xref: /freebsd/libexec/rtld-elf/rtld.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 /*
30  * Dynamic linker for ELF.
31  *
32  * John Polstra <jdp@polstra.com>.
33  */
34 
35 #ifndef __GNUC__
36 #error "GCC is needed to compile this file"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 
43 #include <dlfcn.h>
44 #include <err.h>
45 #include <errno.h>
46 #include <fcntl.h>
47 #include <stdarg.h>
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <unistd.h>
52 
53 #include "debug.h"
54 #include "rtld.h"
55 #include "libmap.h"
56 #include "rtld_tls.h"
57 
58 #ifndef COMPAT_32BIT
59 #define PATH_RTLD	"/libexec/ld-elf.so.1"
60 #else
61 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
62 #endif
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * This structure provides a reentrant way to keep a list of objects and
70  * check which ones have already been processed in some way.
71  */
72 typedef struct Struct_DoneList {
73     const Obj_Entry **objs;		/* Array of object pointers */
74     unsigned int num_alloc;		/* Allocated size of the array */
75     unsigned int num_used;		/* Number of array slots used */
76 } DoneList;
77 
78 /*
79  * Function declarations.
80  */
81 static const char *basename(const char *);
82 static void die(void);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
87 static bool donelist_check(DoneList *, const Obj_Entry *);
88 static void errmsg_restore(char *);
89 static char *errmsg_save(void);
90 static void *fill_search_info(const char *, size_t, void *);
91 static char *find_library(const char *, const Obj_Entry *);
92 static const char *gethints(void);
93 static void init_dag(Obj_Entry *);
94 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
95 static void init_rtld(caddr_t);
96 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
97 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
98   Objlist *list);
99 static bool is_exported(const Elf_Sym *);
100 static void linkmap_add(Obj_Entry *);
101 static void linkmap_delete(Obj_Entry *);
102 static int load_needed_objects(Obj_Entry *);
103 static int load_preload_objects(void);
104 static Obj_Entry *load_object(char *);
105 static Obj_Entry *obj_from_addr(const void *);
106 static void objlist_call_fini(Objlist *);
107 static void objlist_call_init(Objlist *);
108 static void objlist_clear(Objlist *);
109 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
110 static void objlist_init(Objlist *);
111 static void objlist_push_head(Objlist *, Obj_Entry *);
112 static void objlist_push_tail(Objlist *, Obj_Entry *);
113 static void objlist_remove(Objlist *, Obj_Entry *);
114 static void objlist_remove_unref(Objlist *);
115 static void *path_enumerate(const char *, path_enum_proc, void *);
116 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
117 static int rtld_dirname(const char *, char *);
118 static void rtld_exit(void);
119 static char *search_library_path(const char *, const char *);
120 static const void **get_program_var_addr(const char *name);
121 static void set_program_var(const char *, const void *);
122 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
123   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
124 static const Elf_Sym *symlook_list(const char *, unsigned long,
125   Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
126 static void trace_loaded_objects(Obj_Entry *obj);
127 static void unlink_object(Obj_Entry *);
128 static void unload_object(Obj_Entry *);
129 static void unref_dag(Obj_Entry *);
130 static void ref_dag(Obj_Entry *);
131 
132 void r_debug_state(struct r_debug*, struct link_map*);
133 
134 /*
135  * Data declarations.
136  */
137 static char *error_message;	/* Message for dlerror(), or NULL */
138 struct r_debug r_debug;		/* for GDB; */
139 static bool libmap_disable;	/* Disable libmap */
140 static bool trust;		/* False for setuid and setgid programs */
141 static char *ld_bind_now;	/* Environment variable for immediate binding */
142 static char *ld_debug;		/* Environment variable for debugging */
143 static char *ld_library_path;	/* Environment variable for search path */
144 static char *ld_preload;	/* Environment variable for libraries to
145 				   load first */
146 static char *ld_tracing;	/* Called from ldd to print libs */
147 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
148 static Obj_Entry **obj_tail;	/* Link field of last object in list */
149 static Obj_Entry *obj_main;	/* The main program shared object */
150 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
151 static unsigned int obj_count;	/* Number of objects in obj_list */
152 
153 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
154   STAILQ_HEAD_INITIALIZER(list_global);
155 static Objlist list_main =	/* Objects loaded at program startup */
156   STAILQ_HEAD_INITIALIZER(list_main);
157 static Objlist list_fini =	/* Objects needing fini() calls */
158   STAILQ_HEAD_INITIALIZER(list_fini);
159 
160 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
161 
162 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
163 
164 extern Elf_Dyn _DYNAMIC;
165 #pragma weak _DYNAMIC
166 #ifndef RTLD_IS_DYNAMIC
167 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
168 #endif
169 
170 /*
171  * These are the functions the dynamic linker exports to application
172  * programs.  They are the only symbols the dynamic linker is willing
173  * to export from itself.
174  */
175 static func_ptr_type exports[] = {
176     (func_ptr_type) &_rtld_error,
177     (func_ptr_type) &dlclose,
178     (func_ptr_type) &dlerror,
179     (func_ptr_type) &dlopen,
180     (func_ptr_type) &dlsym,
181     (func_ptr_type) &dladdr,
182     (func_ptr_type) &dllockinit,
183     (func_ptr_type) &dlinfo,
184     (func_ptr_type) &_rtld_thread_init,
185 #ifdef __i386__
186     (func_ptr_type) &___tls_get_addr,
187 #endif
188     (func_ptr_type) &__tls_get_addr,
189     (func_ptr_type) &_rtld_allocate_tls,
190     (func_ptr_type) &_rtld_free_tls,
191     NULL
192 };
193 
194 /*
195  * Global declarations normally provided by crt1.  The dynamic linker is
196  * not built with crt1, so we have to provide them ourselves.
197  */
198 char *__progname;
199 char **environ;
200 
201 /*
202  * Globals to control TLS allocation.
203  */
204 size_t tls_last_offset;		/* Static TLS offset of last module */
205 size_t tls_last_size;		/* Static TLS size of last module */
206 size_t tls_static_space;	/* Static TLS space allocated */
207 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
208 int tls_max_index = 1;		/* Largest module index allocated */
209 
210 /*
211  * Fill in a DoneList with an allocation large enough to hold all of
212  * the currently-loaded objects.  Keep this as a macro since it calls
213  * alloca and we want that to occur within the scope of the caller.
214  */
215 #define donelist_init(dlp)					\
216     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
217     assert((dlp)->objs != NULL),				\
218     (dlp)->num_alloc = obj_count,				\
219     (dlp)->num_used = 0)
220 
221 /*
222  * Main entry point for dynamic linking.  The first argument is the
223  * stack pointer.  The stack is expected to be laid out as described
224  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
225  * Specifically, the stack pointer points to a word containing
226  * ARGC.  Following that in the stack is a null-terminated sequence
227  * of pointers to argument strings.  Then comes a null-terminated
228  * sequence of pointers to environment strings.  Finally, there is a
229  * sequence of "auxiliary vector" entries.
230  *
231  * The second argument points to a place to store the dynamic linker's
232  * exit procedure pointer and the third to a place to store the main
233  * program's object.
234  *
235  * The return value is the main program's entry point.
236  */
237 func_ptr_type
238 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
239 {
240     Elf_Auxinfo *aux_info[AT_COUNT];
241     int i;
242     int argc;
243     char **argv;
244     char **env;
245     Elf_Auxinfo *aux;
246     Elf_Auxinfo *auxp;
247     const char *argv0;
248     Objlist_Entry *entry;
249     Obj_Entry *obj;
250     Obj_Entry **preload_tail;
251     Objlist initlist;
252     int lockstate;
253 
254     /*
255      * On entry, the dynamic linker itself has not been relocated yet.
256      * Be very careful not to reference any global data until after
257      * init_rtld has returned.  It is OK to reference file-scope statics
258      * and string constants, and to call static and global functions.
259      */
260 
261     /* Find the auxiliary vector on the stack. */
262     argc = *sp++;
263     argv = (char **) sp;
264     sp += argc + 1;	/* Skip over arguments and NULL terminator */
265     env = (char **) sp;
266     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
267 	;
268     aux = (Elf_Auxinfo *) sp;
269 
270     /* Digest the auxiliary vector. */
271     for (i = 0;  i < AT_COUNT;  i++)
272 	aux_info[i] = NULL;
273     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
274 	if (auxp->a_type < AT_COUNT)
275 	    aux_info[auxp->a_type] = auxp;
276     }
277 
278     /* Initialize and relocate ourselves. */
279     assert(aux_info[AT_BASE] != NULL);
280     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
281 
282     __progname = obj_rtld.path;
283     argv0 = argv[0] != NULL ? argv[0] : "(null)";
284     environ = env;
285 
286     trust = !issetugid();
287 
288     ld_bind_now = getenv(LD_ "BIND_NOW");
289     if (trust) {
290 	ld_debug = getenv(LD_ "DEBUG");
291 	libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
292 	ld_library_path = getenv(LD_ "LIBRARY_PATH");
293 	ld_preload = getenv(LD_ "PRELOAD");
294     }
295     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
296 
297     if (ld_debug != NULL && *ld_debug != '\0')
298 	debug = 1;
299     dbg("%s is initialized, base address = %p", __progname,
300 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
301     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
302     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
303 
304     /*
305      * Load the main program, or process its program header if it is
306      * already loaded.
307      */
308     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
309 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
310 	dbg("loading main program");
311 	obj_main = map_object(fd, argv0, NULL);
312 	close(fd);
313 	if (obj_main == NULL)
314 	    die();
315     } else {				/* Main program already loaded. */
316 	const Elf_Phdr *phdr;
317 	int phnum;
318 	caddr_t entry;
319 
320 	dbg("processing main program's program header");
321 	assert(aux_info[AT_PHDR] != NULL);
322 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
323 	assert(aux_info[AT_PHNUM] != NULL);
324 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
325 	assert(aux_info[AT_PHENT] != NULL);
326 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
327 	assert(aux_info[AT_ENTRY] != NULL);
328 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
329 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
330 	    die();
331     }
332 
333     obj_main->path = xstrdup(argv0);
334     obj_main->mainprog = true;
335 
336     /*
337      * Get the actual dynamic linker pathname from the executable if
338      * possible.  (It should always be possible.)  That ensures that
339      * gdb will find the right dynamic linker even if a non-standard
340      * one is being used.
341      */
342     if (obj_main->interp != NULL &&
343       strcmp(obj_main->interp, obj_rtld.path) != 0) {
344 	free(obj_rtld.path);
345 	obj_rtld.path = xstrdup(obj_main->interp);
346         __progname = obj_rtld.path;
347     }
348 
349     digest_dynamic(obj_main, 0);
350 
351     linkmap_add(obj_main);
352     linkmap_add(&obj_rtld);
353 
354     /* Link the main program into the list of objects. */
355     *obj_tail = obj_main;
356     obj_tail = &obj_main->next;
357     obj_count++;
358     /* Make sure we don't call the main program's init and fini functions. */
359     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
360 
361     /* Initialize a fake symbol for resolving undefined weak references. */
362     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
363     sym_zero.st_shndx = SHN_UNDEF;
364 
365     if (!libmap_disable)
366         libmap_disable = (bool)lm_init();
367 
368     dbg("loading LD_PRELOAD libraries");
369     if (load_preload_objects() == -1)
370 	die();
371     preload_tail = obj_tail;
372 
373     dbg("loading needed objects");
374     if (load_needed_objects(obj_main) == -1)
375 	die();
376 
377     /* Make a list of all objects loaded at startup. */
378     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
379 	objlist_push_tail(&list_main, obj);
380     	obj->refcount++;
381     }
382 
383     if (ld_tracing) {		/* We're done */
384 	trace_loaded_objects(obj_main);
385 	exit(0);
386     }
387 
388     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
389        dump_relocations(obj_main);
390        exit (0);
391     }
392 
393     if (relocate_objects(obj_main,
394 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
395 	die();
396 
397     dbg("doing copy relocations");
398     if (do_copy_relocations(obj_main) == -1)
399 	die();
400 
401     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
402        dump_relocations(obj_main);
403        exit (0);
404     }
405 
406     dbg("initializing key program variables");
407     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
408     set_program_var("environ", env);
409 
410     dbg("initializing thread locks");
411     lockdflt_init();
412 
413     /* setup TLS for main thread */
414     dbg("initializing initial thread local storage");
415     STAILQ_FOREACH(entry, &list_main, link) {
416 	/*
417 	 * Allocate all the initial objects out of the static TLS
418 	 * block even if they didn't ask for it.
419 	 */
420 	allocate_tls_offset(entry->obj);
421     }
422     allocate_initial_tls(obj_list);
423 
424     /* Make a list of init functions to call. */
425     objlist_init(&initlist);
426     initlist_add_objects(obj_list, preload_tail, &initlist);
427 
428     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
429 
430     objlist_call_init(&initlist);
431     lockstate = wlock_acquire(rtld_bind_lock);
432     objlist_clear(&initlist);
433     wlock_release(rtld_bind_lock, lockstate);
434 
435     dbg("transferring control to program entry point = %p", obj_main->entry);
436 
437     /* Return the exit procedure and the program entry point. */
438     *exit_proc = rtld_exit;
439     *objp = obj_main;
440     return (func_ptr_type) obj_main->entry;
441 }
442 
443 Elf_Addr
444 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
445 {
446     const Elf_Rel *rel;
447     const Elf_Sym *def;
448     const Obj_Entry *defobj;
449     Elf_Addr *where;
450     Elf_Addr target;
451     int lockstate;
452 
453     lockstate = rlock_acquire(rtld_bind_lock);
454     if (obj->pltrel)
455 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
456     else
457 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
458 
459     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
460     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
461     if (def == NULL)
462 	die();
463 
464     target = (Elf_Addr)(defobj->relocbase + def->st_value);
465 
466     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
467       defobj->strtab + def->st_name, basename(obj->path),
468       (void *)target, basename(defobj->path));
469 
470     /*
471      * Write the new contents for the jmpslot. Note that depending on
472      * architecture, the value which we need to return back to the
473      * lazy binding trampoline may or may not be the target
474      * address. The value returned from reloc_jmpslot() is the value
475      * that the trampoline needs.
476      */
477     target = reloc_jmpslot(where, target, defobj, obj, rel);
478     rlock_release(rtld_bind_lock, lockstate);
479     return target;
480 }
481 
482 /*
483  * Error reporting function.  Use it like printf.  If formats the message
484  * into a buffer, and sets things up so that the next call to dlerror()
485  * will return the message.
486  */
487 void
488 _rtld_error(const char *fmt, ...)
489 {
490     static char buf[512];
491     va_list ap;
492 
493     va_start(ap, fmt);
494     vsnprintf(buf, sizeof buf, fmt, ap);
495     error_message = buf;
496     va_end(ap);
497 }
498 
499 /*
500  * Return a dynamically-allocated copy of the current error message, if any.
501  */
502 static char *
503 errmsg_save(void)
504 {
505     return error_message == NULL ? NULL : xstrdup(error_message);
506 }
507 
508 /*
509  * Restore the current error message from a copy which was previously saved
510  * by errmsg_save().  The copy is freed.
511  */
512 static void
513 errmsg_restore(char *saved_msg)
514 {
515     if (saved_msg == NULL)
516 	error_message = NULL;
517     else {
518 	_rtld_error("%s", saved_msg);
519 	free(saved_msg);
520     }
521 }
522 
523 static const char *
524 basename(const char *name)
525 {
526     const char *p = strrchr(name, '/');
527     return p != NULL ? p + 1 : name;
528 }
529 
530 static void
531 die(void)
532 {
533     const char *msg = dlerror();
534 
535     if (msg == NULL)
536 	msg = "Fatal error";
537     errx(1, "%s", msg);
538 }
539 
540 /*
541  * Process a shared object's DYNAMIC section, and save the important
542  * information in its Obj_Entry structure.
543  */
544 static void
545 digest_dynamic(Obj_Entry *obj, int early)
546 {
547     const Elf_Dyn *dynp;
548     Needed_Entry **needed_tail = &obj->needed;
549     const Elf_Dyn *dyn_rpath = NULL;
550     int plttype = DT_REL;
551 
552     obj->bind_now = false;
553     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
554 	switch (dynp->d_tag) {
555 
556 	case DT_REL:
557 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
558 	    break;
559 
560 	case DT_RELSZ:
561 	    obj->relsize = dynp->d_un.d_val;
562 	    break;
563 
564 	case DT_RELENT:
565 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
566 	    break;
567 
568 	case DT_JMPREL:
569 	    obj->pltrel = (const Elf_Rel *)
570 	      (obj->relocbase + dynp->d_un.d_ptr);
571 	    break;
572 
573 	case DT_PLTRELSZ:
574 	    obj->pltrelsize = dynp->d_un.d_val;
575 	    break;
576 
577 	case DT_RELA:
578 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
579 	    break;
580 
581 	case DT_RELASZ:
582 	    obj->relasize = dynp->d_un.d_val;
583 	    break;
584 
585 	case DT_RELAENT:
586 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
587 	    break;
588 
589 	case DT_PLTREL:
590 	    plttype = dynp->d_un.d_val;
591 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
592 	    break;
593 
594 	case DT_SYMTAB:
595 	    obj->symtab = (const Elf_Sym *)
596 	      (obj->relocbase + dynp->d_un.d_ptr);
597 	    break;
598 
599 	case DT_SYMENT:
600 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
601 	    break;
602 
603 	case DT_STRTAB:
604 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
605 	    break;
606 
607 	case DT_STRSZ:
608 	    obj->strsize = dynp->d_un.d_val;
609 	    break;
610 
611 	case DT_HASH:
612 	    {
613 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
614 		  (obj->relocbase + dynp->d_un.d_ptr);
615 		obj->nbuckets = hashtab[0];
616 		obj->nchains = hashtab[1];
617 		obj->buckets = hashtab + 2;
618 		obj->chains = obj->buckets + obj->nbuckets;
619 	    }
620 	    break;
621 
622 	case DT_NEEDED:
623 	    if (!obj->rtld) {
624 		Needed_Entry *nep = NEW(Needed_Entry);
625 		nep->name = dynp->d_un.d_val;
626 		nep->obj = NULL;
627 		nep->next = NULL;
628 
629 		*needed_tail = nep;
630 		needed_tail = &nep->next;
631 	    }
632 	    break;
633 
634 	case DT_PLTGOT:
635 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
636 	    break;
637 
638 	case DT_TEXTREL:
639 	    obj->textrel = true;
640 	    break;
641 
642 	case DT_SYMBOLIC:
643 	    obj->symbolic = true;
644 	    break;
645 
646 	case DT_RPATH:
647 	case DT_RUNPATH:	/* XXX: process separately */
648 	    /*
649 	     * We have to wait until later to process this, because we
650 	     * might not have gotten the address of the string table yet.
651 	     */
652 	    dyn_rpath = dynp;
653 	    break;
654 
655 	case DT_SONAME:
656 	    /* Not used by the dynamic linker. */
657 	    break;
658 
659 	case DT_INIT:
660 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
661 	    break;
662 
663 	case DT_FINI:
664 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
665 	    break;
666 
667 	case DT_DEBUG:
668 	    /* XXX - not implemented yet */
669 	    if (!early)
670 		dbg("Filling in DT_DEBUG entry");
671 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
672 	    break;
673 
674 	case DT_FLAGS:
675 		if (dynp->d_un.d_val & DF_ORIGIN) {
676 		    obj->origin_path = xmalloc(PATH_MAX);
677 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
678 			die();
679 		}
680 		if (dynp->d_un.d_val & DF_SYMBOLIC)
681 		    obj->symbolic = true;
682 		if (dynp->d_un.d_val & DF_TEXTREL)
683 		    obj->textrel = true;
684 		if (dynp->d_un.d_val & DF_BIND_NOW)
685 		    obj->bind_now = true;
686 		if (dynp->d_un.d_val & DF_STATIC_TLS)
687 		    ;
688 	    break;
689 
690 	default:
691 	    if (!early) {
692 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
693 		    (long)dynp->d_tag);
694 	    }
695 	    break;
696 	}
697     }
698 
699     obj->traced = false;
700 
701     if (plttype == DT_RELA) {
702 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
703 	obj->pltrel = NULL;
704 	obj->pltrelasize = obj->pltrelsize;
705 	obj->pltrelsize = 0;
706     }
707 
708     if (dyn_rpath != NULL)
709 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
710 }
711 
712 /*
713  * Process a shared object's program header.  This is used only for the
714  * main program, when the kernel has already loaded the main program
715  * into memory before calling the dynamic linker.  It creates and
716  * returns an Obj_Entry structure.
717  */
718 static Obj_Entry *
719 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
720 {
721     Obj_Entry *obj;
722     const Elf_Phdr *phlimit = phdr + phnum;
723     const Elf_Phdr *ph;
724     int nsegs = 0;
725 
726     obj = obj_new();
727     for (ph = phdr;  ph < phlimit;  ph++) {
728 	switch (ph->p_type) {
729 
730 	case PT_PHDR:
731 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
732 		_rtld_error("%s: invalid PT_PHDR", path);
733 		return NULL;
734 	    }
735 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
736 	    obj->phsize = ph->p_memsz;
737 	    break;
738 
739 	case PT_INTERP:
740 	    obj->interp = (const char *) ph->p_vaddr;
741 	    break;
742 
743 	case PT_LOAD:
744 	    if (nsegs == 0) {	/* First load segment */
745 		obj->vaddrbase = trunc_page(ph->p_vaddr);
746 		obj->mapbase = (caddr_t) obj->vaddrbase;
747 		obj->relocbase = obj->mapbase - obj->vaddrbase;
748 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
749 		  obj->vaddrbase;
750 	    } else {		/* Last load segment */
751 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
752 		  obj->vaddrbase;
753 	    }
754 	    nsegs++;
755 	    break;
756 
757 	case PT_DYNAMIC:
758 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
759 	    break;
760 
761 	case PT_TLS:
762 	    obj->tlsindex = 1;
763 	    obj->tlssize = ph->p_memsz;
764 	    obj->tlsalign = ph->p_align;
765 	    obj->tlsinitsize = ph->p_filesz;
766 	    obj->tlsinit = (void*) ph->p_vaddr;
767 	    break;
768 	}
769     }
770     if (nsegs < 1) {
771 	_rtld_error("%s: too few PT_LOAD segments", path);
772 	return NULL;
773     }
774 
775     obj->entry = entry;
776     return obj;
777 }
778 
779 static Obj_Entry *
780 dlcheck(void *handle)
781 {
782     Obj_Entry *obj;
783 
784     for (obj = obj_list;  obj != NULL;  obj = obj->next)
785 	if (obj == (Obj_Entry *) handle)
786 	    break;
787 
788     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
789 	_rtld_error("Invalid shared object handle %p", handle);
790 	return NULL;
791     }
792     return obj;
793 }
794 
795 /*
796  * If the given object is already in the donelist, return true.  Otherwise
797  * add the object to the list and return false.
798  */
799 static bool
800 donelist_check(DoneList *dlp, const Obj_Entry *obj)
801 {
802     unsigned int i;
803 
804     for (i = 0;  i < dlp->num_used;  i++)
805 	if (dlp->objs[i] == obj)
806 	    return true;
807     /*
808      * Our donelist allocation should always be sufficient.  But if
809      * our threads locking isn't working properly, more shared objects
810      * could have been loaded since we allocated the list.  That should
811      * never happen, but we'll handle it properly just in case it does.
812      */
813     if (dlp->num_used < dlp->num_alloc)
814 	dlp->objs[dlp->num_used++] = obj;
815     return false;
816 }
817 
818 /*
819  * Hash function for symbol table lookup.  Don't even think about changing
820  * this.  It is specified by the System V ABI.
821  */
822 unsigned long
823 elf_hash(const char *name)
824 {
825     const unsigned char *p = (const unsigned char *) name;
826     unsigned long h = 0;
827     unsigned long g;
828 
829     while (*p != '\0') {
830 	h = (h << 4) + *p++;
831 	if ((g = h & 0xf0000000) != 0)
832 	    h ^= g >> 24;
833 	h &= ~g;
834     }
835     return h;
836 }
837 
838 /*
839  * Find the library with the given name, and return its full pathname.
840  * The returned string is dynamically allocated.  Generates an error
841  * message and returns NULL if the library cannot be found.
842  *
843  * If the second argument is non-NULL, then it refers to an already-
844  * loaded shared object, whose library search path will be searched.
845  *
846  * The search order is:
847  *   LD_LIBRARY_PATH
848  *   rpath in the referencing file
849  *   ldconfig hints
850  *   /lib:/usr/lib
851  */
852 static char *
853 find_library(const char *xname, const Obj_Entry *refobj)
854 {
855     char *pathname;
856     char *name;
857 
858     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
859 	if (xname[0] != '/' && !trust) {
860 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
861 	      xname);
862 	    return NULL;
863 	}
864 	return xstrdup(xname);
865     }
866 
867     if (libmap_disable || (refobj == NULL) ||
868 	(name = lm_find(refobj->path, xname)) == NULL)
869 	name = (char *)xname;
870 
871     dbg(" Searching for \"%s\"", name);
872 
873     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
874       (refobj != NULL &&
875       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
876       (pathname = search_library_path(name, gethints())) != NULL ||
877       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
878 	return pathname;
879 
880     if(refobj != NULL && refobj->path != NULL) {
881 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
882 	  name, basename(refobj->path));
883     } else {
884 	_rtld_error("Shared object \"%s\" not found", name);
885     }
886     return NULL;
887 }
888 
889 /*
890  * Given a symbol number in a referencing object, find the corresponding
891  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
892  * no definition was found.  Returns a pointer to the Obj_Entry of the
893  * defining object via the reference parameter DEFOBJ_OUT.
894  */
895 const Elf_Sym *
896 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
897     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
898 {
899     const Elf_Sym *ref;
900     const Elf_Sym *def;
901     const Obj_Entry *defobj;
902     const char *name;
903     unsigned long hash;
904 
905     /*
906      * If we have already found this symbol, get the information from
907      * the cache.
908      */
909     if (symnum >= refobj->nchains)
910 	return NULL;	/* Bad object */
911     if (cache != NULL && cache[symnum].sym != NULL) {
912 	*defobj_out = cache[symnum].obj;
913 	return cache[symnum].sym;
914     }
915 
916     ref = refobj->symtab + symnum;
917     name = refobj->strtab + ref->st_name;
918     defobj = NULL;
919 
920     /*
921      * We don't have to do a full scale lookup if the symbol is local.
922      * We know it will bind to the instance in this load module; to
923      * which we already have a pointer (ie ref). By not doing a lookup,
924      * we not only improve performance, but it also avoids unresolvable
925      * symbols when local symbols are not in the hash table. This has
926      * been seen with the ia64 toolchain.
927      */
928     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
929 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
930 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
931 		symnum);
932 	}
933 	hash = elf_hash(name);
934 	def = symlook_default(name, hash, refobj, &defobj, in_plt);
935     } else {
936 	def = ref;
937 	defobj = refobj;
938     }
939 
940     /*
941      * If we found no definition and the reference is weak, treat the
942      * symbol as having the value zero.
943      */
944     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
945 	def = &sym_zero;
946 	defobj = obj_main;
947     }
948 
949     if (def != NULL) {
950 	*defobj_out = defobj;
951 	/* Record the information in the cache to avoid subsequent lookups. */
952 	if (cache != NULL) {
953 	    cache[symnum].sym = def;
954 	    cache[symnum].obj = defobj;
955 	}
956     } else {
957 	if (refobj != &obj_rtld)
958 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
959     }
960     return def;
961 }
962 
963 /*
964  * Return the search path from the ldconfig hints file, reading it if
965  * necessary.  Returns NULL if there are problems with the hints file,
966  * or if the search path there is empty.
967  */
968 static const char *
969 gethints(void)
970 {
971     static char *hints;
972 
973     if (hints == NULL) {
974 	int fd;
975 	struct elfhints_hdr hdr;
976 	char *p;
977 
978 	/* Keep from trying again in case the hints file is bad. */
979 	hints = "";
980 
981 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
982 	    return NULL;
983 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
984 	  hdr.magic != ELFHINTS_MAGIC ||
985 	  hdr.version != 1) {
986 	    close(fd);
987 	    return NULL;
988 	}
989 	p = xmalloc(hdr.dirlistlen + 1);
990 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
991 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
992 	    free(p);
993 	    close(fd);
994 	    return NULL;
995 	}
996 	hints = p;
997 	close(fd);
998     }
999     return hints[0] != '\0' ? hints : NULL;
1000 }
1001 
1002 static void
1003 init_dag(Obj_Entry *root)
1004 {
1005     DoneList donelist;
1006 
1007     donelist_init(&donelist);
1008     init_dag1(root, root, &donelist);
1009 }
1010 
1011 static void
1012 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1013 {
1014     const Needed_Entry *needed;
1015 
1016     if (donelist_check(dlp, obj))
1017 	return;
1018 
1019     obj->refcount++;
1020     objlist_push_tail(&obj->dldags, root);
1021     objlist_push_tail(&root->dagmembers, obj);
1022     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1023 	if (needed->obj != NULL)
1024 	    init_dag1(root, needed->obj, dlp);
1025 }
1026 
1027 /*
1028  * Initialize the dynamic linker.  The argument is the address at which
1029  * the dynamic linker has been mapped into memory.  The primary task of
1030  * this function is to relocate the dynamic linker.
1031  */
1032 static void
1033 init_rtld(caddr_t mapbase)
1034 {
1035     Obj_Entry objtmp;	/* Temporary rtld object */
1036 
1037     /*
1038      * Conjure up an Obj_Entry structure for the dynamic linker.
1039      *
1040      * The "path" member can't be initialized yet because string constatns
1041      * cannot yet be acessed. Below we will set it correctly.
1042      */
1043     memset(&objtmp, 0, sizeof(objtmp));
1044     objtmp.path = NULL;
1045     objtmp.rtld = true;
1046     objtmp.mapbase = mapbase;
1047 #ifdef PIC
1048     objtmp.relocbase = mapbase;
1049 #endif
1050     if (RTLD_IS_DYNAMIC()) {
1051 	objtmp.dynamic = rtld_dynamic(&objtmp);
1052 	digest_dynamic(&objtmp, 1);
1053 	assert(objtmp.needed == NULL);
1054 	assert(!objtmp.textrel);
1055 
1056 	/*
1057 	 * Temporarily put the dynamic linker entry into the object list, so
1058 	 * that symbols can be found.
1059 	 */
1060 
1061 	relocate_objects(&objtmp, true, &objtmp);
1062     }
1063 
1064     /* Initialize the object list. */
1065     obj_tail = &obj_list;
1066 
1067     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1068     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1069 
1070     /* Replace the path with a dynamically allocated copy. */
1071     obj_rtld.path = xstrdup(PATH_RTLD);
1072 
1073     r_debug.r_brk = r_debug_state;
1074     r_debug.r_state = RT_CONSISTENT;
1075 }
1076 
1077 /*
1078  * Add the init functions from a needed object list (and its recursive
1079  * needed objects) to "list".  This is not used directly; it is a helper
1080  * function for initlist_add_objects().  The write lock must be held
1081  * when this function is called.
1082  */
1083 static void
1084 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1085 {
1086     /* Recursively process the successor needed objects. */
1087     if (needed->next != NULL)
1088 	initlist_add_neededs(needed->next, list);
1089 
1090     /* Process the current needed object. */
1091     if (needed->obj != NULL)
1092 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1093 }
1094 
1095 /*
1096  * Scan all of the DAGs rooted in the range of objects from "obj" to
1097  * "tail" and add their init functions to "list".  This recurses over
1098  * the DAGs and ensure the proper init ordering such that each object's
1099  * needed libraries are initialized before the object itself.  At the
1100  * same time, this function adds the objects to the global finalization
1101  * list "list_fini" in the opposite order.  The write lock must be
1102  * held when this function is called.
1103  */
1104 static void
1105 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1106 {
1107     if (obj->init_done)
1108 	return;
1109     obj->init_done = true;
1110 
1111     /* Recursively process the successor objects. */
1112     if (&obj->next != tail)
1113 	initlist_add_objects(obj->next, tail, list);
1114 
1115     /* Recursively process the needed objects. */
1116     if (obj->needed != NULL)
1117 	initlist_add_neededs(obj->needed, list);
1118 
1119     /* Add the object to the init list. */
1120     if (obj->init != (Elf_Addr)NULL)
1121 	objlist_push_tail(list, obj);
1122 
1123     /* Add the object to the global fini list in the reverse order. */
1124     if (obj->fini != (Elf_Addr)NULL)
1125 	objlist_push_head(&list_fini, obj);
1126 }
1127 
1128 #ifndef FPTR_TARGET
1129 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1130 #endif
1131 
1132 static bool
1133 is_exported(const Elf_Sym *def)
1134 {
1135     Elf_Addr value;
1136     const func_ptr_type *p;
1137 
1138     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1139     for (p = exports;  *p != NULL;  p++)
1140 	if (FPTR_TARGET(*p) == value)
1141 	    return true;
1142     return false;
1143 }
1144 
1145 /*
1146  * Given a shared object, traverse its list of needed objects, and load
1147  * each of them.  Returns 0 on success.  Generates an error message and
1148  * returns -1 on failure.
1149  */
1150 static int
1151 load_needed_objects(Obj_Entry *first)
1152 {
1153     Obj_Entry *obj;
1154 
1155     for (obj = first;  obj != NULL;  obj = obj->next) {
1156 	Needed_Entry *needed;
1157 
1158 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1159 	    const char *name = obj->strtab + needed->name;
1160 	    char *path = find_library(name, obj);
1161 
1162 	    needed->obj = NULL;
1163 	    if (path == NULL && !ld_tracing)
1164 		return -1;
1165 
1166 	    if (path) {
1167 		needed->obj = load_object(path);
1168 		if (needed->obj == NULL && !ld_tracing)
1169 		    return -1;		/* XXX - cleanup */
1170 	    }
1171 	}
1172     }
1173 
1174     return 0;
1175 }
1176 
1177 static int
1178 load_preload_objects(void)
1179 {
1180     char *p = ld_preload;
1181     static const char delim[] = " \t:;";
1182 
1183     if (p == NULL)
1184 	return 0;
1185 
1186     p += strspn(p, delim);
1187     while (*p != '\0') {
1188 	size_t len = strcspn(p, delim);
1189 	char *path;
1190 	char savech;
1191 
1192 	savech = p[len];
1193 	p[len] = '\0';
1194 	if ((path = find_library(p, NULL)) == NULL)
1195 	    return -1;
1196 	if (load_object(path) == NULL)
1197 	    return -1;	/* XXX - cleanup */
1198 	p[len] = savech;
1199 	p += len;
1200 	p += strspn(p, delim);
1201     }
1202     return 0;
1203 }
1204 
1205 /*
1206  * Load a shared object into memory, if it is not already loaded.  The
1207  * argument must be a string allocated on the heap.  This function assumes
1208  * responsibility for freeing it when necessary.
1209  *
1210  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1211  * on failure.
1212  */
1213 static Obj_Entry *
1214 load_object(char *path)
1215 {
1216     Obj_Entry *obj;
1217     int fd = -1;
1218     struct stat sb;
1219 
1220     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1221 	if (strcmp(obj->path, path) == 0)
1222 	    break;
1223 
1224     /*
1225      * If we didn't find a match by pathname, open the file and check
1226      * again by device and inode.  This avoids false mismatches caused
1227      * by multiple links or ".." in pathnames.
1228      *
1229      * To avoid a race, we open the file and use fstat() rather than
1230      * using stat().
1231      */
1232     if (obj == NULL) {
1233 	if ((fd = open(path, O_RDONLY)) == -1) {
1234 	    _rtld_error("Cannot open \"%s\"", path);
1235 	    return NULL;
1236 	}
1237 	if (fstat(fd, &sb) == -1) {
1238 	    _rtld_error("Cannot fstat \"%s\"", path);
1239 	    close(fd);
1240 	    return NULL;
1241 	}
1242 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1243 	    if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) {
1244 		close(fd);
1245 		break;
1246 	    }
1247 	}
1248     }
1249 
1250     if (obj == NULL) {	/* First use of this object, so we must map it in */
1251 	dbg("loading \"%s\"", path);
1252 	obj = map_object(fd, path, &sb);
1253 	close(fd);
1254 	if (obj == NULL) {
1255 	    free(path);
1256 	    return NULL;
1257 	}
1258 
1259 	obj->path = path;
1260 	digest_dynamic(obj, 0);
1261 
1262 	*obj_tail = obj;
1263 	obj_tail = &obj->next;
1264 	obj_count++;
1265 	linkmap_add(obj);	/* for GDB & dlinfo() */
1266 
1267 	dbg("  %p .. %p: %s", obj->mapbase,
1268 	  obj->mapbase + obj->mapsize - 1, obj->path);
1269 	if (obj->textrel)
1270 	    dbg("  WARNING: %s has impure text", obj->path);
1271     } else
1272 	free(path);
1273 
1274     return obj;
1275 }
1276 
1277 static Obj_Entry *
1278 obj_from_addr(const void *addr)
1279 {
1280     Obj_Entry *obj;
1281 
1282     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1283 	if (addr < (void *) obj->mapbase)
1284 	    continue;
1285 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1286 	    return obj;
1287     }
1288     return NULL;
1289 }
1290 
1291 /*
1292  * Call the finalization functions for each of the objects in "list"
1293  * which are unreferenced.  All of the objects are expected to have
1294  * non-NULL fini functions.
1295  */
1296 static void
1297 objlist_call_fini(Objlist *list)
1298 {
1299     Objlist_Entry *elm;
1300     char *saved_msg;
1301 
1302     /*
1303      * Preserve the current error message since a fini function might
1304      * call into the dynamic linker and overwrite it.
1305      */
1306     saved_msg = errmsg_save();
1307     STAILQ_FOREACH(elm, list, link) {
1308 	if (elm->obj->refcount == 0) {
1309 	    dbg("calling fini function for %s at %p", elm->obj->path,
1310 	        (void *)elm->obj->fini);
1311 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1312 	}
1313     }
1314     errmsg_restore(saved_msg);
1315 }
1316 
1317 /*
1318  * Call the initialization functions for each of the objects in
1319  * "list".  All of the objects are expected to have non-NULL init
1320  * functions.
1321  */
1322 static void
1323 objlist_call_init(Objlist *list)
1324 {
1325     Objlist_Entry *elm;
1326     char *saved_msg;
1327 
1328     /*
1329      * Preserve the current error message since an init function might
1330      * call into the dynamic linker and overwrite it.
1331      */
1332     saved_msg = errmsg_save();
1333     STAILQ_FOREACH(elm, list, link) {
1334 	dbg("calling init function for %s at %p", elm->obj->path,
1335 	    (void *)elm->obj->init);
1336 	call_initfini_pointer(elm->obj, elm->obj->init);
1337     }
1338     errmsg_restore(saved_msg);
1339 }
1340 
1341 static void
1342 objlist_clear(Objlist *list)
1343 {
1344     Objlist_Entry *elm;
1345 
1346     while (!STAILQ_EMPTY(list)) {
1347 	elm = STAILQ_FIRST(list);
1348 	STAILQ_REMOVE_HEAD(list, link);
1349 	free(elm);
1350     }
1351 }
1352 
1353 static Objlist_Entry *
1354 objlist_find(Objlist *list, const Obj_Entry *obj)
1355 {
1356     Objlist_Entry *elm;
1357 
1358     STAILQ_FOREACH(elm, list, link)
1359 	if (elm->obj == obj)
1360 	    return elm;
1361     return NULL;
1362 }
1363 
1364 static void
1365 objlist_init(Objlist *list)
1366 {
1367     STAILQ_INIT(list);
1368 }
1369 
1370 static void
1371 objlist_push_head(Objlist *list, Obj_Entry *obj)
1372 {
1373     Objlist_Entry *elm;
1374 
1375     elm = NEW(Objlist_Entry);
1376     elm->obj = obj;
1377     STAILQ_INSERT_HEAD(list, elm, link);
1378 }
1379 
1380 static void
1381 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1382 {
1383     Objlist_Entry *elm;
1384 
1385     elm = NEW(Objlist_Entry);
1386     elm->obj = obj;
1387     STAILQ_INSERT_TAIL(list, elm, link);
1388 }
1389 
1390 static void
1391 objlist_remove(Objlist *list, Obj_Entry *obj)
1392 {
1393     Objlist_Entry *elm;
1394 
1395     if ((elm = objlist_find(list, obj)) != NULL) {
1396 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1397 	free(elm);
1398     }
1399 }
1400 
1401 /*
1402  * Remove all of the unreferenced objects from "list".
1403  */
1404 static void
1405 objlist_remove_unref(Objlist *list)
1406 {
1407     Objlist newlist;
1408     Objlist_Entry *elm;
1409 
1410     STAILQ_INIT(&newlist);
1411     while (!STAILQ_EMPTY(list)) {
1412 	elm = STAILQ_FIRST(list);
1413 	STAILQ_REMOVE_HEAD(list, link);
1414 	if (elm->obj->refcount == 0)
1415 	    free(elm);
1416 	else
1417 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1418     }
1419     *list = newlist;
1420 }
1421 
1422 /*
1423  * Relocate newly-loaded shared objects.  The argument is a pointer to
1424  * the Obj_Entry for the first such object.  All objects from the first
1425  * to the end of the list of objects are relocated.  Returns 0 on success,
1426  * or -1 on failure.
1427  */
1428 static int
1429 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1430 {
1431     Obj_Entry *obj;
1432 
1433     for (obj = first;  obj != NULL;  obj = obj->next) {
1434 	if (obj != rtldobj)
1435 	    dbg("relocating \"%s\"", obj->path);
1436 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1437 	    obj->symtab == NULL || obj->strtab == NULL) {
1438 	    _rtld_error("%s: Shared object has no run-time symbol table",
1439 	      obj->path);
1440 	    return -1;
1441 	}
1442 
1443 	if (obj->textrel) {
1444 	    /* There are relocations to the write-protected text segment. */
1445 	    if (mprotect(obj->mapbase, obj->textsize,
1446 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1447 		_rtld_error("%s: Cannot write-enable text segment: %s",
1448 		  obj->path, strerror(errno));
1449 		return -1;
1450 	    }
1451 	}
1452 
1453 	/* Process the non-PLT relocations. */
1454 	if (reloc_non_plt(obj, rtldobj))
1455 		return -1;
1456 
1457 	if (obj->textrel) {	/* Re-protected the text segment. */
1458 	    if (mprotect(obj->mapbase, obj->textsize,
1459 	      PROT_READ|PROT_EXEC) == -1) {
1460 		_rtld_error("%s: Cannot write-protect text segment: %s",
1461 		  obj->path, strerror(errno));
1462 		return -1;
1463 	    }
1464 	}
1465 
1466 	/* Process the PLT relocations. */
1467 	if (reloc_plt(obj) == -1)
1468 	    return -1;
1469 	/* Relocate the jump slots if we are doing immediate binding. */
1470 	if (obj->bind_now || bind_now)
1471 	    if (reloc_jmpslots(obj) == -1)
1472 		return -1;
1473 
1474 
1475 	/*
1476 	 * Set up the magic number and version in the Obj_Entry.  These
1477 	 * were checked in the crt1.o from the original ElfKit, so we
1478 	 * set them for backward compatibility.
1479 	 */
1480 	obj->magic = RTLD_MAGIC;
1481 	obj->version = RTLD_VERSION;
1482 
1483 	/* Set the special PLT or GOT entries. */
1484 	init_pltgot(obj);
1485     }
1486 
1487     return 0;
1488 }
1489 
1490 /*
1491  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1492  * before the process exits.
1493  */
1494 static void
1495 rtld_exit(void)
1496 {
1497     Obj_Entry *obj;
1498 
1499     dbg("rtld_exit()");
1500     /* Clear all the reference counts so the fini functions will be called. */
1501     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1502 	obj->refcount = 0;
1503     objlist_call_fini(&list_fini);
1504     /* No need to remove the items from the list, since we are exiting. */
1505     if (!libmap_disable)
1506         lm_fini();
1507 }
1508 
1509 static void *
1510 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1511 {
1512 #ifdef COMPAT_32BIT
1513     const char *trans;
1514 #endif
1515     if (path == NULL)
1516 	return (NULL);
1517 
1518     path += strspn(path, ":;");
1519     while (*path != '\0') {
1520 	size_t len;
1521 	char  *res;
1522 
1523 	len = strcspn(path, ":;");
1524 #ifdef COMPAT_32BIT
1525 	trans = lm_findn(NULL, path, len);
1526 	if (trans)
1527 	    res = callback(trans, strlen(trans), arg);
1528 	else
1529 #endif
1530 	res = callback(path, len, arg);
1531 
1532 	if (res != NULL)
1533 	    return (res);
1534 
1535 	path += len;
1536 	path += strspn(path, ":;");
1537     }
1538 
1539     return (NULL);
1540 }
1541 
1542 struct try_library_args {
1543     const char	*name;
1544     size_t	 namelen;
1545     char	*buffer;
1546     size_t	 buflen;
1547 };
1548 
1549 static void *
1550 try_library_path(const char *dir, size_t dirlen, void *param)
1551 {
1552     struct try_library_args *arg;
1553 
1554     arg = param;
1555     if (*dir == '/' || trust) {
1556 	char *pathname;
1557 
1558 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1559 		return (NULL);
1560 
1561 	pathname = arg->buffer;
1562 	strncpy(pathname, dir, dirlen);
1563 	pathname[dirlen] = '/';
1564 	strcpy(pathname + dirlen + 1, arg->name);
1565 
1566 	dbg("  Trying \"%s\"", pathname);
1567 	if (access(pathname, F_OK) == 0) {		/* We found it */
1568 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1569 	    strcpy(pathname, arg->buffer);
1570 	    return (pathname);
1571 	}
1572     }
1573     return (NULL);
1574 }
1575 
1576 static char *
1577 search_library_path(const char *name, const char *path)
1578 {
1579     char *p;
1580     struct try_library_args arg;
1581 
1582     if (path == NULL)
1583 	return NULL;
1584 
1585     arg.name = name;
1586     arg.namelen = strlen(name);
1587     arg.buffer = xmalloc(PATH_MAX);
1588     arg.buflen = PATH_MAX;
1589 
1590     p = path_enumerate(path, try_library_path, &arg);
1591 
1592     free(arg.buffer);
1593 
1594     return (p);
1595 }
1596 
1597 int
1598 dlclose(void *handle)
1599 {
1600     Obj_Entry *root;
1601     int lockstate;
1602 
1603     lockstate = wlock_acquire(rtld_bind_lock);
1604     root = dlcheck(handle);
1605     if (root == NULL) {
1606 	wlock_release(rtld_bind_lock, lockstate);
1607 	return -1;
1608     }
1609 
1610     /* Unreference the object and its dependencies. */
1611     root->dl_refcount--;
1612 
1613     unref_dag(root);
1614 
1615     if (root->refcount == 0) {
1616 	/*
1617 	 * The object is no longer referenced, so we must unload it.
1618 	 * First, call the fini functions with no locks held.
1619 	 */
1620 	wlock_release(rtld_bind_lock, lockstate);
1621 	objlist_call_fini(&list_fini);
1622 	lockstate = wlock_acquire(rtld_bind_lock);
1623 	objlist_remove_unref(&list_fini);
1624 
1625 	/* Finish cleaning up the newly-unreferenced objects. */
1626 	GDB_STATE(RT_DELETE,&root->linkmap);
1627 	unload_object(root);
1628 	GDB_STATE(RT_CONSISTENT,NULL);
1629     }
1630     wlock_release(rtld_bind_lock, lockstate);
1631     return 0;
1632 }
1633 
1634 const char *
1635 dlerror(void)
1636 {
1637     char *msg = error_message;
1638     error_message = NULL;
1639     return msg;
1640 }
1641 
1642 /*
1643  * This function is deprecated and has no effect.
1644  */
1645 void
1646 dllockinit(void *context,
1647 	   void *(*lock_create)(void *context),
1648            void (*rlock_acquire)(void *lock),
1649            void (*wlock_acquire)(void *lock),
1650            void (*lock_release)(void *lock),
1651            void (*lock_destroy)(void *lock),
1652 	   void (*context_destroy)(void *context))
1653 {
1654     static void *cur_context;
1655     static void (*cur_context_destroy)(void *);
1656 
1657     /* Just destroy the context from the previous call, if necessary. */
1658     if (cur_context_destroy != NULL)
1659 	cur_context_destroy(cur_context);
1660     cur_context = context;
1661     cur_context_destroy = context_destroy;
1662 }
1663 
1664 void *
1665 dlopen(const char *name, int mode)
1666 {
1667     Obj_Entry **old_obj_tail;
1668     Obj_Entry *obj;
1669     Objlist initlist;
1670     int result, lockstate;
1671 
1672     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1673     if (ld_tracing != NULL)
1674 	environ = (char **)*get_program_var_addr("environ");
1675 
1676     objlist_init(&initlist);
1677 
1678     lockstate = wlock_acquire(rtld_bind_lock);
1679     GDB_STATE(RT_ADD,NULL);
1680 
1681     old_obj_tail = obj_tail;
1682     obj = NULL;
1683     if (name == NULL) {
1684 	obj = obj_main;
1685 	obj->refcount++;
1686     } else {
1687 	char *path = find_library(name, obj_main);
1688 	if (path != NULL)
1689 	    obj = load_object(path);
1690     }
1691 
1692     if (obj) {
1693 	obj->dl_refcount++;
1694 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
1695 	    objlist_push_tail(&list_global, obj);
1696 	mode &= RTLD_MODEMASK;
1697 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1698 	    assert(*old_obj_tail == obj);
1699 
1700 	    result = load_needed_objects(obj);
1701 	    if (result != -1 && ld_tracing)
1702 		goto trace;
1703 
1704 	    if (result == -1 ||
1705 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1706 	       &obj_rtld)) == -1) {
1707 		obj->dl_refcount--;
1708 		unref_dag(obj);
1709 		if (obj->refcount == 0)
1710 		    unload_object(obj);
1711 		obj = NULL;
1712 	    } else {
1713 		/* Make list of init functions to call. */
1714 		initlist_add_objects(obj, &obj->next, &initlist);
1715 	    }
1716 	} else {
1717 
1718 	    /* Bump the reference counts for objects on this DAG. */
1719 	    ref_dag(obj);
1720 
1721 	    if (ld_tracing)
1722 		goto trace;
1723 	}
1724     }
1725 
1726     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1727 
1728     /* Call the init functions with no locks held. */
1729     wlock_release(rtld_bind_lock, lockstate);
1730     objlist_call_init(&initlist);
1731     lockstate = wlock_acquire(rtld_bind_lock);
1732     objlist_clear(&initlist);
1733     wlock_release(rtld_bind_lock, lockstate);
1734     return obj;
1735 trace:
1736     trace_loaded_objects(obj);
1737     wlock_release(rtld_bind_lock, lockstate);
1738     exit(0);
1739 }
1740 
1741 void *
1742 dlsym(void *handle, const char *name)
1743 {
1744     const Obj_Entry *obj;
1745     unsigned long hash;
1746     const Elf_Sym *def;
1747     const Obj_Entry *defobj;
1748     int lockstate;
1749 
1750     hash = elf_hash(name);
1751     def = NULL;
1752     defobj = NULL;
1753 
1754     lockstate = rlock_acquire(rtld_bind_lock);
1755     if (handle == NULL || handle == RTLD_NEXT ||
1756 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1757 	void *retaddr;
1758 
1759 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1760 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1761 	    _rtld_error("Cannot determine caller's shared object");
1762 	    rlock_release(rtld_bind_lock, lockstate);
1763 	    return NULL;
1764 	}
1765 	if (handle == NULL) {	/* Just the caller's shared object. */
1766 	    def = symlook_obj(name, hash, obj, true);
1767 	    defobj = obj;
1768 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1769 		   handle == RTLD_SELF) { /* ... caller included */
1770 	    if (handle == RTLD_NEXT)
1771 		obj = obj->next;
1772 	    for (; obj != NULL; obj = obj->next) {
1773 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1774 		    defobj = obj;
1775 		    break;
1776 		}
1777 	    }
1778 	} else {
1779 	    assert(handle == RTLD_DEFAULT);
1780 	    def = symlook_default(name, hash, obj, &defobj, true);
1781 	}
1782     } else {
1783 	if ((obj = dlcheck(handle)) == NULL) {
1784 	    rlock_release(rtld_bind_lock, lockstate);
1785 	    return NULL;
1786 	}
1787 
1788 	if (obj->mainprog) {
1789 	    DoneList donelist;
1790 
1791 	    /* Search main program and all libraries loaded by it. */
1792 	    donelist_init(&donelist);
1793 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1794 	      &donelist);
1795 	} else {
1796 	    /*
1797 	     * XXX - This isn't correct.  The search should include the whole
1798 	     * DAG rooted at the given object.
1799 	     */
1800 	    def = symlook_obj(name, hash, obj, true);
1801 	    defobj = obj;
1802 	}
1803     }
1804 
1805     if (def != NULL) {
1806 	rlock_release(rtld_bind_lock, lockstate);
1807 
1808 	/*
1809 	 * The value required by the caller is derived from the value
1810 	 * of the symbol. For the ia64 architecture, we need to
1811 	 * construct a function descriptor which the caller can use to
1812 	 * call the function with the right 'gp' value. For other
1813 	 * architectures and for non-functions, the value is simply
1814 	 * the relocated value of the symbol.
1815 	 */
1816 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
1817 	    return make_function_pointer(def, defobj);
1818 	else
1819 	    return defobj->relocbase + def->st_value;
1820     }
1821 
1822     _rtld_error("Undefined symbol \"%s\"", name);
1823     rlock_release(rtld_bind_lock, lockstate);
1824     return NULL;
1825 }
1826 
1827 int
1828 dladdr(const void *addr, Dl_info *info)
1829 {
1830     const Obj_Entry *obj;
1831     const Elf_Sym *def;
1832     void *symbol_addr;
1833     unsigned long symoffset;
1834     int lockstate;
1835 
1836     lockstate = rlock_acquire(rtld_bind_lock);
1837     obj = obj_from_addr(addr);
1838     if (obj == NULL) {
1839         _rtld_error("No shared object contains address");
1840 	rlock_release(rtld_bind_lock, lockstate);
1841         return 0;
1842     }
1843     info->dli_fname = obj->path;
1844     info->dli_fbase = obj->mapbase;
1845     info->dli_saddr = (void *)0;
1846     info->dli_sname = NULL;
1847 
1848     /*
1849      * Walk the symbol list looking for the symbol whose address is
1850      * closest to the address sent in.
1851      */
1852     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1853         def = obj->symtab + symoffset;
1854 
1855         /*
1856          * For skip the symbol if st_shndx is either SHN_UNDEF or
1857          * SHN_COMMON.
1858          */
1859         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1860             continue;
1861 
1862         /*
1863          * If the symbol is greater than the specified address, or if it
1864          * is further away from addr than the current nearest symbol,
1865          * then reject it.
1866          */
1867         symbol_addr = obj->relocbase + def->st_value;
1868         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1869             continue;
1870 
1871         /* Update our idea of the nearest symbol. */
1872         info->dli_sname = obj->strtab + def->st_name;
1873         info->dli_saddr = symbol_addr;
1874 
1875         /* Exact match? */
1876         if (info->dli_saddr == addr)
1877             break;
1878     }
1879     rlock_release(rtld_bind_lock, lockstate);
1880     return 1;
1881 }
1882 
1883 int
1884 dlinfo(void *handle, int request, void *p)
1885 {
1886     const Obj_Entry *obj;
1887     int error, lockstate;
1888 
1889     lockstate = rlock_acquire(rtld_bind_lock);
1890 
1891     if (handle == NULL || handle == RTLD_SELF) {
1892 	void *retaddr;
1893 
1894 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1895 	if ((obj = obj_from_addr(retaddr)) == NULL)
1896 	    _rtld_error("Cannot determine caller's shared object");
1897     } else
1898 	obj = dlcheck(handle);
1899 
1900     if (obj == NULL) {
1901 	rlock_release(rtld_bind_lock, lockstate);
1902 	return (-1);
1903     }
1904 
1905     error = 0;
1906     switch (request) {
1907     case RTLD_DI_LINKMAP:
1908 	*((struct link_map const **)p) = &obj->linkmap;
1909 	break;
1910     case RTLD_DI_ORIGIN:
1911 	error = rtld_dirname(obj->path, p);
1912 	break;
1913 
1914     case RTLD_DI_SERINFOSIZE:
1915     case RTLD_DI_SERINFO:
1916 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
1917 	break;
1918 
1919     default:
1920 	_rtld_error("Invalid request %d passed to dlinfo()", request);
1921 	error = -1;
1922     }
1923 
1924     rlock_release(rtld_bind_lock, lockstate);
1925 
1926     return (error);
1927 }
1928 
1929 struct fill_search_info_args {
1930     int		 request;
1931     unsigned int flags;
1932     Dl_serinfo  *serinfo;
1933     Dl_serpath  *serpath;
1934     char	*strspace;
1935 };
1936 
1937 static void *
1938 fill_search_info(const char *dir, size_t dirlen, void *param)
1939 {
1940     struct fill_search_info_args *arg;
1941 
1942     arg = param;
1943 
1944     if (arg->request == RTLD_DI_SERINFOSIZE) {
1945 	arg->serinfo->dls_cnt ++;
1946 	arg->serinfo->dls_size += dirlen + 1;
1947     } else {
1948 	struct dl_serpath *s_entry;
1949 
1950 	s_entry = arg->serpath;
1951 	s_entry->dls_name  = arg->strspace;
1952 	s_entry->dls_flags = arg->flags;
1953 
1954 	strncpy(arg->strspace, dir, dirlen);
1955 	arg->strspace[dirlen] = '\0';
1956 
1957 	arg->strspace += dirlen + 1;
1958 	arg->serpath++;
1959     }
1960 
1961     return (NULL);
1962 }
1963 
1964 static int
1965 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
1966 {
1967     struct dl_serinfo _info;
1968     struct fill_search_info_args args;
1969 
1970     args.request = RTLD_DI_SERINFOSIZE;
1971     args.serinfo = &_info;
1972 
1973     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1974     _info.dls_cnt  = 0;
1975 
1976     path_enumerate(ld_library_path, fill_search_info, &args);
1977     path_enumerate(obj->rpath, fill_search_info, &args);
1978     path_enumerate(gethints(), fill_search_info, &args);
1979     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
1980 
1981 
1982     if (request == RTLD_DI_SERINFOSIZE) {
1983 	info->dls_size = _info.dls_size;
1984 	info->dls_cnt = _info.dls_cnt;
1985 	return (0);
1986     }
1987 
1988     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
1989 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
1990 	return (-1);
1991     }
1992 
1993     args.request  = RTLD_DI_SERINFO;
1994     args.serinfo  = info;
1995     args.serpath  = &info->dls_serpath[0];
1996     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
1997 
1998     args.flags = LA_SER_LIBPATH;
1999     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2000 	return (-1);
2001 
2002     args.flags = LA_SER_RUNPATH;
2003     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2004 	return (-1);
2005 
2006     args.flags = LA_SER_CONFIG;
2007     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2008 	return (-1);
2009 
2010     args.flags = LA_SER_DEFAULT;
2011     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2012 	return (-1);
2013     return (0);
2014 }
2015 
2016 static int
2017 rtld_dirname(const char *path, char *bname)
2018 {
2019     const char *endp;
2020 
2021     /* Empty or NULL string gets treated as "." */
2022     if (path == NULL || *path == '\0') {
2023 	bname[0] = '.';
2024 	bname[1] = '\0';
2025 	return (0);
2026     }
2027 
2028     /* Strip trailing slashes */
2029     endp = path + strlen(path) - 1;
2030     while (endp > path && *endp == '/')
2031 	endp--;
2032 
2033     /* Find the start of the dir */
2034     while (endp > path && *endp != '/')
2035 	endp--;
2036 
2037     /* Either the dir is "/" or there are no slashes */
2038     if (endp == path) {
2039 	bname[0] = *endp == '/' ? '/' : '.';
2040 	bname[1] = '\0';
2041 	return (0);
2042     } else {
2043 	do {
2044 	    endp--;
2045 	} while (endp > path && *endp == '/');
2046     }
2047 
2048     if (endp - path + 2 > PATH_MAX)
2049     {
2050 	_rtld_error("Filename is too long: %s", path);
2051 	return(-1);
2052     }
2053 
2054     strncpy(bname, path, endp - path + 1);
2055     bname[endp - path + 1] = '\0';
2056     return (0);
2057 }
2058 
2059 static void
2060 linkmap_add(Obj_Entry *obj)
2061 {
2062     struct link_map *l = &obj->linkmap;
2063     struct link_map *prev;
2064 
2065     obj->linkmap.l_name = obj->path;
2066     obj->linkmap.l_addr = obj->mapbase;
2067     obj->linkmap.l_ld = obj->dynamic;
2068 #ifdef __mips__
2069     /* GDB needs load offset on MIPS to use the symbols */
2070     obj->linkmap.l_offs = obj->relocbase;
2071 #endif
2072 
2073     if (r_debug.r_map == NULL) {
2074 	r_debug.r_map = l;
2075 	return;
2076     }
2077 
2078     /*
2079      * Scan to the end of the list, but not past the entry for the
2080      * dynamic linker, which we want to keep at the very end.
2081      */
2082     for (prev = r_debug.r_map;
2083       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2084       prev = prev->l_next)
2085 	;
2086 
2087     /* Link in the new entry. */
2088     l->l_prev = prev;
2089     l->l_next = prev->l_next;
2090     if (l->l_next != NULL)
2091 	l->l_next->l_prev = l;
2092     prev->l_next = l;
2093 }
2094 
2095 static void
2096 linkmap_delete(Obj_Entry *obj)
2097 {
2098     struct link_map *l = &obj->linkmap;
2099 
2100     if (l->l_prev == NULL) {
2101 	if ((r_debug.r_map = l->l_next) != NULL)
2102 	    l->l_next->l_prev = NULL;
2103 	return;
2104     }
2105 
2106     if ((l->l_prev->l_next = l->l_next) != NULL)
2107 	l->l_next->l_prev = l->l_prev;
2108 }
2109 
2110 /*
2111  * Function for the debugger to set a breakpoint on to gain control.
2112  *
2113  * The two parameters allow the debugger to easily find and determine
2114  * what the runtime loader is doing and to whom it is doing it.
2115  *
2116  * When the loadhook trap is hit (r_debug_state, set at program
2117  * initialization), the arguments can be found on the stack:
2118  *
2119  *  +8   struct link_map *m
2120  *  +4   struct r_debug  *rd
2121  *  +0   RetAddr
2122  */
2123 void
2124 r_debug_state(struct r_debug* rd, struct link_map *m)
2125 {
2126 }
2127 
2128 /*
2129  * Get address of the pointer variable in the main program.
2130  */
2131 static const void **
2132 get_program_var_addr(const char *name)
2133 {
2134     const Obj_Entry *obj;
2135     unsigned long hash;
2136 
2137     hash = elf_hash(name);
2138     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2139 	const Elf_Sym *def;
2140 
2141 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2142 	    const void **addr;
2143 
2144 	    addr = (const void **)(obj->relocbase + def->st_value);
2145 	    return addr;
2146 	}
2147     }
2148     return NULL;
2149 }
2150 
2151 /*
2152  * Set a pointer variable in the main program to the given value.  This
2153  * is used to set key variables such as "environ" before any of the
2154  * init functions are called.
2155  */
2156 static void
2157 set_program_var(const char *name, const void *value)
2158 {
2159     const void **addr;
2160 
2161     if ((addr = get_program_var_addr(name)) != NULL) {
2162 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2163 	*addr = value;
2164     }
2165 }
2166 
2167 /*
2168  * Given a symbol name in a referencing object, find the corresponding
2169  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2170  * no definition was found.  Returns a pointer to the Obj_Entry of the
2171  * defining object via the reference parameter DEFOBJ_OUT.
2172  */
2173 static const Elf_Sym *
2174 symlook_default(const char *name, unsigned long hash,
2175     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2176 {
2177     DoneList donelist;
2178     const Elf_Sym *def;
2179     const Elf_Sym *symp;
2180     const Obj_Entry *obj;
2181     const Obj_Entry *defobj;
2182     const Objlist_Entry *elm;
2183     def = NULL;
2184     defobj = NULL;
2185     donelist_init(&donelist);
2186 
2187     /* Look first in the referencing object if linked symbolically. */
2188     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2189 	symp = symlook_obj(name, hash, refobj, in_plt);
2190 	if (symp != NULL) {
2191 	    def = symp;
2192 	    defobj = refobj;
2193 	}
2194     }
2195 
2196     /* Search all objects loaded at program start up. */
2197     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2198 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2199 	if (symp != NULL &&
2200 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2201 	    def = symp;
2202 	    defobj = obj;
2203 	}
2204     }
2205 
2206     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2207     STAILQ_FOREACH(elm, &list_global, link) {
2208        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2209            break;
2210        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2211          &donelist);
2212 	if (symp != NULL &&
2213 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2214 	    def = symp;
2215 	    defobj = obj;
2216 	}
2217     }
2218 
2219     /* Search all dlopened DAGs containing the referencing object. */
2220     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2221 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2222 	    break;
2223 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2224 	  &donelist);
2225 	if (symp != NULL &&
2226 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2227 	    def = symp;
2228 	    defobj = obj;
2229 	}
2230     }
2231 
2232     /*
2233      * Search the dynamic linker itself, and possibly resolve the
2234      * symbol from there.  This is how the application links to
2235      * dynamic linker services such as dlopen.  Only the values listed
2236      * in the "exports" array can be resolved from the dynamic linker.
2237      */
2238     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2239 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2240 	if (symp != NULL && is_exported(symp)) {
2241 	    def = symp;
2242 	    defobj = &obj_rtld;
2243 	}
2244     }
2245 
2246     if (def != NULL)
2247 	*defobj_out = defobj;
2248     return def;
2249 }
2250 
2251 static const Elf_Sym *
2252 symlook_list(const char *name, unsigned long hash, Objlist *objlist,
2253   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2254 {
2255     const Elf_Sym *symp;
2256     const Elf_Sym *def;
2257     const Obj_Entry *defobj;
2258     const Objlist_Entry *elm;
2259 
2260     def = NULL;
2261     defobj = NULL;
2262     STAILQ_FOREACH(elm, objlist, link) {
2263 	if (donelist_check(dlp, elm->obj))
2264 	    continue;
2265 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2266 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2267 		def = symp;
2268 		defobj = elm->obj;
2269 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2270 		    break;
2271 	    }
2272 	}
2273     }
2274     if (def != NULL)
2275 	*defobj_out = defobj;
2276     return def;
2277 }
2278 
2279 /*
2280  * Search the symbol table of a single shared object for a symbol of
2281  * the given name.  Returns a pointer to the symbol, or NULL if no
2282  * definition was found.
2283  *
2284  * The symbol's hash value is passed in for efficiency reasons; that
2285  * eliminates many recomputations of the hash value.
2286  */
2287 const Elf_Sym *
2288 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2289   bool in_plt)
2290 {
2291     if (obj->buckets != NULL) {
2292 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2293 
2294 	while (symnum != STN_UNDEF) {
2295 	    const Elf_Sym *symp;
2296 	    const char *strp;
2297 
2298 	    if (symnum >= obj->nchains)
2299 		return NULL;	/* Bad object */
2300 	    symp = obj->symtab + symnum;
2301 	    strp = obj->strtab + symp->st_name;
2302 
2303 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2304 		return symp->st_shndx != SHN_UNDEF ||
2305 		  (!in_plt && symp->st_value != 0 &&
2306 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2307 
2308 	    symnum = obj->chains[symnum];
2309 	}
2310     }
2311     return NULL;
2312 }
2313 
2314 static void
2315 trace_loaded_objects(Obj_Entry *obj)
2316 {
2317     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
2318     int		c;
2319 
2320     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2321 	main_local = "";
2322 
2323     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2324 	fmt1 = "\t%o => %p (%x)\n";
2325 
2326     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2327 	fmt2 = "\t%o (%x)\n";
2328 
2329     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
2330 
2331     for (; obj; obj = obj->next) {
2332 	Needed_Entry		*needed;
2333 	char			*name, *path;
2334 	bool			is_lib;
2335 
2336 	if (list_containers && obj->needed != NULL)
2337 	    printf("%s:\n", obj->path);
2338 	for (needed = obj->needed; needed; needed = needed->next) {
2339 	    if (needed->obj != NULL) {
2340 		if (needed->obj->traced && !list_containers)
2341 		    continue;
2342 		needed->obj->traced = true;
2343 		path = needed->obj->path;
2344 	    } else
2345 		path = "not found";
2346 
2347 	    name = (char *)obj->strtab + needed->name;
2348 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2349 
2350 	    fmt = is_lib ? fmt1 : fmt2;
2351 	    while ((c = *fmt++) != '\0') {
2352 		switch (c) {
2353 		default:
2354 		    putchar(c);
2355 		    continue;
2356 		case '\\':
2357 		    switch (c = *fmt) {
2358 		    case '\0':
2359 			continue;
2360 		    case 'n':
2361 			putchar('\n');
2362 			break;
2363 		    case 't':
2364 			putchar('\t');
2365 			break;
2366 		    }
2367 		    break;
2368 		case '%':
2369 		    switch (c = *fmt) {
2370 		    case '\0':
2371 			continue;
2372 		    case '%':
2373 		    default:
2374 			putchar(c);
2375 			break;
2376 		    case 'A':
2377 			printf("%s", main_local);
2378 			break;
2379 		    case 'a':
2380 			printf("%s", obj_main->path);
2381 			break;
2382 		    case 'o':
2383 			printf("%s", name);
2384 			break;
2385 #if 0
2386 		    case 'm':
2387 			printf("%d", sodp->sod_major);
2388 			break;
2389 		    case 'n':
2390 			printf("%d", sodp->sod_minor);
2391 			break;
2392 #endif
2393 		    case 'p':
2394 			printf("%s", path);
2395 			break;
2396 		    case 'x':
2397 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2398 			break;
2399 		    }
2400 		    break;
2401 		}
2402 		++fmt;
2403 	    }
2404 	}
2405     }
2406 }
2407 
2408 /*
2409  * Unload a dlopened object and its dependencies from memory and from
2410  * our data structures.  It is assumed that the DAG rooted in the
2411  * object has already been unreferenced, and that the object has a
2412  * reference count of 0.
2413  */
2414 static void
2415 unload_object(Obj_Entry *root)
2416 {
2417     Obj_Entry *obj;
2418     Obj_Entry **linkp;
2419 
2420     assert(root->refcount == 0);
2421 
2422     /*
2423      * Pass over the DAG removing unreferenced objects from
2424      * appropriate lists.
2425      */
2426     unlink_object(root);
2427 
2428     /* Unmap all objects that are no longer referenced. */
2429     linkp = &obj_list->next;
2430     while ((obj = *linkp) != NULL) {
2431 	if (obj->refcount == 0) {
2432 	    dbg("unloading \"%s\"", obj->path);
2433 	    munmap(obj->mapbase, obj->mapsize);
2434 	    linkmap_delete(obj);
2435 	    *linkp = obj->next;
2436 	    obj_count--;
2437 	    obj_free(obj);
2438 	} else
2439 	    linkp = &obj->next;
2440     }
2441     obj_tail = linkp;
2442 }
2443 
2444 static void
2445 unlink_object(Obj_Entry *root)
2446 {
2447     Objlist_Entry *elm;
2448 
2449     if (root->refcount == 0) {
2450 	/* Remove the object from the RTLD_GLOBAL list. */
2451 	objlist_remove(&list_global, root);
2452 
2453     	/* Remove the object from all objects' DAG lists. */
2454     	STAILQ_FOREACH(elm, &root->dagmembers , link) {
2455 	    objlist_remove(&elm->obj->dldags, root);
2456 	    if (elm->obj != root)
2457 		unlink_object(elm->obj);
2458 	}
2459     }
2460 }
2461 
2462 static void
2463 ref_dag(Obj_Entry *root)
2464 {
2465     Objlist_Entry *elm;
2466 
2467     STAILQ_FOREACH(elm, &root->dagmembers , link)
2468 	elm->obj->refcount++;
2469 }
2470 
2471 static void
2472 unref_dag(Obj_Entry *root)
2473 {
2474     Objlist_Entry *elm;
2475 
2476     STAILQ_FOREACH(elm, &root->dagmembers , link)
2477 	elm->obj->refcount--;
2478 }
2479 
2480 /*
2481  * Common code for MD __tls_get_addr().
2482  */
2483 void *
2484 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
2485 {
2486     Elf_Addr* dtv = *dtvp;
2487 
2488     /* Check dtv generation in case new modules have arrived */
2489     if (dtv[0] != tls_dtv_generation) {
2490 	Elf_Addr* newdtv;
2491 	int to_copy;
2492 
2493 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2494 	to_copy = dtv[1];
2495 	if (to_copy > tls_max_index)
2496 	    to_copy = tls_max_index;
2497 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2498 	newdtv[0] = tls_dtv_generation;
2499 	newdtv[1] = tls_max_index;
2500 	free(dtv);
2501 	*dtvp = newdtv;
2502     }
2503 
2504     /* Dynamically allocate module TLS if necessary */
2505     if (!dtv[index + 1])
2506 	dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2507 
2508     return (void*) (dtv[index + 1] + offset);
2509 }
2510 
2511 /* XXX not sure what variants to use for arm. */
2512 
2513 #if defined(__ia64__) || defined(__alpha__) || defined(__powerpc__)
2514 
2515 /*
2516  * Allocate Static TLS using the Variant I method.
2517  */
2518 void *
2519 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2520 {
2521     Obj_Entry *obj;
2522     size_t size;
2523     char *tls;
2524     Elf_Addr *dtv, *olddtv;
2525     Elf_Addr addr;
2526     int i;
2527 
2528     size = tls_static_space;
2529 
2530     tls = malloc(size);
2531     dtv = malloc((tls_max_index + 2) * sizeof(Elf_Addr));
2532 
2533     *(Elf_Addr**) tls = dtv;
2534 
2535     dtv[0] = tls_dtv_generation;
2536     dtv[1] = tls_max_index;
2537 
2538     if (oldtls) {
2539 	/*
2540 	 * Copy the static TLS block over whole.
2541 	 */
2542 	memcpy(tls + tcbsize, oldtls + tcbsize, tls_static_space - tcbsize);
2543 
2544 	/*
2545 	 * If any dynamic TLS blocks have been created tls_get_addr(),
2546 	 * move them over.
2547 	 */
2548 	olddtv = *(Elf_Addr**) oldtls;
2549 	for (i = 0; i < olddtv[1]; i++) {
2550 	    if (olddtv[i+2] < (Elf_Addr)oldtls ||
2551 		olddtv[i+2] > (Elf_Addr)oldtls + tls_static_space) {
2552 		dtv[i+2] = olddtv[i+2];
2553 		olddtv[i+2] = 0;
2554 	    }
2555 	}
2556 
2557 	/*
2558 	 * We assume that all tls blocks are allocated with the same
2559 	 * size and alignment.
2560 	 */
2561 	free_tls(oldtls, tcbsize, tcbalign);
2562     } else {
2563 	for (obj = objs; obj; obj = obj->next) {
2564 	    if (obj->tlsoffset) {
2565 		addr = (Elf_Addr)tls + obj->tlsoffset;
2566 		memset((void*) (addr + obj->tlsinitsize),
2567 		       0, obj->tlssize - obj->tlsinitsize);
2568 		if (obj->tlsinit)
2569 		    memcpy((void*) addr, obj->tlsinit,
2570 			   obj->tlsinitsize);
2571 		dtv[obj->tlsindex + 1] = addr;
2572 	    } else if (obj->tlsindex) {
2573 		dtv[obj->tlsindex + 1] = 0;
2574 	    }
2575 	}
2576     }
2577 
2578     return tls;
2579 }
2580 
2581 void
2582 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2583 {
2584     size_t size;
2585     Elf_Addr* dtv;
2586     int dtvsize, i;
2587     Elf_Addr tlsstart, tlsend;
2588 
2589     /*
2590      * Figure out the size of the initial TLS block so that we can
2591      * find stuff which __tls_get_addr() allocated dynamically.
2592      */
2593     size = tls_static_space;
2594 
2595     dtv = ((Elf_Addr**)tls)[0];
2596     dtvsize = dtv[1];
2597     tlsstart = (Elf_Addr) tls;
2598     tlsend = tlsstart + size;
2599     for (i = 0; i < dtvsize; i++) {
2600 	if (dtv[i+2] < tlsstart || dtv[i+2] > tlsend) {
2601 	    free((void*) dtv[i+2]);
2602 	}
2603     }
2604 
2605     free((void*) tlsstart);
2606 }
2607 
2608 #endif
2609 
2610 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
2611 
2612 /*
2613  * Allocate Static TLS using the Variant II method.
2614  */
2615 void *
2616 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
2617 {
2618     Obj_Entry *obj;
2619     size_t size;
2620     char *tls;
2621     Elf_Addr *dtv, *olddtv;
2622     Elf_Addr segbase, oldsegbase, addr;
2623     int i;
2624 
2625     size = round(tls_static_space, tcbalign);
2626 
2627     assert(tcbsize >= 2*sizeof(Elf_Addr));
2628     tls = malloc(size + tcbsize);
2629     dtv = malloc((tls_max_index + 2) * sizeof(Elf_Addr));
2630 
2631     segbase = (Elf_Addr)(tls + size);
2632     ((Elf_Addr*)segbase)[0] = segbase;
2633     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
2634 
2635     dtv[0] = tls_dtv_generation;
2636     dtv[1] = tls_max_index;
2637 
2638     if (oldtls) {
2639 	/*
2640 	 * Copy the static TLS block over whole.
2641 	 */
2642 	oldsegbase = (Elf_Addr) oldtls;
2643 	memcpy((void *)(segbase - tls_static_space),
2644 	       (const void *)(oldsegbase - tls_static_space),
2645 	       tls_static_space);
2646 
2647 	/*
2648 	 * If any dynamic TLS blocks have been created tls_get_addr(),
2649 	 * move them over.
2650 	 */
2651 	olddtv = ((Elf_Addr**)oldsegbase)[1];
2652 	for (i = 0; i < olddtv[1]; i++) {
2653 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
2654 		dtv[i+2] = olddtv[i+2];
2655 		olddtv[i+2] = 0;
2656 	    }
2657 	}
2658 
2659 	/*
2660 	 * We assume that this block was the one we created with
2661 	 * allocate_initial_tls().
2662 	 */
2663 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
2664     } else {
2665 	for (obj = objs; obj; obj = obj->next) {
2666 	    if (obj->tlsoffset) {
2667 		addr = segbase - obj->tlsoffset;
2668 		memset((void*) (addr + obj->tlsinitsize),
2669 		       0, obj->tlssize - obj->tlsinitsize);
2670 		if (obj->tlsinit)
2671 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2672 		dtv[obj->tlsindex + 1] = addr;
2673 	    } else if (obj->tlsindex) {
2674 		dtv[obj->tlsindex + 1] = 0;
2675 	    }
2676 	}
2677     }
2678 
2679     return (void*) segbase;
2680 }
2681 
2682 void
2683 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
2684 {
2685     size_t size;
2686     Elf_Addr* dtv;
2687     int dtvsize, i;
2688     Elf_Addr tlsstart, tlsend;
2689 
2690     /*
2691      * Figure out the size of the initial TLS block so that we can
2692      * find stuff which ___tls_get_addr() allocated dynamically.
2693      */
2694     size = round(tls_static_space, tcbalign);
2695 
2696     dtv = ((Elf_Addr**)tls)[1];
2697     dtvsize = dtv[1];
2698     tlsend = (Elf_Addr) tls;
2699     tlsstart = tlsend - size;
2700     for (i = 0; i < dtvsize; i++) {
2701 	if (dtv[i+2] < tlsstart || dtv[i+2] > tlsend) {
2702 	    free((void*) dtv[i+2]);
2703 	}
2704     }
2705 
2706     free((void*) tlsstart);
2707 }
2708 
2709 #endif
2710 
2711 /*
2712  * Allocate TLS block for module with given index.
2713  */
2714 void *
2715 allocate_module_tls(int index)
2716 {
2717     Obj_Entry* obj;
2718     char* p;
2719 
2720     for (obj = obj_list; obj; obj = obj->next) {
2721 	if (obj->tlsindex == index)
2722 	    break;
2723     }
2724     if (!obj) {
2725 	_rtld_error("Can't find module with TLS index %d", index);
2726 	die();
2727     }
2728 
2729     p = malloc(obj->tlssize);
2730     memcpy(p, obj->tlsinit, obj->tlsinitsize);
2731     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
2732 
2733     return p;
2734 }
2735 
2736 bool
2737 allocate_tls_offset(Obj_Entry *obj)
2738 {
2739     size_t off;
2740 
2741     if (obj->tls_done)
2742 	return true;
2743 
2744     if (obj->tlssize == 0) {
2745 	obj->tls_done = true;
2746 	return true;
2747     }
2748 
2749     if (obj->tlsindex == 1)
2750 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
2751     else
2752 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
2753 				   obj->tlssize, obj->tlsalign);
2754 
2755     /*
2756      * If we have already fixed the size of the static TLS block, we
2757      * must stay within that size. When allocating the static TLS, we
2758      * leave a small amount of space spare to be used for dynamically
2759      * loading modules which use static TLS.
2760      */
2761     if (tls_static_space) {
2762 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
2763 	    return false;
2764     }
2765 
2766     tls_last_offset = obj->tlsoffset = off;
2767     tls_last_size = obj->tlssize;
2768     obj->tls_done = true;
2769 
2770     return true;
2771 }
2772 
2773 void *
2774 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
2775 {
2776     return allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
2777 }
2778 
2779 void
2780 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
2781 {
2782     free_tls(tcb, tcbsize, tcbalign);
2783 }
2784