xref: /freebsd/libexec/rtld-elf/rtld.c (revision 7750ad47a9a7dbc83f87158464170c8640723293)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_tls.h"
64 #include "rtld_printf.h"
65 #include "notes.h"
66 
67 #ifndef COMPAT_32BIT
68 #define PATH_RTLD	"/libexec/ld-elf.so.1"
69 #else
70 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
71 #endif
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *basename(const char *);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
85 static void digest_dynamic(Obj_Entry *, int);
86 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
87 static Obj_Entry *dlcheck(void *);
88 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
89     int lo_flags, int mode, RtldLockState *lockstate);
90 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
91 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
92 static bool donelist_check(DoneList *, const Obj_Entry *);
93 static void errmsg_restore(char *);
94 static char *errmsg_save(void);
95 static void *fill_search_info(const char *, size_t, void *);
96 static char *find_library(const char *, const Obj_Entry *);
97 static const char *gethints(void);
98 static void init_dag(Obj_Entry *);
99 static void init_rtld(caddr_t, Elf_Auxinfo **);
100 static void initlist_add_neededs(Needed_Entry *, Objlist *);
101 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
102 static void linkmap_add(Obj_Entry *);
103 static void linkmap_delete(Obj_Entry *);
104 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
105 static void unload_filtees(Obj_Entry *);
106 static int load_needed_objects(Obj_Entry *, int);
107 static int load_preload_objects(void);
108 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
109 static void map_stacks_exec(RtldLockState *);
110 static Obj_Entry *obj_from_addr(const void *);
111 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
112 static void objlist_call_init(Objlist *, RtldLockState *);
113 static void objlist_clear(Objlist *);
114 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
115 static void objlist_init(Objlist *);
116 static void objlist_push_head(Objlist *, Obj_Entry *);
117 static void objlist_push_tail(Objlist *, Obj_Entry *);
118 static void objlist_remove(Objlist *, Obj_Entry *);
119 static void *path_enumerate(const char *, path_enum_proc, void *);
120 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
121     RtldLockState *);
122 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
123     int flags, RtldLockState *lockstate);
124 static int rtld_dirname(const char *, char *);
125 static int rtld_dirname_abs(const char *, char *);
126 static void *rtld_dlopen(const char *name, int fd, int mode);
127 static void rtld_exit(void);
128 static char *search_library_path(const char *, const char *);
129 static const void **get_program_var_addr(const char *, RtldLockState *);
130 static void set_program_var(const char *, const void *);
131 static int symlook_default(SymLook *, const Obj_Entry *refobj);
132 static int symlook_global(SymLook *, DoneList *);
133 static void symlook_init_from_req(SymLook *, const SymLook *);
134 static int symlook_list(SymLook *, const Objlist *, DoneList *);
135 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
136 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
137 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
138 static void trace_loaded_objects(Obj_Entry *);
139 static void unlink_object(Obj_Entry *);
140 static void unload_object(Obj_Entry *);
141 static void unref_dag(Obj_Entry *);
142 static void ref_dag(Obj_Entry *);
143 static int origin_subst_one(char **, const char *, const char *,
144   const char *, char *);
145 static char *origin_subst(const char *, const char *);
146 static void preinit_main(void);
147 static int  rtld_verify_versions(const Objlist *);
148 static int  rtld_verify_object_versions(Obj_Entry *);
149 static void object_add_name(Obj_Entry *, const char *);
150 static int  object_match_name(const Obj_Entry *, const char *);
151 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
152 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
153     struct dl_phdr_info *phdr_info);
154 static uint32_t gnu_hash(const char *);
155 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
156     const unsigned long);
157 
158 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
159 
160 /*
161  * Data declarations.
162  */
163 static char *error_message;	/* Message for dlerror(), or NULL */
164 struct r_debug r_debug;		/* for GDB; */
165 static bool libmap_disable;	/* Disable libmap */
166 static bool ld_loadfltr;	/* Immediate filters processing */
167 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
168 static bool trust;		/* False for setuid and setgid programs */
169 static bool dangerous_ld_env;	/* True if environment variables have been
170 				   used to affect the libraries loaded */
171 static char *ld_bind_now;	/* Environment variable for immediate binding */
172 static char *ld_debug;		/* Environment variable for debugging */
173 static char *ld_library_path;	/* Environment variable for search path */
174 static char *ld_preload;	/* Environment variable for libraries to
175 				   load first */
176 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
177 static char *ld_tracing;	/* Called from ldd to print libs */
178 static char *ld_utrace;		/* Use utrace() to log events. */
179 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
180 static Obj_Entry **obj_tail;	/* Link field of last object in list */
181 static Obj_Entry *obj_main;	/* The main program shared object */
182 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
183 static unsigned int obj_count;	/* Number of objects in obj_list */
184 static unsigned int obj_loads;	/* Number of objects in obj_list */
185 
186 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
187   STAILQ_HEAD_INITIALIZER(list_global);
188 static Objlist list_main =	/* Objects loaded at program startup */
189   STAILQ_HEAD_INITIALIZER(list_main);
190 static Objlist list_fini =	/* Objects needing fini() calls */
191   STAILQ_HEAD_INITIALIZER(list_fini);
192 
193 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
194 
195 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
196 
197 extern Elf_Dyn _DYNAMIC;
198 #pragma weak _DYNAMIC
199 #ifndef RTLD_IS_DYNAMIC
200 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
201 #endif
202 
203 int osreldate, pagesize;
204 
205 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
206 
207 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
208 static int max_stack_flags;
209 
210 /*
211  * Global declarations normally provided by crt1.  The dynamic linker is
212  * not built with crt1, so we have to provide them ourselves.
213  */
214 char *__progname;
215 char **environ;
216 
217 /*
218  * Used to pass argc, argv to init functions.
219  */
220 int main_argc;
221 char **main_argv;
222 
223 /*
224  * Globals to control TLS allocation.
225  */
226 size_t tls_last_offset;		/* Static TLS offset of last module */
227 size_t tls_last_size;		/* Static TLS size of last module */
228 size_t tls_static_space;	/* Static TLS space allocated */
229 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
230 int tls_max_index = 1;		/* Largest module index allocated */
231 
232 /*
233  * Fill in a DoneList with an allocation large enough to hold all of
234  * the currently-loaded objects.  Keep this as a macro since it calls
235  * alloca and we want that to occur within the scope of the caller.
236  */
237 #define donelist_init(dlp)					\
238     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
239     assert((dlp)->objs != NULL),				\
240     (dlp)->num_alloc = obj_count,				\
241     (dlp)->num_used = 0)
242 
243 #define	UTRACE_DLOPEN_START		1
244 #define	UTRACE_DLOPEN_STOP		2
245 #define	UTRACE_DLCLOSE_START		3
246 #define	UTRACE_DLCLOSE_STOP		4
247 #define	UTRACE_LOAD_OBJECT		5
248 #define	UTRACE_UNLOAD_OBJECT		6
249 #define	UTRACE_ADD_RUNDEP		7
250 #define	UTRACE_PRELOAD_FINISHED		8
251 #define	UTRACE_INIT_CALL		9
252 #define	UTRACE_FINI_CALL		10
253 
254 struct utrace_rtld {
255 	char sig[4];			/* 'RTLD' */
256 	int event;
257 	void *handle;
258 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
259 	size_t mapsize;
260 	int refcnt;			/* Used for 'mode' */
261 	char name[MAXPATHLEN];
262 };
263 
264 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
265 	if (ld_utrace != NULL)					\
266 		ld_utrace_log(e, h, mb, ms, r, n);		\
267 } while (0)
268 
269 static void
270 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
271     int refcnt, const char *name)
272 {
273 	struct utrace_rtld ut;
274 
275 	ut.sig[0] = 'R';
276 	ut.sig[1] = 'T';
277 	ut.sig[2] = 'L';
278 	ut.sig[3] = 'D';
279 	ut.event = event;
280 	ut.handle = handle;
281 	ut.mapbase = mapbase;
282 	ut.mapsize = mapsize;
283 	ut.refcnt = refcnt;
284 	bzero(ut.name, sizeof(ut.name));
285 	if (name)
286 		strlcpy(ut.name, name, sizeof(ut.name));
287 	utrace(&ut, sizeof(ut));
288 }
289 
290 /*
291  * Main entry point for dynamic linking.  The first argument is the
292  * stack pointer.  The stack is expected to be laid out as described
293  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
294  * Specifically, the stack pointer points to a word containing
295  * ARGC.  Following that in the stack is a null-terminated sequence
296  * of pointers to argument strings.  Then comes a null-terminated
297  * sequence of pointers to environment strings.  Finally, there is a
298  * sequence of "auxiliary vector" entries.
299  *
300  * The second argument points to a place to store the dynamic linker's
301  * exit procedure pointer and the third to a place to store the main
302  * program's object.
303  *
304  * The return value is the main program's entry point.
305  */
306 func_ptr_type
307 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
308 {
309     Elf_Auxinfo *aux_info[AT_COUNT];
310     int i;
311     int argc;
312     char **argv;
313     char **env;
314     Elf_Auxinfo *aux;
315     Elf_Auxinfo *auxp;
316     const char *argv0;
317     Objlist_Entry *entry;
318     Obj_Entry *obj;
319     Obj_Entry **preload_tail;
320     Objlist initlist;
321     RtldLockState lockstate;
322     int mib[2];
323     size_t len;
324 
325     /*
326      * On entry, the dynamic linker itself has not been relocated yet.
327      * Be very careful not to reference any global data until after
328      * init_rtld has returned.  It is OK to reference file-scope statics
329      * and string constants, and to call static and global functions.
330      */
331 
332     /* Find the auxiliary vector on the stack. */
333     argc = *sp++;
334     argv = (char **) sp;
335     sp += argc + 1;	/* Skip over arguments and NULL terminator */
336     env = (char **) sp;
337     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
338 	;
339     aux = (Elf_Auxinfo *) sp;
340 
341     /* Digest the auxiliary vector. */
342     for (i = 0;  i < AT_COUNT;  i++)
343 	aux_info[i] = NULL;
344     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
345 	if (auxp->a_type < AT_COUNT)
346 	    aux_info[auxp->a_type] = auxp;
347     }
348 
349     /* Initialize and relocate ourselves. */
350     assert(aux_info[AT_BASE] != NULL);
351     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
352 
353     __progname = obj_rtld.path;
354     argv0 = argv[0] != NULL ? argv[0] : "(null)";
355     environ = env;
356     main_argc = argc;
357     main_argv = argv;
358 
359     if (aux_info[AT_CANARY] != NULL &&
360 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
361 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
362 	    if (i > sizeof(__stack_chk_guard))
363 		    i = sizeof(__stack_chk_guard);
364 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
365     } else {
366 	mib[0] = CTL_KERN;
367 	mib[1] = KERN_ARND;
368 
369 	len = sizeof(__stack_chk_guard);
370 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
371 	    len != sizeof(__stack_chk_guard)) {
372 		/* If sysctl was unsuccessful, use the "terminator canary". */
373 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
374 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
375 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
376 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
377 	}
378     }
379 
380     trust = !issetugid();
381 
382     ld_bind_now = getenv(LD_ "BIND_NOW");
383     /*
384      * If the process is tainted, then we un-set the dangerous environment
385      * variables.  The process will be marked as tainted until setuid(2)
386      * is called.  If any child process calls setuid(2) we do not want any
387      * future processes to honor the potentially un-safe variables.
388      */
389     if (!trust) {
390         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
391 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
392 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
393 	    unsetenv(LD_ "LOADFLTR")) {
394 		_rtld_error("environment corrupt; aborting");
395 		die();
396 	}
397     }
398     ld_debug = getenv(LD_ "DEBUG");
399     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
400     libmap_override = getenv(LD_ "LIBMAP");
401     ld_library_path = getenv(LD_ "LIBRARY_PATH");
402     ld_preload = getenv(LD_ "PRELOAD");
403     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
404     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
405     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
406 	(ld_library_path != NULL) || (ld_preload != NULL) ||
407 	(ld_elf_hints_path != NULL) || ld_loadfltr;
408     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
409     ld_utrace = getenv(LD_ "UTRACE");
410 
411     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
412 	ld_elf_hints_path = _PATH_ELF_HINTS;
413 
414     if (ld_debug != NULL && *ld_debug != '\0')
415 	debug = 1;
416     dbg("%s is initialized, base address = %p", __progname,
417 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
418     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
419     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
420 
421     dbg("initializing thread locks");
422     lockdflt_init();
423 
424     /*
425      * Load the main program, or process its program header if it is
426      * already loaded.
427      */
428     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
429 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
430 	dbg("loading main program");
431 	obj_main = map_object(fd, argv0, NULL);
432 	close(fd);
433 	if (obj_main == NULL)
434 	    die();
435 	max_stack_flags = obj->stack_flags;
436     } else {				/* Main program already loaded. */
437 	const Elf_Phdr *phdr;
438 	int phnum;
439 	caddr_t entry;
440 
441 	dbg("processing main program's program header");
442 	assert(aux_info[AT_PHDR] != NULL);
443 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
444 	assert(aux_info[AT_PHNUM] != NULL);
445 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
446 	assert(aux_info[AT_PHENT] != NULL);
447 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
448 	assert(aux_info[AT_ENTRY] != NULL);
449 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
450 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
451 	    die();
452     }
453 
454     if (aux_info[AT_EXECPATH] != 0) {
455 	    char *kexecpath;
456 	    char buf[MAXPATHLEN];
457 
458 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
459 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
460 	    if (kexecpath[0] == '/')
461 		    obj_main->path = kexecpath;
462 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
463 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
464 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
465 		    obj_main->path = xstrdup(argv0);
466 	    else
467 		    obj_main->path = xstrdup(buf);
468     } else {
469 	    dbg("No AT_EXECPATH");
470 	    obj_main->path = xstrdup(argv0);
471     }
472     dbg("obj_main path %s", obj_main->path);
473     obj_main->mainprog = true;
474 
475     if (aux_info[AT_STACKPROT] != NULL &&
476       aux_info[AT_STACKPROT]->a_un.a_val != 0)
477 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
478 
479     /*
480      * Get the actual dynamic linker pathname from the executable if
481      * possible.  (It should always be possible.)  That ensures that
482      * gdb will find the right dynamic linker even if a non-standard
483      * one is being used.
484      */
485     if (obj_main->interp != NULL &&
486       strcmp(obj_main->interp, obj_rtld.path) != 0) {
487 	free(obj_rtld.path);
488 	obj_rtld.path = xstrdup(obj_main->interp);
489         __progname = obj_rtld.path;
490     }
491 
492     digest_dynamic(obj_main, 0);
493     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
494 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
495 	obj_main->dynsymcount);
496 
497     linkmap_add(obj_main);
498     linkmap_add(&obj_rtld);
499 
500     /* Link the main program into the list of objects. */
501     *obj_tail = obj_main;
502     obj_tail = &obj_main->next;
503     obj_count++;
504     obj_loads++;
505 
506     /* Initialize a fake symbol for resolving undefined weak references. */
507     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
508     sym_zero.st_shndx = SHN_UNDEF;
509     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
510 
511     if (!libmap_disable)
512         libmap_disable = (bool)lm_init(libmap_override);
513 
514     dbg("loading LD_PRELOAD libraries");
515     if (load_preload_objects() == -1)
516 	die();
517     preload_tail = obj_tail;
518 
519     dbg("loading needed objects");
520     if (load_needed_objects(obj_main, 0) == -1)
521 	die();
522 
523     /* Make a list of all objects loaded at startup. */
524     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
525 	objlist_push_tail(&list_main, obj);
526     	obj->refcount++;
527     }
528 
529     dbg("checking for required versions");
530     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
531 	die();
532 
533     if (ld_tracing) {		/* We're done */
534 	trace_loaded_objects(obj_main);
535 	exit(0);
536     }
537 
538     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
539        dump_relocations(obj_main);
540        exit (0);
541     }
542 
543     /*
544      * Processing tls relocations requires having the tls offsets
545      * initialized.  Prepare offsets before starting initial
546      * relocation processing.
547      */
548     dbg("initializing initial thread local storage offsets");
549     STAILQ_FOREACH(entry, &list_main, link) {
550 	/*
551 	 * Allocate all the initial objects out of the static TLS
552 	 * block even if they didn't ask for it.
553 	 */
554 	allocate_tls_offset(entry->obj);
555     }
556 
557     if (relocate_objects(obj_main,
558       ld_bind_now != NULL && *ld_bind_now != '\0',
559       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
560 	die();
561 
562     dbg("doing copy relocations");
563     if (do_copy_relocations(obj_main) == -1)
564 	die();
565 
566     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
567        dump_relocations(obj_main);
568        exit (0);
569     }
570 
571     /*
572      * Setup TLS for main thread.  This must be done after the
573      * relocations are processed, since tls initialization section
574      * might be the subject for relocations.
575      */
576     dbg("initializing initial thread local storage");
577     allocate_initial_tls(obj_list);
578 
579     dbg("initializing key program variables");
580     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
581     set_program_var("environ", env);
582     set_program_var("__elf_aux_vector", aux);
583 
584     /* Make a list of init functions to call. */
585     objlist_init(&initlist);
586     initlist_add_objects(obj_list, preload_tail, &initlist);
587 
588     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
589 
590     map_stacks_exec(NULL);
591 
592     dbg("resolving ifuncs");
593     if (resolve_objects_ifunc(obj_main,
594       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
595       NULL) == -1)
596 	die();
597 
598     if (!obj_main->crt_no_init) {
599 	/*
600 	 * Make sure we don't call the main program's init and fini
601 	 * functions for binaries linked with old crt1 which calls
602 	 * _init itself.
603 	 */
604 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
605 	obj_main->preinit_array = obj_main->init_array =
606 	    obj_main->fini_array = (Elf_Addr)NULL;
607     }
608 
609     wlock_acquire(rtld_bind_lock, &lockstate);
610     if (obj_main->crt_no_init)
611 	preinit_main();
612     objlist_call_init(&initlist, &lockstate);
613     objlist_clear(&initlist);
614     dbg("loading filtees");
615     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
616 	if (ld_loadfltr || obj->z_loadfltr)
617 	    load_filtees(obj, 0, &lockstate);
618     }
619     lock_release(rtld_bind_lock, &lockstate);
620 
621     dbg("transferring control to program entry point = %p", obj_main->entry);
622 
623     /* Return the exit procedure and the program entry point. */
624     *exit_proc = rtld_exit;
625     *objp = obj_main;
626     return (func_ptr_type) obj_main->entry;
627 }
628 
629 void *
630 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
631 {
632 	void *ptr;
633 	Elf_Addr target;
634 
635 	ptr = (void *)make_function_pointer(def, obj);
636 	target = ((Elf_Addr (*)(void))ptr)();
637 	return ((void *)target);
638 }
639 
640 Elf_Addr
641 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
642 {
643     const Elf_Rel *rel;
644     const Elf_Sym *def;
645     const Obj_Entry *defobj;
646     Elf_Addr *where;
647     Elf_Addr target;
648     RtldLockState lockstate;
649 
650     rlock_acquire(rtld_bind_lock, &lockstate);
651     if (sigsetjmp(lockstate.env, 0) != 0)
652 	    lock_upgrade(rtld_bind_lock, &lockstate);
653     if (obj->pltrel)
654 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
655     else
656 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
657 
658     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
659     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
660 	&lockstate);
661     if (def == NULL)
662 	die();
663     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
664 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
665     else
666 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
667 
668     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
669       defobj->strtab + def->st_name, basename(obj->path),
670       (void *)target, basename(defobj->path));
671 
672     /*
673      * Write the new contents for the jmpslot. Note that depending on
674      * architecture, the value which we need to return back to the
675      * lazy binding trampoline may or may not be the target
676      * address. The value returned from reloc_jmpslot() is the value
677      * that the trampoline needs.
678      */
679     target = reloc_jmpslot(where, target, defobj, obj, rel);
680     lock_release(rtld_bind_lock, &lockstate);
681     return target;
682 }
683 
684 /*
685  * Error reporting function.  Use it like printf.  If formats the message
686  * into a buffer, and sets things up so that the next call to dlerror()
687  * will return the message.
688  */
689 void
690 _rtld_error(const char *fmt, ...)
691 {
692     static char buf[512];
693     va_list ap;
694 
695     va_start(ap, fmt);
696     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
697     error_message = buf;
698     va_end(ap);
699 }
700 
701 /*
702  * Return a dynamically-allocated copy of the current error message, if any.
703  */
704 static char *
705 errmsg_save(void)
706 {
707     return error_message == NULL ? NULL : xstrdup(error_message);
708 }
709 
710 /*
711  * Restore the current error message from a copy which was previously saved
712  * by errmsg_save().  The copy is freed.
713  */
714 static void
715 errmsg_restore(char *saved_msg)
716 {
717     if (saved_msg == NULL)
718 	error_message = NULL;
719     else {
720 	_rtld_error("%s", saved_msg);
721 	free(saved_msg);
722     }
723 }
724 
725 static const char *
726 basename(const char *name)
727 {
728     const char *p = strrchr(name, '/');
729     return p != NULL ? p + 1 : name;
730 }
731 
732 static struct utsname uts;
733 
734 static int
735 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
736     char *may_free)
737 {
738     const char *p, *p1;
739     char *res1;
740     int subst_len;
741     int kw_len;
742 
743     res1 = *res = NULL;
744     p = real;
745     subst_len = kw_len = 0;
746     for (;;) {
747 	 p1 = strstr(p, kw);
748 	 if (p1 != NULL) {
749 	     if (subst_len == 0) {
750 		 subst_len = strlen(subst);
751 		 kw_len = strlen(kw);
752 	     }
753 	     if (*res == NULL) {
754 		 *res = xmalloc(PATH_MAX);
755 		 res1 = *res;
756 	     }
757 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
758 		 _rtld_error("Substitution of %s in %s cannot be performed",
759 		     kw, real);
760 		 if (may_free != NULL)
761 		     free(may_free);
762 		 free(res);
763 		 return (false);
764 	     }
765 	     memcpy(res1, p, p1 - p);
766 	     res1 += p1 - p;
767 	     memcpy(res1, subst, subst_len);
768 	     res1 += subst_len;
769 	     p = p1 + kw_len;
770 	 } else {
771 	    if (*res == NULL) {
772 		if (may_free != NULL)
773 		    *res = may_free;
774 		else
775 		    *res = xstrdup(real);
776 		return (true);
777 	    }
778 	    *res1 = '\0';
779 	    if (may_free != NULL)
780 		free(may_free);
781 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
782 		free(res);
783 		return (false);
784 	    }
785 	    return (true);
786 	 }
787     }
788 }
789 
790 static char *
791 origin_subst(const char *real, const char *origin_path)
792 {
793     char *res1, *res2, *res3, *res4;
794 
795     if (uts.sysname[0] == '\0') {
796 	if (uname(&uts) != 0) {
797 	    _rtld_error("utsname failed: %d", errno);
798 	    return (NULL);
799 	}
800     }
801     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
802 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
803 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
804 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
805 	    return (NULL);
806     return (res4);
807 }
808 
809 static void
810 die(void)
811 {
812     const char *msg = dlerror();
813 
814     if (msg == NULL)
815 	msg = "Fatal error";
816     rtld_fdputstr(STDERR_FILENO, msg);
817     rtld_fdputchar(STDERR_FILENO, '\n');
818     _exit(1);
819 }
820 
821 /*
822  * Process a shared object's DYNAMIC section, and save the important
823  * information in its Obj_Entry structure.
824  */
825 static void
826 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
827     const Elf_Dyn **dyn_soname)
828 {
829     const Elf_Dyn *dynp;
830     Needed_Entry **needed_tail = &obj->needed;
831     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
832     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
833     const Elf_Hashelt *hashtab;
834     const Elf32_Word *hashval;
835     Elf32_Word bkt, nmaskwords;
836     int bloom_size32;
837     bool nmw_power2;
838     int plttype = DT_REL;
839 
840     *dyn_rpath = NULL;
841     *dyn_soname = NULL;
842 
843     obj->bind_now = false;
844     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
845 	switch (dynp->d_tag) {
846 
847 	case DT_REL:
848 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
849 	    break;
850 
851 	case DT_RELSZ:
852 	    obj->relsize = dynp->d_un.d_val;
853 	    break;
854 
855 	case DT_RELENT:
856 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
857 	    break;
858 
859 	case DT_JMPREL:
860 	    obj->pltrel = (const Elf_Rel *)
861 	      (obj->relocbase + dynp->d_un.d_ptr);
862 	    break;
863 
864 	case DT_PLTRELSZ:
865 	    obj->pltrelsize = dynp->d_un.d_val;
866 	    break;
867 
868 	case DT_RELA:
869 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
870 	    break;
871 
872 	case DT_RELASZ:
873 	    obj->relasize = dynp->d_un.d_val;
874 	    break;
875 
876 	case DT_RELAENT:
877 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
878 	    break;
879 
880 	case DT_PLTREL:
881 	    plttype = dynp->d_un.d_val;
882 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
883 	    break;
884 
885 	case DT_SYMTAB:
886 	    obj->symtab = (const Elf_Sym *)
887 	      (obj->relocbase + dynp->d_un.d_ptr);
888 	    break;
889 
890 	case DT_SYMENT:
891 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
892 	    break;
893 
894 	case DT_STRTAB:
895 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
896 	    break;
897 
898 	case DT_STRSZ:
899 	    obj->strsize = dynp->d_un.d_val;
900 	    break;
901 
902 	case DT_VERNEED:
903 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
904 		dynp->d_un.d_val);
905 	    break;
906 
907 	case DT_VERNEEDNUM:
908 	    obj->verneednum = dynp->d_un.d_val;
909 	    break;
910 
911 	case DT_VERDEF:
912 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
913 		dynp->d_un.d_val);
914 	    break;
915 
916 	case DT_VERDEFNUM:
917 	    obj->verdefnum = dynp->d_un.d_val;
918 	    break;
919 
920 	case DT_VERSYM:
921 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
922 		dynp->d_un.d_val);
923 	    break;
924 
925 	case DT_HASH:
926 	    {
927 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
928 		    dynp->d_un.d_ptr);
929 		obj->nbuckets = hashtab[0];
930 		obj->nchains = hashtab[1];
931 		obj->buckets = hashtab + 2;
932 		obj->chains = obj->buckets + obj->nbuckets;
933 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
934 		  obj->buckets != NULL;
935 	    }
936 	    break;
937 
938 	case DT_GNU_HASH:
939 	    {
940 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
941 		    dynp->d_un.d_ptr);
942 		obj->nbuckets_gnu = hashtab[0];
943 		obj->symndx_gnu = hashtab[1];
944 		nmaskwords = hashtab[2];
945 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
946 		/* Number of bitmask words is required to be power of 2 */
947 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
948 		obj->maskwords_bm_gnu = nmaskwords - 1;
949 		obj->shift2_gnu = hashtab[3];
950 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
951 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
952 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
953 		  obj->symndx_gnu;
954 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
955 		  obj->buckets_gnu != NULL;
956 	    }
957 	    break;
958 
959 	case DT_NEEDED:
960 	    if (!obj->rtld) {
961 		Needed_Entry *nep = NEW(Needed_Entry);
962 		nep->name = dynp->d_un.d_val;
963 		nep->obj = NULL;
964 		nep->next = NULL;
965 
966 		*needed_tail = nep;
967 		needed_tail = &nep->next;
968 	    }
969 	    break;
970 
971 	case DT_FILTER:
972 	    if (!obj->rtld) {
973 		Needed_Entry *nep = NEW(Needed_Entry);
974 		nep->name = dynp->d_un.d_val;
975 		nep->obj = NULL;
976 		nep->next = NULL;
977 
978 		*needed_filtees_tail = nep;
979 		needed_filtees_tail = &nep->next;
980 	    }
981 	    break;
982 
983 	case DT_AUXILIARY:
984 	    if (!obj->rtld) {
985 		Needed_Entry *nep = NEW(Needed_Entry);
986 		nep->name = dynp->d_un.d_val;
987 		nep->obj = NULL;
988 		nep->next = NULL;
989 
990 		*needed_aux_filtees_tail = nep;
991 		needed_aux_filtees_tail = &nep->next;
992 	    }
993 	    break;
994 
995 	case DT_PLTGOT:
996 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
997 	    break;
998 
999 	case DT_TEXTREL:
1000 	    obj->textrel = true;
1001 	    break;
1002 
1003 	case DT_SYMBOLIC:
1004 	    obj->symbolic = true;
1005 	    break;
1006 
1007 	case DT_RPATH:
1008 	case DT_RUNPATH:	/* XXX: process separately */
1009 	    /*
1010 	     * We have to wait until later to process this, because we
1011 	     * might not have gotten the address of the string table yet.
1012 	     */
1013 	    *dyn_rpath = dynp;
1014 	    break;
1015 
1016 	case DT_SONAME:
1017 	    *dyn_soname = dynp;
1018 	    break;
1019 
1020 	case DT_INIT:
1021 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1022 	    break;
1023 
1024 	case DT_PREINIT_ARRAY:
1025 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1026 	    break;
1027 
1028 	case DT_PREINIT_ARRAYSZ:
1029 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1030 	    break;
1031 
1032 	case DT_INIT_ARRAY:
1033 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1034 	    break;
1035 
1036 	case DT_INIT_ARRAYSZ:
1037 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1038 	    break;
1039 
1040 	case DT_FINI:
1041 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1042 	    break;
1043 
1044 	case DT_FINI_ARRAY:
1045 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1046 	    break;
1047 
1048 	case DT_FINI_ARRAYSZ:
1049 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1050 	    break;
1051 
1052 	/*
1053 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1054 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1055 	 */
1056 
1057 #ifndef __mips__
1058 	case DT_DEBUG:
1059 	    /* XXX - not implemented yet */
1060 	    if (!early)
1061 		dbg("Filling in DT_DEBUG entry");
1062 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1063 	    break;
1064 #endif
1065 
1066 	case DT_FLAGS:
1067 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1068 		    obj->z_origin = true;
1069 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1070 		    obj->symbolic = true;
1071 		if (dynp->d_un.d_val & DF_TEXTREL)
1072 		    obj->textrel = true;
1073 		if (dynp->d_un.d_val & DF_BIND_NOW)
1074 		    obj->bind_now = true;
1075 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1076 		    ;*/
1077 	    break;
1078 #ifdef __mips__
1079 	case DT_MIPS_LOCAL_GOTNO:
1080 		obj->local_gotno = dynp->d_un.d_val;
1081 	    break;
1082 
1083 	case DT_MIPS_SYMTABNO:
1084 		obj->symtabno = dynp->d_un.d_val;
1085 		break;
1086 
1087 	case DT_MIPS_GOTSYM:
1088 		obj->gotsym = dynp->d_un.d_val;
1089 		break;
1090 
1091 	case DT_MIPS_RLD_MAP:
1092 #ifdef notyet
1093 		if (!early)
1094 			dbg("Filling in DT_DEBUG entry");
1095 		((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1096 #endif
1097 		break;
1098 #endif
1099 
1100 	case DT_FLAGS_1:
1101 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1102 		    obj->z_noopen = true;
1103 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1104 		    obj->z_origin = true;
1105 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1106 		    XXX ;*/
1107 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1108 		    obj->bind_now = true;
1109 		if (dynp->d_un.d_val & DF_1_NODELETE)
1110 		    obj->z_nodelete = true;
1111 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1112 		    obj->z_loadfltr = true;
1113 	    break;
1114 
1115 	default:
1116 	    if (!early) {
1117 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1118 		    (long)dynp->d_tag);
1119 	    }
1120 	    break;
1121 	}
1122     }
1123 
1124     obj->traced = false;
1125 
1126     if (plttype == DT_RELA) {
1127 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1128 	obj->pltrel = NULL;
1129 	obj->pltrelasize = obj->pltrelsize;
1130 	obj->pltrelsize = 0;
1131     }
1132 
1133     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1134     if (obj->valid_hash_sysv)
1135 	obj->dynsymcount = obj->nchains;
1136     else if (obj->valid_hash_gnu) {
1137 	obj->dynsymcount = 0;
1138 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1139 	    if (obj->buckets_gnu[bkt] == 0)
1140 		continue;
1141 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1142 	    do
1143 		obj->dynsymcount++;
1144 	    while ((*hashval++ & 1u) == 0);
1145 	}
1146 	obj->dynsymcount += obj->symndx_gnu;
1147     }
1148 }
1149 
1150 static void
1151 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1152     const Elf_Dyn *dyn_soname)
1153 {
1154 
1155     if (obj->z_origin && obj->origin_path == NULL) {
1156 	obj->origin_path = xmalloc(PATH_MAX);
1157 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1158 	    die();
1159     }
1160 
1161     if (dyn_rpath != NULL) {
1162 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1163 	if (obj->z_origin)
1164 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1165     }
1166 
1167     if (dyn_soname != NULL)
1168 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1169 }
1170 
1171 static void
1172 digest_dynamic(Obj_Entry *obj, int early)
1173 {
1174 	const Elf_Dyn *dyn_rpath;
1175 	const Elf_Dyn *dyn_soname;
1176 
1177 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1178 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1179 }
1180 
1181 /*
1182  * Process a shared object's program header.  This is used only for the
1183  * main program, when the kernel has already loaded the main program
1184  * into memory before calling the dynamic linker.  It creates and
1185  * returns an Obj_Entry structure.
1186  */
1187 static Obj_Entry *
1188 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1189 {
1190     Obj_Entry *obj;
1191     const Elf_Phdr *phlimit = phdr + phnum;
1192     const Elf_Phdr *ph;
1193     Elf_Addr note_start, note_end;
1194     int nsegs = 0;
1195 
1196     obj = obj_new();
1197     for (ph = phdr;  ph < phlimit;  ph++) {
1198 	if (ph->p_type != PT_PHDR)
1199 	    continue;
1200 
1201 	obj->phdr = phdr;
1202 	obj->phsize = ph->p_memsz;
1203 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1204 	break;
1205     }
1206 
1207     obj->stack_flags = PF_X | PF_R | PF_W;
1208 
1209     for (ph = phdr;  ph < phlimit;  ph++) {
1210 	switch (ph->p_type) {
1211 
1212 	case PT_INTERP:
1213 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1214 	    break;
1215 
1216 	case PT_LOAD:
1217 	    if (nsegs == 0) {	/* First load segment */
1218 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1219 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1220 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1221 		  obj->vaddrbase;
1222 	    } else {		/* Last load segment */
1223 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1224 		  obj->vaddrbase;
1225 	    }
1226 	    nsegs++;
1227 	    break;
1228 
1229 	case PT_DYNAMIC:
1230 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1231 	    break;
1232 
1233 	case PT_TLS:
1234 	    obj->tlsindex = 1;
1235 	    obj->tlssize = ph->p_memsz;
1236 	    obj->tlsalign = ph->p_align;
1237 	    obj->tlsinitsize = ph->p_filesz;
1238 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1239 	    break;
1240 
1241 	case PT_GNU_STACK:
1242 	    obj->stack_flags = ph->p_flags;
1243 	    break;
1244 
1245 	case PT_GNU_RELRO:
1246 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1247 	    obj->relro_size = round_page(ph->p_memsz);
1248 	    break;
1249 
1250 	case PT_NOTE:
1251 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1252 	    note_end = note_start + ph->p_filesz;
1253 	    digest_notes(obj, note_start, note_end);
1254 	    break;
1255 	}
1256     }
1257     if (nsegs < 1) {
1258 	_rtld_error("%s: too few PT_LOAD segments", path);
1259 	return NULL;
1260     }
1261 
1262     obj->entry = entry;
1263     return obj;
1264 }
1265 
1266 void
1267 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1268 {
1269 	const Elf_Note *note;
1270 	const char *note_name;
1271 	uintptr_t p;
1272 
1273 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1274 	    note = (const Elf_Note *)((const char *)(note + 1) +
1275 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1276 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1277 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1278 		    note->n_descsz != sizeof(int32_t))
1279 			continue;
1280 		if (note->n_type != ABI_NOTETYPE &&
1281 		    note->n_type != CRT_NOINIT_NOTETYPE)
1282 			continue;
1283 		note_name = (const char *)(note + 1);
1284 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1285 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1286 			continue;
1287 		switch (note->n_type) {
1288 		case ABI_NOTETYPE:
1289 			/* FreeBSD osrel note */
1290 			p = (uintptr_t)(note + 1);
1291 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1292 			obj->osrel = *(const int32_t *)(p);
1293 			dbg("note osrel %d", obj->osrel);
1294 			break;
1295 		case CRT_NOINIT_NOTETYPE:
1296 			/* FreeBSD 'crt does not call init' note */
1297 			obj->crt_no_init = true;
1298 			dbg("note crt_no_init");
1299 			break;
1300 		}
1301 	}
1302 }
1303 
1304 static Obj_Entry *
1305 dlcheck(void *handle)
1306 {
1307     Obj_Entry *obj;
1308 
1309     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1310 	if (obj == (Obj_Entry *) handle)
1311 	    break;
1312 
1313     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1314 	_rtld_error("Invalid shared object handle %p", handle);
1315 	return NULL;
1316     }
1317     return obj;
1318 }
1319 
1320 /*
1321  * If the given object is already in the donelist, return true.  Otherwise
1322  * add the object to the list and return false.
1323  */
1324 static bool
1325 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1326 {
1327     unsigned int i;
1328 
1329     for (i = 0;  i < dlp->num_used;  i++)
1330 	if (dlp->objs[i] == obj)
1331 	    return true;
1332     /*
1333      * Our donelist allocation should always be sufficient.  But if
1334      * our threads locking isn't working properly, more shared objects
1335      * could have been loaded since we allocated the list.  That should
1336      * never happen, but we'll handle it properly just in case it does.
1337      */
1338     if (dlp->num_used < dlp->num_alloc)
1339 	dlp->objs[dlp->num_used++] = obj;
1340     return false;
1341 }
1342 
1343 /*
1344  * Hash function for symbol table lookup.  Don't even think about changing
1345  * this.  It is specified by the System V ABI.
1346  */
1347 unsigned long
1348 elf_hash(const char *name)
1349 {
1350     const unsigned char *p = (const unsigned char *) name;
1351     unsigned long h = 0;
1352     unsigned long g;
1353 
1354     while (*p != '\0') {
1355 	h = (h << 4) + *p++;
1356 	if ((g = h & 0xf0000000) != 0)
1357 	    h ^= g >> 24;
1358 	h &= ~g;
1359     }
1360     return h;
1361 }
1362 
1363 /*
1364  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1365  * unsigned in case it's implemented with a wider type.
1366  */
1367 static uint32_t
1368 gnu_hash(const char *s)
1369 {
1370 	uint32_t h;
1371 	unsigned char c;
1372 
1373 	h = 5381;
1374 	for (c = *s; c != '\0'; c = *++s)
1375 		h = h * 33 + c;
1376 	return (h & 0xffffffff);
1377 }
1378 
1379 /*
1380  * Find the library with the given name, and return its full pathname.
1381  * The returned string is dynamically allocated.  Generates an error
1382  * message and returns NULL if the library cannot be found.
1383  *
1384  * If the second argument is non-NULL, then it refers to an already-
1385  * loaded shared object, whose library search path will be searched.
1386  *
1387  * The search order is:
1388  *   LD_LIBRARY_PATH
1389  *   rpath in the referencing file
1390  *   ldconfig hints
1391  *   /lib:/usr/lib
1392  */
1393 static char *
1394 find_library(const char *xname, const Obj_Entry *refobj)
1395 {
1396     char *pathname;
1397     char *name;
1398 
1399     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1400 	if (xname[0] != '/' && !trust) {
1401 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1402 	      xname);
1403 	    return NULL;
1404 	}
1405 	if (refobj != NULL && refobj->z_origin)
1406 	    return origin_subst(xname, refobj->origin_path);
1407 	else
1408 	    return xstrdup(xname);
1409     }
1410 
1411     if (libmap_disable || (refobj == NULL) ||
1412 	(name = lm_find(refobj->path, xname)) == NULL)
1413 	name = (char *)xname;
1414 
1415     dbg(" Searching for \"%s\"", name);
1416 
1417     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1418       (refobj != NULL &&
1419       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1420       (pathname = search_library_path(name, gethints())) != NULL ||
1421       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1422 	return pathname;
1423 
1424     if(refobj != NULL && refobj->path != NULL) {
1425 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1426 	  name, basename(refobj->path));
1427     } else {
1428 	_rtld_error("Shared object \"%s\" not found", name);
1429     }
1430     return NULL;
1431 }
1432 
1433 /*
1434  * Given a symbol number in a referencing object, find the corresponding
1435  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1436  * no definition was found.  Returns a pointer to the Obj_Entry of the
1437  * defining object via the reference parameter DEFOBJ_OUT.
1438  */
1439 const Elf_Sym *
1440 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1441     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1442     RtldLockState *lockstate)
1443 {
1444     const Elf_Sym *ref;
1445     const Elf_Sym *def;
1446     const Obj_Entry *defobj;
1447     SymLook req;
1448     const char *name;
1449     int res;
1450 
1451     /*
1452      * If we have already found this symbol, get the information from
1453      * the cache.
1454      */
1455     if (symnum >= refobj->dynsymcount)
1456 	return NULL;	/* Bad object */
1457     if (cache != NULL && cache[symnum].sym != NULL) {
1458 	*defobj_out = cache[symnum].obj;
1459 	return cache[symnum].sym;
1460     }
1461 
1462     ref = refobj->symtab + symnum;
1463     name = refobj->strtab + ref->st_name;
1464     def = NULL;
1465     defobj = NULL;
1466 
1467     /*
1468      * We don't have to do a full scale lookup if the symbol is local.
1469      * We know it will bind to the instance in this load module; to
1470      * which we already have a pointer (ie ref). By not doing a lookup,
1471      * we not only improve performance, but it also avoids unresolvable
1472      * symbols when local symbols are not in the hash table. This has
1473      * been seen with the ia64 toolchain.
1474      */
1475     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1476 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1477 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1478 		symnum);
1479 	}
1480 	symlook_init(&req, name);
1481 	req.flags = flags;
1482 	req.ventry = fetch_ventry(refobj, symnum);
1483 	req.lockstate = lockstate;
1484 	res = symlook_default(&req, refobj);
1485 	if (res == 0) {
1486 	    def = req.sym_out;
1487 	    defobj = req.defobj_out;
1488 	}
1489     } else {
1490 	def = ref;
1491 	defobj = refobj;
1492     }
1493 
1494     /*
1495      * If we found no definition and the reference is weak, treat the
1496      * symbol as having the value zero.
1497      */
1498     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1499 	def = &sym_zero;
1500 	defobj = obj_main;
1501     }
1502 
1503     if (def != NULL) {
1504 	*defobj_out = defobj;
1505 	/* Record the information in the cache to avoid subsequent lookups. */
1506 	if (cache != NULL) {
1507 	    cache[symnum].sym = def;
1508 	    cache[symnum].obj = defobj;
1509 	}
1510     } else {
1511 	if (refobj != &obj_rtld)
1512 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1513     }
1514     return def;
1515 }
1516 
1517 /*
1518  * Return the search path from the ldconfig hints file, reading it if
1519  * necessary.  Returns NULL if there are problems with the hints file,
1520  * or if the search path there is empty.
1521  */
1522 static const char *
1523 gethints(void)
1524 {
1525     static char *hints;
1526 
1527     if (hints == NULL) {
1528 	int fd;
1529 	struct elfhints_hdr hdr;
1530 	char *p;
1531 
1532 	/* Keep from trying again in case the hints file is bad. */
1533 	hints = "";
1534 
1535 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1536 	    return NULL;
1537 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1538 	  hdr.magic != ELFHINTS_MAGIC ||
1539 	  hdr.version != 1) {
1540 	    close(fd);
1541 	    return NULL;
1542 	}
1543 	p = xmalloc(hdr.dirlistlen + 1);
1544 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1545 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1546 	    free(p);
1547 	    close(fd);
1548 	    return NULL;
1549 	}
1550 	hints = p;
1551 	close(fd);
1552     }
1553     return hints[0] != '\0' ? hints : NULL;
1554 }
1555 
1556 static void
1557 init_dag(Obj_Entry *root)
1558 {
1559     const Needed_Entry *needed;
1560     const Objlist_Entry *elm;
1561     DoneList donelist;
1562 
1563     if (root->dag_inited)
1564 	return;
1565     donelist_init(&donelist);
1566 
1567     /* Root object belongs to own DAG. */
1568     objlist_push_tail(&root->dldags, root);
1569     objlist_push_tail(&root->dagmembers, root);
1570     donelist_check(&donelist, root);
1571 
1572     /*
1573      * Add dependencies of root object to DAG in breadth order
1574      * by exploiting the fact that each new object get added
1575      * to the tail of the dagmembers list.
1576      */
1577     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1578 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1579 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1580 		continue;
1581 	    objlist_push_tail(&needed->obj->dldags, root);
1582 	    objlist_push_tail(&root->dagmembers, needed->obj);
1583 	}
1584     }
1585     root->dag_inited = true;
1586 }
1587 
1588 /*
1589  * Initialize the dynamic linker.  The argument is the address at which
1590  * the dynamic linker has been mapped into memory.  The primary task of
1591  * this function is to relocate the dynamic linker.
1592  */
1593 static void
1594 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1595 {
1596     Obj_Entry objtmp;	/* Temporary rtld object */
1597     const Elf_Dyn *dyn_rpath;
1598     const Elf_Dyn *dyn_soname;
1599 
1600     /*
1601      * Conjure up an Obj_Entry structure for the dynamic linker.
1602      *
1603      * The "path" member can't be initialized yet because string constants
1604      * cannot yet be accessed. Below we will set it correctly.
1605      */
1606     memset(&objtmp, 0, sizeof(objtmp));
1607     objtmp.path = NULL;
1608     objtmp.rtld = true;
1609     objtmp.mapbase = mapbase;
1610 #ifdef PIC
1611     objtmp.relocbase = mapbase;
1612 #endif
1613     if (RTLD_IS_DYNAMIC()) {
1614 	objtmp.dynamic = rtld_dynamic(&objtmp);
1615 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1616 	assert(objtmp.needed == NULL);
1617 #if !defined(__mips__)
1618 	/* MIPS has a bogus DT_TEXTREL. */
1619 	assert(!objtmp.textrel);
1620 #endif
1621 
1622 	/*
1623 	 * Temporarily put the dynamic linker entry into the object list, so
1624 	 * that symbols can be found.
1625 	 */
1626 
1627 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1628     }
1629 
1630     /* Initialize the object list. */
1631     obj_tail = &obj_list;
1632 
1633     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1634     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1635 
1636     if (aux_info[AT_PAGESZ] != NULL)
1637 	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1638     if (aux_info[AT_OSRELDATE] != NULL)
1639 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1640 
1641     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1642 
1643     /* Replace the path with a dynamically allocated copy. */
1644     obj_rtld.path = xstrdup(PATH_RTLD);
1645 
1646     r_debug.r_brk = r_debug_state;
1647     r_debug.r_state = RT_CONSISTENT;
1648 }
1649 
1650 /*
1651  * Add the init functions from a needed object list (and its recursive
1652  * needed objects) to "list".  This is not used directly; it is a helper
1653  * function for initlist_add_objects().  The write lock must be held
1654  * when this function is called.
1655  */
1656 static void
1657 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1658 {
1659     /* Recursively process the successor needed objects. */
1660     if (needed->next != NULL)
1661 	initlist_add_neededs(needed->next, list);
1662 
1663     /* Process the current needed object. */
1664     if (needed->obj != NULL)
1665 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1666 }
1667 
1668 /*
1669  * Scan all of the DAGs rooted in the range of objects from "obj" to
1670  * "tail" and add their init functions to "list".  This recurses over
1671  * the DAGs and ensure the proper init ordering such that each object's
1672  * needed libraries are initialized before the object itself.  At the
1673  * same time, this function adds the objects to the global finalization
1674  * list "list_fini" in the opposite order.  The write lock must be
1675  * held when this function is called.
1676  */
1677 static void
1678 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1679 {
1680 
1681     if (obj->init_scanned || obj->init_done)
1682 	return;
1683     obj->init_scanned = true;
1684 
1685     /* Recursively process the successor objects. */
1686     if (&obj->next != tail)
1687 	initlist_add_objects(obj->next, tail, list);
1688 
1689     /* Recursively process the needed objects. */
1690     if (obj->needed != NULL)
1691 	initlist_add_neededs(obj->needed, list);
1692     if (obj->needed_filtees != NULL)
1693 	initlist_add_neededs(obj->needed_filtees, list);
1694     if (obj->needed_aux_filtees != NULL)
1695 	initlist_add_neededs(obj->needed_aux_filtees, list);
1696 
1697     /* Add the object to the init list. */
1698     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1699       obj->init_array != (Elf_Addr)NULL)
1700 	objlist_push_tail(list, obj);
1701 
1702     /* Add the object to the global fini list in the reverse order. */
1703     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1704       && !obj->on_fini_list) {
1705 	objlist_push_head(&list_fini, obj);
1706 	obj->on_fini_list = true;
1707     }
1708 }
1709 
1710 #ifndef FPTR_TARGET
1711 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1712 #endif
1713 
1714 static void
1715 free_needed_filtees(Needed_Entry *n)
1716 {
1717     Needed_Entry *needed, *needed1;
1718 
1719     for (needed = n; needed != NULL; needed = needed->next) {
1720 	if (needed->obj != NULL) {
1721 	    dlclose(needed->obj);
1722 	    needed->obj = NULL;
1723 	}
1724     }
1725     for (needed = n; needed != NULL; needed = needed1) {
1726 	needed1 = needed->next;
1727 	free(needed);
1728     }
1729 }
1730 
1731 static void
1732 unload_filtees(Obj_Entry *obj)
1733 {
1734 
1735     free_needed_filtees(obj->needed_filtees);
1736     obj->needed_filtees = NULL;
1737     free_needed_filtees(obj->needed_aux_filtees);
1738     obj->needed_aux_filtees = NULL;
1739     obj->filtees_loaded = false;
1740 }
1741 
1742 static void
1743 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1744     RtldLockState *lockstate)
1745 {
1746 
1747     for (; needed != NULL; needed = needed->next) {
1748 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1749 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1750 	  RTLD_LOCAL, lockstate);
1751     }
1752 }
1753 
1754 static void
1755 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1756 {
1757 
1758     lock_restart_for_upgrade(lockstate);
1759     if (!obj->filtees_loaded) {
1760 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1761 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1762 	obj->filtees_loaded = true;
1763     }
1764 }
1765 
1766 static int
1767 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1768 {
1769     Obj_Entry *obj1;
1770 
1771     for (; needed != NULL; needed = needed->next) {
1772 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1773 	  flags & ~RTLD_LO_NOLOAD);
1774 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1775 	    return (-1);
1776 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1777 	    dbg("obj %s nodelete", obj1->path);
1778 	    init_dag(obj1);
1779 	    ref_dag(obj1);
1780 	    obj1->ref_nodel = true;
1781 	}
1782     }
1783     return (0);
1784 }
1785 
1786 /*
1787  * Given a shared object, traverse its list of needed objects, and load
1788  * each of them.  Returns 0 on success.  Generates an error message and
1789  * returns -1 on failure.
1790  */
1791 static int
1792 load_needed_objects(Obj_Entry *first, int flags)
1793 {
1794     Obj_Entry *obj;
1795 
1796     for (obj = first;  obj != NULL;  obj = obj->next) {
1797 	if (process_needed(obj, obj->needed, flags) == -1)
1798 	    return (-1);
1799     }
1800     return (0);
1801 }
1802 
1803 static int
1804 load_preload_objects(void)
1805 {
1806     char *p = ld_preload;
1807     static const char delim[] = " \t:;";
1808 
1809     if (p == NULL)
1810 	return 0;
1811 
1812     p += strspn(p, delim);
1813     while (*p != '\0') {
1814 	size_t len = strcspn(p, delim);
1815 	char savech;
1816 
1817 	savech = p[len];
1818 	p[len] = '\0';
1819 	if (load_object(p, -1, NULL, 0) == NULL)
1820 	    return -1;	/* XXX - cleanup */
1821 	p[len] = savech;
1822 	p += len;
1823 	p += strspn(p, delim);
1824     }
1825     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1826     return 0;
1827 }
1828 
1829 static const char *
1830 printable_path(const char *path)
1831 {
1832 
1833 	return (path == NULL ? "<unknown>" : path);
1834 }
1835 
1836 /*
1837  * Load a shared object into memory, if it is not already loaded.  The
1838  * object may be specified by name or by user-supplied file descriptor
1839  * fd_u. In the later case, the fd_u descriptor is not closed, but its
1840  * duplicate is.
1841  *
1842  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1843  * on failure.
1844  */
1845 static Obj_Entry *
1846 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
1847 {
1848     Obj_Entry *obj;
1849     int fd;
1850     struct stat sb;
1851     char *path;
1852 
1853     if (name != NULL) {
1854 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1855 	    if (object_match_name(obj, name))
1856 		return (obj);
1857 	}
1858 
1859 	path = find_library(name, refobj);
1860 	if (path == NULL)
1861 	    return (NULL);
1862     } else
1863 	path = NULL;
1864 
1865     /*
1866      * If we didn't find a match by pathname, or the name is not
1867      * supplied, open the file and check again by device and inode.
1868      * This avoids false mismatches caused by multiple links or ".."
1869      * in pathnames.
1870      *
1871      * To avoid a race, we open the file and use fstat() rather than
1872      * using stat().
1873      */
1874     fd = -1;
1875     if (fd_u == -1) {
1876 	if ((fd = open(path, O_RDONLY)) == -1) {
1877 	    _rtld_error("Cannot open \"%s\"", path);
1878 	    free(path);
1879 	    return (NULL);
1880 	}
1881     } else {
1882 	fd = dup(fd_u);
1883 	if (fd == -1) {
1884 	    _rtld_error("Cannot dup fd");
1885 	    free(path);
1886 	    return (NULL);
1887 	}
1888     }
1889     if (fstat(fd, &sb) == -1) {
1890 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
1891 	close(fd);
1892 	free(path);
1893 	return NULL;
1894     }
1895     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1896 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1897 	    break;
1898     if (obj != NULL && name != NULL) {
1899 	object_add_name(obj, name);
1900 	free(path);
1901 	close(fd);
1902 	return obj;
1903     }
1904     if (flags & RTLD_LO_NOLOAD) {
1905 	free(path);
1906 	close(fd);
1907 	return (NULL);
1908     }
1909 
1910     /* First use of this object, so we must map it in */
1911     obj = do_load_object(fd, name, path, &sb, flags);
1912     if (obj == NULL)
1913 	free(path);
1914     close(fd);
1915 
1916     return obj;
1917 }
1918 
1919 static Obj_Entry *
1920 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1921   int flags)
1922 {
1923     Obj_Entry *obj;
1924     struct statfs fs;
1925 
1926     /*
1927      * but first, make sure that environment variables haven't been
1928      * used to circumvent the noexec flag on a filesystem.
1929      */
1930     if (dangerous_ld_env) {
1931 	if (fstatfs(fd, &fs) != 0) {
1932 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
1933 	    return NULL;
1934 	}
1935 	if (fs.f_flags & MNT_NOEXEC) {
1936 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1937 	    return NULL;
1938 	}
1939     }
1940     dbg("loading \"%s\"", printable_path(path));
1941     obj = map_object(fd, printable_path(path), sbp);
1942     if (obj == NULL)
1943         return NULL;
1944 
1945     /*
1946      * If DT_SONAME is present in the object, digest_dynamic2 already
1947      * added it to the object names.
1948      */
1949     if (name != NULL)
1950 	object_add_name(obj, name);
1951     obj->path = path;
1952     digest_dynamic(obj, 0);
1953     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
1954 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
1955     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1956       RTLD_LO_DLOPEN) {
1957 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1958 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1959 	munmap(obj->mapbase, obj->mapsize);
1960 	obj_free(obj);
1961 	return (NULL);
1962     }
1963 
1964     *obj_tail = obj;
1965     obj_tail = &obj->next;
1966     obj_count++;
1967     obj_loads++;
1968     linkmap_add(obj);	/* for GDB & dlinfo() */
1969     max_stack_flags |= obj->stack_flags;
1970 
1971     dbg("  %p .. %p: %s", obj->mapbase,
1972          obj->mapbase + obj->mapsize - 1, obj->path);
1973     if (obj->textrel)
1974 	dbg("  WARNING: %s has impure text", obj->path);
1975     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1976 	obj->path);
1977 
1978     return obj;
1979 }
1980 
1981 static Obj_Entry *
1982 obj_from_addr(const void *addr)
1983 {
1984     Obj_Entry *obj;
1985 
1986     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1987 	if (addr < (void *) obj->mapbase)
1988 	    continue;
1989 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1990 	    return obj;
1991     }
1992     return NULL;
1993 }
1994 
1995 static void
1996 preinit_main(void)
1997 {
1998     Elf_Addr *preinit_addr;
1999     int index;
2000 
2001     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2002     if (preinit_addr == NULL)
2003 	return;
2004 
2005     for (index = 0; index < obj_main->preinit_array_num; index++) {
2006 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2007 	    dbg("calling preinit function for %s at %p", obj_main->path,
2008 	      (void *)preinit_addr[index]);
2009 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2010 	      0, 0, obj_main->path);
2011 	    call_init_pointer(obj_main, preinit_addr[index]);
2012 	}
2013     }
2014 }
2015 
2016 /*
2017  * Call the finalization functions for each of the objects in "list"
2018  * belonging to the DAG of "root" and referenced once. If NULL "root"
2019  * is specified, every finalization function will be called regardless
2020  * of the reference count and the list elements won't be freed. All of
2021  * the objects are expected to have non-NULL fini functions.
2022  */
2023 static void
2024 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2025 {
2026     Objlist_Entry *elm;
2027     char *saved_msg;
2028     Elf_Addr *fini_addr;
2029     int index;
2030 
2031     assert(root == NULL || root->refcount == 1);
2032 
2033     /*
2034      * Preserve the current error message since a fini function might
2035      * call into the dynamic linker and overwrite it.
2036      */
2037     saved_msg = errmsg_save();
2038     do {
2039 	STAILQ_FOREACH(elm, list, link) {
2040 	    if (root != NULL && (elm->obj->refcount != 1 ||
2041 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2042 		continue;
2043 	    /* Remove object from fini list to prevent recursive invocation. */
2044 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2045 	    /*
2046 	     * XXX: If a dlopen() call references an object while the
2047 	     * fini function is in progress, we might end up trying to
2048 	     * unload the referenced object in dlclose() or the object
2049 	     * won't be unloaded although its fini function has been
2050 	     * called.
2051 	     */
2052 	    lock_release(rtld_bind_lock, lockstate);
2053 
2054 	    /*
2055 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2056 	     * When this happens, DT_FINI_ARRAY is processed first.
2057 	     */
2058 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2059 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2060 		for (index = elm->obj->fini_array_num - 1; index >= 0;
2061 		  index--) {
2062 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2063 			dbg("calling fini function for %s at %p",
2064 			    elm->obj->path, (void *)fini_addr[index]);
2065 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2066 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2067 			call_initfini_pointer(elm->obj, fini_addr[index]);
2068 		    }
2069 		}
2070 	    }
2071 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2072 		dbg("calling fini function for %s at %p", elm->obj->path,
2073 		    (void *)elm->obj->fini);
2074 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2075 		    0, 0, elm->obj->path);
2076 		call_initfini_pointer(elm->obj, elm->obj->fini);
2077 	    }
2078 	    wlock_acquire(rtld_bind_lock, lockstate);
2079 	    /* No need to free anything if process is going down. */
2080 	    if (root != NULL)
2081 	    	free(elm);
2082 	    /*
2083 	     * We must restart the list traversal after every fini call
2084 	     * because a dlclose() call from the fini function or from
2085 	     * another thread might have modified the reference counts.
2086 	     */
2087 	    break;
2088 	}
2089     } while (elm != NULL);
2090     errmsg_restore(saved_msg);
2091 }
2092 
2093 /*
2094  * Call the initialization functions for each of the objects in
2095  * "list".  All of the objects are expected to have non-NULL init
2096  * functions.
2097  */
2098 static void
2099 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2100 {
2101     Objlist_Entry *elm;
2102     Obj_Entry *obj;
2103     char *saved_msg;
2104     Elf_Addr *init_addr;
2105     int index;
2106 
2107     /*
2108      * Clean init_scanned flag so that objects can be rechecked and
2109      * possibly initialized earlier if any of vectors called below
2110      * cause the change by using dlopen.
2111      */
2112     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2113 	obj->init_scanned = false;
2114 
2115     /*
2116      * Preserve the current error message since an init function might
2117      * call into the dynamic linker and overwrite it.
2118      */
2119     saved_msg = errmsg_save();
2120     STAILQ_FOREACH(elm, list, link) {
2121 	if (elm->obj->init_done) /* Initialized early. */
2122 	    continue;
2123 	/*
2124 	 * Race: other thread might try to use this object before current
2125 	 * one completes the initilization. Not much can be done here
2126 	 * without better locking.
2127 	 */
2128 	elm->obj->init_done = true;
2129 	lock_release(rtld_bind_lock, lockstate);
2130 
2131         /*
2132          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2133          * When this happens, DT_INIT is processed first.
2134          */
2135 	if (elm->obj->init != (Elf_Addr)NULL) {
2136 	    dbg("calling init function for %s at %p", elm->obj->path,
2137 	        (void *)elm->obj->init);
2138 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2139 	        0, 0, elm->obj->path);
2140 	    call_initfini_pointer(elm->obj, elm->obj->init);
2141 	}
2142 	init_addr = (Elf_Addr *)elm->obj->init_array;
2143 	if (init_addr != NULL) {
2144 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2145 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2146 		    dbg("calling init function for %s at %p", elm->obj->path,
2147 			(void *)init_addr[index]);
2148 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2149 			(void *)init_addr[index], 0, 0, elm->obj->path);
2150 		    call_init_pointer(elm->obj, init_addr[index]);
2151 		}
2152 	    }
2153 	}
2154 	wlock_acquire(rtld_bind_lock, lockstate);
2155     }
2156     errmsg_restore(saved_msg);
2157 }
2158 
2159 static void
2160 objlist_clear(Objlist *list)
2161 {
2162     Objlist_Entry *elm;
2163 
2164     while (!STAILQ_EMPTY(list)) {
2165 	elm = STAILQ_FIRST(list);
2166 	STAILQ_REMOVE_HEAD(list, link);
2167 	free(elm);
2168     }
2169 }
2170 
2171 static Objlist_Entry *
2172 objlist_find(Objlist *list, const Obj_Entry *obj)
2173 {
2174     Objlist_Entry *elm;
2175 
2176     STAILQ_FOREACH(elm, list, link)
2177 	if (elm->obj == obj)
2178 	    return elm;
2179     return NULL;
2180 }
2181 
2182 static void
2183 objlist_init(Objlist *list)
2184 {
2185     STAILQ_INIT(list);
2186 }
2187 
2188 static void
2189 objlist_push_head(Objlist *list, Obj_Entry *obj)
2190 {
2191     Objlist_Entry *elm;
2192 
2193     elm = NEW(Objlist_Entry);
2194     elm->obj = obj;
2195     STAILQ_INSERT_HEAD(list, elm, link);
2196 }
2197 
2198 static void
2199 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2200 {
2201     Objlist_Entry *elm;
2202 
2203     elm = NEW(Objlist_Entry);
2204     elm->obj = obj;
2205     STAILQ_INSERT_TAIL(list, elm, link);
2206 }
2207 
2208 static void
2209 objlist_remove(Objlist *list, Obj_Entry *obj)
2210 {
2211     Objlist_Entry *elm;
2212 
2213     if ((elm = objlist_find(list, obj)) != NULL) {
2214 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2215 	free(elm);
2216     }
2217 }
2218 
2219 /*
2220  * Relocate newly-loaded shared objects.  The argument is a pointer to
2221  * the Obj_Entry for the first such object.  All objects from the first
2222  * to the end of the list of objects are relocated.  Returns 0 on success,
2223  * or -1 on failure.
2224  */
2225 static int
2226 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2227     int flags, RtldLockState *lockstate)
2228 {
2229     Obj_Entry *obj;
2230 
2231     for (obj = first;  obj != NULL;  obj = obj->next) {
2232 	if (obj->relocated)
2233 	    continue;
2234 	obj->relocated = true;
2235 	if (obj != rtldobj)
2236 	    dbg("relocating \"%s\"", obj->path);
2237 
2238 	if (obj->symtab == NULL || obj->strtab == NULL ||
2239 	  !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2240 	    _rtld_error("%s: Shared object has no run-time symbol table",
2241 	      obj->path);
2242 	    return -1;
2243 	}
2244 
2245 	if (obj->textrel) {
2246 	    /* There are relocations to the write-protected text segment. */
2247 	    if (mprotect(obj->mapbase, obj->textsize,
2248 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2249 		_rtld_error("%s: Cannot write-enable text segment: %s",
2250 		  obj->path, rtld_strerror(errno));
2251 		return -1;
2252 	    }
2253 	}
2254 
2255 	/* Process the non-PLT relocations. */
2256 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2257 		return -1;
2258 
2259 	if (obj->textrel) {	/* Re-protected the text segment. */
2260 	    if (mprotect(obj->mapbase, obj->textsize,
2261 	      PROT_READ|PROT_EXEC) == -1) {
2262 		_rtld_error("%s: Cannot write-protect text segment: %s",
2263 		  obj->path, rtld_strerror(errno));
2264 		return -1;
2265 	    }
2266 	}
2267 
2268 
2269 	/* Set the special PLT or GOT entries. */
2270 	init_pltgot(obj);
2271 
2272 	/* Process the PLT relocations. */
2273 	if (reloc_plt(obj) == -1)
2274 	    return -1;
2275 	/* Relocate the jump slots if we are doing immediate binding. */
2276 	if (obj->bind_now || bind_now)
2277 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2278 		return -1;
2279 
2280 	if (obj->relro_size > 0) {
2281 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2282 		_rtld_error("%s: Cannot enforce relro protection: %s",
2283 		  obj->path, rtld_strerror(errno));
2284 		return -1;
2285 	    }
2286 	}
2287 
2288 	/*
2289 	 * Set up the magic number and version in the Obj_Entry.  These
2290 	 * were checked in the crt1.o from the original ElfKit, so we
2291 	 * set them for backward compatibility.
2292 	 */
2293 	obj->magic = RTLD_MAGIC;
2294 	obj->version = RTLD_VERSION;
2295     }
2296 
2297     return (0);
2298 }
2299 
2300 /*
2301  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2302  * referencing STT_GNU_IFUNC symbols is postponed till the other
2303  * relocations are done.  The indirect functions specified as
2304  * ifunc are allowed to call other symbols, so we need to have
2305  * objects relocated before asking for resolution from indirects.
2306  *
2307  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2308  * instead of the usual lazy handling of PLT slots.  It is
2309  * consistent with how GNU does it.
2310  */
2311 static int
2312 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2313     RtldLockState *lockstate)
2314 {
2315 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2316 		return (-1);
2317 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2318 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2319 		return (-1);
2320 	return (0);
2321 }
2322 
2323 static int
2324 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2325     RtldLockState *lockstate)
2326 {
2327 	Obj_Entry *obj;
2328 
2329 	for (obj = first;  obj != NULL;  obj = obj->next) {
2330 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2331 			return (-1);
2332 	}
2333 	return (0);
2334 }
2335 
2336 static int
2337 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2338     RtldLockState *lockstate)
2339 {
2340 	Objlist_Entry *elm;
2341 
2342 	STAILQ_FOREACH(elm, list, link) {
2343 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2344 		    lockstate) == -1)
2345 			return (-1);
2346 	}
2347 	return (0);
2348 }
2349 
2350 /*
2351  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2352  * before the process exits.
2353  */
2354 static void
2355 rtld_exit(void)
2356 {
2357     RtldLockState lockstate;
2358 
2359     wlock_acquire(rtld_bind_lock, &lockstate);
2360     dbg("rtld_exit()");
2361     objlist_call_fini(&list_fini, NULL, &lockstate);
2362     /* No need to remove the items from the list, since we are exiting. */
2363     if (!libmap_disable)
2364         lm_fini();
2365     lock_release(rtld_bind_lock, &lockstate);
2366 }
2367 
2368 static void *
2369 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2370 {
2371 #ifdef COMPAT_32BIT
2372     const char *trans;
2373 #endif
2374     if (path == NULL)
2375 	return (NULL);
2376 
2377     path += strspn(path, ":;");
2378     while (*path != '\0') {
2379 	size_t len;
2380 	char  *res;
2381 
2382 	len = strcspn(path, ":;");
2383 #ifdef COMPAT_32BIT
2384 	trans = lm_findn(NULL, path, len);
2385 	if (trans)
2386 	    res = callback(trans, strlen(trans), arg);
2387 	else
2388 #endif
2389 	res = callback(path, len, arg);
2390 
2391 	if (res != NULL)
2392 	    return (res);
2393 
2394 	path += len;
2395 	path += strspn(path, ":;");
2396     }
2397 
2398     return (NULL);
2399 }
2400 
2401 struct try_library_args {
2402     const char	*name;
2403     size_t	 namelen;
2404     char	*buffer;
2405     size_t	 buflen;
2406 };
2407 
2408 static void *
2409 try_library_path(const char *dir, size_t dirlen, void *param)
2410 {
2411     struct try_library_args *arg;
2412 
2413     arg = param;
2414     if (*dir == '/' || trust) {
2415 	char *pathname;
2416 
2417 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2418 		return (NULL);
2419 
2420 	pathname = arg->buffer;
2421 	strncpy(pathname, dir, dirlen);
2422 	pathname[dirlen] = '/';
2423 	strcpy(pathname + dirlen + 1, arg->name);
2424 
2425 	dbg("  Trying \"%s\"", pathname);
2426 	if (access(pathname, F_OK) == 0) {		/* We found it */
2427 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2428 	    strcpy(pathname, arg->buffer);
2429 	    return (pathname);
2430 	}
2431     }
2432     return (NULL);
2433 }
2434 
2435 static char *
2436 search_library_path(const char *name, const char *path)
2437 {
2438     char *p;
2439     struct try_library_args arg;
2440 
2441     if (path == NULL)
2442 	return NULL;
2443 
2444     arg.name = name;
2445     arg.namelen = strlen(name);
2446     arg.buffer = xmalloc(PATH_MAX);
2447     arg.buflen = PATH_MAX;
2448 
2449     p = path_enumerate(path, try_library_path, &arg);
2450 
2451     free(arg.buffer);
2452 
2453     return (p);
2454 }
2455 
2456 int
2457 dlclose(void *handle)
2458 {
2459     Obj_Entry *root;
2460     RtldLockState lockstate;
2461 
2462     wlock_acquire(rtld_bind_lock, &lockstate);
2463     root = dlcheck(handle);
2464     if (root == NULL) {
2465 	lock_release(rtld_bind_lock, &lockstate);
2466 	return -1;
2467     }
2468     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2469 	root->path);
2470 
2471     /* Unreference the object and its dependencies. */
2472     root->dl_refcount--;
2473 
2474     if (root->refcount == 1) {
2475 	/*
2476 	 * The object will be no longer referenced, so we must unload it.
2477 	 * First, call the fini functions.
2478 	 */
2479 	objlist_call_fini(&list_fini, root, &lockstate);
2480 
2481 	unref_dag(root);
2482 
2483 	/* Finish cleaning up the newly-unreferenced objects. */
2484 	GDB_STATE(RT_DELETE,&root->linkmap);
2485 	unload_object(root);
2486 	GDB_STATE(RT_CONSISTENT,NULL);
2487     } else
2488 	unref_dag(root);
2489 
2490     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2491     lock_release(rtld_bind_lock, &lockstate);
2492     return 0;
2493 }
2494 
2495 char *
2496 dlerror(void)
2497 {
2498     char *msg = error_message;
2499     error_message = NULL;
2500     return msg;
2501 }
2502 
2503 /*
2504  * This function is deprecated and has no effect.
2505  */
2506 void
2507 dllockinit(void *context,
2508 	   void *(*lock_create)(void *context),
2509            void (*rlock_acquire)(void *lock),
2510            void (*wlock_acquire)(void *lock),
2511            void (*lock_release)(void *lock),
2512            void (*lock_destroy)(void *lock),
2513 	   void (*context_destroy)(void *context))
2514 {
2515     static void *cur_context;
2516     static void (*cur_context_destroy)(void *);
2517 
2518     /* Just destroy the context from the previous call, if necessary. */
2519     if (cur_context_destroy != NULL)
2520 	cur_context_destroy(cur_context);
2521     cur_context = context;
2522     cur_context_destroy = context_destroy;
2523 }
2524 
2525 void *
2526 dlopen(const char *name, int mode)
2527 {
2528 
2529 	return (rtld_dlopen(name, -1, mode));
2530 }
2531 
2532 void *
2533 fdlopen(int fd, int mode)
2534 {
2535 
2536 	return (rtld_dlopen(NULL, fd, mode));
2537 }
2538 
2539 static void *
2540 rtld_dlopen(const char *name, int fd, int mode)
2541 {
2542     RtldLockState lockstate;
2543     int lo_flags;
2544 
2545     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2546     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2547     if (ld_tracing != NULL) {
2548 	rlock_acquire(rtld_bind_lock, &lockstate);
2549 	if (sigsetjmp(lockstate.env, 0) != 0)
2550 	    lock_upgrade(rtld_bind_lock, &lockstate);
2551 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2552 	lock_release(rtld_bind_lock, &lockstate);
2553     }
2554     lo_flags = RTLD_LO_DLOPEN;
2555     if (mode & RTLD_NODELETE)
2556 	    lo_flags |= RTLD_LO_NODELETE;
2557     if (mode & RTLD_NOLOAD)
2558 	    lo_flags |= RTLD_LO_NOLOAD;
2559     if (ld_tracing != NULL)
2560 	    lo_flags |= RTLD_LO_TRACE;
2561 
2562     return (dlopen_object(name, fd, obj_main, lo_flags,
2563       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2564 }
2565 
2566 static void
2567 dlopen_cleanup(Obj_Entry *obj)
2568 {
2569 
2570 	obj->dl_refcount--;
2571 	unref_dag(obj);
2572 	if (obj->refcount == 0)
2573 		unload_object(obj);
2574 }
2575 
2576 static Obj_Entry *
2577 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2578     int mode, RtldLockState *lockstate)
2579 {
2580     Obj_Entry **old_obj_tail;
2581     Obj_Entry *obj;
2582     Objlist initlist;
2583     RtldLockState mlockstate;
2584     int result;
2585 
2586     objlist_init(&initlist);
2587 
2588     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2589 	wlock_acquire(rtld_bind_lock, &mlockstate);
2590 	lockstate = &mlockstate;
2591     }
2592     GDB_STATE(RT_ADD,NULL);
2593 
2594     old_obj_tail = obj_tail;
2595     obj = NULL;
2596     if (name == NULL && fd == -1) {
2597 	obj = obj_main;
2598 	obj->refcount++;
2599     } else {
2600 	obj = load_object(name, fd, refobj, lo_flags);
2601     }
2602 
2603     if (obj) {
2604 	obj->dl_refcount++;
2605 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2606 	    objlist_push_tail(&list_global, obj);
2607 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2608 	    assert(*old_obj_tail == obj);
2609 	    result = load_needed_objects(obj,
2610 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2611 	    init_dag(obj);
2612 	    ref_dag(obj);
2613 	    if (result != -1)
2614 		result = rtld_verify_versions(&obj->dagmembers);
2615 	    if (result != -1 && ld_tracing)
2616 		goto trace;
2617 	    if (result == -1 || (relocate_objects(obj,
2618 	     (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2619 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2620 	      lockstate)) == -1) {
2621 		dlopen_cleanup(obj);
2622 		obj = NULL;
2623 	    } else if (lo_flags & RTLD_LO_EARLY) {
2624 		/*
2625 		 * Do not call the init functions for early loaded
2626 		 * filtees.  The image is still not initialized enough
2627 		 * for them to work.
2628 		 *
2629 		 * Our object is found by the global object list and
2630 		 * will be ordered among all init calls done right
2631 		 * before transferring control to main.
2632 		 */
2633 	    } else {
2634 		/* Make list of init functions to call. */
2635 		initlist_add_objects(obj, &obj->next, &initlist);
2636 	    }
2637 	} else {
2638 
2639 	    /*
2640 	     * Bump the reference counts for objects on this DAG.  If
2641 	     * this is the first dlopen() call for the object that was
2642 	     * already loaded as a dependency, initialize the dag
2643 	     * starting at it.
2644 	     */
2645 	    init_dag(obj);
2646 	    ref_dag(obj);
2647 
2648 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2649 		goto trace;
2650 	}
2651 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2652 	  obj->z_nodelete) && !obj->ref_nodel) {
2653 	    dbg("obj %s nodelete", obj->path);
2654 	    ref_dag(obj);
2655 	    obj->z_nodelete = obj->ref_nodel = true;
2656 	}
2657     }
2658 
2659     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2660 	name);
2661     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2662 
2663     if (!(lo_flags & RTLD_LO_EARLY)) {
2664 	map_stacks_exec(lockstate);
2665     }
2666 
2667     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2668       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2669       lockstate) == -1) {
2670 	objlist_clear(&initlist);
2671 	dlopen_cleanup(obj);
2672 	if (lockstate == &mlockstate)
2673 	    lock_release(rtld_bind_lock, lockstate);
2674 	return (NULL);
2675     }
2676 
2677     if (!(lo_flags & RTLD_LO_EARLY)) {
2678 	/* Call the init functions. */
2679 	objlist_call_init(&initlist, lockstate);
2680     }
2681     objlist_clear(&initlist);
2682     if (lockstate == &mlockstate)
2683 	lock_release(rtld_bind_lock, lockstate);
2684     return obj;
2685 trace:
2686     trace_loaded_objects(obj);
2687     if (lockstate == &mlockstate)
2688 	lock_release(rtld_bind_lock, lockstate);
2689     exit(0);
2690 }
2691 
2692 static void *
2693 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2694     int flags)
2695 {
2696     DoneList donelist;
2697     const Obj_Entry *obj, *defobj;
2698     const Elf_Sym *def;
2699     SymLook req;
2700     RtldLockState lockstate;
2701 #ifndef __ia64__
2702     tls_index ti;
2703 #endif
2704     int res;
2705 
2706     def = NULL;
2707     defobj = NULL;
2708     symlook_init(&req, name);
2709     req.ventry = ve;
2710     req.flags = flags | SYMLOOK_IN_PLT;
2711     req.lockstate = &lockstate;
2712 
2713     rlock_acquire(rtld_bind_lock, &lockstate);
2714     if (sigsetjmp(lockstate.env, 0) != 0)
2715 	    lock_upgrade(rtld_bind_lock, &lockstate);
2716     if (handle == NULL || handle == RTLD_NEXT ||
2717 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2718 
2719 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2720 	    _rtld_error("Cannot determine caller's shared object");
2721 	    lock_release(rtld_bind_lock, &lockstate);
2722 	    return NULL;
2723 	}
2724 	if (handle == NULL) {	/* Just the caller's shared object. */
2725 	    res = symlook_obj(&req, obj);
2726 	    if (res == 0) {
2727 		def = req.sym_out;
2728 		defobj = req.defobj_out;
2729 	    }
2730 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2731 		   handle == RTLD_SELF) { /* ... caller included */
2732 	    if (handle == RTLD_NEXT)
2733 		obj = obj->next;
2734 	    for (; obj != NULL; obj = obj->next) {
2735 		res = symlook_obj(&req, obj);
2736 		if (res == 0) {
2737 		    if (def == NULL ||
2738 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2739 			def = req.sym_out;
2740 			defobj = req.defobj_out;
2741 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2742 			    break;
2743 		    }
2744 		}
2745 	    }
2746 	    /*
2747 	     * Search the dynamic linker itself, and possibly resolve the
2748 	     * symbol from there.  This is how the application links to
2749 	     * dynamic linker services such as dlopen.
2750 	     */
2751 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2752 		res = symlook_obj(&req, &obj_rtld);
2753 		if (res == 0) {
2754 		    def = req.sym_out;
2755 		    defobj = req.defobj_out;
2756 		}
2757 	    }
2758 	} else {
2759 	    assert(handle == RTLD_DEFAULT);
2760 	    res = symlook_default(&req, obj);
2761 	    if (res == 0) {
2762 		defobj = req.defobj_out;
2763 		def = req.sym_out;
2764 	    }
2765 	}
2766     } else {
2767 	if ((obj = dlcheck(handle)) == NULL) {
2768 	    lock_release(rtld_bind_lock, &lockstate);
2769 	    return NULL;
2770 	}
2771 
2772 	donelist_init(&donelist);
2773 	if (obj->mainprog) {
2774             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2775 	    res = symlook_global(&req, &donelist);
2776 	    if (res == 0) {
2777 		def = req.sym_out;
2778 		defobj = req.defobj_out;
2779 	    }
2780 	    /*
2781 	     * Search the dynamic linker itself, and possibly resolve the
2782 	     * symbol from there.  This is how the application links to
2783 	     * dynamic linker services such as dlopen.
2784 	     */
2785 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2786 		res = symlook_obj(&req, &obj_rtld);
2787 		if (res == 0) {
2788 		    def = req.sym_out;
2789 		    defobj = req.defobj_out;
2790 		}
2791 	    }
2792 	}
2793 	else {
2794 	    /* Search the whole DAG rooted at the given object. */
2795 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2796 	    if (res == 0) {
2797 		def = req.sym_out;
2798 		defobj = req.defobj_out;
2799 	    }
2800 	}
2801     }
2802 
2803     if (def != NULL) {
2804 	lock_release(rtld_bind_lock, &lockstate);
2805 
2806 	/*
2807 	 * The value required by the caller is derived from the value
2808 	 * of the symbol. For the ia64 architecture, we need to
2809 	 * construct a function descriptor which the caller can use to
2810 	 * call the function with the right 'gp' value. For other
2811 	 * architectures and for non-functions, the value is simply
2812 	 * the relocated value of the symbol.
2813 	 */
2814 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2815 	    return (make_function_pointer(def, defobj));
2816 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2817 	    return (rtld_resolve_ifunc(defobj, def));
2818 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
2819 #ifdef __ia64__
2820 	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
2821 #else
2822 	    ti.ti_module = defobj->tlsindex;
2823 	    ti.ti_offset = def->st_value;
2824 	    return (__tls_get_addr(&ti));
2825 #endif
2826 	} else
2827 	    return (defobj->relocbase + def->st_value);
2828     }
2829 
2830     _rtld_error("Undefined symbol \"%s\"", name);
2831     lock_release(rtld_bind_lock, &lockstate);
2832     return NULL;
2833 }
2834 
2835 void *
2836 dlsym(void *handle, const char *name)
2837 {
2838 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2839 	    SYMLOOK_DLSYM);
2840 }
2841 
2842 dlfunc_t
2843 dlfunc(void *handle, const char *name)
2844 {
2845 	union {
2846 		void *d;
2847 		dlfunc_t f;
2848 	} rv;
2849 
2850 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2851 	    SYMLOOK_DLSYM);
2852 	return (rv.f);
2853 }
2854 
2855 void *
2856 dlvsym(void *handle, const char *name, const char *version)
2857 {
2858 	Ver_Entry ventry;
2859 
2860 	ventry.name = version;
2861 	ventry.file = NULL;
2862 	ventry.hash = elf_hash(version);
2863 	ventry.flags= 0;
2864 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2865 	    SYMLOOK_DLSYM);
2866 }
2867 
2868 int
2869 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2870 {
2871     const Obj_Entry *obj;
2872     RtldLockState lockstate;
2873 
2874     rlock_acquire(rtld_bind_lock, &lockstate);
2875     obj = obj_from_addr(addr);
2876     if (obj == NULL) {
2877         _rtld_error("No shared object contains address");
2878 	lock_release(rtld_bind_lock, &lockstate);
2879         return (0);
2880     }
2881     rtld_fill_dl_phdr_info(obj, phdr_info);
2882     lock_release(rtld_bind_lock, &lockstate);
2883     return (1);
2884 }
2885 
2886 int
2887 dladdr(const void *addr, Dl_info *info)
2888 {
2889     const Obj_Entry *obj;
2890     const Elf_Sym *def;
2891     void *symbol_addr;
2892     unsigned long symoffset;
2893     RtldLockState lockstate;
2894 
2895     rlock_acquire(rtld_bind_lock, &lockstate);
2896     obj = obj_from_addr(addr);
2897     if (obj == NULL) {
2898         _rtld_error("No shared object contains address");
2899 	lock_release(rtld_bind_lock, &lockstate);
2900         return 0;
2901     }
2902     info->dli_fname = obj->path;
2903     info->dli_fbase = obj->mapbase;
2904     info->dli_saddr = (void *)0;
2905     info->dli_sname = NULL;
2906 
2907     /*
2908      * Walk the symbol list looking for the symbol whose address is
2909      * closest to the address sent in.
2910      */
2911     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
2912         def = obj->symtab + symoffset;
2913 
2914         /*
2915          * For skip the symbol if st_shndx is either SHN_UNDEF or
2916          * SHN_COMMON.
2917          */
2918         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2919             continue;
2920 
2921         /*
2922          * If the symbol is greater than the specified address, or if it
2923          * is further away from addr than the current nearest symbol,
2924          * then reject it.
2925          */
2926         symbol_addr = obj->relocbase + def->st_value;
2927         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2928             continue;
2929 
2930         /* Update our idea of the nearest symbol. */
2931         info->dli_sname = obj->strtab + def->st_name;
2932         info->dli_saddr = symbol_addr;
2933 
2934         /* Exact match? */
2935         if (info->dli_saddr == addr)
2936             break;
2937     }
2938     lock_release(rtld_bind_lock, &lockstate);
2939     return 1;
2940 }
2941 
2942 int
2943 dlinfo(void *handle, int request, void *p)
2944 {
2945     const Obj_Entry *obj;
2946     RtldLockState lockstate;
2947     int error;
2948 
2949     rlock_acquire(rtld_bind_lock, &lockstate);
2950 
2951     if (handle == NULL || handle == RTLD_SELF) {
2952 	void *retaddr;
2953 
2954 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2955 	if ((obj = obj_from_addr(retaddr)) == NULL)
2956 	    _rtld_error("Cannot determine caller's shared object");
2957     } else
2958 	obj = dlcheck(handle);
2959 
2960     if (obj == NULL) {
2961 	lock_release(rtld_bind_lock, &lockstate);
2962 	return (-1);
2963     }
2964 
2965     error = 0;
2966     switch (request) {
2967     case RTLD_DI_LINKMAP:
2968 	*((struct link_map const **)p) = &obj->linkmap;
2969 	break;
2970     case RTLD_DI_ORIGIN:
2971 	error = rtld_dirname(obj->path, p);
2972 	break;
2973 
2974     case RTLD_DI_SERINFOSIZE:
2975     case RTLD_DI_SERINFO:
2976 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2977 	break;
2978 
2979     default:
2980 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2981 	error = -1;
2982     }
2983 
2984     lock_release(rtld_bind_lock, &lockstate);
2985 
2986     return (error);
2987 }
2988 
2989 static void
2990 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2991 {
2992 
2993 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2994 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2995 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2996 	phdr_info->dlpi_phdr = obj->phdr;
2997 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2998 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2999 	phdr_info->dlpi_tls_data = obj->tlsinit;
3000 	phdr_info->dlpi_adds = obj_loads;
3001 	phdr_info->dlpi_subs = obj_loads - obj_count;
3002 }
3003 
3004 int
3005 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3006 {
3007     struct dl_phdr_info phdr_info;
3008     const Obj_Entry *obj;
3009     RtldLockState bind_lockstate, phdr_lockstate;
3010     int error;
3011 
3012     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3013     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3014 
3015     error = 0;
3016 
3017     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3018 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3019 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3020 		break;
3021 
3022     }
3023     lock_release(rtld_bind_lock, &bind_lockstate);
3024     lock_release(rtld_phdr_lock, &phdr_lockstate);
3025 
3026     return (error);
3027 }
3028 
3029 struct fill_search_info_args {
3030     int		 request;
3031     unsigned int flags;
3032     Dl_serinfo  *serinfo;
3033     Dl_serpath  *serpath;
3034     char	*strspace;
3035 };
3036 
3037 static void *
3038 fill_search_info(const char *dir, size_t dirlen, void *param)
3039 {
3040     struct fill_search_info_args *arg;
3041 
3042     arg = param;
3043 
3044     if (arg->request == RTLD_DI_SERINFOSIZE) {
3045 	arg->serinfo->dls_cnt ++;
3046 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
3047     } else {
3048 	struct dl_serpath *s_entry;
3049 
3050 	s_entry = arg->serpath;
3051 	s_entry->dls_name  = arg->strspace;
3052 	s_entry->dls_flags = arg->flags;
3053 
3054 	strncpy(arg->strspace, dir, dirlen);
3055 	arg->strspace[dirlen] = '\0';
3056 
3057 	arg->strspace += dirlen + 1;
3058 	arg->serpath++;
3059     }
3060 
3061     return (NULL);
3062 }
3063 
3064 static int
3065 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3066 {
3067     struct dl_serinfo _info;
3068     struct fill_search_info_args args;
3069 
3070     args.request = RTLD_DI_SERINFOSIZE;
3071     args.serinfo = &_info;
3072 
3073     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3074     _info.dls_cnt  = 0;
3075 
3076     path_enumerate(ld_library_path, fill_search_info, &args);
3077     path_enumerate(obj->rpath, fill_search_info, &args);
3078     path_enumerate(gethints(), fill_search_info, &args);
3079     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3080 
3081 
3082     if (request == RTLD_DI_SERINFOSIZE) {
3083 	info->dls_size = _info.dls_size;
3084 	info->dls_cnt = _info.dls_cnt;
3085 	return (0);
3086     }
3087 
3088     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3089 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3090 	return (-1);
3091     }
3092 
3093     args.request  = RTLD_DI_SERINFO;
3094     args.serinfo  = info;
3095     args.serpath  = &info->dls_serpath[0];
3096     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3097 
3098     args.flags = LA_SER_LIBPATH;
3099     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3100 	return (-1);
3101 
3102     args.flags = LA_SER_RUNPATH;
3103     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3104 	return (-1);
3105 
3106     args.flags = LA_SER_CONFIG;
3107     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
3108 	return (-1);
3109 
3110     args.flags = LA_SER_DEFAULT;
3111     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3112 	return (-1);
3113     return (0);
3114 }
3115 
3116 static int
3117 rtld_dirname(const char *path, char *bname)
3118 {
3119     const char *endp;
3120 
3121     /* Empty or NULL string gets treated as "." */
3122     if (path == NULL || *path == '\0') {
3123 	bname[0] = '.';
3124 	bname[1] = '\0';
3125 	return (0);
3126     }
3127 
3128     /* Strip trailing slashes */
3129     endp = path + strlen(path) - 1;
3130     while (endp > path && *endp == '/')
3131 	endp--;
3132 
3133     /* Find the start of the dir */
3134     while (endp > path && *endp != '/')
3135 	endp--;
3136 
3137     /* Either the dir is "/" or there are no slashes */
3138     if (endp == path) {
3139 	bname[0] = *endp == '/' ? '/' : '.';
3140 	bname[1] = '\0';
3141 	return (0);
3142     } else {
3143 	do {
3144 	    endp--;
3145 	} while (endp > path && *endp == '/');
3146     }
3147 
3148     if (endp - path + 2 > PATH_MAX)
3149     {
3150 	_rtld_error("Filename is too long: %s", path);
3151 	return(-1);
3152     }
3153 
3154     strncpy(bname, path, endp - path + 1);
3155     bname[endp - path + 1] = '\0';
3156     return (0);
3157 }
3158 
3159 static int
3160 rtld_dirname_abs(const char *path, char *base)
3161 {
3162 	char base_rel[PATH_MAX];
3163 
3164 	if (rtld_dirname(path, base) == -1)
3165 		return (-1);
3166 	if (base[0] == '/')
3167 		return (0);
3168 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3169 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3170 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3171 		return (-1);
3172 	strcpy(base, base_rel);
3173 	return (0);
3174 }
3175 
3176 static void
3177 linkmap_add(Obj_Entry *obj)
3178 {
3179     struct link_map *l = &obj->linkmap;
3180     struct link_map *prev;
3181 
3182     obj->linkmap.l_name = obj->path;
3183     obj->linkmap.l_addr = obj->mapbase;
3184     obj->linkmap.l_ld = obj->dynamic;
3185 #ifdef __mips__
3186     /* GDB needs load offset on MIPS to use the symbols */
3187     obj->linkmap.l_offs = obj->relocbase;
3188 #endif
3189 
3190     if (r_debug.r_map == NULL) {
3191 	r_debug.r_map = l;
3192 	return;
3193     }
3194 
3195     /*
3196      * Scan to the end of the list, but not past the entry for the
3197      * dynamic linker, which we want to keep at the very end.
3198      */
3199     for (prev = r_debug.r_map;
3200       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3201       prev = prev->l_next)
3202 	;
3203 
3204     /* Link in the new entry. */
3205     l->l_prev = prev;
3206     l->l_next = prev->l_next;
3207     if (l->l_next != NULL)
3208 	l->l_next->l_prev = l;
3209     prev->l_next = l;
3210 }
3211 
3212 static void
3213 linkmap_delete(Obj_Entry *obj)
3214 {
3215     struct link_map *l = &obj->linkmap;
3216 
3217     if (l->l_prev == NULL) {
3218 	if ((r_debug.r_map = l->l_next) != NULL)
3219 	    l->l_next->l_prev = NULL;
3220 	return;
3221     }
3222 
3223     if ((l->l_prev->l_next = l->l_next) != NULL)
3224 	l->l_next->l_prev = l->l_prev;
3225 }
3226 
3227 /*
3228  * Function for the debugger to set a breakpoint on to gain control.
3229  *
3230  * The two parameters allow the debugger to easily find and determine
3231  * what the runtime loader is doing and to whom it is doing it.
3232  *
3233  * When the loadhook trap is hit (r_debug_state, set at program
3234  * initialization), the arguments can be found on the stack:
3235  *
3236  *  +8   struct link_map *m
3237  *  +4   struct r_debug  *rd
3238  *  +0   RetAddr
3239  */
3240 void
3241 r_debug_state(struct r_debug* rd, struct link_map *m)
3242 {
3243     /*
3244      * The following is a hack to force the compiler to emit calls to
3245      * this function, even when optimizing.  If the function is empty,
3246      * the compiler is not obliged to emit any code for calls to it,
3247      * even when marked __noinline.  However, gdb depends on those
3248      * calls being made.
3249      */
3250     __asm __volatile("" : : : "memory");
3251 }
3252 
3253 /*
3254  * Get address of the pointer variable in the main program.
3255  * Prefer non-weak symbol over the weak one.
3256  */
3257 static const void **
3258 get_program_var_addr(const char *name, RtldLockState *lockstate)
3259 {
3260     SymLook req;
3261     DoneList donelist;
3262 
3263     symlook_init(&req, name);
3264     req.lockstate = lockstate;
3265     donelist_init(&donelist);
3266     if (symlook_global(&req, &donelist) != 0)
3267 	return (NULL);
3268     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3269 	return ((const void **)make_function_pointer(req.sym_out,
3270 	  req.defobj_out));
3271     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3272 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3273     else
3274 	return ((const void **)(req.defobj_out->relocbase +
3275 	  req.sym_out->st_value));
3276 }
3277 
3278 /*
3279  * Set a pointer variable in the main program to the given value.  This
3280  * is used to set key variables such as "environ" before any of the
3281  * init functions are called.
3282  */
3283 static void
3284 set_program_var(const char *name, const void *value)
3285 {
3286     const void **addr;
3287 
3288     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3289 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3290 	*addr = value;
3291     }
3292 }
3293 
3294 /*
3295  * Search the global objects, including dependencies and main object,
3296  * for the given symbol.
3297  */
3298 static int
3299 symlook_global(SymLook *req, DoneList *donelist)
3300 {
3301     SymLook req1;
3302     const Objlist_Entry *elm;
3303     int res;
3304 
3305     symlook_init_from_req(&req1, req);
3306 
3307     /* Search all objects loaded at program start up. */
3308     if (req->defobj_out == NULL ||
3309       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3310 	res = symlook_list(&req1, &list_main, donelist);
3311 	if (res == 0 && (req->defobj_out == NULL ||
3312 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3313 	    req->sym_out = req1.sym_out;
3314 	    req->defobj_out = req1.defobj_out;
3315 	    assert(req->defobj_out != NULL);
3316 	}
3317     }
3318 
3319     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3320     STAILQ_FOREACH(elm, &list_global, link) {
3321 	if (req->defobj_out != NULL &&
3322 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3323 	    break;
3324 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3325 	if (res == 0 && (req->defobj_out == NULL ||
3326 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3327 	    req->sym_out = req1.sym_out;
3328 	    req->defobj_out = req1.defobj_out;
3329 	    assert(req->defobj_out != NULL);
3330 	}
3331     }
3332 
3333     return (req->sym_out != NULL ? 0 : ESRCH);
3334 }
3335 
3336 /*
3337  * Given a symbol name in a referencing object, find the corresponding
3338  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3339  * no definition was found.  Returns a pointer to the Obj_Entry of the
3340  * defining object via the reference parameter DEFOBJ_OUT.
3341  */
3342 static int
3343 symlook_default(SymLook *req, const Obj_Entry *refobj)
3344 {
3345     DoneList donelist;
3346     const Objlist_Entry *elm;
3347     SymLook req1;
3348     int res;
3349 
3350     donelist_init(&donelist);
3351     symlook_init_from_req(&req1, req);
3352 
3353     /* Look first in the referencing object if linked symbolically. */
3354     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3355 	res = symlook_obj(&req1, refobj);
3356 	if (res == 0) {
3357 	    req->sym_out = req1.sym_out;
3358 	    req->defobj_out = req1.defobj_out;
3359 	    assert(req->defobj_out != NULL);
3360 	}
3361     }
3362 
3363     symlook_global(req, &donelist);
3364 
3365     /* Search all dlopened DAGs containing the referencing object. */
3366     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3367 	if (req->sym_out != NULL &&
3368 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3369 	    break;
3370 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3371 	if (res == 0 && (req->sym_out == NULL ||
3372 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3373 	    req->sym_out = req1.sym_out;
3374 	    req->defobj_out = req1.defobj_out;
3375 	    assert(req->defobj_out != NULL);
3376 	}
3377     }
3378 
3379     /*
3380      * Search the dynamic linker itself, and possibly resolve the
3381      * symbol from there.  This is how the application links to
3382      * dynamic linker services such as dlopen.
3383      */
3384     if (req->sym_out == NULL ||
3385       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3386 	res = symlook_obj(&req1, &obj_rtld);
3387 	if (res == 0) {
3388 	    req->sym_out = req1.sym_out;
3389 	    req->defobj_out = req1.defobj_out;
3390 	    assert(req->defobj_out != NULL);
3391 	}
3392     }
3393 
3394     return (req->sym_out != NULL ? 0 : ESRCH);
3395 }
3396 
3397 static int
3398 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3399 {
3400     const Elf_Sym *def;
3401     const Obj_Entry *defobj;
3402     const Objlist_Entry *elm;
3403     SymLook req1;
3404     int res;
3405 
3406     def = NULL;
3407     defobj = NULL;
3408     STAILQ_FOREACH(elm, objlist, link) {
3409 	if (donelist_check(dlp, elm->obj))
3410 	    continue;
3411 	symlook_init_from_req(&req1, req);
3412 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3413 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3414 		def = req1.sym_out;
3415 		defobj = req1.defobj_out;
3416 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3417 		    break;
3418 	    }
3419 	}
3420     }
3421     if (def != NULL) {
3422 	req->sym_out = def;
3423 	req->defobj_out = defobj;
3424 	return (0);
3425     }
3426     return (ESRCH);
3427 }
3428 
3429 /*
3430  * Search the chain of DAGS cointed to by the given Needed_Entry
3431  * for a symbol of the given name.  Each DAG is scanned completely
3432  * before advancing to the next one.  Returns a pointer to the symbol,
3433  * or NULL if no definition was found.
3434  */
3435 static int
3436 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3437 {
3438     const Elf_Sym *def;
3439     const Needed_Entry *n;
3440     const Obj_Entry *defobj;
3441     SymLook req1;
3442     int res;
3443 
3444     def = NULL;
3445     defobj = NULL;
3446     symlook_init_from_req(&req1, req);
3447     for (n = needed; n != NULL; n = n->next) {
3448 	if (n->obj == NULL ||
3449 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3450 	    continue;
3451 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3452 	    def = req1.sym_out;
3453 	    defobj = req1.defobj_out;
3454 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3455 		break;
3456 	}
3457     }
3458     if (def != NULL) {
3459 	req->sym_out = def;
3460 	req->defobj_out = defobj;
3461 	return (0);
3462     }
3463     return (ESRCH);
3464 }
3465 
3466 /*
3467  * Search the symbol table of a single shared object for a symbol of
3468  * the given name and version, if requested.  Returns a pointer to the
3469  * symbol, or NULL if no definition was found.  If the object is
3470  * filter, return filtered symbol from filtee.
3471  *
3472  * The symbol's hash value is passed in for efficiency reasons; that
3473  * eliminates many recomputations of the hash value.
3474  */
3475 int
3476 symlook_obj(SymLook *req, const Obj_Entry *obj)
3477 {
3478     DoneList donelist;
3479     SymLook req1;
3480     int flags, res, mres;
3481 
3482     /*
3483      * If there is at least one valid hash at this point, we prefer to
3484      * use the faster GNU version if available.
3485      */
3486     if (obj->valid_hash_gnu)
3487 	mres = symlook_obj1_gnu(req, obj);
3488     else if (obj->valid_hash_sysv)
3489 	mres = symlook_obj1_sysv(req, obj);
3490     else
3491 	return (EINVAL);
3492 
3493     if (mres == 0) {
3494 	if (obj->needed_filtees != NULL) {
3495 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3496 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3497 	    donelist_init(&donelist);
3498 	    symlook_init_from_req(&req1, req);
3499 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3500 	    if (res == 0) {
3501 		req->sym_out = req1.sym_out;
3502 		req->defobj_out = req1.defobj_out;
3503 	    }
3504 	    return (res);
3505 	}
3506 	if (obj->needed_aux_filtees != NULL) {
3507 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3508 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3509 	    donelist_init(&donelist);
3510 	    symlook_init_from_req(&req1, req);
3511 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3512 	    if (res == 0) {
3513 		req->sym_out = req1.sym_out;
3514 		req->defobj_out = req1.defobj_out;
3515 		return (res);
3516 	    }
3517 	}
3518     }
3519     return (mres);
3520 }
3521 
3522 /* Symbol match routine common to both hash functions */
3523 static bool
3524 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3525     const unsigned long symnum)
3526 {
3527 	Elf_Versym verndx;
3528 	const Elf_Sym *symp;
3529 	const char *strp;
3530 
3531 	symp = obj->symtab + symnum;
3532 	strp = obj->strtab + symp->st_name;
3533 
3534 	switch (ELF_ST_TYPE(symp->st_info)) {
3535 	case STT_FUNC:
3536 	case STT_NOTYPE:
3537 	case STT_OBJECT:
3538 	case STT_COMMON:
3539 	case STT_GNU_IFUNC:
3540 		if (symp->st_value == 0)
3541 			return (false);
3542 		/* fallthrough */
3543 	case STT_TLS:
3544 		if (symp->st_shndx != SHN_UNDEF)
3545 			break;
3546 #ifndef __mips__
3547 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3548 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3549 			break;
3550 		/* fallthrough */
3551 #endif
3552 	default:
3553 		return (false);
3554 	}
3555 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3556 		return (false);
3557 
3558 	if (req->ventry == NULL) {
3559 		if (obj->versyms != NULL) {
3560 			verndx = VER_NDX(obj->versyms[symnum]);
3561 			if (verndx > obj->vernum) {
3562 				_rtld_error(
3563 				    "%s: symbol %s references wrong version %d",
3564 				    obj->path, obj->strtab + symnum, verndx);
3565 				return (false);
3566 			}
3567 			/*
3568 			 * If we are not called from dlsym (i.e. this
3569 			 * is a normal relocation from unversioned
3570 			 * binary), accept the symbol immediately if
3571 			 * it happens to have first version after this
3572 			 * shared object became versioned.  Otherwise,
3573 			 * if symbol is versioned and not hidden,
3574 			 * remember it. If it is the only symbol with
3575 			 * this name exported by the shared object, it
3576 			 * will be returned as a match by the calling
3577 			 * function. If symbol is global (verndx < 2)
3578 			 * accept it unconditionally.
3579 			 */
3580 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3581 			    verndx == VER_NDX_GIVEN) {
3582 				result->sym_out = symp;
3583 				return (true);
3584 			}
3585 			else if (verndx >= VER_NDX_GIVEN) {
3586 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3587 				    == 0) {
3588 					if (result->vsymp == NULL)
3589 						result->vsymp = symp;
3590 					result->vcount++;
3591 				}
3592 				return (false);
3593 			}
3594 		}
3595 		result->sym_out = symp;
3596 		return (true);
3597 	}
3598 	if (obj->versyms == NULL) {
3599 		if (object_match_name(obj, req->ventry->name)) {
3600 			_rtld_error("%s: object %s should provide version %s "
3601 			    "for symbol %s", obj_rtld.path, obj->path,
3602 			    req->ventry->name, obj->strtab + symnum);
3603 			return (false);
3604 		}
3605 	} else {
3606 		verndx = VER_NDX(obj->versyms[symnum]);
3607 		if (verndx > obj->vernum) {
3608 			_rtld_error("%s: symbol %s references wrong version %d",
3609 			    obj->path, obj->strtab + symnum, verndx);
3610 			return (false);
3611 		}
3612 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3613 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3614 			/*
3615 			 * Version does not match. Look if this is a
3616 			 * global symbol and if it is not hidden. If
3617 			 * global symbol (verndx < 2) is available,
3618 			 * use it. Do not return symbol if we are
3619 			 * called by dlvsym, because dlvsym looks for
3620 			 * a specific version and default one is not
3621 			 * what dlvsym wants.
3622 			 */
3623 			if ((req->flags & SYMLOOK_DLSYM) ||
3624 			    (verndx >= VER_NDX_GIVEN) ||
3625 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3626 				return (false);
3627 		}
3628 	}
3629 	result->sym_out = symp;
3630 	return (true);
3631 }
3632 
3633 /*
3634  * Search for symbol using SysV hash function.
3635  * obj->buckets is known not to be NULL at this point; the test for this was
3636  * performed with the obj->valid_hash_sysv assignment.
3637  */
3638 static int
3639 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3640 {
3641 	unsigned long symnum;
3642 	Sym_Match_Result matchres;
3643 
3644 	matchres.sym_out = NULL;
3645 	matchres.vsymp = NULL;
3646 	matchres.vcount = 0;
3647 
3648 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3649 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3650 		if (symnum >= obj->nchains)
3651 			return (ESRCH);	/* Bad object */
3652 
3653 		if (matched_symbol(req, obj, &matchres, symnum)) {
3654 			req->sym_out = matchres.sym_out;
3655 			req->defobj_out = obj;
3656 			return (0);
3657 		}
3658 	}
3659 	if (matchres.vcount == 1) {
3660 		req->sym_out = matchres.vsymp;
3661 		req->defobj_out = obj;
3662 		return (0);
3663 	}
3664 	return (ESRCH);
3665 }
3666 
3667 /* Search for symbol using GNU hash function */
3668 static int
3669 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3670 {
3671 	Elf_Addr bloom_word;
3672 	const Elf32_Word *hashval;
3673 	Elf32_Word bucket;
3674 	Sym_Match_Result matchres;
3675 	unsigned int h1, h2;
3676 	unsigned long symnum;
3677 
3678 	matchres.sym_out = NULL;
3679 	matchres.vsymp = NULL;
3680 	matchres.vcount = 0;
3681 
3682 	/* Pick right bitmask word from Bloom filter array */
3683 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3684 	    obj->maskwords_bm_gnu];
3685 
3686 	/* Calculate modulus word size of gnu hash and its derivative */
3687 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3688 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3689 
3690 	/* Filter out the "definitely not in set" queries */
3691 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3692 		return (ESRCH);
3693 
3694 	/* Locate hash chain and corresponding value element*/
3695 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3696 	if (bucket == 0)
3697 		return (ESRCH);
3698 	hashval = &obj->chain_zero_gnu[bucket];
3699 	do {
3700 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3701 			symnum = hashval - obj->chain_zero_gnu;
3702 			if (matched_symbol(req, obj, &matchres, symnum)) {
3703 				req->sym_out = matchres.sym_out;
3704 				req->defobj_out = obj;
3705 				return (0);
3706 			}
3707 		}
3708 	} while ((*hashval++ & 1) == 0);
3709 	if (matchres.vcount == 1) {
3710 		req->sym_out = matchres.vsymp;
3711 		req->defobj_out = obj;
3712 		return (0);
3713 	}
3714 	return (ESRCH);
3715 }
3716 
3717 static void
3718 trace_loaded_objects(Obj_Entry *obj)
3719 {
3720     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3721     int		c;
3722 
3723     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3724 	main_local = "";
3725 
3726     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3727 	fmt1 = "\t%o => %p (%x)\n";
3728 
3729     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3730 	fmt2 = "\t%o (%x)\n";
3731 
3732     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3733 
3734     for (; obj; obj = obj->next) {
3735 	Needed_Entry		*needed;
3736 	char			*name, *path;
3737 	bool			is_lib;
3738 
3739 	if (list_containers && obj->needed != NULL)
3740 	    rtld_printf("%s:\n", obj->path);
3741 	for (needed = obj->needed; needed; needed = needed->next) {
3742 	    if (needed->obj != NULL) {
3743 		if (needed->obj->traced && !list_containers)
3744 		    continue;
3745 		needed->obj->traced = true;
3746 		path = needed->obj->path;
3747 	    } else
3748 		path = "not found";
3749 
3750 	    name = (char *)obj->strtab + needed->name;
3751 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3752 
3753 	    fmt = is_lib ? fmt1 : fmt2;
3754 	    while ((c = *fmt++) != '\0') {
3755 		switch (c) {
3756 		default:
3757 		    rtld_putchar(c);
3758 		    continue;
3759 		case '\\':
3760 		    switch (c = *fmt) {
3761 		    case '\0':
3762 			continue;
3763 		    case 'n':
3764 			rtld_putchar('\n');
3765 			break;
3766 		    case 't':
3767 			rtld_putchar('\t');
3768 			break;
3769 		    }
3770 		    break;
3771 		case '%':
3772 		    switch (c = *fmt) {
3773 		    case '\0':
3774 			continue;
3775 		    case '%':
3776 		    default:
3777 			rtld_putchar(c);
3778 			break;
3779 		    case 'A':
3780 			rtld_putstr(main_local);
3781 			break;
3782 		    case 'a':
3783 			rtld_putstr(obj_main->path);
3784 			break;
3785 		    case 'o':
3786 			rtld_putstr(name);
3787 			break;
3788 #if 0
3789 		    case 'm':
3790 			rtld_printf("%d", sodp->sod_major);
3791 			break;
3792 		    case 'n':
3793 			rtld_printf("%d", sodp->sod_minor);
3794 			break;
3795 #endif
3796 		    case 'p':
3797 			rtld_putstr(path);
3798 			break;
3799 		    case 'x':
3800 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3801 			  0);
3802 			break;
3803 		    }
3804 		    break;
3805 		}
3806 		++fmt;
3807 	    }
3808 	}
3809     }
3810 }
3811 
3812 /*
3813  * Unload a dlopened object and its dependencies from memory and from
3814  * our data structures.  It is assumed that the DAG rooted in the
3815  * object has already been unreferenced, and that the object has a
3816  * reference count of 0.
3817  */
3818 static void
3819 unload_object(Obj_Entry *root)
3820 {
3821     Obj_Entry *obj;
3822     Obj_Entry **linkp;
3823 
3824     assert(root->refcount == 0);
3825 
3826     /*
3827      * Pass over the DAG removing unreferenced objects from
3828      * appropriate lists.
3829      */
3830     unlink_object(root);
3831 
3832     /* Unmap all objects that are no longer referenced. */
3833     linkp = &obj_list->next;
3834     while ((obj = *linkp) != NULL) {
3835 	if (obj->refcount == 0) {
3836 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3837 		obj->path);
3838 	    dbg("unloading \"%s\"", obj->path);
3839 	    unload_filtees(root);
3840 	    munmap(obj->mapbase, obj->mapsize);
3841 	    linkmap_delete(obj);
3842 	    *linkp = obj->next;
3843 	    obj_count--;
3844 	    obj_free(obj);
3845 	} else
3846 	    linkp = &obj->next;
3847     }
3848     obj_tail = linkp;
3849 }
3850 
3851 static void
3852 unlink_object(Obj_Entry *root)
3853 {
3854     Objlist_Entry *elm;
3855 
3856     if (root->refcount == 0) {
3857 	/* Remove the object from the RTLD_GLOBAL list. */
3858 	objlist_remove(&list_global, root);
3859 
3860     	/* Remove the object from all objects' DAG lists. */
3861     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3862 	    objlist_remove(&elm->obj->dldags, root);
3863 	    if (elm->obj != root)
3864 		unlink_object(elm->obj);
3865 	}
3866     }
3867 }
3868 
3869 static void
3870 ref_dag(Obj_Entry *root)
3871 {
3872     Objlist_Entry *elm;
3873 
3874     assert(root->dag_inited);
3875     STAILQ_FOREACH(elm, &root->dagmembers, link)
3876 	elm->obj->refcount++;
3877 }
3878 
3879 static void
3880 unref_dag(Obj_Entry *root)
3881 {
3882     Objlist_Entry *elm;
3883 
3884     assert(root->dag_inited);
3885     STAILQ_FOREACH(elm, &root->dagmembers, link)
3886 	elm->obj->refcount--;
3887 }
3888 
3889 /*
3890  * Common code for MD __tls_get_addr().
3891  */
3892 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
3893 static void *
3894 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
3895 {
3896     Elf_Addr *newdtv, *dtv;
3897     RtldLockState lockstate;
3898     int to_copy;
3899 
3900     dtv = *dtvp;
3901     /* Check dtv generation in case new modules have arrived */
3902     if (dtv[0] != tls_dtv_generation) {
3903 	wlock_acquire(rtld_bind_lock, &lockstate);
3904 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3905 	to_copy = dtv[1];
3906 	if (to_copy > tls_max_index)
3907 	    to_copy = tls_max_index;
3908 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3909 	newdtv[0] = tls_dtv_generation;
3910 	newdtv[1] = tls_max_index;
3911 	free(dtv);
3912 	lock_release(rtld_bind_lock, &lockstate);
3913 	dtv = *dtvp = newdtv;
3914     }
3915 
3916     /* Dynamically allocate module TLS if necessary */
3917     if (dtv[index + 1] == 0) {
3918 	/* Signal safe, wlock will block out signals. */
3919 	wlock_acquire(rtld_bind_lock, &lockstate);
3920 	if (!dtv[index + 1])
3921 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3922 	lock_release(rtld_bind_lock, &lockstate);
3923     }
3924     return ((void *)(dtv[index + 1] + offset));
3925 }
3926 
3927 void *
3928 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
3929 {
3930 	Elf_Addr *dtv;
3931 
3932 	dtv = *dtvp;
3933 	/* Check dtv generation in case new modules have arrived */
3934 	if (__predict_true(dtv[0] == tls_dtv_generation &&
3935 	    dtv[index + 1] != 0))
3936 		return ((void *)(dtv[index + 1] + offset));
3937 	return (tls_get_addr_slow(dtvp, index, offset));
3938 }
3939 
3940 #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
3941 
3942 /*
3943  * Allocate Static TLS using the Variant I method.
3944  */
3945 void *
3946 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
3947 {
3948     Obj_Entry *obj;
3949     char *tcb;
3950     Elf_Addr **tls;
3951     Elf_Addr *dtv;
3952     Elf_Addr addr;
3953     int i;
3954 
3955     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
3956 	return (oldtcb);
3957 
3958     assert(tcbsize >= TLS_TCB_SIZE);
3959     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
3960     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
3961 
3962     if (oldtcb != NULL) {
3963 	memcpy(tls, oldtcb, tls_static_space);
3964 	free(oldtcb);
3965 
3966 	/* Adjust the DTV. */
3967 	dtv = tls[0];
3968 	for (i = 0; i < dtv[1]; i++) {
3969 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
3970 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
3971 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
3972 	    }
3973 	}
3974     } else {
3975 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
3976 	tls[0] = dtv;
3977 	dtv[0] = tls_dtv_generation;
3978 	dtv[1] = tls_max_index;
3979 
3980 	for (obj = objs; obj; obj = obj->next) {
3981 	    if (obj->tlsoffset > 0) {
3982 		addr = (Elf_Addr)tls + obj->tlsoffset;
3983 		if (obj->tlsinitsize > 0)
3984 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3985 		if (obj->tlssize > obj->tlsinitsize)
3986 		    memset((void*) (addr + obj->tlsinitsize), 0,
3987 			   obj->tlssize - obj->tlsinitsize);
3988 		dtv[obj->tlsindex + 1] = addr;
3989 	    }
3990 	}
3991     }
3992 
3993     return (tcb);
3994 }
3995 
3996 void
3997 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
3998 {
3999     Elf_Addr *dtv;
4000     Elf_Addr tlsstart, tlsend;
4001     int dtvsize, i;
4002 
4003     assert(tcbsize >= TLS_TCB_SIZE);
4004 
4005     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4006     tlsend = tlsstart + tls_static_space;
4007 
4008     dtv = *(Elf_Addr **)tlsstart;
4009     dtvsize = dtv[1];
4010     for (i = 0; i < dtvsize; i++) {
4011 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4012 	    free((void*)dtv[i+2]);
4013 	}
4014     }
4015     free(dtv);
4016     free(tcb);
4017 }
4018 
4019 #endif
4020 
4021 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4022 
4023 /*
4024  * Allocate Static TLS using the Variant II method.
4025  */
4026 void *
4027 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4028 {
4029     Obj_Entry *obj;
4030     size_t size;
4031     char *tls;
4032     Elf_Addr *dtv, *olddtv;
4033     Elf_Addr segbase, oldsegbase, addr;
4034     int i;
4035 
4036     size = round(tls_static_space, tcbalign);
4037 
4038     assert(tcbsize >= 2*sizeof(Elf_Addr));
4039     tls = xcalloc(1, size + tcbsize);
4040     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4041 
4042     segbase = (Elf_Addr)(tls + size);
4043     ((Elf_Addr*)segbase)[0] = segbase;
4044     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4045 
4046     dtv[0] = tls_dtv_generation;
4047     dtv[1] = tls_max_index;
4048 
4049     if (oldtls) {
4050 	/*
4051 	 * Copy the static TLS block over whole.
4052 	 */
4053 	oldsegbase = (Elf_Addr) oldtls;
4054 	memcpy((void *)(segbase - tls_static_space),
4055 	       (const void *)(oldsegbase - tls_static_space),
4056 	       tls_static_space);
4057 
4058 	/*
4059 	 * If any dynamic TLS blocks have been created tls_get_addr(),
4060 	 * move them over.
4061 	 */
4062 	olddtv = ((Elf_Addr**)oldsegbase)[1];
4063 	for (i = 0; i < olddtv[1]; i++) {
4064 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4065 		dtv[i+2] = olddtv[i+2];
4066 		olddtv[i+2] = 0;
4067 	    }
4068 	}
4069 
4070 	/*
4071 	 * We assume that this block was the one we created with
4072 	 * allocate_initial_tls().
4073 	 */
4074 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4075     } else {
4076 	for (obj = objs; obj; obj = obj->next) {
4077 	    if (obj->tlsoffset) {
4078 		addr = segbase - obj->tlsoffset;
4079 		memset((void*) (addr + obj->tlsinitsize),
4080 		       0, obj->tlssize - obj->tlsinitsize);
4081 		if (obj->tlsinit)
4082 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4083 		dtv[obj->tlsindex + 1] = addr;
4084 	    }
4085 	}
4086     }
4087 
4088     return (void*) segbase;
4089 }
4090 
4091 void
4092 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4093 {
4094     size_t size;
4095     Elf_Addr* dtv;
4096     int dtvsize, i;
4097     Elf_Addr tlsstart, tlsend;
4098 
4099     /*
4100      * Figure out the size of the initial TLS block so that we can
4101      * find stuff which ___tls_get_addr() allocated dynamically.
4102      */
4103     size = round(tls_static_space, tcbalign);
4104 
4105     dtv = ((Elf_Addr**)tls)[1];
4106     dtvsize = dtv[1];
4107     tlsend = (Elf_Addr) tls;
4108     tlsstart = tlsend - size;
4109     for (i = 0; i < dtvsize; i++) {
4110 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
4111 	    free((void*) dtv[i+2]);
4112 	}
4113     }
4114 
4115     free((void*) tlsstart);
4116     free((void*) dtv);
4117 }
4118 
4119 #endif
4120 
4121 /*
4122  * Allocate TLS block for module with given index.
4123  */
4124 void *
4125 allocate_module_tls(int index)
4126 {
4127     Obj_Entry* obj;
4128     char* p;
4129 
4130     for (obj = obj_list; obj; obj = obj->next) {
4131 	if (obj->tlsindex == index)
4132 	    break;
4133     }
4134     if (!obj) {
4135 	_rtld_error("Can't find module with TLS index %d", index);
4136 	die();
4137     }
4138 
4139     p = malloc(obj->tlssize);
4140     if (p == NULL) {
4141 	_rtld_error("Cannot allocate TLS block for index %d", index);
4142 	die();
4143     }
4144     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4145     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4146 
4147     return p;
4148 }
4149 
4150 bool
4151 allocate_tls_offset(Obj_Entry *obj)
4152 {
4153     size_t off;
4154 
4155     if (obj->tls_done)
4156 	return true;
4157 
4158     if (obj->tlssize == 0) {
4159 	obj->tls_done = true;
4160 	return true;
4161     }
4162 
4163     if (obj->tlsindex == 1)
4164 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4165     else
4166 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4167 				   obj->tlssize, obj->tlsalign);
4168 
4169     /*
4170      * If we have already fixed the size of the static TLS block, we
4171      * must stay within that size. When allocating the static TLS, we
4172      * leave a small amount of space spare to be used for dynamically
4173      * loading modules which use static TLS.
4174      */
4175     if (tls_static_space) {
4176 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4177 	    return false;
4178     }
4179 
4180     tls_last_offset = obj->tlsoffset = off;
4181     tls_last_size = obj->tlssize;
4182     obj->tls_done = true;
4183 
4184     return true;
4185 }
4186 
4187 void
4188 free_tls_offset(Obj_Entry *obj)
4189 {
4190 
4191     /*
4192      * If we were the last thing to allocate out of the static TLS
4193      * block, we give our space back to the 'allocator'. This is a
4194      * simplistic workaround to allow libGL.so.1 to be loaded and
4195      * unloaded multiple times.
4196      */
4197     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4198 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4199 	tls_last_offset -= obj->tlssize;
4200 	tls_last_size = 0;
4201     }
4202 }
4203 
4204 void *
4205 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4206 {
4207     void *ret;
4208     RtldLockState lockstate;
4209 
4210     wlock_acquire(rtld_bind_lock, &lockstate);
4211     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4212     lock_release(rtld_bind_lock, &lockstate);
4213     return (ret);
4214 }
4215 
4216 void
4217 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4218 {
4219     RtldLockState lockstate;
4220 
4221     wlock_acquire(rtld_bind_lock, &lockstate);
4222     free_tls(tcb, tcbsize, tcbalign);
4223     lock_release(rtld_bind_lock, &lockstate);
4224 }
4225 
4226 static void
4227 object_add_name(Obj_Entry *obj, const char *name)
4228 {
4229     Name_Entry *entry;
4230     size_t len;
4231 
4232     len = strlen(name);
4233     entry = malloc(sizeof(Name_Entry) + len);
4234 
4235     if (entry != NULL) {
4236 	strcpy(entry->name, name);
4237 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4238     }
4239 }
4240 
4241 static int
4242 object_match_name(const Obj_Entry *obj, const char *name)
4243 {
4244     Name_Entry *entry;
4245 
4246     STAILQ_FOREACH(entry, &obj->names, link) {
4247 	if (strcmp(name, entry->name) == 0)
4248 	    return (1);
4249     }
4250     return (0);
4251 }
4252 
4253 static Obj_Entry *
4254 locate_dependency(const Obj_Entry *obj, const char *name)
4255 {
4256     const Objlist_Entry *entry;
4257     const Needed_Entry *needed;
4258 
4259     STAILQ_FOREACH(entry, &list_main, link) {
4260 	if (object_match_name(entry->obj, name))
4261 	    return entry->obj;
4262     }
4263 
4264     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4265 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4266 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4267 	    /*
4268 	     * If there is DT_NEEDED for the name we are looking for,
4269 	     * we are all set.  Note that object might not be found if
4270 	     * dependency was not loaded yet, so the function can
4271 	     * return NULL here.  This is expected and handled
4272 	     * properly by the caller.
4273 	     */
4274 	    return (needed->obj);
4275 	}
4276     }
4277     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4278 	obj->path, name);
4279     die();
4280 }
4281 
4282 static int
4283 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4284     const Elf_Vernaux *vna)
4285 {
4286     const Elf_Verdef *vd;
4287     const char *vername;
4288 
4289     vername = refobj->strtab + vna->vna_name;
4290     vd = depobj->verdef;
4291     if (vd == NULL) {
4292 	_rtld_error("%s: version %s required by %s not defined",
4293 	    depobj->path, vername, refobj->path);
4294 	return (-1);
4295     }
4296     for (;;) {
4297 	if (vd->vd_version != VER_DEF_CURRENT) {
4298 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4299 		depobj->path, vd->vd_version);
4300 	    return (-1);
4301 	}
4302 	if (vna->vna_hash == vd->vd_hash) {
4303 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4304 		((char *)vd + vd->vd_aux);
4305 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4306 		return (0);
4307 	}
4308 	if (vd->vd_next == 0)
4309 	    break;
4310 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4311     }
4312     if (vna->vna_flags & VER_FLG_WEAK)
4313 	return (0);
4314     _rtld_error("%s: version %s required by %s not found",
4315 	depobj->path, vername, refobj->path);
4316     return (-1);
4317 }
4318 
4319 static int
4320 rtld_verify_object_versions(Obj_Entry *obj)
4321 {
4322     const Elf_Verneed *vn;
4323     const Elf_Verdef  *vd;
4324     const Elf_Verdaux *vda;
4325     const Elf_Vernaux *vna;
4326     const Obj_Entry *depobj;
4327     int maxvernum, vernum;
4328 
4329     if (obj->ver_checked)
4330 	return (0);
4331     obj->ver_checked = true;
4332 
4333     maxvernum = 0;
4334     /*
4335      * Walk over defined and required version records and figure out
4336      * max index used by any of them. Do very basic sanity checking
4337      * while there.
4338      */
4339     vn = obj->verneed;
4340     while (vn != NULL) {
4341 	if (vn->vn_version != VER_NEED_CURRENT) {
4342 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4343 		obj->path, vn->vn_version);
4344 	    return (-1);
4345 	}
4346 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4347 	for (;;) {
4348 	    vernum = VER_NEED_IDX(vna->vna_other);
4349 	    if (vernum > maxvernum)
4350 		maxvernum = vernum;
4351 	    if (vna->vna_next == 0)
4352 		 break;
4353 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4354 	}
4355 	if (vn->vn_next == 0)
4356 	    break;
4357 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4358     }
4359 
4360     vd = obj->verdef;
4361     while (vd != NULL) {
4362 	if (vd->vd_version != VER_DEF_CURRENT) {
4363 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4364 		obj->path, vd->vd_version);
4365 	    return (-1);
4366 	}
4367 	vernum = VER_DEF_IDX(vd->vd_ndx);
4368 	if (vernum > maxvernum)
4369 		maxvernum = vernum;
4370 	if (vd->vd_next == 0)
4371 	    break;
4372 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4373     }
4374 
4375     if (maxvernum == 0)
4376 	return (0);
4377 
4378     /*
4379      * Store version information in array indexable by version index.
4380      * Verify that object version requirements are satisfied along the
4381      * way.
4382      */
4383     obj->vernum = maxvernum + 1;
4384     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4385 
4386     vd = obj->verdef;
4387     while (vd != NULL) {
4388 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4389 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4390 	    assert(vernum <= maxvernum);
4391 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4392 	    obj->vertab[vernum].hash = vd->vd_hash;
4393 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4394 	    obj->vertab[vernum].file = NULL;
4395 	    obj->vertab[vernum].flags = 0;
4396 	}
4397 	if (vd->vd_next == 0)
4398 	    break;
4399 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4400     }
4401 
4402     vn = obj->verneed;
4403     while (vn != NULL) {
4404 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4405 	if (depobj == NULL)
4406 	    return (-1);
4407 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4408 	for (;;) {
4409 	    if (check_object_provided_version(obj, depobj, vna))
4410 		return (-1);
4411 	    vernum = VER_NEED_IDX(vna->vna_other);
4412 	    assert(vernum <= maxvernum);
4413 	    obj->vertab[vernum].hash = vna->vna_hash;
4414 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4415 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4416 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4417 		VER_INFO_HIDDEN : 0;
4418 	    if (vna->vna_next == 0)
4419 		 break;
4420 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4421 	}
4422 	if (vn->vn_next == 0)
4423 	    break;
4424 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4425     }
4426     return 0;
4427 }
4428 
4429 static int
4430 rtld_verify_versions(const Objlist *objlist)
4431 {
4432     Objlist_Entry *entry;
4433     int rc;
4434 
4435     rc = 0;
4436     STAILQ_FOREACH(entry, objlist, link) {
4437 	/*
4438 	 * Skip dummy objects or objects that have their version requirements
4439 	 * already checked.
4440 	 */
4441 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4442 	    continue;
4443 	if (rtld_verify_object_versions(entry->obj) == -1) {
4444 	    rc = -1;
4445 	    if (ld_tracing == NULL)
4446 		break;
4447 	}
4448     }
4449     if (rc == 0 || ld_tracing != NULL)
4450     	rc = rtld_verify_object_versions(&obj_rtld);
4451     return rc;
4452 }
4453 
4454 const Ver_Entry *
4455 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4456 {
4457     Elf_Versym vernum;
4458 
4459     if (obj->vertab) {
4460 	vernum = VER_NDX(obj->versyms[symnum]);
4461 	if (vernum >= obj->vernum) {
4462 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4463 		obj->path, obj->strtab + symnum, vernum);
4464 	} else if (obj->vertab[vernum].hash != 0) {
4465 	    return &obj->vertab[vernum];
4466 	}
4467     }
4468     return NULL;
4469 }
4470 
4471 int
4472 _rtld_get_stack_prot(void)
4473 {
4474 
4475 	return (stack_prot);
4476 }
4477 
4478 static void
4479 map_stacks_exec(RtldLockState *lockstate)
4480 {
4481 	void (*thr_map_stacks_exec)(void);
4482 
4483 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4484 		return;
4485 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4486 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4487 	if (thr_map_stacks_exec != NULL) {
4488 		stack_prot |= PROT_EXEC;
4489 		thr_map_stacks_exec();
4490 	}
4491 }
4492 
4493 void
4494 symlook_init(SymLook *dst, const char *name)
4495 {
4496 
4497 	bzero(dst, sizeof(*dst));
4498 	dst->name = name;
4499 	dst->hash = elf_hash(name);
4500 	dst->hash_gnu = gnu_hash(name);
4501 }
4502 
4503 static void
4504 symlook_init_from_req(SymLook *dst, const SymLook *src)
4505 {
4506 
4507 	dst->name = src->name;
4508 	dst->hash = src->hash;
4509 	dst->hash_gnu = src->hash_gnu;
4510 	dst->ventry = src->ventry;
4511 	dst->flags = src->flags;
4512 	dst->defobj_out = NULL;
4513 	dst->sym_out = NULL;
4514 	dst->lockstate = src->lockstate;
4515 }
4516 
4517 /*
4518  * Overrides for libc_pic-provided functions.
4519  */
4520 
4521 int
4522 __getosreldate(void)
4523 {
4524 	size_t len;
4525 	int oid[2];
4526 	int error, osrel;
4527 
4528 	if (osreldate != 0)
4529 		return (osreldate);
4530 
4531 	oid[0] = CTL_KERN;
4532 	oid[1] = KERN_OSRELDATE;
4533 	osrel = 0;
4534 	len = sizeof(osrel);
4535 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4536 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4537 		osreldate = osrel;
4538 	return (osreldate);
4539 }
4540 
4541 void
4542 exit(int status)
4543 {
4544 
4545 	_exit(status);
4546 }
4547 
4548 void (*__cleanup)(void);
4549 int __isthreaded = 0;
4550 int _thread_autoinit_dummy_decl = 1;
4551 
4552 /*
4553  * No unresolved symbols for rtld.
4554  */
4555 void
4556 __pthread_cxa_finalize(struct dl_phdr_info *a)
4557 {
4558 }
4559 
4560 void
4561 __stack_chk_fail(void)
4562 {
4563 
4564 	_rtld_error("stack overflow detected; terminated");
4565 	die();
4566 }
4567 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4568 
4569 void
4570 __chk_fail(void)
4571 {
4572 
4573 	_rtld_error("buffer overflow detected; terminated");
4574 	die();
4575 }
4576 
4577 const char *
4578 rtld_strerror(int errnum)
4579 {
4580 
4581 	if (errnum < 0 || errnum >= sys_nerr)
4582 		return ("Unknown error");
4583 	return (sys_errlist[errnum]);
4584 }
4585