xref: /freebsd/libexec/rtld-elf/rtld.c (revision 7778ab7e0cc22f0824eb1d1047a7ef8b4785267a)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 
49 #include <dlfcn.h>
50 #include <err.h>
51 #include <errno.h>
52 #include <fcntl.h>
53 #include <stdarg.h>
54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 
59 #include "debug.h"
60 #include "rtld.h"
61 #include "libmap.h"
62 #include "rtld_tls.h"
63 #include "rtld_printf.h"
64 
65 #ifndef COMPAT_32BIT
66 #define PATH_RTLD	"/libexec/ld-elf.so.1"
67 #else
68 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
69 #endif
70 
71 /* Types. */
72 typedef void (*func_ptr_type)();
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 /*
76  * Function declarations.
77  */
78 static const char *basename(const char *);
79 static void die(void) __dead2;
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static Obj_Entry *dlopen_object(const char *name, Obj_Entry *refobj,
87     int lo_flags, int mode);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *);
95 static const char *gethints(void);
96 static void init_dag(Obj_Entry *);
97 static void init_rtld(caddr_t, Elf_Auxinfo **);
98 static void initlist_add_neededs(Needed_Entry *, Objlist *);
99 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
103 static void unload_filtees(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *, int);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
107 static void map_stacks_exec(RtldLockState *);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
110 static void objlist_call_init(Objlist *, RtldLockState *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void *path_enumerate(const char *, path_enum_proc, void *);
118 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
119 static int rtld_dirname(const char *, char *);
120 static int rtld_dirname_abs(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *, RtldLockState *);
124 static void set_program_var(const char *, const void *);
125 static int symlook_default(SymLook *, const Obj_Entry *refobj);
126 static int symlook_global(SymLook *, DoneList *);
127 static void symlook_init_from_req(SymLook *, const SymLook *);
128 static int symlook_list(SymLook *, const Objlist *, DoneList *);
129 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
130 static int symlook_obj1(SymLook *, const Obj_Entry *);
131 static void trace_loaded_objects(Obj_Entry *);
132 static void unlink_object(Obj_Entry *);
133 static void unload_object(Obj_Entry *);
134 static void unref_dag(Obj_Entry *);
135 static void ref_dag(Obj_Entry *);
136 static int origin_subst_one(char **, const char *, const char *,
137   const char *, char *);
138 static char *origin_subst(const char *, const char *);
139 static int  rtld_verify_versions(const Objlist *);
140 static int  rtld_verify_object_versions(Obj_Entry *);
141 static void object_add_name(Obj_Entry *, const char *);
142 static int  object_match_name(const Obj_Entry *, const char *);
143 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
144 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
145     struct dl_phdr_info *phdr_info);
146 
147 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
148 
149 /*
150  * Data declarations.
151  */
152 static char *error_message;	/* Message for dlerror(), or NULL */
153 struct r_debug r_debug;		/* for GDB; */
154 static bool libmap_disable;	/* Disable libmap */
155 static bool ld_loadfltr;	/* Immediate filters processing */
156 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
157 static bool trust;		/* False for setuid and setgid programs */
158 static bool dangerous_ld_env;	/* True if environment variables have been
159 				   used to affect the libraries loaded */
160 static char *ld_bind_now;	/* Environment variable for immediate binding */
161 static char *ld_debug;		/* Environment variable for debugging */
162 static char *ld_library_path;	/* Environment variable for search path */
163 static char *ld_preload;	/* Environment variable for libraries to
164 				   load first */
165 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
166 static char *ld_tracing;	/* Called from ldd to print libs */
167 static char *ld_utrace;		/* Use utrace() to log events. */
168 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
169 static Obj_Entry **obj_tail;	/* Link field of last object in list */
170 static Obj_Entry *obj_main;	/* The main program shared object */
171 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
172 static unsigned int obj_count;	/* Number of objects in obj_list */
173 static unsigned int obj_loads;	/* Number of objects in obj_list */
174 
175 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
176   STAILQ_HEAD_INITIALIZER(list_global);
177 static Objlist list_main =	/* Objects loaded at program startup */
178   STAILQ_HEAD_INITIALIZER(list_main);
179 static Objlist list_fini =	/* Objects needing fini() calls */
180   STAILQ_HEAD_INITIALIZER(list_fini);
181 
182 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
183 
184 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
185 
186 extern Elf_Dyn _DYNAMIC;
187 #pragma weak _DYNAMIC
188 #ifndef RTLD_IS_DYNAMIC
189 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
190 #endif
191 
192 int osreldate, pagesize;
193 
194 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
195 static int max_stack_flags;
196 
197 /*
198  * Global declarations normally provided by crt1.  The dynamic linker is
199  * not built with crt1, so we have to provide them ourselves.
200  */
201 char *__progname;
202 char **environ;
203 
204 /*
205  * Globals to control TLS allocation.
206  */
207 size_t tls_last_offset;		/* Static TLS offset of last module */
208 size_t tls_last_size;		/* Static TLS size of last module */
209 size_t tls_static_space;	/* Static TLS space allocated */
210 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
211 int tls_max_index = 1;		/* Largest module index allocated */
212 
213 /*
214  * Fill in a DoneList with an allocation large enough to hold all of
215  * the currently-loaded objects.  Keep this as a macro since it calls
216  * alloca and we want that to occur within the scope of the caller.
217  */
218 #define donelist_init(dlp)					\
219     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
220     assert((dlp)->objs != NULL),				\
221     (dlp)->num_alloc = obj_count,				\
222     (dlp)->num_used = 0)
223 
224 #define	UTRACE_DLOPEN_START		1
225 #define	UTRACE_DLOPEN_STOP		2
226 #define	UTRACE_DLCLOSE_START		3
227 #define	UTRACE_DLCLOSE_STOP		4
228 #define	UTRACE_LOAD_OBJECT		5
229 #define	UTRACE_UNLOAD_OBJECT		6
230 #define	UTRACE_ADD_RUNDEP		7
231 #define	UTRACE_PRELOAD_FINISHED		8
232 #define	UTRACE_INIT_CALL		9
233 #define	UTRACE_FINI_CALL		10
234 
235 struct utrace_rtld {
236 	char sig[4];			/* 'RTLD' */
237 	int event;
238 	void *handle;
239 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
240 	size_t mapsize;
241 	int refcnt;			/* Used for 'mode' */
242 	char name[MAXPATHLEN];
243 };
244 
245 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
246 	if (ld_utrace != NULL)					\
247 		ld_utrace_log(e, h, mb, ms, r, n);		\
248 } while (0)
249 
250 static void
251 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
252     int refcnt, const char *name)
253 {
254 	struct utrace_rtld ut;
255 
256 	ut.sig[0] = 'R';
257 	ut.sig[1] = 'T';
258 	ut.sig[2] = 'L';
259 	ut.sig[3] = 'D';
260 	ut.event = event;
261 	ut.handle = handle;
262 	ut.mapbase = mapbase;
263 	ut.mapsize = mapsize;
264 	ut.refcnt = refcnt;
265 	bzero(ut.name, sizeof(ut.name));
266 	if (name)
267 		strlcpy(ut.name, name, sizeof(ut.name));
268 	utrace(&ut, sizeof(ut));
269 }
270 
271 /*
272  * Main entry point for dynamic linking.  The first argument is the
273  * stack pointer.  The stack is expected to be laid out as described
274  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
275  * Specifically, the stack pointer points to a word containing
276  * ARGC.  Following that in the stack is a null-terminated sequence
277  * of pointers to argument strings.  Then comes a null-terminated
278  * sequence of pointers to environment strings.  Finally, there is a
279  * sequence of "auxiliary vector" entries.
280  *
281  * The second argument points to a place to store the dynamic linker's
282  * exit procedure pointer and the third to a place to store the main
283  * program's object.
284  *
285  * The return value is the main program's entry point.
286  */
287 func_ptr_type
288 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
289 {
290     Elf_Auxinfo *aux_info[AT_COUNT];
291     int i;
292     int argc;
293     char **argv;
294     char **env;
295     Elf_Auxinfo *aux;
296     Elf_Auxinfo *auxp;
297     const char *argv0;
298     Objlist_Entry *entry;
299     Obj_Entry *obj;
300     Obj_Entry **preload_tail;
301     Objlist initlist;
302     RtldLockState lockstate;
303 
304     /*
305      * On entry, the dynamic linker itself has not been relocated yet.
306      * Be very careful not to reference any global data until after
307      * init_rtld has returned.  It is OK to reference file-scope statics
308      * and string constants, and to call static and global functions.
309      */
310 
311     /* Find the auxiliary vector on the stack. */
312     argc = *sp++;
313     argv = (char **) sp;
314     sp += argc + 1;	/* Skip over arguments and NULL terminator */
315     env = (char **) sp;
316     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
317 	;
318     aux = (Elf_Auxinfo *) sp;
319 
320     /* Digest the auxiliary vector. */
321     for (i = 0;  i < AT_COUNT;  i++)
322 	aux_info[i] = NULL;
323     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
324 	if (auxp->a_type < AT_COUNT)
325 	    aux_info[auxp->a_type] = auxp;
326     }
327 
328     /* Initialize and relocate ourselves. */
329     assert(aux_info[AT_BASE] != NULL);
330     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
331 
332     __progname = obj_rtld.path;
333     argv0 = argv[0] != NULL ? argv[0] : "(null)";
334     environ = env;
335 
336     trust = !issetugid();
337 
338     ld_bind_now = getenv(LD_ "BIND_NOW");
339     /*
340      * If the process is tainted, then we un-set the dangerous environment
341      * variables.  The process will be marked as tainted until setuid(2)
342      * is called.  If any child process calls setuid(2) we do not want any
343      * future processes to honor the potentially un-safe variables.
344      */
345     if (!trust) {
346         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
347 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
348 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
349 	    unsetenv(LD_ "LOADFLTR")) {
350 		_rtld_error("environment corrupt; aborting");
351 		die();
352 	}
353     }
354     ld_debug = getenv(LD_ "DEBUG");
355     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
356     libmap_override = getenv(LD_ "LIBMAP");
357     ld_library_path = getenv(LD_ "LIBRARY_PATH");
358     ld_preload = getenv(LD_ "PRELOAD");
359     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
360     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
361     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
362 	(ld_library_path != NULL) || (ld_preload != NULL) ||
363 	(ld_elf_hints_path != NULL) || ld_loadfltr;
364     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
365     ld_utrace = getenv(LD_ "UTRACE");
366 
367     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
368 	ld_elf_hints_path = _PATH_ELF_HINTS;
369 
370     if (ld_debug != NULL && *ld_debug != '\0')
371 	debug = 1;
372     dbg("%s is initialized, base address = %p", __progname,
373 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
374     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
375     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
376 
377     dbg("initializing thread locks");
378     lockdflt_init();
379 
380     /*
381      * Load the main program, or process its program header if it is
382      * already loaded.
383      */
384     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
385 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
386 	dbg("loading main program");
387 	obj_main = map_object(fd, argv0, NULL);
388 	close(fd);
389 	if (obj_main == NULL)
390 	    die();
391 	max_stack_flags = obj->stack_flags;
392     } else {				/* Main program already loaded. */
393 	const Elf_Phdr *phdr;
394 	int phnum;
395 	caddr_t entry;
396 
397 	dbg("processing main program's program header");
398 	assert(aux_info[AT_PHDR] != NULL);
399 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
400 	assert(aux_info[AT_PHNUM] != NULL);
401 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
402 	assert(aux_info[AT_PHENT] != NULL);
403 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
404 	assert(aux_info[AT_ENTRY] != NULL);
405 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
406 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
407 	    die();
408     }
409 
410     if (aux_info[AT_EXECPATH] != 0) {
411 	    char *kexecpath;
412 	    char buf[MAXPATHLEN];
413 
414 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
415 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
416 	    if (kexecpath[0] == '/')
417 		    obj_main->path = kexecpath;
418 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
419 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
420 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
421 		    obj_main->path = xstrdup(argv0);
422 	    else
423 		    obj_main->path = xstrdup(buf);
424     } else {
425 	    dbg("No AT_EXECPATH");
426 	    obj_main->path = xstrdup(argv0);
427     }
428     dbg("obj_main path %s", obj_main->path);
429     obj_main->mainprog = true;
430 
431     if (aux_info[AT_STACKPROT] != NULL &&
432       aux_info[AT_STACKPROT]->a_un.a_val != 0)
433 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
434 
435     /*
436      * Get the actual dynamic linker pathname from the executable if
437      * possible.  (It should always be possible.)  That ensures that
438      * gdb will find the right dynamic linker even if a non-standard
439      * one is being used.
440      */
441     if (obj_main->interp != NULL &&
442       strcmp(obj_main->interp, obj_rtld.path) != 0) {
443 	free(obj_rtld.path);
444 	obj_rtld.path = xstrdup(obj_main->interp);
445         __progname = obj_rtld.path;
446     }
447 
448     digest_dynamic(obj_main, 0);
449 
450     linkmap_add(obj_main);
451     linkmap_add(&obj_rtld);
452 
453     /* Link the main program into the list of objects. */
454     *obj_tail = obj_main;
455     obj_tail = &obj_main->next;
456     obj_count++;
457     obj_loads++;
458     /* Make sure we don't call the main program's init and fini functions. */
459     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
460 
461     /* Initialize a fake symbol for resolving undefined weak references. */
462     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
463     sym_zero.st_shndx = SHN_UNDEF;
464     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
465 
466     if (!libmap_disable)
467         libmap_disable = (bool)lm_init(libmap_override);
468 
469     dbg("loading LD_PRELOAD libraries");
470     if (load_preload_objects() == -1)
471 	die();
472     preload_tail = obj_tail;
473 
474     dbg("loading needed objects");
475     if (load_needed_objects(obj_main, 0) == -1)
476 	die();
477 
478     /* Make a list of all objects loaded at startup. */
479     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
480 	objlist_push_tail(&list_main, obj);
481     	obj->refcount++;
482     }
483 
484     dbg("checking for required versions");
485     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
486 	die();
487 
488     if (ld_tracing) {		/* We're done */
489 	trace_loaded_objects(obj_main);
490 	exit(0);
491     }
492 
493     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
494        dump_relocations(obj_main);
495        exit (0);
496     }
497 
498     /* setup TLS for main thread */
499     dbg("initializing initial thread local storage");
500     STAILQ_FOREACH(entry, &list_main, link) {
501 	/*
502 	 * Allocate all the initial objects out of the static TLS
503 	 * block even if they didn't ask for it.
504 	 */
505 	allocate_tls_offset(entry->obj);
506     }
507     allocate_initial_tls(obj_list);
508 
509     if (relocate_objects(obj_main,
510       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
511 	die();
512 
513     dbg("doing copy relocations");
514     if (do_copy_relocations(obj_main) == -1)
515 	die();
516 
517     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
518        dump_relocations(obj_main);
519        exit (0);
520     }
521 
522     dbg("initializing key program variables");
523     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
524     set_program_var("environ", env);
525     set_program_var("__elf_aux_vector", aux);
526 
527     /* Make a list of init functions to call. */
528     objlist_init(&initlist);
529     initlist_add_objects(obj_list, preload_tail, &initlist);
530 
531     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
532 
533     map_stacks_exec(NULL);
534 
535     wlock_acquire(rtld_bind_lock, &lockstate);
536     objlist_call_init(&initlist, &lockstate);
537     objlist_clear(&initlist);
538     dbg("loading filtees");
539     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
540 	if (ld_loadfltr || obj->z_loadfltr)
541 	    load_filtees(obj, 0, &lockstate);
542     }
543     lock_release(rtld_bind_lock, &lockstate);
544 
545     dbg("transferring control to program entry point = %p", obj_main->entry);
546 
547     /* Return the exit procedure and the program entry point. */
548     *exit_proc = rtld_exit;
549     *objp = obj_main;
550     return (func_ptr_type) obj_main->entry;
551 }
552 
553 Elf_Addr
554 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
555 {
556     const Elf_Rel *rel;
557     const Elf_Sym *def;
558     const Obj_Entry *defobj;
559     Elf_Addr *where;
560     Elf_Addr target;
561     RtldLockState lockstate;
562 
563     rlock_acquire(rtld_bind_lock, &lockstate);
564     if (sigsetjmp(lockstate.env, 0) != 0)
565 	    lock_upgrade(rtld_bind_lock, &lockstate);
566     if (obj->pltrel)
567 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
568     else
569 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
570 
571     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
572     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
573 	&lockstate);
574     if (def == NULL)
575 	die();
576 
577     target = (Elf_Addr)(defobj->relocbase + def->st_value);
578 
579     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
580       defobj->strtab + def->st_name, basename(obj->path),
581       (void *)target, basename(defobj->path));
582 
583     /*
584      * Write the new contents for the jmpslot. Note that depending on
585      * architecture, the value which we need to return back to the
586      * lazy binding trampoline may or may not be the target
587      * address. The value returned from reloc_jmpslot() is the value
588      * that the trampoline needs.
589      */
590     target = reloc_jmpslot(where, target, defobj, obj, rel);
591     lock_release(rtld_bind_lock, &lockstate);
592     return target;
593 }
594 
595 /*
596  * Error reporting function.  Use it like printf.  If formats the message
597  * into a buffer, and sets things up so that the next call to dlerror()
598  * will return the message.
599  */
600 void
601 _rtld_error(const char *fmt, ...)
602 {
603     static char buf[512];
604     va_list ap;
605 
606     va_start(ap, fmt);
607     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
608     error_message = buf;
609     va_end(ap);
610 }
611 
612 /*
613  * Return a dynamically-allocated copy of the current error message, if any.
614  */
615 static char *
616 errmsg_save(void)
617 {
618     return error_message == NULL ? NULL : xstrdup(error_message);
619 }
620 
621 /*
622  * Restore the current error message from a copy which was previously saved
623  * by errmsg_save().  The copy is freed.
624  */
625 static void
626 errmsg_restore(char *saved_msg)
627 {
628     if (saved_msg == NULL)
629 	error_message = NULL;
630     else {
631 	_rtld_error("%s", saved_msg);
632 	free(saved_msg);
633     }
634 }
635 
636 static const char *
637 basename(const char *name)
638 {
639     const char *p = strrchr(name, '/');
640     return p != NULL ? p + 1 : name;
641 }
642 
643 static struct utsname uts;
644 
645 static int
646 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
647     char *may_free)
648 {
649     const char *p, *p1;
650     char *res1;
651     int subst_len;
652     int kw_len;
653 
654     res1 = *res = NULL;
655     p = real;
656     subst_len = kw_len = 0;
657     for (;;) {
658 	 p1 = strstr(p, kw);
659 	 if (p1 != NULL) {
660 	     if (subst_len == 0) {
661 		 subst_len = strlen(subst);
662 		 kw_len = strlen(kw);
663 	     }
664 	     if (*res == NULL) {
665 		 *res = xmalloc(PATH_MAX);
666 		 res1 = *res;
667 	     }
668 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
669 		 _rtld_error("Substitution of %s in %s cannot be performed",
670 		     kw, real);
671 		 if (may_free != NULL)
672 		     free(may_free);
673 		 free(res);
674 		 return (false);
675 	     }
676 	     memcpy(res1, p, p1 - p);
677 	     res1 += p1 - p;
678 	     memcpy(res1, subst, subst_len);
679 	     res1 += subst_len;
680 	     p = p1 + kw_len;
681 	 } else {
682 	    if (*res == NULL) {
683 		if (may_free != NULL)
684 		    *res = may_free;
685 		else
686 		    *res = xstrdup(real);
687 		return (true);
688 	    }
689 	    *res1 = '\0';
690 	    if (may_free != NULL)
691 		free(may_free);
692 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
693 		free(res);
694 		return (false);
695 	    }
696 	    return (true);
697 	 }
698     }
699 }
700 
701 static char *
702 origin_subst(const char *real, const char *origin_path)
703 {
704     char *res1, *res2, *res3, *res4;
705 
706     if (uts.sysname[0] == '\0') {
707 	if (uname(&uts) != 0) {
708 	    _rtld_error("utsname failed: %d", errno);
709 	    return (NULL);
710 	}
711     }
712     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
713 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
714 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
715 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
716 	    return (NULL);
717     return (res4);
718 }
719 
720 static void
721 die(void)
722 {
723     const char *msg = dlerror();
724 
725     if (msg == NULL)
726 	msg = "Fatal error";
727     rtld_fdputstr(STDERR_FILENO, msg);
728     _exit(1);
729 }
730 
731 /*
732  * Process a shared object's DYNAMIC section, and save the important
733  * information in its Obj_Entry structure.
734  */
735 static void
736 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
737     const Elf_Dyn **dyn_soname)
738 {
739     const Elf_Dyn *dynp;
740     Needed_Entry **needed_tail = &obj->needed;
741     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
742     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
743     int plttype = DT_REL;
744 
745     *dyn_rpath = NULL;
746     *dyn_soname = NULL;
747 
748     obj->bind_now = false;
749     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
750 	switch (dynp->d_tag) {
751 
752 	case DT_REL:
753 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
754 	    break;
755 
756 	case DT_RELSZ:
757 	    obj->relsize = dynp->d_un.d_val;
758 	    break;
759 
760 	case DT_RELENT:
761 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
762 	    break;
763 
764 	case DT_JMPREL:
765 	    obj->pltrel = (const Elf_Rel *)
766 	      (obj->relocbase + dynp->d_un.d_ptr);
767 	    break;
768 
769 	case DT_PLTRELSZ:
770 	    obj->pltrelsize = dynp->d_un.d_val;
771 	    break;
772 
773 	case DT_RELA:
774 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
775 	    break;
776 
777 	case DT_RELASZ:
778 	    obj->relasize = dynp->d_un.d_val;
779 	    break;
780 
781 	case DT_RELAENT:
782 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
783 	    break;
784 
785 	case DT_PLTREL:
786 	    plttype = dynp->d_un.d_val;
787 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
788 	    break;
789 
790 	case DT_SYMTAB:
791 	    obj->symtab = (const Elf_Sym *)
792 	      (obj->relocbase + dynp->d_un.d_ptr);
793 	    break;
794 
795 	case DT_SYMENT:
796 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
797 	    break;
798 
799 	case DT_STRTAB:
800 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
801 	    break;
802 
803 	case DT_STRSZ:
804 	    obj->strsize = dynp->d_un.d_val;
805 	    break;
806 
807 	case DT_VERNEED:
808 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
809 		dynp->d_un.d_val);
810 	    break;
811 
812 	case DT_VERNEEDNUM:
813 	    obj->verneednum = dynp->d_un.d_val;
814 	    break;
815 
816 	case DT_VERDEF:
817 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
818 		dynp->d_un.d_val);
819 	    break;
820 
821 	case DT_VERDEFNUM:
822 	    obj->verdefnum = dynp->d_un.d_val;
823 	    break;
824 
825 	case DT_VERSYM:
826 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
827 		dynp->d_un.d_val);
828 	    break;
829 
830 	case DT_HASH:
831 	    {
832 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
833 		  (obj->relocbase + dynp->d_un.d_ptr);
834 		obj->nbuckets = hashtab[0];
835 		obj->nchains = hashtab[1];
836 		obj->buckets = hashtab + 2;
837 		obj->chains = obj->buckets + obj->nbuckets;
838 	    }
839 	    break;
840 
841 	case DT_NEEDED:
842 	    if (!obj->rtld) {
843 		Needed_Entry *nep = NEW(Needed_Entry);
844 		nep->name = dynp->d_un.d_val;
845 		nep->obj = NULL;
846 		nep->next = NULL;
847 
848 		*needed_tail = nep;
849 		needed_tail = &nep->next;
850 	    }
851 	    break;
852 
853 	case DT_FILTER:
854 	    if (!obj->rtld) {
855 		Needed_Entry *nep = NEW(Needed_Entry);
856 		nep->name = dynp->d_un.d_val;
857 		nep->obj = NULL;
858 		nep->next = NULL;
859 
860 		*needed_filtees_tail = nep;
861 		needed_filtees_tail = &nep->next;
862 	    }
863 	    break;
864 
865 	case DT_AUXILIARY:
866 	    if (!obj->rtld) {
867 		Needed_Entry *nep = NEW(Needed_Entry);
868 		nep->name = dynp->d_un.d_val;
869 		nep->obj = NULL;
870 		nep->next = NULL;
871 
872 		*needed_aux_filtees_tail = nep;
873 		needed_aux_filtees_tail = &nep->next;
874 	    }
875 	    break;
876 
877 	case DT_PLTGOT:
878 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
879 	    break;
880 
881 	case DT_TEXTREL:
882 	    obj->textrel = true;
883 	    break;
884 
885 	case DT_SYMBOLIC:
886 	    obj->symbolic = true;
887 	    break;
888 
889 	case DT_RPATH:
890 	case DT_RUNPATH:	/* XXX: process separately */
891 	    /*
892 	     * We have to wait until later to process this, because we
893 	     * might not have gotten the address of the string table yet.
894 	     */
895 	    *dyn_rpath = dynp;
896 	    break;
897 
898 	case DT_SONAME:
899 	    *dyn_soname = dynp;
900 	    break;
901 
902 	case DT_INIT:
903 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
904 	    break;
905 
906 	case DT_FINI:
907 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
908 	    break;
909 
910 	/*
911 	 * Don't process DT_DEBUG on MIPS as the dynamic section
912 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
913 	 */
914 
915 #ifndef __mips__
916 	case DT_DEBUG:
917 	    /* XXX - not implemented yet */
918 	    if (!early)
919 		dbg("Filling in DT_DEBUG entry");
920 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
921 	    break;
922 #endif
923 
924 	case DT_FLAGS:
925 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
926 		    obj->z_origin = true;
927 		if (dynp->d_un.d_val & DF_SYMBOLIC)
928 		    obj->symbolic = true;
929 		if (dynp->d_un.d_val & DF_TEXTREL)
930 		    obj->textrel = true;
931 		if (dynp->d_un.d_val & DF_BIND_NOW)
932 		    obj->bind_now = true;
933 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
934 		    ;*/
935 	    break;
936 #ifdef __mips__
937 	case DT_MIPS_LOCAL_GOTNO:
938 		obj->local_gotno = dynp->d_un.d_val;
939 	    break;
940 
941 	case DT_MIPS_SYMTABNO:
942 		obj->symtabno = dynp->d_un.d_val;
943 		break;
944 
945 	case DT_MIPS_GOTSYM:
946 		obj->gotsym = dynp->d_un.d_val;
947 		break;
948 
949 	case DT_MIPS_RLD_MAP:
950 #ifdef notyet
951 		if (!early)
952 			dbg("Filling in DT_DEBUG entry");
953 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
954 #endif
955 		break;
956 #endif
957 
958 	case DT_FLAGS_1:
959 		if (dynp->d_un.d_val & DF_1_NOOPEN)
960 		    obj->z_noopen = true;
961 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
962 		    obj->z_origin = true;
963 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
964 		    XXX ;*/
965 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
966 		    obj->bind_now = true;
967 		if (dynp->d_un.d_val & DF_1_NODELETE)
968 		    obj->z_nodelete = true;
969 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
970 		    obj->z_loadfltr = true;
971 	    break;
972 
973 	default:
974 	    if (!early) {
975 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
976 		    (long)dynp->d_tag);
977 	    }
978 	    break;
979 	}
980     }
981 
982     obj->traced = false;
983 
984     if (plttype == DT_RELA) {
985 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
986 	obj->pltrel = NULL;
987 	obj->pltrelasize = obj->pltrelsize;
988 	obj->pltrelsize = 0;
989     }
990 }
991 
992 static void
993 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
994     const Elf_Dyn *dyn_soname)
995 {
996 
997     if (obj->z_origin && obj->origin_path == NULL) {
998 	obj->origin_path = xmalloc(PATH_MAX);
999 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1000 	    die();
1001     }
1002 
1003     if (dyn_rpath != NULL) {
1004 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1005 	if (obj->z_origin)
1006 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1007     }
1008 
1009     if (dyn_soname != NULL)
1010 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1011 }
1012 
1013 static void
1014 digest_dynamic(Obj_Entry *obj, int early)
1015 {
1016 	const Elf_Dyn *dyn_rpath;
1017 	const Elf_Dyn *dyn_soname;
1018 
1019 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1020 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1021 }
1022 
1023 /*
1024  * Process a shared object's program header.  This is used only for the
1025  * main program, when the kernel has already loaded the main program
1026  * into memory before calling the dynamic linker.  It creates and
1027  * returns an Obj_Entry structure.
1028  */
1029 static Obj_Entry *
1030 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1031 {
1032     Obj_Entry *obj;
1033     const Elf_Phdr *phlimit = phdr + phnum;
1034     const Elf_Phdr *ph;
1035     int nsegs = 0;
1036 
1037     obj = obj_new();
1038     for (ph = phdr;  ph < phlimit;  ph++) {
1039 	if (ph->p_type != PT_PHDR)
1040 	    continue;
1041 
1042 	obj->phdr = phdr;
1043 	obj->phsize = ph->p_memsz;
1044 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1045 	break;
1046     }
1047 
1048     obj->stack_flags = PF_X | PF_R | PF_W;
1049 
1050     for (ph = phdr;  ph < phlimit;  ph++) {
1051 	switch (ph->p_type) {
1052 
1053 	case PT_INTERP:
1054 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1055 	    break;
1056 
1057 	case PT_LOAD:
1058 	    if (nsegs == 0) {	/* First load segment */
1059 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1060 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1061 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1062 		  obj->vaddrbase;
1063 	    } else {		/* Last load segment */
1064 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1065 		  obj->vaddrbase;
1066 	    }
1067 	    nsegs++;
1068 	    break;
1069 
1070 	case PT_DYNAMIC:
1071 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1072 	    break;
1073 
1074 	case PT_TLS:
1075 	    obj->tlsindex = 1;
1076 	    obj->tlssize = ph->p_memsz;
1077 	    obj->tlsalign = ph->p_align;
1078 	    obj->tlsinitsize = ph->p_filesz;
1079 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1080 	    break;
1081 
1082 	case PT_GNU_STACK:
1083 	    obj->stack_flags = ph->p_flags;
1084 	    break;
1085 	}
1086     }
1087     if (nsegs < 1) {
1088 	_rtld_error("%s: too few PT_LOAD segments", path);
1089 	return NULL;
1090     }
1091 
1092     obj->entry = entry;
1093     return obj;
1094 }
1095 
1096 static Obj_Entry *
1097 dlcheck(void *handle)
1098 {
1099     Obj_Entry *obj;
1100 
1101     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1102 	if (obj == (Obj_Entry *) handle)
1103 	    break;
1104 
1105     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1106 	_rtld_error("Invalid shared object handle %p", handle);
1107 	return NULL;
1108     }
1109     return obj;
1110 }
1111 
1112 /*
1113  * If the given object is already in the donelist, return true.  Otherwise
1114  * add the object to the list and return false.
1115  */
1116 static bool
1117 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1118 {
1119     unsigned int i;
1120 
1121     for (i = 0;  i < dlp->num_used;  i++)
1122 	if (dlp->objs[i] == obj)
1123 	    return true;
1124     /*
1125      * Our donelist allocation should always be sufficient.  But if
1126      * our threads locking isn't working properly, more shared objects
1127      * could have been loaded since we allocated the list.  That should
1128      * never happen, but we'll handle it properly just in case it does.
1129      */
1130     if (dlp->num_used < dlp->num_alloc)
1131 	dlp->objs[dlp->num_used++] = obj;
1132     return false;
1133 }
1134 
1135 /*
1136  * Hash function for symbol table lookup.  Don't even think about changing
1137  * this.  It is specified by the System V ABI.
1138  */
1139 unsigned long
1140 elf_hash(const char *name)
1141 {
1142     const unsigned char *p = (const unsigned char *) name;
1143     unsigned long h = 0;
1144     unsigned long g;
1145 
1146     while (*p != '\0') {
1147 	h = (h << 4) + *p++;
1148 	if ((g = h & 0xf0000000) != 0)
1149 	    h ^= g >> 24;
1150 	h &= ~g;
1151     }
1152     return h;
1153 }
1154 
1155 /*
1156  * Find the library with the given name, and return its full pathname.
1157  * The returned string is dynamically allocated.  Generates an error
1158  * message and returns NULL if the library cannot be found.
1159  *
1160  * If the second argument is non-NULL, then it refers to an already-
1161  * loaded shared object, whose library search path will be searched.
1162  *
1163  * The search order is:
1164  *   LD_LIBRARY_PATH
1165  *   rpath in the referencing file
1166  *   ldconfig hints
1167  *   /lib:/usr/lib
1168  */
1169 static char *
1170 find_library(const char *xname, const Obj_Entry *refobj)
1171 {
1172     char *pathname;
1173     char *name;
1174 
1175     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1176 	if (xname[0] != '/' && !trust) {
1177 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1178 	      xname);
1179 	    return NULL;
1180 	}
1181 	if (refobj != NULL && refobj->z_origin)
1182 	    return origin_subst(xname, refobj->origin_path);
1183 	else
1184 	    return xstrdup(xname);
1185     }
1186 
1187     if (libmap_disable || (refobj == NULL) ||
1188 	(name = lm_find(refobj->path, xname)) == NULL)
1189 	name = (char *)xname;
1190 
1191     dbg(" Searching for \"%s\"", name);
1192 
1193     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1194       (refobj != NULL &&
1195       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1196       (pathname = search_library_path(name, gethints())) != NULL ||
1197       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1198 	return pathname;
1199 
1200     if(refobj != NULL && refobj->path != NULL) {
1201 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1202 	  name, basename(refobj->path));
1203     } else {
1204 	_rtld_error("Shared object \"%s\" not found", name);
1205     }
1206     return NULL;
1207 }
1208 
1209 /*
1210  * Given a symbol number in a referencing object, find the corresponding
1211  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1212  * no definition was found.  Returns a pointer to the Obj_Entry of the
1213  * defining object via the reference parameter DEFOBJ_OUT.
1214  */
1215 const Elf_Sym *
1216 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1217     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1218     RtldLockState *lockstate)
1219 {
1220     const Elf_Sym *ref;
1221     const Elf_Sym *def;
1222     const Obj_Entry *defobj;
1223     SymLook req;
1224     const char *name;
1225     int res;
1226 
1227     /*
1228      * If we have already found this symbol, get the information from
1229      * the cache.
1230      */
1231     if (symnum >= refobj->nchains)
1232 	return NULL;	/* Bad object */
1233     if (cache != NULL && cache[symnum].sym != NULL) {
1234 	*defobj_out = cache[symnum].obj;
1235 	return cache[symnum].sym;
1236     }
1237 
1238     ref = refobj->symtab + symnum;
1239     name = refobj->strtab + ref->st_name;
1240     def = NULL;
1241     defobj = NULL;
1242 
1243     /*
1244      * We don't have to do a full scale lookup if the symbol is local.
1245      * We know it will bind to the instance in this load module; to
1246      * which we already have a pointer (ie ref). By not doing a lookup,
1247      * we not only improve performance, but it also avoids unresolvable
1248      * symbols when local symbols are not in the hash table. This has
1249      * been seen with the ia64 toolchain.
1250      */
1251     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1252 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1253 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1254 		symnum);
1255 	}
1256 	symlook_init(&req, name);
1257 	req.flags = flags;
1258 	req.ventry = fetch_ventry(refobj, symnum);
1259 	req.lockstate = lockstate;
1260 	res = symlook_default(&req, refobj);
1261 	if (res == 0) {
1262 	    def = req.sym_out;
1263 	    defobj = req.defobj_out;
1264 	}
1265     } else {
1266 	def = ref;
1267 	defobj = refobj;
1268     }
1269 
1270     /*
1271      * If we found no definition and the reference is weak, treat the
1272      * symbol as having the value zero.
1273      */
1274     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1275 	def = &sym_zero;
1276 	defobj = obj_main;
1277     }
1278 
1279     if (def != NULL) {
1280 	*defobj_out = defobj;
1281 	/* Record the information in the cache to avoid subsequent lookups. */
1282 	if (cache != NULL) {
1283 	    cache[symnum].sym = def;
1284 	    cache[symnum].obj = defobj;
1285 	}
1286     } else {
1287 	if (refobj != &obj_rtld)
1288 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1289     }
1290     return def;
1291 }
1292 
1293 /*
1294  * Return the search path from the ldconfig hints file, reading it if
1295  * necessary.  Returns NULL if there are problems with the hints file,
1296  * or if the search path there is empty.
1297  */
1298 static const char *
1299 gethints(void)
1300 {
1301     static char *hints;
1302 
1303     if (hints == NULL) {
1304 	int fd;
1305 	struct elfhints_hdr hdr;
1306 	char *p;
1307 
1308 	/* Keep from trying again in case the hints file is bad. */
1309 	hints = "";
1310 
1311 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1312 	    return NULL;
1313 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1314 	  hdr.magic != ELFHINTS_MAGIC ||
1315 	  hdr.version != 1) {
1316 	    close(fd);
1317 	    return NULL;
1318 	}
1319 	p = xmalloc(hdr.dirlistlen + 1);
1320 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1321 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1322 	    free(p);
1323 	    close(fd);
1324 	    return NULL;
1325 	}
1326 	hints = p;
1327 	close(fd);
1328     }
1329     return hints[0] != '\0' ? hints : NULL;
1330 }
1331 
1332 static void
1333 init_dag(Obj_Entry *root)
1334 {
1335     const Needed_Entry *needed;
1336     const Objlist_Entry *elm;
1337     DoneList donelist;
1338 
1339     if (root->dag_inited)
1340 	return;
1341     donelist_init(&donelist);
1342 
1343     /* Root object belongs to own DAG. */
1344     objlist_push_tail(&root->dldags, root);
1345     objlist_push_tail(&root->dagmembers, root);
1346     donelist_check(&donelist, root);
1347 
1348     /*
1349      * Add dependencies of root object to DAG in breadth order
1350      * by exploiting the fact that each new object get added
1351      * to the tail of the dagmembers list.
1352      */
1353     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1354 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1355 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1356 		continue;
1357 	    objlist_push_tail(&needed->obj->dldags, root);
1358 	    objlist_push_tail(&root->dagmembers, needed->obj);
1359 	}
1360     }
1361     root->dag_inited = true;
1362 }
1363 
1364 /*
1365  * Initialize the dynamic linker.  The argument is the address at which
1366  * the dynamic linker has been mapped into memory.  The primary task of
1367  * this function is to relocate the dynamic linker.
1368  */
1369 static void
1370 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1371 {
1372     Obj_Entry objtmp;	/* Temporary rtld object */
1373     const Elf_Dyn *dyn_rpath;
1374     const Elf_Dyn *dyn_soname;
1375 
1376     /*
1377      * Conjure up an Obj_Entry structure for the dynamic linker.
1378      *
1379      * The "path" member can't be initialized yet because string constants
1380      * cannot yet be accessed. Below we will set it correctly.
1381      */
1382     memset(&objtmp, 0, sizeof(objtmp));
1383     objtmp.path = NULL;
1384     objtmp.rtld = true;
1385     objtmp.mapbase = mapbase;
1386 #ifdef PIC
1387     objtmp.relocbase = mapbase;
1388 #endif
1389     if (RTLD_IS_DYNAMIC()) {
1390 	objtmp.dynamic = rtld_dynamic(&objtmp);
1391 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1392 	assert(objtmp.needed == NULL);
1393 #if !defined(__mips__)
1394 	/* MIPS has a bogus DT_TEXTREL. */
1395 	assert(!objtmp.textrel);
1396 #endif
1397 
1398 	/*
1399 	 * Temporarily put the dynamic linker entry into the object list, so
1400 	 * that symbols can be found.
1401 	 */
1402 
1403 	relocate_objects(&objtmp, true, &objtmp, NULL);
1404     }
1405 
1406     /* Initialize the object list. */
1407     obj_tail = &obj_list;
1408 
1409     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1410     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1411 
1412     if (aux_info[AT_PAGESZ] != NULL)
1413 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1414     if (aux_info[AT_OSRELDATE] != NULL)
1415 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1416 
1417     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1418 
1419     /* Replace the path with a dynamically allocated copy. */
1420     obj_rtld.path = xstrdup(PATH_RTLD);
1421 
1422     r_debug.r_brk = r_debug_state;
1423     r_debug.r_state = RT_CONSISTENT;
1424 }
1425 
1426 /*
1427  * Add the init functions from a needed object list (and its recursive
1428  * needed objects) to "list".  This is not used directly; it is a helper
1429  * function for initlist_add_objects().  The write lock must be held
1430  * when this function is called.
1431  */
1432 static void
1433 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1434 {
1435     /* Recursively process the successor needed objects. */
1436     if (needed->next != NULL)
1437 	initlist_add_neededs(needed->next, list);
1438 
1439     /* Process the current needed object. */
1440     if (needed->obj != NULL)
1441 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1442 }
1443 
1444 /*
1445  * Scan all of the DAGs rooted in the range of objects from "obj" to
1446  * "tail" and add their init functions to "list".  This recurses over
1447  * the DAGs and ensure the proper init ordering such that each object's
1448  * needed libraries are initialized before the object itself.  At the
1449  * same time, this function adds the objects to the global finalization
1450  * list "list_fini" in the opposite order.  The write lock must be
1451  * held when this function is called.
1452  */
1453 static void
1454 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1455 {
1456     if (obj->init_scanned || obj->init_done)
1457 	return;
1458     obj->init_scanned = true;
1459 
1460     /* Recursively process the successor objects. */
1461     if (&obj->next != tail)
1462 	initlist_add_objects(obj->next, tail, list);
1463 
1464     /* Recursively process the needed objects. */
1465     if (obj->needed != NULL)
1466 	initlist_add_neededs(obj->needed, list);
1467 
1468     /* Add the object to the init list. */
1469     if (obj->init != (Elf_Addr)NULL)
1470 	objlist_push_tail(list, obj);
1471 
1472     /* Add the object to the global fini list in the reverse order. */
1473     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1474 	objlist_push_head(&list_fini, obj);
1475 	obj->on_fini_list = true;
1476     }
1477 }
1478 
1479 #ifndef FPTR_TARGET
1480 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1481 #endif
1482 
1483 static void
1484 free_needed_filtees(Needed_Entry *n)
1485 {
1486     Needed_Entry *needed, *needed1;
1487 
1488     for (needed = n; needed != NULL; needed = needed->next) {
1489 	if (needed->obj != NULL) {
1490 	    dlclose(needed->obj);
1491 	    needed->obj = NULL;
1492 	}
1493     }
1494     for (needed = n; needed != NULL; needed = needed1) {
1495 	needed1 = needed->next;
1496 	free(needed);
1497     }
1498 }
1499 
1500 static void
1501 unload_filtees(Obj_Entry *obj)
1502 {
1503 
1504     free_needed_filtees(obj->needed_filtees);
1505     obj->needed_filtees = NULL;
1506     free_needed_filtees(obj->needed_aux_filtees);
1507     obj->needed_aux_filtees = NULL;
1508     obj->filtees_loaded = false;
1509 }
1510 
1511 static void
1512 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1513 {
1514 
1515     for (; needed != NULL; needed = needed->next) {
1516 	needed->obj = dlopen_object(obj->strtab + needed->name, obj,
1517 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1518 	  RTLD_LOCAL);
1519     }
1520 }
1521 
1522 static void
1523 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1524 {
1525 
1526     lock_restart_for_upgrade(lockstate);
1527     if (!obj->filtees_loaded) {
1528 	load_filtee1(obj, obj->needed_filtees, flags);
1529 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1530 	obj->filtees_loaded = true;
1531     }
1532 }
1533 
1534 static int
1535 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1536 {
1537     Obj_Entry *obj1;
1538 
1539     for (; needed != NULL; needed = needed->next) {
1540 	obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1541 	  flags & ~RTLD_LO_NOLOAD);
1542 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1543 	    return (-1);
1544 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1545 	    dbg("obj %s nodelete", obj1->path);
1546 	    init_dag(obj1);
1547 	    ref_dag(obj1);
1548 	    obj1->ref_nodel = true;
1549 	}
1550     }
1551     return (0);
1552 }
1553 
1554 /*
1555  * Given a shared object, traverse its list of needed objects, and load
1556  * each of them.  Returns 0 on success.  Generates an error message and
1557  * returns -1 on failure.
1558  */
1559 static int
1560 load_needed_objects(Obj_Entry *first, int flags)
1561 {
1562     Obj_Entry *obj;
1563 
1564     for (obj = first;  obj != NULL;  obj = obj->next) {
1565 	if (process_needed(obj, obj->needed, flags) == -1)
1566 	    return (-1);
1567     }
1568     return (0);
1569 }
1570 
1571 static int
1572 load_preload_objects(void)
1573 {
1574     char *p = ld_preload;
1575     static const char delim[] = " \t:;";
1576 
1577     if (p == NULL)
1578 	return 0;
1579 
1580     p += strspn(p, delim);
1581     while (*p != '\0') {
1582 	size_t len = strcspn(p, delim);
1583 	char savech;
1584 
1585 	savech = p[len];
1586 	p[len] = '\0';
1587 	if (load_object(p, NULL, 0) == NULL)
1588 	    return -1;	/* XXX - cleanup */
1589 	p[len] = savech;
1590 	p += len;
1591 	p += strspn(p, delim);
1592     }
1593     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1594     return 0;
1595 }
1596 
1597 /*
1598  * Load a shared object into memory, if it is not already loaded.
1599  *
1600  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1601  * on failure.
1602  */
1603 static Obj_Entry *
1604 load_object(const char *name, const Obj_Entry *refobj, int flags)
1605 {
1606     Obj_Entry *obj;
1607     int fd = -1;
1608     struct stat sb;
1609     char *path;
1610 
1611     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1612 	if (object_match_name(obj, name))
1613 	    return obj;
1614 
1615     path = find_library(name, refobj);
1616     if (path == NULL)
1617 	return NULL;
1618 
1619     /*
1620      * If we didn't find a match by pathname, open the file and check
1621      * again by device and inode.  This avoids false mismatches caused
1622      * by multiple links or ".." in pathnames.
1623      *
1624      * To avoid a race, we open the file and use fstat() rather than
1625      * using stat().
1626      */
1627     if ((fd = open(path, O_RDONLY)) == -1) {
1628 	_rtld_error("Cannot open \"%s\"", path);
1629 	free(path);
1630 	return NULL;
1631     }
1632     if (fstat(fd, &sb) == -1) {
1633 	_rtld_error("Cannot fstat \"%s\"", path);
1634 	close(fd);
1635 	free(path);
1636 	return NULL;
1637     }
1638     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1639 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1640 	    break;
1641     if (obj != NULL) {
1642 	object_add_name(obj, name);
1643 	free(path);
1644 	close(fd);
1645 	return obj;
1646     }
1647     if (flags & RTLD_LO_NOLOAD) {
1648 	free(path);
1649 	return (NULL);
1650     }
1651 
1652     /* First use of this object, so we must map it in */
1653     obj = do_load_object(fd, name, path, &sb, flags);
1654     if (obj == NULL)
1655 	free(path);
1656     close(fd);
1657 
1658     return obj;
1659 }
1660 
1661 static Obj_Entry *
1662 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1663   int flags)
1664 {
1665     Obj_Entry *obj;
1666     struct statfs fs;
1667 
1668     /*
1669      * but first, make sure that environment variables haven't been
1670      * used to circumvent the noexec flag on a filesystem.
1671      */
1672     if (dangerous_ld_env) {
1673 	if (fstatfs(fd, &fs) != 0) {
1674 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1675 		return NULL;
1676 	}
1677 	if (fs.f_flags & MNT_NOEXEC) {
1678 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1679 	    return NULL;
1680 	}
1681     }
1682     dbg("loading \"%s\"", path);
1683     obj = map_object(fd, path, sbp);
1684     if (obj == NULL)
1685         return NULL;
1686 
1687     object_add_name(obj, name);
1688     obj->path = path;
1689     digest_dynamic(obj, 0);
1690     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1691       RTLD_LO_DLOPEN) {
1692 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1693 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1694 	munmap(obj->mapbase, obj->mapsize);
1695 	obj_free(obj);
1696 	return (NULL);
1697     }
1698 
1699     *obj_tail = obj;
1700     obj_tail = &obj->next;
1701     obj_count++;
1702     obj_loads++;
1703     linkmap_add(obj);	/* for GDB & dlinfo() */
1704     max_stack_flags |= obj->stack_flags;
1705 
1706     dbg("  %p .. %p: %s", obj->mapbase,
1707          obj->mapbase + obj->mapsize - 1, obj->path);
1708     if (obj->textrel)
1709 	dbg("  WARNING: %s has impure text", obj->path);
1710     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1711 	obj->path);
1712 
1713     return obj;
1714 }
1715 
1716 static Obj_Entry *
1717 obj_from_addr(const void *addr)
1718 {
1719     Obj_Entry *obj;
1720 
1721     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1722 	if (addr < (void *) obj->mapbase)
1723 	    continue;
1724 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1725 	    return obj;
1726     }
1727     return NULL;
1728 }
1729 
1730 /*
1731  * Call the finalization functions for each of the objects in "list"
1732  * belonging to the DAG of "root" and referenced once. If NULL "root"
1733  * is specified, every finalization function will be called regardless
1734  * of the reference count and the list elements won't be freed. All of
1735  * the objects are expected to have non-NULL fini functions.
1736  */
1737 static void
1738 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1739 {
1740     Objlist_Entry *elm;
1741     char *saved_msg;
1742 
1743     assert(root == NULL || root->refcount == 1);
1744 
1745     /*
1746      * Preserve the current error message since a fini function might
1747      * call into the dynamic linker and overwrite it.
1748      */
1749     saved_msg = errmsg_save();
1750     do {
1751 	STAILQ_FOREACH(elm, list, link) {
1752 	    if (root != NULL && (elm->obj->refcount != 1 ||
1753 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1754 		continue;
1755 	    dbg("calling fini function for %s at %p", elm->obj->path,
1756 	        (void *)elm->obj->fini);
1757 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1758 		elm->obj->path);
1759 	    /* Remove object from fini list to prevent recursive invocation. */
1760 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1761 	    /*
1762 	     * XXX: If a dlopen() call references an object while the
1763 	     * fini function is in progress, we might end up trying to
1764 	     * unload the referenced object in dlclose() or the object
1765 	     * won't be unloaded although its fini function has been
1766 	     * called.
1767 	     */
1768 	    lock_release(rtld_bind_lock, lockstate);
1769 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1770 	    wlock_acquire(rtld_bind_lock, lockstate);
1771 	    /* No need to free anything if process is going down. */
1772 	    if (root != NULL)
1773 	    	free(elm);
1774 	    /*
1775 	     * We must restart the list traversal after every fini call
1776 	     * because a dlclose() call from the fini function or from
1777 	     * another thread might have modified the reference counts.
1778 	     */
1779 	    break;
1780 	}
1781     } while (elm != NULL);
1782     errmsg_restore(saved_msg);
1783 }
1784 
1785 /*
1786  * Call the initialization functions for each of the objects in
1787  * "list".  All of the objects are expected to have non-NULL init
1788  * functions.
1789  */
1790 static void
1791 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1792 {
1793     Objlist_Entry *elm;
1794     Obj_Entry *obj;
1795     char *saved_msg;
1796 
1797     /*
1798      * Clean init_scanned flag so that objects can be rechecked and
1799      * possibly initialized earlier if any of vectors called below
1800      * cause the change by using dlopen.
1801      */
1802     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1803 	obj->init_scanned = false;
1804 
1805     /*
1806      * Preserve the current error message since an init function might
1807      * call into the dynamic linker and overwrite it.
1808      */
1809     saved_msg = errmsg_save();
1810     STAILQ_FOREACH(elm, list, link) {
1811 	if (elm->obj->init_done) /* Initialized early. */
1812 	    continue;
1813 	dbg("calling init function for %s at %p", elm->obj->path,
1814 	    (void *)elm->obj->init);
1815 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1816 	    elm->obj->path);
1817 	/*
1818 	 * Race: other thread might try to use this object before current
1819 	 * one completes the initilization. Not much can be done here
1820 	 * without better locking.
1821 	 */
1822 	elm->obj->init_done = true;
1823 	lock_release(rtld_bind_lock, lockstate);
1824 	call_initfini_pointer(elm->obj, elm->obj->init);
1825 	wlock_acquire(rtld_bind_lock, lockstate);
1826     }
1827     errmsg_restore(saved_msg);
1828 }
1829 
1830 static void
1831 objlist_clear(Objlist *list)
1832 {
1833     Objlist_Entry *elm;
1834 
1835     while (!STAILQ_EMPTY(list)) {
1836 	elm = STAILQ_FIRST(list);
1837 	STAILQ_REMOVE_HEAD(list, link);
1838 	free(elm);
1839     }
1840 }
1841 
1842 static Objlist_Entry *
1843 objlist_find(Objlist *list, const Obj_Entry *obj)
1844 {
1845     Objlist_Entry *elm;
1846 
1847     STAILQ_FOREACH(elm, list, link)
1848 	if (elm->obj == obj)
1849 	    return elm;
1850     return NULL;
1851 }
1852 
1853 static void
1854 objlist_init(Objlist *list)
1855 {
1856     STAILQ_INIT(list);
1857 }
1858 
1859 static void
1860 objlist_push_head(Objlist *list, Obj_Entry *obj)
1861 {
1862     Objlist_Entry *elm;
1863 
1864     elm = NEW(Objlist_Entry);
1865     elm->obj = obj;
1866     STAILQ_INSERT_HEAD(list, elm, link);
1867 }
1868 
1869 static void
1870 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1871 {
1872     Objlist_Entry *elm;
1873 
1874     elm = NEW(Objlist_Entry);
1875     elm->obj = obj;
1876     STAILQ_INSERT_TAIL(list, elm, link);
1877 }
1878 
1879 static void
1880 objlist_remove(Objlist *list, Obj_Entry *obj)
1881 {
1882     Objlist_Entry *elm;
1883 
1884     if ((elm = objlist_find(list, obj)) != NULL) {
1885 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1886 	free(elm);
1887     }
1888 }
1889 
1890 /*
1891  * Relocate newly-loaded shared objects.  The argument is a pointer to
1892  * the Obj_Entry for the first such object.  All objects from the first
1893  * to the end of the list of objects are relocated.  Returns 0 on success,
1894  * or -1 on failure.
1895  */
1896 static int
1897 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
1898     RtldLockState *lockstate)
1899 {
1900     Obj_Entry *obj;
1901 
1902     for (obj = first;  obj != NULL;  obj = obj->next) {
1903 	if (obj != rtldobj)
1904 	    dbg("relocating \"%s\"", obj->path);
1905 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1906 	    obj->symtab == NULL || obj->strtab == NULL) {
1907 	    _rtld_error("%s: Shared object has no run-time symbol table",
1908 	      obj->path);
1909 	    return -1;
1910 	}
1911 
1912 	if (obj->textrel) {
1913 	    /* There are relocations to the write-protected text segment. */
1914 	    if (mprotect(obj->mapbase, obj->textsize,
1915 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1916 		_rtld_error("%s: Cannot write-enable text segment: %s",
1917 		  obj->path, strerror(errno));
1918 		return -1;
1919 	    }
1920 	}
1921 
1922 	/* Process the non-PLT relocations. */
1923 	if (reloc_non_plt(obj, rtldobj, lockstate))
1924 		return -1;
1925 
1926 	if (obj->textrel) {	/* Re-protected the text segment. */
1927 	    if (mprotect(obj->mapbase, obj->textsize,
1928 	      PROT_READ|PROT_EXEC) == -1) {
1929 		_rtld_error("%s: Cannot write-protect text segment: %s",
1930 		  obj->path, strerror(errno));
1931 		return -1;
1932 	    }
1933 	}
1934 
1935 	/* Process the PLT relocations. */
1936 	if (reloc_plt(obj) == -1)
1937 	    return -1;
1938 	/* Relocate the jump slots if we are doing immediate binding. */
1939 	if (obj->bind_now || bind_now)
1940 	    if (reloc_jmpslots(obj, lockstate) == -1)
1941 		return -1;
1942 
1943 
1944 	/*
1945 	 * Set up the magic number and version in the Obj_Entry.  These
1946 	 * were checked in the crt1.o from the original ElfKit, so we
1947 	 * set them for backward compatibility.
1948 	 */
1949 	obj->magic = RTLD_MAGIC;
1950 	obj->version = RTLD_VERSION;
1951 
1952 	/* Set the special PLT or GOT entries. */
1953 	init_pltgot(obj);
1954     }
1955 
1956     return 0;
1957 }
1958 
1959 /*
1960  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1961  * before the process exits.
1962  */
1963 static void
1964 rtld_exit(void)
1965 {
1966     RtldLockState lockstate;
1967 
1968     wlock_acquire(rtld_bind_lock, &lockstate);
1969     dbg("rtld_exit()");
1970     objlist_call_fini(&list_fini, NULL, &lockstate);
1971     /* No need to remove the items from the list, since we are exiting. */
1972     if (!libmap_disable)
1973         lm_fini();
1974     lock_release(rtld_bind_lock, &lockstate);
1975 }
1976 
1977 static void *
1978 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1979 {
1980 #ifdef COMPAT_32BIT
1981     const char *trans;
1982 #endif
1983     if (path == NULL)
1984 	return (NULL);
1985 
1986     path += strspn(path, ":;");
1987     while (*path != '\0') {
1988 	size_t len;
1989 	char  *res;
1990 
1991 	len = strcspn(path, ":;");
1992 #ifdef COMPAT_32BIT
1993 	trans = lm_findn(NULL, path, len);
1994 	if (trans)
1995 	    res = callback(trans, strlen(trans), arg);
1996 	else
1997 #endif
1998 	res = callback(path, len, arg);
1999 
2000 	if (res != NULL)
2001 	    return (res);
2002 
2003 	path += len;
2004 	path += strspn(path, ":;");
2005     }
2006 
2007     return (NULL);
2008 }
2009 
2010 struct try_library_args {
2011     const char	*name;
2012     size_t	 namelen;
2013     char	*buffer;
2014     size_t	 buflen;
2015 };
2016 
2017 static void *
2018 try_library_path(const char *dir, size_t dirlen, void *param)
2019 {
2020     struct try_library_args *arg;
2021 
2022     arg = param;
2023     if (*dir == '/' || trust) {
2024 	char *pathname;
2025 
2026 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2027 		return (NULL);
2028 
2029 	pathname = arg->buffer;
2030 	strncpy(pathname, dir, dirlen);
2031 	pathname[dirlen] = '/';
2032 	strcpy(pathname + dirlen + 1, arg->name);
2033 
2034 	dbg("  Trying \"%s\"", pathname);
2035 	if (access(pathname, F_OK) == 0) {		/* We found it */
2036 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2037 	    strcpy(pathname, arg->buffer);
2038 	    return (pathname);
2039 	}
2040     }
2041     return (NULL);
2042 }
2043 
2044 static char *
2045 search_library_path(const char *name, const char *path)
2046 {
2047     char *p;
2048     struct try_library_args arg;
2049 
2050     if (path == NULL)
2051 	return NULL;
2052 
2053     arg.name = name;
2054     arg.namelen = strlen(name);
2055     arg.buffer = xmalloc(PATH_MAX);
2056     arg.buflen = PATH_MAX;
2057 
2058     p = path_enumerate(path, try_library_path, &arg);
2059 
2060     free(arg.buffer);
2061 
2062     return (p);
2063 }
2064 
2065 int
2066 dlclose(void *handle)
2067 {
2068     Obj_Entry *root;
2069     RtldLockState lockstate;
2070 
2071     wlock_acquire(rtld_bind_lock, &lockstate);
2072     root = dlcheck(handle);
2073     if (root == NULL) {
2074 	lock_release(rtld_bind_lock, &lockstate);
2075 	return -1;
2076     }
2077     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2078 	root->path);
2079 
2080     /* Unreference the object and its dependencies. */
2081     root->dl_refcount--;
2082 
2083     if (root->refcount == 1) {
2084 	/*
2085 	 * The object will be no longer referenced, so we must unload it.
2086 	 * First, call the fini functions.
2087 	 */
2088 	objlist_call_fini(&list_fini, root, &lockstate);
2089 
2090 	unref_dag(root);
2091 
2092 	/* Finish cleaning up the newly-unreferenced objects. */
2093 	GDB_STATE(RT_DELETE,&root->linkmap);
2094 	unload_object(root);
2095 	GDB_STATE(RT_CONSISTENT,NULL);
2096     } else
2097 	unref_dag(root);
2098 
2099     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2100     lock_release(rtld_bind_lock, &lockstate);
2101     return 0;
2102 }
2103 
2104 char *
2105 dlerror(void)
2106 {
2107     char *msg = error_message;
2108     error_message = NULL;
2109     return msg;
2110 }
2111 
2112 /*
2113  * This function is deprecated and has no effect.
2114  */
2115 void
2116 dllockinit(void *context,
2117 	   void *(*lock_create)(void *context),
2118            void (*rlock_acquire)(void *lock),
2119            void (*wlock_acquire)(void *lock),
2120            void (*lock_release)(void *lock),
2121            void (*lock_destroy)(void *lock),
2122 	   void (*context_destroy)(void *context))
2123 {
2124     static void *cur_context;
2125     static void (*cur_context_destroy)(void *);
2126 
2127     /* Just destroy the context from the previous call, if necessary. */
2128     if (cur_context_destroy != NULL)
2129 	cur_context_destroy(cur_context);
2130     cur_context = context;
2131     cur_context_destroy = context_destroy;
2132 }
2133 
2134 void *
2135 dlopen(const char *name, int mode)
2136 {
2137     RtldLockState lockstate;
2138     int lo_flags;
2139 
2140     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2141     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2142     if (ld_tracing != NULL) {
2143 	rlock_acquire(rtld_bind_lock, &lockstate);
2144 	if (sigsetjmp(lockstate.env, 0) != 0)
2145 	    lock_upgrade(rtld_bind_lock, &lockstate);
2146 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2147 	lock_release(rtld_bind_lock, &lockstate);
2148     }
2149     lo_flags = RTLD_LO_DLOPEN;
2150     if (mode & RTLD_NODELETE)
2151 	    lo_flags |= RTLD_LO_NODELETE;
2152     if (mode & RTLD_NOLOAD)
2153 	    lo_flags |= RTLD_LO_NOLOAD;
2154     if (ld_tracing != NULL)
2155 	    lo_flags |= RTLD_LO_TRACE;
2156 
2157     return (dlopen_object(name, obj_main, lo_flags,
2158       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2159 }
2160 
2161 static Obj_Entry *
2162 dlopen_object(const char *name, Obj_Entry *refobj, int lo_flags, int mode)
2163 {
2164     Obj_Entry **old_obj_tail;
2165     Obj_Entry *obj;
2166     Objlist initlist;
2167     RtldLockState lockstate;
2168     int result;
2169 
2170     objlist_init(&initlist);
2171 
2172     wlock_acquire(rtld_bind_lock, &lockstate);
2173     GDB_STATE(RT_ADD,NULL);
2174 
2175     old_obj_tail = obj_tail;
2176     obj = NULL;
2177     if (name == NULL) {
2178 	obj = obj_main;
2179 	obj->refcount++;
2180     } else {
2181 	obj = load_object(name, refobj, lo_flags);
2182     }
2183 
2184     if (obj) {
2185 	obj->dl_refcount++;
2186 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2187 	    objlist_push_tail(&list_global, obj);
2188 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2189 	    assert(*old_obj_tail == obj);
2190 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2191 	    init_dag(obj);
2192 	    ref_dag(obj);
2193 	    if (result != -1)
2194 		result = rtld_verify_versions(&obj->dagmembers);
2195 	    if (result != -1 && ld_tracing)
2196 		goto trace;
2197 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2198 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2199 		obj->dl_refcount--;
2200 		unref_dag(obj);
2201 		if (obj->refcount == 0)
2202 		    unload_object(obj);
2203 		obj = NULL;
2204 	    } else {
2205 		/* Make list of init functions to call. */
2206 		initlist_add_objects(obj, &obj->next, &initlist);
2207 	    }
2208 	} else {
2209 
2210 	    /*
2211 	     * Bump the reference counts for objects on this DAG.  If
2212 	     * this is the first dlopen() call for the object that was
2213 	     * already loaded as a dependency, initialize the dag
2214 	     * starting at it.
2215 	     */
2216 	    init_dag(obj);
2217 	    ref_dag(obj);
2218 
2219 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2220 		goto trace;
2221 	}
2222 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2223 	  obj->z_nodelete) && !obj->ref_nodel) {
2224 	    dbg("obj %s nodelete", obj->path);
2225 	    ref_dag(obj);
2226 	    obj->z_nodelete = obj->ref_nodel = true;
2227 	}
2228     }
2229 
2230     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2231 	name);
2232     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2233 
2234     map_stacks_exec(&lockstate);
2235 
2236     /* Call the init functions. */
2237     objlist_call_init(&initlist, &lockstate);
2238     objlist_clear(&initlist);
2239     lock_release(rtld_bind_lock, &lockstate);
2240     return obj;
2241 trace:
2242     trace_loaded_objects(obj);
2243     lock_release(rtld_bind_lock, &lockstate);
2244     exit(0);
2245 }
2246 
2247 static void *
2248 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2249     int flags)
2250 {
2251     DoneList donelist;
2252     const Obj_Entry *obj, *defobj;
2253     const Elf_Sym *def;
2254     SymLook req;
2255     RtldLockState lockstate;
2256     int res;
2257 
2258     def = NULL;
2259     defobj = NULL;
2260     symlook_init(&req, name);
2261     req.ventry = ve;
2262     req.flags = flags | SYMLOOK_IN_PLT;
2263     req.lockstate = &lockstate;
2264 
2265     rlock_acquire(rtld_bind_lock, &lockstate);
2266     if (sigsetjmp(lockstate.env, 0) != 0)
2267 	    lock_upgrade(rtld_bind_lock, &lockstate);
2268     if (handle == NULL || handle == RTLD_NEXT ||
2269 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2270 
2271 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2272 	    _rtld_error("Cannot determine caller's shared object");
2273 	    lock_release(rtld_bind_lock, &lockstate);
2274 	    return NULL;
2275 	}
2276 	if (handle == NULL) {	/* Just the caller's shared object. */
2277 	    res = symlook_obj(&req, obj);
2278 	    if (res == 0) {
2279 		def = req.sym_out;
2280 		defobj = req.defobj_out;
2281 	    }
2282 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2283 		   handle == RTLD_SELF) { /* ... caller included */
2284 	    if (handle == RTLD_NEXT)
2285 		obj = obj->next;
2286 	    for (; obj != NULL; obj = obj->next) {
2287 		res = symlook_obj(&req, obj);
2288 		if (res == 0) {
2289 		    if (def == NULL ||
2290 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2291 			def = req.sym_out;
2292 			defobj = req.defobj_out;
2293 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2294 			    break;
2295 		    }
2296 		}
2297 	    }
2298 	    /*
2299 	     * Search the dynamic linker itself, and possibly resolve the
2300 	     * symbol from there.  This is how the application links to
2301 	     * dynamic linker services such as dlopen.
2302 	     */
2303 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2304 		res = symlook_obj(&req, &obj_rtld);
2305 		if (res == 0) {
2306 		    def = req.sym_out;
2307 		    defobj = req.defobj_out;
2308 		}
2309 	    }
2310 	} else {
2311 	    assert(handle == RTLD_DEFAULT);
2312 	    res = symlook_default(&req, obj);
2313 	    if (res == 0) {
2314 		defobj = req.defobj_out;
2315 		def = req.sym_out;
2316 	    }
2317 	}
2318     } else {
2319 	if ((obj = dlcheck(handle)) == NULL) {
2320 	    lock_release(rtld_bind_lock, &lockstate);
2321 	    return NULL;
2322 	}
2323 
2324 	donelist_init(&donelist);
2325 	if (obj->mainprog) {
2326             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2327 	    res = symlook_global(&req, &donelist);
2328 	    if (res == 0) {
2329 		def = req.sym_out;
2330 		defobj = req.defobj_out;
2331 	    }
2332 	    /*
2333 	     * Search the dynamic linker itself, and possibly resolve the
2334 	     * symbol from there.  This is how the application links to
2335 	     * dynamic linker services such as dlopen.
2336 	     */
2337 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2338 		res = symlook_obj(&req, &obj_rtld);
2339 		if (res == 0) {
2340 		    def = req.sym_out;
2341 		    defobj = req.defobj_out;
2342 		}
2343 	    }
2344 	}
2345 	else {
2346 	    /* Search the whole DAG rooted at the given object. */
2347 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2348 	    if (res == 0) {
2349 		def = req.sym_out;
2350 		defobj = req.defobj_out;
2351 	    }
2352 	}
2353     }
2354 
2355     if (def != NULL) {
2356 	lock_release(rtld_bind_lock, &lockstate);
2357 
2358 	/*
2359 	 * The value required by the caller is derived from the value
2360 	 * of the symbol. For the ia64 architecture, we need to
2361 	 * construct a function descriptor which the caller can use to
2362 	 * call the function with the right 'gp' value. For other
2363 	 * architectures and for non-functions, the value is simply
2364 	 * the relocated value of the symbol.
2365 	 */
2366 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2367 	    return make_function_pointer(def, defobj);
2368 	else
2369 	    return defobj->relocbase + def->st_value;
2370     }
2371 
2372     _rtld_error("Undefined symbol \"%s\"", name);
2373     lock_release(rtld_bind_lock, &lockstate);
2374     return NULL;
2375 }
2376 
2377 void *
2378 dlsym(void *handle, const char *name)
2379 {
2380 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2381 	    SYMLOOK_DLSYM);
2382 }
2383 
2384 dlfunc_t
2385 dlfunc(void *handle, const char *name)
2386 {
2387 	union {
2388 		void *d;
2389 		dlfunc_t f;
2390 	} rv;
2391 
2392 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2393 	    SYMLOOK_DLSYM);
2394 	return (rv.f);
2395 }
2396 
2397 void *
2398 dlvsym(void *handle, const char *name, const char *version)
2399 {
2400 	Ver_Entry ventry;
2401 
2402 	ventry.name = version;
2403 	ventry.file = NULL;
2404 	ventry.hash = elf_hash(version);
2405 	ventry.flags= 0;
2406 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2407 	    SYMLOOK_DLSYM);
2408 }
2409 
2410 int
2411 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2412 {
2413     const Obj_Entry *obj;
2414     RtldLockState lockstate;
2415 
2416     rlock_acquire(rtld_bind_lock, &lockstate);
2417     obj = obj_from_addr(addr);
2418     if (obj == NULL) {
2419         _rtld_error("No shared object contains address");
2420 	lock_release(rtld_bind_lock, &lockstate);
2421         return (0);
2422     }
2423     rtld_fill_dl_phdr_info(obj, phdr_info);
2424     lock_release(rtld_bind_lock, &lockstate);
2425     return (1);
2426 }
2427 
2428 int
2429 dladdr(const void *addr, Dl_info *info)
2430 {
2431     const Obj_Entry *obj;
2432     const Elf_Sym *def;
2433     void *symbol_addr;
2434     unsigned long symoffset;
2435     RtldLockState lockstate;
2436 
2437     rlock_acquire(rtld_bind_lock, &lockstate);
2438     obj = obj_from_addr(addr);
2439     if (obj == NULL) {
2440         _rtld_error("No shared object contains address");
2441 	lock_release(rtld_bind_lock, &lockstate);
2442         return 0;
2443     }
2444     info->dli_fname = obj->path;
2445     info->dli_fbase = obj->mapbase;
2446     info->dli_saddr = (void *)0;
2447     info->dli_sname = NULL;
2448 
2449     /*
2450      * Walk the symbol list looking for the symbol whose address is
2451      * closest to the address sent in.
2452      */
2453     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2454         def = obj->symtab + symoffset;
2455 
2456         /*
2457          * For skip the symbol if st_shndx is either SHN_UNDEF or
2458          * SHN_COMMON.
2459          */
2460         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2461             continue;
2462 
2463         /*
2464          * If the symbol is greater than the specified address, or if it
2465          * is further away from addr than the current nearest symbol,
2466          * then reject it.
2467          */
2468         symbol_addr = obj->relocbase + def->st_value;
2469         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2470             continue;
2471 
2472         /* Update our idea of the nearest symbol. */
2473         info->dli_sname = obj->strtab + def->st_name;
2474         info->dli_saddr = symbol_addr;
2475 
2476         /* Exact match? */
2477         if (info->dli_saddr == addr)
2478             break;
2479     }
2480     lock_release(rtld_bind_lock, &lockstate);
2481     return 1;
2482 }
2483 
2484 int
2485 dlinfo(void *handle, int request, void *p)
2486 {
2487     const Obj_Entry *obj;
2488     RtldLockState lockstate;
2489     int error;
2490 
2491     rlock_acquire(rtld_bind_lock, &lockstate);
2492 
2493     if (handle == NULL || handle == RTLD_SELF) {
2494 	void *retaddr;
2495 
2496 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2497 	if ((obj = obj_from_addr(retaddr)) == NULL)
2498 	    _rtld_error("Cannot determine caller's shared object");
2499     } else
2500 	obj = dlcheck(handle);
2501 
2502     if (obj == NULL) {
2503 	lock_release(rtld_bind_lock, &lockstate);
2504 	return (-1);
2505     }
2506 
2507     error = 0;
2508     switch (request) {
2509     case RTLD_DI_LINKMAP:
2510 	*((struct link_map const **)p) = &obj->linkmap;
2511 	break;
2512     case RTLD_DI_ORIGIN:
2513 	error = rtld_dirname(obj->path, p);
2514 	break;
2515 
2516     case RTLD_DI_SERINFOSIZE:
2517     case RTLD_DI_SERINFO:
2518 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2519 	break;
2520 
2521     default:
2522 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2523 	error = -1;
2524     }
2525 
2526     lock_release(rtld_bind_lock, &lockstate);
2527 
2528     return (error);
2529 }
2530 
2531 static void
2532 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2533 {
2534 
2535 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2536 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2537 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2538 	phdr_info->dlpi_phdr = obj->phdr;
2539 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2540 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2541 	phdr_info->dlpi_tls_data = obj->tlsinit;
2542 	phdr_info->dlpi_adds = obj_loads;
2543 	phdr_info->dlpi_subs = obj_loads - obj_count;
2544 }
2545 
2546 int
2547 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2548 {
2549     struct dl_phdr_info phdr_info;
2550     const Obj_Entry *obj;
2551     RtldLockState bind_lockstate, phdr_lockstate;
2552     int error;
2553 
2554     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2555     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2556 
2557     error = 0;
2558 
2559     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2560 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2561 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2562 		break;
2563 
2564     }
2565     lock_release(rtld_bind_lock, &bind_lockstate);
2566     lock_release(rtld_phdr_lock, &phdr_lockstate);
2567 
2568     return (error);
2569 }
2570 
2571 struct fill_search_info_args {
2572     int		 request;
2573     unsigned int flags;
2574     Dl_serinfo  *serinfo;
2575     Dl_serpath  *serpath;
2576     char	*strspace;
2577 };
2578 
2579 static void *
2580 fill_search_info(const char *dir, size_t dirlen, void *param)
2581 {
2582     struct fill_search_info_args *arg;
2583 
2584     arg = param;
2585 
2586     if (arg->request == RTLD_DI_SERINFOSIZE) {
2587 	arg->serinfo->dls_cnt ++;
2588 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2589     } else {
2590 	struct dl_serpath *s_entry;
2591 
2592 	s_entry = arg->serpath;
2593 	s_entry->dls_name  = arg->strspace;
2594 	s_entry->dls_flags = arg->flags;
2595 
2596 	strncpy(arg->strspace, dir, dirlen);
2597 	arg->strspace[dirlen] = '\0';
2598 
2599 	arg->strspace += dirlen + 1;
2600 	arg->serpath++;
2601     }
2602 
2603     return (NULL);
2604 }
2605 
2606 static int
2607 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2608 {
2609     struct dl_serinfo _info;
2610     struct fill_search_info_args args;
2611 
2612     args.request = RTLD_DI_SERINFOSIZE;
2613     args.serinfo = &_info;
2614 
2615     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2616     _info.dls_cnt  = 0;
2617 
2618     path_enumerate(ld_library_path, fill_search_info, &args);
2619     path_enumerate(obj->rpath, fill_search_info, &args);
2620     path_enumerate(gethints(), fill_search_info, &args);
2621     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2622 
2623 
2624     if (request == RTLD_DI_SERINFOSIZE) {
2625 	info->dls_size = _info.dls_size;
2626 	info->dls_cnt = _info.dls_cnt;
2627 	return (0);
2628     }
2629 
2630     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2631 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2632 	return (-1);
2633     }
2634 
2635     args.request  = RTLD_DI_SERINFO;
2636     args.serinfo  = info;
2637     args.serpath  = &info->dls_serpath[0];
2638     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2639 
2640     args.flags = LA_SER_LIBPATH;
2641     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2642 	return (-1);
2643 
2644     args.flags = LA_SER_RUNPATH;
2645     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2646 	return (-1);
2647 
2648     args.flags = LA_SER_CONFIG;
2649     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2650 	return (-1);
2651 
2652     args.flags = LA_SER_DEFAULT;
2653     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2654 	return (-1);
2655     return (0);
2656 }
2657 
2658 static int
2659 rtld_dirname(const char *path, char *bname)
2660 {
2661     const char *endp;
2662 
2663     /* Empty or NULL string gets treated as "." */
2664     if (path == NULL || *path == '\0') {
2665 	bname[0] = '.';
2666 	bname[1] = '\0';
2667 	return (0);
2668     }
2669 
2670     /* Strip trailing slashes */
2671     endp = path + strlen(path) - 1;
2672     while (endp > path && *endp == '/')
2673 	endp--;
2674 
2675     /* Find the start of the dir */
2676     while (endp > path && *endp != '/')
2677 	endp--;
2678 
2679     /* Either the dir is "/" or there are no slashes */
2680     if (endp == path) {
2681 	bname[0] = *endp == '/' ? '/' : '.';
2682 	bname[1] = '\0';
2683 	return (0);
2684     } else {
2685 	do {
2686 	    endp--;
2687 	} while (endp > path && *endp == '/');
2688     }
2689 
2690     if (endp - path + 2 > PATH_MAX)
2691     {
2692 	_rtld_error("Filename is too long: %s", path);
2693 	return(-1);
2694     }
2695 
2696     strncpy(bname, path, endp - path + 1);
2697     bname[endp - path + 1] = '\0';
2698     return (0);
2699 }
2700 
2701 static int
2702 rtld_dirname_abs(const char *path, char *base)
2703 {
2704 	char base_rel[PATH_MAX];
2705 
2706 	if (rtld_dirname(path, base) == -1)
2707 		return (-1);
2708 	if (base[0] == '/')
2709 		return (0);
2710 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2711 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2712 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2713 		return (-1);
2714 	strcpy(base, base_rel);
2715 	return (0);
2716 }
2717 
2718 static void
2719 linkmap_add(Obj_Entry *obj)
2720 {
2721     struct link_map *l = &obj->linkmap;
2722     struct link_map *prev;
2723 
2724     obj->linkmap.l_name = obj->path;
2725     obj->linkmap.l_addr = obj->mapbase;
2726     obj->linkmap.l_ld = obj->dynamic;
2727 #ifdef __mips__
2728     /* GDB needs load offset on MIPS to use the symbols */
2729     obj->linkmap.l_offs = obj->relocbase;
2730 #endif
2731 
2732     if (r_debug.r_map == NULL) {
2733 	r_debug.r_map = l;
2734 	return;
2735     }
2736 
2737     /*
2738      * Scan to the end of the list, but not past the entry for the
2739      * dynamic linker, which we want to keep at the very end.
2740      */
2741     for (prev = r_debug.r_map;
2742       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2743       prev = prev->l_next)
2744 	;
2745 
2746     /* Link in the new entry. */
2747     l->l_prev = prev;
2748     l->l_next = prev->l_next;
2749     if (l->l_next != NULL)
2750 	l->l_next->l_prev = l;
2751     prev->l_next = l;
2752 }
2753 
2754 static void
2755 linkmap_delete(Obj_Entry *obj)
2756 {
2757     struct link_map *l = &obj->linkmap;
2758 
2759     if (l->l_prev == NULL) {
2760 	if ((r_debug.r_map = l->l_next) != NULL)
2761 	    l->l_next->l_prev = NULL;
2762 	return;
2763     }
2764 
2765     if ((l->l_prev->l_next = l->l_next) != NULL)
2766 	l->l_next->l_prev = l->l_prev;
2767 }
2768 
2769 /*
2770  * Function for the debugger to set a breakpoint on to gain control.
2771  *
2772  * The two parameters allow the debugger to easily find and determine
2773  * what the runtime loader is doing and to whom it is doing it.
2774  *
2775  * When the loadhook trap is hit (r_debug_state, set at program
2776  * initialization), the arguments can be found on the stack:
2777  *
2778  *  +8   struct link_map *m
2779  *  +4   struct r_debug  *rd
2780  *  +0   RetAddr
2781  */
2782 void
2783 r_debug_state(struct r_debug* rd, struct link_map *m)
2784 {
2785     /*
2786      * The following is a hack to force the compiler to emit calls to
2787      * this function, even when optimizing.  If the function is empty,
2788      * the compiler is not obliged to emit any code for calls to it,
2789      * even when marked __noinline.  However, gdb depends on those
2790      * calls being made.
2791      */
2792     __asm __volatile("" : : : "memory");
2793 }
2794 
2795 /*
2796  * Get address of the pointer variable in the main program.
2797  * Prefer non-weak symbol over the weak one.
2798  */
2799 static const void **
2800 get_program_var_addr(const char *name, RtldLockState *lockstate)
2801 {
2802     SymLook req;
2803     DoneList donelist;
2804 
2805     symlook_init(&req, name);
2806     req.lockstate = lockstate;
2807     donelist_init(&donelist);
2808     if (symlook_global(&req, &donelist) != 0)
2809 	return (NULL);
2810     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
2811 	return ((const void **)make_function_pointer(req.sym_out,
2812 	  req.defobj_out));
2813     else
2814 	return ((const void **)(req.defobj_out->relocbase +
2815 	  req.sym_out->st_value));
2816 }
2817 
2818 /*
2819  * Set a pointer variable in the main program to the given value.  This
2820  * is used to set key variables such as "environ" before any of the
2821  * init functions are called.
2822  */
2823 static void
2824 set_program_var(const char *name, const void *value)
2825 {
2826     const void **addr;
2827 
2828     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
2829 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2830 	*addr = value;
2831     }
2832 }
2833 
2834 /*
2835  * Search the global objects, including dependencies and main object,
2836  * for the given symbol.
2837  */
2838 static int
2839 symlook_global(SymLook *req, DoneList *donelist)
2840 {
2841     SymLook req1;
2842     const Objlist_Entry *elm;
2843     int res;
2844 
2845     symlook_init_from_req(&req1, req);
2846 
2847     /* Search all objects loaded at program start up. */
2848     if (req->defobj_out == NULL ||
2849       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2850 	res = symlook_list(&req1, &list_main, donelist);
2851 	if (res == 0 && (req->defobj_out == NULL ||
2852 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2853 	    req->sym_out = req1.sym_out;
2854 	    req->defobj_out = req1.defobj_out;
2855 	    assert(req->defobj_out != NULL);
2856 	}
2857     }
2858 
2859     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2860     STAILQ_FOREACH(elm, &list_global, link) {
2861 	if (req->defobj_out != NULL &&
2862 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
2863 	    break;
2864 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
2865 	if (res == 0 && (req->defobj_out == NULL ||
2866 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2867 	    req->sym_out = req1.sym_out;
2868 	    req->defobj_out = req1.defobj_out;
2869 	    assert(req->defobj_out != NULL);
2870 	}
2871     }
2872 
2873     return (req->sym_out != NULL ? 0 : ESRCH);
2874 }
2875 
2876 /*
2877  * Given a symbol name in a referencing object, find the corresponding
2878  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2879  * no definition was found.  Returns a pointer to the Obj_Entry of the
2880  * defining object via the reference parameter DEFOBJ_OUT.
2881  */
2882 static int
2883 symlook_default(SymLook *req, const Obj_Entry *refobj)
2884 {
2885     DoneList donelist;
2886     const Objlist_Entry *elm;
2887     SymLook req1;
2888     int res;
2889 
2890     donelist_init(&donelist);
2891     symlook_init_from_req(&req1, req);
2892 
2893     /* Look first in the referencing object if linked symbolically. */
2894     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2895 	res = symlook_obj(&req1, refobj);
2896 	if (res == 0) {
2897 	    req->sym_out = req1.sym_out;
2898 	    req->defobj_out = req1.defobj_out;
2899 	    assert(req->defobj_out != NULL);
2900 	}
2901     }
2902 
2903     symlook_global(req, &donelist);
2904 
2905     /* Search all dlopened DAGs containing the referencing object. */
2906     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2907 	if (req->sym_out != NULL &&
2908 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
2909 	    break;
2910 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
2911 	if (res == 0 && (req->sym_out == NULL ||
2912 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
2913 	    req->sym_out = req1.sym_out;
2914 	    req->defobj_out = req1.defobj_out;
2915 	    assert(req->defobj_out != NULL);
2916 	}
2917     }
2918 
2919     /*
2920      * Search the dynamic linker itself, and possibly resolve the
2921      * symbol from there.  This is how the application links to
2922      * dynamic linker services such as dlopen.
2923      */
2924     if (req->sym_out == NULL ||
2925       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
2926 	res = symlook_obj(&req1, &obj_rtld);
2927 	if (res == 0) {
2928 	    req->sym_out = req1.sym_out;
2929 	    req->defobj_out = req1.defobj_out;
2930 	    assert(req->defobj_out != NULL);
2931 	}
2932     }
2933 
2934     return (req->sym_out != NULL ? 0 : ESRCH);
2935 }
2936 
2937 static int
2938 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
2939 {
2940     const Elf_Sym *def;
2941     const Obj_Entry *defobj;
2942     const Objlist_Entry *elm;
2943     SymLook req1;
2944     int res;
2945 
2946     def = NULL;
2947     defobj = NULL;
2948     STAILQ_FOREACH(elm, objlist, link) {
2949 	if (donelist_check(dlp, elm->obj))
2950 	    continue;
2951 	symlook_init_from_req(&req1, req);
2952 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
2953 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
2954 		def = req1.sym_out;
2955 		defobj = req1.defobj_out;
2956 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2957 		    break;
2958 	    }
2959 	}
2960     }
2961     if (def != NULL) {
2962 	req->sym_out = def;
2963 	req->defobj_out = defobj;
2964 	return (0);
2965     }
2966     return (ESRCH);
2967 }
2968 
2969 /*
2970  * Search the chain of DAGS cointed to by the given Needed_Entry
2971  * for a symbol of the given name.  Each DAG is scanned completely
2972  * before advancing to the next one.  Returns a pointer to the symbol,
2973  * or NULL if no definition was found.
2974  */
2975 static int
2976 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
2977 {
2978     const Elf_Sym *def;
2979     const Needed_Entry *n;
2980     const Obj_Entry *defobj;
2981     SymLook req1;
2982     int res;
2983 
2984     def = NULL;
2985     defobj = NULL;
2986     symlook_init_from_req(&req1, req);
2987     for (n = needed; n != NULL; n = n->next) {
2988 	if (n->obj == NULL ||
2989 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
2990 	    continue;
2991 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
2992 	    def = req1.sym_out;
2993 	    defobj = req1.defobj_out;
2994 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2995 		break;
2996 	}
2997     }
2998     if (def != NULL) {
2999 	req->sym_out = def;
3000 	req->defobj_out = defobj;
3001 	return (0);
3002     }
3003     return (ESRCH);
3004 }
3005 
3006 /*
3007  * Search the symbol table of a single shared object for a symbol of
3008  * the given name and version, if requested.  Returns a pointer to the
3009  * symbol, or NULL if no definition was found.  If the object is
3010  * filter, return filtered symbol from filtee.
3011  *
3012  * The symbol's hash value is passed in for efficiency reasons; that
3013  * eliminates many recomputations of the hash value.
3014  */
3015 int
3016 symlook_obj(SymLook *req, const Obj_Entry *obj)
3017 {
3018     DoneList donelist;
3019     SymLook req1;
3020     int res, mres;
3021 
3022     mres = symlook_obj1(req, obj);
3023     if (mres == 0) {
3024 	if (obj->needed_filtees != NULL) {
3025 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3026 	    donelist_init(&donelist);
3027 	    symlook_init_from_req(&req1, req);
3028 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3029 	    if (res == 0) {
3030 		req->sym_out = req1.sym_out;
3031 		req->defobj_out = req1.defobj_out;
3032 	    }
3033 	    return (res);
3034 	}
3035 	if (obj->needed_aux_filtees != NULL) {
3036 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3037 	    donelist_init(&donelist);
3038 	    symlook_init_from_req(&req1, req);
3039 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3040 	    if (res == 0) {
3041 		req->sym_out = req1.sym_out;
3042 		req->defobj_out = req1.defobj_out;
3043 		return (res);
3044 	    }
3045 	}
3046     }
3047     return (mres);
3048 }
3049 
3050 static int
3051 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3052 {
3053     unsigned long symnum;
3054     const Elf_Sym *vsymp;
3055     Elf_Versym verndx;
3056     int vcount;
3057 
3058     if (obj->buckets == NULL)
3059 	return (ESRCH);
3060 
3061     vsymp = NULL;
3062     vcount = 0;
3063     symnum = obj->buckets[req->hash % obj->nbuckets];
3064 
3065     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3066 	const Elf_Sym *symp;
3067 	const char *strp;
3068 
3069 	if (symnum >= obj->nchains)
3070 	    return (ESRCH);	/* Bad object */
3071 
3072 	symp = obj->symtab + symnum;
3073 	strp = obj->strtab + symp->st_name;
3074 
3075 	switch (ELF_ST_TYPE(symp->st_info)) {
3076 	case STT_FUNC:
3077 	case STT_NOTYPE:
3078 	case STT_OBJECT:
3079 	    if (symp->st_value == 0)
3080 		continue;
3081 		/* fallthrough */
3082 	case STT_TLS:
3083 	    if (symp->st_shndx != SHN_UNDEF)
3084 		break;
3085 #ifndef __mips__
3086 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3087 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3088 		break;
3089 		/* fallthrough */
3090 #endif
3091 	default:
3092 	    continue;
3093 	}
3094 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3095 	    continue;
3096 
3097 	if (req->ventry == NULL) {
3098 	    if (obj->versyms != NULL) {
3099 		verndx = VER_NDX(obj->versyms[symnum]);
3100 		if (verndx > obj->vernum) {
3101 		    _rtld_error("%s: symbol %s references wrong version %d",
3102 			obj->path, obj->strtab + symnum, verndx);
3103 		    continue;
3104 		}
3105 		/*
3106 		 * If we are not called from dlsym (i.e. this is a normal
3107 		 * relocation from unversioned binary), accept the symbol
3108 		 * immediately if it happens to have first version after
3109 		 * this shared object became versioned. Otherwise, if
3110 		 * symbol is versioned and not hidden, remember it. If it
3111 		 * is the only symbol with this name exported by the
3112 		 * shared object, it will be returned as a match at the
3113 		 * end of the function. If symbol is global (verndx < 2)
3114 		 * accept it unconditionally.
3115 		 */
3116 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3117 		  verndx == VER_NDX_GIVEN) {
3118 		    req->sym_out = symp;
3119 		    req->defobj_out = obj;
3120 		    return (0);
3121 		}
3122 		else if (verndx >= VER_NDX_GIVEN) {
3123 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3124 			if (vsymp == NULL)
3125 			    vsymp = symp;
3126 			vcount ++;
3127 		    }
3128 		    continue;
3129 		}
3130 	    }
3131 	    req->sym_out = symp;
3132 	    req->defobj_out = obj;
3133 	    return (0);
3134 	} else {
3135 	    if (obj->versyms == NULL) {
3136 		if (object_match_name(obj, req->ventry->name)) {
3137 		    _rtld_error("%s: object %s should provide version %s for "
3138 			"symbol %s", obj_rtld.path, obj->path,
3139 			req->ventry->name, obj->strtab + symnum);
3140 		    continue;
3141 		}
3142 	    } else {
3143 		verndx = VER_NDX(obj->versyms[symnum]);
3144 		if (verndx > obj->vernum) {
3145 		    _rtld_error("%s: symbol %s references wrong version %d",
3146 			obj->path, obj->strtab + symnum, verndx);
3147 		    continue;
3148 		}
3149 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3150 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3151 		    /*
3152 		     * Version does not match. Look if this is a global symbol
3153 		     * and if it is not hidden. If global symbol (verndx < 2)
3154 		     * is available, use it. Do not return symbol if we are
3155 		     * called by dlvsym, because dlvsym looks for a specific
3156 		     * version and default one is not what dlvsym wants.
3157 		     */
3158 		    if ((req->flags & SYMLOOK_DLSYM) ||
3159 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3160 			(verndx >= VER_NDX_GIVEN))
3161 			continue;
3162 		}
3163 	    }
3164 	    req->sym_out = symp;
3165 	    req->defobj_out = obj;
3166 	    return (0);
3167 	}
3168     }
3169     if (vcount == 1) {
3170 	req->sym_out = vsymp;
3171 	req->defobj_out = obj;
3172 	return (0);
3173     }
3174     return (ESRCH);
3175 }
3176 
3177 static void
3178 trace_loaded_objects(Obj_Entry *obj)
3179 {
3180     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3181     int		c;
3182 
3183     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3184 	main_local = "";
3185 
3186     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3187 	fmt1 = "\t%o => %p (%x)\n";
3188 
3189     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3190 	fmt2 = "\t%o (%x)\n";
3191 
3192     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3193 
3194     for (; obj; obj = obj->next) {
3195 	Needed_Entry		*needed;
3196 	char			*name, *path;
3197 	bool			is_lib;
3198 
3199 	if (list_containers && obj->needed != NULL)
3200 	    rtld_printf("%s:\n", obj->path);
3201 	for (needed = obj->needed; needed; needed = needed->next) {
3202 	    if (needed->obj != NULL) {
3203 		if (needed->obj->traced && !list_containers)
3204 		    continue;
3205 		needed->obj->traced = true;
3206 		path = needed->obj->path;
3207 	    } else
3208 		path = "not found";
3209 
3210 	    name = (char *)obj->strtab + needed->name;
3211 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3212 
3213 	    fmt = is_lib ? fmt1 : fmt2;
3214 	    while ((c = *fmt++) != '\0') {
3215 		switch (c) {
3216 		default:
3217 		    rtld_putchar(c);
3218 		    continue;
3219 		case '\\':
3220 		    switch (c = *fmt) {
3221 		    case '\0':
3222 			continue;
3223 		    case 'n':
3224 			rtld_putchar('\n');
3225 			break;
3226 		    case 't':
3227 			rtld_putchar('\t');
3228 			break;
3229 		    }
3230 		    break;
3231 		case '%':
3232 		    switch (c = *fmt) {
3233 		    case '\0':
3234 			continue;
3235 		    case '%':
3236 		    default:
3237 			rtld_putchar(c);
3238 			break;
3239 		    case 'A':
3240 			rtld_putstr(main_local);
3241 			break;
3242 		    case 'a':
3243 			rtld_putstr(obj_main->path);
3244 			break;
3245 		    case 'o':
3246 			rtld_putstr(name);
3247 			break;
3248 #if 0
3249 		    case 'm':
3250 			rtld_printf("%d", sodp->sod_major);
3251 			break;
3252 		    case 'n':
3253 			rtld_printf("%d", sodp->sod_minor);
3254 			break;
3255 #endif
3256 		    case 'p':
3257 			rtld_putstr(path);
3258 			break;
3259 		    case 'x':
3260 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3261 			  0);
3262 			break;
3263 		    }
3264 		    break;
3265 		}
3266 		++fmt;
3267 	    }
3268 	}
3269     }
3270 }
3271 
3272 /*
3273  * Unload a dlopened object and its dependencies from memory and from
3274  * our data structures.  It is assumed that the DAG rooted in the
3275  * object has already been unreferenced, and that the object has a
3276  * reference count of 0.
3277  */
3278 static void
3279 unload_object(Obj_Entry *root)
3280 {
3281     Obj_Entry *obj;
3282     Obj_Entry **linkp;
3283 
3284     assert(root->refcount == 0);
3285 
3286     /*
3287      * Pass over the DAG removing unreferenced objects from
3288      * appropriate lists.
3289      */
3290     unlink_object(root);
3291 
3292     /* Unmap all objects that are no longer referenced. */
3293     linkp = &obj_list->next;
3294     while ((obj = *linkp) != NULL) {
3295 	if (obj->refcount == 0) {
3296 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3297 		obj->path);
3298 	    dbg("unloading \"%s\"", obj->path);
3299 	    unload_filtees(root);
3300 	    munmap(obj->mapbase, obj->mapsize);
3301 	    linkmap_delete(obj);
3302 	    *linkp = obj->next;
3303 	    obj_count--;
3304 	    obj_free(obj);
3305 	} else
3306 	    linkp = &obj->next;
3307     }
3308     obj_tail = linkp;
3309 }
3310 
3311 static void
3312 unlink_object(Obj_Entry *root)
3313 {
3314     Objlist_Entry *elm;
3315 
3316     if (root->refcount == 0) {
3317 	/* Remove the object from the RTLD_GLOBAL list. */
3318 	objlist_remove(&list_global, root);
3319 
3320     	/* Remove the object from all objects' DAG lists. */
3321     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3322 	    objlist_remove(&elm->obj->dldags, root);
3323 	    if (elm->obj != root)
3324 		unlink_object(elm->obj);
3325 	}
3326     }
3327 }
3328 
3329 static void
3330 ref_dag(Obj_Entry *root)
3331 {
3332     Objlist_Entry *elm;
3333 
3334     assert(root->dag_inited);
3335     STAILQ_FOREACH(elm, &root->dagmembers, link)
3336 	elm->obj->refcount++;
3337 }
3338 
3339 static void
3340 unref_dag(Obj_Entry *root)
3341 {
3342     Objlist_Entry *elm;
3343 
3344     assert(root->dag_inited);
3345     STAILQ_FOREACH(elm, &root->dagmembers, link)
3346 	elm->obj->refcount--;
3347 }
3348 
3349 /*
3350  * Common code for MD __tls_get_addr().
3351  */
3352 void *
3353 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3354 {
3355     Elf_Addr* dtv = *dtvp;
3356     RtldLockState lockstate;
3357 
3358     /* Check dtv generation in case new modules have arrived */
3359     if (dtv[0] != tls_dtv_generation) {
3360 	Elf_Addr* newdtv;
3361 	int to_copy;
3362 
3363 	wlock_acquire(rtld_bind_lock, &lockstate);
3364 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3365 	to_copy = dtv[1];
3366 	if (to_copy > tls_max_index)
3367 	    to_copy = tls_max_index;
3368 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3369 	newdtv[0] = tls_dtv_generation;
3370 	newdtv[1] = tls_max_index;
3371 	free(dtv);
3372 	lock_release(rtld_bind_lock, &lockstate);
3373 	dtv = *dtvp = newdtv;
3374     }
3375 
3376     /* Dynamically allocate module TLS if necessary */
3377     if (!dtv[index + 1]) {
3378 	/* Signal safe, wlock will block out signals. */
3379 	    wlock_acquire(rtld_bind_lock, &lockstate);
3380 	if (!dtv[index + 1])
3381 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3382 	lock_release(rtld_bind_lock, &lockstate);
3383     }
3384     return (void*) (dtv[index + 1] + offset);
3385 }
3386 
3387 /* XXX not sure what variants to use for arm. */
3388 
3389 #if defined(__ia64__) || defined(__powerpc__)
3390 
3391 /*
3392  * Allocate Static TLS using the Variant I method.
3393  */
3394 void *
3395 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3396 {
3397     Obj_Entry *obj;
3398     char *tcb;
3399     Elf_Addr **tls;
3400     Elf_Addr *dtv;
3401     Elf_Addr addr;
3402     int i;
3403 
3404     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3405 	return (oldtcb);
3406 
3407     assert(tcbsize >= TLS_TCB_SIZE);
3408     tcb = calloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3409     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3410 
3411     if (oldtcb != NULL) {
3412 	memcpy(tls, oldtcb, tls_static_space);
3413 	free(oldtcb);
3414 
3415 	/* Adjust the DTV. */
3416 	dtv = tls[0];
3417 	for (i = 0; i < dtv[1]; i++) {
3418 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3419 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3420 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3421 	    }
3422 	}
3423     } else {
3424 	dtv = calloc(tls_max_index + 2, sizeof(Elf_Addr));
3425 	tls[0] = dtv;
3426 	dtv[0] = tls_dtv_generation;
3427 	dtv[1] = tls_max_index;
3428 
3429 	for (obj = objs; obj; obj = obj->next) {
3430 	    if (obj->tlsoffset > 0) {
3431 		addr = (Elf_Addr)tls + obj->tlsoffset;
3432 		if (obj->tlsinitsize > 0)
3433 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3434 		if (obj->tlssize > obj->tlsinitsize)
3435 		    memset((void*) (addr + obj->tlsinitsize), 0,
3436 			   obj->tlssize - obj->tlsinitsize);
3437 		dtv[obj->tlsindex + 1] = addr;
3438 	    }
3439 	}
3440     }
3441 
3442     return (tcb);
3443 }
3444 
3445 void
3446 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3447 {
3448     Elf_Addr *dtv;
3449     Elf_Addr tlsstart, tlsend;
3450     int dtvsize, i;
3451 
3452     assert(tcbsize >= TLS_TCB_SIZE);
3453 
3454     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
3455     tlsend = tlsstart + tls_static_space;
3456 
3457     dtv = *(Elf_Addr **)tlsstart;
3458     dtvsize = dtv[1];
3459     for (i = 0; i < dtvsize; i++) {
3460 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
3461 	    free((void*)dtv[i+2]);
3462 	}
3463     }
3464     free(dtv);
3465     free(tcb);
3466 }
3467 
3468 #endif
3469 
3470 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) || \
3471     defined(__arm__) || defined(__mips__)
3472 
3473 /*
3474  * Allocate Static TLS using the Variant II method.
3475  */
3476 void *
3477 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
3478 {
3479     Obj_Entry *obj;
3480     size_t size;
3481     char *tls;
3482     Elf_Addr *dtv, *olddtv;
3483     Elf_Addr segbase, oldsegbase, addr;
3484     int i;
3485 
3486     size = round(tls_static_space, tcbalign);
3487 
3488     assert(tcbsize >= 2*sizeof(Elf_Addr));
3489     tls = calloc(1, size + tcbsize);
3490     dtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3491 
3492     segbase = (Elf_Addr)(tls + size);
3493     ((Elf_Addr*)segbase)[0] = segbase;
3494     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
3495 
3496     dtv[0] = tls_dtv_generation;
3497     dtv[1] = tls_max_index;
3498 
3499     if (oldtls) {
3500 	/*
3501 	 * Copy the static TLS block over whole.
3502 	 */
3503 	oldsegbase = (Elf_Addr) oldtls;
3504 	memcpy((void *)(segbase - tls_static_space),
3505 	       (const void *)(oldsegbase - tls_static_space),
3506 	       tls_static_space);
3507 
3508 	/*
3509 	 * If any dynamic TLS blocks have been created tls_get_addr(),
3510 	 * move them over.
3511 	 */
3512 	olddtv = ((Elf_Addr**)oldsegbase)[1];
3513 	for (i = 0; i < olddtv[1]; i++) {
3514 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
3515 		dtv[i+2] = olddtv[i+2];
3516 		olddtv[i+2] = 0;
3517 	    }
3518 	}
3519 
3520 	/*
3521 	 * We assume that this block was the one we created with
3522 	 * allocate_initial_tls().
3523 	 */
3524 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
3525     } else {
3526 	for (obj = objs; obj; obj = obj->next) {
3527 	    if (obj->tlsoffset) {
3528 		addr = segbase - obj->tlsoffset;
3529 		memset((void*) (addr + obj->tlsinitsize),
3530 		       0, obj->tlssize - obj->tlsinitsize);
3531 		if (obj->tlsinit)
3532 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3533 		dtv[obj->tlsindex + 1] = addr;
3534 	    }
3535 	}
3536     }
3537 
3538     return (void*) segbase;
3539 }
3540 
3541 void
3542 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
3543 {
3544     size_t size;
3545     Elf_Addr* dtv;
3546     int dtvsize, i;
3547     Elf_Addr tlsstart, tlsend;
3548 
3549     /*
3550      * Figure out the size of the initial TLS block so that we can
3551      * find stuff which ___tls_get_addr() allocated dynamically.
3552      */
3553     size = round(tls_static_space, tcbalign);
3554 
3555     dtv = ((Elf_Addr**)tls)[1];
3556     dtvsize = dtv[1];
3557     tlsend = (Elf_Addr) tls;
3558     tlsstart = tlsend - size;
3559     for (i = 0; i < dtvsize; i++) {
3560 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
3561 	    free((void*) dtv[i+2]);
3562 	}
3563     }
3564 
3565     free((void*) tlsstart);
3566     free((void*) dtv);
3567 }
3568 
3569 #endif
3570 
3571 /*
3572  * Allocate TLS block for module with given index.
3573  */
3574 void *
3575 allocate_module_tls(int index)
3576 {
3577     Obj_Entry* obj;
3578     char* p;
3579 
3580     for (obj = obj_list; obj; obj = obj->next) {
3581 	if (obj->tlsindex == index)
3582 	    break;
3583     }
3584     if (!obj) {
3585 	_rtld_error("Can't find module with TLS index %d", index);
3586 	die();
3587     }
3588 
3589     p = malloc(obj->tlssize);
3590     if (p == NULL) {
3591 	_rtld_error("Cannot allocate TLS block for index %d", index);
3592 	die();
3593     }
3594     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3595     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3596 
3597     return p;
3598 }
3599 
3600 bool
3601 allocate_tls_offset(Obj_Entry *obj)
3602 {
3603     size_t off;
3604 
3605     if (obj->tls_done)
3606 	return true;
3607 
3608     if (obj->tlssize == 0) {
3609 	obj->tls_done = true;
3610 	return true;
3611     }
3612 
3613     if (obj->tlsindex == 1)
3614 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3615     else
3616 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3617 				   obj->tlssize, obj->tlsalign);
3618 
3619     /*
3620      * If we have already fixed the size of the static TLS block, we
3621      * must stay within that size. When allocating the static TLS, we
3622      * leave a small amount of space spare to be used for dynamically
3623      * loading modules which use static TLS.
3624      */
3625     if (tls_static_space) {
3626 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3627 	    return false;
3628     }
3629 
3630     tls_last_offset = obj->tlsoffset = off;
3631     tls_last_size = obj->tlssize;
3632     obj->tls_done = true;
3633 
3634     return true;
3635 }
3636 
3637 void
3638 free_tls_offset(Obj_Entry *obj)
3639 {
3640 
3641     /*
3642      * If we were the last thing to allocate out of the static TLS
3643      * block, we give our space back to the 'allocator'. This is a
3644      * simplistic workaround to allow libGL.so.1 to be loaded and
3645      * unloaded multiple times.
3646      */
3647     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3648 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3649 	tls_last_offset -= obj->tlssize;
3650 	tls_last_size = 0;
3651     }
3652 }
3653 
3654 void *
3655 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
3656 {
3657     void *ret;
3658     RtldLockState lockstate;
3659 
3660     wlock_acquire(rtld_bind_lock, &lockstate);
3661     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
3662     lock_release(rtld_bind_lock, &lockstate);
3663     return (ret);
3664 }
3665 
3666 void
3667 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3668 {
3669     RtldLockState lockstate;
3670 
3671     wlock_acquire(rtld_bind_lock, &lockstate);
3672     free_tls(tcb, tcbsize, tcbalign);
3673     lock_release(rtld_bind_lock, &lockstate);
3674 }
3675 
3676 static void
3677 object_add_name(Obj_Entry *obj, const char *name)
3678 {
3679     Name_Entry *entry;
3680     size_t len;
3681 
3682     len = strlen(name);
3683     entry = malloc(sizeof(Name_Entry) + len);
3684 
3685     if (entry != NULL) {
3686 	strcpy(entry->name, name);
3687 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3688     }
3689 }
3690 
3691 static int
3692 object_match_name(const Obj_Entry *obj, const char *name)
3693 {
3694     Name_Entry *entry;
3695 
3696     STAILQ_FOREACH(entry, &obj->names, link) {
3697 	if (strcmp(name, entry->name) == 0)
3698 	    return (1);
3699     }
3700     return (0);
3701 }
3702 
3703 static Obj_Entry *
3704 locate_dependency(const Obj_Entry *obj, const char *name)
3705 {
3706     const Objlist_Entry *entry;
3707     const Needed_Entry *needed;
3708 
3709     STAILQ_FOREACH(entry, &list_main, link) {
3710 	if (object_match_name(entry->obj, name))
3711 	    return entry->obj;
3712     }
3713 
3714     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3715 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3716 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3717 	    /*
3718 	     * If there is DT_NEEDED for the name we are looking for,
3719 	     * we are all set.  Note that object might not be found if
3720 	     * dependency was not loaded yet, so the function can
3721 	     * return NULL here.  This is expected and handled
3722 	     * properly by the caller.
3723 	     */
3724 	    return (needed->obj);
3725 	}
3726     }
3727     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3728 	obj->path, name);
3729     die();
3730 }
3731 
3732 static int
3733 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3734     const Elf_Vernaux *vna)
3735 {
3736     const Elf_Verdef *vd;
3737     const char *vername;
3738 
3739     vername = refobj->strtab + vna->vna_name;
3740     vd = depobj->verdef;
3741     if (vd == NULL) {
3742 	_rtld_error("%s: version %s required by %s not defined",
3743 	    depobj->path, vername, refobj->path);
3744 	return (-1);
3745     }
3746     for (;;) {
3747 	if (vd->vd_version != VER_DEF_CURRENT) {
3748 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3749 		depobj->path, vd->vd_version);
3750 	    return (-1);
3751 	}
3752 	if (vna->vna_hash == vd->vd_hash) {
3753 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3754 		((char *)vd + vd->vd_aux);
3755 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3756 		return (0);
3757 	}
3758 	if (vd->vd_next == 0)
3759 	    break;
3760 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3761     }
3762     if (vna->vna_flags & VER_FLG_WEAK)
3763 	return (0);
3764     _rtld_error("%s: version %s required by %s not found",
3765 	depobj->path, vername, refobj->path);
3766     return (-1);
3767 }
3768 
3769 static int
3770 rtld_verify_object_versions(Obj_Entry *obj)
3771 {
3772     const Elf_Verneed *vn;
3773     const Elf_Verdef  *vd;
3774     const Elf_Verdaux *vda;
3775     const Elf_Vernaux *vna;
3776     const Obj_Entry *depobj;
3777     int maxvernum, vernum;
3778 
3779     maxvernum = 0;
3780     /*
3781      * Walk over defined and required version records and figure out
3782      * max index used by any of them. Do very basic sanity checking
3783      * while there.
3784      */
3785     vn = obj->verneed;
3786     while (vn != NULL) {
3787 	if (vn->vn_version != VER_NEED_CURRENT) {
3788 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3789 		obj->path, vn->vn_version);
3790 	    return (-1);
3791 	}
3792 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3793 	for (;;) {
3794 	    vernum = VER_NEED_IDX(vna->vna_other);
3795 	    if (vernum > maxvernum)
3796 		maxvernum = vernum;
3797 	    if (vna->vna_next == 0)
3798 		 break;
3799 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3800 	}
3801 	if (vn->vn_next == 0)
3802 	    break;
3803 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3804     }
3805 
3806     vd = obj->verdef;
3807     while (vd != NULL) {
3808 	if (vd->vd_version != VER_DEF_CURRENT) {
3809 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3810 		obj->path, vd->vd_version);
3811 	    return (-1);
3812 	}
3813 	vernum = VER_DEF_IDX(vd->vd_ndx);
3814 	if (vernum > maxvernum)
3815 		maxvernum = vernum;
3816 	if (vd->vd_next == 0)
3817 	    break;
3818 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3819     }
3820 
3821     if (maxvernum == 0)
3822 	return (0);
3823 
3824     /*
3825      * Store version information in array indexable by version index.
3826      * Verify that object version requirements are satisfied along the
3827      * way.
3828      */
3829     obj->vernum = maxvernum + 1;
3830     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3831 
3832     vd = obj->verdef;
3833     while (vd != NULL) {
3834 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3835 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3836 	    assert(vernum <= maxvernum);
3837 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3838 	    obj->vertab[vernum].hash = vd->vd_hash;
3839 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3840 	    obj->vertab[vernum].file = NULL;
3841 	    obj->vertab[vernum].flags = 0;
3842 	}
3843 	if (vd->vd_next == 0)
3844 	    break;
3845 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3846     }
3847 
3848     vn = obj->verneed;
3849     while (vn != NULL) {
3850 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3851 	if (depobj == NULL)
3852 	    return (-1);
3853 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3854 	for (;;) {
3855 	    if (check_object_provided_version(obj, depobj, vna))
3856 		return (-1);
3857 	    vernum = VER_NEED_IDX(vna->vna_other);
3858 	    assert(vernum <= maxvernum);
3859 	    obj->vertab[vernum].hash = vna->vna_hash;
3860 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3861 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3862 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3863 		VER_INFO_HIDDEN : 0;
3864 	    if (vna->vna_next == 0)
3865 		 break;
3866 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3867 	}
3868 	if (vn->vn_next == 0)
3869 	    break;
3870 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3871     }
3872     return 0;
3873 }
3874 
3875 static int
3876 rtld_verify_versions(const Objlist *objlist)
3877 {
3878     Objlist_Entry *entry;
3879     int rc;
3880 
3881     rc = 0;
3882     STAILQ_FOREACH(entry, objlist, link) {
3883 	/*
3884 	 * Skip dummy objects or objects that have their version requirements
3885 	 * already checked.
3886 	 */
3887 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3888 	    continue;
3889 	if (rtld_verify_object_versions(entry->obj) == -1) {
3890 	    rc = -1;
3891 	    if (ld_tracing == NULL)
3892 		break;
3893 	}
3894     }
3895     if (rc == 0 || ld_tracing != NULL)
3896     	rc = rtld_verify_object_versions(&obj_rtld);
3897     return rc;
3898 }
3899 
3900 const Ver_Entry *
3901 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3902 {
3903     Elf_Versym vernum;
3904 
3905     if (obj->vertab) {
3906 	vernum = VER_NDX(obj->versyms[symnum]);
3907 	if (vernum >= obj->vernum) {
3908 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3909 		obj->path, obj->strtab + symnum, vernum);
3910 	} else if (obj->vertab[vernum].hash != 0) {
3911 	    return &obj->vertab[vernum];
3912 	}
3913     }
3914     return NULL;
3915 }
3916 
3917 int
3918 _rtld_get_stack_prot(void)
3919 {
3920 
3921 	return (stack_prot);
3922 }
3923 
3924 static void
3925 map_stacks_exec(RtldLockState *lockstate)
3926 {
3927 	void (*thr_map_stacks_exec)(void);
3928 
3929 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
3930 		return;
3931 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
3932 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
3933 	if (thr_map_stacks_exec != NULL) {
3934 		stack_prot |= PROT_EXEC;
3935 		thr_map_stacks_exec();
3936 	}
3937 }
3938 
3939 void
3940 symlook_init(SymLook *dst, const char *name)
3941 {
3942 
3943 	bzero(dst, sizeof(*dst));
3944 	dst->name = name;
3945 	dst->hash = elf_hash(name);
3946 }
3947 
3948 static void
3949 symlook_init_from_req(SymLook *dst, const SymLook *src)
3950 {
3951 
3952 	dst->name = src->name;
3953 	dst->hash = src->hash;
3954 	dst->ventry = src->ventry;
3955 	dst->flags = src->flags;
3956 	dst->defobj_out = NULL;
3957 	dst->sym_out = NULL;
3958 	dst->lockstate = src->lockstate;
3959 }
3960 
3961 /*
3962  * Overrides for libc_pic-provided functions.
3963  */
3964 
3965 int
3966 __getosreldate(void)
3967 {
3968 	size_t len;
3969 	int oid[2];
3970 	int error, osrel;
3971 
3972 	if (osreldate != 0)
3973 		return (osreldate);
3974 
3975 	oid[0] = CTL_KERN;
3976 	oid[1] = KERN_OSRELDATE;
3977 	osrel = 0;
3978 	len = sizeof(osrel);
3979 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
3980 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
3981 		osreldate = osrel;
3982 	return (osreldate);
3983 }
3984 
3985 /*
3986  * No unresolved symbols for rtld.
3987  */
3988 void
3989 __pthread_cxa_finalize(struct dl_phdr_info *a)
3990 {
3991 }
3992