_stat) == -1) { 1796 cleanup1: 1797 close(fd); 1798 hdr.dirlistlen = 0; 1799 return (NULL); 1800 } 1801 dl = hdr.strtab; 1802 if (dl + hdr.dirlist < dl) 1803 goto cleanup1; 1804 dl += hdr.dirlist; 1805 if (dl + hdr.dirlistlen < dl) 1806 goto cleanup1; 1807 dl += hdr.dirlistlen; 1808 if (dl > hint_stat.st_size) 1809 goto cleanup1; 1810 p = xmalloc(hdr.dirlistlen + 1); 1811 if (pread(fd, p, hdr.dirlistlen + 1, 1812 hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 || 1813 p[hdr.dirlistlen] != '\0') { 1814 free(p); 1815 goto cleanup1; 1816 } 1817 hints = p; 1818 close(fd); 1819 } 1820 1821 /* 1822 * If caller agreed to receive list which includes the default 1823 * paths, we are done. Otherwise, if we still did not 1824 * calculated filtered result, do it now. 1825 */ 1826 if (!nostdlib) 1827 return (hints[0] != '\0' ? hints : NULL); 1828 if (filtered_path != NULL) 1829 goto filt_ret; 1830 1831 /* 1832 * Obtain the list of all configured search paths, and the 1833 * list of the default paths. 1834 * 1835 * First estimate the size of the results. 1836 */ 1837 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1838 smeta.dls_cnt = 0; 1839 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 1840 hmeta.dls_cnt = 0; 1841 1842 sargs.request = RTLD_DI_SERINFOSIZE; 1843 sargs.serinfo = &smeta; 1844 hargs.request = RTLD_DI_SERINFOSIZE; 1845 hargs.serinfo = &hmeta; 1846 1847 path_enumerate(ld_standard_library_path, fill_search_info, &sargs); 1848 path_enumerate(hints, fill_search_info, &hargs); 1849 1850 SLPinfo = xmalloc(smeta.dls_size); 1851 hintinfo = xmalloc(hmeta.dls_size); 1852 1853 /* 1854 * Next fetch both sets of paths. 1855 */ 1856 sargs.request = RTLD_DI_SERINFO; 1857 sargs.serinfo = SLPinfo; 1858 sargs.serpath = &SLPinfo->dls_serpath[0]; 1859 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; 1860 1861 hargs.request = RTLD_DI_SERINFO; 1862 hargs.serinfo = hintinfo; 1863 hargs.serpath = &hintinfo->dls_serpath[0]; 1864 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; 1865 1866 path_enumerate(ld_standard_library_path, fill_search_info, &sargs); 1867 path_enumerate(hints, fill_search_info, &hargs); 1868 1869 /* 1870 * Now calculate the difference between two sets, by excluding 1871 * standard paths from the full set. 1872 */ 1873 fndx = 0; 1874 fcount = 0; 1875 filtered_path = xmalloc(hdr.dirlistlen + 1); 1876 hintpath = &hintinfo->dls_serpath[0]; 1877 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { 1878 skip = false; 1879 SLPpath = &SLPinfo->dls_serpath[0]; 1880 /* 1881 * Check each standard path against current. 1882 */ 1883 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { 1884 /* matched, skip the path */ 1885 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { 1886 skip = true; 1887 break; 1888 } 1889 } 1890 if (skip) 1891 continue; 1892 /* 1893 * Not matched against any standard path, add the path 1894 * to result. Separate consequtive paths with ':'. 1895 */ 1896 if (fcount > 0) { 1897 filtered_path[fndx] = ':'; 1898 fndx++; 1899 } 1900 fcount++; 1901 flen = strlen(hintpath->dls_name); 1902 strncpy((filtered_path + fndx), hintpath->dls_name, flen); 1903 fndx += flen; 1904 } 1905 filtered_path[fndx] = '\0'; 1906 1907 free(SLPinfo); 1908 free(hintinfo); 1909 1910 filt_ret: 1911 return (filtered_path[0] != '\0' ? filtered_path : NULL); 1912 } 1913 1914 static void 1915 init_dag(Obj_Entry *root) 1916 { 1917 const Needed_Entry *needed; 1918 const Objlist_Entry *elm; 1919 DoneList donelist; 1920 1921 if (root->dag_inited) 1922 return; 1923 donelist_init(&donelist); 1924 1925 /* Root object belongs to own DAG. */ 1926 objlist_push_tail(&root->dldags, root); 1927 objlist_push_tail(&root->dagmembers, root); 1928 donelist_check(&donelist, root); 1929 1930 /* 1931 * Add dependencies of root object to DAG in breadth order 1932 * by exploiting the fact that each new object get added 1933 * to the tail of the dagmembers list. 1934 */ 1935 STAILQ_FOREACH(elm, &root->dagmembers, link) { 1936 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { 1937 if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) 1938 continue; 1939 objlist_push_tail(&needed->obj->dldags, root); 1940 objlist_push_tail(&root->dagmembers, needed->obj); 1941 } 1942 } 1943 root->dag_inited = true; 1944 } 1945 1946 static void 1947 init_marker(Obj_Entry *marker) 1948 { 1949 1950 bzero(marker, sizeof(*marker)); 1951 marker->marker = true; 1952 } 1953 1954 Obj_Entry * 1955 globallist_curr(const Obj_Entry *obj) 1956 { 1957 1958 for (;;) { 1959 if (obj == NULL) 1960 return (NULL); 1961 if (!obj->marker) 1962 return (__DECONST(Obj_Entry *, obj)); 1963 obj = TAILQ_PREV(obj, obj_entry_q, next); 1964 } 1965 } 1966 1967 Obj_Entry * 1968 globallist_next(const Obj_Entry *obj) 1969 { 1970 1971 for (;;) { 1972 obj = TAILQ_NEXT(obj, next); 1973 if (obj == NULL) 1974 return (NULL); 1975 if (!obj->marker) 1976 return (__DECONST(Obj_Entry *, obj)); 1977 } 1978 } 1979 1980 /* Prevent the object from being unmapped while the bind lock is dropped. */ 1981 static void 1982 hold_object(Obj_Entry *obj) 1983 { 1984 1985 obj->holdcount++; 1986 } 1987 1988 static void 1989 unhold_object(Obj_Entry *obj) 1990 { 1991 1992 assert(obj->holdcount > 0); 1993 if (--obj->holdcount == 0 && obj->unholdfree) 1994 release_object(obj); 1995 } 1996 1997 static void 1998 process_z(Obj_Entry *root) 1999 { 2000 const Objlist_Entry *elm; 2001 Obj_Entry *obj; 2002 2003 /* 2004 * Walk over object DAG and process every dependent object 2005 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need 2006 * to grow their own DAG. 2007 * 2008 * For DF_1_GLOBAL, DAG is required for symbol lookups in 2009 * symlook_global() to work. 2010 * 2011 * For DF_1_NODELETE, the DAG should have its reference upped. 2012 */ 2013 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2014 obj = elm->obj; 2015 if (obj == NULL) 2016 continue; 2017 if (obj->z_nodelete && !obj->ref_nodel) { 2018 dbg("obj %s -z nodelete", obj->path); 2019 init_dag(obj); 2020 ref_dag(obj); 2021 obj->ref_nodel = true; 2022 } 2023 if (obj->z_global && objlist_find(&list_global, obj) == NULL) { 2024 dbg("obj %s -z global", obj->path); 2025 objlist_push_tail(&list_global, obj); 2026 init_dag(obj); 2027 } 2028 } 2029 } 2030 /* 2031 * Initialize the dynamic linker. The argument is the address at which 2032 * the dynamic linker has been mapped into memory. The primary task of 2033 * this function is to relocate the dynamic linker. 2034 */ 2035 static void 2036 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) 2037 { 2038 Obj_Entry objtmp; /* Temporary rtld object */ 2039 const Elf_Ehdr *ehdr; 2040 const Elf_Dyn *dyn_rpath; 2041 const Elf_Dyn *dyn_soname; 2042 const Elf_Dyn *dyn_runpath; 2043 2044 #ifdef RTLD_INIT_PAGESIZES_EARLY 2045 /* The page size is required by the dynamic memory allocator. */ 2046 init_pagesizes(aux_info); 2047 #endif 2048 2049 /* 2050 * Conjure up an Obj_Entry structure for the dynamic linker. 2051 * 2052 * The "path" member can't be initialized yet because string constants 2053 * cannot yet be accessed. Below we will set it correctly. 2054 */ 2055 memset(&objtmp, 0, sizeof(objtmp)); 2056 objtmp.path = NULL; 2057 objtmp.rtld = true; 2058 objtmp.mapbase = mapbase; 2059 #ifdef PIC 2060 objtmp.relocbase = mapbase; 2061 #endif 2062 2063 objtmp.dynamic = rtld_dynamic(&objtmp); 2064 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); 2065 assert(objtmp.needed == NULL); 2066 #if !defined(__mips__) 2067 /* MIPS has a bogus DT_TEXTREL. */ 2068 assert(!objtmp.textrel); 2069 #endif 2070 /* 2071 * Temporarily put the dynamic linker entry into the object list, so 2072 * that symbols can be found. 2073 */ 2074 relocate_objects(&objtmp, true, &objtmp, 0, NULL); 2075 2076 ehdr = (Elf_Ehdr *)mapbase; 2077 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff); 2078 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]); 2079 2080 /* Initialize the object list. */ 2081 TAILQ_INIT(&obj_list); 2082 2083 /* Now that non-local variables can be accesses, copy out obj_rtld. */ 2084 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); 2085 2086 #ifndef RTLD_INIT_PAGESIZES_EARLY 2087 /* The page size is required by the dynamic memory allocator. */ 2088 init_pagesizes(aux_info); 2089 #endif 2090 2091 if (aux_info[AT_OSRELDATE] != NULL) 2092 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; 2093 2094 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); 2095 2096 /* Replace the path with a dynamically allocated copy. */ 2097 obj_rtld.path = xstrdup(ld_path_rtld); 2098 2099 r_debug.r_brk = r_debug_state; 2100 r_debug.r_state = RT_CONSISTENT; 2101 } 2102 2103 /* 2104 * Retrieve the array of supported page sizes. The kernel provides the page 2105 * sizes in increasing order. 2106 */ 2107 static void 2108 init_pagesizes(Elf_Auxinfo **aux_info) 2109 { 2110 static size_t psa[MAXPAGESIZES]; 2111 int mib[2]; 2112 size_t len, size; 2113 2114 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != 2115 NULL) { 2116 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; 2117 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; 2118 } else { 2119 len = 2; 2120 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) 2121 size = sizeof(psa); 2122 else { 2123 /* As a fallback, retrieve the base page size. */ 2124 size = sizeof(psa[0]); 2125 if (aux_info[AT_PAGESZ] != NULL) { 2126 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; 2127 goto psa_filled; 2128 } else { 2129 mib[0] = CTL_HW; 2130 mib[1] = HW_PAGESIZE; 2131 len = 2; 2132 } 2133 } 2134 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { 2135 _rtld_error("sysctl for hw.pagesize(s) failed"); 2136 rtld_die(); 2137 } 2138 psa_filled: 2139 pagesizes = psa; 2140 } 2141 npagesizes = size / sizeof(pagesizes[0]); 2142 /* Discard any invalid entries at the end of the array. */ 2143 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) 2144 npagesizes--; 2145 } 2146 2147 /* 2148 * Add the init functions from a needed object list (and its recursive 2149 * needed objects) to "list". This is not used directly; it is a helper 2150 * function for initlist_add_objects(). The write lock must be held 2151 * when this function is called. 2152 */ 2153 static void 2154 initlist_add_neededs(Needed_Entry *needed, Objlist *list) 2155 { 2156 /* Recursively process the successor needed objects. */ 2157 if (needed->next != NULL) 2158 initlist_add_neededs(needed->next, list); 2159 2160 /* Process the current needed object. */ 2161 if (needed->obj != NULL) 2162 initlist_add_objects(needed->obj, needed->obj, list); 2163 } 2164 2165 /* 2166 * Scan all of the DAGs rooted in the range of objects from "obj" to 2167 * "tail" and add their init functions to "list". This recurses over 2168 * the DAGs and ensure the proper init ordering such that each object's 2169 * needed libraries are initialized before the object itself. At the 2170 * same time, this function adds the objects to the global finalization 2171 * list "list_fini" in the opposite order. The write lock must be 2172 * held when this function is called. 2173 */ 2174 static void 2175 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list) 2176 { 2177 Obj_Entry *nobj; 2178 2179 if (obj->init_scanned || obj->init_done) 2180 return; 2181 obj->init_scanned = true; 2182 2183 /* Recursively process the successor objects. */ 2184 nobj = globallist_next(obj); 2185 if (nobj != NULL && obj != tail) 2186 initlist_add_objects(nobj, tail, list); 2187 2188 /* Recursively process the needed objects. */ 2189 if (obj->needed != NULL) 2190 initlist_add_neededs(obj->needed, list); 2191 if (obj->needed_filtees != NULL) 2192 initlist_add_neededs(obj->needed_filtees, list); 2193 if (obj->needed_aux_filtees != NULL) 2194 initlist_add_neededs(obj->needed_aux_filtees, list); 2195 2196 /* Add the object to the init list. */ 2197 if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL || 2198 obj->init_array != (Elf_Addr)NULL) 2199 objlist_push_tail(list, obj); 2200 2201 /* Add the object to the global fini list in the reverse order. */ 2202 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) 2203 && !obj->on_fini_list) { 2204 objlist_push_head(&list_fini, obj); 2205 obj->on_fini_list = true; 2206 } 2207 } 2208 2209 #ifndef FPTR_TARGET 2210 #define FPTR_TARGET(f) ((Elf_Addr) (f)) 2211 #endif 2212 2213 static void 2214 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate) 2215 { 2216 Needed_Entry *needed, *needed1; 2217 2218 for (needed = n; needed != NULL; needed = needed->next) { 2219 if (needed->obj != NULL) { 2220 dlclose_locked(needed->obj, lockstate); 2221 needed->obj = NULL; 2222 } 2223 } 2224 for (needed = n; needed != NULL; needed = needed1) { 2225 needed1 = needed->next; 2226 free(needed); 2227 } 2228 } 2229 2230 static void 2231 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate) 2232 { 2233 2234 free_needed_filtees(obj->needed_filtees, lockstate); 2235 obj->needed_filtees = NULL; 2236 free_needed_filtees(obj->needed_aux_filtees, lockstate); 2237 obj->needed_aux_filtees = NULL; 2238 obj->filtees_loaded = false; 2239 } 2240 2241 static void 2242 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, 2243 RtldLockState *lockstate) 2244 { 2245 2246 for (; needed != NULL; needed = needed->next) { 2247 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, 2248 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | 2249 RTLD_LOCAL, lockstate); 2250 } 2251 } 2252 2253 static void 2254 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) 2255 { 2256 2257 lock_restart_for_upgrade(lockstate); 2258 if (!obj->filtees_loaded) { 2259 load_filtee1(obj, obj->needed_filtees, flags, lockstate); 2260 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); 2261 obj->filtees_loaded = true; 2262 } 2263 } 2264 2265 static int 2266 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) 2267 { 2268 Obj_Entry *obj1; 2269 2270 for (; needed != NULL; needed = needed->next) { 2271 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, 2272 flags & ~RTLD_LO_NOLOAD); 2273 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) 2274 return (-1); 2275 } 2276 return (0); 2277 } 2278 2279 /* 2280 * Given a shared object, traverse its list of needed objects, and load 2281 * each of them. Returns 0 on success. Generates an error message and 2282 * returns -1 on failure. 2283 */ 2284 static int 2285 load_needed_objects(Obj_Entry *first, int flags) 2286 { 2287 Obj_Entry *obj; 2288 2289 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 2290 if (obj->marker) 2291 continue; 2292 if (process_needed(obj, obj->needed, flags) == -1) 2293 return (-1); 2294 } 2295 return (0); 2296 } 2297 2298 static int 2299 load_preload_objects(void) 2300 { 2301 char *p = ld_preload; 2302 Obj_Entry *obj; 2303 static const char delim[] = " \t:;"; 2304 2305 if (p == NULL) 2306 return 0; 2307 2308 p += strspn(p, delim); 2309 while (*p != '\0') { 2310 size_t len = strcspn(p, delim); 2311 char savech; 2312 2313 savech = p[len]; 2314 p[len] = '\0'; 2315 obj = load_object(p, -1, NULL, 0); 2316 if (obj == NULL) 2317 return -1; /* XXX - cleanup */ 2318 obj->z_interpose = true; 2319 p[len] = savech; 2320 p += len; 2321 p += strspn(p, delim); 2322 } 2323 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); 2324 return 0; 2325 } 2326 2327 static const char * 2328 printable_path(const char *path) 2329 { 2330 2331 return (path == NULL ? "<unknown>" : path); 2332 } 2333 2334 /* 2335 * Load a shared object into memory, if it is not already loaded. The 2336 * object may be specified by name or by user-supplied file descriptor 2337 * fd_u. In the later case, the fd_u descriptor is not closed, but its 2338 * duplicate is. 2339 * 2340 * Returns a pointer to the Obj_Entry for the object. Returns NULL 2341 * on failure. 2342 */ 2343 static Obj_Entry * 2344 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) 2345 { 2346 Obj_Entry *obj; 2347 int fd; 2348 struct stat sb; 2349 char *path; 2350 2351 fd = -1; 2352 if (name != NULL) { 2353 TAILQ_FOREACH(obj, &obj_list, next) { 2354 if (obj->marker || obj->doomed) 2355 continue; 2356 if (object_match_name(obj, name)) 2357 return (obj); 2358 } 2359 2360 path = find_library(name, refobj, &fd); 2361 if (path == NULL) 2362 return (NULL); 2363 } else 2364 path = NULL; 2365 2366 if (fd >= 0) { 2367 /* 2368 * search_library_pathfds() opens a fresh file descriptor for the 2369 * library, so there is no need to dup(). 2370 */ 2371 } else if (fd_u == -1) { 2372 /* 2373 * If we didn't find a match by pathname, or the name is not 2374 * supplied, open the file and check again by device and inode. 2375 * This avoids false mismatches caused by multiple links or ".." 2376 * in pathnames. 2377 * 2378 * To avoid a race, we open the file and use fstat() rather than 2379 * using stat(). 2380 */ 2381 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) { 2382 _rtld_error("Cannot open \"%s\"", path); 2383 free(path); 2384 return (NULL); 2385 } 2386 } else { 2387 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); 2388 if (fd == -1) { 2389 _rtld_error("Cannot dup fd"); 2390 free(path); 2391 return (NULL); 2392 } 2393 } 2394 if (fstat(fd, &sb) == -1) { 2395 _rtld_error("Cannot fstat \"%s\"", printable_path(path)); 2396 close(fd); 2397 free(path); 2398 return NULL; 2399 } 2400 TAILQ_FOREACH(obj, &obj_list, next) { 2401 if (obj->marker || obj->doomed) 2402 continue; 2403 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) 2404 break; 2405 } 2406 if (obj != NULL && name != NULL) { 2407 object_add_name(obj, name); 2408 free(path); 2409 close(fd); 2410 return obj; 2411 } 2412 if (flags & RTLD_LO_NOLOAD) { 2413 free(path); 2414 close(fd); 2415 return (NULL); 2416 } 2417 2418 /* First use of this object, so we must map it in */ 2419 obj = do_load_object(fd, name, path, &sb, flags); 2420 if (obj == NULL) 2421 free(path); 2422 close(fd); 2423 2424 return obj; 2425 } 2426 2427 static Obj_Entry * 2428 do_load_object(int fd, const char *name, char *path, struct stat *sbp, 2429 int flags) 2430 { 2431 Obj_Entry *obj; 2432 struct statfs fs; 2433 2434 /* 2435 * but first, make sure that environment variables haven't been 2436 * used to circumvent the noexec flag on a filesystem. 2437 */ 2438 if (dangerous_ld_env) { 2439 if (fstatfs(fd, &fs) != 0) { 2440 _rtld_error("Cannot fstatfs \"%s\"", printable_path(path)); 2441 return NULL; 2442 } 2443 if (fs.f_flags & MNT_NOEXEC) { 2444 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname); 2445 return NULL; 2446 } 2447 } 2448 dbg("loading \"%s\"", printable_path(path)); 2449 obj = map_object(fd, printable_path(path), sbp); 2450 if (obj == NULL) 2451 return NULL; 2452 2453 /* 2454 * If DT_SONAME is present in the object, digest_dynamic2 already 2455 * added it to the object names. 2456 */ 2457 if (name != NULL) 2458 object_add_name(obj, name); 2459 obj->path = path; 2460 digest_dynamic(obj, 0); 2461 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, 2462 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); 2463 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == 2464 RTLD_LO_DLOPEN) { 2465 dbg("refusing to load non-loadable \"%s\"", obj->path); 2466 _rtld_error("Cannot dlopen non-loadable %s", obj->path); 2467 munmap(obj->mapbase, obj->mapsize); 2468 obj_free(obj); 2469 return (NULL); 2470 } 2471 2472 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; 2473 TAILQ_INSERT_TAIL(&obj_list, obj, next); 2474 obj_count++; 2475 obj_loads++; 2476 linkmap_add(obj); /* for GDB & dlinfo() */ 2477 max_stack_flags |= obj->stack_flags; 2478 2479 dbg(" %p .. %p: %s", obj->mapbase, 2480 obj->mapbase + obj->mapsize - 1, obj->path); 2481 if (obj->textrel) 2482 dbg(" WARNING: %s has impure text", obj->path); 2483 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, 2484 obj->path); 2485 2486 return obj; 2487 } 2488 2489 static Obj_Entry * 2490 obj_from_addr(const void *addr) 2491 { 2492 Obj_Entry *obj; 2493 2494 TAILQ_FOREACH(obj, &obj_list, next) { 2495 if (obj->marker) 2496 continue; 2497 if (addr < (void *) obj->mapbase) 2498 continue; 2499 if (addr < (void *) (obj->mapbase + obj->mapsize)) 2500 return obj; 2501 } 2502 return NULL; 2503 } 2504 2505 static void 2506 preinit_main(void) 2507 { 2508 Elf_Addr *preinit_addr; 2509 int index; 2510 2511 preinit_addr = (Elf_Addr *)obj_main->preinit_array; 2512 if (preinit_addr == NULL) 2513 return; 2514 2515 for (index = 0; index < obj_main->preinit_array_num; index++) { 2516 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { 2517 dbg("calling preinit function for %s at %p", obj_main->path, 2518 (void *)preinit_addr[index]); 2519 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 2520 0, 0, obj_main->path); 2521 call_init_pointer(obj_main, preinit_addr[index]); 2522 } 2523 } 2524 } 2525 2526 /* 2527 * Call the finalization functions for each of the objects in "list" 2528 * belonging to the DAG of "root" and referenced once. If NULL "root" 2529 * is specified, every finalization function will be called regardless 2530 * of the reference count and the list elements won't be freed. All of 2531 * the objects are expected to have non-NULL fini functions. 2532 */ 2533 static void 2534 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) 2535 { 2536 Objlist_Entry *elm; 2537 char *saved_msg; 2538 Elf_Addr *fini_addr; 2539 int index; 2540 2541 assert(root == NULL || root->refcount == 1); 2542 2543 if (root != NULL) 2544 root->doomed = true; 2545 2546 /* 2547 * Preserve the current error message since a fini function might 2548 * call into the dynamic linker and overwrite it. 2549 */ 2550 saved_msg = errmsg_save(); 2551 do { 2552 STAILQ_FOREACH(elm, list, link) { 2553 if (root != NULL && (elm->obj->refcount != 1 || 2554 objlist_find(&root->dagmembers, elm->obj) == NULL)) 2555 continue; 2556 /* Remove object from fini list to prevent recursive invocation. */ 2557 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2558 /* Ensure that new references cannot be acquired. */ 2559 elm->obj->doomed = true; 2560 2561 hold_object(elm->obj); 2562 lock_release(rtld_bind_lock, lockstate); 2563 /* 2564 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. 2565 * When this happens, DT_FINI_ARRAY is processed first. 2566 */ 2567 fini_addr = (Elf_Addr *)elm->obj->fini_array; 2568 if (fini_addr != NULL && elm->obj->fini_array_num > 0) { 2569 for (index = elm->obj->fini_array_num - 1; index >= 0; 2570 index--) { 2571 if (fini_addr[index] != 0 && fini_addr[index] != 1) { 2572 dbg("calling fini function for %s at %p", 2573 elm->obj->path, (void *)fini_addr[index]); 2574 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, 2575 (void *)fini_addr[index], 0, 0, elm->obj->path); 2576 call_initfini_pointer(elm->obj, fini_addr[index]); 2577 } 2578 } 2579 } 2580 if (elm->obj->fini != (Elf_Addr)NULL) { 2581 dbg("calling fini function for %s at %p", elm->obj->path, 2582 (void *)elm->obj->fini); 2583 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 2584 0, 0, elm->obj->path); 2585 call_initfini_pointer(elm->obj, elm->obj->fini); 2586 } 2587 wlock_acquire(rtld_bind_lock, lockstate); 2588 unhold_object(elm->obj); 2589 /* No need to free anything if process is going down. */ 2590 if (root != NULL) 2591 free(elm); 2592 /* 2593 * We must restart the list traversal after every fini call 2594 * because a dlclose() call from the fini function or from 2595 * another thread might have modified the reference counts. 2596 */ 2597 break; 2598 } 2599 } while (elm != NULL); 2600 errmsg_restore(saved_msg); 2601 } 2602 2603 /* 2604 * Call the initialization functions for each of the objects in 2605 * "list". All of the objects are expected to have non-NULL init 2606 * functions. 2607 */ 2608 static void 2609 objlist_call_init(Objlist *list, RtldLockState *lockstate) 2610 { 2611 Objlist_Entry *elm; 2612 Obj_Entry *obj; 2613 char *saved_msg; 2614 Elf_Addr *init_addr; 2615 int index; 2616 2617 /* 2618 * Clean init_scanned flag so that objects can be rechecked and 2619 * possibly initialized earlier if any of vectors called below 2620 * cause the change by using dlopen. 2621 */ 2622 TAILQ_FOREACH(obj, &obj_list, next) { 2623 if (obj->marker) 2624 continue; 2625 obj->init_scanned = false; 2626 } 2627 2628 /* 2629 * Preserve the current error message since an init function might 2630 * call into the dynamic linker and overwrite it. 2631 */ 2632 saved_msg = errmsg_save(); 2633 STAILQ_FOREACH(elm, list, link) { 2634 if (elm->obj->init_done) /* Initialized early. */ 2635 continue; 2636 /* 2637 * Race: other thread might try to use this object before current 2638 * one completes the initialization. Not much can be done here 2639 * without better locking. 2640 */ 2641 elm->obj->init_done = true; 2642 hold_object(elm->obj); 2643 lock_release(rtld_bind_lock, lockstate); 2644 2645 /* 2646 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. 2647 * When this happens, DT_INIT is processed first. 2648 */ 2649 if (elm->obj->init != (Elf_Addr)NULL) { 2650 dbg("calling init function for %s at %p", elm->obj->path, 2651 (void *)elm->obj->init); 2652 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 2653 0, 0, elm->obj->path); 2654 call_initfini_pointer(elm->obj, elm->obj->init); 2655 } 2656 init_addr = (Elf_Addr *)elm->obj->init_array; 2657 if (init_addr != NULL) { 2658 for (index = 0; index < elm->obj->init_array_num; index++) { 2659 if (init_addr[index] != 0 && init_addr[index] != 1) { 2660 dbg("calling init function for %s at %p", elm->obj->path, 2661 (void *)init_addr[index]); 2662 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, 2663 (void *)init_addr[index], 0, 0, elm->obj->path); 2664 call_init_pointer(elm->obj, init_addr[index]); 2665 } 2666 } 2667 } 2668 wlock_acquire(rtld_bind_lock, lockstate); 2669 unhold_object(elm->obj); 2670 } 2671 errmsg_restore(saved_msg); 2672 } 2673 2674 static void 2675 objlist_clear(Objlist *list) 2676 { 2677 Objlist_Entry *elm; 2678 2679 while (!STAILQ_EMPTY(list)) { 2680 elm = STAILQ_FIRST(list); 2681 STAILQ_REMOVE_HEAD(list, link); 2682 free(elm); 2683 } 2684 } 2685 2686 static Objlist_Entry * 2687 objlist_find(Objlist *list, const Obj_Entry *obj) 2688 { 2689 Objlist_Entry *elm; 2690 2691 STAILQ_FOREACH(elm, list, link) 2692 if (elm->obj == obj) 2693 return elm; 2694 return NULL; 2695 } 2696 2697 static void 2698 objlist_init(Objlist *list) 2699 { 2700 STAILQ_INIT(list); 2701 } 2702 2703 static void 2704 objlist_push_head(Objlist *list, Obj_Entry *obj) 2705 { 2706 Objlist_Entry *elm; 2707 2708 elm = NEW(Objlist_Entry); 2709 elm->obj = obj; 2710 STAILQ_INSERT_HEAD(list, elm, link); 2711 } 2712 2713 static void 2714 objlist_push_tail(Objlist *list, Obj_Entry *obj) 2715 { 2716 Objlist_Entry *elm; 2717 2718 elm = NEW(Objlist_Entry); 2719 elm->obj = obj; 2720 STAILQ_INSERT_TAIL(list, elm, link); 2721 } 2722 2723 static void 2724 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) 2725 { 2726 Objlist_Entry *elm, *listelm; 2727 2728 STAILQ_FOREACH(listelm, list, link) { 2729 if (listelm->obj == listobj) 2730 break; 2731 } 2732 elm = NEW(Objlist_Entry); 2733 elm->obj = obj; 2734 if (listelm != NULL) 2735 STAILQ_INSERT_AFTER(list, listelm, elm, link); 2736 else 2737 STAILQ_INSERT_TAIL(list, elm, link); 2738 } 2739 2740 static void 2741 objlist_remove(Objlist *list, Obj_Entry *obj) 2742 { 2743 Objlist_Entry *elm; 2744 2745 if ((elm = objlist_find(list, obj)) != NULL) { 2746 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); 2747 free(elm); 2748 } 2749 } 2750 2751 /* 2752 * Relocate dag rooted in the specified object. 2753 * Returns 0 on success, or -1 on failure. 2754 */ 2755 2756 static int 2757 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, 2758 int flags, RtldLockState *lockstate) 2759 { 2760 Objlist_Entry *elm; 2761 int error; 2762 2763 error = 0; 2764 STAILQ_FOREACH(elm, &root->dagmembers, link) { 2765 error = relocate_object(elm->obj, bind_now, rtldobj, flags, 2766 lockstate); 2767 if (error == -1) 2768 break; 2769 } 2770 return (error); 2771 } 2772 2773 /* 2774 * Prepare for, or clean after, relocating an object marked with 2775 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only 2776 * segments are remapped read-write. After relocations are done, the 2777 * segment's permissions are returned back to the modes specified in 2778 * the phdrs. If any relocation happened, or always for wired 2779 * program, COW is triggered. 2780 */ 2781 static int 2782 reloc_textrel_prot(Obj_Entry *obj, bool before) 2783 { 2784 const Elf_Phdr *ph; 2785 void *base; 2786 size_t l, sz; 2787 int prot; 2788 2789 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; 2790 l--, ph++) { 2791 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0) 2792 continue; 2793 base = obj->relocbase + trunc_page(ph->p_vaddr); 2794 sz = round_page(ph->p_vaddr + ph->p_filesz) - 2795 trunc_page(ph->p_vaddr); 2796 prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0); 2797 if (mprotect(base, sz, prot) == -1) { 2798 _rtld_error("%s: Cannot write-%sable text segment: %s", 2799 obj->path, before ? "en" : "dis", 2800 rtld_strerror(errno)); 2801 return (-1); 2802 } 2803 } 2804 return (0); 2805 } 2806 2807 /* 2808 * Relocate single object. 2809 * Returns 0 on success, or -1 on failure. 2810 */ 2811 static int 2812 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, 2813 int flags, RtldLockState *lockstate) 2814 { 2815 2816 if (obj->relocated) 2817 return (0); 2818 obj->relocated = true; 2819 if (obj != rtldobj) 2820 dbg("relocating \"%s\"", obj->path); 2821 2822 if (obj->symtab == NULL || obj->strtab == NULL || 2823 !(obj->valid_hash_sysv || obj->valid_hash_gnu)) { 2824 _rtld_error("%s: Shared object has no run-time symbol table", 2825 obj->path); 2826 return (-1); 2827 } 2828 2829 /* There are relocations to the write-protected text segment. */ 2830 if (obj->textrel && reloc_textrel_prot(obj, true) != 0) 2831 return (-1); 2832 2833 /* Process the non-PLT non-IFUNC relocations. */ 2834 if (reloc_non_plt(obj, rtldobj, flags, lockstate)) 2835 return (-1); 2836 2837 /* Re-protected the text segment. */ 2838 if (obj->textrel && reloc_textrel_prot(obj, false) != 0) 2839 return (-1); 2840 2841 /* Set the special PLT or GOT entries. */ 2842 init_pltgot(obj); 2843 2844 /* Process the PLT relocations. */ 2845 if (reloc_plt(obj) == -1) 2846 return (-1); 2847 /* Relocate the jump slots if we are doing immediate binding. */ 2848 if (obj->bind_now || bind_now) 2849 if (reloc_jmpslots(obj, flags, lockstate) == -1) 2850 return (-1); 2851 2852 /* 2853 * Process the non-PLT IFUNC relocations. The relocations are 2854 * processed in two phases, because IFUNC resolvers may 2855 * reference other symbols, which must be readily processed 2856 * before resolvers are called. 2857 */ 2858 if (obj->non_plt_gnu_ifunc && 2859 reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate)) 2860 return (-1); 2861 2862 if (!obj->mainprog && obj_enforce_relro(obj) == -1) 2863 return (-1); 2864 2865 /* 2866 * Set up the magic number and version in the Obj_Entry. These 2867 * were checked in the crt1.o from the original ElfKit, so we 2868 * set them for backward compatibility. 2869 */ 2870 obj->magic = RTLD_MAGIC; 2871 obj->version = RTLD_VERSION; 2872 2873 return (0); 2874 } 2875 2876 /* 2877 * Relocate newly-loaded shared objects. The argument is a pointer to 2878 * the Obj_Entry for the first such object. All objects from the first 2879 * to the end of the list of objects are relocated. Returns 0 on success, 2880 * or -1 on failure. 2881 */ 2882 static int 2883 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, 2884 int flags, RtldLockState *lockstate) 2885 { 2886 Obj_Entry *obj; 2887 int error; 2888 2889 for (error = 0, obj = first; obj != NULL; 2890 obj = TAILQ_NEXT(obj, next)) { 2891 if (obj->marker) 2892 continue; 2893 error = relocate_object(obj, bind_now, rtldobj, flags, 2894 lockstate); 2895 if (error == -1) 2896 break; 2897 } 2898 return (error); 2899 } 2900 2901 /* 2902 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots 2903 * referencing STT_GNU_IFUNC symbols is postponed till the other 2904 * relocations are done. The indirect functions specified as 2905 * ifunc are allowed to call other symbols, so we need to have 2906 * objects relocated before asking for resolution from indirects. 2907 * 2908 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, 2909 * instead of the usual lazy handling of PLT slots. It is 2910 * consistent with how GNU does it. 2911 */ 2912 static int 2913 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, 2914 RtldLockState *lockstate) 2915 { 2916 if (obj->irelative && reloc_iresolve(obj, lockstate) == -1) 2917 return (-1); 2918 if ((obj->bind_now || bind_now) && obj->gnu_ifunc && 2919 reloc_gnu_ifunc(obj, flags, lockstate) == -1) 2920 return (-1); 2921 return (0); 2922 } 2923 2924 static int 2925 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, 2926 RtldLockState *lockstate) 2927 { 2928 Obj_Entry *obj; 2929 2930 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 2931 if (obj->marker) 2932 continue; 2933 if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1) 2934 return (-1); 2935 } 2936 return (0); 2937 } 2938 2939 static int 2940 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, 2941 RtldLockState *lockstate) 2942 { 2943 Objlist_Entry *elm; 2944 2945 STAILQ_FOREACH(elm, list, link) { 2946 if (resolve_object_ifunc(elm->obj, bind_now, flags, 2947 lockstate) == -1) 2948 return (-1); 2949 } 2950 return (0); 2951 } 2952 2953 /* 2954 * Cleanup procedure. It will be called (by the atexit mechanism) just 2955 * before the process exits. 2956 */ 2957 static void 2958 rtld_exit(void) 2959 { 2960 RtldLockState lockstate; 2961 2962 wlock_acquire(rtld_bind_lock, &lockstate); 2963 dbg("rtld_exit()"); 2964 objlist_call_fini(&list_fini, NULL, &lockstate); 2965 /* No need to remove the items from the list, since we are exiting. */ 2966 if (!libmap_disable) 2967 lm_fini(); 2968 lock_release(rtld_bind_lock, &lockstate); 2969 } 2970 2971 /* 2972 * Iterate over a search path, translate each element, and invoke the 2973 * callback on the result. 2974 */ 2975 static void * 2976 path_enumerate(const char *path, path_enum_proc callback, void *arg) 2977 { 2978 const char *trans; 2979 if (path == NULL) 2980 return (NULL); 2981 2982 path += strspn(path, ":;"); 2983 while (*path != '\0') { 2984 size_t len; 2985 char *res; 2986 2987 len = strcspn(path, ":;"); 2988 trans = lm_findn(NULL, path, len); 2989 if (trans) 2990 res = callback(trans, strlen(trans), arg); 2991 else 2992 res = callback(path, len, arg); 2993 2994 if (res != NULL) 2995 return (res); 2996 2997 path += len; 2998 path += strspn(path, ":;"); 2999 } 3000 3001 return (NULL); 3002 } 3003 3004 struct try_library_args { 3005 const char *name; 3006 size_t namelen; 3007 char *buffer; 3008 size_t buflen; 3009 int fd; 3010 }; 3011 3012 static void * 3013 try_library_path(const char *dir, size_t dirlen, void *param) 3014 { 3015 struct try_library_args *arg; 3016 int fd; 3017 3018 arg = param; 3019 if (*dir == '/' || trust) { 3020 char *pathname; 3021 3022 if (dirlen + 1 + arg->namelen + 1 > arg->buflen) 3023 return (NULL); 3024 3025 pathname = arg->buffer; 3026 strncpy(pathname, dir, dirlen); 3027 pathname[dirlen] = '/'; 3028 strcpy(pathname + dirlen + 1, arg->name); 3029 3030 dbg(" Trying \"%s\"", pathname); 3031 fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY); 3032 if (fd >= 0) { 3033 dbg(" Opened \"%s\", fd %d", pathname, fd); 3034 pathname = xmalloc(dirlen + 1 + arg->namelen + 1); 3035 strcpy(pathname, arg->buffer); 3036 arg->fd = fd; 3037 return (pathname); 3038 } else { 3039 dbg(" Failed to open \"%s\": %s", 3040 pathname, rtld_strerror(errno)); 3041 } 3042 } 3043 return (NULL); 3044 } 3045 3046 static char * 3047 search_library_path(const char *name, const char *path, int *fdp) 3048 { 3049 char *p; 3050 struct try_library_args arg; 3051 3052 if (path == NULL) 3053 return NULL; 3054 3055 arg.name = name; 3056 arg.namelen = strlen(name); 3057 arg.buffer = xmalloc(PATH_MAX); 3058 arg.buflen = PATH_MAX; 3059 arg.fd = -1; 3060 3061 p = path_enumerate(path, try_library_path, &arg); 3062 *fdp = arg.fd; 3063 3064 free(arg.buffer); 3065 3066 return (p); 3067 } 3068 3069 3070 /* 3071 * Finds the library with the given name using the directory descriptors 3072 * listed in the LD_LIBRARY_PATH_FDS environment variable. 3073 * 3074 * Returns a freshly-opened close-on-exec file descriptor for the library, 3075 * or -1 if the library cannot be found. 3076 */ 3077 static char * 3078 search_library_pathfds(const char *name, const char *path, int *fdp) 3079 { 3080 char *envcopy, *fdstr, *found, *last_token; 3081 size_t len; 3082 int dirfd, fd; 3083 3084 dbg("%s('%s', '%s', fdp)", __func__, name, path); 3085 3086 /* Don't load from user-specified libdirs into setuid binaries. */ 3087 if (!trust) 3088 return (NULL); 3089 3090 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */ 3091 if (path == NULL) 3092 return (NULL); 3093 3094 /* LD_LIBRARY_PATH_FDS only works with relative paths. */ 3095 if (name[0] == '/') { 3096 dbg("Absolute path (%s) passed to %s", name, __func__); 3097 return (NULL); 3098 } 3099 3100 /* 3101 * Use strtok_r() to walk the FD:FD:FD list. This requires a local 3102 * copy of the path, as strtok_r rewrites separator tokens 3103 * with '\0'. 3104 */ 3105 found = NULL; 3106 envcopy = xstrdup(path); 3107 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL; 3108 fdstr = strtok_r(NULL, ":", &last_token)) { 3109 dirfd = parse_integer(fdstr); 3110 if (dirfd < 0) { 3111 _rtld_error("failed to parse directory FD: '%s'", 3112 fdstr); 3113 break; 3114 } 3115 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY); 3116 if (fd >= 0) { 3117 *fdp = fd; 3118 len = strlen(fdstr) + strlen(name) + 3; 3119 found = xmalloc(len); 3120 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) { 3121 _rtld_error("error generating '%d/%s'", 3122 dirfd, name); 3123 rtld_die(); 3124 } 3125 dbg("open('%s') => %d", found, fd); 3126 break; 3127 } 3128 } 3129 free(envcopy); 3130 3131 return (found); 3132 } 3133 3134 3135 int 3136 dlclose(void *handle) 3137 { 3138 RtldLockState lockstate; 3139 int error; 3140 3141 wlock_acquire(rtld_bind_lock, &lockstate); 3142 error = dlclose_locked(handle, &lockstate); 3143 lock_release(rtld_bind_lock, &lockstate); 3144 return (error); 3145 } 3146 3147 static int 3148 dlclose_locked(void *handle, RtldLockState *lockstate) 3149 { 3150 Obj_Entry *root; 3151 3152 root = dlcheck(handle); 3153 if (root == NULL) 3154 return -1; 3155 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, 3156 root->path); 3157 3158 /* Unreference the object and its dependencies. */ 3159 root->dl_refcount--; 3160 3161 if (root->refcount == 1) { 3162 /* 3163 * The object will be no longer referenced, so we must unload it. 3164 * First, call the fini functions. 3165 */ 3166 objlist_call_fini(&list_fini, root, lockstate); 3167 3168 unref_dag(root); 3169 3170 /* Finish cleaning up the newly-unreferenced objects. */ 3171 GDB_STATE(RT_DELETE,&root->linkmap); 3172 unload_object(root, lockstate); 3173 GDB_STATE(RT_CONSISTENT,NULL); 3174 } else 3175 unref_dag(root); 3176 3177 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); 3178 return 0; 3179 } 3180 3181 char * 3182 dlerror(void) 3183 { 3184 char *msg = error_message; 3185 error_message = NULL; 3186 return msg; 3187 } 3188 3189 /* 3190 * This function is deprecated and has no effect. 3191 */ 3192 void 3193 dllockinit(void *context, 3194 void *(*lock_create)(void *context), 3195 void (*rlock_acquire)(void *lock), 3196 void (*wlock_acquire)(void *lock), 3197 void (*lock_release)(void *lock), 3198 void (*lock_destroy)(void *lock), 3199 void (*context_destroy)(void *context)) 3200 { 3201 static void *cur_context; 3202 static void (*cur_context_destroy)(void *); 3203 3204 /* Just destroy the context from the previous call, if necessary. */ 3205 if (cur_context_destroy != NULL) 3206 cur_context_destroy(cur_context); 3207 cur_context = context; 3208 cur_context_destroy = context_destroy; 3209 } 3210 3211 void * 3212 dlopen(const char *name, int mode) 3213 { 3214 3215 return (rtld_dlopen(name, -1, mode)); 3216 } 3217 3218 void * 3219 fdlopen(int fd, int mode) 3220 { 3221 3222 return (rtld_dlopen(NULL, fd, mode)); 3223 } 3224 3225 static void * 3226 rtld_dlopen(const char *name, int fd, int mode) 3227 { 3228 RtldLockState lockstate; 3229 int lo_flags; 3230 3231 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); 3232 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; 3233 if (ld_tracing != NULL) { 3234 rlock_acquire(rtld_bind_lock, &lockstate); 3235 if (sigsetjmp(lockstate.env, 0) != 0) 3236 lock_upgrade(rtld_bind_lock, &lockstate); 3237 environ = (char **)*get_program_var_addr("environ", &lockstate); 3238 lock_release(rtld_bind_lock, &lockstate); 3239 } 3240 lo_flags = RTLD_LO_DLOPEN; 3241 if (mode & RTLD_NODELETE) 3242 lo_flags |= RTLD_LO_NODELETE; 3243 if (mode & RTLD_NOLOAD) 3244 lo_flags |= RTLD_LO_NOLOAD; 3245 if (ld_tracing != NULL) 3246 lo_flags |= RTLD_LO_TRACE; 3247 3248 return (dlopen_object(name, fd, obj_main, lo_flags, 3249 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); 3250 } 3251 3252 static void 3253 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate) 3254 { 3255 3256 obj->dl_refcount--; 3257 unref_dag(obj); 3258 if (obj->refcount == 0) 3259 unload_object(obj, lockstate); 3260 } 3261 3262 static Obj_Entry * 3263 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, 3264 int mode, RtldLockState *lockstate) 3265 { 3266 Obj_Entry *old_obj_tail; 3267 Obj_Entry *obj; 3268 Objlist initlist; 3269 RtldLockState mlockstate; 3270 int result; 3271 3272 objlist_init(&initlist); 3273 3274 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { 3275 wlock_acquire(rtld_bind_lock, &mlockstate); 3276 lockstate = &mlockstate; 3277 } 3278 GDB_STATE(RT_ADD,NULL); 3279 3280 old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); 3281 obj = NULL; 3282 if (name == NULL && fd == -1) { 3283 obj = obj_main; 3284 obj->refcount++; 3285 } else { 3286 obj = load_object(name, fd, refobj, lo_flags); 3287 } 3288 3289 if (obj) { 3290 obj->dl_refcount++; 3291 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) 3292 objlist_push_tail(&list_global, obj); 3293 if (globallist_next(old_obj_tail) != NULL) { 3294 /* We loaded something new. */ 3295 assert(globallist_next(old_obj_tail) == obj); 3296 result = load_needed_objects(obj, 3297 lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY)); 3298 init_dag(obj); 3299 ref_dag(obj); 3300 if (result != -1) 3301 result = rtld_verify_versions(&obj->dagmembers); 3302 if (result != -1 && ld_tracing) 3303 goto trace; 3304 if (result == -1 || relocate_object_dag(obj, 3305 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, 3306 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3307 lockstate) == -1) { 3308 dlopen_cleanup(obj, lockstate); 3309 obj = NULL; 3310 } else if (lo_flags & RTLD_LO_EARLY) { 3311 /* 3312 * Do not call the init functions for early loaded 3313 * filtees. The image is still not initialized enough 3314 * for them to work. 3315 * 3316 * Our object is found by the global object list and 3317 * will be ordered among all init calls done right 3318 * before transferring control to main. 3319 */ 3320 } else { 3321 /* Make list of init functions to call. */ 3322 initlist_add_objects(obj, obj, &initlist); 3323 } 3324 /* 3325 * Process all no_delete or global objects here, given 3326 * them own DAGs to prevent their dependencies from being 3327 * unloaded. This has to be done after we have loaded all 3328 * of the dependencies, so that we do not miss any. 3329 */ 3330 if (obj != NULL) 3331 process_z(obj); 3332 } else { 3333 /* 3334 * Bump the reference counts for objects on this DAG. If 3335 * this is the first dlopen() call for the object that was 3336 * already loaded as a dependency, initialize the dag 3337 * starting at it. 3338 */ 3339 init_dag(obj); 3340 ref_dag(obj); 3341 3342 if ((lo_flags & RTLD_LO_TRACE) != 0) 3343 goto trace; 3344 } 3345 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || 3346 obj->z_nodelete) && !obj->ref_nodel) { 3347 dbg("obj %s nodelete", obj->path); 3348 ref_dag(obj); 3349 obj->z_nodelete = obj->ref_nodel = true; 3350 } 3351 } 3352 3353 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, 3354 name); 3355 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); 3356 3357 if (!(lo_flags & RTLD_LO_EARLY)) { 3358 map_stacks_exec(lockstate); 3359 } 3360 3361 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, 3362 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, 3363 lockstate) == -1) { 3364 objlist_clear(&initlist); 3365 dlopen_cleanup(obj, lockstate); 3366 if (lockstate == &mlockstate) 3367 lock_release(rtld_bind_lock, lockstate); 3368 return (NULL); 3369 } 3370 3371 if (!(lo_flags & RTLD_LO_EARLY)) { 3372 /* Call the init functions. */ 3373 objlist_call_init(&initlist, lockstate); 3374 } 3375 objlist_clear(&initlist); 3376 if (lockstate == &mlockstate) 3377 lock_release(rtld_bind_lock, lockstate); 3378 return obj; 3379 trace: 3380 trace_loaded_objects(obj); 3381 if (lockstate == &mlockstate) 3382 lock_release(rtld_bind_lock, lockstate); 3383 exit(0); 3384 } 3385 3386 static void * 3387 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, 3388 int flags) 3389 { 3390 DoneList donelist; 3391 const Obj_Entry *obj, *defobj; 3392 const Elf_Sym *def; 3393 SymLook req; 3394 RtldLockState lockstate; 3395 tls_index ti; 3396 void *sym; 3397 int res; 3398 3399 def = NULL; 3400 defobj = NULL; 3401 symlook_init(&req, name); 3402 req.ventry = ve; 3403 req.flags = flags | SYMLOOK_IN_PLT; 3404 req.lockstate = &lockstate; 3405 3406 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); 3407 rlock_acquire(rtld_bind_lock, &lockstate); 3408 if (sigsetjmp(lockstate.env, 0) != 0) 3409 lock_upgrade(rtld_bind_lock, &lockstate); 3410 if (handle == NULL || handle == RTLD_NEXT || 3411 handle == RTLD_DEFAULT || handle == RTLD_SELF) { 3412 3413 if ((obj = obj_from_addr(retaddr)) == NULL) { 3414 _rtld_error("Cannot determine caller's shared object"); 3415 lock_release(rtld_bind_lock, &lockstate); 3416 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3417 return NULL; 3418 } 3419 if (handle == NULL) { /* Just the caller's shared object. */ 3420 res = symlook_obj(&req, obj); 3421 if (res == 0) { 3422 def = req.sym_out; 3423 defobj = req.defobj_out; 3424 } 3425 } else if (handle == RTLD_NEXT || /* Objects after caller's */ 3426 handle == RTLD_SELF) { /* ... caller included */ 3427 if (handle == RTLD_NEXT) 3428 obj = globallist_next(obj); 3429 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 3430 if (obj->marker) 3431 continue; 3432 res = symlook_obj(&req, obj); 3433 if (res == 0) { 3434 if (def == NULL || 3435 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) { 3436 def = req.sym_out; 3437 defobj = req.defobj_out; 3438 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 3439 break; 3440 } 3441 } 3442 } 3443 /* 3444 * Search the dynamic linker itself, and possibly resolve the 3445 * symbol from there. This is how the application links to 3446 * dynamic linker services such as dlopen. 3447 */ 3448 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3449 res = symlook_obj(&req, &obj_rtld); 3450 if (res == 0) { 3451 def = req.sym_out; 3452 defobj = req.defobj_out; 3453 } 3454 } 3455 } else { 3456 assert(handle == RTLD_DEFAULT); 3457 res = symlook_default(&req, obj); 3458 if (res == 0) { 3459 defobj = req.defobj_out; 3460 def = req.sym_out; 3461 } 3462 } 3463 } else { 3464 if ((obj = dlcheck(handle)) == NULL) { 3465 lock_release(rtld_bind_lock, &lockstate); 3466 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3467 return NULL; 3468 } 3469 3470 donelist_init(&donelist); 3471 if (obj->mainprog) { 3472 /* Handle obtained by dlopen(NULL, ...) implies global scope. */ 3473 res = symlook_global(&req, &donelist); 3474 if (res == 0) { 3475 def = req.sym_out; 3476 defobj = req.defobj_out; 3477 } 3478 /* 3479 * Search the dynamic linker itself, and possibly resolve the 3480 * symbol from there. This is how the application links to 3481 * dynamic linker services such as dlopen. 3482 */ 3483 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { 3484 res = symlook_obj(&req, &obj_rtld); 3485 if (res == 0) { 3486 def = req.sym_out; 3487 defobj = req.defobj_out; 3488 } 3489 } 3490 } 3491 else { 3492 /* Search the whole DAG rooted at the given object. */ 3493 res = symlook_list(&req, &obj->dagmembers, &donelist); 3494 if (res == 0) { 3495 def = req.sym_out; 3496 defobj = req.defobj_out; 3497 } 3498 } 3499 } 3500 3501 if (def != NULL) { 3502 lock_release(rtld_bind_lock, &lockstate); 3503 3504 /* 3505 * The value required by the caller is derived from the value 3506 * of the symbol. this is simply the relocated value of the 3507 * symbol. 3508 */ 3509 if (ELF_ST_TYPE(def->st_info) == STT_FUNC) 3510 sym = make_function_pointer(def, defobj); 3511 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) 3512 sym = rtld_resolve_ifunc(defobj, def); 3513 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { 3514 ti.ti_module = defobj->tlsindex; 3515 ti.ti_offset = def->st_value; 3516 sym = __tls_get_addr(&ti); 3517 } else 3518 sym = defobj->relocbase + def->st_value; 3519 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); 3520 return (sym); 3521 } 3522 3523 _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "", 3524 ve != NULL ? ve->name : ""); 3525 lock_release(rtld_bind_lock, &lockstate); 3526 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); 3527 return NULL; 3528 } 3529 3530 void * 3531 dlsym(void *handle, const char *name) 3532 { 3533 return do_dlsym(handle, name, __builtin_return_address(0), NULL, 3534 SYMLOOK_DLSYM); 3535 } 3536 3537 dlfunc_t 3538 dlfunc(void *handle, const char *name) 3539 { 3540 union { 3541 void *d; 3542 dlfunc_t f; 3543 } rv; 3544 3545 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, 3546 SYMLOOK_DLSYM); 3547 return (rv.f); 3548 } 3549 3550 void * 3551 dlvsym(void *handle, const char *name, const char *version) 3552 { 3553 Ver_Entry ventry; 3554 3555 ventry.name = version; 3556 ventry.file = NULL; 3557 ventry.hash = elf_hash(version); 3558 ventry.flags= 0; 3559 return do_dlsym(handle, name, __builtin_return_address(0), &ventry, 3560 SYMLOOK_DLSYM); 3561 } 3562 3563 int 3564 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) 3565 { 3566 const Obj_Entry *obj; 3567 RtldLockState lockstate; 3568 3569 rlock_acquire(rtld_bind_lock, &lockstate); 3570 obj = obj_from_addr(addr); 3571 if (obj == NULL) { 3572 _rtld_error("No shared object contains address"); 3573 lock_release(rtld_bind_lock, &lockstate); 3574 return (0); 3575 } 3576 rtld_fill_dl_phdr_info(obj, phdr_info); 3577 lock_release(rtld_bind_lock, &lockstate); 3578 return (1); 3579 } 3580 3581 int 3582 dladdr(const void *addr, Dl_info *info) 3583 { 3584 const Obj_Entry *obj; 3585 const Elf_Sym *def; 3586 void *symbol_addr; 3587 unsigned long symoffset; 3588 RtldLockState lockstate; 3589 3590 rlock_acquire(rtld_bind_lock, &lockstate); 3591 obj = obj_from_addr(addr); 3592 if (obj == NULL) { 3593 _rtld_error("No shared object contains address"); 3594 lock_release(rtld_bind_lock, &lockstate); 3595 return 0; 3596 } 3597 info->dli_fname = obj->path; 3598 info->dli_fbase = obj->mapbase; 3599 info->dli_saddr = (void *)0; 3600 info->dli_sname = NULL; 3601 3602 /* 3603 * Walk the symbol list looking for the symbol whose address is 3604 * closest to the address sent in. 3605 */ 3606 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { 3607 def = obj->symtab + symoffset; 3608 3609 /* 3610 * For skip the symbol if st_shndx is either SHN_UNDEF or 3611 * SHN_COMMON. 3612 */ 3613 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) 3614 continue; 3615 3616 /* 3617 * If the symbol is greater than the specified address, or if it 3618 * is further away from addr than the current nearest symbol, 3619 * then reject it. 3620 */ 3621 symbol_addr = obj->relocbase + def->st_value; 3622 if (symbol_addr > addr || symbol_addr < info->dli_saddr) 3623 continue; 3624 3625 /* Update our idea of the nearest symbol. */ 3626 info->dli_sname = obj->strtab + def->st_name; 3627 info->dli_saddr = symbol_addr; 3628 3629 /* Exact match? */ 3630 if (info->dli_saddr == addr) 3631 break; 3632 } 3633 lock_release(rtld_bind_lock, &lockstate); 3634 return 1; 3635 } 3636 3637 int 3638 dlinfo(void *handle, int request, void *p) 3639 { 3640 const Obj_Entry *obj; 3641 RtldLockState lockstate; 3642 int error; 3643 3644 rlock_acquire(rtld_bind_lock, &lockstate); 3645 3646 if (handle == NULL || handle == RTLD_SELF) { 3647 void *retaddr; 3648 3649 retaddr = __builtin_return_address(0); /* __GNUC__ only */ 3650 if ((obj = obj_from_addr(retaddr)) == NULL) 3651 _rtld_error("Cannot determine caller's shared object"); 3652 } else 3653 obj = dlcheck(handle); 3654 3655 if (obj == NULL) { 3656 lock_release(rtld_bind_lock, &lockstate); 3657 return (-1); 3658 } 3659 3660 error = 0; 3661 switch (request) { 3662 case RTLD_DI_LINKMAP: 3663 *((struct link_map const **)p) = &obj->linkmap; 3664 break; 3665 case RTLD_DI_ORIGIN: 3666 error = rtld_dirname(obj->path, p); 3667 break; 3668 3669 case RTLD_DI_SERINFOSIZE: 3670 case RTLD_DI_SERINFO: 3671 error = do_search_info(obj, request, (struct dl_serinfo *)p); 3672 break; 3673 3674 default: 3675 _rtld_error("Invalid request %d passed to dlinfo()", request); 3676 error = -1; 3677 } 3678 3679 lock_release(rtld_bind_lock, &lockstate); 3680 3681 return (error); 3682 } 3683 3684 static void 3685 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) 3686 { 3687 3688 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; 3689 phdr_info->dlpi_name = obj->path; 3690 phdr_info->dlpi_phdr = obj->phdr; 3691 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); 3692 phdr_info->dlpi_tls_modid = obj->tlsindex; 3693 phdr_info->dlpi_tls_data = obj->tlsinit; 3694 phdr_info->dlpi_adds = obj_loads; 3695 phdr_info->dlpi_subs = obj_loads - obj_count; 3696 } 3697 3698 int 3699 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) 3700 { 3701 struct dl_phdr_info phdr_info; 3702 Obj_Entry *obj, marker; 3703 RtldLockState bind_lockstate, phdr_lockstate; 3704 int error; 3705 3706 init_marker(&marker); 3707 error = 0; 3708 3709 wlock_acquire(rtld_phdr_lock, &phdr_lockstate); 3710 wlock_acquire(rtld_bind_lock, &bind_lockstate); 3711 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) { 3712 TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next); 3713 rtld_fill_dl_phdr_info(obj, &phdr_info); 3714 hold_object(obj); 3715 lock_release(rtld_bind_lock, &bind_lockstate); 3716 3717 error = callback(&phdr_info, sizeof phdr_info, param); 3718 3719 wlock_acquire(rtld_bind_lock, &bind_lockstate); 3720 unhold_object(obj); 3721 obj = globallist_next(&marker); 3722 TAILQ_REMOVE(&obj_list, &marker, next); 3723 if (error != 0) { 3724 lock_release(rtld_bind_lock, &bind_lockstate); 3725 lock_release(rtld_phdr_lock, &phdr_lockstate); 3726 return (error); 3727 } 3728 } 3729 3730 if (error == 0) { 3731 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); 3732 lock_release(rtld_bind_lock, &bind_lockstate); 3733 error = callback(&phdr_info, sizeof(phdr_info), param); 3734 } 3735 lock_release(rtld_phdr_lock, &phdr_lockstate); 3736 return (error); 3737 } 3738 3739 static void * 3740 fill_search_info(const char *dir, size_t dirlen, void *param) 3741 { 3742 struct fill_search_info_args *arg; 3743 3744 arg = param; 3745 3746 if (arg->request == RTLD_DI_SERINFOSIZE) { 3747 arg->serinfo->dls_cnt ++; 3748 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; 3749 } else { 3750 struct dl_serpath *s_entry; 3751 3752 s_entry = arg->serpath; 3753 s_entry->dls_name = arg->strspace; 3754 s_entry->dls_flags = arg->flags; 3755 3756 strncpy(arg->strspace, dir, dirlen); 3757 arg->strspace[dirlen] = '\0'; 3758 3759 arg->strspace += dirlen + 1; 3760 arg->serpath++; 3761 } 3762 3763 return (NULL); 3764 } 3765 3766 static int 3767 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) 3768 { 3769 struct dl_serinfo _info; 3770 struct fill_search_info_args args; 3771 3772 args.request = RTLD_DI_SERINFOSIZE; 3773 args.serinfo = &_info; 3774 3775 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); 3776 _info.dls_cnt = 0; 3777 3778 path_enumerate(obj->rpath, fill_search_info, &args); 3779 path_enumerate(ld_library_path, fill_search_info, &args); 3780 path_enumerate(obj->runpath, fill_search_info, &args); 3781 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args); 3782 if (!obj->z_nodeflib) 3783 path_enumerate(ld_standard_library_path, fill_search_info, &args); 3784 3785 3786 if (request == RTLD_DI_SERINFOSIZE) { 3787 info->dls_size = _info.dls_size; 3788 info->dls_cnt = _info.dls_cnt; 3789 return (0); 3790 } 3791 3792 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { 3793 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); 3794 return (-1); 3795 } 3796 3797 args.request = RTLD_DI_SERINFO; 3798 args.serinfo = info; 3799 args.serpath = &info->dls_serpath[0]; 3800 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; 3801 3802 args.flags = LA_SER_RUNPATH; 3803 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL) 3804 return (-1); 3805 3806 args.flags = LA_SER_LIBPATH; 3807 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL) 3808 return (-1); 3809 3810 args.flags = LA_SER_RUNPATH; 3811 if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL) 3812 return (-1); 3813 3814 args.flags = LA_SER_CONFIG; 3815 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args) 3816 != NULL) 3817 return (-1); 3818 3819 args.flags = LA_SER_DEFAULT; 3820 if (!obj->z_nodeflib && 3821 path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL) 3822 return (-1); 3823 return (0); 3824 } 3825 3826 static int 3827 rtld_dirname(const char *path, char *bname) 3828 { 3829 const char *endp; 3830 3831 /* Empty or NULL string gets treated as "." */ 3832 if (path == NULL || *path == '\0') { 3833 bname[0] = '.'; 3834 bname[1] = '\0'; 3835 return (0); 3836 } 3837 3838 /* Strip trailing slashes */ 3839 endp = path + strlen(path) - 1; 3840 while (endp > path && *endp == '/') 3841 endp--; 3842 3843 /* Find the start of the dir */ 3844 while (endp > path && *endp != '/') 3845 endp--; 3846 3847 /* Either the dir is "/" or there are no slashes */ 3848 if (endp == path) { 3849 bname[0] = *endp == '/' ? '/' : '.'; 3850 bname[1] = '\0'; 3851 return (0); 3852 } else { 3853 do { 3854 endp--; 3855 } while (endp > path && *endp == '/'); 3856 } 3857 3858 if (endp - path + 2 > PATH_MAX) 3859 { 3860 _rtld_error("Filename is too long: %s", path); 3861 return(-1); 3862 } 3863 3864 strncpy(bname, path, endp - path + 1); 3865 bname[endp - path + 1] = '\0'; 3866 return (0); 3867 } 3868 3869 static int 3870 rtld_dirname_abs(const char *path, char *base) 3871 { 3872 char *last; 3873 3874 if (realpath(path, base) == NULL) 3875 return (-1); 3876 dbg("%s -> %s", path, base); 3877 last = strrchr(base, '/'); 3878 if (last == NULL) 3879 return (-1); 3880 if (last != base) 3881 *last = '\0'; 3882 return (0); 3883 } 3884 3885 static void 3886 linkmap_add(Obj_Entry *obj) 3887 { 3888 struct link_map *l = &obj->linkmap; 3889 struct link_map *prev; 3890 3891 obj->linkmap.l_name = obj->path; 3892 obj->linkmap.l_addr = obj->mapbase; 3893 obj->linkmap.l_ld = obj->dynamic; 3894 #ifdef __mips__ 3895 /* GDB needs load offset on MIPS to use the symbols */ 3896 obj->linkmap.l_offs = obj->relocbase; 3897 #endif 3898 3899 if (r_debug.r_map == NULL) { 3900 r_debug.r_map = l; 3901 return; 3902 } 3903 3904 /* 3905 * Scan to the end of the list, but not past the entry for the 3906 * dynamic linker, which we want to keep at the very end. 3907 */ 3908 for (prev = r_debug.r_map; 3909 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; 3910 prev = prev->l_next) 3911 ; 3912 3913 /* Link in the new entry. */ 3914 l->l_prev = prev; 3915 l->l_next = prev->l_next; 3916 if (l->l_next != NULL) 3917 l->l_next->l_prev = l; 3918 prev->l_next = l; 3919 } 3920 3921 static void 3922 linkmap_delete(Obj_Entry *obj) 3923 { 3924 struct link_map *l = &obj->linkmap; 3925 3926 if (l->l_prev == NULL) { 3927 if ((r_debug.r_map = l->l_next) != NULL) 3928 l->l_next->l_prev = NULL; 3929 return; 3930 } 3931 3932 if ((l->l_prev->l_next = l->l_next) != NULL) 3933 l->l_next->l_prev = l->l_prev; 3934 } 3935 3936 /* 3937 * Function for the debugger to set a breakpoint on to gain control. 3938 * 3939 * The two parameters allow the debugger to easily find and determine 3940 * what the runtime loader is doing and to whom it is doing it. 3941 * 3942 * When the loadhook trap is hit (r_debug_state, set at program 3943 * initialization), the arguments can be found on the stack: 3944 * 3945 * +8 struct link_map *m 3946 * +4 struct r_debug *rd 3947 * +0 RetAddr 3948 */ 3949 void 3950 r_debug_state(struct r_debug* rd, struct link_map *m) 3951 { 3952 /* 3953 * The following is a hack to force the compiler to emit calls to 3954 * this function, even when optimizing. If the function is empty, 3955 * the compiler is not obliged to emit any code for calls to it, 3956 * even when marked __noinline. However, gdb depends on those 3957 * calls being made. 3958 */ 3959 __compiler_membar(); 3960 } 3961 3962 /* 3963 * A function called after init routines have completed. This can be used to 3964 * break before a program's entry routine is called, and can be used when 3965 * main is not available in the symbol table. 3966 */ 3967 void 3968 _r_debug_postinit(struct link_map *m) 3969 { 3970 3971 /* See r_debug_state(). */ 3972 __compiler_membar(); 3973 } 3974 3975 static void 3976 release_object(Obj_Entry *obj) 3977 { 3978 3979 if (obj->holdcount > 0) { 3980 obj->unholdfree = true; 3981 return; 3982 } 3983 munmap(obj->mapbase, obj->mapsize); 3984 linkmap_delete(obj); 3985 obj_free(obj); 3986 } 3987 3988 /* 3989 * Get address of the pointer variable in the main program. 3990 * Prefer non-weak symbol over the weak one. 3991 */ 3992 static const void ** 3993 get_program_var_addr(const char *name, RtldLockState *lockstate) 3994 { 3995 SymLook req; 3996 DoneList donelist; 3997 3998 symlook_init(&req, name); 3999 req.lockstate = lockstate; 4000 donelist_init(&donelist); 4001 if (symlook_global(&req, &donelist) != 0) 4002 return (NULL); 4003 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) 4004 return ((const void **)make_function_pointer(req.sym_out, 4005 req.defobj_out)); 4006 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) 4007 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); 4008 else 4009 return ((const void **)(req.defobj_out->relocbase + 4010 req.sym_out->st_value)); 4011 } 4012 4013 /* 4014 * Set a pointer variable in the main program to the given value. This 4015 * is used to set key variables such as "environ" before any of the 4016 * init functions are called. 4017 */ 4018 static void 4019 set_program_var(const char *name, const void *value) 4020 { 4021 const void **addr; 4022 4023 if ((addr = get_program_var_addr(name, NULL)) != NULL) { 4024 dbg("\"%s\": *%p <-- %p", name, addr, value); 4025 *addr = value; 4026 } 4027 } 4028 4029 /* 4030 * Search the global objects, including dependencies and main object, 4031 * for the given symbol. 4032 */ 4033 static int 4034 symlook_global(SymLook *req, DoneList *donelist) 4035 { 4036 SymLook req1; 4037 const Objlist_Entry *elm; 4038 int res; 4039 4040 symlook_init_from_req(&req1, req); 4041 4042 /* Search all objects loaded at program start up. */ 4043 if (req->defobj_out == NULL || 4044 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 4045 res = symlook_list(&req1, &list_main, donelist); 4046 if (res == 0 && (req->defobj_out == NULL || 4047 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4048 req->sym_out = req1.sym_out; 4049 req->defobj_out = req1.defobj_out; 4050 assert(req->defobj_out != NULL); 4051 } 4052 } 4053 4054 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ 4055 STAILQ_FOREACH(elm, &list_global, link) { 4056 if (req->defobj_out != NULL && 4057 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 4058 break; 4059 res = symlook_list(&req1, &elm->obj->dagmembers, donelist); 4060 if (res == 0 && (req->defobj_out == NULL || 4061 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4062 req->sym_out = req1.sym_out; 4063 req->defobj_out = req1.defobj_out; 4064 assert(req->defobj_out != NULL); 4065 } 4066 } 4067 4068 return (req->sym_out != NULL ? 0 : ESRCH); 4069 } 4070 4071 /* 4072 * Given a symbol name in a referencing object, find the corresponding 4073 * definition of the symbol. Returns a pointer to the symbol, or NULL if 4074 * no definition was found. Returns a pointer to the Obj_Entry of the 4075 * defining object via the reference parameter DEFOBJ_OUT. 4076 */ 4077 static int 4078 symlook_default(SymLook *req, const Obj_Entry *refobj) 4079 { 4080 DoneList donelist; 4081 const Objlist_Entry *elm; 4082 SymLook req1; 4083 int res; 4084 4085 donelist_init(&donelist); 4086 symlook_init_from_req(&req1, req); 4087 4088 /* 4089 * Look first in the referencing object if linked symbolically, 4090 * and similarly handle protected symbols. 4091 */ 4092 res = symlook_obj(&req1, refobj); 4093 if (res == 0 && (refobj->symbolic || 4094 ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) { 4095 req->sym_out = req1.sym_out; 4096 req->defobj_out = req1.defobj_out; 4097 assert(req->defobj_out != NULL); 4098 } 4099 if (refobj->symbolic || req->defobj_out != NULL) 4100 donelist_check(&donelist, refobj); 4101 4102 symlook_global(req, &donelist); 4103 4104 /* Search all dlopened DAGs containing the referencing object. */ 4105 STAILQ_FOREACH(elm, &refobj->dldags, link) { 4106 if (req->sym_out != NULL && 4107 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) 4108 break; 4109 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); 4110 if (res == 0 && (req->sym_out == NULL || 4111 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { 4112 req->sym_out = req1.sym_out; 4113 req->defobj_out = req1.defobj_out; 4114 assert(req->defobj_out != NULL); 4115 } 4116 } 4117 4118 /* 4119 * Search the dynamic linker itself, and possibly resolve the 4120 * symbol from there. This is how the application links to 4121 * dynamic linker services such as dlopen. 4122 */ 4123 if (req->sym_out == NULL || 4124 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { 4125 res = symlook_obj(&req1, &obj_rtld); 4126 if (res == 0) { 4127 req->sym_out = req1.sym_out; 4128 req->defobj_out = req1.defobj_out; 4129 assert(req->defobj_out != NULL); 4130 } 4131 } 4132 4133 return (req->sym_out != NULL ? 0 : ESRCH); 4134 } 4135 4136 static int 4137 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) 4138 { 4139 const Elf_Sym *def; 4140 const Obj_Entry *defobj; 4141 const Objlist_Entry *elm; 4142 SymLook req1; 4143 int res; 4144 4145 def = NULL; 4146 defobj = NULL; 4147 STAILQ_FOREACH(elm, objlist, link) { 4148 if (donelist_check(dlp, elm->obj)) 4149 continue; 4150 symlook_init_from_req(&req1, req); 4151 if ((res = symlook_obj(&req1, elm->obj)) == 0) { 4152 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 4153 def = req1.sym_out; 4154 defobj = req1.defobj_out; 4155 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 4156 break; 4157 } 4158 } 4159 } 4160 if (def != NULL) { 4161 req->sym_out = def; 4162 req->defobj_out = defobj; 4163 return (0); 4164 } 4165 return (ESRCH); 4166 } 4167 4168 /* 4169 * Search the chain of DAGS cointed to by the given Needed_Entry 4170 * for a symbol of the given name. Each DAG is scanned completely 4171 * before advancing to the next one. Returns a pointer to the symbol, 4172 * or NULL if no definition was found. 4173 */ 4174 static int 4175 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) 4176 { 4177 const Elf_Sym *def; 4178 const Needed_Entry *n; 4179 const Obj_Entry *defobj; 4180 SymLook req1; 4181 int res; 4182 4183 def = NULL; 4184 defobj = NULL; 4185 symlook_init_from_req(&req1, req); 4186 for (n = needed; n != NULL; n = n->next) { 4187 if (n->obj == NULL || 4188 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) 4189 continue; 4190 if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { 4191 def = req1.sym_out; 4192 defobj = req1.defobj_out; 4193 if (ELF_ST_BIND(def->st_info) != STB_WEAK) 4194 break; 4195 } 4196 } 4197 if (def != NULL) { 4198 req->sym_out = def; 4199 req->defobj_out = defobj; 4200 return (0); 4201 } 4202 return (ESRCH); 4203 } 4204 4205 /* 4206 * Search the symbol table of a single shared object for a symbol of 4207 * the given name and version, if requested. Returns a pointer to the 4208 * symbol, or NULL if no definition was found. If the object is 4209 * filter, return filtered symbol from filtee. 4210 * 4211 * The symbol's hash value is passed in for efficiency reasons; that 4212 * eliminates many recomputations of the hash value. 4213 */ 4214 int 4215 symlook_obj(SymLook *req, const Obj_Entry *obj) 4216 { 4217 DoneList donelist; 4218 SymLook req1; 4219 int flags, res, mres; 4220 4221 /* 4222 * If there is at least one valid hash at this point, we prefer to 4223 * use the faster GNU version if available. 4224 */ 4225 if (obj->valid_hash_gnu) 4226 mres = symlook_obj1_gnu(req, obj); 4227 else if (obj->valid_hash_sysv) 4228 mres = symlook_obj1_sysv(req, obj); 4229 else 4230 return (EINVAL); 4231 4232 if (mres == 0) { 4233 if (obj->needed_filtees != NULL) { 4234 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 4235 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 4236 donelist_init(&donelist); 4237 symlook_init_from_req(&req1, req); 4238 res = symlook_needed(&req1, obj->needed_filtees, &donelist); 4239 if (res == 0) { 4240 req->sym_out = req1.sym_out; 4241 req->defobj_out = req1.defobj_out; 4242 } 4243 return (res); 4244 } 4245 if (obj->needed_aux_filtees != NULL) { 4246 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; 4247 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); 4248 donelist_init(&donelist); 4249 symlook_init_from_req(&req1, req); 4250 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist); 4251 if (res == 0) { 4252 req->sym_out = req1.sym_out; 4253 req->defobj_out = req1.defobj_out; 4254 return (res); 4255 } 4256 } 4257 } 4258 return (mres); 4259 } 4260 4261 /* Symbol match routine common to both hash functions */ 4262 static bool 4263 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, 4264 const unsigned long symnum) 4265 { 4266 Elf_Versym verndx; 4267 const Elf_Sym *symp; 4268 const char *strp; 4269 4270 symp = obj->symtab + symnum; 4271 strp = obj->strtab + symp->st_name; 4272 4273 switch (ELF_ST_TYPE(symp->st_info)) { 4274 case STT_FUNC: 4275 case STT_NOTYPE: 4276 case STT_OBJECT: 4277 case STT_COMMON: 4278 case STT_GNU_IFUNC: 4279 if (symp->st_value == 0) 4280 return (false); 4281 /* fallthrough */ 4282 case STT_TLS: 4283 if (symp->st_shndx != SHN_UNDEF) 4284 break; 4285 #ifndef __mips__ 4286 else if (((req->flags & SYMLOOK_IN_PLT) == 0) && 4287 (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) 4288 break; 4289 /* fallthrough */ 4290 #endif 4291 default: 4292 return (false); 4293 } 4294 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) 4295 return (false); 4296 4297 if (req->ventry == NULL) { 4298 if (obj->versyms != NULL) { 4299 verndx = VER_NDX(obj->versyms[symnum]); 4300 if (verndx > obj->vernum) { 4301 _rtld_error( 4302 "%s: symbol %s references wrong version %d", 4303 obj->path, obj->strtab + symnum, verndx); 4304 return (false); 4305 } 4306 /* 4307 * If we are not called from dlsym (i.e. this 4308 * is a normal relocation from unversioned 4309 * binary), accept the symbol immediately if 4310 * it happens to have first version after this 4311 * shared object became versioned. Otherwise, 4312 * if symbol is versioned and not hidden, 4313 * remember it. If it is the only symbol with 4314 * this name exported by the shared object, it 4315 * will be returned as a match by the calling 4316 * function. If symbol is global (verndx < 2) 4317 * accept it unconditionally. 4318 */ 4319 if ((req->flags & SYMLOOK_DLSYM) == 0 && 4320 verndx == VER_NDX_GIVEN) { 4321 result->sym_out = symp; 4322 return (true); 4323 } 4324 else if (verndx >= VER_NDX_GIVEN) { 4325 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) 4326 == 0) { 4327 if (result->vsymp == NULL) 4328 result->vsymp = symp; 4329 result->vcount++; 4330 } 4331 return (false); 4332 } 4333 } 4334 result->sym_out = symp; 4335 return (true); 4336 } 4337 if (obj->versyms == NULL) { 4338 if (object_match_name(obj, req->ventry->name)) { 4339 _rtld_error("%s: object %s should provide version %s " 4340 "for symbol %s", obj_rtld.path, obj->path, 4341 req->ventry->name, obj->strtab + symnum); 4342 return (false); 4343 } 4344 } else { 4345 verndx = VER_NDX(obj->versyms[symnum]); 4346 if (verndx > obj->vernum) { 4347 _rtld_error("%s: symbol %s references wrong version %d", 4348 obj->path, obj->strtab + symnum, verndx); 4349 return (false); 4350 } 4351 if (obj->vertab[verndx].hash != req->ventry->hash || 4352 strcmp(obj->vertab[verndx].name, req->ventry->name)) { 4353 /* 4354 * Version does not match. Look if this is a 4355 * global symbol and if it is not hidden. If 4356 * global symbol (verndx < 2) is available, 4357 * use it. Do not return symbol if we are 4358 * called by dlvsym, because dlvsym looks for 4359 * a specific version and default one is not 4360 * what dlvsym wants. 4361 */ 4362 if ((req->flags & SYMLOOK_DLSYM) || 4363 (verndx >= VER_NDX_GIVEN) || 4364 (obj->versyms[symnum] & VER_NDX_HIDDEN)) 4365 return (false); 4366 } 4367 } 4368 result->sym_out = symp; 4369 return (true); 4370 } 4371 4372 /* 4373 * Search for symbol using SysV hash function. 4374 * obj->buckets is known not to be NULL at this point; the test for this was 4375 * performed with the obj->valid_hash_sysv assignment. 4376 */ 4377 static int 4378 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) 4379 { 4380 unsigned long symnum; 4381 Sym_Match_Result matchres; 4382 4383 matchres.sym_out = NULL; 4384 matchres.vsymp = NULL; 4385 matchres.vcount = 0; 4386 4387 for (symnum = obj->buckets[req->hash % obj->nbuckets]; 4388 symnum != STN_UNDEF; symnum = obj->chains[symnum]) { 4389 if (symnum >= obj->nchains) 4390 return (ESRCH); /* Bad object */ 4391 4392 if (matched_symbol(req, obj, &matchres, symnum)) { 4393 req->sym_out = matchres.sym_out; 4394 req->defobj_out = obj; 4395 return (0); 4396 } 4397 } 4398 if (matchres.vcount == 1) { 4399 req->sym_out = matchres.vsymp; 4400 req->defobj_out = obj; 4401 return (0); 4402 } 4403 return (ESRCH); 4404 } 4405 4406 /* Search for symbol using GNU hash function */ 4407 static int 4408 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) 4409 { 4410 Elf_Addr bloom_word; 4411 const Elf32_Word *hashval; 4412 Elf32_Word bucket; 4413 Sym_Match_Result matchres; 4414 unsigned int h1, h2; 4415 unsigned long symnum; 4416 4417 matchres.sym_out = NULL; 4418 matchres.vsymp = NULL; 4419 matchres.vcount = 0; 4420 4421 /* Pick right bitmask word from Bloom filter array */ 4422 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & 4423 obj->maskwords_bm_gnu]; 4424 4425 /* Calculate modulus word size of gnu hash and its derivative */ 4426 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); 4427 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); 4428 4429 /* Filter out the "definitely not in set" queries */ 4430 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) 4431 return (ESRCH); 4432 4433 /* Locate hash chain and corresponding value element*/ 4434 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; 4435 if (bucket == 0) 4436 return (ESRCH); 4437 hashval = &obj->chain_zero_gnu[bucket]; 4438 do { 4439 if (((*hashval ^ req->hash_gnu) >> 1) == 0) { 4440 symnum = hashval - obj->chain_zero_gnu; 4441 if (matched_symbol(req, obj, &matchres, symnum)) { 4442 req->sym_out = matchres.sym_out; 4443 req->defobj_out = obj; 4444 return (0); 4445 } 4446 } 4447 } while ((*hashval++ & 1) == 0); 4448 if (matchres.vcount == 1) { 4449 req->sym_out = matchres.vsymp; 4450 req->defobj_out = obj; 4451 return (0); 4452 } 4453 return (ESRCH); 4454 } 4455 4456 static void 4457 trace_loaded_objects(Obj_Entry *obj) 4458 { 4459 char *fmt1, *fmt2, *fmt, *main_local, *list_containers; 4460 int c; 4461 4462 if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL) 4463 main_local = ""; 4464 4465 if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL) 4466 fmt1 = "\t%o => %p (%x)\n"; 4467 4468 if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL) 4469 fmt2 = "\t%o (%x)\n"; 4470 4471 list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL")); 4472 4473 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 4474 Needed_Entry *needed; 4475 char *name, *path; 4476 bool is_lib; 4477 4478 if (obj->marker) 4479 continue; 4480 if (list_containers && obj->needed != NULL) 4481 rtld_printf("%s:\n", obj->path); 4482 for (needed = obj->needed; needed; needed = needed->next) { 4483 if (needed->obj != NULL) { 4484 if (needed->obj->traced && !list_containers) 4485 continue; 4486 needed->obj->traced = true; 4487 path = needed->obj->path; 4488 } else 4489 path = "not found"; 4490 4491 name = (char *)obj->strtab + needed->name; 4492 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ 4493 4494 fmt = is_lib ? fmt1 : fmt2; 4495 while ((c = *fmt++) != '\0') { 4496 switch (c) { 4497 default: 4498 rtld_putchar(c); 4499 continue; 4500 case '\\': 4501 switch (c = *fmt) { 4502 case '\0': 4503 continue; 4504 case 'n': 4505 rtld_putchar('\n'); 4506 break; 4507 case 't': 4508 rtld_putchar('\t'); 4509 break; 4510 } 4511 break; 4512 case '%': 4513 switch (c = *fmt) { 4514 case '\0': 4515 continue; 4516 case '%': 4517 default: 4518 rtld_putchar(c); 4519 break; 4520 case 'A': 4521 rtld_putstr(main_local); 4522 break; 4523 case 'a': 4524 rtld_putstr(obj_main->path); 4525 break; 4526 case 'o': 4527 rtld_putstr(name); 4528 break; 4529 #if 0 4530 case 'm': 4531 rtld_printf("%d", sodp->sod_major); 4532 break; 4533 case 'n': 4534 rtld_printf("%d", sodp->sod_minor); 4535 break; 4536 #endif 4537 case 'p': 4538 rtld_putstr(path); 4539 break; 4540 case 'x': 4541 rtld_printf("%p", needed->obj ? needed->obj->mapbase : 4542 0); 4543 break; 4544 } 4545 break; 4546 } 4547 ++fmt; 4548 } 4549 } 4550 } 4551 } 4552 4553 /* 4554 * Unload a dlopened object and its dependencies from memory and from 4555 * our data structures. It is assumed that the DAG rooted in the 4556 * object has already been unreferenced, and that the object has a 4557 * reference count of 0. 4558 */ 4559 static void 4560 unload_object(Obj_Entry *root, RtldLockState *lockstate) 4561 { 4562 Obj_Entry marker, *obj, *next; 4563 4564 assert(root->refcount == 0); 4565 4566 /* 4567 * Pass over the DAG removing unreferenced objects from 4568 * appropriate lists. 4569 */ 4570 unlink_object(root); 4571 4572 /* Unmap all objects that are no longer referenced. */ 4573 for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) { 4574 next = TAILQ_NEXT(obj, next); 4575 if (obj->marker || obj->refcount != 0) 4576 continue; 4577 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, 4578 obj->mapsize, 0, obj->path); 4579 dbg("unloading \"%s\"", obj->path); 4580 /* 4581 * Unlink the object now to prevent new references from 4582 * being acquired while the bind lock is dropped in 4583 * recursive dlclose() invocations. 4584 */ 4585 TAILQ_REMOVE(&obj_list, obj, next); 4586 obj_count--; 4587 4588 if (obj->filtees_loaded) { 4589 if (next != NULL) { 4590 init_marker(&marker); 4591 TAILQ_INSERT_BEFORE(next, &marker, next); 4592 unload_filtees(obj, lockstate); 4593 next = TAILQ_NEXT(&marker, next); 4594 TAILQ_REMOVE(&obj_list, &marker, next); 4595 } else 4596 unload_filtees(obj, lockstate); 4597 } 4598 release_object(obj); 4599 } 4600 } 4601 4602 static void 4603 unlink_object(Obj_Entry *root) 4604 { 4605 Objlist_Entry *elm; 4606 4607 if (root->refcount == 0) { 4608 /* Remove the object from the RTLD_GLOBAL list. */ 4609 objlist_remove(&list_global, root); 4610 4611 /* Remove the object from all objects' DAG lists. */ 4612 STAILQ_FOREACH(elm, &root->dagmembers, link) { 4613 objlist_remove(&elm->obj->dldags, root); 4614 if (elm->obj != root) 4615 unlink_object(elm->obj); 4616 } 4617 } 4618 } 4619 4620 static void 4621 ref_dag(Obj_Entry *root) 4622 { 4623 Objlist_Entry *elm; 4624 4625 assert(root->dag_inited); 4626 STAILQ_FOREACH(elm, &root->dagmembers, link) 4627 elm->obj->refcount++; 4628 } 4629 4630 static void 4631 unref_dag(Obj_Entry *root) 4632 { 4633 Objlist_Entry *elm; 4634 4635 assert(root->dag_inited); 4636 STAILQ_FOREACH(elm, &root->dagmembers, link) 4637 elm->obj->refcount--; 4638 } 4639 4640 /* 4641 * Common code for MD __tls_get_addr(). 4642 */ 4643 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline; 4644 static void * 4645 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset) 4646 { 4647 Elf_Addr *newdtv, *dtv; 4648 RtldLockState lockstate; 4649 int to_copy; 4650 4651 dtv = *dtvp; 4652 /* Check dtv generation in case new modules have arrived */ 4653 if (dtv[0] != tls_dtv_generation) { 4654 wlock_acquire(rtld_bind_lock, &lockstate); 4655 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4656 to_copy = dtv[1]; 4657 if (to_copy > tls_max_index) 4658 to_copy = tls_max_index; 4659 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); 4660 newdtv[0] = tls_dtv_generation; 4661 newdtv[1] = tls_max_index; 4662 free(dtv); 4663 lock_release(rtld_bind_lock, &lockstate); 4664 dtv = *dtvp = newdtv; 4665 } 4666 4667 /* Dynamically allocate module TLS if necessary */ 4668 if (dtv[index + 1] == 0) { 4669 /* Signal safe, wlock will block out signals. */ 4670 wlock_acquire(rtld_bind_lock, &lockstate); 4671 if (!dtv[index + 1]) 4672 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); 4673 lock_release(rtld_bind_lock, &lockstate); 4674 } 4675 return ((void *)(dtv[index + 1] + offset)); 4676 } 4677 4678 void * 4679 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset) 4680 { 4681 Elf_Addr *dtv; 4682 4683 dtv = *dtvp; 4684 /* Check dtv generation in case new modules have arrived */ 4685 if (__predict_true(dtv[0] == tls_dtv_generation && 4686 dtv[index + 1] != 0)) 4687 return ((void *)(dtv[index + 1] + offset)); 4688 return (tls_get_addr_slow(dtvp, index, offset)); 4689 } 4690 4691 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \ 4692 defined(__powerpc__) || defined(__riscv) 4693 4694 /* 4695 * Allocate Static TLS using the Variant I method. 4696 */ 4697 void * 4698 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) 4699 { 4700 Obj_Entry *obj; 4701 char *tcb; 4702 Elf_Addr **tls; 4703 Elf_Addr *dtv; 4704 Elf_Addr addr; 4705 int i; 4706 4707 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) 4708 return (oldtcb); 4709 4710 assert(tcbsize >= TLS_TCB_SIZE); 4711 tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize); 4712 tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE); 4713 4714 if (oldtcb != NULL) { 4715 memcpy(tls, oldtcb, tls_static_space); 4716 free(oldtcb); 4717 4718 /* Adjust the DTV. */ 4719 dtv = tls[0]; 4720 for (i = 0; i < dtv[1]; i++) { 4721 if (dtv[i+2] >= (Elf_Addr)oldtcb && 4722 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { 4723 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls; 4724 } 4725 } 4726 } else { 4727 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4728 tls[0] = dtv; 4729 dtv[0] = tls_dtv_generation; 4730 dtv[1] = tls_max_index; 4731 4732 for (obj = globallist_curr(objs); obj != NULL; 4733 obj = globallist_next(obj)) { 4734 if (obj->tlsoffset > 0) { 4735 addr = (Elf_Addr)tls + obj->tlsoffset; 4736 if (obj->tlsinitsize > 0) 4737 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4738 if (obj->tlssize > obj->tlsinitsize) 4739 memset((void*) (addr + obj->tlsinitsize), 0, 4740 obj->tlssize - obj->tlsinitsize); 4741 dtv[obj->tlsindex + 1] = addr; 4742 } 4743 } 4744 } 4745 4746 return (tcb); 4747 } 4748 4749 void 4750 free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 4751 { 4752 Elf_Addr *dtv; 4753 Elf_Addr tlsstart, tlsend; 4754 int dtvsize, i; 4755 4756 assert(tcbsize >= TLS_TCB_SIZE); 4757 4758 tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE; 4759 tlsend = tlsstart + tls_static_space; 4760 4761 dtv = *(Elf_Addr **)tlsstart; 4762 dtvsize = dtv[1]; 4763 for (i = 0; i < dtvsize; i++) { 4764 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { 4765 free((void*)dtv[i+2]); 4766 } 4767 } 4768 free(dtv); 4769 free(tcb); 4770 } 4771 4772 #endif 4773 4774 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) 4775 4776 /* 4777 * Allocate Static TLS using the Variant II method. 4778 */ 4779 void * 4780 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) 4781 { 4782 Obj_Entry *obj; 4783 size_t size, ralign; 4784 char *tls; 4785 Elf_Addr *dtv, *olddtv; 4786 Elf_Addr segbase, oldsegbase, addr; 4787 int i; 4788 4789 ralign = tcbalign; 4790 if (tls_static_max_align > ralign) 4791 ralign = tls_static_max_align; 4792 size = round(tls_static_space, ralign) + round(tcbsize, ralign); 4793 4794 assert(tcbsize >= 2*sizeof(Elf_Addr)); 4795 tls = malloc_aligned(size, ralign); 4796 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); 4797 4798 segbase = (Elf_Addr)(tls + round(tls_static_space, ralign)); 4799 ((Elf_Addr*)segbase)[0] = segbase; 4800 ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv; 4801 4802 dtv[0] = tls_dtv_generation; 4803 dtv[1] = tls_max_index; 4804 4805 if (oldtls) { 4806 /* 4807 * Copy the static TLS block over whole. 4808 */ 4809 oldsegbase = (Elf_Addr) oldtls; 4810 memcpy((void *)(segbase - tls_static_space), 4811 (const void *)(oldsegbase - tls_static_space), 4812 tls_static_space); 4813 4814 /* 4815 * If any dynamic TLS blocks have been created tls_get_addr(), 4816 * move them over. 4817 */ 4818 olddtv = ((Elf_Addr**)oldsegbase)[1]; 4819 for (i = 0; i < olddtv[1]; i++) { 4820 if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) { 4821 dtv[i+2] = olddtv[i+2]; 4822 olddtv[i+2] = 0; 4823 } 4824 } 4825 4826 /* 4827 * We assume that this block was the one we created with 4828 * allocate_initial_tls(). 4829 */ 4830 free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr)); 4831 } else { 4832 for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) { 4833 if (obj->marker || obj->tlsoffset == 0) 4834 continue; 4835 addr = segbase - obj->tlsoffset; 4836 memset((void*) (addr + obj->tlsinitsize), 4837 0, obj->tlssize - obj->tlsinitsize); 4838 if (obj->tlsinit) 4839 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); 4840 dtv[obj->tlsindex + 1] = addr; 4841 } 4842 } 4843 4844 return (void*) segbase; 4845 } 4846 4847 void 4848 free_tls(void *tls, size_t tcbsize, size_t tcbalign) 4849 { 4850 Elf_Addr* dtv; 4851 size_t size, ralign; 4852 int dtvsize, i; 4853 Elf_Addr tlsstart, tlsend; 4854 4855 /* 4856 * Figure out the size of the initial TLS block so that we can 4857 * find stuff which ___tls_get_addr() allocated dynamically. 4858 */ 4859 ralign = tcbalign; 4860 if (tls_static_max_align > ralign) 4861 ralign = tls_static_max_align; 4862 size = round(tls_static_space, ralign); 4863 4864 dtv = ((Elf_Addr**)tls)[1]; 4865 dtvsize = dtv[1]; 4866 tlsend = (Elf_Addr) tls; 4867 tlsstart = tlsend - size; 4868 for (i = 0; i < dtvsize; i++) { 4869 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) { 4870 free_aligned((void *)dtv[i + 2]); 4871 } 4872 } 4873 4874 free_aligned((void *)tlsstart); 4875 free((void*) dtv); 4876 } 4877 4878 #endif 4879 4880 /* 4881 * Allocate TLS block for module with given index. 4882 */ 4883 void * 4884 allocate_module_tls(int index) 4885 { 4886 Obj_Entry* obj; 4887 char* p; 4888 4889 TAILQ_FOREACH(obj, &obj_list, next) { 4890 if (obj->marker) 4891 continue; 4892 if (obj->tlsindex == index) 4893 break; 4894 } 4895 if (!obj) { 4896 _rtld_error("Can't find module with TLS index %d", index); 4897 rtld_die(); 4898 } 4899 4900 p = malloc_aligned(obj->tlssize, obj->tlsalign); 4901 memcpy(p, obj->tlsinit, obj->tlsinitsize); 4902 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); 4903 4904 return p; 4905 } 4906 4907 bool 4908 allocate_tls_offset(Obj_Entry *obj) 4909 { 4910 size_t off; 4911 4912 if (obj->tls_done) 4913 return true; 4914 4915 if (obj->tlssize == 0) { 4916 obj->tls_done = true; 4917 return true; 4918 } 4919 4920 if (tls_last_offset == 0) 4921 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign); 4922 else 4923 off = calculate_tls_offset(tls_last_offset, tls_last_size, 4924 obj->tlssize, obj->tlsalign); 4925 4926 /* 4927 * If we have already fixed the size of the static TLS block, we 4928 * must stay within that size. When allocating the static TLS, we 4929 * leave a small amount of space spare to be used for dynamically 4930 * loading modules which use static TLS. 4931 */ 4932 if (tls_static_space != 0) { 4933 if (calculate_tls_end(off, obj->tlssize) > tls_static_space) 4934 return false; 4935 } else if (obj->tlsalign > tls_static_max_align) { 4936 tls_static_max_align = obj->tlsalign; 4937 } 4938 4939 tls_last_offset = obj->tlsoffset = off; 4940 tls_last_size = obj->tlssize; 4941 obj->tls_done = true; 4942 4943 return true; 4944 } 4945 4946 void 4947 free_tls_offset(Obj_Entry *obj) 4948 { 4949 4950 /* 4951 * If we were the last thing to allocate out of the static TLS 4952 * block, we give our space back to the 'allocator'. This is a 4953 * simplistic workaround to allow libGL.so.1 to be loaded and 4954 * unloaded multiple times. 4955 */ 4956 if (calculate_tls_end(obj->tlsoffset, obj->tlssize) 4957 == calculate_tls_end(tls_last_offset, tls_last_size)) { 4958 tls_last_offset -= obj->tlssize; 4959 tls_last_size = 0; 4960 } 4961 } 4962 4963 void * 4964 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) 4965 { 4966 void *ret; 4967 RtldLockState lockstate; 4968 4969 wlock_acquire(rtld_bind_lock, &lockstate); 4970 ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls, 4971 tcbsize, tcbalign); 4972 lock_release(rtld_bind_lock, &lockstate); 4973 return (ret); 4974 } 4975 4976 void 4977 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) 4978 { 4979 RtldLockState lockstate; 4980 4981 wlock_acquire(rtld_bind_lock, &lockstate); 4982 free_tls(tcb, tcbsize, tcbalign); 4983 lock_release(rtld_bind_lock, &lockstate); 4984 } 4985 4986 static void 4987 object_add_name(Obj_Entry *obj, const char *name) 4988 { 4989 Name_Entry *entry; 4990 size_t len; 4991 4992 len = strlen(name); 4993 entry = malloc(sizeof(Name_Entry) + len); 4994 4995 if (entry != NULL) { 4996 strcpy(entry->name, name); 4997 STAILQ_INSERT_TAIL(&obj->names, entry, link); 4998 } 4999 } 5000 5001 static int 5002 object_match_name(const Obj_Entry *obj, const char *name) 5003 { 5004 Name_Entry *entry; 5005 5006 STAILQ_FOREACH(entry, &obj->names, link) { 5007 if (strcmp(name, entry->name) == 0) 5008 return (1); 5009 } 5010 return (0); 5011 } 5012 5013 static Obj_Entry * 5014 locate_dependency(const Obj_Entry *obj, const char *name) 5015 { 5016 const Objlist_Entry *entry; 5017 const Needed_Entry *needed; 5018 5019 STAILQ_FOREACH(entry, &list_main, link) { 5020 if (object_match_name(entry->obj, name)) 5021 return entry->obj; 5022 } 5023 5024 for (needed = obj->needed; needed != NULL; needed = needed->next) { 5025 if (strcmp(obj->strtab + needed->name, name) == 0 || 5026 (needed->obj != NULL && object_match_name(needed->obj, name))) { 5027 /* 5028 * If there is DT_NEEDED for the name we are looking for, 5029 * we are all set. Note that object might not be found if 5030 * dependency was not loaded yet, so the function can 5031 * return NULL here. This is expected and handled 5032 * properly by the caller. 5033 */ 5034 return (needed->obj); 5035 } 5036 } 5037 _rtld_error("%s: Unexpected inconsistency: dependency %s not found", 5038 obj->path, name); 5039 rtld_die(); 5040 } 5041 5042 static int 5043 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, 5044 const Elf_Vernaux *vna) 5045 { 5046 const Elf_Verdef *vd; 5047 const char *vername; 5048 5049 vername = refobj->strtab + vna->vna_name; 5050 vd = depobj->verdef; 5051 if (vd == NULL) { 5052 _rtld_error("%s: version %s required by %s not defined", 5053 depobj->path, vername, refobj->path); 5054 return (-1); 5055 } 5056 for (;;) { 5057 if (vd->vd_version != VER_DEF_CURRENT) { 5058 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 5059 depobj->path, vd->vd_version); 5060 return (-1); 5061 } 5062 if (vna->vna_hash == vd->vd_hash) { 5063 const Elf_Verdaux *aux = (const Elf_Verdaux *) 5064 ((char *)vd + vd->vd_aux); 5065 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) 5066 return (0); 5067 } 5068 if (vd->vd_next == 0) 5069 break; 5070 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 5071 } 5072 if (vna->vna_flags & VER_FLG_WEAK) 5073 return (0); 5074 _rtld_error("%s: version %s required by %s not found", 5075 depobj->path, vername, refobj->path); 5076 return (-1); 5077 } 5078 5079 static int 5080 rtld_verify_object_versions(Obj_Entry *obj) 5081 { 5082 const Elf_Verneed *vn; 5083 const Elf_Verdef *vd; 5084 const Elf_Verdaux *vda; 5085 const Elf_Vernaux *vna; 5086 const Obj_Entry *depobj; 5087 int maxvernum, vernum; 5088 5089 if (obj->ver_checked) 5090 return (0); 5091 obj->ver_checked = true; 5092 5093 maxvernum = 0; 5094 /* 5095 * Walk over defined and required version records and figure out 5096 * max index used by any of them. Do very basic sanity checking 5097 * while there. 5098 */ 5099 vn = obj->verneed; 5100 while (vn != NULL) { 5101 if (vn->vn_version != VER_NEED_CURRENT) { 5102 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", 5103 obj->path, vn->vn_version); 5104 return (-1); 5105 } 5106 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); 5107 for (;;) { 5108 vernum = VER_NEED_IDX(vna->vna_other); 5109 if (vernum > maxvernum) 5110 maxvernum = vernum; 5111 if (vna->vna_next == 0) 5112 break; 5113 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); 5114 } 5115 if (vn->vn_next == 0) 5116 break; 5117 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); 5118 } 5119 5120 vd = obj->verdef; 5121 while (vd != NULL) { 5122 if (vd->vd_version != VER_DEF_CURRENT) { 5123 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", 5124 obj->path, vd->vd_version); 5125 return (-1); 5126 } 5127 vernum = VER_DEF_IDX(vd->vd_ndx); 5128 if (vernum > maxvernum) 5129 maxvernum = vernum; 5130 if (vd->vd_next == 0) 5131 break; 5132 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 5133 } 5134 5135 if (maxvernum == 0) 5136 return (0); 5137 5138 /* 5139 * Store version information in array indexable by version index. 5140 * Verify that object version requirements are satisfied along the 5141 * way. 5142 */ 5143 obj->vernum = maxvernum + 1; 5144 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); 5145 5146 vd = obj->verdef; 5147 while (vd != NULL) { 5148 if ((vd->vd_flags & VER_FLG_BASE) == 0) { 5149 vernum = VER_DEF_IDX(vd->vd_ndx); 5150 assert(vernum <= maxvernum); 5151 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux); 5152 obj->vertab[vernum].hash = vd->vd_hash; 5153 obj->vertab[vernum].name = obj->strtab + vda->vda_name; 5154 obj->vertab[vernum].file = NULL; 5155 obj->vertab[vernum].flags = 0; 5156 } 5157 if (vd->vd_next == 0) 5158 break; 5159 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); 5160 } 5161 5162 vn = obj->verneed; 5163 while (vn != NULL) { 5164 depobj = locate_dependency(obj, obj->strtab + vn->vn_file); 5165 if (depobj == NULL) 5166 return (-1); 5167 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); 5168 for (;;) { 5169 if (check_object_provided_version(obj, depobj, vna)) 5170 return (-1); 5171 vernum = VER_NEED_IDX(vna->vna_other); 5172 assert(vernum <= maxvernum); 5173 obj->vertab[vernum].hash = vna->vna_hash; 5174 obj->vertab[vernum].name = obj->strtab + vna->vna_name; 5175 obj->vertab[vernum].file = obj->strtab + vn->vn_file; 5176 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? 5177 VER_INFO_HIDDEN : 0; 5178 if (vna->vna_next == 0) 5179 break; 5180 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); 5181 } 5182 if (vn->vn_next == 0) 5183 break; 5184 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); 5185 } 5186 return 0; 5187 } 5188 5189 static int 5190 rtld_verify_versions(const Objlist *objlist) 5191 { 5192 Objlist_Entry *entry; 5193 int rc; 5194 5195 rc = 0; 5196 STAILQ_FOREACH(entry, objlist, link) { 5197 /* 5198 * Skip dummy objects or objects that have their version requirements 5199 * already checked. 5200 */ 5201 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) 5202 continue; 5203 if (rtld_verify_object_versions(entry->obj) == -1) { 5204 rc = -1; 5205 if (ld_tracing == NULL) 5206 break; 5207 } 5208 } 5209 if (rc == 0 || ld_tracing != NULL) 5210 rc = rtld_verify_object_versions(&obj_rtld); 5211 return rc; 5212 } 5213 5214 const Ver_Entry * 5215 fetch_ventry(const Obj_Entry *obj, unsigned long symnum) 5216 { 5217 Elf_Versym vernum; 5218 5219 if (obj->vertab) { 5220 vernum = VER_NDX(obj->versyms[symnum]); 5221 if (vernum >= obj->vernum) { 5222 _rtld_error("%s: symbol %s has wrong verneed value %d", 5223 obj->path, obj->strtab + symnum, vernum); 5224 } else if (obj->vertab[vernum].hash != 0) { 5225 return &obj->vertab[vernum]; 5226 } 5227 } 5228 return NULL; 5229 } 5230 5231 int 5232 _rtld_get_stack_prot(void) 5233 { 5234 5235 return (stack_prot); 5236 } 5237 5238 int 5239 _rtld_is_dlopened(void *arg) 5240 { 5241 Obj_Entry *obj; 5242 RtldLockState lockstate; 5243 int res; 5244 5245 rlock_acquire(rtld_bind_lock, &lockstate); 5246 obj = dlcheck(arg); 5247 if (obj == NULL) 5248 obj = obj_from_addr(arg); 5249 if (obj == NULL) { 5250 _rtld_error("No shared object contains address"); 5251 lock_release(rtld_bind_lock, &lockstate); 5252 return (-1); 5253 } 5254 res = obj->dlopened ? 1 : 0; 5255 lock_release(rtld_bind_lock, &lockstate); 5256 return (res); 5257 } 5258 5259 int 5260 obj_enforce_relro(Obj_Entry *obj) 5261 { 5262 5263 if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size, 5264 PROT_READ) == -1) { 5265 _rtld_error("%s: Cannot enforce relro protection: %s", 5266 obj->path, rtld_strerror(errno)); 5267 return (-1); 5268 } 5269 return (0); 5270 } 5271 5272 static void 5273 map_stacks_exec(RtldLockState *lockstate) 5274 { 5275 void (*thr_map_stacks_exec)(void); 5276 5277 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) 5278 return; 5279 thr_map_stacks_exec = (void (*)(void))(uintptr_t) 5280 get_program_var_addr("__pthread_map_stacks_exec", lockstate); 5281 if (thr_map_stacks_exec != NULL) { 5282 stack_prot |= PROT_EXEC; 5283 thr_map_stacks_exec(); 5284 } 5285 } 5286 5287 void 5288 symlook_init(SymLook *dst, const char *name) 5289 { 5290 5291 bzero(dst, sizeof(*dst)); 5292 dst->name = name; 5293 dst->hash = elf_hash(name); 5294 dst->hash_gnu = gnu_hash(name); 5295 } 5296 5297 static void 5298 symlook_init_from_req(SymLook *dst, const SymLook *src) 5299 { 5300 5301 dst->name = src->name; 5302 dst->hash = src->hash; 5303 dst->hash_gnu = src->hash_gnu; 5304 dst->ventry = src->ventry; 5305 dst->flags = src->flags; 5306 dst->defobj_out = NULL; 5307 dst->sym_out = NULL; 5308 dst->lockstate = src->lockstate; 5309 } 5310 5311 static int 5312 open_binary_fd(const char *argv0, bool search_in_path) 5313 { 5314 char *pathenv, *pe, binpath[PATH_MAX]; 5315 int fd; 5316 5317 if (search_in_path && strchr(argv0, '/') == NULL) { 5318 pathenv = getenv("PATH"); 5319 if (pathenv == NULL) { 5320 rtld_printf("-p and no PATH environment variable\n"); 5321 rtld_die(); 5322 } 5323 pathenv = strdup(pathenv); 5324 if (pathenv == NULL) { 5325 rtld_printf("Cannot allocate memory\n"); 5326 rtld_die(); 5327 } 5328 fd = -1; 5329 errno = ENOENT; 5330 while ((pe = strsep(&pathenv, ":")) != NULL) { 5331 if (strlcpy(binpath, pe, sizeof(binpath)) >= 5332 sizeof(binpath)) 5333 continue; 5334 if (binpath[0] != '\0' && 5335 strlcat(binpath, "/", sizeof(binpath)) >= 5336 sizeof(binpath)) 5337 continue; 5338 if (strlcat(binpath, argv0, sizeof(binpath)) >= 5339 sizeof(binpath)) 5340 continue; 5341 fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY); 5342 if (fd != -1 || errno != ENOENT) 5343 break; 5344 } 5345 free(pathenv); 5346 } else { 5347 fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY); 5348 } 5349 5350 if (fd == -1) { 5351 rtld_printf("Opening %s: %s\n", argv0, 5352 rtld_strerror(errno)); 5353 rtld_die(); 5354 } 5355 return (fd); 5356 } 5357 5358 /* 5359 * Parse a set of command-line arguments. 5360 */ 5361 static int 5362 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp) 5363 { 5364 const char *arg; 5365 int fd, i, j, arglen; 5366 char opt; 5367 5368 dbg("Parsing command-line arguments"); 5369 *use_pathp = false; 5370 *fdp = -1; 5371 5372 for (i = 1; i < argc; i++ ) { 5373 arg = argv[i]; 5374 dbg("argv[%d]: '%s'", i, arg); 5375 5376 /* 5377 * rtld arguments end with an explicit "--" or with the first 5378 * non-prefixed argument. 5379 */ 5380 if (strcmp(arg, "--") == 0) { 5381 i++; 5382 break; 5383 } 5384 if (arg[0] != '-') 5385 break; 5386 5387 /* 5388 * All other arguments are single-character options that can 5389 * be combined, so we need to search through `arg` for them. 5390 */ 5391 arglen = strlen(arg); 5392 for (j = 1; j < arglen; j++) { 5393 opt = arg[j]; 5394 if (opt == 'h') { 5395 print_usage(argv[0]); 5396 rtld_die(); 5397 } else if (opt == 'f') { 5398 /* 5399 * -f XX can be used to specify a descriptor for the 5400 * binary named at the command line (i.e., the later 5401 * argument will specify the process name but the 5402 * descriptor is what will actually be executed) 5403 */ 5404 if (j != arglen - 1) { 5405 /* -f must be the last option in, e.g., -abcf */ 5406 _rtld_error("invalid options: %s", arg); 5407 rtld_die(); 5408 } 5409 i++; 5410 fd = parse_integer(argv[i]); 5411 if (fd == -1) { 5412 _rtld_error("invalid file descriptor: '%s'", 5413 argv[i]); 5414 rtld_die(); 5415 } 5416 *fdp = fd; 5417 break; 5418 } else if (opt == 'p') { 5419 *use_pathp = true; 5420 } else { 5421 rtld_printf("invalid argument: '%s'\n", arg); 5422 print_usage(argv[0]); 5423 rtld_die(); 5424 } 5425 } 5426 } 5427 5428 return (i); 5429 } 5430 5431 /* 5432 * Parse a file descriptor number without pulling in more of libc (e.g. atoi). 5433 */ 5434 static int 5435 parse_integer(const char *str) 5436 { 5437 static const int RADIX = 10; /* XXXJA: possibly support hex? */ 5438 const char *orig; 5439 int n; 5440 char c; 5441 5442 orig = str; 5443 n = 0; 5444 for (c = *str; c != '\0'; c = *++str) { 5445 if (c < '0' || c > '9') 5446 return (-1); 5447 5448 n *= RADIX; 5449 n += c - '0'; 5450 } 5451 5452 /* Make sure we actually parsed something. */ 5453 if (str == orig) 5454 return (-1); 5455 return (n); 5456 } 5457 5458 static void 5459 print_usage(const char *argv0) 5460 { 5461 5462 rtld_printf("Usage: %s [-h] [-f <FD>] [--] <binary> [<args>]\n" 5463 "\n" 5464 "Options:\n" 5465 " -h Display this help message\n" 5466 " -p Search in PATH for named binary\n" 5467 " -f <FD> Execute <FD> instead of searching for <binary>\n" 5468 " -- End of RTLD options\n" 5469 " <binary> Name of process to execute\n" 5470 " <args> Arguments to the executed process\n", argv0); 5471 } 5472 5473 /* 5474 * Overrides for libc_pic-provided functions. 5475 */ 5476 5477 int 5478 __getosreldate(void) 5479 { 5480 size_t len; 5481 int oid[2]; 5482 int error, osrel; 5483 5484 if (osreldate != 0) 5485 return (osreldate); 5486 5487 oid[0] = CTL_KERN; 5488 oid[1] = KERN_OSRELDATE; 5489 osrel = 0; 5490 len = sizeof(osrel); 5491 error = sysctl(oid, 2, &osrel, &len, NULL, 0); 5492 if (error == 0 && osrel > 0 && len == sizeof(osrel)) 5493 osreldate = osrel; 5494 return (osreldate); 5495 } 5496 5497 void 5498 exit(int status) 5499 { 5500 5501 _exit(status); 5502 } 5503 5504 void (*__cleanup)(void); 5505 int __isthreaded = 0; 5506 int _thread_autoinit_dummy_decl = 1; 5507 5508 /* 5509 * No unresolved symbols for rtld. 5510 */ 5511 void 5512 __pthread_cxa_finalize(struct dl_phdr_info *a) 5513 { 5514 } 5515 5516 const char * 5517 rtld_strerror(int errnum) 5518 { 5519 5520 if (errnum < 0 || errnum >= sys_nerr) 5521 return ("Unknown error"); 5522 return (sys_errlist[errnum]); 5523 } 5524